WO2007128248A1 - Verfahren zur frequenzabstimmung eines senders und eines empfängers eines mobilen kommunikationsendgerätes zur kompensation des einflusses des dopplereffektes und mobiles kommunikationendgerät - Google Patents

Verfahren zur frequenzabstimmung eines senders und eines empfängers eines mobilen kommunikationsendgerätes zur kompensation des einflusses des dopplereffektes und mobiles kommunikationendgerät Download PDF

Info

Publication number
WO2007128248A1
WO2007128248A1 PCT/DE2006/000785 DE2006000785W WO2007128248A1 WO 2007128248 A1 WO2007128248 A1 WO 2007128248A1 DE 2006000785 W DE2006000785 W DE 2006000785W WO 2007128248 A1 WO2007128248 A1 WO 2007128248A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
mobile communication
communication terminal
mkeg
receiver
Prior art date
Application number
PCT/DE2006/000785
Other languages
English (en)
French (fr)
Inventor
Bernd Burchardt
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to DE112006003950T priority Critical patent/DE112006003950A5/de
Priority to PCT/DE2006/000785 priority patent/WO2007128248A1/de
Publication of WO2007128248A1 publication Critical patent/WO2007128248A1/de

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/01Reducing phase shift

Definitions

  • the invention relates to a method for frequency tuning of a transmitter and a receiver of a mobile communication onsendilless to compensate for the influence of the Doppler effect and a corresponding mobile communication terminal.
  • Mobile communication terminals have been widely used for many years. They enable a moving subscriber carrying a mobile communication terminal to establish a telecommunications connection to another subscriber or to be called by a subscriber from almost all densely populated points on the land area of the earth.
  • the largest area coverage currently has the mobile network specified by the GSM (Global System for Mobile Communications) standard and most mobile communication terminals in use use the GSM standard.
  • Further mobile GSM communication terminals are so-called GSM radio modules, GSM PCMCIA cards, GSM radio modems etc.
  • the network architecture of the GSM standard consists inter alia of a mobile radio transmission system, also called base station subsystem, which in turn consists of mobile radio base stations (base transceiver station) and associated mobile base station control units (base station controllers), and a switching system.
  • the radio resource is accessed using a mix of frequency division multiplexing and time division multiplexing.
  • the frequency bands used are the 900 MHz and 1800 MHz frequency band in Europe and the 850 MHz and 1900 MHz frequency band in America.
  • the frequency bands are divided into a plurality of frequency channels. Neighboring mobile base stations each serve different frequency channels to avoid mutual interference.
  • the useful signals generated in the baseband chip set are modulated onto a carrier frequency (transmission frequency) before the transmission.
  • the signals After receiving radio signals from a mobile radio base station in the mobile communication terminal, the signals are modulated onto a carrier frequency
  • Useful signals again separated from the carrier frequency (demodulation).
  • the carrier frequencies to be used in a transmission of radio signals (desired transmission frequencies) and time slots are transmitted to the mobile communication terminal from the mobile radio base station via the access grant channel.
  • the transmitter of the mobile communication terminal must send precise signals to desired transmission frequencies (nominal carrier frequencies) radio signals and the receiver of the mobile communication terminal must on with set transmission frequencies
  • the receiver receives at the desired reception frequency is to be understood in the following as “optimum tuning of a receiver” with regard to transmission frequencies of the transmitter which communicates with this receiver.
  • the signal processing in the baseband and possibly existing high-frequency stages and intermediate frequency stages is carried out using a common time base or frequency reference.
  • a quartz oscillator forms this frequency reference. From it or the frequency reference, all necessary carrier frequencies (transmit and receive frequencies) or clock signals are derived. This can be found in the GSM standard specification 3GPP ETSI TS 51.010-1 Version 6.0.1 (2004-12), Release 6, Chapter 23 Single Frequency Reference.
  • the quartz oscillators are electronically tunable and temperature-compensated by additional components, such as trimming capacitors.
  • additional components such as trimming capacitors.
  • the voltage-controlled temperature-compensated quartz oscillators are also known as VC-TCXO.
  • the correction signal for frequency correction to nominal values of the quartz oscillator is derived from radio signals transmitted to the mobile communication terminal.
  • two methods are available.
  • the mobile communication terminal receives a so-called frequency correction signal sequence, also known as a frequency correction burst, with which the mobile communication terminal can synchronize itself to the carrier frequency of the mobile radio base station.
  • the mobile radio base station signals the mobile communication terminal via a special access grant channel, also known as access grant channel, both a time correction signal and a frequency correction signal. These are determined in the mobile radio base station based on measurements of received radio signals of the mobile communication terminal.
  • a special access grant channel also known as access grant channel
  • FIG. 1 shows a mobile communication terminal MKEG, which approaches the mobile base station MB in phase I.
  • the mobile communication terminal MKEG moves around the mobile radio base station MB, wherein no change of the distance-dependent component of the relative speed between the mobile communication terminal MKEG and the mobile radio base station MB occurs (constant distance radius).
  • the mobile communication terminal MKEG moves away from the mobile radio base station MB.
  • this means that radio signals due to the Doppler effect are received at a higher carrier frequency (positive frequency shift) at the respective receiver (in the mobile communication terminal MKEG or in the mobile radio base station MB) than by the transmitter (in the mobile radio base station MB or in the mobile communication terminal MKEG) were sent.
  • phase II there is no frequency shift at the respective receiver of the radio signals due to the Doppler effect.
  • Phase III due to the Doppler effect, radio signals are registered with a lower reception frequency (carrier frequency) at the respective receiver than they were sent by the transmitter (negative frequency shift).
  • the influence of the Doppler effect is compensated in such a way that the mobile communication terminal MKEG in phases I and III is pulled to a reception frequency of the received radio signal, which is shifted by the influence of the Doppler effect.
  • this frequency correction in terms of transmission frequencies on which are sent from the mobile communication terminal MKEG to be sent radio signals, in such a way that this by twice the amount of influence of the Doppler effect in phases I and III are shifted.
  • the mobile communication terminal MKEG is instructed by the mobile radio base station MB in the phases I and III, in order to determine the influence of the Doppler ⁇
  • the known from the prior art frequency correction methods do not provide a satisfactory solution to both taken into account for the moving mobile communication terminals MKEG the influence 'of the Doppler effect and based thereon frequency shifts when receiving and when sending of radio signals by the mobile communication terminal MKEG.
  • Corrections of the carrier frequencies in the mobile communication terminal which cause a good tuning for one direction, for example transmission direction eg increase in the transmission frequencies to be used, have a counterproductive effect on the opposite direction, in this case the direction of reception.
  • Either the transmitter and the receiver in the mobile communication terminal MKEG are adapted in the direction of higher carrier frequencies or in the direction of lower carrier frequencies. To compensate for the influence of the Doppler effect, however, an increase in the transmission frequencies of the transmitter while simultaneously reducing the receive frequencies of the receiver or vice versa in the mobile communication terminal MKEG is necessary.
  • the object of the present invention is therefore to specify a method for frequency tuning of a transmitter and a receiver of a mobile communication terminal for compensating for the influence of the Doppler effect and a corresponding mobile communication terminal, which improves the distance-dependent component of the relative speed between the mobile communication terminal and a current mobile base station Transmission quality allows.
  • the object is achieved by a method for tuning the frequency of a transmitter and a receiver of a mobile communication terminal to compensate for the influence of the Doppler effect, in which a) the mobile communication terminal or circuit parts of the mobile communication terminal receives highly stable clock signals of a frequency standard via a reference frequency input, b) the mobile communication terminal receives from a mobile radio base station communicating with the mobile communication terminal a radio signal transmitted at a desired transmission frequency and feeds a reference signal derived from the radio signal with a reference frequency or the received radio signal itself to a frequency comparison and frequency correction device, c) the mobile Communication terminal a derived from the highly stable clock signals of the frequency standard comparison signal with a comparison frequency or the obtained highly stable clock signals sel bst the frequency comparison and frequency correction device supplies, d) the Frequenz processeda- and frequency correction means determines a based on the Doppler effect eventual frequency difference between the reference signal and the comparison signal, e) the frequency comparison and frequency correction device supplies a controlled variable dependent on the detected frequency difference to the transmitter and
  • Receiver are optimally received, h) the frequency offsets from f) and g) take place in the opposite direction.
  • the object is further solved by a mobile communication terminal for performing the prescribed method.
  • frequency shifts based on the Doppler effect are determined during the transmission and reception of radio signals in the moving mobile communication terminal and taken into account by a correction mechanism in the mobile communication terminal during the transmission and reception of radio signals.
  • This mechanism promises an improvement in the quality of the communication link or the probability of a termination of the communication link is reduced.
  • the highly stable clock signals of the frequency standard come from GPS satellites and are combined with a GPS receiver received.
  • known satellite-based technologies can be used.
  • the integration of a GPS receiver in a mobile communication terminal is already affordable today.
  • the highly stable clock signals are obtained directly from an atomic clock or derived from a service for reference frequencies or time signals.
  • highly stable clock signal transmitters already present on earth are used for the purpose of the invention.
  • the subject matter of patent claim 1 is developed such that the frequency standard is a reference oscillator, which is a component of the mobile communication terminal. With the expected mini-magnification of atomic clocks, these can be integrated directly into the mobile communication terminal. These atomic clocks integrated in the mobile communication terminal provide the highly stable clock signals for the method according to the invention.
  • the frequency comparison and the frequency correction are carried out by appropriate software algorithms within the modulation or demodulation.
  • software technical embodiments of the inventive concept are also taken into account.
  • FIG. 2 shows a mobile communication terminal MKEG according to the invention with the components essential for carrying out the method according to the invention.
  • the mobile communication terminal MKEG comprises a GPS receiver GPSE, with a GPS antenna ANTGPS and with a reference frequency output REFA, and a communication unit GSME.
  • the communication unit GSME comprises a reference frequency input REFE, which is connected to the reference frequency output REFA of the GPS receiver GPSE.
  • the reference frequency input REFE is connected to a frequency comparison and frequency correction device FVKE, which in turn is connected to a receiver E and a transmitter S. Transmitter S and receiver E are connected to the GSM antenna ANTGSM.
  • the mobile communication terminal MKEG comprises a device e.g. Circuit parts that receive highly stable clock signals of an external frequency normal to the influence of the Doppler effect in the
  • the GPS receiver GPSE receives clock signals of several GPS satellites on two frequencies, the GPS receiver GPSE requires the GPS signals from four different GPS satellites to make from their message content a position determination and a speed determination of the mobile communication terminal MKEG.
  • Algorithms that do not have a number other than four are not mentioned here because they do not contribute to the description of the "principle", but important in this context is that the received GPS signals are highly stable clock signals of a frequency standard GPS satellites are based on signals from a highly stable atomic clock frequency standard.
  • the mobile communication terminal MKEG can now generate even highly stable carrier frequencies (normal frequencies) derived from these clock signals.
  • the highly stable clock signal is supplied from the GPS receiver GPSE via its reference frequency output REFA and the reference frequency input REFE the communication unit GSME.
  • the GSME communication unit can now provide highly stable frequencies for signal conditioning and further processing.
  • the mobile communication terminal MKEG transmits a radio signal transmitted by the mobile radio base station MB from the mobile radio base station MB to a desired transmission frequency or a reference signal derived from the received radio signal with a reference frequency of the frequency comparison and frequency correction device FVKE.
  • the mobile communication terminal MKEG also supplies a highly stable clock signal obtained via the reference frequency input REFE or a comparison signal derived from the obtained highly stable clock signal with a comparison frequency likewise to the frequency comparison and frequency correction device FVKE.
  • the frequency comparison and frequency correction means FVKE will not detect a Doppler effect frequency difference between the reference signal and the comparison signal requiring correction of transmission frequencies and reception frequency (ie, optimum tuning of the receiver with respect to transmission frequencies of a transmitter communicating with the receiver). In this case, no frequency offset is made in the mobile communication terminal MKEG to be used predetermined transmission and reception frequencies with respect to the radio signals to be sent and received. If, as described in phase I of FIG.
  • the mobile communication terminal MKEG moves in the direction of the mobile radio base station MB, so that there is a change in the distance-dependent component of the relative speed between the mobile communication terminal MKEG and the mobile radio base station MB the carrier frequency of the radio signal transmitted by the mobile communication base station MB received by the mobile communication terminal MKEG is greater than the transmission frequency at the location of the transmission, ie at the location of the mobile radio base station MB (positive frequency shift).
  • This frequency difference is detected in the following manner within the mobile communication terminal MKEG.
  • the nominal transmission frequency (carrier frequency) is known to the mobile communication terminal MKEG from messages of the mobile radio base station MB via the access grant channel.
  • the receiver E is initially optimally tuned to this desired transmission frequency. This tuning of the receiver E is based on the mobile communication terminal MKEG supplied highly stable clock signals of the frequency standard and corresponding circuits known to those skilled in the art, eg. B. frequency converter realized.
  • the mobile communication terminal MKEG performs a comparison signal derived from the highly stable clock signals of the frequency standard with a comparison frequency or the resulting highly stable clock signals themselves, which in this case form the comparison signal, the frequency comparison and frequency correction device FVKE.
  • the mobile communication terminal MKEG carries the received radio signal originating from the mobile radio base station MB itself, which in this case forms the reference signal. Det, or derived from the received radio signal reference signal with a reference frequency also the frequency comparison and frequency correction device FVKE.
  • the radio signal sent with a desired transmission frequency is received and related to the own system clock and the system clock is connected to the highly stable clock signal or used directly.
  • the frequency comparison and frequency correction means FVKE determines a frequency difference between the reference signal and the comparison signal based on the Doppler effect.
  • the mobile communication terminal MKEG according to the invention has a highly stable time base / frequency base in contrast to the prior art, the detected frequency difference is interpreted as touching on the Doppler effect and can subsequently be used to adapt transmitter S and receiver E d. H. be used for frequency correction.
  • the transmitter S and the receiver E of the mobile communication terminal MKEG are dependent on the established frequency difference controlled variables z. B. supplied a voltage or a digital number size. These control variables for transmitter S and receiver E do not necessarily have to be the same in type and size. For example, the transmitter S could also be supplied with a current while the receiver E receives a voltage.
  • the transmission frequency in the transmitter S of the mobile communication terminal MKEG undergoes such a frequency offset in subsequent radio signals to be transmitted that the Target receive frequency, that is set by the mobile base station MB set reception frequency really at the location of the mobile base station MB.
  • the receiver E is adjusted with a frequency offset relative to the emitted from the mobile base station MB SoIl transmission frequency, so that the subsequent received radio signals are optimally received in the receiver E.
  • transmitter S and receiver E can be readjusted in a special way to compensate for the influence of the Doppler effect.
  • control variables in the transmitter S shift the transmission frequencies to be used by the mobile communication terminal MKEG, and in the receiver E the reception frequencies to be used by the mobile communication terminal MKEG are shifted, with the displacement of the transmission frequencies and of the reception frequencies taking place in the opposite direction.
  • the transmitter S is tuned to the fact that the transmitted radio signals are sent with lower transmission frequencies as the target transmission frequencies and that the receiver E is optimized so that it receives optimally at compared to the target transmission frequencies higher reception frequencies ,
  • This optimized control of transmitter S and receiver E in the opposite "frequency" direction distinguishes the invention from prior art control mechanisms. Since, within phase III of FIG. 1, the velocity component occurs opposite to phase I with the opposite sign, the frequency corrections are all opposite to phase I.
  • the described frequency comparison and frequency correction method is based on the premise that all detected frequency differences are due to the Doppler effect. This is also justified since, as already described in the introduction, frequency shifts caused by aging or thermal influences are corrected by measures known from the prior art, e.g. voltage controlled temperature compensating circuits in conjunction with the prior art frequency correction methods described in the introduction.
  • the mobile communication terminal MKEG has facilities or circuit parts that receive highly stable clock signals from frequency standards of other high-precision satellite systems, from ground-based external atomic clocks or from services for reference frequencies or time signals.
  • the high-stability clock signal generator can be integrated into the mobile communication terminal MKEG. This is conceivable in the future, in particular, if atomic clocks will be available at low cost in the course of further miniaturization or facilities that support the notion of filing.
  • reference signals comprising reference frequencies are compared with comparison signals comprising comparison frequencies. It should be expressly included in the invention that such reference signals or comparison signals can be converted into other types of signals and then compared. In particular, the conversion into software algorithms and their comparison should be included in the invention.
  • the frequency comparison can be done both in the baseband, in intermediate and high frequency stages.
  • the invention can be applied to other technical radio systems that use other standards instead of the GSM standard, but in which the communication between partners based on frequency multiplexing based, for example, the UMTS or WiMAX are called.

Abstract

Die Erfindung betrifft ein Verfahren zur Frequenzabstimmung eines Senders (S) und eines Empfängers (E) eines mobilen Kommunikationsendgerätes (MKEG), welches eine Kompensation des Einflusses des Dopplereffektes bei bewegten mobilen Kommunikationsendgeräten (MKEG) für von dem mobilen Kommunikationsendgerät (MKEG) zu versendende und zu empfangende Funkübertragungssignale ermöglicht. Bei dem Verfahren erhält das mobile Kommunikationsendgerät (MKEG) hochstabile Taktsignale eines Frequenznormals. Diese oder davon abgeleitete Vergleichssignale werden einer Frequenzvergleichs- und Frequenzkorrektureinrichtung (FVKE) zugeführt. Andererseits werden von einer Mobilfunkbasisstation (MB) empfangene Funksignale, die von der Mobilfunkbasisstation (MB) mit einer Soll-Sendefrequenz versendet wurden, oder ein von dem empfangenen Funksignal abgeleitetes Bezugssignal ebenfalls der Frequenzvergleichs- und Frequenzkorrektureinrichtung (FVKE) zugeführt. Aus in der Frequenzvergleichs- und Frequenzkorrektureinrichtung (FVKE) festgestellten Frequenzunterschieden werden Regelgrößen abgeleitet und dem Sender (S) bzw. Empfänger (E) zugeführt, d.h. Sender (S) und Empfänger (E) werden optimal abgestimmt, wodurch der Einfluss des Dopplereffektes bei zu versendenden bzw. zu empfangenden Funksignalen kompensiert wird.

Description

Beschreibung
Verfahren zur Frequenzabstimmung eines Senders und eines Empfängers eines mobilen Kommunikationsendgerätes zur Kompensa- tion des Einflusses des Dopplereffektes und mobiles Kommunikationsendgerät
Die Erfindung betrifft ein Verfahren zur Frequenzabstimmung eines Senders und eines Empfängers eines mobilen Kommunikati- onsendgerätes zur Kompensation des Einflusses des Dopplereffektes und ein entsprechendes mobiles Kommunikationsendgerät.
Mobile Kommunikationsendgeräte sind seit vielen Jahren weit verbreitet. Sie ermöglichen einem sich bewegenden Teilnehmer, der ein mobiles Kommunikationsendgerät bei sich trägt, von nahezu allen dicht besiedelten Punkten auf der Landfläche der Erde eine Telekommunikationsverbindung zu einem anderen Teilnehmer aufzubauen bzw. von einem Teilnehmer gerufen zu werden. Die größte flächendeckende Versorgung hat zur Zeit das Mobilfunknetz, welches nach dem GSM-Standard (Global System for Mobile Communications) spezifiziert ist und die meisten in Gebrauch befindlichen mobilen Kommunikationsendgeräte nutzen den GSM-Standard. Weitere mobile GSM- Kommunikationsendgeräte sind so genannte GSM-Funkmodule, GSM- PCMCIA-Karten, GSM-Funkmodems etc.
Die Netzarchitektur des GSM-Standards besteht unter anderem aus einem Mobilfunksendesystem, auch Base Station Subsystem genannt, welches seinerseits aus Mobilfunkbasisstationen (Ba- se Transceiver Station) und zugeordneten Mobilfunkbasisstati- onsteuerungseinheiten (Base Station Controller) besteht, und einem Vermittlungssystem. Der Zugriff auf die Funkressource erfolgt nach einer Mischung von Frequenzmultiplexverfahren und Zeitmultiplexverfahren. Die dabei benutzten Frequenzbänder sind das 900 MHz und 1800 MHz Frequenzband in Europa und das 850 MHz und 1900 MHz Fre- quenzband in Amerika. Die Frequenzbänder sind in eine Vielzahl von Frequenzkanälen unterteilt. Benachbarte Mobilfunkbasisstationen bedienen jeweils unterschiedliche Frequenzkanäle, um gegenseitige Interferenzen zu vermeiden.
Aufbau und Funktionsweise von zellularen Funknetzen, insbesondere das GSM-Mobilfunksystem, sind dem Fachmann bekannt und in vielen Publikationen eingehend beschrieben, so dass hier keine weitere Erläuterung dazu notwendig ist.
Im Hochfrequenzteil eines Sendeempfängers eines mobilen Kommunikationsendgerätes werden vor der Versendung die im Basisbandchipsatz erzeugten Nutzsignale auf eine Trägerfrequenz (Sendefrequenz) aufmoduliert. Nach dem Empfang von Funksignalen von einer Mobilfunkbasisstation im mobilen Kommunikati- onsendgerät werden die auf eine Trägerfrequenz aufmodulierten
Nutzsignale wieder von der Trägerfrequenz getrennt (Demodula- tion) . Die bei einer Übertragung von Funksignalen zu benutzenden Trägerfrequenzen (Soll-Sendefrequenzen) und Zeitschlitze werden dem mobilen Kommunikationsendgerät von der Mobilfunkbasisstation über den Zugangsgewährungskanal (Access Grant Channel) übermittelt. Um eine hohe Übertragungsqualität zu gewährleisten, muss der Sender des mobilen Kommunikationsendgerätes präzise auf Soll-Sendefrequenzen (Soll-Trägerfrequenzen) Funksignale versenden und der Empfänger des mobilen Kommunikationsendgerätes muss auf mit Soll-Sendefrequenzen
(Soll-Trägerfrequenzen) von der Mobilfunkbasisstation versendete Funksignale optimal abgestimmt sein. Ähnliches gilt hinsichtlich der jeweils zugeordneten Zeitintervalle (Zeitschlitze) für die Funksignalübertragung. Gleichbedeutend soll im Weiteren der Ausdruck „der Empfänger empfängt auf der Soll-Empfangsfrequenz" als „optimale Abstimmung eines Empfängers" im Hinblick auf Sendefrequenzen des Senders verstanden werden, der mit diesem Empfänger kommuniziert .
In GSM-standardkonformen mobilen Kommunikationsendgeräten erfolgt die Signalaufbereitung im Basisband und ggf. vorhande- nen Hochfrequenzstufen und Zwischenfrequenzstufen unter Nutzung einer gemeinsamen Zeitbasis bzw. Frequenzreferenz. In der Regel bildet ein Quarzoszillator diese Frequenzreferenz. Aus ihm bzw. der Frequenzreferenz werden alle notwendigen Trägerfrequenzen (Sende- und Empfangsfrequenzen) bzw. Takt- signale abgeleitet. Dieses ist in der GSM-Standardspezifikation 3GPP ETSI TS 51.010-1 Version 6.0.1 (2004-12), Release 6, Kapitel 23 Single Frequency Reference nachzulesen.
Um Abweichungen der Zeitbasis bzw. der Frequenzreferenz von einem Sollwert durch Herstellung, Alterung, thermische Einflüsse etc. auszugleichen sind die Quarzoszillatoren durch zusätzliche Bauelemente, wie Trimmkondensatoren, elektronisch abstimmbar und temperaturkompensiert. In der englischsprachigen Literatur sind die spannungsgesteuerten temperaturkompen- sierten Quarzoszillatoren auch als VC-TCXO bekannt. Solche
Schaltungen sind dem Fachmann zur Abstimmung der Frequenzreferenz auf den idealen Sollwert bekannt .
Das Korrektursignal zur Frequenzkorrektur auf Sollwerte des Quarzoszillators wird aus an das mobile Kommunikationsendgerät übertragenen Funksignalen abgeleitet. Dafür stehen insbesondere zwei Verfahren zur Verfügung. In einem ersten Verfahren empfängt das mobile Kommunikationsendgerät eine so genannte Frequenzkorrektursignalfolge, auch als Frequency Correction Burst bekannt, mit dem sich das mobile Kommunikationsendgerät auf die Trägerfrequenz der Mobil- funkbasisstation aufsynchronisieren kann.
In einem zweiten Verfahren signalisiert die Mobilfunkbasisstation dem mobilen Kommunikationsendgerät über einen speziellen Zugangsgewährungskanal, auch als Access Grant Channel bekannt, sowohl ein Zeitkorrektursignal als auch ein Frequenzkorrektursignal. Diese werden in der Mobilfunkbasisstation aufgrund von Messungen von empfangenen Funksignalen des mobilen Kommunikationsendgeräts bestimmt.
Beide Frequenzkorrekturverfahren erlauben jedoch keine vollständig wirksame Frequenzkorrektur in dem mobilen Kommunikationsendgerät, wenn sich das mobile Kommunikationsendgerät relativ zur Mobilfunkbasisstation bewegt.
Der physikalische Hintergrund dafür ist der Dopplereffekt, dessen Auswirkungen auf die nach dem Stand der Technik bekannten Frequenzkorrekturverfahren unter Zuhilfenahme von Figur 1 nun näher beschrieben werden.
In der Figur 1 wird ein mobiles Kommunikationsendgerät MKEG gezeigt, welches sich in der Phase I der Mobilfunkbasisstation MB nähert. In der Phase II bewegt sich das mobile Kommunikationsendgerät MKEG um die Mobilfunkbasisstation MB herum, wobei keine Änderung der abstandsabhängigen Komponente der Relativgeschwindigkeit zwischen dem mobilen Kommunikationsendgerät MKEG und der Mobilfunkbasisstation MB auftritt (konstanter Abstandsradius) . In der Phase III entfernt sich das mobile Kommunikationsendgerät MKEG von der Mobilfunkbasisstation MB. Für die Phase I bedeutet dieses, dass Funksignale aufgrund des Dopplereffektes mit einer beim jeweiligen Empfänger (im mobilen Kommunikationsendgerät MKEG oder in der Mobilfunkba- sisstation MB) mit einer höheren Trägerfrequenz empfangen werden (positive Frequenzverschiebung) als sie vom Sender (in der Mobilfunkbasisstation MB oder im mobilen Kommunikationsendgerät MKEG) versendet wurden. In der Phase II erfolgt keine Frequenzverschiebung beim jeweiligen Empfänger der Funk- signale aufgrund des Dopplereffektes. In der Phase III werden Funksignale aufgrund des Dopplereffektes beim jeweiligen Empfänger mit einer niedrigeren Empfangsfrequenz (Trägerfrequenz) registriert als sie vom Sender versendet wurden (negative Frequenzverschiebung) .
Hinsichtlich des ersten beschriebenen Frequenzkorrekturverfahrens wird der Einfluss des Dopplereffektes dahingehend kompensiert, dass das mobile Kommunikationsendgerät MKEG in den Phasen I und III auf eine Empfangsfrequenz des empfange- nen Funksignals gezogen wird, die um den Einfluss des Dopplereffektes verschoben ist. In diesem Fall wird zwar der Empfänger des mobilen Kommunikationsendgerätes MKEG infolge des Frequenzkorrekturverfahrens optimal abgestimmt, jedoch wirkt sich diese Frequenzkorrektur hinsichtlich Sendefrequenzen, auf denen vom mobilen Kommunikationsendgerät MKEG zu versendenden Funksignale versendet werden, in der Weise aus, dass diese um den doppelten Betrag des Einflusses des Dopplereffektes in den Phasen I und III verschoben sind.
Hinsichtlich des zweiten beschriebenen Frequenzkorrekturverfahrens, bei dem die Korrekturgrößen in der Mobilfunkbasis- station MB ermittelt werden, wird das mobile Kommunikationsendgerät MKEG von der Mobilfunkbasisstation MB in den Phasen I und III angewiesen, auf einer um den Einfluss des Doppler- β
effektes versetzen Sendefrequenz die Funksignale zu versenden. Allerdings ist dann der Empfänger im mobilen Kommunikationsendgerät MKEG hinsichtlich der Empfangsfrequenzen der von der Mobilfunkbasisstation empfangenen Funksignale um den doppelten Betrag des Einflusses des Dopplereffektes versetzt.
Zusammenfassend liefern die nach dem Stand der Technik bekannten Frequenzkorrekturverfahren keine befriedigende Lösung, um bei sich bewegenden mobilen Kommunikationsendgeräten MKEG den Einfluss' des Dopplereffektes und die darauf beruhenden Frequenzverschiebungen sowohl beim Empfang als auch bei der Versendung von Funksignalen durch das mobile Kommunikationsendgerät MKEG zu berücksichtigen. Korrekturen der Trägerfrequenzen im mobilen Kommunikationsendgerät die für eine Richtung z.B. Senderichtung eine gute Abstimmung bewirken z.B. Erhöhung der zu verwendenden Sendefrequenzen, wirken sich kontraproduktiv für die umgekehrte Richtung, hier Empfangsrichtung, aus. Entweder wird sowohl der Sender als auch der Empfänger im mobilen Kommunikationsendgerät MKEG in Rich- tung höherer Trägerfrequenzen oder in Richtung niedrigerer Trägerfrequenzen angepasst . Zur Kompensation des Einflusses des Dopplereffektes ist aber eine Erhöhung der Sendefrequenzen des Senders bei gleichzeitiger Erniedrigung der Empfangsfrequenzen des Empfängers oder umgekehrt im mobilen Kommuni- kationsendgerät MKEG notwendig.
Die nach dem Stand der Technik mangelhafte Berücksichtigung des Einflusses des Dopplereffektes vermindert die maximal erreichbare Qualität des Funkübertragungskanals, wobei bei hö- heren Relativgeschwindigkeiten von mobilen Kommunikationsendgeräten MKEG in Bezug zur Mobilfunkbasisstation MB die Übertragungsrate dynamisch herabgesetzt wird oder sogar die Funkverbindung abreißt. Aufgabe der vorliegenden Erfindung ist daher ein Verfahren zur Frequenzabstimmung eines Senders und eines Empfängers eines mobilen Kommunikationsendgerätes zur Kompensation des Einflusses des Dopplereffektes und ein entsprechendes mobiles Kommunikationsendgerät anzugeben, welches bei Änderungen der abstandsabhängigen Komponente der Relativgeschwindigkeit zwischen dem mobilen Kommunikationsendgerät und einer aktuellen Mobilfunkbasisstation eine Verbesserung der Übertragungsqualität ermöglicht .
Die Aufgabe wird erfindungsgemäß durch ein Verfahren zur Frequenzabstimmung eines Senders und eines Empfängers eines mobilen Kommunikationsendgerätes zur Kompensation des Einflusses des Dopplereffektes gelöst, bei dem a) das mobile Kommunikationsendgerät oder Schaltungsteile des mobilen Kommunikationsendgerätes hochstabile Takt- signale eines Frequenznormals über einen Referenzfrequenzeingang erhält , b) das mobile Kommunikationsendgerät von einer mit dem mo- bilen Kommunikationsendgerät kommunizierenden Mobilfunkbasisstation ein mit einer Soll-Sendefrequenz versendetes Funkssignal empfängt und ein aus dem Funksignal abgeleitetes Bezugssignal mit einer Bezugsfrequenz oder das empfangene Funksignal selbst einer Frequenzver- gleichs- und Frequenzkorrektureinrichtung zuführt, c) das mobile Kommunikationsendgerät ein aus den hochstabilen Taktsignalen des Frequenznormals abgeleitetes Vergleichssignal mit einer Vergleichsfrequenz oder die erhaltenen hochstabilen Taktsignale selbst der Frequenz- Vergleichs- und Frequenzkorrektureinrichtung zuführt, d) die Frequenzvergleicha- und Frequenzkorrektureinrichtung einen auf dem Dopplereffekt beruhenden eventuellen Frequenzunterschied zwischen dem Bezugssignal und dem Vergleichssignal feststellt, e) die Frequenzvergleichs- und Frequenzkorrektureinrichtung eine von dem festgestellten Frequenzunterschied abhängige Regelgröße dem Sender und dem Empfänger zuführt, f) die Sendefrequenz im Sender des mobilen Kommunikationsend- gerätes einen derartigen Frequenzversatz erfährt, dass sich die Soll-Empfangsfrequenz am Ort der Mobilfunkbasisstation ergibt, g) der Empfänger mit einem Frequenzversatz gegenüber der von der Mobilfunkbasisstation ausgestrahlten SoIl- Sendefrequenz eingestellt wird, dass die Funksignale im
Empfänger optimal empfangen werden, h) die Frequenzversätze aus f) und g) in entgegensetzter Richtung erfolgen.
Die Aufgabe wird des Weiteren durch ein mobiles Kommunikationsendgerät zur Durchführung des vorgeschriebenen Verfahrens gelöst .
Durch das erfindungsgemäße Verfahren bzw. das erfindungsgemä- ße mobile Kommunikationsendgerät werden auf dem Dopplereffekt beruhende Frequenzverschiebungen bei der Versendung und dem Empfang von Funksignalen im sich bewegenden mobilen Kommunikationsendgerät bestimmt und durch einen Korrekturmechanismus im mobilen Kommunikationsendgerät bei der Versendung und dem Empfang von Funksignalen berücksichtigt. Dieser Mechanismus verspricht einer Verbesserung der Qualität der Kommunikationsverbindung bzw. die Wahrscheinlichkeit eines Abbruchs der Kommunikationsverbindung wird herabgesetzt.
Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen.
In vorteilhafter Weise stammen die hochstabilen Taktsignale des Frequenznormals von GPS-Satelliten und werden mit einem GPS-Empfänger empfangen. Dadurch lassen sich bekannte satellitengestützte Technologien nutzen. Die Integration eines GPS-Empfängers in ein mobiles Kommunikationsendgerät ist bereits heutzutage kostengünstig erreichbar.
In weiterhin vorteilhafter Weise werden die hochstabilen Taktsignale alternativ zum vorigen Absatz direkt von einer Atomuhr erhalten oder aus einem Dienst für Referenzfrequenzen oder Zeitsignale abgeleitet. Dadurch werden schon auf der Er- de vorhandene hochstabile TaktSignalsender zum Zwecke der Erfindung genutzt.
In weiterhin vorteilhafter Weise wird alternativ zu den beiden vorstehenden Absätzen der Gegenstand des Patentanspruchs 1 derart weitergebildet, dass das Frequenznormal ein Referenzoszillator ist, der Bestandteil des mobilen Kommunikationsendgerätes ist . Mit der zu erwartenden Miniatuxisierung auch von Atomuhren können diese direkt in das mobile Kommunikationsendgerät integriert werden. Diese in das mobile Kommu- nikationsendgerät integrierten Atomuhren stellen die hochstabilen Taktsignale für das erfindungsgemäße Verfahren bereit .
In einer weiteren Ausgestaltung der Erfindung erfolgen der Frequenzvergleich- und die Frequenzkorrektur durch entspre- chende Software-Algorithmen innerhalb der Modulation oder De- modulation. Dadurch werden softwaretechnische Ausgestaltungen des Erfindungsgedankens ebenfalls mit berücksichtigt.
Weitere Vorteile der Erfindung ergeben sich aus der folgenden Beschreibung, welche in Verbindung mit der beigefügten Zeichnung die Erfindung an Hand von einem Ausführungsbeispiel erläutert.
Dabei zeigt in schematischer Darstellung die FIG 2 ein erfindungsgemäßes mobiles Kommunikationsendgerät.
Die Figur 2 zeigt ein erfindungsgemäßes mobiles Kommunikati- onsendgerät MKEG mit den für die Ausführung des erfindungsgemäßen Verfahrens wesentlichen Bestandteilen. Das mobile Kommunikationsendgerät MKEG umfasst einen GPS-Empfänger GPSE, mit einer GPS-Antenne ANTGPS und mit einem Referenzfrequenz- ausgang REFA, und eine Kommunikationseinheit GSME. Die Kommu- nikationseinheit GSME umfasst einen Referenzfrequenzeingang REFE, welcher mit dem Referenzfrequenzausgang REFA des GPS- Empfängers GPSE verbunden ist. Der Referenzfrequenzeingang REFE ist mit einer Frequenzvergleichs- und Frequenzkorrektureinrichtung FVKE verbunden, die ihrerseits mit einem Empfän- ger E und einem Sender S verbunden ist. Sender S und Empfänger E sind mit der GSM-Antenne ANTGSM verbunden.
Dem Fachmann ist bekannt (hier nicht gezeigt) , dass neben den nur schematisch dargestellten Verbindungs- bzw. Steuerleitun- gen weitere vorhanden sind bzw. dass auch hier getrennt gezeichnete Schaltungsteile integriert sein können. Dieses betrifft z.B. auch eine gemeinsame Antenne.
Da zur Zeit noch keine hochstabilen und hochpräzisen Fre- quenznormale zur Verfügung stehen, die zu wettbewerbsfähigen Bedingungen wie Preis, Größe etc. in das mobile Kommunikationsendgerät MKEG integriert werden können, umfasst das mobile Kommunikationsendgerät MKEG eine Einrichtung z.B. Schaltungsteile, die hochstabile Taktsignale eines externen Frequenz- normals erhält, um den Einfluss des Dopplereffektes bei der
Versendung und beim Empfang von Funksignalen zu berücksichtigen. Der GPS-Empfänger GPSE empfängt Taktsignale mehrerer GPS- Satelliten auf zwei Frequenzen, wobei der GPS-Empfänger GPSE die GPS-Signale von vier verschiedenen GPS-Satelliten benötigt, um aus deren Nachrichteninhalt eine Positionsbestimmung und eine Geschwindigkeitsbestimmung des mobilen Kommunikationsendgeräts MKEG vornehmen zu können. Algorithmen, die mit einer anderen Anzahl als vier auskommen, seien an dieser Stelle nicht erwähnt, da sie zur Beschreibung des „Prinzips" nichts beitragen. Wichtig in diesem Zusammenhang ist aber, dass die empfangenen GPS-Signale hochstabile Taktsignale eines Frequenznormals sind. Die von GPS-Satelliten ausgesendeten GPS-Signale beruhen auf Signalen eines hochstabilen atomuhrgenauen Frequenznormals.
Durch den Empfang der hochstabilen Taktsignale dieses Frequenznormals durch den GPS-Empfänger GPSE kann nun das mobile Kommunikationsendgerät MKEG selbst hochstabile von diesen Taktsignalen abgeleitete Trägerfrequenzen (Normalfrequenzen) erzeugen. Um dieses zu realisieren, wird das hochstabile Taktsignal vom GPS-Empfänger GPSE über seinen Referenzfrequenzausgang REFA und den Referenzfrequenzeingang REFE der Kommunikationseinheit GSME zugeführt. Die Kommunikationseinheit GSME kann nun hochstabile Frequenzen für die Signalaufbereitung und Weiterverarbeitung bereitstellen.
Da im GSM-Mobilfunkstandard die einzelnen zu benutzenden Trägerfrequenzen festgelegt sind und bei bestehender Kommunikationsverbindung von der Mobilfunkbasisstation MB dem mobilen Kommunikationsendgerät MKEG mitgeteilt wird ggf. unter Be- rücksichtigung von Frequenzsprungverfahren, auf welcher Trägerfrequenz die Funkübertragung in Richtung zur Mobilfunkbasisstation MB und auf welcher anderen Trägerfrequenz die Funkübertragung in Richtung zum mobilen Kommunikationsendge- rät MKEG stattfinden soll, kann jetzt der Einfluss des Dopplereffektes bestimmt und kompensiert werden.
Dabei führt das mobile Kommunikationsendgerät MKEG ein von der Mobilfunkbasisstation MB empfangenes von der Mobilfunkbasisstation MB mit einer Soll-Sendefrequenz versendetes Funksignal oder ein aus dem empfangenen Funksignal abgeleitetes Bezugssignal mit einer Bezugsfrequenz der Frequenzvergleichsund Frequenzkorrektureinrichtung FVKE zu.
Andererseits führt das mobile Kommunikationsendgerät MKEG ein aus über den Referenzfrequenzeingang REFE erhaltenes hochstabiles Taktsignal oder ein aus dem erhaltenen hochstabilen Taktsignal abgeleitetes Vergleichssignal mit einer Ver- gleichsfrequenz ebenfalls der Frequenzvergleichs- und Frequenzkorrektureinrichtung FVKE zu.
Wenn sich wie in Phase II der Figur 1 beschrieben, das mobile Kommunikationsendgerät MKEG um die Mobilfunkbasisstation MB herumbewegt, ohne dass eine Änderung der abstandsabhängigen Komponente der Relativgeschwindigkeit zwischen dem mobilen Kommunikationsendgerät MKEG und der Mobilfunkbasisstation MB auftritt (konstanter Abstandsradius) oder das mobile Kommunikationsendgerät MKEG ruht, wird die Frequenzvergleichs- und Frequenzkorrektureinrichtung FVKE keinen auf dem Dopplereffekt beruhenden Frequenzunterschied zwischen dem Bezugssignal und dem Vergleichssignal feststellen, der eine Korrektur von Sendefrequenzen und Empfangsfrequenz (d.h. optimale Abstimmung des Empfängers im Hinblick auf Sendefrequenzen eines mit dem Empfänger kommunizierenden Sender) erfordert. In diesem Fall wird im mobilen Kommunikationsendgerät MKEG kein Frequenzversatz von zu verwendenden vorgegebenen Sende- und Empfangsfrequenzen hinsichtlich der zu versendenden und zu empfangenden Funksignale vorgenommen. Wenn sich wie in Phase I der Figur 1 beschrieben, das mobile Kommunikationsendgerät MKEG in Richtung der Mobilfunkbasis- station MB bewegt, so dass es eine Änderung der abstandsab- hängigen Komponente der Relativgeschwindigkeit zwischen dem mobilen Kommunikationsendgerät MKEG und der Mobilfunkbasis- Station MB gibt, wird die Trägerfrequenz des vom mobilen Kommunikationsendgerätes MKEG empfangenen von der Mobilfunkbasisstation MB versendeten Funksignals größer sein als die Sendefrequenz am Ort der Aussendung d.h. am Ort der Mobil - funkbasisstation MB (positive Frequenzverschiebung) . Dieser Frequenzunterschied wird in folgender Weise innerhalb des mobilen Kommunikationsendgerätes MKEG festgestellt.
Die Soll-Sendefrequenz (Trägerfrequenz) ist dem mobilen Kommunikationsendgerät MKEG aus Mitteilungen der Mobilfunkbasisstation MB über den Zugangsgewährungskanal bekannt . Der Empfänger E ist zunächst auf diese Soll-Sendefrequenz optimal abgestimmt. Diese Abstimmung des Empfängers E wird auf Basis der dem mobilen Kommunikationsendgerät MKEG zugeführten hochstabilen Taktsignalen des Frequenznormals und entsprechender dem Fachmann bekannter Schaltungen, z. B. Frequenzumsetzer realisiert .
Das mobile Kommunikationsendgerät MKEG führt ein aus den hochstabilen Taktsignalen des Frequenznormals abgeleitetes Vergleichssignal mit einer Vergleichsfrequenz oder die erhaltenen hochstabilen Taktsignale selbst, welche in diesem Fall das Vergleichssignal bilden, der Frequenzvergleich- und Fre- quenzkorrektureinrichtung FVKE zu.
Andererseits führt das mobile Kommunikationsendgerät MKEG das empfangene von der Mobilfunkbasisstation MB stammende Funksignal selbst, welches in diesem Fall das Bezugssignal bil- det, oder ein aus dem empfangenen Funksignal abgeleitetes Bezugssignal mit einer Bezugsfrequenz ebenfalls der Frequenzvergleichs- und Frequenzkorrektureinrichtung FVKE zu.
Mit anderen Worten wird das mit einer Soll-Sendefrequenz versendete Funksignal empfangen und mit dem eigenen Systemtakt in Bezug gesetzt und der Systemtakt an das hochstabile Takt- signal angebunden oder direkt verwendet.
Im vorliegenden Fall stellt die Frequenzvergleichs- und Frequenzkorrektureinrichtung FVKE einen auf dem Dopplereffekt beruhenden Frequenzunterschied zwischen dem Bezugssignal und dem Vergleichssignal fest.
Dadurch, dass das erfindungsgemäße mobile Kommunikationsend- gerät MKEG im Gegensatz zum Stand der Technik selbst über eine hochstabile Zeitbasis / Frequenzbasis verfügt, wird der festgestellte Frequenzunterschied als auf dem Dopplereffekt berührend interpretiert und kann in der Folge zur Anpassung von Sender S und Empfänger E d. h. zur Frequenzkorrektur genutzt werden.
Dem Sender S und dem Empfänger E des mobilen Kommunikationsendgerätes MKEG werden von dem festgestellten Frequenzunter- schied abhängige Regelgrößen z. B. eine Spannung oder eine digitale Zahlengröße zugeführt. Diese Regelgrößen für Sender S und Empfänger E müssen nicht zwangsläufig in Art und Größe gleich sein. Beispielsweise könnte dem Sender S auch ein Strom zugeführt werden, während der Empfänger E eine Spannung erhält.
Die Sendefrequenz im Sender S des mobilen Kommunikationsendgerätes MKEG erfährt bei nachfolgenden zu versendenden Funksignalen einen derartigen Frequenzversatz, dass sich die Soll-Empfangsfrequenz, d. h. von der Mobilfunkbasisstation MB festgelegte Empfangsfrequenz auch wirklich am Ort der Mobil- funkbasisstation MB ergibt.
Auch wird der Empfänger E mit einem Frequenzversatz gegenüber der von der Mobilfunkbasisstation MB ausgestrahlten SoIl- Sendefrequenz eingestellt, so dass die nachfolgenden empfangenen Funksignale im Empfänger E optimal empfangen werden.
Dadurch, dass mittels des erfindungsgemäßen Verfahrens festgestellte Frequenzunterschiede dem Einfluss des Dopplereffektes zugerechnet werden können, können Sender S und Empfänger E in besonderer Weise zur Kompensation des Einflusses des Dopplereffektes hin nachgeregelt werden.
Mit anderen Worten werden durch die Regelgrößen im Sender S die vom mobilen Kommunikationsendgerät MKEG zu verwendenden Sendefrequenzen verschoben und im Empfänger E die vom mobilen Kommunikationsendgerät MKEG zu verwendenden Empfangsfrequen- zen verschoben, wobei die Verschiebung der Sendefrequenzen und der Empfangsfrequenzen in entgegengesetzter Richtung erfolgt.
Die vorstehend beschriebenen Frequenzversätze erfolgen also in entgegengesetzter Richtung. D. h. im vorliegenden Fall der Phase I aus Figur 1 wird der Sender S dahingehend abgestimmt, dass die ausgesendeten Funksignale mit niedrigeren Sendefrequenzen als Soll-Sendefrequenzen ausgesendet werden und dass der Empfänger E dahingehend optimiert wird, dass er optimal bei gegenüber den Soll -Sendefrequenzen höheren Empfangsfrequenzen empfängt. Diese optimierte Regelung von Sender S und Empfänger E in entgegengesetzter „Frequenz"-Richtung unterscheidet die Erfindung von Regelungsmechanismen des Standes der Technik. Da innerhalb der Phase III der Figur 1 die Geschwindigkeits- komponente gegenüber Phase I mit umgekehrtem Vorzeichen auftritt, erfolgen die Frequenzkorrekturen alle entgegengesetzt zu Phase I .
Das beschriebene Frequenzvergleichs- und Frequenzkorrektur- verfahren geht von der Prämisse aus, dass alle festgestellten Frequenzunterschiede auf den Dopplereffekt zurückzuführen sind. Dieses ist auch berechtigt, da wie in der Einleitung bereits beschrieben, Frequenzverschiebungen, die durch Alterung oder thermische Einflüsse entstehen, durch Maßnahmen korrigiert werden, wie sie aus dem Stand der Technik bekannt sind, z.B. spannungsgesteuerte temperaturkompensierende Schaltungen in Verbindung mit den in der Einleitung beschriebenen Frequenzkorrekturverfahren aus dem Stand der Technik.
Die Erfindung ist nicht auf das spezielle Ausführungsbeispiel beschränkt, sondern schließt weitere nicht explizit offenbar- te Abwandlungen mit ein, solange von dem Kern der Erfindung
Gebrauch gemacht wird.
Dieses gilt insbesondere, wenn das mobile Kommunikationsendgerät MKEG über Einrichtungen oder Schaltungsteile verfügt, die hochstabilen Taktsignale von Frequenznormalen anderer hochpräziser Satellitensysteme, von auf der Erde sich befindlichen externen Atomuhren oder aus Diensten für Referenzfrequenzen oder ZeitSignale erhalten.
Auch kann der hochstabile TaktSignalgeber in das mobile Kommunikationsendgerät MKEG integriert sein. Dieses ist insbesondere in der Zukunft denkbar, wenn im Zuge der weiteren Miniaturisierung Atomuhren kostengünstig erhältlich sein werden oder Einrichtungen zur Verfügung stehen, die den Gedanken der Anmeldung unterstützen.
In der beschriebenen Frequenzvergleich- und Frequenzkorrek- tureinheit FVKE werden Bezugssignale umfassend Bezugsfrequenzen mit Vergleichssignalen umfassend Vergleichsfrequenzen verglichen. Es soll ausdrücklich von der Erfindung umfasst sein, dass derartige Bezugssignale bzw. Vergleichssignale in andere Signaltypen überführt und dann verglichen werden kön- nen. Insbesondere soll die Überführung in Software-Algorithmen und deren Vergleich mit von der Erfindung umfasst sein.
Auch kann der Frequenzvergleich sowohl im Basisband, in Zwischen- und auch Hochfrequenzstufen erfolgen.
Hier sind dem Fachmann eine Vielzahl von Ausgestaltungen der Erfindung bekannt, deren detaillierte Beschreibung den Rahmen sprengen würde .
Auch die Zusammenfassung verschiedener beschriebener Komponenten zu größeren Einheiten oder die Frequenzaufbereitung in anderen Komponenten oder die SignalZuführung zwischen anderen Komponenten in dem mobilen Kommunikationsendgerät MKEG stellen lediglich offensichtliche Abwandlungen dar, die vom Kern der Erfindung erfasst sein sollen.
Auch lässt sich die Erfindung auf andere technische Funksysteme, die statt des GSM-Standards andere Standards verwenden, anwenden, in denen aber die Kommunikation zwischen Partnern auf der Basis von Frequenzmultiplexverfahren beruht, wobei beispielhaft das UMTS oder WiMAX genannt sind.

Claims

Patentansprüche
1) Verfahren zur Frequenzabstimmung eines Senders (S) und eines Empfängers (E) eines mobilen Kommunikationsendgerätes (MKEG) zur Kompensation des Einflusses des Dopplereffektes, bei dem a) das mobile Kommunikationsendgerät (MKEG) oder Schaltungsteile des mobilen Kommunikationsendgerätes (MKEG) hochstabile Taktsignale eines Frequenznormals über einen Referenzfrequenzeingang (REFE) erhält, b) das mobile Kommunikationsendgerät (MKEG) von einer mit dem mobilen Kommunikationsendgerät (MKEG) kommunizierenden Mobilfunkbasisstation (MB) ein mit einer Soll- Sendefrequenz versendetes Funkssignal empfängt und ein aus dem Funksignal abgeleitetes Bezugssignal mit einer
Bezugsfrequenz oder das empfangene Funksignal selbst einer Frequenzvergleichs- und Frequenzkorrektureinrichtung (FVKE) zuführt, c) das mobile Kommunikationsendgerät (MKEG) ein aus den hochstabilen TaktSignalen des Frequenznormals abgeleitetes Vergleichssignal mit einer Vergleichsfrequenz oder die erhaltenen hochstabilen Taktsignale selbst der Frequenzvergleichs- und Frequenzkorrektureinrichtung (FVKE) zuführt , d) die Frequenzvergleichs- und Frequenzkorrektureinrichtung
(FVKE) einen auf dem Dopplereffekt beruhenden eventuellen Frequenzunterschied zwischen dem Bezugssignal und dem Vergleichssignal feststellt, e) die Frequenzvergleichs- und Frequenzkorrektureinrichtung (FVKE) eine von dem festgestellten Frequenzunterschied abhängige Regelgröße dem Sender (S) und dem Empfänger (E) zuführt, f) die Sendefrequenz im Sender (S) des mobilen Kommunikationsendgerätes (MKEG) einen derartigen Frequenzversatz erfährt, dass sich die Soll-Empfangsfrequenz am Ort der Mobilfunkbasisstation (MB) ergibt, g) der Empfänger (E) mit einem Frequenzversatz gegenüber der von der Mobilfunkbasisstation (MB) ausgestrahlten Soll-Sendefrequenz eingestellt wird, dass die Funksignale im Empfänger (E) optimal empfangen werden, h) die Frequenzversätze aus f) und g) in entgegensetzter Richtung erfolgen.
2) Verfahren nach dem vorstehenden Patentanspruch 1, dadurch gekennzeichnet, dass die hochstabilen Taktsignale des Frequenznormals von
GPS-Satelliten stammen und mit einem GPS-Empfänger empfangen werden.
3) Verfahren nach dem vorstehenden Patentanspruch 1, dadurch gekennzeichnet, dass die hochstabilen Taktsignale direkt von einer Atomuhr erhalten werden oder aus einem Dienst für Referenzfrequenzen oder Zeitsignale abgeleitet werden.
4) Verfahren nach dem vorstehenden Patentanspruch 1, dadurch gekennzeichnet, dass das Frequenznormal ein Referenzoszillator ist, der Be- standteil des mobilen Kommunikationsendgerätes (MKEG) ist.
5) Verfahren nach einem der vorstehenden Patentansprüche, dadurch gekennzeichnet, dass der Frequenzvergleich- und die Frequenzkorrektur durch entsprechende Software-Algorithmen innerhalb der Modulation oder Demodulation erfolgt.
6) Mobiles Kommunikationsendgerät (MKEG) zur Durchführung des Verfahrens nach Patentanspruch 1 bis 5.
PCT/DE2006/000785 2006-05-03 2006-05-03 Verfahren zur frequenzabstimmung eines senders und eines empfängers eines mobilen kommunikationsendgerätes zur kompensation des einflusses des dopplereffektes und mobiles kommunikationendgerät WO2007128248A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112006003950T DE112006003950A5 (de) 2006-05-03 2006-05-03 Verfahren zur Frequenzabstimmung eines Senders und eines Empfängers eines mobilen Kommunikationsendgerätes zur Kompensation des Einflusses des Dopplereffektes und mobiles Kommunikationsendgerät
PCT/DE2006/000785 WO2007128248A1 (de) 2006-05-03 2006-05-03 Verfahren zur frequenzabstimmung eines senders und eines empfängers eines mobilen kommunikationsendgerätes zur kompensation des einflusses des dopplereffektes und mobiles kommunikationendgerät

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2006/000785 WO2007128248A1 (de) 2006-05-03 2006-05-03 Verfahren zur frequenzabstimmung eines senders und eines empfängers eines mobilen kommunikationsendgerätes zur kompensation des einflusses des dopplereffektes und mobiles kommunikationendgerät

Publications (1)

Publication Number Publication Date
WO2007128248A1 true WO2007128248A1 (de) 2007-11-15

Family

ID=37603241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2006/000785 WO2007128248A1 (de) 2006-05-03 2006-05-03 Verfahren zur frequenzabstimmung eines senders und eines empfängers eines mobilen kommunikationsendgerätes zur kompensation des einflusses des dopplereffektes und mobiles kommunikationendgerät

Country Status (2)

Country Link
DE (1) DE112006003950A5 (de)
WO (1) WO2007128248A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111224909A (zh) * 2019-11-22 2020-06-02 辰芯科技有限公司 一种频率补偿方法、装置、用户终端和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0337269A2 (de) * 1988-04-14 1989-10-18 ANT Nachrichtentechnik GmbH Verfahren und Anordnung zum Reduzieren von Frequenzablagen beim Mobilfunk über Satellit
WO1998015071A1 (en) * 1996-09-30 1998-04-09 Qualcomm Incorporated Method and apparatus for precorrecting timing and frequency in communication systems
US20040248519A1 (en) * 2003-05-19 2004-12-09 Kari Niemela Data transmission method, system and network element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0337269A2 (de) * 1988-04-14 1989-10-18 ANT Nachrichtentechnik GmbH Verfahren und Anordnung zum Reduzieren von Frequenzablagen beim Mobilfunk über Satellit
WO1998015071A1 (en) * 1996-09-30 1998-04-09 Qualcomm Incorporated Method and apparatus for precorrecting timing and frequency in communication systems
US20040248519A1 (en) * 2003-05-19 2004-12-09 Kari Niemela Data transmission method, system and network element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111224909A (zh) * 2019-11-22 2020-06-02 辰芯科技有限公司 一种频率补偿方法、装置、用户终端和存储介质

Also Published As

Publication number Publication date
DE112006003950A5 (de) 2009-04-09

Similar Documents

Publication Publication Date Title
DE69535573T2 (de) Satellitenkommunikationsadapter für zellulares fernsprechhandgerät
EP1234355B1 (de) Verfahren zum kalibrieren einer elektronisch phasengesteuerten gruppenantenne in funk-kommunikationssystemen
DE60036596T2 (de) Kompensationsschaltung für nichtlineare Verzerrungen, sowie zugehörige Sendevorrichtung und mobiles Kommunikationsgerät
DE69735335T2 (de) Wegnahme des DC-Offsets und Unterdrückung von verfälschten AM-Signalen in einem Direktumwandlungsempfänger
CH662457A5 (de) Empfangsgeraet fuer funkverkehr im zeitmultiplex mit vielfachzugriff.
DE112011103298B4 (de) Verwendung von OFDM zur Korrektur von Verzerrungen im Ultrabreitbandfunk mit Betrieb über flache Millimeter-Wellenkanäle
DE112004001869T5 (de) Synchronisierungs-Burst zur Frequenzversatzkompensation
DE102004017527B4 (de) Transceiverschaltung und Verfahren zur Bereitstellung von Lokaloszillatorsignalen in einer Transceiverschaltung
DE69925596T2 (de) Schnelle synchronisierung in nachrichtenübertragungssystemen
DE69633425T2 (de) Verfahren zur Steuerungssignalerkennung mit Fehlerkalibrierung und Teilnehmereinheit dafür
DE60214193T2 (de) Funkübertragungssystem, funkübertragungseinheit und verfahren zur synchronisation
DE19948799A1 (de) Verfahren und Gerät zur automatischen Frequenzregelungsbereichserweiterung
EP0656702B1 (de) Verfahren und Schaltungsanordnung zum Einfügen von Daten in ein GleichwellenÜbertragungssignal
WO2007128248A1 (de) Verfahren zur frequenzabstimmung eines senders und eines empfängers eines mobilen kommunikationsendgerätes zur kompensation des einflusses des dopplereffektes und mobiles kommunikationendgerät
DE4026426C2 (de) System zur Datenübertragung
EP1516468A2 (de) Empfängeranordnung, insbesondere für den mobilfunk
DE60220292T2 (de) Empfangs- und Sendeleistungsverstärkungsregelung in einem Punkt-zu-Mehrpunkt System
EP1212830B1 (de) Verfahren zum ausregeln eines frequenzoffsets im empfänger einer basisstation eines nachrichtenübertragungssystems
DE10359649A1 (de) Übertragungseinrichtung vom regenerativen Relais-Typ und Kommunikationssystem mit dieser
DE60317657T2 (de) Zugriffsverfahren und umts-zwischenverstärkersystem mit spektralaustausch zwischen umts-wellenfrequenzen
EP2712247B1 (de) Verfahren zur Doppler Frequenzverschiebung Korrektur in einem zellulären Funkkommunikationssystem mit einer Basisstation und einer mobilen Einheit angebracht in einem Beförderungsmittel das sich mit hoher Geschwindigkeit bewegt, insbesondere ein Flugzeug.
EP1226659B1 (de) Verfahren zur synchronisation einer signalübertragung in aufwärtsrichtung in einem funk-kommunikationssystem
EP1294122B1 (de) Schaltungsanordnung für einen Empfänger zum Empfang einzelner Impulsbündel
EP0118710A1 (de) Synchronisiereinrichtung für Nutzsignale eines Gleichwellenfunksystems
DE4227990A1 (de) Funktelefoniesystem mit dem Charakter einer Orts- oder Nebenstellenvermittlungseinrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06722843

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120060039504

Country of ref document: DE

REF Corresponds to

Ref document number: 112006003950

Country of ref document: DE

Date of ref document: 20090409

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06722843

Country of ref document: EP

Kind code of ref document: A1