WO2007128193A1 - A method for transmitting/receiving the control information in ason and the system thereof - Google Patents

A method for transmitting/receiving the control information in ason and the system thereof Download PDF

Info

Publication number
WO2007128193A1
WO2007128193A1 PCT/CN2007/001142 CN2007001142W WO2007128193A1 WO 2007128193 A1 WO2007128193 A1 WO 2007128193A1 CN 2007001142 W CN2007001142 W CN 2007001142W WO 2007128193 A1 WO2007128193 A1 WO 2007128193A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
stm
frame
receiving
byte
Prior art date
Application number
PCT/CN2007/001142
Other languages
French (fr)
Chinese (zh)
Inventor
Feng Huang
Original Assignee
Alcatel Lucent
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent filed Critical Alcatel Lucent
Publication of WO2007128193A1 publication Critical patent/WO2007128193A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/66Arrangements for connecting between networks having differing types of switching systems, e.g. gateways

Definitions

  • the present invention relates to optical transmission technology, and more particularly to a control information transmission/reception method and system thereof in ASON (Automatic Switched Optical Network). Background technique
  • ASON is defined by ITU-T (International Telecommunication Union Telecommunication Standardization Sector) G.8080.
  • OTN Optical Transport Network
  • the biggest difference from traditional OTN is that it is a dynamic network, represented by dynamic allocation of bandwidth and network.
  • OTN Optical Transport Network
  • the realization of this dynamic feature mainly comes from the role of its control plane.
  • the key technologies for constructing the control plane are routing technology, signaling technology, and link management technology.
  • Routing technology performs routing operations and information discovery of network topologies and resources, passes link state information and calculates the best routing path to another node.
  • Draft ITU-T G.7715/Y.1706 defines the establishment of switching in ASON.
  • Connection SC and soft permanent connection SPC path routing function structure and requirements and ASON routing structure, path selection, routing attributes, abstract information and state transition diagram and other functional components, routing messages are transmitted through DCN (data communication network), G The .7712 specifies a possible implementation of the DCN.
  • ASON signaling messages can be in-band Transfer, or it can be an out-of-band transfer.
  • DCC Data Communication Path
  • SDH Synchronous Digital Transmission System
  • SOH Segment overhead
  • Link resource management is used to control channel management and maintenance, connectivity verification of transmission links, and fault isolation/location.
  • link resources in ASON such as fiber links, wavelength links, various STM layer links and VC (virtual container) layer links in SDH, and so on. These links are called SNP (subnet point) links in ASON.
  • SNP subnet point
  • the SNPP link resources are managed by the LRM (Link Resource Manager), that is, the SNP link connection is allocated or released according to the request of the connection controller. But before managing and controlling these SNPP link resources, you first need to find these Link resources and their control entities, this is the automatic discovery technology.
  • ITU-T G.7714 proposes a general, functional framework description of the automatic discovery technology for transport networks, and discusses mechanisms such as layer adjacency discovery, physical medium adjacency discovery, control entity logical adjacency discovery, and service capability exchange, but no It involves the specific implementation mechanism of the discovery process and detailed attribute parameters.
  • the discovery mechanism based on path trace bytes and ECC (Embedded Communication Channel) in different layers in SDH and OTN specified in ITU-T G.7714.1 is to load discovery messages on these path trace bytes (in The SDH uses the Jx byte or the TTI byte in the OTN network, or the physical layer DCC path corresponding to the ECC is transmitted to the neighboring node.
  • ECC embedded Communication Channel
  • the following methods can be used: In the RS (Regeneration Section) layer, the J0 segment trace byte and the regenerative segment DCC (D1-D3) can support the adjacency between the RS segment layer TCP (terminal junction point).
  • RS Regeneration Section
  • D1-D3 regenerative segment DCC
  • the DCC (D4-D12) of the multiplex section can be used to discover the adjacency relationship between the TCPs of the MS segment layer; in the higher-order VC layer, the high-order channel layer J1 trace byte It can be used to find the adjacency relationship between TCPs of the high-order VC layer; at the low-order VC layer, the low-order channel layer J2 trace bytes can be used to find the adjacency relationship between TCPs of the low-order VC layer.
  • the discovery methods that can be used are: In the optical channel transmission unit-k (OTUK) layer, the segment monitoring byte and the general communication channel-O (GCCO) can be used to discover the adjacency between the OTUk layer TCP, in particular The source access point identifier (SAPI) sub-domain in the segment monitoring byte can carry the discovery message; in the optical channel data unit -k (ODUk) layer, the segment monitoring byte and the general communication channel -1 (GCCl It can be used to discover the adjacency relationship between the ODUk layer TCPs, in particular, the source access point identifier (SAPI) sub-domain in the segment monitoring byte can carry the discovery message.
  • ODUk optical channel data unit -k
  • GCCl general communication channel -1
  • Jx bytes may be used for channel monitoring or device connectivity monitoring; on the other hand, Jx
  • the bandwidth of the byte is only 64Kbit/s.
  • the message traffic that is automatically discovered is large, which cannot satisfy the high-bandwidth communication, and the convergence speed is slow.
  • the D1-D3 bytes in the DCC constitute the regenerative segment.
  • DCC, D4-D12 bytes constitute a multiplex section DCC, which may be used for control signaling exchange between terminals. Its total 768 kbit/s data communication channel is still unable to control signaling and link resource management. Meet the needs of high-bandwidth communication in large-scale ASON networks and fast convergence.
  • the invention is to solve the bandwidth problem of control information transmission in ASON, and because of different control letters
  • the problem of compatibility with the original transport network may occur due to the way the information is transmitted. Summary of the invention
  • a control information transmission method in an ASON comprising: al), extracting control information and performing encapsulation; M), mapping the encapsulated control information into an STM-N (synchronous transmission module) frame In the structure R (fixed insertion byte) byte; cl), STM-N frame transmission.
  • STM-N synchronous transmission module
  • control information includes signaling, routing, or link management information.
  • the step a) is performed by using a PPP (Point-to-Point Communication Protocol), LAPS (Link Access Procedure), or GFP (Common Framing Procedure) protocol.
  • PPP Point-to-Point Communication Protocol
  • LAPS Link Access Procedure
  • GFP Common Framing Procedure
  • a method for receiving control information in an ASON includes: a2) receiving an STM-N frame; b2) extracting control information mapped in an R byte thereof in the STM-N frame; c2) Decapsulating and restoring the mapped control information.
  • control information includes signaling, routing, or link management information.
  • the step a2) is performed by using the PPP, LAPS, or GFP protocol.
  • an automatic optical network system includes a transmitting end and a receiving end, wherein: the transmitting end extracts control information and performs corresponding encapsulation, mapping into R bytes in an STM-N frame structure, and performing STM - N frame transmission; the receiving end receives the STM-N frame, extracts the control information mapped in the R byte, and decapsulates and restores the control information;
  • the receiving end further encapsulates the restored control information into an Ethernet signal to implement interworking with the out-of-band DCN control information.
  • control information includes signaling, routing, or link management information.
  • the network unit uses the Ethernet interface to process the Ethernet processing of the control information, which can effectively realize the interconnection and intercommunication between the in-band and other out-of-band control channels (such as DCN network).
  • FIG. 1 is a structural diagram of an ASON system of the present invention
  • FIG. 3 is a schematic diagram of an ASON control information transmission/reception method of the present invention.
  • FIG. 5 shows the STM-N frame structure and its use of R bytes. detailed description
  • control information is a communication channel exchange composed of R bytes of an STM-N frame in a transmission link 12 formed by an optical interface STM-N between an optical network element 11 and an optical network element 13 in an ASON system according to the present invention.
  • Control information may be control signaling 121, link management information 122, or routing information 123, such as auto-discovery messages in link management information 122: Hello, Config, ConfigACK, and the like.
  • the transmitting end - the optical network network element 11 extracts the control information, and performs corresponding encapsulation and mapping into the standard STM-N frame structure of the SDH. Section, performing SDH data frame transmission;
  • Step S21 extracting control information and performing encapsulation.
  • the control information may be signaling control information, routing information, and/or resource management information.
  • the encapsulation method can be point-to-PPP, LAPS. or GFP protocol encapsulation.
  • LAPS protocol encapsulation mode When the LAPS protocol encapsulation mode is adopted: When the upper layer control information comes, a special frame start character is added, and it is judged whether the data has the same identifier. The special characters with the same function, if any, perform special character conversion, add the padding byte, and then perform FCS (frame check) processing and transmit; when using GFP protocol encapsulation mode: This protocol is usually used to encapsulate data information.
  • the GFP frame is composed of a core frame header and a payload area, and encapsulates control information into its payload area and performs load frame check sequence FCS processing and GFP core frame header processing.
  • Step S22 mapping the control information into R bytes in the STM-N frame structure of the SDH digital transmission module.
  • SDH transmission system time division byte interleave multiplexing is used.
  • R byte carries the control information after the above encapsulation processing.
  • Figure 3 is a schematic diagram of the R byte insertion of the 34 Mbit/s multiplexed into the STM-N signal.
  • the 34 Mbit/s signal is first adapted to the corresponding standard container C3 by the code rate adjustment, and then the corresponding POH is added.
  • (Channel overhead) Packed into VC3 the frame structure at this time is 9x85 (row X column)
  • the PTR (pointer) of the section, the information structure at this time is the tributary unit TU3 (the information structure corresponding to the signal of 34 Mbit/s), the frame structure of TU3 is a little broken, and the gap part needs to be added first, usually using the R word Section insertion mode, the information structure after inserting 6 bytes of R bytes is the tributary unit group TUG3, and the three TUG3s are combined into the C4 signal structure by the R byte insertion method, because TUG3 is the information structure of 9 X 86, so 3
  • the information structure of TUG3 combined by byte interleave multiplexing is 9 ⁇ 258 columns of block frame structure and C4 is 9 X 260 block frame structure, so two columns are added in front of the three TUG3 composite structures ( 2x9) R bytes make it the information structure of C4, the rest of the work is C4 multiplexed STM-N go, i.e.
  • Step S23 The STM-N optical interface performs electrical-to-optical conversion and transmission on the multiplexed STM-N data frame.
  • Figure 4 shows the STM-1 frame structure and its R byte.
  • the frame structure consists of three parts: SOH, AU-PTR (Management Unit Pointer), PayLoad (Information Payload).
  • the SOH includes RSOH (regeneration section overhead) and MSOH (multiplex section overhead), RSOH consists of the 1st to 3rd lines of the SOH in the STM-N signal, and the MSOH consists of the 5th to 8th lines of the SOH in the STM-N signal.
  • AU-PTR is located in the 4th line of the STM-N frame, a total of 9 bytes;
  • the POH is loaded as part of the payload with the information code block in the STM-1 frame, which is responsible for the low-speed signal.
  • Channel performance monitoring, management, and control As mentioned earlier, the R bytes in the payload carry the encapsulated control information.
  • the receiving end - the optical network element 13 receives the STM-N data frame of the SDH, extracts the control information mapped in the R byte in the data frame structure, and decapsulates the control information of the restored transmitting end;
  • Step S23' the STM-N optical interface receives the optical signal and performs optical-to-electrical conversion, and outputs an STM-N data frame;
  • Step S22' extracting and restoring the control information mapped in the R byte in the SDH data frame structure; in step S21, decapsulating the control information and performing restoration.
  • the decapsulation method is: determining a special character, determining the starting point of the frame, receiving the information, performing inverse transformation of the special character, removing the padding byte, restoring the control information, and sending it to the upper layer protocol layer for processing. If it is a GFP encapsulation, the decapsulation method is: determining a frame header by using a GFP cyclic CRC delimitation method, and using a length indication field to indicate a frame length, and extracting control information is sent to an upper layer protocol layer for processing.
  • the transmitting end-optical network element 11 carries different control information by using R bytes in the data frame structure, for example, carrying control signaling and automatic discovery message simultaneously, the above step S21 '
  • the carried control information needs to be further differentiated and sent to the corresponding upper layer protocol layer for processing. Since the control information is carried by IP, usually we can distinguish the type of control information carried by the protocol field or TCP/UDP port number of the IP layer, that is, which are control signaling, which are automatic discovery messages, and send Processed to the corresponding upper protocol layer.
  • the upper layer protocol layer can be encapsulated into an Ethernet signal in one step to implement interworking with the Ethernet out-of-band DCN signaling channel. Meet different control channel transmission compatibility.
  • FIG. 5 is a schematic diagram of an optical network unit implementation structure for simply transmitting/receiving control information thereof, including an ASON control unit 51, a link resource management unit 52, a routing unit 53, an Ethernet interface unit 54, and a package processing unit. 55.
  • a frame multiplexing/demultiplexing unit 56 wherein:
  • the ASON control unit 51, the link resource management unit 22, and the routing unit 53 will respectively generate respective control signals (such as control signaling, automatic discovery messages, etc., routing messages) for the optical network unit, and select different control channels.
  • Transmission method including selection of in-band or out-of-band transmission mode, or selection of different in-band transmission modes); and receiving control signals from other optical network units through different control channel transmission methods, and corresponding processing.
  • the processing may be performed by using LAPS protocol encapsulation or GFP protocol, etc.; for the receiving end, it receives control information from other optical network units for reverse decapsulation processing and sends it to the corresponding ASON control unit 51, link resource management Unit 22 or routing unit 53 performs the processing.
  • the encapsulation processing unit 24 needs to enter one after decapsulation processing. Steps distinguish the control information and send it to the corresponding ASON control unit 51, link resource management unit 22 or routing unit 53 for processing.
  • the above control information is carried by IP, usually through the protocol layer of the IP layer or the TCP/UDP port number. To distinguish between the types of control information carried, that is, which are control signaling, which are automatic discovery messages, and which are routing information.
  • the SDH frame multiplexing/demultiplexing unit 56 maps the above encapsulated control information into R bytes in the STM-N frame structure; at the receiving end, it extracts the STM-N frame structure Control information carried in the R byte.
  • the optical network unit further includes an Ethernet interface unit 54, which will come from the ASON control unit 51, the link resource management unit 52, and/or the routing unit.
  • the control information of 53 is encapsulated into an Ethernet signal to implement interworking of the DCN signaling channels outside the Ethernet band.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Communication Control (AREA)
  • Small-Scale Networks (AREA)

Abstract

A method for transmitting/receiving the control information in Automatic Switched Optical Network (ASON) and the system thereof. The method includes: a1), extracting the control information and encapsulating it; b1), mapping the encapsulated control information into the fix insert byte of the STM-N frame structure; c1), transmitting the STM-N (Synchronous Transport Module) frame. Within the method, the control information includes the signaling, route or link manage information. There is an available 1152Kbit/s bandwidth in a standard container C4 path of STM-N according to the present invention, which expands the bandwidth for the control signals effectively such as the ASON signaling or link resource manage, etc.; further, the control signal is handled with the Ethernet interface, which can achieve the interconnection and interworking between the in-band and other out-band control paths (such as DCN network).

Description

一种自动交换光网络中控制信息传送 /接收方法及其系统 技术领域  Control information transmission/reception method and system thereof in automatic switched optical network
本发明涉及光传输技术, 尤其涉及一种 ASON (自动交换光网络) 中控制 信息传送 /接收方法及其系统。 背景技术  The present invention relates to optical transmission technology, and more particularly to a control information transmission/reception method and system thereof in ASON (Automatic Switched Optical Network). Background technique
ASON是由 ITU-T (国际电信联盟电信标准化部门) G.8080所定义的, 它与 传统 OTN (光传送网络)的最大区别在于它是一种动态的网络, 表现在带宽的动 态分配和网络拓扑的自动发现方面, 这种动态特征的实现主要来自于其控制平 面的作用, 构造控制平面的关键技术主要有路由技术、 信令技术、 链路管理技 术等。  ASON is defined by ITU-T (International Telecommunication Union Telecommunication Standardization Sector) G.8080. The biggest difference from traditional OTN (Optical Transport Network) is that it is a dynamic network, represented by dynamic allocation of bandwidth and network. In the automatic discovery of topology, the realization of this dynamic feature mainly comes from the role of its control plane. The key technologies for constructing the control plane are routing technology, signaling technology, and link management technology.
路由技术执行路由操作以及网络拓扑和资源的信息发现,传递链路状态信息 并计算点到另一个节点的最佳路由通路, ITU-T G.7715/Y.1706草案定义了在 ASON中建立交换连接 SC和软永久连接 SPC路径选路功能的结构和要求以及 ASON路由结构, 路径选择、 路由属性、 抽象信息和状态转移图等功能组件, 路 由消息是通过 DCN (数据通信网络)进行传送, G.7712规范了 DCN的一种可 能的实现方式。  Routing technology performs routing operations and information discovery of network topologies and resources, passes link state information and calculates the best routing path to another node. Draft ITU-T G.7715/Y.1706 defines the establishment of switching in ASON. Connection SC and soft permanent connection SPC path routing function structure and requirements and ASON routing structure, path selection, routing attributes, abstract information and state transition diagram and other functional components, routing messages are transmitted through DCN (data communication network), G The .7712 specifies a possible implementation of the DCN.
信令技术用于完成自动交换连接功能、 实现快速的端到端光通路保护监控 和恢复、 快速地建立, 拆除和维护一条跨于全光网络的光路径, ASON 的信令 消息可以是带内传送, 也可以是带外传送。 通常, 它采用基于 DCC (数据通信 通路) , 即 SDH (同步数字传输体系) 帧结构 SOH (段开销) 的 D1-D12字节 的带内控制信令传送技术。  Signaling technology is used to complete the automatic switch connection function, achieve fast end-to-end optical path protection monitoring and recovery, quickly establish, remove and maintain an optical path across the all-optical network, ASON signaling messages can be in-band Transfer, or it can be an out-of-band transfer. Typically, it uses D1-D12 bytes of in-band control signaling based on DCC (Data Communication Path), SDH (Synchronous Digital Transmission System) frame structure SOH (segment overhead).
链路资源管理用于控制信道管理和维护、 传送链路的连通性验证和故障隔 离 /定位等。 由于 ASON中存在多种不同的链路资源, 如光纤链路、 波长链路、 SDH中各种 STM层链路和 VC (虚容器)层链路等等。 这些链路在 ASON中称 为 SNP (子网点)链路, 为了路由协议的可扩展性和路由分集, 多个不同的 SNP 链路可以组合成 SNPP (子网点池)链路, 在 ASON中这些 SNPP链路资源是在 由 LRM (链路资源管理器)来管理的, 即根据连接控制器的请求来分配或释放 SNP链路连接。 但是在管理和控制这些 SNPP链路资源之前, 首先要发现这些 链路资源及其控制实体, 这就是自动发现技术。 Link resource management is used to control channel management and maintenance, connectivity verification of transmission links, and fault isolation/location. There are many different link resources in ASON, such as fiber links, wavelength links, various STM layer links and VC (virtual container) layer links in SDH, and so on. These links are called SNP (subnet point) links in ASON. For routing protocol scalability and route diversity, multiple different SNP links can be combined into SNPP (subnet point pool) links. The SNPP link resources are managed by the LRM (Link Resource Manager), that is, the SNP link connection is allocated or released according to the request of the connection controller. But before managing and controlling these SNPP link resources, you first need to find these Link resources and their control entities, this is the automatic discovery technology.
ITU-T G.7714建议对传送网络的自动发现技术进行了概括性、 功能性的框 架描述, 讨论了层邻接发现、 物理媒质邻接发现、 控制实体逻辑邻接发现和业 务能力交换等机制, 但没有涉及到发现过程的具体实现机制以及详细的属性参 数。 在 ITU-T G.7714.1中规定的 SDH和 OTN中基于路径踪迹字节、 ECC (嵌 入式通信通道) 的各种不同层邻接的发现机制, 是把发现消息加载在这些路径 踪迹字节(在 SDH中使用 Jx字节或 OTN网络中使用 TTI字节)、或 ECC对应 的物理层 DCC通路中传送到邻近节点。  ITU-T G.7714 proposes a general, functional framework description of the automatic discovery technology for transport networks, and discusses mechanisms such as layer adjacency discovery, physical medium adjacency discovery, control entity logical adjacency discovery, and service capability exchange, but no It involves the specific implementation mechanism of the discovery process and detailed attribute parameters. The discovery mechanism based on path trace bytes and ECC (Embedded Communication Channel) in different layers in SDH and OTN specified in ITU-T G.7714.1 is to load discovery messages on these path trace bytes (in The SDH uses the Jx byte or the TTI byte in the OTN network, or the physical layer DCC path corresponding to the ECC is transmitted to the neighboring node.
在 SDH网络中, 可以使用的方式有: 在 RS (再生段) 层, J0段踪迹字节 和再生段的 DCC (D1-D3 )可以支持 RS段层的 TCP (终端联结点)之间的邻接 关系; 在 MS (复用段) 层, 复用段的 DCC (D4-D12 ) 可以用来发现 MS段层 的 TCP之间的邻接关系; 在高阶 VC层, 高阶通道层 J1踪迹字节可用来发现高 阶 VC层的 TCP之间的邻接关系; 在低阶 VC层, 低阶通道层 J2踪迹字节可用 来发现低阶 VC层的 TCP之间的邻接的关系。  In the SDH network, the following methods can be used: In the RS (Regeneration Section) layer, the J0 segment trace byte and the regenerative segment DCC (D1-D3) can support the adjacency between the RS segment layer TCP (terminal junction point). Relationship; At the MS (multiplex section) layer, the DCC (D4-D12) of the multiplex section can be used to discover the adjacency relationship between the TCPs of the MS segment layer; in the higher-order VC layer, the high-order channel layer J1 trace byte It can be used to find the adjacency relationship between TCPs of the high-order VC layer; at the low-order VC layer, the low-order channel layer J2 trace bytes can be used to find the adjacency relationship between TCPs of the low-order VC layer.
在 OTN网络中, 可以使用的发现方法有: 在光信道传输单元 -k(OTUK)层, 段监视字节和通用通信通道 -O(GCCO)可用来发现 OTUk层 TCP之间的邻接关 系,特别地,在段监视字节中的源端接入点标识符 (SAPI)子域可以携带发现消息; 在光信道数据单元 -k(ODUk)层, 段监视字节和通用通信通道 -l(GCCl)可用来发 现 ODUk层 TCP之间的邻接关系, 特别地, 在段监视字节中的源端接入点标识 符 (SAPI)子域可以携带发现消息。  In the OTN network, the discovery methods that can be used are: In the optical channel transmission unit-k (OTUK) layer, the segment monitoring byte and the general communication channel-O (GCCO) can be used to discover the adjacency between the OTUk layer TCP, in particular The source access point identifier (SAPI) sub-domain in the segment monitoring byte can carry the discovery message; in the optical channel data unit -k (ODUk) layer, the segment monitoring byte and the general communication channel -1 (GCCl It can be used to discover the adjacency relationship between the ODUk layer TCPs, in particular, the source access point identifier (SAPI) sub-domain in the segment monitoring byte can carry the discovery message.
但是, 基于 Jx字节的自动发现技术, 和原有的传送网存在兼容性问题, 在 原有的传送网中, Jx字节有可能被用作通道监测或设备联通性监测; 另一方面, Jx字节的带宽只有 64Kbit/s, 在大规模的 ASON网络, 自动发现的消息通信量 大, 其无法满足高带宽的通信, 收敛速度慢。  However, the automatic discovery technology based on Jx byte has compatibility problems with the original transmission network. In the original transmission network, Jx bytes may be used for channel monitoring or device connectivity monitoring; on the other hand, Jx The bandwidth of the byte is only 64Kbit/s. In a large-scale ASON network, the message traffic that is automatically discovered is large, which cannot satisfy the high-bandwidth communication, and the convergence speed is slow.
而基于 ECC的自动发现技术, 如前所述, DCC中 D1-D3字节构成再生段 Based on the ECC-based automatic discovery technology, as mentioned above, the D1-D3 bytes in the DCC constitute the regenerative segment.
DCC, D4-D12字节构成复用段 DCC, 它可能用于终端之间的控制信令交换, 其 总共 768 kbit/s的数据通信通道对于控制信令、 链路资源管理而言, 仍然无法满 足大规模的 ASON网络中高带宽通信, 快速收敛的需要。 DCC, D4-D12 bytes constitute a multiplex section DCC, which may be used for control signaling exchange between terminals. Its total 768 kbit/s data communication channel is still unable to control signaling and link resource management. Meet the needs of high-bandwidth communication in large-scale ASON networks and fast convergence.
本发明是要解决 ASON中控制信息传送的带宽问题、 以及由于不同控制信 息传送方式而可能产生的与原有的传送网兼容性问题。 发明内容 The invention is to solve the bandwidth problem of control information transmission in ASON, and because of different control letters The problem of compatibility with the original transport network may occur due to the way the information is transmitted. Summary of the invention
根据本发明的一个方面, 一种 ASON 中控制信息传送方法, 包括: al ) 、 提取控制信息并进行封装; M ) 、 将所述封装后的控制信息映射进 STM-N (同 步传送模块) 帧结构中 R (固定插入字节) 字节; cl)、 进行 STM-N帧发送。  According to an aspect of the present invention, a control information transmission method in an ASON, comprising: al), extracting control information and performing encapsulation; M), mapping the encapsulated control information into an STM-N (synchronous transmission module) frame In the structure R (fixed insertion byte) byte; cl), STM-N frame transmission.
上述传送方法中, 控制信息包括信令、 路由或链路管理信息。  In the above transmission method, the control information includes signaling, routing, or link management information.
上述传送方法中, 步骤 al)所述封装使用 PPP (点到点通信协议) 、 LAPS (链路接入规程) 、 或 GFP (通用成帧规程) 协议方式进行处理。  In the above transmission method, the step a) is performed by using a PPP (Point-to-Point Communication Protocol), LAPS (Link Access Procedure), or GFP (Common Framing Procedure) protocol.
根据本发明的另外一个方面,一种 ASON中控制信息接收方法,包括: a2)、 接收 STM-N帧; b2) 、 提取 STM-N帧中其 R字节中所映射的控制信息; c2)、 对所映射的控制信息解封装并进行还原。  According to another aspect of the present invention, a method for receiving control information in an ASON includes: a2) receiving an STM-N frame; b2) extracting control information mapped in an R byte thereof in the STM-N frame; c2) Decapsulating and restoring the mapped control information.
上述接收方法中, 控制信息包括信令、 路由或链路管理信息。  In the above receiving method, the control information includes signaling, routing, or link management information.
上述接收方法中, 步骤 a2)所述封装使用 PPP、 LAPS, 或 GFP协议方式进 行处理。  In the above receiving method, the step a2) is performed by using the PPP, LAPS, or GFP protocol.
根据本发明的另外一个方面, 一种自动光网络系统, 包括发送端、 接收端, 其中: 所述发送端提取控制信息并进行相应封装、 映射进 STM-N帧结构中 R字 节, 进行 STM-N帧发送; 所述接收端接收 STM-N帧、 提取 R字节中所映射的 控制信息, 并解封装还原所述控制信息;  According to another aspect of the present invention, an automatic optical network system includes a transmitting end and a receiving end, wherein: the transmitting end extracts control information and performs corresponding encapsulation, mapping into R bytes in an STM-N frame structure, and performing STM - N frame transmission; the receiving end receives the STM-N frame, extracts the control information mapped in the R byte, and decapsulates and restores the control information;
上述自动光网络系统中,接收端进一步将还原后的控制信息封装成以太网信 号, 以实现与带外的 DCN控制信息互通。  In the above automatic optical network system, the receiving end further encapsulates the restored control information into an Ethernet signal to implement interworking with the out-of-band DCN control information.
上述自动光网络系统中, 控制信息包括信令、 路由或链路管理信息。  In the above automatic optical network system, the control information includes signaling, routing, or link management information.
根据本发明思想, 使用 STM-N帧结构中 R字节来传送 ASON信令、 路由、 或链路资源管理等控制信息, 由于 R字节在 STM-N帧结构中没被使用, 不存在 和原有网络兼容性问题, 在 STM-N的一个标准容器 C4中即可利用 2x9= 18个 字节, 共计 1152Kbit/s带宽, 从而有效地扩展了控制信息传送方式和可用带宽; 进一步地, 光网络单元采用以太网接口处理对控制信息进行以太网处理, 可以 有效地实现带内和其他带外控制通道 (例如 DCN网络) 互连互通。 附图说明 According to the inventive concept, R bytes in the STM-N frame structure are used to transmit control information such as ASON signaling, routing, or link resource management. Since the R bytes are not used in the STM-N frame structure, there is no and The original network compatibility problem, 2x9=18 bytes in a standard container C4 of STM-N, a total of 1152 Kbit/s bandwidth, thus effectively expanding the control information transmission mode and available bandwidth; further, light The network unit uses the Ethernet interface to process the Ethernet processing of the control information, which can effectively realize the interconnection and intercommunication between the in-band and other out-of-band control channels (such as DCN network). DRAWINGS
图 1是本发明 ASON系统结构图;  1 is a structural diagram of an ASON system of the present invention;
图 2是本发明 ASON中控制信息发送 /接收方法;  2 is a control information transmitting/receiving method in the ASON of the present invention;
图 3是本发明 ASON控制信息传送 /接收方法示意图;  3 is a schematic diagram of an ASON control information transmission/reception method of the present invention;
图 4是 SDH帧复用过程中 R字节插入示意图;  4 is a schematic diagram of R byte insertion in an SDH frame multiplexing process;
图 5是 STM-N帧结构及其 R字节使用。 具体实施方式  Figure 5 shows the STM-N frame structure and its use of R bytes. detailed description
下面结合附图, 对本发明的优选实施方式进行详细的说明。  DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
图 1是本发明 ASON系统中, 光网络网元 11与光网络网元 13之间通过其 光接口 STM-N所构成的传输链路 12中 STM-N帧的 R字节组成的通信信道交 换控制信息。这里控制信息可以是控制信令 121、链路管理信息 122或路由信息 123, 例如对链路管理信息 122中的自动发现消息: Hello、 Config、 ConfigACK 等消息。  1 is a communication channel exchange composed of R bytes of an STM-N frame in a transmission link 12 formed by an optical interface STM-N between an optical network element 11 and an optical network element 13 in an ASON system according to the present invention. Control information. Here, the control information may be control signaling 121, link management information 122, or routing information 123, such as auto-discovery messages in link management information 122: Hello, Config, ConfigACK, and the like.
下面, 结合图 2对 ASON系统中控制信息发送 /接收方法进一步进行说明: 发送端- -光网络网元 11, 提取控制信息并进行相应封装、 映射进 SDH的标 准 STM-N帧结构中 R字节, 进行 SDH数据帧发送;  Next, the control information transmission/reception method in the ASON system will be further described with reference to FIG. 2: The transmitting end - the optical network network element 11, extracts the control information, and performs corresponding encapsulation and mapping into the standard STM-N frame structure of the SDH. Section, performing SDH data frame transmission;
步骤 S21, 提取控制信息并进行封装。该控制信息可以是信令控制信息、路 由信息、 和 /或资源管理信息。 其封装的方式可以采用点到 PPP、 LAPS. 或 GFP 协议封装方式, 当采用 LAPS 协议封装方式: 上层控制信息来到时, 加上特殊 的帧起始字符, 并判断数据中是否有同起标识作用的特殊字符一样的字符, 如 果有, 进行特殊字符变换, 加上填充字节后, 进行 FCS (帧校验) 处理后进行 传送; 当采用 GFP协议封装方式: 该协议通常用于封装数据信息, GFP帧由核 心帧头和净荷区构成,将控制信息封装进入其净荷区并进行负荷帧校验序列 FCS 处理、 GFP核心帧头处理。  Step S21, extracting control information and performing encapsulation. The control information may be signaling control information, routing information, and/or resource management information. The encapsulation method can be point-to-PPP, LAPS. or GFP protocol encapsulation. When the LAPS protocol encapsulation mode is adopted: When the upper layer control information comes, a special frame start character is added, and it is judged whether the data has the same identifier. The special characters with the same function, if any, perform special character conversion, add the padding byte, and then perform FCS (frame check) processing and transmit; when using GFP protocol encapsulation mode: This protocol is usually used to encapsulate data information. The GFP frame is composed of a core frame header and a payload area, and encapsulates control information into its payload area and performs load frame check sequence FCS processing and GFP core frame header processing.
步骤 S22, 将所述控制信息映射进 SDH的数字传送模块 STM-N帧结构中 R 字节。 通常, 在 SDH传输体制中, 采用了时分字节间插复用, 在复用过程中为 了形成规则的 STM-N帧结构, 需要添加多次插入 R字节, R字节属于无用的字 节, 在 STM-N帧结构的传送过程中,没有任何用处, 这里, 我们使用 SDH帧中 R字节承载上述封装处理后的控制信息。图 3是 34Mbit/s复用进 STM-N信号中 R字节插入示意图,首先, 34Mbit/s的信号先经过码速调整将其适配到相应的标准 容器 C3 中, 然后加上相应的 POH (通道开销) 打包成 VC3 ,此时的帧结构是 9x85(行 X列)为了便于接收端定位 VC3、 以便能将它从高速信号中直接拆离出 来, 在 VC3的帧上加了 3个字节的 PTR (指针) , 此时的信息结构是支路单元 TU3 (与 34Mbit/s的信号相应的信息结构) , TU3的帧结构有点残缺, 需要先 将其缺口部分补上, 通常采用 R字节插入方式, 插入 6个字节的 R字节后的信 息结构为支路单元组 TUG3 ,三个 TUG3通过 R字节插入方式复合成 C4信号结 构, 因为 TUG3是 9 X 86的信息结构所以 3个 TUG3通过字节间插复用方式复 合后的信息结构是 9 X 258列的块状帧结构而 C4是 9 X 260的块状帧结构,于是 在 3 个 TUG3的合成结构前面加两列 (2x9) R字节使其成为 C4的信息结构, 剩下的工作就是将 C4 复用到 STM-N 中去了, 即 C4 VC4^ AU-4 AUG STM-N。 如此, 在 34M数字信号复用过程中, 在 STM-N的 C4中有 2x9 个 R字节, TUG3中有 6个 R字节; 如果仅仅利用 C4的 2x9个 R字节承载封 装处理后的控制信息, 则利用该方式的控制通道带宽将为 1152Kbit/s。 Step S22, mapping the control information into R bytes in the STM-N frame structure of the SDH digital transmission module. Generally, in the SDH transmission system, time division byte interleave multiplexing is used. In order to form a regular STM-N frame structure in the multiplexing process, it is necessary to add multiple insertions of R bytes, and R bytes belong to useless bytes. , in the transmission process of the STM-N frame structure, there is no use, here, we use SDH frame The R byte carries the control information after the above encapsulation processing. Figure 3 is a schematic diagram of the R byte insertion of the 34 Mbit/s multiplexed into the STM-N signal. First, the 34 Mbit/s signal is first adapted to the corresponding standard container C3 by the code rate adjustment, and then the corresponding POH is added. (Channel overhead) Packed into VC3, the frame structure at this time is 9x85 (row X column) In order to facilitate the receiver to locate VC3, so that it can be directly detached from the high-speed signal, add 3 words on the VC3 frame. The PTR (pointer) of the section, the information structure at this time is the tributary unit TU3 (the information structure corresponding to the signal of 34 Mbit/s), the frame structure of TU3 is a little broken, and the gap part needs to be added first, usually using the R word Section insertion mode, the information structure after inserting 6 bytes of R bytes is the tributary unit group TUG3, and the three TUG3s are combined into the C4 signal structure by the R byte insertion method, because TUG3 is the information structure of 9 X 86, so 3 The information structure of TUG3 combined by byte interleave multiplexing is 9×258 columns of block frame structure and C4 is 9 X 260 block frame structure, so two columns are added in front of the three TUG3 composite structures ( 2x9) R bytes make it the information structure of C4, the rest of the work is C4 multiplexed STM-N go, i.e. C4 VC4 ^ AU-4 AUG STM-N. Thus, in the 34M digital signal multiplexing process, there are 2x9 R bytes in C4 of STM-N and 6 R bytes in TUG3; if only 2x9 R bytes of C4 are used to carry the control after encapsulation processing For information, the control channel bandwidth using this method will be 1152 Kbit/s.
步骤 S23, STM-N光接口对复用形成的 STM-N数据帧进行电 -光转换并发 送。 图 4是 STM-1 帧结构及其 R字节使用, 其帧结构由三部分组成: SOH、 AU— PTR (管理单元指针) 、 PayLoad (信息净负荷) 。 SOH包括 RSOH (再生 段开销)和 MSOH (复用段开销), RSOH由 STM-N信号中 SOH的第 1到第 3 行组成, MSOH由 STM-N信号中 SOH的第 5到第 8行组成; AU-PTR位于 STM-N 帧中第 4行, 共 9个字节; 信息净负荷中, POH作为净负荷的一部分与信息码 块一起装载在 STM-1帧中,它负责对低速信号进行通道性能监视、管理和控制, 如前所述, 净负荷中的 R字节承载封装处理后的控制信息。  Step S23: The STM-N optical interface performs electrical-to-optical conversion and transmission on the multiplexed STM-N data frame. Figure 4 shows the STM-1 frame structure and its R byte. The frame structure consists of three parts: SOH, AU-PTR (Management Unit Pointer), PayLoad (Information Payload). The SOH includes RSOH (regeneration section overhead) and MSOH (multiplex section overhead), RSOH consists of the 1st to 3rd lines of the SOH in the STM-N signal, and the MSOH consists of the 5th to 8th lines of the SOH in the STM-N signal. ; AU-PTR is located in the 4th line of the STM-N frame, a total of 9 bytes; In the information payload, the POH is loaded as part of the payload with the information code block in the STM-1 frame, which is responsible for the low-speed signal. Channel performance monitoring, management, and control. As mentioned earlier, the R bytes in the payload carry the encapsulated control information.
接收端- -光网络网元 13接收 SDH的 STM-N数据帧, 提取数据帧结构中 R 字节中所映射的控制信息, 并解封装还原发送端的控制信息;  The receiving end - the optical network element 13 receives the STM-N data frame of the SDH, extracts the control information mapped in the R byte in the data frame structure, and decapsulates the control information of the restored transmitting end;
步骤 S23 ' , STM-N光接口接收光信号并进行光-电转换, 输出 STM-N数 据帧;  Step S23', the STM-N optical interface receives the optical signal and performs optical-to-electrical conversion, and outputs an STM-N data frame;
步骤 S22' , 提取并还原 SDH数据帧结构中 R字节中所映射的控制信息; 步骤 S21, , 对所述控制信息进行解封装并进行还原。 以 LAPD协议封装方 式而言, 其解封装方式为: 判断特殊字符, 确定帧的起点, 接收信息, 并进行 特殊字符反变换, 去除填充字节, 还原控制信息, 送入上层协议层进行处理。 如果是 GFP封装, 其解封装方式为: 利用 GFP循环 CRC定界的方法确定帧头, 并利用长度指示字段指示帧长度, 提取控制信息送入上层协议层进行处理。 Step S22', extracting and restoring the control information mapped in the R byte in the SDH data frame structure; in step S21, decapsulating the control information and performing restoration. Packaged by LAPD protocol In the formula, the decapsulation method is: determining a special character, determining the starting point of the frame, receiving the information, performing inverse transformation of the special character, removing the padding byte, restoring the control information, and sending it to the upper layer protocol layer for processing. If it is a GFP encapsulation, the decapsulation method is: determining a frame header by using a GFP cyclic CRC delimitation method, and using a length indication field to indicate a frame length, and extracting control information is sent to an upper layer protocol layer for processing.
值得说明的是,根据本发明思想,如果发送端 -光网络网元 11使用数据帧结 构中 R字节对不同的控制信息进行承载, 例如同时承载控制信令和自动发现消 息,上述步骤 S21 '需要进一步对所承载的控制信息进行区分并送往相应的上层 协议层进行处理。 由于控制信息通过 IP来承载的,通常我们可以通过 IP层的协 议字段或 TCP/UDP端口号来对所承载的控制信息类型进行区分, 即哪些是控制 信令、 哪些是自动发现消息, 并送往相应的上层协议层进行处理。  It should be noted that, according to the inventive concept, if the transmitting end-optical network element 11 carries different control information by using R bytes in the data frame structure, for example, carrying control signaling and automatic discovery message simultaneously, the above step S21 ' The carried control information needs to be further differentiated and sent to the corresponding upper layer protocol layer for processing. Since the control information is carried by IP, usually we can distinguish the type of control information carried by the protocol field or TCP/UDP port number of the IP layer, that is, which are control signaling, which are automatic discovery messages, and send Processed to the corresponding upper protocol layer.
为了实现与其他带外控制信息互连互通, 对解封装后的远端的控制信息, 其上层协议层可以 一步将其封装成以太网信号, 以实现与以太网带外 DCN信 令通道互通, 满足不同控制通道传送兼容性。  In order to achieve interworking with other out-of-band control information, the upper layer protocol layer can be encapsulated into an Ethernet signal in one step to implement interworking with the Ethernet out-of-band DCN signaling channel. Meet different control channel transmission compatibility.
图 5进一步通过光网络单元实施结构示意图对其控制信息的发送 /接收做简 单地说明, 它包括 ASON控制单元 51、 链路资源管理单元 52、 路由单元 53、 以太网接口单元 54、 封装处理单元 55、 帧复用 /解复用单元 56, 其中:  FIG. 5 is a schematic diagram of an optical network unit implementation structure for simply transmitting/receiving control information thereof, including an ASON control unit 51, a link resource management unit 52, a routing unit 53, an Ethernet interface unit 54, and a package processing unit. 55. A frame multiplexing/demultiplexing unit 56, wherein:
ASON控制单元 51、 链路资源管理单元 22、 路由单元 53将分别用于该光 网络单元的其相应控制信号 (例如控制信令、 自动发现消息等、 路由消息) 的 生成、 选择不同的控制信道传送方式 (包括对带内或带外传送方式的选择、 或 不同带内传送方式的选择) ; 以及通过不同控制信道传送方式接收来自其它光 网络单元的控制信号、 及相应处理。  The ASON control unit 51, the link resource management unit 22, and the routing unit 53 will respectively generate respective control signals (such as control signaling, automatic discovery messages, etc., routing messages) for the optical network unit, and select different control channels. Transmission method (including selection of in-band or out-of-band transmission mode, or selection of different in-band transmission modes); and receiving control signals from other optical network units through different control channel transmission methods, and corresponding processing.
封装处理单元 24,对发送端而言,它将来自上层的控制信息进行封装处理, 所述控制信息可以来自 ASON控制单元 51、链路资源管理单元 22、或路由单元 53以及它们任何组合; 封装处理可以利用 LAPS协议封装或 GFP协议等进行封 装处理; 对接收端而言, 它接收来自其它光网络单元的控制信息进行反向解封 装处理并送往相应的 ASON控制单元 51、 链路资源管理单元 22或路由单元 53 进行处理。  The encapsulation processing unit 24, for the transmitting end, encapsulates the control information from the upper layer, and the control information may be from the ASON control unit 51, the link resource management unit 22, or the routing unit 53 and any combination thereof; The processing may be performed by using LAPS protocol encapsulation or GFP protocol, etc.; for the receiving end, it receives control information from other optical network units for reverse decapsulation processing and sends it to the corresponding ASON control unit 51, link resource management Unit 22 or routing unit 53 performs the processing.
值得说明的是, 如果接收控制通道对不同的控制信息进行承载, 例如同时 承载控制信令和自动发现消息、封装处理单元 24在解封装处理完毕后需要进一 步区分控制信息并送往相应的 ASON控制单元 51、 链路资源管理单元 22或路 由单元 53进行处理, 上述控制信息通过 IP来承载的, 通常可以通过 IP层的协 议字段或 TCP/UDP端口号来对所承载的控制信息类型进行区分, 即哪些是控制 信令、 哪些是自动发现消息、 哪些是路由信息。 It should be noted that, if the receiving control channel carries different control information, for example, carrying control signaling and automatic discovery messages, the encapsulation processing unit 24 needs to enter one after decapsulation processing. Steps distinguish the control information and send it to the corresponding ASON control unit 51, link resource management unit 22 or routing unit 53 for processing. The above control information is carried by IP, usually through the protocol layer of the IP layer or the TCP/UDP port number. To distinguish between the types of control information carried, that is, which are control signaling, which are automatic discovery messages, and which are routing information.
SDH帧复用 /解复用单元 56,在发送端,它将上述封装处理后的控制信息映 射进 STM-N帧结构中的 R字节; 在接收端, 它提取 STM-N帧结构中的 R字 节中所承载的控制信息。  The SDH frame multiplexing/demultiplexing unit 56, at the transmitting end, maps the above encapsulated control information into R bytes in the STM-N frame structure; at the receiving end, it extracts the STM-N frame structure Control information carried in the R byte.
为了实现与其他带外控制信息互连互通, 光网络单元进一步包括以太网接 口单元 54, 将来自 ASON控制单元 51、 链路资源管理单元 52、 和 /或路由单元 In order to achieve interworking with other out-of-band control information, the optical network unit further includes an Ethernet interface unit 54, which will come from the ASON control unit 51, the link resource management unit 52, and/or the routing unit.
53的控制信息封装成以太网信号, 以实现以太网带外的 DCN信令通道互通。 The control information of 53 is encapsulated into an Ethernet signal to implement interworking of the DCN signaling channels outside the Ethernet band.
尽管上述说明为本发明提供了一些实施例, 并非用来限定本发明的保护范 围, 本技术领域的专业人员可以在不脱离本发明的范围和精神的前提下, 对实 施例进行各种修改, 这种修改均属于本发明的范围内。  While the foregoing is a description of the embodiments of the present invention, it is not intended to limit the scope of the invention, and various modifications may be made to the embodiments without departing from the scope and spirit of the invention. Such modifications are all within the scope of the invention.

Claims

权利要求 Rights request
1、 一种自动光网络系统中控制信息传送方法, 包括- al ) 、 提取控制信息并进行封装; 1. A method for controlling information transmission in an automatic optical network system, comprising -al), extracting control information and encapsulating;
M ) 、 将所述封装后的控制信息映射进 STM-N (同步传送模块) 帧结构中 M), mapping the encapsulated control information into an STM-N (synchronous transfer module) frame structure
R字节 (固定插入字节) ; R byte (fixed insertion byte);
cl)、 进行 STM-N帧发送。  Cl), perform STM-N frame transmission.
2、 如权利要求 1所述的方法, 其特征在于所述控制信息包括信令、 路由或 链路管理信息。  2. The method of claim 1 wherein the control information comprises signaling, routing or link management information.
3, 如权利要求 1或 2所述的方法, 其特征在于所述步骤 al)所述封装使用 3. The method of claim 1 or 2, wherein said step a) said using said package
PPP (点到点通信协议) 、 LAPS (链路接入规程协议) 、 或 GFP (通用成帧规 程) 协议方式进行处理。 PPP (Point-to-Point Communication Protocol), LAPS (Link Access Procedure Protocol), or GFP (Common Framing Procedure) protocol mode.
4、 一种自动光网络系统中控制信息接收方法, 包括:  4. A method for receiving control information in an automatic optical network system, comprising:
a2) 、 接收 STM-N帧;  A2), receiving an STM-N frame;
b2) 、 提取 STM-N帧中其 R字节中所映射的控制信息; B2) extracting control information mapped in its R byte in the STM-N frame;
)、 对所映射的控制信息解封装并进行还原。  ), decapsulating and restoring the mapped control information.
5、 如权利要求 4所述的方法, 其特征在于所述控制信息包括信令、 路由或 链路管理信息。  5. The method of claim 4 wherein the control information comprises signaling, routing or link management information.
6、如权利要求 4或 5所述的方法,其特征在于所述步骤 a2)所述解封装使用 PPP、 LAPS, 或 GFP协议方式进行反向处理。  The method according to claim 4 or 5, characterized in that said step a2) said decapsulating is reverse processed using PPP, LAPS, or GFP protocol.
7、 一种自动光网络系统, 包括发送端、 接收端, 其特征在于:  7. An automatic optical network system, comprising: a transmitting end and a receiving end, wherein:
所述发送端提取控制信息并进行相应封装、映射进 STM-N帧结构中 R字节, 进行 STM-N帧发送;  The transmitting end extracts control information and performs corresponding encapsulation and mapping into R bytes in the STM-N frame structure to perform STM-N frame transmission;
所述接收端接收 STM-N帧、 提取 R字节中所映射的控制信息, 并解封装还 原所述控制信息;  Receiving, by the receiving end, an STM-N frame, extracting control information mapped in the R byte, and decapsulating the control information;
8、 如权利要求 7所述的自动光网络系统, 其特征在于所述接收端进一步将 还原后的控制信息封装成以太网信号, 以实现与带外的 DCN (数据通信网络) 控制信息互通。  8. The automatic optical network system according to claim 7, wherein the receiving end further encapsulates the restored control information into an Ethernet signal to implement interworking with the out-of-band DCN (data communication network) control information.
9、 如权利要求 7或 8所述的自动光网络系统, 其特征在于所述发送端、 接 收端控制信息包括信令、 路由或链路管理信息 The automatic optical network system according to claim 7 or 8, wherein the transmitting end and the connecting end are connected The receiving control information includes signaling, routing or link management information.
PCT/CN2007/001142 2006-04-30 2007-04-09 A method for transmitting/receiving the control information in ason and the system thereof WO2007128193A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2006100263021A CN101064565B (en) 2006-04-30 2006-04-30 Method for controlling information transmission/reception in automatic exchange optical network and its system
CN200610026302.1 2006-04-30

Publications (1)

Publication Number Publication Date
WO2007128193A1 true WO2007128193A1 (en) 2007-11-15

Family

ID=38667413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/001142 WO2007128193A1 (en) 2006-04-30 2007-04-09 A method for transmitting/receiving the control information in ason and the system thereof

Country Status (2)

Country Link
CN (1) CN101064565B (en)
WO (1) WO2007128193A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5136132B2 (en) * 2008-03-17 2013-02-06 日本電気株式会社 Optical transmission apparatus, optical transmission system, apparatus control method, and apparatus program
CN102404153A (en) * 2011-11-30 2012-04-04 武汉烽火网络有限责任公司 Method and device for realizing SDH management network based on DCN and software exchange
CN113300876B (en) 2016-12-26 2022-09-02 华为技术有限公司 DCN message processing method, network equipment and network system
CN107396214B (en) * 2017-07-31 2023-08-18 广东中云海科技有限公司 128 x 128 path broadband data signal real-time exchange system and exchange method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603776B1 (en) * 1999-04-05 2003-08-05 Lucent Technologies, Inc. & Pmc-Sierra, Inc. System for efficient broadband data payload conversion
CN1604545A (en) * 2003-09-29 2005-04-06 上海贝尔阿尔卡特股份有限公司 Multi-service transmitting method, node device and multi-service transmitting platform
CN1625858A (en) * 2002-01-31 2005-06-08 马科尼通讯有限公司 Communications system
CN1758582A (en) * 2004-10-09 2006-04-12 华为技术有限公司 Method and system for realizing service cross

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603776B1 (en) * 1999-04-05 2003-08-05 Lucent Technologies, Inc. & Pmc-Sierra, Inc. System for efficient broadband data payload conversion
CN1625858A (en) * 2002-01-31 2005-06-08 马科尼通讯有限公司 Communications system
CN1604545A (en) * 2003-09-29 2005-04-06 上海贝尔阿尔卡特股份有限公司 Multi-service transmitting method, node device and multi-service transmitting platform
CN1758582A (en) * 2004-10-09 2006-04-12 华为技术有限公司 Method and system for realizing service cross

Also Published As

Publication number Publication date
CN101064565B (en) 2010-12-08
CN101064565A (en) 2007-10-31

Similar Documents

Publication Publication Date Title
US8259733B2 (en) Systems and methods for rapid optical transport network circuit provisioning
US7606886B1 (en) Method and system for providing operations, administration, and maintenance capabilities in packet over optics networks
US7352758B2 (en) Dynamic bandwidth management using signaling protocol and virtual concatenation
CN101453667B (en) Digital cross-connect
JP5883509B2 (en) Network elements for switching time division multiplexed signals
JP5504374B2 (en) End-to-end service construction method, system, and optical transmission network
WO2006026913A1 (en) A method and system for implementing a service in the transport layer of an ngn network
US20030189925A1 (en) Transparent flexible concatenation
WO2004036836A1 (en) A method of transmitting data service on synchronous digital network
CN100561962C (en) Realize the method and system that network connection service is set up based on directory service
JP2002198994A (en) Method and device for gfp frame transfer
WO2005071869A1 (en) A method, equipment and system for optical communication
WO2009021376A1 (en) Ethernet device and ethernet affair processing method based on the sdh
WO2009074002A1 (en) A device and method for implementing a channel of signaling communication network and management communication network
CN101160907A (en) Internet connection service establishing method and apparatus, automatic exchange optical network
CN101394310A (en) Apparatus and method for constructing management communication network and signaling communication network
WO2017181675A1 (en) Method, device and system for data processing in ethernet
WO2007128193A1 (en) A method for transmitting/receiving the control information in ason and the system thereof
Bonenfant et al. Framing techniques for IP over fiber
WO2011116594A1 (en) Signaling control method and system for service establishment based on g.709
WO2011017863A1 (en) Protection control method and apparatus for shared ring of optical data unit
EP2093916B1 (en) Optical transport hierarchy gateway interface
WO2007076700A1 (en) A multiple service separated fiber synchronization digital transmission network transmission device and transmission method
Zhu et al. Ethernet-over-SONET (EoS) over WDM in optical wide-area networks (WANs): benefits and challenges
JP2005198293A (en) Ethernet over-sonet expansion apparatus for providing one to multi service

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07720715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07720715

Country of ref document: EP

Kind code of ref document: A1