WO2007135000A1 - Integrated circuit for matrix display with integrated spacer and method for making same - Google Patents

Integrated circuit for matrix display with integrated spacer and method for making same Download PDF

Info

Publication number
WO2007135000A1
WO2007135000A1 PCT/EP2007/054619 EP2007054619W WO2007135000A1 WO 2007135000 A1 WO2007135000 A1 WO 2007135000A1 EP 2007054619 W EP2007054619 W EP 2007054619W WO 2007135000 A1 WO2007135000 A1 WO 2007135000A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
layer
spacer
reflective
liquid crystal
Prior art date
Application number
PCT/EP2007/054619
Other languages
French (fr)
Inventor
Pierre Blanchard
Laurent Charpiot
Original Assignee
E2V Semiconductors
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E2V Semiconductors filed Critical E2V Semiconductors
Publication of WO2007135000A1 publication Critical patent/WO2007135000A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136277Active matrix addressed cells formed on a semiconductor substrate, e.g. of silicon
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13454Drivers integrated on the active matrix substrate

Definitions

  • the present invention relates to reflective type liquid crystal matrix display integrated circuits and methods for making the same.
  • These circuits comprise, on the same monolithic substrate, an array of elementary electrodes disposed in rows and columns, each electrode defining a display pixel, and electronic control circuits of these electrodes, located under the electrode array.
  • the elementary electrodes are reflective and are covered with a liquid crystal; a transparent confinement plate encloses the liquid crystal to retain it in place above the electrode array.
  • the containment plate itself has a counterelectrode also transparent; the liquid crystal is electrically biased according to the voltage between a pixel electrode and the counter electrode; the liquid crystal reacts according to this electric polarization to modulate the ambient light which passes through it and which is reflected on each electrode; the action of the liquid crystal is a transmission variation or more exactly an optical polarization variation.
  • Displays of this type function in reflection of the light received, this reflection varying between a minimum reflection and a maximum reflection according to the electric polarization; it is desired that the electrodes be as reflective as possible (white pixels) when the voltage applied to the pixel corresponds to a maximum luminance to be provided in reflection, but it is also desirable that the pixels of the screen appear as black as possible when the applied voltage the pixel corresponds to a minimum luminance in ambient light reflection (black pixels).
  • a problem encountered in existing displays is the risk of reflection that the spacers cause; the spacers are not covered with liquid crystal and they tend to reflect light even if the neighboring electrodes receive voltages corresponding to black pixels. This clean reflection of the spacers helps to prevent the display from appearing well black where it should be. In general, it can be said that the presence of spacers distributed over the entire surface of the image reduces the contrast since the black obtained is imperfect.
  • the proper reflectivity of the spacers is related in particular to the surface they occupy. So we reduce this phenomenon by minimizing their area, but the problem still remains at least partially.
  • the object of the invention is to try to minimize the influence of the presence of the spacers on the contrast of the image, and this with the aid of a spacer structure which is simple to produce by manufacturing technologies. common.
  • the invention proposes a liquid crystal matrix display integrated circuit comprising on a monolithic substrate an array of lines and columns of reflective elementary electrodes each defining a display pixel, and electronic control circuits of these elements.
  • electrodes located under the array of electrodes, the circuit further comprising a liquid crystal covering the electrodes, a transparent containment plate retaining the liquid crystal, and spacer pads distributed over the surface of the substrate to maintain constant the spacing between the electrodes and the confinement plate, the spacer pads being each located at a junction point between four adjacent electrodes, characterized in that a spacer pad comprises a conductive pad made of the same material as the reflecting electrodes, this material being covered with a non-reflective layer and an electrically layer insulating. It will be seen that this spacer structure has the advantage of being able to be manufactured very simply.
  • the material of the electrodes and the conductive pad is preferably aluminum; its thickness is typically about 2000 Angstroms (0.2 micrometers); the non-reflective layer is preferably titanium nitride; its thickness is preferably about 600 angstroms.
  • the conductive pad covered by the non-reflecting layer and the insulating layer is a conductive layer portion separated from the four adjacent electrodes which surround it, the electrodes having cut corners to leave sufficient space for the conductive pad.
  • the conductive pad consists of the four (uncut) corners of the adjacent electrodes.
  • the studs can be square or circular or octagonal.
  • the corners of the electrodes, if cut, are cut preferably at 45 °.
  • the control circuits in principle comprise several levels of interconnect metal layers below a level corresponding to the reflective electrodes, and it is preferably provided that the outer connection pads are formed in a metal layer level below. the level corresponding to the reflective electrodes and not in the same level as the reflective electrodes.
  • this matrix display integrated circuit electronic control circuits are produced in a monolithic substrate and the substrate is planarized by an insulating layer, then a reflective conductive layer covered with a non-reflecting layer is deposited, and in this superposition of layers is etched a pattern comprising an array of electrodes in rows and columns used for the display, an electrically insulating layer is deposited, this layer is etched in the desired pattern to leave a spacer stud above an area at a junction point between four adjacent electrodes, and eliminating the non-reflective layer where it is not covered by the spacer, to define reflective electrodes each corresponding to an image pixel.
  • the following steps are the definition of contact pads for the communication of the circuit with the outside, then the establishment of a peripheral sealing bead and a containment plate, the filling by a liquid crystal and the sealing of the space filled with crystal. These last operations can be carried out on a slice collective semiconductor or on individual chips after cutting the slice into chips.
  • FIG. 1 represents a simplified general view, in lateral section, of an integrated liquid crystal display circuit
  • FIG. 2 represents an enlarged top view of a group of four adjacent electrodes corresponding to four image pixels
  • FIG. 3 shows an even further enlarged view of the arrangement of a spacer pin at the intersection of a line and a column of electrodes
  • FIG. 5 to 9 show the different steps of manufacturing the spacer stud
  • Figure 10 and Figure 1 1 show, in top view and in side section, an alternative embodiment of the spacer stud.
  • FIG. 1 shows a silicon chip 10 in which the electronic control circuits of a matrix liquid crystal display have been formed by conventional microelectronic technologies; the individual image points, or pixels, of the display are defined on the upper surface of the chip by reflecting electrodes arranged in a network of rows and columns.
  • the upper surface of the chip is covered with a liquid crystal 12.
  • This crystal is enclosed between the chip and a transparent plate 14, in principle a glass plate coated with a transparent counterelectrode; the plate is placed above the chip.
  • the plate is sealed to the chip by a bead of peripheral glue 16 surrounding the entire array of electrodes.
  • the gap between the plate and the chip defines the thickness of liquid crystal present between the electrodes of the network and the counter-electrode.
  • This spacing is kept constant over the entire surface of the matrix by spacers 18 of constant height distributed over this surface.
  • the spacers are integrated on the surface of the chip, that is to say that they are formed by deposition and photolithography techniques like the other elements integrated in the chip. They are arranged between adjacent electrode groups, for example at each point where four adjacent electrodes are adjacent.
  • Figure 2 shows four electrodes E1, E2, E3, E4, and a spacer 18 placed in the center of this group of four adjacent electrodes.
  • the spacer does not cover the electrodes at all; in the other, the spacer covers the corners of the four adjacent electrodes.
  • a central zone between four adjacent electrodes is reserved for the spacer.
  • the electrodes have their corners cut, the space between the cut corners of the four electrodes being used to place the spacer.
  • FIG. 4 represents a corresponding lateral section along the line IV-IV of FIG. 3.
  • the electrodes are preferably constituted by portions of an aluminum layer. As an indication, the electrodes may be about 10 micrometers apart.
  • the in-line electrodes E1, E2 or E3, E4 as well as the column electrodes (E1, E3 or E2, E4) are separated by the minimum distance D (0.4 micrometer, for example, or less) that the photolithography rules allow. ; indeed the spaces between electrodes are useless spaces for the display and they must be minimized to maximize the contrast of the image.
  • the space formed by the four cut corners of the electrodes is a square or rectangle whose sides are greater than D (for example about 4D), at the center of which we find the spacer 18, consisting of a well-defined pad of height H ( order of magnitude: 1 micrometer), trapezoidal in view of the etching processes used.
  • the shape of the base of the stud is octagonal, but it could also be square or circular.
  • the distance between opposite sides (or the diameter if it is a circle) is for example about 1 micrometer.
  • the spacer is preferably formed from an insulating layer
  • the layer 22 can be formed by a thin layer (about 500 to 1000 angstroms) of titanium nitride deposited on the aluminum. Since the oxide is transparent, the titanium nitride layer prevents the aluminum layer from receiving and returning ambient light; the reflection coefficient in visible light is typically divided by a factor of at least three (and even much more for certain wavelength ranges) in the presence of a layer of 600 angstroms of titanium nitride, in a spacer having 1, 3 micrometer thickness of silicon oxide on 0.2 micrometer thickness of aluminum.
  • the total height of the spacer stud 18 above the surface of the electrodes E1 to E4 is the sum of the silicon oxide height and the height of the non-reflective layer 22 (the liquid crystal coated electrodes are not covered with titanium nitride since they must be as reflective as possible).
  • the width of the conductive pad 20 is preferably about 2D (0.8 micrometers), and it is separated from the cut corners of the electrodes by a distance D.
  • the dimension D and the other distances are chosen as small as possible. design rules applicable to the technology used.
  • FIG. 5 represents only, and schematically, the upper layers of interconnections made at the end of the manufacturing process.
  • These upper layers typically comprise several conductive levels separated from each other by insulating layers of planarization. It can be considered for simplicity that there are several levels of conductors, for example four levels, embedded in an overall planarized insulating layer and interconnected by point vias through the insulator.
  • the lower conductive levels may all be produced by aluminum layers coated with an anti-reflective layer (in particular titanium nitride) in order to minimize parasitic reflections due to the buried layers.
  • penultimate conducting level M3 is shown, formed for example by an aluminum layer or an aluminum layer coated with an antireflective layer of titanium nitride.
  • the last level of metallization is a level M4 which is formed at this stage by a layer of aluminum deposited at low temperature and under a small thickness (of the order of 2000 angstroms whereas the lower layers can be closer to 5000 or 10,000 angstroms).
  • the low temperature deposition on an insulating layer that has been well planned beforehand has the advantage of minimizing the surface defects of the aluminum and thus of giving it an optimum quality of reflectivity.
  • the last level M4 is in fact the one in which the reflective electrodes corresponding to each pixel are produced.
  • the titanium nitride can then be removed selectively without degrading the aluminum layer.
  • the thickness of titanium nitride can be 600 angstroms.
  • a uniform layer of insulator 32, preferably silicon oxide, which covers the electrodes and the beaches 20 is then deposited (FIG. 7).
  • the thickness deposited is determined according to the desired height. for spacers; indeed, it is this layer that will form the essential of the height of the spacer stud.
  • a slight recessed relief appears at the top of the layer 32 because of the underlying relief created by the etching of the electrodes and the spacer; however, the top of the layer 32 above the range 20 is generally flat since the width of the range 20 (0.8 micrometer for example) is sufficiently greater than the width of the spaces between the electrodes and the range 20 (0, 4 micron for example).
  • the insulating layer 32 is then etched (FIG. 8) through a mask which defines the spacers, to allow only the spacer studs 18 such as that of FIG. 4 to remain.
  • the etching of the entire thickness of the insulating layer may cause a slight overgrading of the insulating layer 25 where it is not protected by the electrodes. Indeed, there is no etch selectivity between the layer 25 and the layer 32 if they are both made of silicon oxide. However this supergraft is not a problem because it does not change the height of the spacer relative to the upper surface of the electrodes.
  • the mask which defines the spacers during this etching of the layer 32 is identical to that which defines the titanium nitride coated aluminum ranges, and has been considered perfectly perfect. aligned with it. To avoid risks of misalignment, it can be provided that the mask that defines the spacer is slightly larger than the one defining the range 20, the spacer then overflowing on either side of the range 20 as shown in FIG. Figure 4.
  • the titanium nitride layer 22 is then removed where it is not protected by the spacers, so that the electrodes which will be covered with liquid crystal will only comprise the aluminum reflective layer M4.
  • the elimination of the layer 22 is done without a mask, by an etching product which does not attack the insulating layer 32 nor the layer M4.
  • the spacers thus formed have a height above the upper surface of the electrodes which is the sum of the height of the titanium nitride layer 22 and the insulating layer 32.
  • FIG. 9 represents by way of example an additional step for the formation of a contact pad intended for the subsequent soldering of an external connection wire. Rather than forming this contact pad in the M4 layer as usual (contact on the last level of metallization), it is preferred to form the pad in the next lower metal level M3; this makes it possible to adapt the constitution and the layer M3 according to this destination, rather than to adapt the layer M4 which must already meet other requirements such as the quality of reflection.
  • the upper part of the insulating layer 25 is thus opened to form an access well to the lower conductive layer M3; thus denuded a conductive pad that can constitute a solder pad of an external connection wire.
  • the corners of the electrodes are not cut off, which means that the space between the adjacent electrodes remains everywhere at a minimum value (0.4 micrometer for example). ; and there is no central range below the spacer; but there is provided a pad 18 of silicon oxide large enough to cover the four corners of four adjacent electrodes.
  • the width of the stud is approximately equal to the width of the square which was defined in FIG. 3 by the cut corners of the electrodes (approximately 1.2 micrometers).
  • the manufacturing process is exactly the same as the previous one; during the removal of the titanium nitride layer 22, the titanium nitride remains under the spacer pad, so that the corners of the electrodes (which are not covered with liquid crystal and therefore can not modulate the light in function of the image) remain coated with a non-reflective layer and therefore do not produce parasitic reflection.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

The invention concerns integrated circuits for LCD matrix display and methods for making same. The circuit comprises an array of rows and columns of reflecting elementary electrodes (E1, E4) defining each one display pixel, and coated with liquid crystal. To maintain a constant spacing value H between the electrodes and a liquid crystal confinement plate, the method consists in integrating the chip of the integrated circuit spacer pads (18) distributed on the surface of the substrates. The spacer pads are localized each at one junction point between four adjacent electrodes. One spacer pad comprises a conductive pad (20) made of the same material as the reflecting electrodes, said material being coated with a non-reflecting layer (22) and with an electrically insulating layer.

Description

CIRCUIT INTEGRE D'AFFICHAGE MATRICIEL AVEC ESPACEUR INTEGRE ET PROCEDE DE FABRICATION INTEGRATED MATRIX DISPLAY CIRCUIT WITH INTEGRATED SPACER AND METHOD OF MANUFACTURE
L'invention concerne les circuits intégrés d'affichage matriciel à cristaux liquides de type réflectif, et leurs procédés de fabrication.The present invention relates to reflective type liquid crystal matrix display integrated circuits and methods for making the same.
Ces circuits comportent, sur un même substrat monolithique, un réseau d'électrodes élémentaires disposées en lignes et en colonnes, chaque électrode définissant un pixel d'affichage, et des circuits électroniques de commande de ces électrodes, situés sous le réseau d'électrodes. Les électrodes élémentaires sont réfléchissantes et elles sont recouvertes d'un cristal liquide ; une plaque de confinement transparente enferme le cristal liquide pour le retenir en place au-dessus du réseau d'électrodes. La plaque de confinement porte elle-même une contre- électrode également transparente ; le cristal liquide est polarisé électriquement en fonction de la tension existant entre une électrode de pixel et la contre-électrode ; le cristal liquide réagit en fonction de cette polarisation électrique pour moduler la lumière ambiante qui le traverse et qui est réfléchie sur chaque électrode ; l'action du cristal liquide est une variation de transmission ou plus exactement une variation de polarisation optique.These circuits comprise, on the same monolithic substrate, an array of elementary electrodes disposed in rows and columns, each electrode defining a display pixel, and electronic control circuits of these electrodes, located under the electrode array. The elementary electrodes are reflective and are covered with a liquid crystal; a transparent confinement plate encloses the liquid crystal to retain it in place above the electrode array. The containment plate itself has a counterelectrode also transparent; the liquid crystal is electrically biased according to the voltage between a pixel electrode and the counter electrode; the liquid crystal reacts according to this electric polarization to modulate the ambient light which passes through it and which is reflected on each electrode; the action of the liquid crystal is a transmission variation or more exactly an optical polarization variation.
Dans ce type de construction, on cherche à avoir une épaisseur bien constante de cristal liquide au-dessus de tout le réseau d'électrodes afin d'assurer une homogénéité de luminance sur toute la surface pour une même tension de commande appliquée à tous les pixels. A cet effet on répartit des espaceurs de hauteur constante sur toute la matrice d'affichage. Ces espaceurs sont situés de préférence entre les électrodes adjacentes, par exemple à l'endroit où quatre électrodes adjacentes se jouxtent.In this type of construction, it is sought to have a very constant thickness of liquid crystal above the entire electrode array to ensure luminance homogeneity over the entire surface for the same control voltage applied to all the pixels. . For this purpose spacers of constant height are distributed over the entire display matrix. These spacers are preferably located between the adjacent electrodes, for example where four adjacent electrodes are adjacent.
Les afficheurs de ce type fonctionnent en réflexion de la lumière reçue, cette réflexion variant entre une réflexion minimale et une réflexion maximale selon la polarisation électrique ; on souhaite que les électrodes soient le plus réfléchissantes possible (pixels blancs) lorsque la tension appliquée au pixel correspond à une luminance maximale à fournir en réflexion, mais on souhaite aussi que les pixels de l'écran apparaissent le plus noir possible lorsque la tension appliquée au pixel correspond à une luminance minimale en réflexion de lumière ambiante (pixels noirs). Un problème rencontré dans les afficheurs existants est le risque de réflexion que les espaceurs provoquent ; les espaceurs ne sont pas recouverts de cristal liquide et ils tendent à réfléchir de la lumière même si les électrodes voisines reçoivent des tensions correspondant à des pixels noirs. Cette réflexion propre des espaceurs contribue à empêcher l'afficheur d'apparaître bien noir là où il doit l'être. De manière générale, on peut dire que la présence des espaceurs distribués sur toute la surface de l'image réduit le contraste puisque le noir obtenu est imparfait.Displays of this type function in reflection of the light received, this reflection varying between a minimum reflection and a maximum reflection according to the electric polarization; it is desired that the electrodes be as reflective as possible (white pixels) when the voltage applied to the pixel corresponds to a maximum luminance to be provided in reflection, but it is also desirable that the pixels of the screen appear as black as possible when the applied voltage the pixel corresponds to a minimum luminance in ambient light reflection (black pixels). A problem encountered in existing displays is the risk of reflection that the spacers cause; the spacers are not covered with liquid crystal and they tend to reflect light even if the neighboring electrodes receive voltages corresponding to black pixels. This clean reflection of the spacers helps to prevent the display from appearing well black where it should be. In general, it can be said that the presence of spacers distributed over the entire surface of the image reduces the contrast since the black obtained is imperfect.
La réflectivité propre des espaceurs est liée en particulier à la surface qu'ils occupent. On réduit donc ce phénomène en minimisant leur surface, mais le problème subsiste quand même au moins partiellement.The proper reflectivity of the spacers is related in particular to the surface they occupy. So we reduce this phenomenon by minimizing their area, but the problem still remains at least partially.
L'invention a pour but d'essayer de minimiser l'influence de la présence des espaceurs sur le contraste de l'image, et ceci à l'aide d'une structure d'espaceur qui soit simple à réaliser par des technologies de fabrication courantes.The object of the invention is to try to minimize the influence of the presence of the spacers on the contrast of the image, and this with the aid of a spacer structure which is simple to produce by manufacturing technologies. common.
Pour y parvenir, l'invention propose un circuit intégré d'affichage matriciel à cristaux liquides comportant sur un substrat monolithique un réseau de lignes et colonnes d'électrodes élémentaires réfléchissantes définissant chacune un pixel d'affichage, et des circuit électroniques de commande de ces électrodes, situés sous le réseau d'électrodes, le circuit comportant en outre un cristal liquide recouvrant les électrodes, une plaque de confinement transparente retenant le cristal liquide, et des plots espaceurs répartis sur la surface du substrat pour maintenir constant l'espacement entre les électrodes et la plaque de confinement, les plots espaceurs étant localisés chacun à un point de jonction entre quatre électrodes adjacentes, caractérisé en ce qu'un plot espaceur comporte une plage conductrice composée du même matériau que les électrodes réfléchissantes, ce matériau étant recouvert d'une couche non réfléchissante et d'une couche électriquement isolante. On verra que cette constitution d'espaceur présente l'avantage de pouvoir être fabriquée très simplement.To achieve this, the invention proposes a liquid crystal matrix display integrated circuit comprising on a monolithic substrate an array of lines and columns of reflective elementary electrodes each defining a display pixel, and electronic control circuits of these elements. electrodes, located under the array of electrodes, the circuit further comprising a liquid crystal covering the electrodes, a transparent containment plate retaining the liquid crystal, and spacer pads distributed over the surface of the substrate to maintain constant the spacing between the electrodes and the confinement plate, the spacer pads being each located at a junction point between four adjacent electrodes, characterized in that a spacer pad comprises a conductive pad made of the same material as the reflecting electrodes, this material being covered with a non-reflective layer and an electrically layer insulating. It will be seen that this spacer structure has the advantage of being able to be manufactured very simply.
Le matériau des électrodes et de la plage conductrice est de préférence de l'aluminium ; son épaisseur est typiquement d'environ 2000 angstrόms (0,2 micromètre) ; la couche non réfléchissante est de préférence du nitrure de titane ; son épaisseur est de préférence d'environ 600 angstrόms.The material of the electrodes and the conductive pad is preferably aluminum; its thickness is typically about 2000 Angstroms (0.2 micrometers); the non-reflective layer is preferably titanium nitride; its thickness is preferably about 600 angstroms.
Dans une réalisation avantageuse, la plage conductrice recouverte par la couche non réfléchissante et la couche isolante est une portion de couche conductrice séparée des quatre électrodes adjacentes qui l'environnent, les électrodes ayant des coins coupés pour laisser une place suffisante pour la plage conductrice.In an advantageous embodiment, the conductive pad covered by the non-reflecting layer and the insulating layer is a conductive layer portion separated from the four adjacent electrodes which surround it, the electrodes having cut corners to leave sufficient space for the conductive pad.
Dans une autre réalisation avantageuse, la plage conductrice est constituée par les quatre coins (non coupés) des électrodes adjacentes. Les plots peuvent être carrés ou circulaires ou encore octogonaux.In another advantageous embodiment, the conductive pad consists of the four (uncut) corners of the adjacent electrodes. The studs can be square or circular or octagonal.
Les coins des électrodes, s'ils sont coupés, sont coupés de préférence à 45°.The corners of the electrodes, if cut, are cut preferably at 45 °.
Les circuits de commande comportent en principe plusieurs niveaux de couches métalliques d'interconnexion au-dessous d'un niveau correspondant aux électrodes réfléchissantes, et on prévoit de préférence que les plots de connexion extérieure sont formés dans un niveau de couche métallique situé au-dessous du niveau correspondant aux électrodes réfléchissantes et non pas dans le même niveau que les électrodes réfléchissantes.The control circuits in principle comprise several levels of interconnect metal layers below a level corresponding to the reflective electrodes, and it is preferably provided that the outer connection pads are formed in a metal layer level below. the level corresponding to the reflective electrodes and not in the same level as the reflective electrodes.
Pour la fabrication de ce circuit intégré d'affichage matriciel, on réalise dans un substrat monolithique des circuits électronique de commande et on planarise le substrat par une couche isolante, puis on dépose une couche conductrice réfléchissante recouverte d'une couche non- réfléchissante, et on grave dans cette superposition de couches un motif comportant un réseau d'électrodes en lignes et en colonnes servant à l'affichage, on dépose une couche électriquement isolante, on grave cette couche selon le motif désiré pour laisser un plot espaceur au-dessus d'une zone se trouvant à un point de jonction entre quatre électrodes adjacentes, et on élimine la couche non réfléchissante là où elle n'est pas recouverte par le plot espaceur, pour définir des électrodes réfléchissantes correspondant chacune à un pixel d'image.For the manufacture of this matrix display integrated circuit, electronic control circuits are produced in a monolithic substrate and the substrate is planarized by an insulating layer, then a reflective conductive layer covered with a non-reflecting layer is deposited, and in this superposition of layers is etched a pattern comprising an array of electrodes in rows and columns used for the display, an electrically insulating layer is deposited, this layer is etched in the desired pattern to leave a spacer stud above an area at a junction point between four adjacent electrodes, and eliminating the non-reflective layer where it is not covered by the spacer, to define reflective electrodes each corresponding to an image pixel.
Les étapes suivantes sont la définition de plots de contact pour la communication du circuit avec l'extérieur, puis la mise en place d'un cordon périphérique de scellement et d'une plaque de confinement, le remplissage par un cristal liquide et la fermeture étanche de l'espace rempli de cristal. Ces dernières opérations peuvent être effectuées sur une tranche semiconductrice collective ou sur les puces individuelles après découpage de la tranche en puces.The following steps are the definition of contact pads for the communication of the circuit with the outside, then the establishment of a peripheral sealing bead and a containment plate, the filling by a liquid crystal and the sealing of the space filled with crystal. These last operations can be carried out on a slice collective semiconductor or on individual chips after cutting the slice into chips.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit et qui est faite en référence aux dessins annexés dans lesquels :Other features and advantages of the invention will appear on reading the detailed description which follows and which is given with reference to the appended drawings in which:
- la figure 1 représente une vue générale simplifiée, en coupe latérale, d'un circuit intégré d'affichage à cristaux liquides ;FIG. 1 represents a simplified general view, in lateral section, of an integrated liquid crystal display circuit;
- la figure 2 représente en vue de dessus agrandie un groupe de quatre électrodes adjacentes correspondant à quatre pixels d'image ;FIG. 2 represents an enlarged top view of a group of four adjacent electrodes corresponding to four image pixels;
- la figure 3 représente en vue de dessus encore plus agrandie la disposition d'un plot espaceur au carrefour d'une ligne et d'une colonne d'électrodes ;- Figure 3 shows an even further enlarged view of the arrangement of a spacer pin at the intersection of a line and a column of electrodes;
- la figure 4 représente en coupe latérale la constitution du plot espaceur ;- Figure 4 shows a side section of the constitution of the spacer pin;
- les figures 5 à 9 représentent les différentes étapes de fabrication du plot espaceur ;- Figures 5 to 9 show the different steps of manufacturing the spacer stud;
- la figure 10 et la figure 1 1 représentent, en vue de dessus et en coupe latérale, une variante de réalisation du plot espaceur.- Figure 10 and Figure 1 1 show, in top view and in side section, an alternative embodiment of the spacer stud.
Sur la figure 1 , on a représenté une puce de silicium 10 dans laquelle on a formé, par des technologies de microélectronique classique, les circuits électroniques de commande d'un afficheur matriciel à cristaux liquides ; les points d'image individuels, ou pixels, de l'afficheur sont définis sur la surface supérieure de la puce par des électrodes réfléchissantes agencées en réseau de lignes et de colonnes.FIG. 1 shows a silicon chip 10 in which the electronic control circuits of a matrix liquid crystal display have been formed by conventional microelectronic technologies; the individual image points, or pixels, of the display are defined on the upper surface of the chip by reflecting electrodes arranged in a network of rows and columns.
La surface supérieure de la puce est recouverte d'un cristal liquide 12. Ce cristal est enfermé entre la puce et une plaque transparente 14, en principe une plaque de verre revêtue d'une contre-électrode transparente ; la plaque est placée au-dessus de la puce. La plaque est scellée à la puce par un cordon de colle périphérique 16 entourant toute la matrice d'électrodes. L'écartement entre la plaque et la puce définit l'épaisseur de cristal liquide présent entre les électrodes du réseau et la contre-électrode. Cet écartement est maintenu constant sur toute la surface de la matrice par des espaceurs 18 de hauteur constante, répartis sur cette surface. Les espaceurs sont intégrés sur la surface de la puce, c'est-à-dire qu'ils sont formés par des techniques de dépôt et photolithographie comme les autres éléments intégrés dans la puce. Ils sont disposés entre des groupes d'électrodes adjacentes, par exemple en chaque point où se jouxtent quatre électrodes adjacentes. La figure 2 représente quatre électrodes E1 , E2, E3, E4, et un espaceur 18 placé au centre de ce groupe de quatre électrodes adjacentes.The upper surface of the chip is covered with a liquid crystal 12. This crystal is enclosed between the chip and a transparent plate 14, in principle a glass plate coated with a transparent counterelectrode; the plate is placed above the chip. The plate is sealed to the chip by a bead of peripheral glue 16 surrounding the entire array of electrodes. The gap between the plate and the chip defines the thickness of liquid crystal present between the electrodes of the network and the counter-electrode. This spacing is kept constant over the entire surface of the matrix by spacers 18 of constant height distributed over this surface. The spacers are integrated on the surface of the chip, that is to say that they are formed by deposition and photolithography techniques like the other elements integrated in the chip. They are arranged between adjacent electrode groups, for example at each point where four adjacent electrodes are adjacent. Figure 2 shows four electrodes E1, E2, E3, E4, and a spacer 18 placed in the center of this group of four adjacent electrodes.
Deux variantes de réalisation vont être décrites : dans l'une, l'espaceur ne recouvre pas du tout les électrodes ; dans l'autre l'espaceur recouvre les coins des quatre électrodes adjacentes.Two variants will be described: in one, the spacer does not cover the electrodes at all; in the other, the spacer covers the corners of the four adjacent electrodes.
Dans la première variante, représentée aux figures 2 à 4, une zone centrale, entre quatre électrodes adjacentes, est réservée pour l'espaceur. A cet effet, pour ménager une place suffisante à l'espaceur, on prévoit que les électrodes ont leurs coins coupés, l'espace ménagé entre les coins coupés des quatre électrodes étant utilisé pour placer l'espaceur.In the first variant, represented in FIGS. 2 to 4, a central zone between four adjacent electrodes is reserved for the spacer. For this purpose, to provide sufficient space for the spacer, it is expected that the electrodes have their corners cut, the space between the cut corners of the four electrodes being used to place the spacer.
La figure 3 représente, en vue de dessus à grande échelle, cette disposition de l'espaceur 18 par rapport aux électrodes. La figure 4 représente une coupe latérale correspondante selon la ligne IV-IV de la figure 3. Les électrodes sont de préférence constituées par des portions d'une couche d'aluminium. A titre indicatif, les électrodes peuvent avoir environ 10 micromètres de côté. Les électrodes en ligne E1 , E2 ou E3, E4 ainsi que les électrodes en colonne (E1 , E3 ou E2, E4) sont séparées par la distance D minimale (0,4 micromètre par exemple, voire moins) que permettent les règles de photolithographie ; en effet les espaces entre électrodes sont des espaces inutiles pour l'affichage et ils doivent être minimisés pour maximiser le contraste de l'image.Figure 3 shows, in a large scale view, this arrangement of the spacer 18 relative to the electrodes. FIG. 4 represents a corresponding lateral section along the line IV-IV of FIG. 3. The electrodes are preferably constituted by portions of an aluminum layer. As an indication, the electrodes may be about 10 micrometers apart. The in-line electrodes E1, E2 or E3, E4 as well as the column electrodes (E1, E3 or E2, E4) are separated by the minimum distance D (0.4 micrometer, for example, or less) that the photolithography rules allow. ; indeed the spaces between electrodes are useless spaces for the display and they must be minimized to maximize the contrast of the image.
L'espace ménagé par les quatre coins coupés des électrodes est un carré ou rectangle dont les côtés sont supérieurs à D (par exemple environ 4D), au centre duquel on trouve l'espaceur 18, constitué par un plot de hauteur H bien définie (ordre de grandeur : 1 micromètre), de forme trapézoïdale compte-tenu des procédés de gravure utilisés. Dans l'exemple représenté, la forme de la base du plot est octogonale, mais elle pourrait aussi être carrée ou circulaire. La distance entre côtés opposés (ou le diamètre si c'est un cercle) est par exemple d'environ 1 micromètre. L'espaceur est formé de préférence à partir d'une couche isolanteThe space formed by the four cut corners of the electrodes is a square or rectangle whose sides are greater than D (for example about 4D), at the center of which we find the spacer 18, consisting of a well-defined pad of height H ( order of magnitude: 1 micrometer), trapezoidal in view of the etching processes used. In the example shown, the shape of the base of the stud is octagonal, but it could also be square or circular. The distance between opposite sides (or the diameter if it is a circle) is for example about 1 micrometer. The spacer is preferably formed from an insulating layer
(de préférence de l'oxyde de silicium) qui recouvre une plage 20 de couche de matériau conducteur qui est constitué par le même matériau (en pratique de l'aluminium de faible épaisseur déposé à basse température) que la couche constituant les électrodes réfléchissantes E1 à E4.(preferably silicon oxide) which covers a layer 20 of conductive material which is made of the same material (in practice low thickness aluminum deposited at low temperature) as the layer constituting the reflective electrodes E1 at E4.
Entre la plage d'aluminium 20, à la base de l'espaceur, et la couche d'oxyde de silicium, il y a également une couche non-réfléchissante 22. La couche 22 peut être formée par une fine couche (environ 500 à 1000 angstrόms) de nitrure de titane déposée sur l'aluminium. L'oxyde étant transparent, la couche de nitrure de titane empêche la couche d'aluminium de recevoir et de renvoyer la lumière ambiante ; le coefficient de réflexion en lumière visible est typiquement divisé par un facteur d'au moins trois (et même beaucoup plus pour certaines gammes de longueurs d'onde) en présence d'une couche de 600 angstrόms de nitrure de titane, dans un espaceur ayant 1 ,3 micromètre d'épaisseur d'oxyde de silicium sur 0,2 micromètre d'épaisseur d'aluminium.Between the aluminum beach 20, at the base of the spacer, and the silicon oxide layer, there is also a non-reflective layer 22. The layer 22 can be formed by a thin layer (about 500 to 1000 angstroms) of titanium nitride deposited on the aluminum. Since the oxide is transparent, the titanium nitride layer prevents the aluminum layer from receiving and returning ambient light; the reflection coefficient in visible light is typically divided by a factor of at least three (and even much more for certain wavelength ranges) in the presence of a layer of 600 angstroms of titanium nitride, in a spacer having 1, 3 micrometer thickness of silicon oxide on 0.2 micrometer thickness of aluminum.
La hauteur totale du plot espaceur 18 au-dessus de la surface des électrodes E1 à E4 est la somme de la hauteur d'oxyde de silicium et de la hauteur de la couche non-réfléchissante 22 (les électrodes recouvertes de cristal liquide ne sont pas recouvertes de nitrure de titane puisqu'elles doivent être aussi réfléchissantes que possible).The total height of the spacer stud 18 above the surface of the electrodes E1 to E4 is the sum of the silicon oxide height and the height of the non-reflective layer 22 (the liquid crystal coated electrodes are not covered with titanium nitride since they must be as reflective as possible).
La largeur de la plage conductrice 20 est de préférence d'environ 2D (0,8 micromètres), et elle est séparée des coins coupés des électrodes par une distance D. La dimension D et les autres distances sont choisies aussi faibles que possible compte-tenu des règles de dessin applicables à la technologie utilisée.The width of the conductive pad 20 is preferably about 2D (0.8 micrometers), and it is separated from the cut corners of the electrodes by a distance D. The dimension D and the other distances are chosen as small as possible. design rules applicable to the technology used.
On va maintenant décrire en référence aux figures 5 à 9 le procédé de fabrication des espaceurs.The method of manufacturing the spacers will now be described with reference to FIGS. 5 to 9.
Les circuits de commande électronique sont fabriqués d'abord par des technologies microélectronique quelconques dans le détail desquelles il n'est pas nécessaire d'entrer. Les espaceurs sont réalisés ensuite. On ne représente pas sur les figures les différents circuits réalisés : la figure 5 représente uniquement, et schématiquement, les couches supérieures d'interconnexions réalisées à la fin de la fabrication. Ces couches supérieures comprennent classiquement plusieurs niveaux conducteurs séparés les uns des autres par des couches isolantes de planarisation. On peut considérer pour simplifier qu'il y a plusieurs niveaux de conducteurs, par exemple quatre niveaux, noyés dans une couche isolante globale planarisée 25 et interconnectés entre eux par des vias ponctuels à travers l'isolant. Les niveaux conducteurs inférieurs peuvent être tous réalisés par des couches d'aluminium revêtues d'une couche anti-réfléchissante (en nitrure de titane notamment) afin de minimiser les réflexions parasites dues aux couches enterrées. On a représenté uniquement un avant-dernier niveau conducteur M3, formé par exemple par une couche d'aluminium ou une couche d'aluminium revêtue d'une couche antiréfléchissante de nitrure de titane. Le dernier niveau de métallisation est un niveau M4 qui est formé à ce stade par une couche d'aluminium déposée à basse température et sous faible épaisseur (de l'ordre de 2 000 angstrόms alors que les couches inférieures peuvent être plus proche de 5 000 ou 10 000 angstrόms). Le dépôt à basse température, sur une couche isolante bien planarisée au préalable, présente l'avantage de minimiser les défauts de surface de l'aluminium et donc de lui conférer une qualité de réflectivité optimale. Le dernier niveau M4 est en effet celui dans lequel on réalise les électrodes réfléchissantes correspondant à chaque pixel. Avant de graver la couche M4 pour définir ces électrodes, on dépose selon l'invention une couche uniforme non-réfléchissante 22, de préférence du nitrure de titane. Le nitrure de titane peut ensuite être enlevé sélectivement sans dégrader la couche d'aluminium. A titre indicatif, l'épaisseur de nitrure de titane peut être de 600 angstrόms. Par une opération de photolithographie (figure 6) on définit le réseau d'électrodes (électrode E1 sur la figure 6) et simultanément les plages 20 qui formeront la base des espaceurs dans la variante de réalisation correspondant aux figures 2 à 4. La largeur de l'espace entre électrodes ou entre électrodes et plages 20 est la plus petite permise par la technologie. Dans cette opération, on attaque la couche de nitrure de titane et la couche d'aluminium par une seule opération de masquage, grâce à des produits de gravure adaptés à chacun de ces matériaux.The electronic control circuits are manufactured first by any microelectronic technologies in the detail of which it is not necessary to enter. The spacers are made afterwards. The various circuits made are not represented in the figures: FIG. 5 represents only, and schematically, the upper layers of interconnections made at the end of the manufacturing process. These upper layers typically comprise several conductive levels separated from each other by insulating layers of planarization. It can be considered for simplicity that there are several levels of conductors, for example four levels, embedded in an overall planarized insulating layer and interconnected by point vias through the insulator. The lower conductive levels may all be produced by aluminum layers coated with an anti-reflective layer (in particular titanium nitride) in order to minimize parasitic reflections due to the buried layers. Only one penultimate conducting level M3 is shown, formed for example by an aluminum layer or an aluminum layer coated with an antireflective layer of titanium nitride. The last level of metallization is a level M4 which is formed at this stage by a layer of aluminum deposited at low temperature and under a small thickness (of the order of 2000 angstroms whereas the lower layers can be closer to 5000 or 10,000 angstroms). The low temperature deposition on an insulating layer that has been well planned beforehand has the advantage of minimizing the surface defects of the aluminum and thus of giving it an optimum quality of reflectivity. The last level M4 is in fact the one in which the reflective electrodes corresponding to each pixel are produced. Before etching the layer M4 to define these electrodes, according to the invention, a non-reflecting uniform layer 22, preferably titanium nitride, is deposited. The titanium nitride can then be removed selectively without degrading the aluminum layer. As an indication, the thickness of titanium nitride can be 600 angstroms. By a photolithography operation (FIG. 6), the electrode array (electrode E1 in FIG. 6) is defined and simultaneously the regions 20 which form the base of the spacers in the variant embodiment corresponding to FIGS. 2 to 4. the space between electrodes or between electrodes and beaches 20 is the smallest allowed by the technology. In this operation, the titanium nitride layer and the aluminum layer are attacked by a single masking operation, using etching products adapted to each of these materials.
On dépose ensuite (figure 7) une couche uniforme d'isolant 32, de préférence de l'oxyde de silicium, qui recouvre les électrodes et les plages 20. L'épaisseur déposée est déterminée en fonction de la hauteur désirée pour les espaceurs ; en effet, c'est cette couche qui formera l'essentiel de la hauteur du plot espaceur. Comme on le voit, un léger relief en creux apparaît en haut de la couche 32 du fait du relief sous-jacent créé par la gravure des électrodes et de l'espaceur ; cependant le haut de la couche 32 au-dessus de la plage 20 est globalement plan dès lors que la largeur de la plage 20 (0,8 micromètre par exemple) est suffisamment supérieure à la largeur des espaces entre électrodes et plage 20 (0,4 micromètre par exemple).A uniform layer of insulator 32, preferably silicon oxide, which covers the electrodes and the beaches 20 is then deposited (FIG. 7). The thickness deposited is determined according to the desired height. for spacers; indeed, it is this layer that will form the essential of the height of the spacer stud. As can be seen, a slight recessed relief appears at the top of the layer 32 because of the underlying relief created by the etching of the electrodes and the spacer; however, the top of the layer 32 above the range 20 is generally flat since the width of the range 20 (0.8 micrometer for example) is sufficiently greater than the width of the spaces between the electrodes and the range 20 (0, 4 micron for example).
On grave ensuite (figure 8) la couche isolante 32 à travers un masque qui définit les espaceurs, pour laisser subsister seulement les plots espaceurs 18 tels que celui de la figure 4. La gravure de toute l'épaisseur de la couche d'isolant peut provoquer une légère surgravure de la couche isolante 25 là où elle n'est pas protégée par les électrodes. En effet, il n'y a pas de sélectivité de gravure entre la couche 25 et la couche 32 si elles sont toutes deux en oxyde de silicium. Cependant cette surgravure ne pose pas de problème car elle ne modifie pas la hauteur de l'espaceur par rapport à la surface supérieure des électrodes. Sur la figure 8, on a considéré que le masque qui définit les espaceurs lors de cette gravure de la couche 32 est identique à celui qui définit les plages 20 d'aluminium recouvert de nitrure de titane, et on a considéré qu'il était parfaitement aligné avec ce dernier. Pour éviter des risques de désalignement, on peut prévoir de préférence que le masque qui définit l'espaceur est légèrement plus grand que celui qui définit la plage 20, l'espaceur débordant alors de part et d'autre de la plage 20 comme représenté à la figure 4.The insulating layer 32 is then etched (FIG. 8) through a mask which defines the spacers, to allow only the spacer studs 18 such as that of FIG. 4 to remain. The etching of the entire thickness of the insulating layer may cause a slight overgrading of the insulating layer 25 where it is not protected by the electrodes. Indeed, there is no etch selectivity between the layer 25 and the layer 32 if they are both made of silicon oxide. However this supergraft is not a problem because it does not change the height of the spacer relative to the upper surface of the electrodes. In FIG. 8, it has been considered that the mask which defines the spacers during this etching of the layer 32 is identical to that which defines the titanium nitride coated aluminum ranges, and has been considered perfectly perfect. aligned with it. To avoid risks of misalignment, it can be provided that the mask that defines the spacer is slightly larger than the one defining the range 20, the spacer then overflowing on either side of the range 20 as shown in FIG. Figure 4.
On enlève ensuite la couche de nitrure de titane 22 là où elle n'est pas protégée par les espaceurs, pour que les électrodes qui vont être recouvertes de cristal liquide ne comportent plus que la couche réfléchissante d'aluminium M4. L'élimination de la couche 22 se fait sans masque, par un produit de gravure qui n'attaque ni la couche isolante 32 ni la couche M4. Les espaceurs ainsi formés ont une hauteur au-dessus de la surface supérieure des électrodes qui est la somme de la hauteur de la couche de nitrure de titane 22 et de la couche d'isolant 32.The titanium nitride layer 22 is then removed where it is not protected by the spacers, so that the electrodes which will be covered with liquid crystal will only comprise the aluminum reflective layer M4. The elimination of the layer 22 is done without a mask, by an etching product which does not attack the insulating layer 32 nor the layer M4. The spacers thus formed have a height above the upper surface of the electrodes which is the sum of the height of the titanium nitride layer 22 and the insulating layer 32.
La figure 9 représente à titre d'exemple une étape supplémentaire pour la formation d'un plot de contact destiné à la soudure ultérieure d'un fil de connexion extérieure. Plutôt que de former ce plot de contact dans la couche M4 comme c'est l'habitude (contact sur le dernier niveau de métallisation), on préfère former le plot dans le niveau métallique immédiatement inférieur M3 ; ceci permet d'adapter la constitution e la couche M3 en fonction de cette destination, plutôt que d'adapter la couche M4 qui doit répondre déjà à d'autres impératifs tels que la qualité de réflexion.FIG. 9 represents by way of example an additional step for the formation of a contact pad intended for the subsequent soldering of an external connection wire. Rather than forming this contact pad in the M4 layer as usual (contact on the last level of metallization), it is preferred to form the pad in the next lower metal level M3; this makes it possible to adapt the constitution and the layer M3 according to this destination, rather than to adapt the layer M4 which must already meet other requirements such as the quality of reflection.
On ouvre donc la partie supérieure de la couche isolante 25 pour former un puits d'accès à la couche conductrice inférieure M3 ; on dénude ainsi une plage conductrice pouvant constituer un plot de soudure d'un fil de connexion extérieure.The upper part of the insulating layer 25 is thus opened to form an access well to the lower conductive layer M3; thus denuded a conductive pad that can constitute a solder pad of an external connection wire.
Dans une autre variante de réalisation, représentée aux figures 10 et 1 1 , on ne coupe pas les coins des électrodes, ce qui veut dire que l'espace entre les électrodes adjacentes reste partout à une valeur minimale (0,4 micromètre par exemple) ; et on ne prévoit pas de plage centrale 20 au- dessous de l'espaceur ; mais on prévoit un plot 18 d'oxyde de silicium suffisamment large pour recouvrir les quatre coins de quatre électrodes adjacentes. La largeur du plot est à peu près égale à la largeur du carré qui était défini à la figure 3 par les coins coupés des électrodes (environ 1 ,2 micromètre). Le procédé de fabrication est exactement le même que le précédent ; lors de l'enlèvement de la couche de nitrure de titane 22, le nitrure de titane reste sous le plot espaceur, de sorte que les coins des électrodes (qui ne sont pas recouverts de cristal liquide et qui ne peuvent donc pas moduler la lumière en fonction de l'image) restent revêtus d'une couche non-réfléchissante et ils ne produisent donc pas de réflexion parasite. In another variant embodiment, represented in FIGS. 10 and 11, the corners of the electrodes are not cut off, which means that the space between the adjacent electrodes remains everywhere at a minimum value (0.4 micrometer for example). ; and there is no central range below the spacer; but there is provided a pad 18 of silicon oxide large enough to cover the four corners of four adjacent electrodes. The width of the stud is approximately equal to the width of the square which was defined in FIG. 3 by the cut corners of the electrodes (approximately 1.2 micrometers). The manufacturing process is exactly the same as the previous one; during the removal of the titanium nitride layer 22, the titanium nitride remains under the spacer pad, so that the corners of the electrodes (which are not covered with liquid crystal and therefore can not modulate the light in function of the image) remain coated with a non-reflective layer and therefore do not produce parasitic reflection.

Claims

REVENDICATIONS
1. Circuit intégré d'affichage matriciel à cristaux liquides comportant sur un substrat monolithique (10) un réseau de lignes et colonnes d'électrodes élémentaires réfléchissantes (E1 à E4) définissant chacune un pixel d'affichage, et des circuits électroniques de commande de ces électrodes, situés sous le réseau d'électrodes, le circuit comportant en outre un cristal liquide (12) recouvrant les électrodes, une plaque de confinement transparente (14) retenant le cristal liquide, et des plots espaceurs (18) répartis sur la surface du substrat pour maintenir constant l'espacement entre les électrodes et la plaque de confinement, les plots espaceurs étant localisés chacun à un point de jonction entre quatre électrodes adjacentes, caractérisé en ce qu'un plot espaceur comporte une plage conductrice (20) composée du même matériau que les électrodes réfléchissantes, ce matériau étant recouvert d'une couche non réfléchissante (22) et d'une couche électriquement isolante (32).A liquid crystal matrix display integrated circuit comprising on a monolithic substrate (10) an array of reflective elementary electrode lines and columns (E1-E4) each defining a display pixel, and electronic control circuits of these electrodes, located under the array of electrodes, the circuit further comprising a liquid crystal (12) covering the electrodes, a transparent confinement plate (14) retaining the liquid crystal, and spacer pads (18) distributed on the surface of the substrate for maintaining constant the spacing between the electrodes and the confinement plate, the spacer pads being each located at a junction point between four adjacent electrodes, characterized in that a spacer stud comprises a conductive pad (20) composed of same material as the reflective electrodes, this material being covered with a non-reflective layer (22) and an electrical layer insulation (32).
2. Circuit d'affichage selon la revendication 1 , caractérisé en ce que la couche isolante (32) est en oxyde de silicium.2. Display circuit according to claim 1, characterized in that the insulating layer (32) is made of silicon oxide.
3. Circuit d'affichage selon l'une des revendications 1 et 2, caractérisé en ce que la couche non réfléchissante est en nitrure de titane.3. Display circuit according to one of claims 1 and 2, characterized in that the non-reflective layer is titanium nitride.
4. Circuit d'affichage selon l'une des revendications 1 à 3, caractérisé en ce que le matériau des électrodes et de la plage conductrice est de l'aluminium.4. Display circuit according to one of claims 1 to 3, characterized in that the material of the electrodes and the conductive pad is aluminum.
5. Circuit d'affichage selon la revendication 4, caractérisé en ce que le matériau des électrodes et de la plage conductrice a une épaisseur d'environ 2000 angstrόms.5. Display circuit according to claim 4, characterized in that the material of the electrodes and the conductive pad has a thickness of about 2000 angstroms.
6. Circuit d'affichage selon l'une des revendications 1 à 5, caractérisé en ce que la plage conductrice (20) recouverte par la couche non réfléchissante et la couche isolante est une portion de couche conductrice séparée des quatre électrodes adjacentes qui l'environnent, les électrodes ayant des coins coupés pour laisser une place suffisante pour la plage conductrice.6. Display circuit according to one of claims 1 to 5, characterized in that the conductive pad (20) covered by the non-reflective layer and the insulating layer is a conductive layer portion separated from the four adjacent electrodes which Surround the electrodes having cut corners to leave sufficient space for the conductive pad.
7. Circuit d'affichage selon l'une des revendications 1 à 5, caractérisé en ce que la plage conductrice est constituée par les quatre coins non coupés des électrodes adjacentes.7. Display circuit according to one of claims 1 to 5, characterized in that the conductive pad is constituted by the four uncut corners of the adjacent electrodes.
8. Circuit d'affichage selon l'une des revendications 1 à 7, caractérisé en ce que les circuits de commande comportent plusieurs niveaux de couches métalliques d'interconnexion au-dessous d'un niveau (M4) correspondant aux électrodes réfléchissantes, et en ce que le circuit d'affichage comporte un plot de connexion extérieure constitué dans un niveau de couche métallique (M3) situé au-dessous du niveau correspondant aux électrodes réfléchissantes.8. Display circuit according to one of claims 1 to 7, characterized in that the control circuits comprise several levels of interconnect metal layers below a level (M4) corresponding to the reflecting electrodes, and the display circuit comprises an outer connection pad formed in a metal layer level (M3) below the level corresponding to the reflecting electrodes.
9. Procédé de fabrication d'un circuit intégré d'affichage matriciel à cristaux liquides, dans lequel on réalise dans un substrat monolithique (10) des circuits électroniques de commande et on planarise le substrat par une couche isolante (25), puis on dépose une couche conductrice réfléchissante (M4) recouverte d'une couche non-réfléchissante (22), et on grave dans cette superposition de couches un motif comportant un réseau d'électrodes en lignes et en colonnes servant à l'affichage, on dépose une couche électriquement isolante (32), on grave cette couche selon le motif désiré pour laisser un plot espaceur (18) au-dessus d'une zone se trouvant à un point de jonction entre quatre électrodes adjacentes, et on élimine la couche non réfléchissante (22) là où elle n'est pas recouverte par le plot espaceur, pour définir des électrodes réfléchissantes correspondant chacune à un pixel d'image.9. A method of manufacturing a liquid crystal matrix display integrated circuit, wherein is made in a monolithic substrate (10) electronic control circuits and planarise the substrate by an insulating layer (25), and then deposited a reflective conductive layer (M4) covered with a non-reflective layer (22), and in this superposition of layers is etched a pattern comprising an array of electrodes in rows and columns for the display, depositing a layer electrically insulating (32), this layer is etched in the desired pattern to leave a spacer pad (18) over an area at a junction point between four adjacent electrodes, and the non-reflective layer (22) is removed. where it is not covered by the spacer, to define reflective electrodes each corresponding to an image pixel.
10. Procédé selon la revendication 9, caractérisé en ce que la couche conductrice réfléchissante est en aluminium déposé à basse température. 10. The method of claim 9, characterized in that the reflective conductive layer is aluminum deposited at low temperature.
PCT/EP2007/054619 2006-05-19 2007-05-14 Integrated circuit for matrix display with integrated spacer and method for making same WO2007135000A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR06/04510 2006-05-19
FR0604510A FR2901372B1 (en) 2006-05-19 2006-05-19 INTEGRATED MATRIX DISPLAY CIRCUIT WITH INTEGRATED SPACER AND METHOD OF MANUFACTURE

Publications (1)

Publication Number Publication Date
WO2007135000A1 true WO2007135000A1 (en) 2007-11-29

Family

ID=37518005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/054619 WO2007135000A1 (en) 2006-05-19 2007-05-14 Integrated circuit for matrix display with integrated spacer and method for making same

Country Status (2)

Country Link
FR (1) FR2901372B1 (en)
WO (1) WO2007135000A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116224645A (en) * 2021-12-06 2023-06-06 株式会社日本显示器 Display device
US20230176431A1 (en) * 2021-12-06 2023-06-08 Japan Display Inc. Display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH034428A (en) * 1989-05-31 1991-01-10 Fujitsu Ltd Flat display
US20020047967A1 (en) * 1999-03-05 2002-04-25 Chartered Semiconductor Manufacturing Ltd. Liquid-crystal-on-silicon display with photolithographic alignment posts and optical interference layers
US20020076863A1 (en) * 1999-07-19 2002-06-20 Wei-Shiau Chen Fabrication method for a multi-layered thin film protective layer
US20040160567A1 (en) * 2003-02-18 2004-08-19 Michael Kozhukh Integrated spacer technology for LCOS light modulators

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH034428A (en) * 1989-05-31 1991-01-10 Fujitsu Ltd Flat display
US20020047967A1 (en) * 1999-03-05 2002-04-25 Chartered Semiconductor Manufacturing Ltd. Liquid-crystal-on-silicon display with photolithographic alignment posts and optical interference layers
US20020076863A1 (en) * 1999-07-19 2002-06-20 Wei-Shiau Chen Fabrication method for a multi-layered thin film protective layer
US20040160567A1 (en) * 2003-02-18 2004-08-19 Michael Kozhukh Integrated spacer technology for LCOS light modulators

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116224645A (en) * 2021-12-06 2023-06-06 株式会社日本显示器 Display device
US20230176431A1 (en) * 2021-12-06 2023-06-08 Japan Display Inc. Display device

Also Published As

Publication number Publication date
FR2901372B1 (en) 2008-07-04
FR2901372A1 (en) 2007-11-23

Similar Documents

Publication Publication Date Title
EP3667728B1 (en) Method for manufacturing a device with light-emitting and/or light-receiving diodes and with a self-aligned collimation grid
EP1421623B1 (en) Colour image sensor with enhanced calorimetry and method for making same
EP3067674B1 (en) Device for detecting radiation comprising an encapsulation structure with improved mechanical strength
EP1626442B1 (en) Image sensor
FR3083646A1 (en) IMAGE SENSOR
EP3893281B1 (en) Device with array of light-emitting and/or light-receiving diodes
FR2895805A1 (en) Thin film transistor array substrate for LCDs of any modes, e.g. twisted nematic mode, comprises pixel electrodes on pixel regions adjacent the drain electrode, and transparent electrode patterns located adjacent one of data lines
EP2306520A1 (en) Back-illuminated image sensor
EP3401657A1 (en) Method for manufacturing a bolometric detector
FR2974239A1 (en) METHOD FOR PRODUCING AN IMAGE SENSOR WITH BACKLIGHT LIGHTNESS
EP3731285B1 (en) Method for producing a light-emitting and/or light-receiving device with metal optical separation grid
WO1994021102A2 (en) Direct multilevel thin-film transistor production method
WO2007135000A1 (en) Integrated circuit for matrix display with integrated spacer and method for making same
FR3083644A1 (en) IMAGE SENSOR
CA2460394C (en) Image sensor with recessed planarizing layers and method for making same
EP3714243B1 (en) Device for detecting electromagnetic radiation with reduced crosstalk
EP1670066A1 (en) Fabrication method for an integrated circuit including a buried mirror and such circuit
WO2005067054A1 (en) Method for producing electronic chips consisting of thinned silicon
EP1567911B1 (en) Active matrix structure for display screen and screen comprising one such matrix
EP0256053B1 (en) Matrix of interconnected transistors in thin layers and production method thereof
EP4174950B1 (en) Pixelated filter
EP3929634B1 (en) Light-emitting device, pixel comprising a plurality of such devices, pixel matrix and associated manufacturing methods
EP0819263A1 (en) Method for making a tft active matrix for a projection system screen
FR2737314A1 (en) PROCESS FOR MANUFACTURING AN ACTIVE MATRIX FOR A FLAT SCREEN, LIQUID CRYSTAL SCREEN CONTAINING AN ACTIVE MATRIX OBTAINED ACCORDING TO THIS PROCEDURE AND METHOD FOR ADDRESSING A SUCH SCREEN
FR2925180A1 (en) Active matrix for e.g. transmissive electronic LCD device of portable electronic device, has protective screen arranged in oxide layer opposite to transistor, and partially transparent substrate stuck against dielectric layer and layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07729071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07729071

Country of ref document: EP

Kind code of ref document: A1