WO2009021376A1 - Ethernet device and ethernet affair processing method based on the sdh - Google Patents

Ethernet device and ethernet affair processing method based on the sdh Download PDF

Info

Publication number
WO2009021376A1
WO2009021376A1 PCT/CN2007/003935 CN2007003935W WO2009021376A1 WO 2009021376 A1 WO2009021376 A1 WO 2009021376A1 CN 2007003935 W CN2007003935 W CN 2007003935W WO 2009021376 A1 WO2009021376 A1 WO 2009021376A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing unit
ethernet
processing
data
module
Prior art date
Application number
PCT/CN2007/003935
Other languages
French (fr)
Chinese (zh)
Inventor
Chunlai Cui
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Publication of WO2009021376A1 publication Critical patent/WO2009021376A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1611Synchronous digital hierarchy [SDH] or SONET
    • H04J3/1617Synchronous digital hierarchy [SDH] or SONET carrying packets or ATM cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0073Services, e.g. multimedia, GOS, QOS
    • H04J2203/0082Interaction of SDH with non-ATM protocols
    • H04J2203/0085Support of Ethernet

Definitions

  • Ethernet device based on the same digital series and its Ethernet service processing method
  • the present invention relates to an Ethernet device based on a synchronous digital series and an Ethernet service processing method. .
  • the SDH-based MSTP functional model block diagram proposed by the People's Republic of China communication industry standard YD/T5119-2005 is shown in Figure 1.
  • PDH Quasi-Synchronous Digital Hierarchy
  • the interface is mapped to the VC (Virtual Container); the ATM (Asynchronous Transfer Mode) service is mapped into the VC container after being processed by the ATM interface and the ATM layer; the Ethernet service can be switched through the Layer 2 switch or pass through the RPR (Resilient Packet Ring) MAC ( Medium access control) layer processing or MPLS (multi-protocol label switching) processing or pass-through, then select one of HDLC (Advanced Data Link Control) / LAPS (Link Access Procedure) / GFP (General Framing Procedure) The format is encapsulated and finally mapped into the VC container.
  • RPR Resilient Packet Ring
  • MPLS multi-protocol label switching
  • all VC containers can be sent from the STM-N (Synchronous Transport Module Level N) interface to the SDH network after being processed by cross-connection and segment overhead. on. It can also be processed in the opposite direction to receive various types of services from the SDH network.
  • STM-N Serial Transport Module Level N
  • Ethernet service can be encapsulated or directly through Layer 2 switching or pass-through, and then encapsulated and mapped in one of the HDLC/LAPS/GFP encapsulation formats.
  • segment overhead processing complex It is processed by segment overhead and regenerative segment overhead
  • STM-N port to the SDH network. It can also be processed in the opposite direction to receive Ethernet traffic from the SDH network.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and propose an EOS device and an Ethernet service processing method that can improve the S efficiency of the 10G Ethernet service.
  • the present invention provides an Ethernet device based on a synchronous digital series, comprising an Ethernet service processing unit, a synchronous digital series group processing unit, and a cross-connect processing unit; wherein: the Ethernet service processing unit It is used for performing physical layer processing and mediation access control layer processing on the received 10G Ethernet service data, and encoding and processing the processed data and outputting the virtual container;
  • the synchronous digital series group processing unit is configured to receive, by the cross-connect processing unit, data that is mapped into the SDH by the 10G Ethernet service output by the Ethernet service processing unit, and perform multiplexing section overhead processing and regeneration section on the data.
  • the overhead is processed and sent to the synchronous digital series network.
  • the Ethernet service processing unit includes: an Ethernet interface, an encoding module, and a virtual container mapping module;
  • the synchronous digital series group processing unit includes: a multiplexing segment overhead processing module, a regeneration segment overhead processing module, and an STM -64 interface;
  • the Ethernet interface is configured to receive the 10G Ethernet service data, and perform the physical layer processing and the medium access control layer processing on the output;
  • the encoding module is configured to encode and output 10G Ethernet service data output by the Ethernet interface;
  • the first virtual container mapping module is configured to map the encoded 10G Ethernet service data to a cascaded virtual container and output the same;
  • the multiplex section overhead processing module and the regenerator section overhead processing module are configured to perform multiplex section overhead processing on data that is mapped into the SDH by the 10G Ethernet service received by the cross-connection processing unit from the Ethernet service processing unit. After the regeneration segment overhead processing, the STM-64 interface is sent to the synchronous digital series network.
  • the encoding module performs 64b/66b encoding on the 10G Ethernet service data;
  • the cascaded virtual container is a VC-4-64C virtual container.
  • Ethernet service processing unit is further configured to receive 10/100/1000 M Ethernet service data; the Ethernet service processing unit further includes: a package module, a second virtual container mapping module, a first backplane interface; and a synchronous digital series
  • the group processing unit further includes a second backplane interface, an STM-N interface, where: the encapsulating module is configured to perform 10/100/1000 M Ethernet service data processed by the physical layer processing and the interface access control layer.
  • Output after GFP/HDLC/LAPS package
  • the second virtual container mapping module is configured to map the 10/100/1000 M Ethernet service data output by the encapsulating module to the virtual container VC12, VC3, or VC4, and output the same;
  • the first backplane interface is configured to output data output by the second virtual container mapping module to the second backplane interface in the synchronous digital series group processing unit through the cross connection processing unit;
  • the processing unit transmits the 10/100/1000 M Ethernet service data received from the second backplane interface and processed through the multiplex section overhead processing and the regenerator section overhead to the synchronous digital series network through the STM-N interface.
  • the first virtual container mapping module outputs the 10G Ethernet service data to the VC-4-64C virtual container after being byte-interleaved or non-interleaved.
  • the Ethernet service processing unit further includes a Layer 2 switching module, configured to perform Layer 2 switching processing on the Ethernet service data processed by the medium access control layer.
  • the cross-connect processing unit performs overall electrical power on the VC-4-64C virtual container.
  • the circuit exchange transmits data output by the Ethernet service processing unit to the synchronous digital series group processing unit.
  • the invention also provides an Ethernet device based on a synchronous digital series, comprising an Ethernet service processing unit, a synchronous digital series group processing unit, and a cross-connect processing unit; wherein: the synchronous digital series group processing unit is used for Receiving data after the 10G Ethernet service is mapped into the SDH network from the synchronous digital series network, and performing the regeneration segment overhead processing and the multiplexing segment overhead processing on the data;
  • the Ethernet service processing unit is configured to perform demapping and de-encoding the data received by the cross-connect processing unit from the synchronous digital series group processing unit, and then perform the access control layer processing and the physical layer processing. Output to an Ethernet switching network.
  • the Ethernet service processing unit includes: an Ethernet interface, a decoding module, and a first virtual container demapping module; the synchronous digital series group processing unit includes: a multiplexing segment overhead processing module, and a regeneration segment overhead processing module. , STM-64 interface; where:
  • the regenerator section overhead processing module and the multiplex section cost processing module are configured to perform regenerator section overhead processing and multiplex section overhead processing on data received from the synchronous digital series network through the STM-64 interface, and process the processed Data is output to the Ethernet service processing unit through the cross-connect processing unit;
  • the first virtual container demapping module is configured to perform demapping on the data processed by the multiplex section overhead and output the data;
  • the decoding module is configured to perform de-encoding and outputting data output by the first virtual container demapping module
  • the Ethernet interface is configured to perform the medium access control layer processing and the physical layer processing on the 10G Ethernet service data output by the de-encoding module and output to the Ethernet switching network.
  • the de-encoding module performs 64b/66b de-encoding on the data output by the first virtual container demapping module; the first virtual container demapping module maps the 10G Ethernet service into the SDH.
  • the data after the network is subjected to VC-4-64C virtual container demapping.
  • the synchronous digital series group processing unit is further configured to receive data after the 10/100/1000 M Ethernet service is mapped into the SDH network;
  • the Ethernet service processing unit further includes: a second virtual container demapping module, and a decapsulation module The first backplane interface;
  • the synchronous digital series group processing unit further includes a second backplane interface, an STM-N interface; wherein:
  • the synchronous digital series group processing unit performs the regeneration segment overhead processing and the multiplex section overhead processing on the data received from the synchronous digital series network through the STM-N interface, and then outputs the data through the second backplane interface;
  • the first backplane interface is configured to receive data from the second backplane interface by using the cross-connect processing unit, and send the first virtual container demapping module or the second virtual container demapping module according to the configuration;
  • the second virtual container demapping module is configured to demap the received data and output the data; the decapsulation module is configured to perform GFP/HDLC/LAPS decapsulation output on the data output by the second virtual container demapping module.
  • the medium access control layer processing and the physical layer processing are performed on the Ethernet interface, and then output to the Ethernet switching network.
  • the first virtual container demapping module demaps it using byte interleaving.
  • the Ethernet service processing unit further includes a Layer 2 switching module, configured to perform Layer 2 switching processing on the Ethernet service data output by the decapsulation module or the decoding module.
  • the cross-connect processing unit transmits data output by the synchronous digital series group processing unit to the first virtual container demapping module by performing overall circuit switching on the VC-4-64C virtual container.
  • the present invention also provides an Ethernet service processing method for an Ethernet device based on a synchronous digital series, characterized in that the method comprises the following steps: A: Perform physical layer processing and mediation access control layer processing on the received 10G Ethernet service data;
  • step B the 10G Ethernet service data is 64b/66b encoded and mapped into the VC-4-64C virtual container.
  • the 10G Ethernet service data is mapped into the VC-4-64C virtual container using byte interleaving or non-interleaving.
  • step C the circuit switching is an overall circuit switching of the VC-4-64C virtual container.
  • the present invention also provides an Ethernet service processing method for an Ethernet device based on a synchronous digital series, characterized in that the method comprises the following steps:
  • step c) VC-4-64C virtual container de-embedding and 64b/66b de-encoding are performed on the 10G Ethernet service data.
  • step c) if the received 10G Ethernet service data adopts the byte interleave mapping mode, it is demapped using byte interleaving.
  • step b) if the Ethernet service data is 10G Ethernet service data, the Circuit switching is the overall circuit switching for the VC-4-64C virtual container.
  • the method of the present invention replaces the GFP/HDLC/LAPS package with 64b/66b encoding/decoding for the 10G Ethernet service, and provides a method for accessing the 10G Ethernet service to the SDH network.
  • 10G Ethernet access is more efficient and the latency is smaller.
  • the problem of inefficiency and increased delay caused by GFP/HDLC/LAPS encapsulation is avoided.
  • the device and method of the present invention can handle 10/100/1000M Ethernet service and have Layer 2 switching in addition to the 10G Ethernet service, when the functional unit of the GFP/HDLC/LAPS package is set. When functioning, it can also realize the interworking of 10G Ethernet services and 10/100/1000M Ethernet services.
  • FIG. 1 is a block diagram of an SDH-based MSTP function model in the prior art
  • FIG. 2 is a block diagram of a functional model of an EOS device in the prior art
  • FIG. 3 is a schematic structural diagram of an Ethernet device based on a synchronous digital series according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of an Ethernet service processing unit in an EOS device according to an embodiment of the present invention
  • FIG. 5 is an SDH in an EOS device according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a group processing unit
  • FIG. 6 is a schematic structural diagram of an EOS apparatus according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a cross-connect processing unit simultaneously connected to multiple Ethernet service processing units and an SDH group processing unit according to an embodiment of the present invention
  • FIG. 8 is a processing method for an EOS device to send a 10G Ethernet service to an SDH network according to an embodiment of the present invention
  • FIG. 9 is a flowchart of a method for processing an EOS device to receive 10G Ethernet service data from an SDH network according to an embodiment of the present invention
  • the EOS device sends a 10/100/1000 M Ethernet service to the processing method on the SDH network
  • FIG. 11 is a flowchart of a method for receiving 10/100/1000 M Ethernet service data from an SDH network according to an embodiment of the present invention.
  • Ethernet services are mainly divided into 10M, 100M, 1000M and 10G.
  • the object of the present invention is to provide an EOS device suitable for processing 10G Ethernet services, which overcomes the disadvantages of continuing to adopt the current architecture for handling 10G Ethernet, such as inefficiency and increased buffer delay, and corresponding Ethernet services. Approach.
  • the invention mainly proposes a new EOS framework according to the characteristics of 10G Ethernet itself, which can not only process 10G Ethernet services, but also process 10M, 100M and 1000M Ethernet services at the same time. '
  • FIG. 3 is a schematic structural diagram of an Ethernet device based on a synchronous digital series according to an embodiment of the present invention.
  • the apparatus includes: an Ethernet service processing unit 301, a cross-connect processing unit 302, and an SDH group processing unit 303. among them:
  • the Ethernet service processing unit 301 is mainly responsible for performing Ethernet PHY (physical) layer processing and Ethernet MAC (Media Access Control) layer processing on the Ethernet service data, and mapping to VC through different mapping paths ( In the virtual container).
  • the Ethernet service processing unit performs different processing and VC mapping according to different Ethernet service traffic: if it is a 10G Ethernet service, it performs 64b/66b encoding, and then maps into a VC-4-64C container (by In 64 VC-4 container cascades; if it is 10/100/1000M Ethernet service, it is packaged in one format of GFP/HDLC/LAPS, and then encapsulated into VC12, VC3 or VC4 after encapsulation.
  • the mapped data is transmitted to the cross-connect processing unit 302 through the backplane; or processed in the reverse direction, and the received services are demapped or de-encoded according to different paths, specifically, decapsulation or de-encoding, specifically
  • the backplane interface distinguishes whether the payload content is 10G Ethernet service or 10M/100M/1000M Ethernet service according to the channel overhead (for example, the C2 byte of the SDH frame). If it is a 10GE service, the VC-4-64C demapping is performed.
  • 64b/66b de-encoding if it is 10M/100M/1000M Ethernet service, it will be decoded Shooting, then decapsulating, and finally performing MAC layer processing and PHY layer processing on the decoded or decapsulated services.
  • the cross-connect processing unit 302 is connected to the Ethernet service processing unit 301 and the SDH group processing unit 303, and is mainly responsible for circuit switching between the two units, that is, receiving data sent by the two units, and then configuring according to the configuration. , circuit switching between the two units.
  • the SDH group processing unit 303 is mainly responsible for performing SDH segment overhead processing on the data sent by the cross-connection processing unit 302, including multiplexing segment overhead processing and regeneration segment overhead processing, and then transmitting the data to the SDH network; or performing reverse processing:
  • the service in the SDH network is received, subjected to regenerative segment and multiplex section overhead processing, and then sent to the cross-connect processing unit 302.
  • FIG. 4 is a schematic structural diagram of an Ethernet service processing unit in an EOS device according to an embodiment of the present invention.
  • the Ethernet service processing unit includes: an Ethernet interface 411, a VC-4-64C mapping/demapping module 412, a Layer 2 switching module 413, an encapsulation/decapsulation module 414, and a VC mapping/demapping module 415.
  • Encoding/decoding module 416 is a schematic structural diagram of an Ethernet service processing unit in an EOS device according to an embodiment of the present invention.
  • the Ethernet service processing unit includes: an Ethernet interface 411, a VC-4-64C mapping/demapping module 412, a Layer 2 switching module 413, an encapsulation/decapsulation module 414, and a VC mapping/demapping module 415.
  • Encoding/decoding module 416 Encoding/decoding module 416.
  • the encoding/decoding module 416 and the VC-4-64C mapping/demapping module 412 are configured to process 10G Ethernet services; the encapsulation/decapsulation module 414 and the VC mapping/demapping module 415 are mainly used to process 10M, 100M, and The Layer 2 switching module 413 is mainly used for Layer 2 switching processing of Ethernet services. specifically:
  • the Ethernet interface 411 is configured to receive local Ethernet services, and perform Ethernet PHY layer processing and Ethernet MAC layer processing on the Ethernet service.
  • the Layer 2 switching module 413 is configured to perform Layer 2 switching processing on the Ethernet service to implement interworking between the 10/100/1000 M Ethernet service and the 10 Gigabit Ethernet service.
  • the encapsulation/decapsulation module 414 is configured to encapsulate/decapsulate the 10M/100/1000M Ethernet service, and the method of encapsulation processing includes HDLC; LAPS or GFP;
  • the VC mapping/demapping module 415 is configured to perform mapping/demapping of the 10M, 100M, and 1000M Ethernet service data after the encapsulation; and the encoding/decoding module 416 is configured to perform encoding/decoding processing on the 10G Ethernet service;
  • the VC-4-64C mapping/demapping module 412 is configured to perform mapping/decoding of 10G Ethernet services. Shot processing.
  • FIG. 5 is a schematic structural diagram of an SDH group path processing unit in an EOS device according to an embodiment of the present invention.
  • the SDH group processing unit includes: a multiplex section overhead processing module 531, a regenerator section overhead processing module 532, an STM-N (synchronous transmission module level N) interface 533, and an STM-64 (synchronous transmission module level 64). ) interface 534. among them:
  • the multiplex section cost processing module 531 is configured to perform overhead processing on the multiplex section of the Ethernet service;
  • the regenerator section overhead processing module 532 is connected to the multiplex section overhead processing module 531, the STM-N interface 533, and the STM-64 interface 534. Used for overhead processing of the Ethernet service regeneration segment;
  • the STM-N interface 533 is configured to send 10M/100/1000M Ethernet service data processed by the regenerative segment overhead processing module 532 to the SDH network, and receive 10M/100/1000M Ethernet service data on the SDH network for transmission to the regeneration. Segment overhead processing module 532;
  • the STM-64 interface 534 is configured to send the 10G Ethernet service data processed by the regenerator section overhead processing module 532 to the SDH network, and receive the 10G Ethernet service data on the SDH network and send it to the regenerator section overhead processing module 532. .
  • FIG. 6 is a schematic diagram of the complete structure of an EOS device according to an embodiment of the present invention.
  • the data stream processed by the VC-4-64C mapping/demapping module 412 and the VC mapping/demapping module 415 is processed by the Ethernet service processing unit side backplane interface 601, and then The data is sent to the cross-connection processing unit 302 for exchange processing; after receiving the data output by the cross-connection processing unit 302, it is sent to the VC-4-64C mapping/demapping module 412 according to the configuration, or sent to the VC mapping demapping module 415.
  • the Ethernet service exchanged by the cross-connection processing unit 302 is processed by the backplane interface 602 on the SDH group processing unit side, and then the reciprocating segment overhead processing module 531 is regenerated.
  • Segment overhead processing module 532 then through the STM-N interface Or the STM-64 interface is sent to the SDH network; in the reverse process, the SDH group processing unit 303 receives data from the SDH network through the STM-N interface and/or the STM-64 interface, and then passes through the regenerator section overhead processing module 532 and The overhead processing of the segment overhead processing module 531 is finally sent to the cross processing unit 302 through the backplane interface 602.
  • FIG. 7 is a schematic structural diagram of a cross-connect processing unit connected to multiple Ethernet service processing units and an SDH group processing unit at the same time according to an embodiment of the present invention.
  • a cross-connect processing unit 302 can be connected to a plurality of Ethernet service processing units 301 and a plurality of SDH group processing units 303 at the same time according to different backplane interfaces and system sizes. As shown in FIG. 7, a cross-connect processing unit 302 is simultaneously connected to M Ethernet service processing units and N SDH group processing units.
  • the M Ethernet service processing units are identified by 1 to M, and the N SDH group processing units are identified by 1 to N respectively.
  • FIG. 8 is a schematic diagram of a method for processing an EOS device to send a 10G Ethernet service to an SDH network according to an embodiment of the present invention, which is referred to as a forward processing of a 10G Ethernet service, and includes the following steps:
  • Step 801 Receive a data signal of a 10G Ethernet service through an Ethernet interface, perform PHY layer processing, and perform Layer 2 MAC layer processing;
  • the Ethernet service is processed by the Ethernet PHY layer to be converted into data receivable by the Ethernet MAC layer, and then processed by the Layer 2 MAC layer; if the Layer 2 switching function is performed, the Ethernet service enters after the Layer 2 MAC layer processing.
  • the Layer 2 switching module performs switching processing
  • Step 802 After 64b/66b encoding the Ethernet data, mapping the data into the VC-4-64C virtual container, in the mapping process, whether to use byte interleaving; Step 803, mapping through the backplane interface After the data is converted into data that can be received by the cross-connect processing unit, the data is sent to the cross-connect processing unit;
  • Step 804 After receiving the data sent by the Ethernet service processing unit, the cross-connect processing unit performs circuit switching according to the configuration. After the circuit switching, the data is sent to the SDH group processing unit. Step 805, the SDH group processing unit Receiving data from the cross-connect processing unit After that, the multiplex section and the regenerative section overhead processing are performed, and then sent to the corresponding STM-64 interface, and sent to the SDH network backup.
  • FIG. 9 is a schematic diagram of a method for processing an EOS device to receive 10G Ethernet service data from an SDH network according to an embodiment of the present invention, which is referred to as reverse processing of a 10G Ethernet service, and includes the following steps:
  • Step 901 The SDH group processing unit performs a regenerator section and a multiplexing section overhead processing on the data received from the SDH network through the STM-64 interface.
  • Step 902 The SDH group processing unit sends data to the cross-connect processing unit through the backplane interface, and performs circuit switching according to the configuration in the cross-connect processing unit.
  • Step 903 The Ethernet service processing unit receives the data sent by the cross-connection processing unit through the backplane interface.
  • Step 904 The Ethernet service processing unit demaps the data by using a VC-4-64C mapping/demapping module, and then performs 64b/66b de-encoding on the data.
  • Step 905 Perform Layer 2 MAC layer processing and PHY layer processing on the decoded 10G Ethernet service data, and finally send the local Ethernet switching network.
  • Step 1001 Receive a data signal of a 10/100/1000 M Ethernet service through an Ethernet interface, perform PHY layer processing, and perform MAC layer processing;
  • the Ethernet service is processed by the Ethernet PHY layer to be converted into data receivable by the Ethernet MAC layer, and then processed by the Layer 2 MAC layer; if the Layer 2 switching function is performed, the Ethernet service enters after the Layer 2 MAC layer processing.
  • the Layer 2 switching module performs switching processing
  • Step 1002 After performing one encapsulation on the Ethernet data in GFP/HDLC/LAPS, mapping to the corresponding VC container such as VC12, VC3, or VC4 (can choose whether to have the virtual concatenation I automatic link capacity adjustment LCAS function) ;
  • Step 1003 The data stream after mapping is sent to the cross-connection processing unit through the backplane interface.
  • Step 1004 after receiving the data, the cross-connection processing unit performs circuit switching according to the configuration, and then sends the data to the SDH group processing unit.
  • Step 1005 After receiving the data sent by the cross-connect processing unit, the SDH group processing unit performs multiplex section and regenerator section overhead processing, and then sends the data to the corresponding STM-N interface, and sends the data to the SDH network.
  • 11 is a processing method for receiving an 10/100/1000 M Ethernet service data from an SDH network according to an embodiment of the present invention, which is called reverse processing of a 10/100/1000 M Ethernet service, and includes the following steps:
  • Step 1102 The SDH group processing unit sends data to the cross-connect processing unit through the backplane interface, and performs circuit switching according to the configuration in the cross unit.
  • Step 1103 The Ethernet service processing unit receives the data sent by the cross-connection processing unit through the backplane interface.
  • Step 1104 The Ethernet service processing unit demaps the data by using a VC mapping/demapping module, and then decapsulates the data.
  • step 1105 the de-encapsulated Ethernet service data is subjected to Layer 2 MAC layer processing and PHY layer processing, and finally sent to the local Ethernet switching network.
  • the method of the present invention replaces the GFP/HDLC/LAPS package with 64b/66b encoding/decoding for 10G Ethernet services, and provides a 10G Ethernet service to SDH.
  • the network method makes the EOS device more flexible, and the 10G Ethernet access is more efficient and the delay is smaller. The problem of inefficiency and increased delay caused by GFP/HDLC/LAPS encapsulation is avoided.
  • Ben Invented device and method in addition to being able to handle 10G Ethernet services, can still handle 10/100/1000M Ethernet service and have Layer 2 switching function when the functional unit of GFP/HDLC/LAPS package is set up At the same time, it can also realize the interworking of 10G Ethernet services and 10/100/1000M Ethernet services.

Abstract

An Ethernet device and Ethernet affair processing method based on the SDH, the device includes Ethernet affair processing unit, synchronous digital hierarchy cluster-Road processing unit, cross-connect processing unit; Ethernet affair processing unit performs the physical layer processing and MAC layer processing for the received 10G Ethernet affair data, and after performs the encoding and virtual containers mapping for the data which has been processed, outputs it; synchronous digital hierarchy cluster-Road processing unit through the cross-connect processing unit to receive Ethernet affair processing unit output of 10G Ethernet services to the SDH mapping the data ,and performs the overlap segment spending process and the renewable segment spending process for the data, then sends it to the synchronous digital hierarchy network. The device and method make the 10G Ethernet affair encode and decode at 64b/66b part of the package, such as GFP coding replaced, so that the EOS equipment will be more flexible, 10G Ethernet access will be more efficient, and smaller delay.

Description

基于同歩数字系列的以太网装置及其以太网业务处理方法  Ethernet device based on the same digital series and its Ethernet service processing method
技术领域 Technical field
本发明涉及一种基于同步数字系列的以太网装置和以太网业务处理方 法。 .  The present invention relates to an Ethernet device based on a synchronous digital series and an Ethernet service processing method. .
背景技术 Background technique
近年来, 随着数据业务的迅速发展, 城域传送网已成为电信运营商开拓 用户市场和增强业务提供能力的关键。 同时, 语音和 TDM ( Time Division Multiplexing, 时分复用) 专线业务仍是运营商收入的主要来源。 因此, 如 何在保证 TDM业务传送的同时提供数据业务的传送和处理功能是市场发展 的需求。 于是, 以 SDH ( Synchronous Digital Hierarchy, 同步数字系列) 为 基础的 MSTP ( Multi-Service Transport Platform, 多业务传输平台)技术应 运而生, 并已成为城域光传送网的一个主流解决方案。 EOS ( Ethernet Over SDH, 基于 SDH的以太网)技术是其中的一个发展方向。  In recent years, with the rapid development of data services, metropolitan transport networks have become the key to telecom operators to expand their subscriber markets and enhance their service offering capabilities. At the same time, voice and TDM (Time Division Multiplexing) leased line services remain the main source of revenue for operators. Therefore, how to provide the transmission and processing functions of data services while ensuring the transmission of TDM services is a market development demand. Therefore, MSTP (Multi-Service Transport Platform) technology based on SDH (Synchronous Digital Hierarchy) has emerged as a mainstream solution for metro optical transport networks. EOS (Ethernet Over SDH, SDH-based Ethernet) technology is one of the development directions.
中华人民共和国通信行业标准 YD/T5119-2005 提出的基于 SDH 的 MSTP功能模型框图如图 1 所示, 多种业务分别从不同的路径传送到 SDH 环网: PDH (准同步数字体系)业务通过 PDH接口映射到 VC (虚容器)中; ATM (异步传输模式) 业务经过 ATM接口和 ATM层处理之后映射入 VC 容器;以太网业务可以通过二层交换或直通再经过 RPR (弹性分组环) MAC (介质访问控制)层处理或者 MPLS (多协议标记交换)处理或者直通, 然 后选择 HDLC (高级数据链路控制) /LAPS (链路接入规程) /GFP (通用成 帧规程)中的一种封装格式进行封装, 最后映射入 VC容器; 各种业务映射 入 VC容器之后, 将所有的 VC容器通过交叉连接、 段开销处理之后就可以 从 STM-N (同步传输模块等级 N )接口发送到 SDH网络上。 也可按照相反 方向处理, 从 SDH网络上接收各种类型业务。  The SDH-based MSTP functional model block diagram proposed by the People's Republic of China communication industry standard YD/T5119-2005 is shown in Figure 1. Multiple services are transmitted from different paths to the SDH ring network: PDH (Quasi-Synchronous Digital Hierarchy) service passes PDH The interface is mapped to the VC (Virtual Container); the ATM (Asynchronous Transfer Mode) service is mapped into the VC container after being processed by the ATM interface and the ATM layer; the Ethernet service can be switched through the Layer 2 switch or pass through the RPR (Resilient Packet Ring) MAC ( Medium access control) layer processing or MPLS (multi-protocol label switching) processing or pass-through, then select one of HDLC (Advanced Data Link Control) / LAPS (Link Access Procedure) / GFP (General Framing Procedure) The format is encapsulated and finally mapped into the VC container. After the various services are mapped into the VC container, all VC containers can be sent from the STM-N (Synchronous Transport Module Level N) interface to the SDH network after being processed by cross-connection and segment overhead. on. It can also be processed in the opposite direction to receive various types of services from the SDH network.
由此可以看出 EOS (其中一条处理以太网业务的路径)模型如图 2所示, 以太网业务可以通过二层交换或直通,然后经过 HDLC/LAPS/GFP其中一种 封装格式进行封装, 映射入 VC容器, 接着通过交叉连接、 段开销处理(复 用段开销处理和再生段开销处理) 、 最后从 STM-N口发送到 SDH网络上。 也可以按照相反方向处理, 从 SDH网络上接收以太网业务。 It can be seen that the EOS (one of the paths for processing Ethernet services) model is shown in Figure 2. The Ethernet service can be encapsulated or directly through Layer 2 switching or pass-through, and then encapsulated and mapped in one of the HDLC/LAPS/GFP encapsulation formats. Into the VC container, then through cross-connection, segment overhead processing (complex It is processed by segment overhead and regenerative segment overhead), and finally sent from the STM-N port to the SDH network. It can also be processed in the opposite direction to receive Ethernet traffic from the SDH network.
综合来看, 上述结构在以太网业务量不是很大的时候还比较合理, 运行 也较为平稳。但是随着以太网技术和应用的不断发展, 尤其是在出现了 10G 以太网业务之后, 如果继续沿用现有的这种结构, 那么大量的开销、 封装处 理, 将浪费很多带宽, 效率变低、 緩存增多、 时延增大。 因此十分有必要针 对 10G以太网业务采用新的处理方法。  On the whole, the above structure is more reasonable when the Ethernet traffic is not very large, and the operation is relatively stable. However, with the continuous development of Ethernet technology and applications, especially after the emergence of 10G Ethernet services, if the existing structure is continued, a large amount of overhead and encapsulation processing will waste a lot of bandwidth and become inefficient. The cache is increased and the delay is increased. Therefore, it is very necessary to adopt a new processing method for 10G Ethernet services.
发明内容 Summary of the invention
本发明所要解决的技术问题是, 克服现有技术的不足,提出一种可提高 10G以太网业务处 S效率的 EOS装置和以太网业务处理方法。  The technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and propose an EOS device and an Ethernet service processing method that can improve the S efficiency of the 10G Ethernet service.
为了解决上述问题, 本发明提供一种基于同步数字系列的以太网装置, 包含以太网业务处理单元、同步数字系列群路处理单元,交叉连接处理单元; 其特征在于: 所述以太网业务处理单元用于将接收到的 10G 以太网业务数据进行物 理层处理和介盾访问控制层处理,并将处理后的数据进行编码和虚容器映射 后输出;  In order to solve the above problems, the present invention provides an Ethernet device based on a synchronous digital series, comprising an Ethernet service processing unit, a synchronous digital series group processing unit, and a cross-connect processing unit; wherein: the Ethernet service processing unit It is used for performing physical layer processing and mediation access control layer processing on the received 10G Ethernet service data, and encoding and processing the processed data and outputting the virtual container;
所述同步数字系列群路处理单元用于通过所述交叉连接处理单元接收 以太网业务处理单元输出的 10G以太网业务映射入 SDH后的数据, 并对该 数据进行复用段开销处理和再生段开销处理后发送至同步数字系列网络。  The synchronous digital series group processing unit is configured to receive, by the cross-connect processing unit, data that is mapped into the SDH by the 10G Ethernet service output by the Ethernet service processing unit, and perform multiplexing section overhead processing and regeneration section on the data. The overhead is processed and sent to the synchronous digital series network.
此外, 所述以太网业务处理单元包含: 以太网接口, 编码模块, 笫一虚 容器映射模块;所述同步数字系列群路处理单元包含:复用段开销处理模块, 再生段开销处理模块, STM-64接口; 其中: In addition, the Ethernet service processing unit includes: an Ethernet interface, an encoding module, and a virtual container mapping module; the synchronous digital series group processing unit includes: a multiplexing segment overhead processing module, a regeneration segment overhead processing module, and an STM -64 interface; where:
所述以太网接口用于接收所述 10G 以太网业务数据, 并对其进行所述 物理层处理和介质访问控制层处理后输出;  The Ethernet interface is configured to receive the 10G Ethernet service data, and perform the physical layer processing and the medium access control layer processing on the output;
所述编码模块用于将以太网接口输出的 10G 以太网业务数据进行编码 后输出; 所述第一虚容器映射模块用于将所述编码后的 10G 以太网业务数据映 射到级联的虚容器后输出; The encoding module is configured to encode and output 10G Ethernet service data output by the Ethernet interface; The first virtual container mapping module is configured to map the encoded 10G Ethernet service data to a cascaded virtual container and output the same;
所述复用段开销处理模块和再生段开销处理模块用于将通过所述交叉 连接处理单元从以太网业务处理单元接收到的 10G以太网业务映射入 SDH 后的数据进行复用段开销处理和再生段开销处理后,通过所述 STM-64接口 发送到同步数字系列网络。  The multiplex section overhead processing module and the regenerator section overhead processing module are configured to perform multiplex section overhead processing on data that is mapped into the SDH by the 10G Ethernet service received by the cross-connection processing unit from the Ethernet service processing unit. After the regeneration segment overhead processing, the STM-64 interface is sent to the synchronous digital series network.
此外, 所述编码模块对 10G以太网业务数据进行 64b/66b编码; 所述级 联的虚容器为 VC-4-64C虚容器。 In addition, the encoding module performs 64b/66b encoding on the 10G Ethernet service data; the cascaded virtual container is a VC-4-64C virtual container.
此外, 所述以太网业务处理单元还用于接收 10/100/1000M以太网业务 数据; 以太网业务处理单元还包含: 封装模块, 第二虚容器映射模块, 第一 背板接口; 同步数字系列群路处理单元还包含第二背板接口, STM-N接口; 其中: 所述封装模块用于对经过所述物理层处理和介盾访问控制层处理的 10/100/1000M以太网业务数据进行 GFP/HDLC/LAPS封装后输出;  In addition, the Ethernet service processing unit is further configured to receive 10/100/1000 M Ethernet service data; the Ethernet service processing unit further includes: a package module, a second virtual container mapping module, a first backplane interface; and a synchronous digital series The group processing unit further includes a second backplane interface, an STM-N interface, where: the encapsulating module is configured to perform 10/100/1000 M Ethernet service data processed by the physical layer processing and the interface access control layer. Output after GFP/HDLC/LAPS package;
所述第二虚容器映射模块用于将封装模块输出的 10/100/1000M以太网 业务数据映射到虚容器 VC12、 VC3或者 VC4后输出;  The second virtual container mapping module is configured to map the 10/100/1000 M Ethernet service data output by the encapsulating module to the virtual container VC12, VC3, or VC4, and output the same;
所述第一背板接口用于将第二虚容器映射模块输出的数据通过所述交 叉连接处理单元输出到所述同步数字系列群路处理单元中的第二背板接口; 同步数字系列群路处理单元将从第二背板接口接收并且经过复用段开 销处理和再生段开销处理的 10/100/1000M以太网业务数据通过 STM-N接口 发送到同步数字系列网络。  The first backplane interface is configured to output data output by the second virtual container mapping module to the second backplane interface in the synchronous digital series group processing unit through the cross connection processing unit; The processing unit transmits the 10/100/1000 M Ethernet service data received from the second backplane interface and processed through the multiplex section overhead processing and the regenerator section overhead to the synchronous digital series network through the STM-N interface.
此外, 所述第一虚容器映射模块对 10G 以太网业务数据使用字节间插 或非间插方式映射到所述 VC-4-64C虚容器后输出。 In addition, the first virtual container mapping module outputs the 10G Ethernet service data to the VC-4-64C virtual container after being byte-interleaved or non-interleaved.
此外, 所述以太网业务处理单元还包含二层交换模块, 用于对经过所述 介质访问控制层处理的以太网业务数据进行二层交换处理。  In addition, the Ethernet service processing unit further includes a Layer 2 switching module, configured to perform Layer 2 switching processing on the Ethernet service data processed by the medium access control layer.
此外, 所述交叉连接处理单元通过对所述 VC-4-64C虚容器进行整体电 路交换,将所述以太网业务处理单元输出的数据发送至所述同步数字系列群 路处理单元。 In addition, the cross-connect processing unit performs overall electrical power on the VC-4-64C virtual container. The circuit exchange transmits data output by the Ethernet service processing unit to the synchronous digital series group processing unit.
本发明还提供一种基于同步数字系列的以太网装置,包含以太网业务处 理单元、 同步数字系列群路处理单元, 交叉连接处理单元; 其特征在于: 所述同步数字系列群路处理单元用于从同步数字系列网络接收 10G 以 太网业务映射入 SDH网络之后的数据, 并对该数据进行再生段开销处理和 复用段开销处理后输出; The invention also provides an Ethernet device based on a synchronous digital series, comprising an Ethernet service processing unit, a synchronous digital series group processing unit, and a cross-connect processing unit; wherein: the synchronous digital series group processing unit is used for Receiving data after the 10G Ethernet service is mapped into the SDH network from the synchronous digital series network, and performing the regeneration segment overhead processing and the multiplexing segment overhead processing on the data;
所述以太网业务处理单元用于将通过所述交叉连接处理单元从同步数 字系列群路处理单元接收到的数据进行虚容器解映射和解编码后,进行介廣 访问控制层处理和物理层处理并输出到以太网交换网络。  The Ethernet service processing unit is configured to perform demapping and de-encoding the data received by the cross-connect processing unit from the synchronous digital series group processing unit, and then perform the access control layer processing and the physical layer processing. Output to an Ethernet switching network.
此外, 所述以太网业务处理单元包含: 以太网接口, 解编码模块, 第一 虚容器解映射模块; 所述同步数字系列群路处理单元包含: 复用段开销处理 模块, 再生段开销处理模块, STM-64接口; 其中: In addition, the Ethernet service processing unit includes: an Ethernet interface, a decoding module, and a first virtual container demapping module; the synchronous digital series group processing unit includes: a multiplexing segment overhead processing module, and a regeneration segment overhead processing module. , STM-64 interface; where:
所述再生段开销处理模块和复用段开销处理模块用于对通过所述 STM-64接口从同步数字系列网络接收到的数据进行再生段开销处理和复用 段开销处理,并将处理后的数据通过所述交叉连接处理单元输出到以太网业 务处理单元;  The regenerator section overhead processing module and the multiplex section cost processing module are configured to perform regenerator section overhead processing and multiplex section overhead processing on data received from the synchronous digital series network through the STM-64 interface, and process the processed Data is output to the Ethernet service processing unit through the cross-connect processing unit;
所述第一虚容器解映射模块用于对经过复用段开销处理后的数据进行 解映射后输出;  The first virtual container demapping module is configured to perform demapping on the data processed by the multiplex section overhead and output the data;
所述解编码模块用于对第一虚容器解映射模块输出的数据进行解编码 后输出;  The decoding module is configured to perform de-encoding and outputting data output by the first virtual container demapping module;
所述以太网接口用于对解编码模块输出的 10G 以太网业务数据进行所 述介质访问控制层处理和物理层处理并输出到以太网交换网絡。  The Ethernet interface is configured to perform the medium access control layer processing and the physical layer processing on the 10G Ethernet service data output by the de-encoding module and output to the Ethernet switching network.
此外, 所述解编码模块对第一虚容器解映射模块输出的数据进行 64b/66b解编码;所述第一虚容器解映射模块对 10G以太网业务映射入 SDH 网络之后的数据进行 VC-4-64C虛容器解映射。 In addition, the de-encoding module performs 64b/66b de-encoding on the data output by the first virtual container demapping module; the first virtual container demapping module maps the 10G Ethernet service into the SDH. The data after the network is subjected to VC-4-64C virtual container demapping.
此外, 所述同步数字系列群路处理单元还用于接收 10/100/1000M以太 网业务映射入 SDH网络之后的数据; 以太网业务处理单元还包含: 第二虚 容器解映射模块, 解封装模块, 第一背板接口; 同步数字系列群路处理单元 还包含第二背板接口, STM-N接口; 其中: In addition, the synchronous digital series group processing unit is further configured to receive data after the 10/100/1000 M Ethernet service is mapped into the SDH network; the Ethernet service processing unit further includes: a second virtual container demapping module, and a decapsulation module The first backplane interface; the synchronous digital series group processing unit further includes a second backplane interface, an STM-N interface; wherein:
同步数字系列群路处理单元将通过 STM-N接口从同步数字系列网络接 收到的数据进行再生段开销处理和复用段开销处理后通过所述第二背板接 口输出;  The synchronous digital series group processing unit performs the regeneration segment overhead processing and the multiplex section overhead processing on the data received from the synchronous digital series network through the STM-N interface, and then outputs the data through the second backplane interface;
所迷第一背板接口用于通过所述交叉连接处理单元从所述第二背板接 口接收数据,并根据配置送入第一虚容器解映射模块或者第二虛容器解映射 模块;  The first backplane interface is configured to receive data from the second backplane interface by using the cross-connect processing unit, and send the first virtual container demapping module or the second virtual container demapping module according to the configuration;
所述第二虚容器解映射模块用于将接收到的数据进行解映射后输出; 所述解封装模块用于对第二虚容器解映射模块输出的数据进行 GFP/HDLC/LAPS解封装后输出到所述以太网接口进行所述介质访问控制层 处理和物理层处理后输出到以太网交换网络。  The second virtual container demapping module is configured to demap the received data and output the data; the decapsulation module is configured to perform GFP/HDLC/LAPS decapsulation output on the data output by the second virtual container demapping module. The medium access control layer processing and the physical layer processing are performed on the Ethernet interface, and then output to the Ethernet switching network.
此外, 若接收到的 10G 以太网业务数据采用字节间插映射方式, 则所 述第一虚容器解映射模块对其使用字节间插方式解映射。 In addition, if the received 10G Ethernet service data adopts a byte interleave mapping manner, the first virtual container demapping module demaps it using byte interleaving.
此外, 所述以太网业务处理单元还包含二层交换模块, 用于对所述解封 装模块或解编码模块输出的以太网业务数据进行二层交换处理。  In addition, the Ethernet service processing unit further includes a Layer 2 switching module, configured to perform Layer 2 switching processing on the Ethernet service data output by the decapsulation module or the decoding module.
此外, 所述交叉连接处理单元通过对所述 VC-4-64C虛容器进行整体电 路交换,将所述同步数字系列群路处理单元输出的数据发送至所述第一虚容 器解映射模块。  In addition, the cross-connect processing unit transmits data output by the synchronous digital series group processing unit to the first virtual container demapping module by performing overall circuit switching on the VC-4-64C virtual container.
本发明还提供一种基于同步数字系列的以太网装置的以太网业务处理 方法, 其特征在于, 该方法包含如下步骤: A:对接收到的 10G以太网业务数据进行物理层处理和介盾访问控制层 处理; The present invention also provides an Ethernet service processing method for an Ethernet device based on a synchronous digital series, characterized in that the method comprises the following steps: A: Perform physical layer processing and mediation access control layer processing on the received 10G Ethernet service data;
B: 对经过物理层处理和介质访问控制层处理的 10G以太网业务数据进 行编码和虚容器映射;  B: Encoding and virtual container mapping of 10G Ethernet service data processed by physical layer processing and medium access control layer;
C: 将经过编码和虚容器映射后输出的数据通过电路交换输出至同步数 字系列群路处理单元中进行复用段开销处理和再生段开销处理后发送至同 步数字系列网络。  C: The data output after the coding and virtual container mapping is output to the synchronous digital series group processing unit through circuit switching for multiplex section overhead processing and regenerator section overhead processing, and then sent to the synchronous digital series network.
此外, 步骤 B中, 对 10G以太网业务数据进行 64b/66b编码, 并映射入 VC-4-64C虚容器中。 In addition, in step B, the 10G Ethernet service data is 64b/66b encoded and mapped into the VC-4-64C virtual container.
此外, 对 10G以太网业务数据使用字节间插或非间插方式映射到所述 VC-4-64C虚容器中。  In addition, the 10G Ethernet service data is mapped into the VC-4-64C virtual container using byte interleaving or non-interleaving.
此外, 步骤 C中, 所述电路交换为 VC-4-64C虚容器整体电路交换。-  In addition, in step C, the circuit switching is an overall circuit switching of the VC-4-64C virtual container. -
本发明还提供一种基于同步数字系列的以太网装置的以太网业务处理 方法, 其特征在于, 该方法包含如下步骤: The present invention also provides an Ethernet service processing method for an Ethernet device based on a synchronous digital series, characterized in that the method comprises the following steps:
a )对从同步数字系列网络接收的数据进行再生段开销处理和复用段开 销处理;  a) performing regenerator section overhead processing and multiplex section overhead processing on data received from the synchronous digital series network;
b )对经过再生段开销处理和复用段开销处理的数据进行电路交换; c )根据配置对其进行虚容器解映射和解编码后, 进行介质访问控制层 处理和物理层处理并输出到以太网交换网絡。  b) circuit-switching the data processed by the regenerative section overhead processing and the multiplex section overhead processing; c) performing virtual container de-mapping and de-encoding according to the configuration, performing media access control layer processing and physical layer processing, and outputting to the Ethernet Exchange network.
此外, 步骤 c ) 中, 对 10G以太网业务数据进行 VC-4-64C虚容器解映 射和 64b/66b解编码。 In addition, in step c), VC-4-64C virtual container de-embedding and 64b/66b de-encoding are performed on the 10G Ethernet service data.
此外, 步骤 c )中, 若接收到的 10G以太网业务数据采用字节间插映射 方式, 则对其使用字节间插方式解映射。  In addition, in step c), if the received 10G Ethernet service data adopts the byte interleave mapping mode, it is demapped using byte interleaving.
此外, 步驟 b )中, 若以太网业务数据为 10G以太网业务数据, 则所述 电路交换为 VC-4-64C虚容器整体电路交换。 In addition, in step b), if the Ethernet service data is 10G Ethernet service data, the Circuit switching is the overall circuit switching for the VC-4-64C virtual container.
与现有技术相比, 本发明所述的方法对于 10G以太网业务, 以 64b/66b 编码 /解编码取代 GFP/HDLC/LAPS封装, 提供了一种将 10G以太网业务接 入 SDH网絡的方法, 使 EOS设备更加灵活, 10G以太网接入效率更高、 时 延更小。 避免了 GFP/HDLC/LAPS封装造成效率低下、 时延增加的问题。 本 发明装置与方法, 除了能处理 10G 以太网业务之外, 在设置完成 GFP/HDLC/LAPS封装的功能单元的情况下, 仍然能处理 10/100/1000M 以 太网业务, 而且在具有二层交换功能的时候, 还能实现 10G以太网业务与 10/100/1000M以太网业务的互通。 Compared with the prior art, the method of the present invention replaces the GFP/HDLC/LAPS package with 64b/66b encoding/decoding for the 10G Ethernet service, and provides a method for accessing the 10G Ethernet service to the SDH network. To make EOS devices more flexible, 10G Ethernet access is more efficient and the latency is smaller. The problem of inefficiency and increased delay caused by GFP/HDLC/LAPS encapsulation is avoided. The device and method of the present invention can handle 10/100/1000M Ethernet service and have Layer 2 switching in addition to the 10G Ethernet service, when the functional unit of the GFP/HDLC/LAPS package is set. When functioning, it can also realize the interworking of 10G Ethernet services and 10/100/1000M Ethernet services.
附图概述 BRIEF abstract
图 1为现有技术中基于 SDH的 MSTP功能模型框图;  1 is a block diagram of an SDH-based MSTP function model in the prior art;
图 2为现有技术中 EOS设备功能模型框图;  2 is a block diagram of a functional model of an EOS device in the prior art;
图 3是本发明实施例基于同步数字系列的以太网装置结构示意图; 图 4为本发明实施例 EOS装置中的以太网业务处理单元的结构示意图; 图 5为本发明实施例 EOS装置中的 SDH群路处理单元的结构示意图; 图 6为本发明实施例 EOS装置的完整结构示意图;  3 is a schematic structural diagram of an Ethernet device based on a synchronous digital series according to an embodiment of the present invention; FIG. 4 is a schematic structural diagram of an Ethernet service processing unit in an EOS device according to an embodiment of the present invention; and FIG. 5 is an SDH in an EOS device according to an embodiment of the present invention; FIG. 6 is a schematic structural diagram of a group processing unit; FIG. 6 is a schematic structural diagram of an EOS apparatus according to an embodiment of the present invention;
图 7 为本发明实施例交叉连接处理单元同时与多个以太网业务处理单 元和 SDH群路处理单元相连的结构示意图;  7 is a schematic structural diagram of a cross-connect processing unit simultaneously connected to multiple Ethernet service processing units and an SDH group processing unit according to an embodiment of the present invention;
图 8为本发明实施例 EOS装置将 10G以太网业务送入 SDH网络上的处 理方法; 图 9为本发明实施例 EOS装置从 SDH网络上接收 10G以太网业务数据 的处理方法; 图 10为本发明实施例 EOS装置将 10/100/1000M以太网业务送入 SDH 网络上的处理方法; 图 11为本发明实施例 EOS装置从 SDH网络上接收 10/100/1000M以太 网业务数据的处理方法。 本发明的较佳实施方式 8 is a processing method for an EOS device to send a 10G Ethernet service to an SDH network according to an embodiment of the present invention; FIG. 9 is a flowchart of a method for processing an EOS device to receive 10G Ethernet service data from an SDH network according to an embodiment of the present invention; In the embodiment of the invention, the EOS device sends a 10/100/1000 M Ethernet service to the processing method on the SDH network; FIG. 11 is a flowchart of a method for receiving 10/100/1000 M Ethernet service data from an SDH network according to an embodiment of the present invention. Preferred embodiment of the invention
下面将结合附图和实施例对本发明进行详细描述。  The invention will now be described in detail in conjunction with the drawings and embodiments.
按照流量来分, 以太网业务主要分为: 10M、 100M、 1000M和 10G等 几种。 本发明的目的就是提供了一种适合于处理 10G 以太网业务, 以克服 继续采用目前构架处理 10G以太网带来的效率低下、 緩存时延增大等缺点 的 EOS装置, 以及相应的以太网业务处理方法。  According to the traffic, Ethernet services are mainly divided into 10M, 100M, 1000M and 10G. The object of the present invention is to provide an EOS device suitable for processing 10G Ethernet services, which overcomes the disadvantages of continuing to adopt the current architecture for handling 10G Ethernet, such as inefficiency and increased buffer delay, and corresponding Ethernet services. Approach.
本发明主要是根据 10G以太网自身的特点,提出了一种新的 EOS构架, 不仅能处理 10G以太网业务, 也可以同时处理 10M、 100M和 1000M以太 网业务。 '  The invention mainly proposes a new EOS framework according to the characteristics of 10G Ethernet itself, which can not only process 10G Ethernet services, but also process 10M, 100M and 1000M Ethernet services at the same time. '
图 3是本发明实施例基于同步数字系列的以太网装置结构示意图。如图 3所示, 该装置包含: 以太网业务处理单元 301 , 交叉连接处理单元 302和 SDH群路处理单元 303。 其中:  FIG. 3 is a schematic structural diagram of an Ethernet device based on a synchronous digital series according to an embodiment of the present invention. As shown in FIG. 3, the apparatus includes: an Ethernet service processing unit 301, a cross-connect processing unit 302, and an SDH group processing unit 303. among them:
以太网业务处理单元 301 ,主要负责将以太网业务数据进行以太网 PHY (物理)层处理和以太网 MAC ( Media Access Control, 介质访问控制)层 处理, 并通过不同的映射路径, 映射到 VC (虚容器) 中。  The Ethernet service processing unit 301 is mainly responsible for performing Ethernet PHY (physical) layer processing and Ethernet MAC (Media Access Control) layer processing on the Ethernet service data, and mapping to VC through different mapping paths ( In the virtual container).
具体地,以太网业务处理单元才艮据以太网业务流量的不同进行不同的处 理和 VC映射: 如果是 10G以太网业务, 就进行 64b/66b编码, 然后映射入 VC-4-64C容器(由 64个 VC-4容器级联 )中; 如果是 10/100/1000M以太网 业务, 就选择 GFP/HDLC/LAPS 中的一种格式进行封装, 封装之后映射入 VC12、 VC3或者 VC4中。 VC映射完成后, 通过背板将映射之后的数据传 送到交叉连接处理单元 302; 或者反方向处理, 对接收到的业务, 按照不同 的路径, 解映射之后, 进行解封装或者解编码, 具体地, 背板接口根据通道 开销 (例如 SDH帧的 C2字节)来区分出净荷内容是 10G以太网业务还是 10M/100M/1000M以太网业务,如果是 10GE业务就进行 VC-4-64C解映射, 之后进行 64b/66b解编码;如果是 10M/100M/1000M以太网业务就进行解映 射, 然后解封装, 最后对解编码或解封装的业务进行 MAC层处理和 PHY 层处理。 Specifically, the Ethernet service processing unit performs different processing and VC mapping according to different Ethernet service traffic: if it is a 10G Ethernet service, it performs 64b/66b encoding, and then maps into a VC-4-64C container (by In 64 VC-4 container cascades; if it is 10/100/1000M Ethernet service, it is packaged in one format of GFP/HDLC/LAPS, and then encapsulated into VC12, VC3 or VC4 after encapsulation. After the VC mapping is completed, the mapped data is transmitted to the cross-connect processing unit 302 through the backplane; or processed in the reverse direction, and the received services are demapped or de-encoded according to different paths, specifically, decapsulation or de-encoding, specifically The backplane interface distinguishes whether the payload content is 10G Ethernet service or 10M/100M/1000M Ethernet service according to the channel overhead (for example, the C2 byte of the SDH frame). If it is a 10GE service, the VC-4-64C demapping is performed. , then 64b/66b de-encoding; if it is 10M/100M/1000M Ethernet service, it will be decoded Shooting, then decapsulating, and finally performing MAC layer processing and PHY layer processing on the decoded or decapsulated services.
交叉连接处理单元 302, 分别与以太网业务处理单元 301和 SDH群路 处理单元 303相连, 主要负责这两个单元之间的电路交换, 也即接收这两个 单元送来的数据, 然后按照配置, 在这两个单元之间进行电路交换。  The cross-connect processing unit 302 is connected to the Ethernet service processing unit 301 and the SDH group processing unit 303, and is mainly responsible for circuit switching between the two units, that is, receiving data sent by the two units, and then configuring according to the configuration. , circuit switching between the two units.
SDH群路处理单元 303,主要负责将交叉连接处理单元 302送来的数据 进行 SDH段开销处理, 包括复用段开销处理和再生段开销处理, 然后传送 到 SDH网络中; 或者进行反方向处理: 接收 SDH网絡中的业务, 对其进行 再生段和复用段开销处理, 然后送入交叉连接处理单元 302。  The SDH group processing unit 303 is mainly responsible for performing SDH segment overhead processing on the data sent by the cross-connection processing unit 302, including multiplexing segment overhead processing and regeneration segment overhead processing, and then transmitting the data to the SDH network; or performing reverse processing: The service in the SDH network is received, subjected to regenerative segment and multiplex section overhead processing, and then sent to the cross-connect processing unit 302.
图 4为本发明实施例 EOS装置中的以太网业务处理单元的结构示意图。 如图 4所示, 以太网业务处理单元包含: 以太网接口 411 , VC-4-64C映射 / 解映射模块 412, 二层交换模块 413, 封装 /解封装模块 414, VC映射 /解映 射模块 415, 编码 /解编码模块 416。 FIG. 4 is a schematic structural diagram of an Ethernet service processing unit in an EOS device according to an embodiment of the present invention. As shown in FIG. 4, the Ethernet service processing unit includes: an Ethernet interface 411, a VC-4-64C mapping/demapping module 412, a Layer 2 switching module 413, an encapsulation/decapsulation module 414, and a VC mapping/demapping module 415. Encoding/decoding module 416.
其中, 编码 /解编码模块 416和 VC-4-64C映射 /解映射模块 412用于处 理 10G以太网业务; 封装 /解封装模块 414和 VC映射 /解映射模块 415主要 用于处理 10M、 100M和 1000M以太网业务;二层交换模块 413主要用于对 以太网业务进行二层交换处理。 具体地:  The encoding/decoding module 416 and the VC-4-64C mapping/demapping module 412 are configured to process 10G Ethernet services; the encapsulation/decapsulation module 414 and the VC mapping/demapping module 415 are mainly used to process 10M, 100M, and The Layer 2 switching module 413 is mainly used for Layer 2 switching processing of Ethernet services. specifically:
以太网接口 411, 用于接收本地以太网业务, 并对以太网业务进行以太 网 PHY层处理和以太网 MAC层处理;  The Ethernet interface 411 is configured to receive local Ethernet services, and perform Ethernet PHY layer processing and Ethernet MAC layer processing on the Ethernet service.
二层交换模块 413 , 用于对以太网业务进行二层交换处理, 实现 10/100/1000M以太网业务和 10G以太网业务的互通;  The Layer 2 switching module 413 is configured to perform Layer 2 switching processing on the Ethernet service to implement interworking between the 10/100/1000 M Ethernet service and the 10 Gigabit Ethernet service.
封装 /解封装模块 414, 用于对 10M/100/1000M以太网业务进行封装 /解 封装处理, 封装处理的方式包括 HDLC;、 LAPS或 GFP;  The encapsulation/decapsulation module 414 is configured to encapsulate/decapsulate the 10M/100/1000M Ethernet service, and the method of encapsulation processing includes HDLC; LAPS or GFP;
VC映射 /解映射模块 415, 用于完成封装之后的 10M、 100M和 1000M 以太网业务数据的映射 /解映射; 编码 /解编码模块 416, 用于对 10G以太网业务进行编码 /解编码处理; VC-4-64C映射 /解映射模块 412,用于完成 10G以太网业务的映射 /解映 射处理。 The VC mapping/demapping module 415 is configured to perform mapping/demapping of the 10M, 100M, and 1000M Ethernet service data after the encapsulation; and the encoding/decoding module 416 is configured to perform encoding/decoding processing on the 10G Ethernet service; The VC-4-64C mapping/demapping module 412 is configured to perform mapping/decoding of 10G Ethernet services. Shot processing.
图 5为本发明实施例 EOS装置中的 SDH群路处理单元的结构示意图。 如图 5所示, SDH群路处理单元包含: 复用段开销处理模块 531 , 再生段开 销处理模块 532, STM-N (同步传输模块等级 N )接口 533, STM-64 (同步 传输模块等级 64 )接口 534。 其中: FIG. 5 is a schematic structural diagram of an SDH group path processing unit in an EOS device according to an embodiment of the present invention. As shown in FIG. 5, the SDH group processing unit includes: a multiplex section overhead processing module 531, a regenerator section overhead processing module 532, an STM-N (synchronous transmission module level N) interface 533, and an STM-64 (synchronous transmission module level 64). ) interface 534. among them:
复用段开销处理模块 531 , 用于进行以太网业务复用段的开销处理; 再生段开销处理模块 532,与复用段开销处理模块 531、STM-N接口 533 和 STM-64接口 534相连, 用于进行以太网业务再生段的开销处理;  The multiplex section cost processing module 531 is configured to perform overhead processing on the multiplex section of the Ethernet service; the regenerator section overhead processing module 532 is connected to the multiplex section overhead processing module 531, the STM-N interface 533, and the STM-64 interface 534. Used for overhead processing of the Ethernet service regeneration segment;
STM-N 接口 533 , 用于将经过再生段开销处理模块 532 处理的 10M/100/1000M以太网业务数据发送到 SDH网络上, 并接收 SDH网络上 10M/100/1000M以太网业务数据发送到再生段开销处理模块 532;  The STM-N interface 533 is configured to send 10M/100/1000M Ethernet service data processed by the regenerative segment overhead processing module 532 to the SDH network, and receive 10M/100/1000M Ethernet service data on the SDH network for transmission to the regeneration. Segment overhead processing module 532;
STM-64接口 534, 用于将经过再生段开销处理模块 532处理的 10G以 太网业务数据发送到 SDH网络上,并接收 SDH网络上 10G以太网业务数据 并将其发送到再生段开销处理模块 532。  The STM-64 interface 534 is configured to send the 10G Ethernet service data processed by the regenerator section overhead processing module 532 to the SDH network, and receive the 10G Ethernet service data on the SDH network and send it to the regenerator section overhead processing module 532. .
在具体实现时, SDH群路处理单元 303中的 STM-N接口 533和 STM-64 接口 534可以不止一个。 In a specific implementation, there may be more than one STM-N interface 533 and STM-64 interface 534 in SDH group processing unit 303.
图 6为本发明实施例 EOS装置的完整结构示意图。 FIG. 6 is a schematic diagram of the complete structure of an EOS device according to an embodiment of the present invention.
以太网业务处理单元 301中, 经 VC-4-64C映射 /解映射模块 412和 VC 映射 /解映射模块 415处理后的数据流, 经以太网业务处理单元侧背板接口 601的处理后, 再发往交叉连接处理单元 302进行交换处理; 接收到交叉连 接处理单元 302输出的数据后, 按照配置送往 VC-4-64C映射 /解映射模块 412, 或者送入 VC映射解映射模块 415。  In the Ethernet service processing unit 301, the data stream processed by the VC-4-64C mapping/demapping module 412 and the VC mapping/demapping module 415 is processed by the Ethernet service processing unit side backplane interface 601, and then The data is sent to the cross-connection processing unit 302 for exchange processing; after receiving the data output by the cross-connection processing unit 302, it is sent to the VC-4-64C mapping/demapping module 412 according to the configuration, or sent to the VC mapping demapping module 415.
SDH群路处理单元 303中, 经交叉连接处理单元 302交换处理后的以 太网业务需通过 SDH群路处理单元侧的背板接口 602进行处理后, 再发往 复用段开销处理模块 531、再生段开销处理模块 532,之后通过 STM-N接口 或 STM-64接口发送到 SDH网络上; 逆向过程为, SDH群处理单元 303通 过 STM-N接口和 /或 STM-64接口, 从 SDH网络上接收数据, 之后经过再 生段开销处理模块 532和复用段开销处理模块 531的开销处理,最后通过背 板接口 602发送给交叉处理单元 302。 In the SDH group processing unit 303, the Ethernet service exchanged by the cross-connection processing unit 302 is processed by the backplane interface 602 on the SDH group processing unit side, and then the reciprocating segment overhead processing module 531 is regenerated. Segment overhead processing module 532, then through the STM-N interface Or the STM-64 interface is sent to the SDH network; in the reverse process, the SDH group processing unit 303 receives data from the SDH network through the STM-N interface and/or the STM-64 interface, and then passes through the regenerator section overhead processing module 532 and The overhead processing of the segment overhead processing module 531 is finally sent to the cross processing unit 302 through the backplane interface 602.
图 7 为本发明实施例交叉连接处理单元同时与多个以太网业务处理单 元和 SDH群路处理单元相连的结构示意图。 FIG. 7 is a schematic structural diagram of a cross-connect processing unit connected to multiple Ethernet service processing units and an SDH group processing unit at the same time according to an embodiment of the present invention.
根据不同的背板接口和系统规模,一个交叉连接处理单元 302可以同时 与多个以太网业务处理单元 301、 多个 SDH群路处理单元 303相连。 如图 7 所示, 一个交叉连接处理单元 302同时与 M个以太网业务处理单元, N个 SDH群路处理单元相连。其中 M个以太网业务处理单元分别用 1到 M进行 标识, N个 SDH群路处理单元分别用 1到 N进行标识。  A cross-connect processing unit 302 can be connected to a plurality of Ethernet service processing units 301 and a plurality of SDH group processing units 303 at the same time according to different backplane interfaces and system sizes. As shown in FIG. 7, a cross-connect processing unit 302 is simultaneously connected to M Ethernet service processing units and N SDH group processing units. The M Ethernet service processing units are identified by 1 to M, and the N SDH group processing units are identified by 1 to N respectively.
图 8为本发明实施例 EOS装置将 10G以太网业务送入 SDH网络上的处 理方法, 称之为 10G以太网业务的正向处理, 包括以下步骤: FIG. 8 is a schematic diagram of a method for processing an EOS device to send a 10G Ethernet service to an SDH network according to an embodiment of the present invention, which is referred to as a forward processing of a 10G Ethernet service, and includes the following steps:
步骤 801 ,通过以太网接口接收 10G以太网业务的数据信号,进行 PHY 层处理以及二层 MAC层处理;  Step 801: Receive a data signal of a 10G Ethernet service through an Ethernet interface, perform PHY layer processing, and perform Layer 2 MAC layer processing;
具体地, 以太网业务经以太网 PHY层处理转换成以太网 MAC层可接 收的数据后进行二层 MAC层处理; 如果带有二层交换功能, 那么以太网业 务在二层 MAC层处理之后进入二层交换模块进行交换处理;  Specifically, the Ethernet service is processed by the Ethernet PHY layer to be converted into data receivable by the Ethernet MAC layer, and then processed by the Layer 2 MAC layer; if the Layer 2 switching function is performed, the Ethernet service enters after the Layer 2 MAC layer processing. The Layer 2 switching module performs switching processing;
步骤 802, 对以太网数据进行 64b/66b编码后, 将数据映射入 VC-4-64C 虚容器中, 在映射过程中, 可以选择是否使用字节间插; 步驟 803, 通过背板接口将映射后的数据转换成交叉连接处理单元可以 接收的数据后, 送入交叉连接处理单元;  Step 802: After 64b/66b encoding the Ethernet data, mapping the data into the VC-4-64C virtual container, in the mapping process, whether to use byte interleaving; Step 803, mapping through the backplane interface After the data is converted into data that can be received by the cross-connect processing unit, the data is sent to the cross-connect processing unit;
步骤 804, 交叉连接处理单元接收到以太网业务处理单元送来的数据之 后, 按照配置对数据进行电路交换; 电路交换之后将数据送入到 SDH群路 处理单元; 步骤 805, SDH群路处理单元接收到交叉连接处理单元送来的数据之 后, 对其进行复用段、 再生段开销处理, 再送入相应的 STM-64接口, 发送 到 SDH网备中。 Step 804: After receiving the data sent by the Ethernet service processing unit, the cross-connect processing unit performs circuit switching according to the configuration. After the circuit switching, the data is sent to the SDH group processing unit. Step 805, the SDH group processing unit Receiving data from the cross-connect processing unit After that, the multiplex section and the regenerative section overhead processing are performed, and then sent to the corresponding STM-64 interface, and sent to the SDH network backup.
图 9为本发明实施例 EOS装置从 SDH网络上接收 10G以太网业务数据 的处理方法, 称之为 10G以太网业务的逆向处理, 包括以下步驟: FIG. 9 is a schematic diagram of a method for processing an EOS device to receive 10G Ethernet service data from an SDH network according to an embodiment of the present invention, which is referred to as reverse processing of a 10G Ethernet service, and includes the following steps:
步骤 901 , SDH群路处理单元对通过 STM-64接口从 SDH网络中收到 的数据进行再生段、 复用段开销处理;  Step 901: The SDH group processing unit performs a regenerator section and a multiplexing section overhead processing on the data received from the SDH network through the STM-64 interface.
步骤 902, SDH群路处理单元通过背板接口将数据送入交叉连接处理单 元, 在交叉连接处理单元内按照配置进行电路交换;  Step 902: The SDH group processing unit sends data to the cross-connect processing unit through the backplane interface, and performs circuit switching according to the configuration in the cross-connect processing unit.
步骤 903 , 以太网业务处理单元通过背板接口接收交叉连接处理单元发 送的数据;  Step 903: The Ethernet service processing unit receives the data sent by the cross-connection processing unit through the backplane interface.
步骤 904, 以太网业务处理单元通过 VC-4-64C映射 /解映射模块对数据 进行解映射, 然后对数据进行 64b/66b解编码;  Step 904: The Ethernet service processing unit demaps the data by using a VC-4-64C mapping/demapping module, and then performs 64b/66b de-encoding on the data.
步驟 905 , 对解编码之后的 10G以太网业务数据进行二层 MAC层处理 以及 PHY层处理, 最后送入本地以太网交换网络。  Step 905: Perform Layer 2 MAC layer processing and PHY layer processing on the decoded 10G Ethernet service data, and finally send the local Ethernet switching network.
图 10为本发明实施例 EOS装置将 10/100/1000M以太网业务送入 SDH 网络上的处理方法, 称之为 10/100/1000M以太网业务的正向处理, 包括以 下步骤: 10 is a processing method for an EOS device to send a 10/100/1000 M Ethernet service to an SDH network according to an embodiment of the present invention, which is referred to as a forward processing of a 10/100/1000 M Ethernet service, and includes the following steps:
步驟 1001 ,通过以太网接口接收 10/100/1000M以太网业务的数据信号, 进行 PHY层处理以及 MAC层处理;  Step 1001: Receive a data signal of a 10/100/1000 M Ethernet service through an Ethernet interface, perform PHY layer processing, and perform MAC layer processing;
具体地, 以太网业务经以太网 PHY层处理转换成以太网 MAC层可接 收的数据后进行二层 MAC层处理; 如果带有二层交换功能, 那么以太网业 务在二层 MAC层处理之后进入二层交换模块进行交换处理;  Specifically, the Ethernet service is processed by the Ethernet PHY layer to be converted into data receivable by the Ethernet MAC layer, and then processed by the Layer 2 MAC layer; if the Layer 2 switching function is performed, the Ethernet service enters after the Layer 2 MAC layer processing. The Layer 2 switching module performs switching processing;
步骤 1002, 对以太网数据进行 GFP/HDLC/LAPS 中的一种封装之后, 映射到 VC12、 VC3或者 VC4等相应的 VC容器中(可选择是否具有虚级联 I自动链路容量调整 LCAS功能) ; 步骤 1003 , 通过背板接口将映射之后的数据流送入交叉连接处理单元; 步骤 1004, 交叉连接处理单元接收数据之后, 按照配置对业务进行电 路交换, 再送入到 SDH群路处理单元; Step 1002: After performing one encapsulation on the Ethernet data in GFP/HDLC/LAPS, mapping to the corresponding VC container such as VC12, VC3, or VC4 (can choose whether to have the virtual concatenation I automatic link capacity adjustment LCAS function) ; Step 1003: The data stream after mapping is sent to the cross-connection processing unit through the backplane interface. Step 1004, after receiving the data, the cross-connection processing unit performs circuit switching according to the configuration, and then sends the data to the SDH group processing unit.
步骤 1005, SDH群路处理单元接收到交叉连接处理单元送来的数据之 后, 对其进行复用段、 再生段开销处理, 再送入相应的 STM-N接口, 发送 到 SDH网络中。  Step 1005: After receiving the data sent by the cross-connect processing unit, the SDH group processing unit performs multiplex section and regenerator section overhead processing, and then sends the data to the corresponding STM-N interface, and sends the data to the SDH network.
图 11为本发明实施例 EOS装置从 SDH网络上接收 10/100/1000M以太 网业务数据的处理方法, 称之为 10/100/1000M以太网业务的逆向处理, 包 括以下步骤: 11 is a processing method for receiving an 10/100/1000 M Ethernet service data from an SDH network according to an embodiment of the present invention, which is called reverse processing of a 10/100/1000 M Ethernet service, and includes the following steps:
步驟 1101, SDH群路处理单元对通过 STM-N接口从 SDH网络中收到 的数据进行再生段、 复用段开销处理;  Step 1101: The SDH group processing unit performs a regenerator section and a multiplex section overhead processing on the data received from the SDH network through the STM-N interface.
步驟 1102, SDH群路处理单元通过背板接口将数据送入交叉连接处理 单元, 在交叉单元内按照配置进行电路交换;  Step 1102: The SDH group processing unit sends data to the cross-connect processing unit through the backplane interface, and performs circuit switching according to the configuration in the cross unit.
步驟 1103 , 以太网业务处理单元通过背板接口接收交叉连接处理单元 发送的数据;  Step 1103: The Ethernet service processing unit receives the data sent by the cross-connection processing unit through the backplane interface.
步骤 1104, 以太网业务处理单元通过 VC映射 /解映射模块对数据进行 解映射, 然后对数据进行解封装;  Step 1104: The Ethernet service processing unit demaps the data by using a VC mapping/demapping module, and then decapsulates the data.
步骤 1105,对解封装之后的以太网业务数据进行二层 MAC层处理以及 PHY层处理, 最后送入本地以太网交换网络。  In step 1105, the de-encapsulated Ethernet service data is subjected to Layer 2 MAC layer processing and PHY layer processing, and finally sent to the local Ethernet switching network.
工业实用性 与现有技术相比, 本发明所述的方法对于 10G以太网业务, 以 64b/66b 编码 /解编码取代 GFP/HDLC/LAPS封装, 提供了一种将 10G以太网业务接 入 SDH网络的方法, 使 EOS设备更加灵活, 10G以太网接入效率更高、 时 延更小。 避免了 GFP/HDLC/LAPS封装造成效率低下、 时延增加的问题。 本 发明装置与方法, 除了能处理 10G 以太网业务之外, 在设置完成 GFP/HDLC/LAPS封装的功能单元的情况下, 仍然能处理 10/100/1000M以 太网业务, 而且在具有二层交换功能的时候, 还能实现 10G以太网业务与 10/100/1000M以太网业务的互通。 Industrial Applicability Compared with the prior art, the method of the present invention replaces the GFP/HDLC/LAPS package with 64b/66b encoding/decoding for 10G Ethernet services, and provides a 10G Ethernet service to SDH. The network method makes the EOS device more flexible, and the 10G Ethernet access is more efficient and the delay is smaller. The problem of inefficiency and increased delay caused by GFP/HDLC/LAPS encapsulation is avoided. Ben Invented device and method, in addition to being able to handle 10G Ethernet services, can still handle 10/100/1000M Ethernet service and have Layer 2 switching function when the functional unit of GFP/HDLC/LAPS package is set up At the same time, it can also realize the interworking of 10G Ethernet services and 10/100/1000M Ethernet services.

Claims

权 利 要 求 书 Claim
1、 一种基于同步数字系列的以太网装置,包含以太网业务处理单元、 同步数字系列群路处理单元, 交叉连接处理单元; 其特征在于:  1. An Ethernet device based on a synchronous digital series, comprising an Ethernet service processing unit, a synchronous digital series group processing unit, and a cross-connect processing unit; wherein:
所述以太网业务处理单元用于将接收到的 10G 以太网业务数据进行物 理层处理和介质访问控制层处理,并将处理后的数据进行编码和虚容器映射 后输出;  The Ethernet service processing unit is configured to perform processing of the received 10G Ethernet service data by the physical layer processing and the medium access control layer, and perform coding and virtual container mapping and outputting the processed data;
所述同步数字系列群路处理单元用于通过所述交叉连接处理单元接收 以太网业务处理单元输出的 10G以太网业务映射入 SDH后的数据, 并对该 数据进行复用段开销处理和再生段开销处理后发送至同步数字系列网絡。  The synchronous digital series group processing unit is configured to receive, by the cross-connect processing unit, data that is mapped into the SDH by the 10G Ethernet service output by the Ethernet service processing unit, and perform multiplexing section overhead processing and regeneration section on the data. The overhead is processed and sent to the synchronous digital series network.
2、 如权利要求 1所述的装置, 其特征在于, 所述以太网业务处理单 元包含: 以太网接口, 编码模块, 第一虚容器映射模块; 所述同步数字系列 群路处理单元包含: 复用段开销处理模块, 再生段开销处理模块, STM-64 接口; 其中:  2. The apparatus according to claim 1, wherein the Ethernet service processing unit comprises: an Ethernet interface, an encoding module, and a first virtual container mapping module; and the synchronous digital series group processing unit comprises: Segment overhead processing module, regenerative section overhead processing module, STM-64 interface;
所述以太网接口用于接收所述 10G 以太网业务数据, 并对其进行所述 物理层处理和介质访问控制层处理后输出;  The Ethernet interface is configured to receive the 10G Ethernet service data, and perform the physical layer processing and the medium access control layer processing on the output;
所述编码模块用于将以太网接口输出的 10G 以太网业务数据进行编码 后输出;  The encoding module is configured to encode and output 10G Ethernet service data output by the Ethernet interface;
所述第一虚容器映射模块用于将所述编码后的 10G 以太网业务数据映 射到级联的虚容器后输出;  The first virtual container mapping module is configured to map the encoded 10G Ethernet service data to a cascaded virtual container and output the same;
所述复用段开销处理模块和再生段开销处理模块用于将通过所述交叉 连接处理单元从以太网业务处理单元接收到的 10G以太网业务映射入 SDH 后的数据进行复用段开销处理和再生段开销处理后,通过所述 STM-64接口 发送到同步数字系列网络。  The multiplex section overhead processing module and the regenerator section overhead processing module are configured to perform multiplex section overhead processing on data that is mapped into the SDH by the 10G Ethernet service received by the cross-connection processing unit from the Ethernet service processing unit. After the regeneration segment overhead processing, the STM-64 interface is sent to the synchronous digital series network.
3、 如权利要求 2所述的装置, 其特征在于, 所述编码模块对 10G以 太网业务数据进行 64b/66b编码; 所述级联的虚容器为 VC-4-64C虚容器。  3. The apparatus according to claim 2, wherein the encoding module performs 64b/66b encoding on the 10G Ethernet service data; the cascaded virtual container is a VC-4-64C virtual container.
4、 如权利要求 3所述的装置, 其特征在于, 所迷以太网业务处理单 元还用于接收 10/100/1000M以太网业务数据; 以太网业务处理单元还包含: 封装模块, 第二虚容器映射模块, 第一背板接口; 同步数字系列群路处理单 元还包含笫二背板接口, STM-N接口; 其中: The device of claim 3, wherein the Ethernet service processing unit is further configured to receive 10/100/1000 M Ethernet service data; the Ethernet service processing unit further includes: a package module, a second virtual Container mapping module, first backplane interface; synchronous digital series group processing list The element also includes a second backplane interface, an STM-N interface;
所述封装模块用于对经过所述物理层处理和介质访问控制层处理的 10/100/1000M以太网业务 据进行 GFP/HDLC/LAPS封装后输出;  The encapsulating module is configured to perform GFP/HDLC/LAPS encapsulation output on the 10/100/1000 M Ethernet service data processed by the physical layer processing and the medium access control layer;
所述第二虚容器映射模块用于将封装模块输出的 10/100/1000M以太网 业务数据映射到虚容器 VC12、 VC3或者 VC4后输出;  The second virtual container mapping module is configured to map the 10/100/1000 M Ethernet service data output by the encapsulating module to the virtual container VC12, VC3, or VC4, and output the same;
所述第一背板接口用于将第二虚容器映射模块输出的数据通过所述交 叉连接处理单元输出到所述同步数字系列群路处理单元中的第二背板接口; 同步数字系列群路处理单元将从第二背板接口接收并且经过复用段开 销处理和再生段开销处理的 10/100/1000M以太网业务数据通过 STM-N接口 发送到同步数字系列网絡。  The first backplane interface is configured to output data output by the second virtual container mapping module to the second backplane interface in the synchronous digital series group processing unit through the cross connection processing unit; The processing unit transmits the 10/100/1000 M Ethernet service data received from the second backplane interface and processed through the multiplex section overhead processing and the regenerator section overhead to the synchronous digital series network through the STM-N interface.
5、 如权利要求 3所述的装置, 其特征在于, 所述第一虚容器映射模 块对 10G以太网业务数据使用字节间插或非间插方式映射到所述 VC-4-64C 虚容器后输出。  The device according to claim 3, wherein the first virtual container mapping module maps 10G Ethernet service data to the VC-4-64C virtual container by using byte interleaving or non-interleaving mode. After the output.
6、 如权利要求 2所述的装置, 其特征在于, 所述以太网业务处理单 元还包含二层交换模块,用于对经过所述介质访问控制层处理的以太网业务 数据进行二层交换处理。  The device of claim 2, wherein the Ethernet service processing unit further comprises a Layer 2 switching module, configured to perform Layer 2 switching processing on the Ethernet service data processed by the medium access control layer. .
7、 如权利要求 3所述的装置, 其特征在于, 所述交叉连接处理单元 通过对所述 VC-4-64C虚容器进行整体电路交换, 将所述以太网业务处理单 元输出的数据发送至所述同步数字系列群路处理单元。  7. The apparatus according to claim 3, wherein the cross-connect processing unit transmits data output by the Ethernet service processing unit to the VC-4-64C virtual container by performing overall circuit switching to The synchronous digital series group processing unit.
8、 一种基于同步数字系列的以太网装置,包含以太网业务处理单元、 同步数字系列群路处理单元, 交叉连接处理单元; 其特征在于:  8. An Ethernet device based on a synchronous digital series, comprising an Ethernet service processing unit, a synchronous digital series group processing unit, and a cross-connect processing unit; wherein:
所述同步数字系列群路处理单元用于从同步数字系列网络接收 10G 以 太网业务映射入 SDH网络之后的数据, 并对该数据进行再生段开销处理和 复用段开销处理后输出;  The synchronous digital series group processing unit is configured to receive data after the 10G Ethernet service is mapped into the SDH network from the synchronous digital series network, and perform the regeneration segment overhead processing and the multiplexing segment overhead processing on the data, and output the data;
所述以太网业务处理单元用于将通过所述交叉连接处理单元从同步数 字系列群路处理单元接收到的数据进行虚容器解映射和解编码后,进行介质 访问控制层处理和物理层处理并输出到以太网交换网络。  The Ethernet service processing unit is configured to perform demapping and de-encoding the data received by the cross-connection processing unit from the synchronous digital series group processing unit, and then perform media access control layer processing and physical layer processing and output. Switch to the Ethernet network.
9、 如权利要求 8所述的装置, 其特征在于, 所迷以太网业务处理单 元包含: 以太网接口, 解编码模块, 第一虚容器解映射模块; 所述同步数字 系列群路处理单元包含: 复用段开销处理模块, 再生段开销处理模块,9. The apparatus according to claim 8, wherein the Ethernet service processing list The element includes: an Ethernet interface, a decoding module, and a first virtual container demapping module; the synchronous digital series group processing unit includes: a multiplexing segment overhead processing module, a regeneration segment overhead processing module,
STM-64接口; 其中: STM-64 interface; where:
所述再生段开销处理模块和复用段开销处理模块用于对通过所述 STM-64接口从同步数字系列网络接收到的数据进行再生段开销处理和复用 段开销处理,并将处理后的数据通过所述交叉连接处理单元输出到以太网业 务处理单元;  The regenerator section overhead processing module and the multiplex section cost processing module are configured to perform regenerator section overhead processing and multiplex section overhead processing on data received from the synchronous digital series network through the STM-64 interface, and process the processed Data is output to the Ethernet service processing unit through the cross-connect processing unit;
所述第一虚容器解映射模块用于对经过复用段开销处理后的数据进行 解映射后输出;  The first virtual container demapping module is configured to perform demapping on the data processed by the multiplex section overhead and output the data;
所述解编码模块用于对第一虚容器解映射模块输出的数据进行解编码 后输出;  The decoding module is configured to perform de-encoding and outputting data output by the first virtual container demapping module;
所述以太网接口用于对解编码模块输出的 10G以太网业务数据进行所 述介质访问控制层处理和物理层处理并输出到以太网交换网络。  The Ethernet interface is configured to perform the medium access control layer processing and the physical layer processing on the 10G Ethernet service data output by the de-encoding module and output to the Ethernet switching network.
10、 如权利要求 9所述的装置, 其特征在于, 所述解编码模块对第一 虚容器解映射模块输出的数据进行 64b/66b解编码; 所述第一虚容器解映射 模块对 10G以太网业务映射入 SDH网络之后的数据进行 VC-4-64C虚容器 解映射。  The apparatus according to claim 9, wherein the de-encoding module performs 64b/66b de-encoding on the data output by the first virtual container demapping module; the first virtual container demapping module pairs the 10G ether The data after the network service is mapped into the SDH network is used for VC-4-64C virtual container demapping.
11、 如权利要求 10所述的装置,其特征在于, 所述同步数字系列群路 处理单元还用于接收 10/100/1000M以太网业务映射入 SDH 网络之后的数 据; 以太网业务处理单元还包含: 第二虚容器解映射模块, 解封装模块, 第 一背板接口; 同步数字系列群路处理单元还包含第二背板接口, STM-N接 口; 其中:  The apparatus according to claim 10, wherein the synchronous digital series group processing unit is further configured to receive data after the 10/100/1000 M Ethernet service is mapped into the SDH network; the Ethernet service processing unit further The method includes: a second virtual container demapping module, a decapsulation module, and a first backplane interface; the synchronous digital series group processing unit further includes a second backplane interface, an STM-N interface;
同步数字系列群路处理单元将通过 STM-N接口从同步数字系列网络接 收到的数据进行再生段开销处理和复用段开销处理后通过所述第二背板接 口输出;  The synchronous digital series group processing unit performs the regeneration segment overhead processing and the multiplex section overhead processing on the data received from the synchronous digital series network through the STM-N interface, and then outputs the data through the second backplane interface;
所述第一背板接口用于通过所述交叉连接处理单元从所述第二背板接 口接收数据,并根据配置送入第一虚容器解映射模块或者第二虛容器解映射 模块; 所述第二虚容器解映射模块用于将接收到的数据进行解映射后输出; 所述解封装模块用于对第二虚容器解映射模块输出的数据进行The first backplane interface is configured to receive data from the second backplane interface by using the cross connection processing unit, and send the first virtual container demapping module or the second virtual container demapping module according to the configuration; The second virtual container demapping module is configured to demap the received data and output the data; the decapsulation module is configured to perform data output by the second virtual container demapping module
GFP/HDLC/LAPS解封装后输出到所述以太网接口进行所述介质访问控制层 处理和物理层处理后输出到以太网交换网络。 The GFP/HDLC/LAPS is decapsulated and output to the Ethernet interface for the medium access control layer processing and physical layer processing, and then output to the Ethernet switching network.
12、 如权利要求 10所述的装置, 其特征在于, 若接收到的 10G以太 网业务数据采用字节间插映射方式,则所述第一虚容器解映射模块对其使用 字节间插方式解映射。  12. The apparatus according to claim 10, wherein, if the received 10G Ethernet service data adopts a byte interleave mapping manner, the first virtual container demapping module uses byte interleaving Demap.
13、 如权利要求 11所述的装置, 其特征在于, 所述以太网业务处理单 元还包含二层交换模块,用于对所述解封装模块或解编码模块输出的以太网 业务数据进行二层交换处理。  The device according to claim 11, wherein the Ethernet service processing unit further includes a Layer 2 switching module, configured to perform Layer 2 of the Ethernet service data output by the decapsulation module or the decoding module. Exchange processing.
14、 如权利要求 10所述的装置, 其特征在于, 所述交叉连接处理单元 通过对所述 VC-4-64C虚容器进行整体电路交换, 将所述同步数字系列群路 处理单元输出的数据发送至所述第一虚容器解映射模块。  14. The apparatus according to claim 10, wherein the cross-connect processing unit outputs data output by the synchronous digital series group processing unit by performing overall circuit switching on the VC-4-64C virtual container. Send to the first virtual container demapping module.
15、 一种基于同步数字系列的以太网装置的以太网业务处理方法, 其 特征在于, 该方法包含如下步驟:  15. An Ethernet service processing method for an Ethernet device based on a synchronous digital series, characterized in that the method comprises the following steps:
A:对接收到的 10G以太网业务数据进行物理层处理和介质访问控制层 处理;  A: Perform physical layer processing and media access control layer processing on the received 10G Ethernet service data;
B: 对经过物理层处理和介质访问控制层处理的 10G以太网业务数据进 行编码和虚容器映射;  B: Encoding and virtual container mapping of 10G Ethernet service data processed by physical layer processing and medium access control layer;
C: 将经过编码和虚容器映射后输出的数据通过电路交换输出至同步数 字系列群路处理单元中进行复用段开销处理和再生段开销处理后发送至同 步数字系列网络。  C: The data output after the coding and virtual container mapping is output to the synchronous digital series group processing unit through circuit switching for multiplex section overhead processing and regenerator section overhead processing, and then sent to the synchronous digital series network.
16、 如权利要求 15所述的方法, 其特征在于, 步 B中, 对 10G以 太网业务数据进行 64b/66b编码, 并映射入 VC-4-64C虚容器中。  The method according to claim 15, wherein in step B, the 10G Ethernet service data is 64b/66b encoded and mapped into the VC-4-64C virtual container.
17、 如权利要求 16所述的方法, 其特征在于, 对 10G以太网业务数 据使用字节间插或非间插方式映射到所述 VC-4-64C虚容器中。  17. The method of claim 16, wherein the 10G Ethernet service data is mapped into the VC-4-64C virtual container using byte interleaving or non-interleaving.
18、 如权利要求 17所述的方法, 其特征在于, 步骤 C中, 所述电路 交换为 VC-4-64C虚容器整体电路交换。 18. The method according to claim 17, wherein in step C, the circuit switching is a VC-64C virtual container overall circuit switching.
19、 一种基于同步数字系列的以太网装置的以太网业务处理方法, 其 特征在于, 该方法包含如下步骤: 19. An Ethernet service processing method based on an Ethernet device of a synchronous digital series, characterized in that the method comprises the following steps:
a )对从同步数字系列网络接收的数据进行再生段开销处理和复用段开 销处理;  a) performing regenerator section overhead processing and multiplex section overhead processing on data received from the synchronous digital series network;
b )对经过再生段开销处理和复用段开销处理的数据进行电路交换; c )根据配置对其进行虚容器解映射和解编码后, 进行介质访问控制层 处理和物理层处理并输出到以太网交换网络。  b) circuit-switching the data processed by the regenerative section overhead processing and the multiplex section overhead processing; c) performing virtual container de-mapping and de-encoding according to the configuration, performing media access control layer processing and physical layer processing, and outputting to the Ethernet Exchange network.
20、 如权利要求 19所述的方法, 其特征在于, 步骤 c )中, 对 10G以 太网业务数据进行 VC-4-64C虚容器解映射和 64b/66b解编码。  The method according to claim 19, wherein in step c), the VC-4-64C virtual container demapping and the 64b/66b de-encoding are performed on the 10G Ethernet service data.
21、 如权利要求 20所述的方法, 其特征在于, 步骤 c ) 中, 若接收到 的 10G以太网业务数据采用字节间插映射方式, 则对其使用字节间插方式 解映射。  The method according to claim 20, wherein, in step c), if the received 10G Ethernet service data adopts a byte interleave mapping manner, the byte interleaving manner is used for demapping.
22、 如权利要求 19所述的方法, 其特征在于, 步骤 b ) 中, 若以太网 业务数据为 10G以太网业务数据,则所迷电路交换为 VC-4-64C虚容器整体 电路交换。  22. The method according to claim 19, wherein, in step b), if the Ethernet service data is 10G Ethernet service data, the circuit is switched to the VC-4-64C virtual container as a whole circuit.
PCT/CN2007/003935 2007-08-15 2007-12-29 Ethernet device and ethernet affair processing method based on the sdh WO2009021376A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB2007101425278A CN100568842C (en) 2007-08-15 2007-08-15 A kind of apparatus and method of in synchronous digital transmission network, handling Ethernet service
CN200710142527.8 2007-08-15

Publications (1)

Publication Number Publication Date
WO2009021376A1 true WO2009021376A1 (en) 2009-02-19

Family

ID=39193111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/003935 WO2009021376A1 (en) 2007-08-15 2007-12-29 Ethernet device and ethernet affair processing method based on the sdh

Country Status (2)

Country Link
CN (1) CN100568842C (en)
WO (1) WO2009021376A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108075903A (en) * 2016-11-15 2018-05-25 华为技术有限公司 For establishing the method and apparatus of flexible Ethernet group

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101557258B (en) * 2009-02-27 2014-07-02 工业和信息化部通信计量中心 Method and system for using synchronous digital hierarchy (SDH) to realize high-accuracy time synchronization
CN101924960B (en) * 2009-06-12 2014-11-05 华为技术有限公司 Service transport system, equipment and method
CN103546320B (en) * 2013-10-23 2016-08-03 北京千禧维讯科技有限公司 A kind of docking calculation of the cross-linked data of transmission network based on SDH
CN104811261B (en) * 2014-01-28 2018-03-02 中国电信股份有限公司 The method of OTN apparatus and its process signal
CN103997384B (en) * 2014-05-23 2017-07-25 北京中和卓远科技有限公司 A kind of test system and method based on synchronous time division technology
CN106788855B (en) * 2015-11-23 2018-12-07 华为技术有限公司 A kind of the optical transfer network bearing method and device of flexible Ethernet service
CN107800528B (en) * 2016-08-31 2021-04-06 中兴通讯股份有限公司 Method, device and system for transmitting synchronous information
CN107332742A (en) * 2017-05-23 2017-11-07 烽火通信科技股份有限公司 The method and system of E1 signals access transmission are realized in packet network
CN109254721B (en) * 2017-07-12 2024-04-05 中兴通讯股份有限公司 Flexible Ethernet data crossing method, transmission device and storage medium
CN109698732B (en) 2017-10-23 2021-07-09 华为技术有限公司 Method and device for transmitting data
CN112511382B (en) * 2020-11-24 2022-03-29 中盈优创资讯科技有限公司 Method and device for creating flexible Ethernet Flexe channel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1490987A (en) * 2002-10-18 2004-04-21 ��Ϊ�������޹�˾ Method for transmitting digital business on synchronous digital network
CN1604545A (en) * 2003-09-29 2005-04-06 上海贝尔阿尔卡特股份有限公司 Multi-service transmitting method, node device and multi-service transmitting platform

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1490987A (en) * 2002-10-18 2004-04-21 ��Ϊ�������޹�˾ Method for transmitting digital business on synchronous digital network
CN1604545A (en) * 2003-09-29 2005-04-06 上海贝尔阿尔卡特股份有限公司 Multi-service transmitting method, node device and multi-service transmitting platform

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108075903A (en) * 2016-11-15 2018-05-25 华为技术有限公司 For establishing the method and apparatus of flexible Ethernet group
CN108075903B (en) * 2016-11-15 2020-04-21 华为技术有限公司 Method and apparatus for establishing flexible Ethernet groups
US10903929B2 (en) 2016-11-15 2021-01-26 Huawei Technologies Co., Ltd. Flexible ethernet group establishment method and device

Also Published As

Publication number Publication date
CN100568842C (en) 2009-12-09
CN101141350A (en) 2008-03-12

Similar Documents

Publication Publication Date Title
WO2009021376A1 (en) Ethernet device and ethernet affair processing method based on the sdh
US6847644B1 (en) Hybrid data transport scheme over optical networks
US9014151B2 (en) Method and apparatus for transmitting low-rate traffic signal in optical transport network
US6771663B1 (en) Hybrid data transport scheme over optical networks
US7852880B2 (en) Provision of TDM service over GPON using VT encapsulation
US7006525B1 (en) Hybrid data transport scheme over optical networks
US20020083190A1 (en) Apparatus and method for GFP frame transfer
US8416770B2 (en) Universal service transport transitional encoding
US20110305458A1 (en) Method and device for service adaptation
EP1414265A2 (en) Multi-service Ethernet-over-SONET silicon platform
US20040252688A1 (en) Routing packets in frame-based data communication networks
WO2004036836A1 (en) A method of transmitting data service on synchronous digital network
US11477549B2 (en) Transmission network system, data switching and transmission method, apparatus and equipment
WO2005099282A1 (en) A method and system of signal transmission based on radio frequency stretch base station
WO2005104580A1 (en) Method and apparatus for multi-antenna signal transmission in rf long-distance wireless bs
US20040076168A1 (en) Multi-service ethernet-over-sonet silicon platform
WO2005071869A1 (en) A method, equipment and system for optical communication
WO2006056135A1 (en) Add drop multiplexing method, apparatus and system based on gfp
WO2009074002A1 (en) A device and method for implementing a channel of signaling communication network and management communication network
WO2011116662A1 (en) Ethernet service intercommunication method and apparatus
US6778561B1 (en) Hybrid data transport scheme over optical networks
US6973084B1 (en) Hybrid data transport scheme over optical networks
WO2005036781A1 (en) Apparatus and method for carrying out integration of multi-ports traffics
WO2017181675A1 (en) Method, device and system for data processing in ethernet
Scholten et al. Data transport applications using GFP

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07855935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07855935

Country of ref document: EP

Kind code of ref document: A1