WO2007135279A1 - Separateur de particules contenues dans un courant gazeux, notamment de particules solides et/ou liquides et/ou pateuses - Google Patents

Separateur de particules contenues dans un courant gazeux, notamment de particules solides et/ou liquides et/ou pateuses Download PDF

Info

Publication number
WO2007135279A1
WO2007135279A1 PCT/FR2007/000840 FR2007000840W WO2007135279A1 WO 2007135279 A1 WO2007135279 A1 WO 2007135279A1 FR 2007000840 W FR2007000840 W FR 2007000840W WO 2007135279 A1 WO2007135279 A1 WO 2007135279A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
separator according
particle separator
particles
gas stream
Prior art date
Application number
PCT/FR2007/000840
Other languages
English (en)
Inventor
Jacky Michel
Pierre Picard
Original Assignee
Ifp
Techniques Aerauliques Pour La Maitrise De La Qualite De L'air
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ifp, Techniques Aerauliques Pour La Maitrise De La Qualite De L'air filed Critical Ifp
Priority to EP07731475A priority Critical patent/EP2040816A1/fr
Publication of WO2007135279A1 publication Critical patent/WO2007135279A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/04Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
    • B01D45/08Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by impingement against baffle separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/16Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream, the centrifugal forces being generated solely or partly by mechanical means, e.g. fixed swirl vanes

Definitions

  • the present invention relates to a particle separator contained in a gaseous stream.
  • It relates in particular to a separator for removing particles in liquid and / or solid and / or pasty form of such a stream.
  • the invention is more particularly applicable to the elimination of fat particles carried by a gas stream coming from food service or food processing plants without thereby eliminating all other separations, such as the separation of liquid particles which are present. in a gaseous stream resulting from releases from the chemical or mechanical industry.
  • compliance with the hygiene and safety standards entails the need to capture the gas stream emitted by the restoration operations so as to eliminate, to a large extent, the solid and / or liquid particles and / or pasty it contains.
  • this stream generally contains pasty fatty substances, fumes as well as combustion gases with solid particles, and vapors containing pollutants in liquid form. This can be detrimental to the exhaust system components of this gas stream and the environment as well as to hygiene and fire safety. Consequently, the elimination of all these harmful elements is necessary or even essential before the discharge of the gaseous stream into the atmosphere.
  • EP 0 137 956, particle separators which are formed of an enclosure open at both ends and in which are placed a multiplicities of curved channels substantially parallel to each other. These channels are arranged in the direction of flow of the gas stream between the two open ends and have a radius of curvature from one end to the other end. These channels are generally delimited by solid vertical plates each having the same curvature and which are arranged equidistant from each other.
  • the particle-laden gas stream enters through one of the ends of the enclosure, travels along the channels and exits through the other end of this enclosure.
  • the gas stream follows the curvature of the channels and the particles it contains are subjected to a centrifugal force resulting from the circulation of this current in the curvature of the channels.
  • the particles which are of a greater weight than the molecules of the gaseous current, leave the general direction of circulation of the current and strike the solid wall of the channel which cuts their trajectory.
  • the particles are slowed down and fall by gravity down the channel and therefore the enclosure, which may include a discharge port of these particles.
  • the particles which collide with the solid wall of the channel, bounce on this wall to be re-entrained by the gas stream.
  • the gas stream leaving the enclosure is insufficiently rid of particles.
  • the particles and more particularly the fat particles
  • the present invention proposes to overcome the drawbacks mentioned above by means of a simple and inexpensive design separator whose efficiency is greatly improved over those of the prior art.
  • the present invention relates to a separator of particles contained in a gas stream comprising at least one module comprising an enclosure with an inlet of the gas stream to be treated and an outlet of the treated gas stream and a plurality of curved channels. disposed in the chamber between this inlet and this outlet, characterized in that at least a portion of the channel surface comprises a permeable wall.
  • the wall may comprise a grid, a perforated sheet, a fabric, a nonwoven fabric.
  • the porosity of the wall may be 10 to 98% while its thickness may be between 0.04mm and 10mm.
  • the wall may consist of metallic material.
  • This permeable wall can be electrically conductive.
  • the section of the constituent elements of the wall may be from 1 ⁇ m 2 to 2500 ⁇ m 2 .
  • the wall may comprise a support frame.
  • the support frame may include bars or a frame.
  • the separator can be applied to the removal of particles carried by a gaseous stream coming from catering facilities or agri-food industries.
  • the separator can also be applied to the removal of particles carried by a gaseous stream coming from installations of the chemical or mechanical industry.
  • FIG. 1 shows schematically a front view of the separator according to the invention
  • FIG. 2 illustrates a section of the separator along line AA in FIG.
  • FIG. 3 is a partial perspective view of a portion of an exemplary embodiment of the separator according to the invention corresponding to the zone S of FIG. 2.
  • the separator here in the form of a single separation module 10, comprises an enclosure 12 of rectangular parallelepipedal shape with two solid horizontal faces 14 and 16 that are substantially parallel and at a distance from one of the other, two solid vertical faces 18 and 20 also substantially parallel and at a distance from each other, an open face 22 for the inlet of a gaseous stream (arrows G of FIG. 2) to be treated and another face 24, arranged opposite the inlet 22, for the output of the gaseous stream freed of a majority of the particles it contained.
  • the lower face 16 of the enclosure may also comprise a particle discharge orifice 26 which is preferably located in the middle region of this face and which is connected to a discharge pipe 28.
  • these channels are vertical and preferably have a substantially identical width L. These channels extend over the entire depth P of the enclosure from its inlet 22 to its outlet 24 and have a height that corresponds substantially to the height H of this enclosure. These channels have a direction such that they are in the same direction of flow as that of the gas stream between the inlet 22 and the outlet 24.
  • These channels are delimited by vertical walls 32 substantially parallel to each other and equidistant L from each other. These walls all have the same radius of curvature R located in a horizontal plane substantially parallel to that of a plane passing through the section AA of FIG. 1. This thus makes it possible to form curved channels in the same direction and whose concavity is located to the left of these figures.
  • these curved channels are delimited (considering FIG. 1) horizontally, upwards and downwards, by the upper 14 and lower 16 faces of the enclosure and vertically, on the left and right, by the walls 32. These channels therefore have a developed length D greater than the depth P of the enclosure.
  • This permeability results from the constitution of these walls which may be in the form of a grid (or micro-grid), perforated sheet, woven or non-woven fabric and whose constituent material is metallic, synthetic or natural.
  • these walls have a thickness E of between 20 .mu.m to 10 mm and more particularly a thickness of 0.5 mm to 10 mm for fabric walls and 20 .mu.m to 1 mm for the walls in the form of a grid or perforated sheet.
  • the porosity of these walls oscillates from 10 to 98% with a maximum porosity of 80% for the walls in the form of grid or perforated sheet and 98% for the walls in fabric.
  • the cross-section of the constituent elements of the wall 32 which may be wires or straps, is from about 1 ⁇ m 2 to about 2500 ⁇ m 2 .
  • these walls when they are made of a metallic material, they can be subjected to an electric current, which makes it possible to improve the separation of the particles from the gas stream by electrostatic or electromagnetic effect.
  • the vertical edges of the first wall 32 on the right are adjacent to the vertical face 20 of the enclosure and the space between the vertical edges of the last wall 32 to the left and the face vertical 18 is obstructed by a mask 34.
  • the gas stream G arrives at the inlet 22 of the chamber and enters the channels 30i, 3O 2, 3U3, ... n 3O.
  • the applicant limits his explanations relating to the operation of the separator only to the first two channels 30i, and 302 considered to the right of Figures 1 and 2.
  • the gaseous current follows the curved path of these channels in a multiplicity of gaseous currents as indicated by the arrows Ci and C 2 of FIG. 2.
  • the particles contained in each stream are subjected to centrifugal force. This force has the effect of separating the particles from the path of the gas stream Ci flowing in the channel 30 1 and deflecting them along the arrows Fi towards the wall 32 which is in the path of these particles.
  • the other part of the particles passes through this same wall and is introduced into the path C 2 of the gas stream flowing in the neighboring channel 30 2 .
  • These particles are mixed with those already present in this stream and are also subjected to the centrifugal force whose effects have been described above so as to separate the particles from the gas stream C 2 and to the deflect according to the arrows F 2 towards the wall 32 which is in the path of the deviated particles.
  • the particles will be separated and removed from each gas stream depending on the path of this gas stream along the channels.
  • the overall gas stream resulting from the meeting of all the currents flowing in the channels, is largely free of the particles that it originally contained.
  • this separator may have a height H between 40mm and 500mm, a depth P between 30mm and 500mm, a dimension for the inlet 22 between 40mm and 800mm with a pitch between the permeable walls of 5mm to 20mm and a radius curvature R from 20mm to 300mm.
  • the separator used a single module which had a height H of 400mm, a depth P of 240mm, a dimension of 170mm for the inlet 22 and the outlet 24, a pitch of 13mm between the walls.
  • the permeable walls 32 were expanded metal grids with a radius of curvature R of 240 mm.
  • the pressure drop (in Pascal - Pa -) was 42 Pa for the flow rate of 832m 3 / h and 82 Pa for the flow rate of 1180m 3 / h.
  • FIG. 3 shows a portion of the separator with an exemplary embodiment of permeable walls.
  • the wall 32 is made of a metal grid 36 having a degree of relative flexibility to achieve a curvature along the radius R.
  • This grid consists of an assembly of wires or metal strips 38 which, in the example considered, allows to define meshes 40 to four sides.
  • This grid has a height dimension which corresponds to the height H of the enclosure and a dimension in developed length which corresponds to the length D mentioned in connection with FIG. 2.
  • the vertical edges 42 of the grid are fixed in an armature of support which comprises rigid vertical bars 44 whose length is greater than the height H of the enclosure so that the free ends 46 of these bars protrude at the top and bottom of the grid.
  • the horizontal faces 14 and 16 of this chamber carry in the vicinity of each longitudinal edge passages 48 whose dimensions are adapted to receive the ends 46 of the bars 44.
  • the passages 48 of one of the 14 faces are placed opposite the passages 48 the other 16 faces and the distance between the passages 48 on the faces corresponds to the length L of the channels while the distance between the passages considered between the longitudinal edges of each face corresponds to the depth P of the channels.
  • the free ends 46 of one of the bars 44 are introduced into the passages 48 facing one of the longitudinal edges of the faces 14 and 16.
  • a force is then exerted on the other of bars so that the grid curves along the radius of curvature R until the dimension of the wall corresponds to the depth P of the enclosure.
  • the ends 46 of this other bar are then introduced into the passages 48 facing each other in the longitudinal edges of the faces 14 and 16 (not shown).
  • the separator consists of a single module 10 and it can be envisaged to use a separator consisting of an assembly of modules 10.
  • modules which can be of dimensions and of identical constitution of each other, can be assembled to each other in three directions (height and / or width and / or depth) so as to form this separator.
  • the permeable wall comprises a woven or non-woven fabric
  • a support frame of this fabric in the form of a curved frame according to the radius of curvature R on which this fabric will be fixed by all known means, such as gluing, stapling, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separating Particles In Gases By Inertia (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

La présente invention concerne un séparateur de particules contenues dans un courant gazeux comprenant au moins un module (10) comportant une enceinte (12) avec une entrée (22) du courant gazeux à traiter ainsi qu'une sortie (24) du courant gazeux traité et une multiplicité de canaux incurvés (301, ..., 3On) disposés dans l'enceinte entre cette entrée et cette sortie. Selon l'invention, au moins une partie de la surface des canaux comprend une paroi perméable (32).

Description

Séparateur de particules contenues dans un courant gazeux, notamment de particules solides et/ou liquides et/ou pâteuses
La présente invention se rapporte à un séparateur de particules contenues dans un courant gazeux.
Elle concerne notamment un séparateur permettant d'éliminer les particules sous forme liquide et/ou solide et/ou pâteuse d'un tel courant.
L'invention s'applique plus particulièrement à l'élimination de particules de matière grasse véhiculées par un courant gazeux provenant d'installations de restauration ou d'industries agroalimentaires sans pour cela écarter toutes autres séparations, comme la séparation de particules liquides qui sont présentes dans un courant gazeux découlant de rejets de l'industrie chimique ou mécanique.
Elle s'applique spécialement à un courant gazeux provenant d'installations de restauration traditionnelle, collective, industrielle ou rapide.
Dans ce type d'application, le respect des normes d'hygiène et de sécurité entraîne la nécessité de capter le courant gazeux émis par les opérations de restauration de façon à éliminer, en très grande partie, les particules solides et/ou liquides et/ou pâteuses qu'il contient. En effet, ce courant contient généralement des matières grasses sous forme pâteuse, des fumées ainsi que des gaz de combustion avec des particules solides, et des vapeurs contenant des polluants sous forme liquide. Ceci peut être nuisible aux composants du réseau d'extraction de ce courant gazeux et à l'environnement ainsi qu'à l'hygiène et à la sécurité incendie. En conséquence, l'élimination de tous ces éléments nuisibles s'avère nécessaire voire indispensable avant le rejet du courant gazeux dans l'atmosphère.
II est déjà connu, notamment par le document DE 4 214 094 ou
EP 0 137 956, des séparateurs de particules qui sont formés d'une enceinte ouverte à ses deux extrémités et dans laquelle sont placés une multiplicités de canaux incurvés sensiblement parallèles les uns aux autres. Ces canaux sont disposés dans le sens de l'écoulement du courant gazeux entre les deux extrémités ouvertes et présentent un rayon de courbure allant de l'une des extrémités à l'autre des extrémités. Ces canaux sont en général délimités par des plaques verticales pleines ayant chacune la même courbure et qui sont agencées à équidistance les unes des autres.
En fonctionnement, le courant gazeux chargé de particules pénètre par l'une des extrémités de l'enceinte, chemine le long des canaux et ressort par l'autre extrémité de cette enceinte. Durant ce cheminement, le courant gazeux suit la courbure des canaux et les particules qu'il contient sont soumises à une force centrifuge résultant de la circulation de ce courant dans la courbure des canaux. Sous l'effet de cette force centrifuge, les particules, qui sont d'un poids plus important que les molécules du courant gazeux, quittent la direction générale de circulation du courant et viennent heurter la paroi pleine du canal qui coupe leur trajectoire. Suite à ce choc, les particules sont ralenties et chutent par gravité vers le bas du canal et par conséquent de l'enceinte, qui peut comprendre un orifice d'évacuation de ces particules.
Ce type de séparateurs, bien que donnant partiellement satisfaction, présente cependant des inconvénients non négligeables.
En effet, certaines des particules, qui heurtent la paroi pleine du canal, rebondissent sur cette paroi pour être réentraînées par le courant gazeux. Dans cette condition, le courant gazeux qui sort de l'enceinte est insuffisamment débarrassé des particules. En outre, les particules (et plus particulièrement les particules de matières grasses) peuvent se déposer sur ces parois et entraîner, à terme, une obstruction partielle de la section de passage des canaux, ce qui génère une forte perte de charge.
La présente invention se propose de remédier aux inconvénients mentionnés ci-dessus grâce à un séparateur de conception simple et peu coûteux dont l'efficacité est grandement améliorée par rapport à ceux de l'art antérieur. A cet effet, la présente invention se rapporte à un séparateur de particules contenues dans un courant gazeux comprenant au moins un module comportant une enceinte avec une entrée du courant gazeux à traiter ainsi qu'une sortie du courant gazeux traité et une multiplicité de canaux incurvés disposés dans l'enceinte entre cette entrée et cette sortie, caractérisé en ce que au moins une partie de la surface des canaux comprend une paroi perméable.
De manière avantageuse, la paroi peut comprendre une grille, une tôle perforée, une toile, une toile non tissée.
La porosité de la paroi peut être de 10 à 98% alors que son épaisseur peut être comprise entre 0,04mm et 10mm.
Préférentiellement, la paroi peut être constituée de matière métallique.
Cette paroi perméable peut être conductrice d'électricité.
La section des éléments constitutifs de la paroi peut être de 1 μm2 à 2500μm2.
De manière préférentielle, la paroi peut comprendre une armature de support.
L'armature de support peut comprendre des barres ou un cadre.
Le séparateur peut s'appliquer à l'élimination de particules véhiculées par un courant gazeux provenant d'installations de restauration ou d'industries agroalimentaires. Le séparateur peut également s'appliquer à l'élimination de particules véhiculées par un courant gazeux provenant d'installations de l'industrie chimique ou mécanique.
Les autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture de la description donnée ci-après, à titre illustratif et non limitatif, et en se référant aux figures annexées parmi lesquelles :
- la figure 1 représente schématiquement une vue de face du séparateur selon l'invention ; - la figure 2 illustre une coupe du séparateur selon la ligne AA de la figure
1 et
- la figure 3 est une vue en perspective partielle d'une portion d'un exemple de réalisation du séparateur selon l'invention correspondant à la zone S de la figure 2.
Sur les figures 1 et 2, le séparateur, ici sous la forme d'un seul module de séparation 10, comprend une enceinte 12 de forme parallélépipédique rectangulaire avec deux faces horizontales pleines 14 et 16 sensiblement parallèles et à distance l'une de l'autre, deux faces verticales pleines 18 et 20 également sensiblement parallèles et à distance l'une de l'autre, une face ouverte 22 pour l'entrée d'un courant gazeux (flèches G de la figure 2) à traiter et une autre face ouverte 24, disposée en regard de l'entrée 22, pour la sortie du courant gazeux débarrassé d'une majorité des particules qu'il contenait.
La face inférieure 16 de l'enceinte peut comprendre également un orifice d'évacuation 26 des particules qui est, de préférence, situé dans la région médiane de cette face et qui est raccordé à une conduite d'évacuation 28.
A l'intérieur de l'enceinte est placée une multiplicité de canaux 30i, 3Û2,
3O3, ...3On de section polygonale, ici rectangulaire, sensiblement parallèles les uns aux autres. En considérant la figure 1 , ces canaux sont verticaux et ont, de préférence, une largeur L sensiblement identique. Ces canaux s'étendent sur toute la profondeur P de l'enceinte depuis son entrée 22 jusqu'à sa sortie 24 et ont une hauteur qui correspond sensiblement à la hauteur H de cette enceinte. Ces canaux ont une direction telle qu'ils se situent dans le même sens d'écoulement que celui du courant gazeux entre l'entrée 22 et la sortie 24.
Ces canaux sont délimités par des parois verticales 32 sensiblement parallèles les unes aux autres et à équidistance L les unes des autres. Ces parois présentent toutes un même rayon de courbure R situé dans un plan horizontal sensiblement parallèle à celui d'un plan passant par la coupe AA de la figure 1. Ceci permet ainsi de former des canaux incurvés dans le même sens et dont la concavité se trouve située à gauche de ces figures. Ainsi, ces canaux incurvées sont délimités (en considérant la figure 1 ) horizontalement, vers le haut et vers le bas, par les faces supérieure 14 et inférieure 16 de l'enceinte et verticalement, à gauche et à droite, par les parois 32. Ces canaux ont par conséquent une longueur développée D plus grande que la profondeur P de l'enceinte.
Ces parois sont perméables sur au moins une partie de leur étendue mais dans la suite de la description, il est considéré, à titre d'exemple de réalisation, que les parois 32 sont perméables sur la totalité de leur étendue.
Cette perméabilité résulte de la constitution de ces parois qui peuvent être sous forme de grille (ou de micro-grille), de tôle perforée, de toile tissée ou non tissée et dont la matière constitutive est métallique, synthétique ou naturelle.
De préférence, ces parois ont une épaisseur E comprise entre 20μm à 10mm et plus particulièrement une épaisseur de 0,5mm à 10mm pour des parois en toile et de 20μm à 1mm pour les parois sous forme de grille ou de tôle perforée.
En outre, la porosité de ces parois oscille de 10 à 98% avec une porosité maximale de 80% pour les parois sous forme de grille ou de tôle perforée et de 98% pour les parois en toile.
De plus, la section transversale des éléments constitutifs de la paroi 32, qui peuvent être des fils ou des lanières, est d'environ 1 μm2 à environ 2500μm2.
Avantageusement, lorsque ces parois sont en une matière métallique, elles peuvent être soumises à un courant électrique, ce qui permet d'améliorer la séparation des particules du courant gazeux par effet électrostatique ou électromagnétique.
Additionnellement et comme cela est montré sur les figures, les bords verticaux de la première paroi 32 sur la droite sont adjacents à la face verticale 20 de l'enceinte et l'espace entre les bords verticaux de la dernière paroi 32 à gauche et la face verticale 18 est obstrué par un masque 34.
En fonctionnement, le courant gazeux G arrive à l'entrée 22 de l'enceinte et pénètre dans les canaux 30i, 3O2, 3Û3, ...3On. Pour des raisons de simplification de la description qui va suivre, le demandeur limite ses explications relatives au fonctionnement du séparateur uniquement aux deux premiers canaux 30i, et 3O2 considérés à la droite des figures 1 et 2.
Le courant gazeux suit le cheminement courbe de ces canaux en une multiplicité de courants gazeux comme cela est indiqué par les flèches Ci et C2 de la figure 2. Sous l'effet de la courbure de ces canaux, les particules contenues dans chaque courant sont soumises à une force centrifuge. Cette force a pour effet de séparer les particules du cheminement du courant gazeux Ci circulant dans le canal 3O1 et à les dévier selon les flèches Fi en direction de la paroi 32 qui est sur la trajectoire de ces particules.
Une partie de ces particules heurte les éléments constitutifs de la paroi perméable 32, comme des lanières et/ou des fils verticaux et/ou horizontaux dans le cas d'une paroi sous forme de grille. Ces particules sont ralenties, voire arrêtées, dans leur déplacement et sous l'effet de la gravité tombent en direction de la face 16 de l'enceinte. Les particules sont ensuite évacuées vers tous moyens, par passage au travers de l'orifice 26 et la conduite 28.
L'autre partie des particules traverse cette même paroi et est introduite dans le cheminement C2 du courant gazeux circulant dans le canal voisin 3O2. Ces particules sont mélangées avec celles déjà présentes dans ce courant et sont également soumises à la force centrifuge dont les effets ont été décrits ci- dessus de manière à séparer les particules du courant gazeux C2 et à les dévier selon les flèches F2 en direction de la paroi 32 qui est sur la trajectoire des particules déviées.
Ainsi, les particules seront séparées et éliminées de chaque courant gazeux en fonction du cheminement de ce courant gazeux le long des canaux. A la sortie 24 de l'enceinte, le courant gazeux global, résultant de la réunion de tous les courants circulant dans les canaux, est débarrassé en très grande partie des particules qu'il contenait à l'origine.
En pratique, ce séparateur pourra avoir une hauteur H comprise entre 40mm et 500mm, une profondeur P entre 30mm et 500mm, une dimension pour l'entrée 22 comprise entre 40mm et 800mm avec un pas entre les parois perméables de 5mm à 20mm et un rayon de courbure R de 20mm à 300mm.
Des expérimentations ont été réalisées sur la base du séparateur de l'invention pour des applications à un courant gazeux de cuisine contenant des graisses, des particules généralement carbonées et de la vapeur d'eau.
Dans ces expérimentations, le séparateur utilisait un seul module qui avait une hauteur H de 400mm, une profondeur P de 240mm, une dimension de 170mm pour l'entrée 22 et la sortie 24, un pas de 13mm entre les parois. Les parois perméables 32 étaient des grilles en métal déployé avec un rayon de courbure R de 240 mm.
Ces expérimentations ont donné les résultats suivants :
Figure imgf000009_0001
La perte de charge (en Pascal - Pa -) a été de 42 Pa pour le débit de 832m3/h et de 82 Pa pour le débit de 1180m3/h.
Ces expérimentations ont ainsi permis de déterminer que le séparateur selon l'invention est environ 4 fois plus efficace que les séparateurs actuellement utilisés en cuisine pour lesquels la séparation des particules de 3 à 5 μm est d'environ 14%.
On se réfère maintenant à la figure 3 qui montre une portion du séparateur avec un exemple de réalisation de parois perméables.
La paroi 32 est constituée d'une grille métallique 36 possédant un degré de souplesse relative permettant de réaliser une courbure selon le rayon R. Cette grille est constituée d'un assemblage de fils ou de lanières 38 métalliques qui, dans l'exemple considéré, permet de définir des mailles 40 à quatre cotés. Cette grille a une dimension en hauteur qui correspond à la hauteur H de l'enceinte et une dimension en longueur développée qui correspond à la longueur D mentionnée en relation avec la figure 2. Les bords verticaux 42 de la grille sont fixés dans une armature de support qui comprend des barres verticales rigides 44 dont la longueur est plus grande que la hauteur H de l'enceinte de façon à ce que les extrémités libres 46 de ces barres dépassent en haut et en bas de la grille. Les faces horizontales 14 et 16 de cette enceinte portent au voisinage de chaque bord longitudinal des passages 48 dont les dimensions sont adaptées à recevoir les extrémités 46 des barres 44. Les passages 48 de l'une 14 des faces sont placés en regard des passages 48 de l'autre 16 des faces et la distance entre les passages 48 sur les faces correspond à la longueur L des canaux alors que la distance entre les passages considérée entre les bords longitudinaux de chaque face correspond à la profondeur P des canaux.
Pour mettre en place la paroi perméable 32, qui comprend dans l'exemple la grille 36 et ses barres verticales 44, les extrémités libres 46 de l'une des barres 44 sont introduites dans les passages 48 en regard d'un des bords longitudinaux des faces 14 et 16. Une force est ensuite exercée sur l'autre des barres de manière à ce que la grille se courbe selon le rayon de courbure R jusqu'à ce que la dimension de la paroi corresponde à la profondeur P de l'enceinte. Les extrémités 46 de cette autre barre sont ensuite introduites dans les passages 48 en regard dans l'autre des bords longitudinaux des faces 14 et 16 (non représentés). Ces opérations se répètent à l'identique avec chaque paroi 32 de façon à réaliser une multiplicité de canaux 3Oi à 3On.
L'invention n'est pas limitée aux exemples décrits ci-dessus mais englobe toutes variantes et tous équivalents. Notamment dans la description ci-dessus, il est mentionné que le séparateur est constitué d'un seul module 10 et il peut être envisagé d'utiliser un séparateur constitué d'un assemblage de modules 10. Ces modules, qui peuvent être de dimensions et de constitution identiques les uns des autres, peuvent être assemblés les uns aux autres selon les trois directions (hauteur et/ou largeur et/ou profondeur) de façon à former ce séparateur.
En outre, dans le cas où la paroi perméable comprend une toile tissée ou non tissée, il est envisageable de former une armature de support de cette toile sous forme d'un cadre incurvé selon le rayon de courbure R sur lequel cette toile sera fixée par tous moyens connus, comme le collage, l'agrafage, ...

Claims

REVENDICATIONS
1 ) Séparateur de particules contenues dans un courant gazeux comprenant au moins un module (10) comportant une enceinte (12) avec une entrée (22) du courant gazeux à traiter ainsi qu'une sortie (24) du courant gazeux traité et une multiplicité de canaux incurvés (3Oi 3On) disposés dans l'enceinte entre cette entrée et cette sortie, caractérisé en ce que au moins une partie de la surface des canaux comprend une paroi perméable (32).
2) Séparateur de particules selon la revendication 1 , caractérisé en ce que la paroi (32) comprend une grille.
3) Séparateur de particules selon la revendication 1 , caractérisé en ce que la paroi (32) comprend une tôle perforée.
4) Séparateur de particules selon la revendication 1 , caractérisé en ce que la paroi (32) comprend une toile.
5) Séparateur de particules selon la revendication 1 , caractérisé en ce que la paroi (32) comprend une toile non tissée.
6) Séparateur de particules selon l'une des revendications précédentes, caractérisé en ce que la porosité de la paroi (32) est de 10 à 98%.
7) Séparateur de particules selon l'une des revendications précédentes, caractérisé en ce que l'épaisseur de la paroi (32) est comprise entre 0,04mm et 10mm.
8) Séparateur de particules selon l'une des revendications précédentes, caractérisé en ce que la paroi (32) est constituée de matière métallique. 9) Séparateur de particules selon l'une des revendications précédentes, caractérisé en ce que la paroi perméable est conductrice d'électricité.
10) Séparateur de particules selon l'une des revendications précédentes, caractérisé en ce que la section des éléments constitutifs de la paroi (32) est de
1 μm2 à 2500μm2.
11 ) Séparateur de particules selon l'une des revendications précédentes, caractérisé en ce que la paroi (32) comprend en outre une armature de support (44).
12) Séparateur de particules selon la revendication 11 , caractérisé en ce que l'armature de support comprend des barres (44).
13) Séparateur de particules selon la revendication 11 , caractérisé en ce que l'armature de support comprend un cadre.
14) Application du séparateur de particules selon l'une des revendications 1 à 13 à l'élimination de particules véhiculées par un courant gazeux provenant d'installations de restauration ou d'industries agroalimentaires.
15) Application du séparateur de particules selon l'une des revendications 1 à 13 à l'élimination de particules véhiculées par un courant gazeux provenant d'installations de l'industrie chimique ou mécanique.
PCT/FR2007/000840 2006-05-19 2007-05-15 Separateur de particules contenues dans un courant gazeux, notamment de particules solides et/ou liquides et/ou pateuses WO2007135279A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07731475A EP2040816A1 (fr) 2006-05-19 2007-05-15 Separateur de particules contenues dans un courant gazeux, notamment de particules solides et/ou liquides et/ou pateuses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0604624 2006-05-19
FR0604624A FR2901151B1 (fr) 2006-05-19 2006-05-19 Separateur de particules contenues dans un courant gazeux, notamment de particules solides et/ou liquides et/ou pateuses.

Publications (1)

Publication Number Publication Date
WO2007135279A1 true WO2007135279A1 (fr) 2007-11-29

Family

ID=37669640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/000840 WO2007135279A1 (fr) 2006-05-19 2007-05-15 Separateur de particules contenues dans un courant gazeux, notamment de particules solides et/ou liquides et/ou pateuses

Country Status (3)

Country Link
EP (1) EP2040816A1 (fr)
FR (1) FR2901151B1 (fr)
WO (1) WO2007135279A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2996463B1 (fr) * 2012-10-10 2015-12-18 Inst Nat De Recherche En Sciences Et Technologies Pour L'environnement Et L'agriculture Irstea Ensemble de piegeage de particules en suspension dans un fluide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3616623A (en) * 1970-01-19 1971-11-02 Laurance S Reid Mist eliminator
FR2390193A1 (fr) * 1977-05-12 1978-12-08 Lerner Bernard Appareil destine a l'elimination des composants indesirables contenus dans les corps gazeux
WO1995028217A1 (fr) * 1994-04-14 1995-10-26 Institut Français Du Petrole Procede et dispositif d'elimination de particules contenues dans un courant de fluide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3616623A (en) * 1970-01-19 1971-11-02 Laurance S Reid Mist eliminator
FR2390193A1 (fr) * 1977-05-12 1978-12-08 Lerner Bernard Appareil destine a l'elimination des composants indesirables contenus dans les corps gazeux
WO1995028217A1 (fr) * 1994-04-14 1995-10-26 Institut Français Du Petrole Procede et dispositif d'elimination de particules contenues dans un courant de fluide

Also Published As

Publication number Publication date
FR2901151A1 (fr) 2007-11-23
FR2901151B1 (fr) 2010-03-12
EP2040816A1 (fr) 2009-04-01

Similar Documents

Publication Publication Date Title
EP0971783B1 (fr) Procede et appareil pour la separation des goutelettes ou particules d'un courant gazeux
EP0851785B1 (fr) Dispositif et procede pour agglomerer et precipiter des particules contenues dans un courant de gaz
EP0246151B1 (fr) Séparateur à ailettes pour la séparation de particlues liquides
EP0434556B1 (fr) Séparateur magnétique à haute intensité travaillant en humide
EP1142620B1 (fr) Procédé d'élimination de particules contenues dans un courant de fluide
FR2847451A1 (fr) Ensemble de grille et appareil de collecte de poussiere a cyclone pour un aspirateur ayant un ensemble de grille
EP0353154B1 (fr) Perfectionnements aux dispositifs pour éliminer les boules usées des installations de nettoyage de faisceaux tubulaires
WO2007135279A1 (fr) Separateur de particules contenues dans un courant gazeux, notamment de particules solides et/ou liquides et/ou pateuses
EP1123726A1 (fr) Procédé et appareil de compression d'air atmosphérique, et installations de distillation d'air et à turbine à gaz correspondantes
WO1999040993A1 (fr) Separateur pour melange triphasique destine a etre utilise sous le niveau de la mer
EP3099417B1 (fr) Dispositif de filtration d'un liquide par effet cyclonique
FR2623424A1 (fr) Dispositif et procede de filtrage electrostatique a filtre perpendiculaire a l'ecoulement de fluide gazeux, notamment de l'air
EP0626536A1 (fr) Générateur de vapeur équipé d'un dispositif de piégeage de corps migrants
EP0044004B1 (fr) Dispositif séparateur de gouttelettes de liquide entraînées dans un gaz ou une vapeur
FR2785551A1 (fr) Dispositif de separation mecanique de sable a haute temperature present dans un courant de gaz
CA1174185A (fr) Dispositif separateur de gouttelettes de liquide entrainees dans un gaz ou une vapeur
EP2181748A2 (fr) Séparateur hydrodynamique pour nettoyer une veine de fluide
EP1468716B1 (fr) Diffuseur de flux et élément chaudronné équipé d'un tel diffuseur
CA2214960A1 (fr) Dispositif et procede pour agglomerer et precipiter des particules contenues dans un courant de gaz
BE520987A (fr)
CA2589625C (fr) Procede pour separer des particules d'un effluent gazeux
CA2513314C (fr) Procede et dispositif d'elimination de particules contenues dans un courant de fluide
FR2599273A1 (fr) Separateur gaz liquide.
FR2746033A1 (fr) Filtre auto-nettoyant pour liquide
FR2931709A1 (fr) Dispositif de purification d'un flux de gaz charge en particules solides.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07731475

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007731475

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE