WO2007125781A1 - Damper - Google Patents

Damper Download PDF

Info

Publication number
WO2007125781A1
WO2007125781A1 PCT/JP2007/058332 JP2007058332W WO2007125781A1 WO 2007125781 A1 WO2007125781 A1 WO 2007125781A1 JP 2007058332 W JP2007058332 W JP 2007058332W WO 2007125781 A1 WO2007125781 A1 WO 2007125781A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
car
signal
rope
damping device
Prior art date
Application number
PCT/JP2007/058332
Other languages
French (fr)
Japanese (ja)
Inventor
Masaaki Hirai
Yosuke Murao
Original Assignee
Toshiba Elevator Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Elevator Kabushiki Kaisha filed Critical Toshiba Elevator Kabushiki Kaisha
Publication of WO2007125781A1 publication Critical patent/WO2007125781A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3476Load weighing or car passenger counting devices
    • B66B1/3484Load weighing or car passenger counting devices using load cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/02Cages, i.e. cars
    • B66B11/026Attenuation system for shocks, vibrations, imbalance, e.g. passengers on the same side
    • B66B11/028Active systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/002Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion characterised by the control method or circuitry

Definitions

  • the present invention relates to a vibration damping device, and more particularly, to a vibration damping device suitable for a case where the lifting force of an elevator also reduces vibrations transmitted to a car via a rope.
  • An elevator car moves up and down in a hoistway via a rope wound around a lifting machine. At that time, vibrations generated when the lifting machine rotates may be transmitted to the car via the rope, causing discomfort to passengers in the car.
  • an active type vibration damping device as disclosed in Patent Document 1 is known.
  • This vibration control device is attached to an object to be controlled, and generates vibration having a phase opposite to that of the object to control the vibration.
  • an anti-vibration device that generates vibration by driving a weight made of magnetic material with an electromagnet is called "AMD (Active Mass Damper)".
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-234646
  • An object of the present invention is to provide a vibration damping device capable of efficiently reducing the vibration of a vibration suppression target without attaching special devices for vibration suppression to the vibration suppression target.
  • a vibration damping device includes a hoisting machine, a car that moves in a hoistway via a rope wound around the hoisting machine, and vibrations that occur when the car is moved.
  • a vibration detecting means for detecting a vibration, and a vibration signal detected by the vibration detecting means is provided with a phase shift corresponding to a rope length between the hoisting machine and the riding car to generate a vibration suppression signal.
  • Phase control means, and a drive control means for controlling the torque of the hoisting machine so as to reduce the vibration of the car based on the vibration control signal generated by the phase control means.
  • FIG. 1 is a diagram showing a configuration when a vibration damping device according to a first embodiment of the present invention is applied to an elevator.
  • FIG. 2 is a diagram showing the relationship between the position of the car and the relationship between the load acting on the rope in the embodiment.
  • FIG. 3 is a view showing a load waveform including a vibration component of a car in the embodiment.
  • FIG. 4 is a diagram showing the waveform of the vibration component in which the load waveform force of the car in the embodiment is also extracted.
  • FIG. 5 is a view for explaining a phase shift of a car vibration signal in the embodiment.
  • FIG. 6 is a diagram showing a phase difference (time delay) until a rope swaying due to the vibration control motion of the hoisting machine reaches the car in the embodiment.
  • FIG. 7 is a diagram showing an optimum phase shift amount (time delay amount) of the vibration suppression signal given to the lifting machine in the embodiment.
  • FIG. 8 is a diagram showing a configuration when the vibration damping device according to the second embodiment of the present invention is applied to an elevator.
  • FIG. 1 shows a configuration when the vibration damping device according to the first embodiment of the present invention is applied to an elevator.
  • the elevator includes a hoisting machine 11 installed in an appropriate place such as a machine room provided on the top floor of a building as a drive source.
  • a main sheave 12 is attached to the rotary shaft 11a of the hoisting machine 11, and a rope 13 is wound around the main sheave 12.
  • a cage 14 is connected to one end of the rope 13, and a count weight 15 is connected to the other end of the rope 13 via a deflecting sheave 16.
  • the passenger car 14 and the count weight 15 are supported by a pair of guide rails (only one side is shown here) 17 and 18 provided upright in the hoistway via a guide shoe.
  • the car 14 and the count weight 15 move up and down in a slidable manner via the rope 13 as the main sheave 12 rotates.
  • the car 14 is provided with a load sensor 19 in the vicinity of a connecting portion between a car room 14 a for carrying passengers and the rope 13. Further, a tail cord 20 for transmitting / receiving signals to / from an elevator control device 21 installed in the machine room is attached to the bottom of the car 14.
  • the elevator control device 21 controls the entire elevator including the operation control of the car 14.
  • the elevator control device 21 is configured by a general-purpose computer including a CPU, a ROM, a RAM, and the like, and executes various processes according to programs stored in the ROM.
  • the program includes a vibration suppression program for realizing the present invention.
  • a torque command signal is output from the elevator control device 21, and the hoisting machine 11 is driven in accordance with the torque command signal.
  • the main sheave 12 attached to the rotary shaft 11a rotates, and the car 14 moves up and down in the opposite direction together with the count weight 15 via the rope 13 wound around the main sheave 12. Move in the street.
  • the vibration force generated when the hoisting machine 11 rotates is transmitted to the car 14 via the S-rope 13, and the car 14 may be shaken to give a passenger discomfort in the car room 14a.
  • the elevator control device 21 is provided with a function as a vibration control device in order to reduce the vibration generated when the car 14 moves.
  • the following The vibration control function of the elevator control device 21 will be described.
  • the elevator control device 21 includes a speed control unit 22 and a car position detection unit 23, and as components for realizing a vibration control function, a no-pass filter 24, a phase control unit 25, and a gain multiplication. Part 26 and addition part 27.
  • the speed control unit 22 generates a torque command signal S1 for controlling the operation speed of the car 14.
  • the car position detector 23 detects the position of the car 14.
  • a rotation detector such as a pulse generator is installed on the rotary shaft 11a of the lifting machine 11, and a pulse signal output from the rotation detector is used.
  • a method such as counting is used.
  • the no-pass filter 24 is used as vibration detecting means for detecting the vibration of the car 14.
  • the high pass filter 24 cuts a low frequency component equal to or lower than a predetermined frequency included in the load signal S2 output from the load sensor 19, and generates a high frequency component of the load signal S2 as a vibration signal S3. Output to.
  • the phase control unit 25 determines the length of the rope 13 between the lifting machine 11 and the car 14 obtained based on the detection result of the car position detection unit 23 with respect to the vibration signal S3.
  • a signal S4 for vibration suppression is generated by giving a corresponding phase shift.
  • the gain multiplication unit 26 multiplies the vibration suppression signal S4 generated by the phase control unit 25 by a predetermined gain, and outputs the result to the addition unit 27.
  • the adding unit 27 adds a vibration-adjusted signal S5 after gain adjustment to the torque command signal S1 generated by the speed control unit 22, thereby
  • the final torque command signal S6 given to 11 is generated.
  • Fig. 2 is a diagram showing the relationship between the position of the car 14 and the load acting on the rope 13. The load when the car 14 is moving from the lowest floor (eg, 1F) to the highest floor. This represents a change in.
  • Fig. 3 shows the load waveform including the vibration component of the car 14, and
  • Fig. 4 shows the waveform of the vibration component extracted from the load waveform.
  • the load sensor 19 detects the load acting on the entire car 14 side, and a load signal S2 indicating the entire car load is sent to the elevator controller 21. Is output.
  • the pure load of the car 14 (the weight of the car room 14a + the weight of the passenger) is assumed to be gO.
  • the overall load on the car changes as shown in Fig. 2. That is, under the influence of the weight gl of the tail cord 20 that changes depending on the position of the car 14, the overall load of the car gradually increases as the car 14 approaches the top floor.
  • the total car load (gO + gl) not including the vibration component is substantially a DC component. Therefore, if this total car load (gO + gl) is removed by the noise-pass filter 24 that matches the frequency of the DC component, only the vibration component of the car 14 can be extracted as shown in Fig. 4. it can.
  • the signal after extracting the vibration component is given to the phase controller 25 as the vibration signal S3.
  • the phase control unit 25 has a function of giving a predetermined phase shift to the vibration signal S3. Specifically, as shown in FIG. 5, the phase is shifted by delaying the vibration signal S3 by a predetermined time tx.
  • Figure 5 (a) shows the state before the phase shift
  • Fig. 5 (b) shows the state after the phase shift.
  • the time tx is a force determined according to the length of the rope 13 between the lifting machine 11 and the car 14, which will be described in detail later with reference to FIG. 6 and FIG.
  • the vibration signal S3 phase-adjusted by the phase control unit 25 is supplied to the gain multiplication unit 26 as a vibration suppression signal S4, and is then multiplied by a predetermined gain, and then output to the addition unit 27. Is done.
  • the damping control signal S5 after the gain adjustment is added to the normal torque command signal S1 generated by the speed control unit 22, and a final torque command signal S6 is generated.
  • This torque command signal S6 is a reflection of the vibration component of the car 14. When this torque command signal S6 is given to the hoisting machine 11, the hoisting machine 11 performs a vibration suppression operation that slightly changes the tension of the rope 13 and shakes the tip of the rope 13.
  • the phase control unit 25 based on the position of the car 14 detected by the car position detection unit 23, the swing of the rope 13 due to the vibration control motion of the hoisting machine 11 is the car 1 Find the delay time to reach 4, and adjust the phase shift amount (delay time tx) of the vibration signal S3 according to the delay time.
  • Fig. 6 shows the phase difference (time delay) until the rope 13 swayed by the hoisting machine 11 reaches the car 14.
  • Fig. 7 shows the optimum amount of phase shift (time delay amount) of the vibration control signal applied to the hoisting machine 11.
  • the vibration period is 0.4 seconds. Therefore, the delay time required to shift the phase of the swing of the rope 13 by 90 degrees is calculated as 0.1 seconds.
  • the primary resonance frequency of the rope 13 determined by the weight of the rope 13, the car 14, the weight of the count weight 15, etc. appears remarkably as a vibration component. Therefore, if the point is limited to only the primary resonance frequency of the rope 13 and the torque control is performed by determining the phase shift amount in accordance with the frequency, the complicated control design as described above is not required, and It is possible to efficiently reduce the vibration of the car by installing a high-order vibration damper according to the control design.
  • the force using the high-pass filter 24 when extracting the vibration component of the car 14 If this high-pass filter 24 is applied too strongly, the phase advances and the vibration component May not be extracted accurately.
  • the vibration component is not included! /
  • the calculated value of the total car load (gO + gl) in the case (Fig. 2 (See) is almost the same as the actual measured value. Therefore, when the load of the car 14 is detected by the load sensor 19, the value of the total car load (gO + gl) corresponding to the position of the car 14 is obtained, and the total car load (gO + g 1 If the load force detected by the load sensor 19 is also reduced, only the vibration component of the car 14 can be extracted almost accurately. As a result, the high-pass filter 24 is not required, and the force vibration information can be detected accurately.
  • FIG. 8 is a diagram showing a configuration when the vibration damping device according to the second embodiment of the present invention is applied to an elevator.
  • the same parts as those in FIG. 1 in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • a governor 30 called a governor is usually installed.
  • the speed governor 30 includes a pair of governor sheaves 31 and 32 that are rotating bodies, and a rope 33 that is installed between the governor sheaves 31 and 32.
  • a car 14 is connected to the rope 33, and the governor sheaves 31 and 32 rotate in conjunction with the movement of the car 14.
  • a rotation detector 34 having a force such as a pulse generator is attached to one of the governor sheaves 31.
  • a rotation detection signal (pulse signal) S7 is output from the rotation detector 34 according to the rotation speed.
  • the elevator control device 21 replaces the high-pass filter 24 of Fig. 1 with a first differential operation unit 35, a subtraction unit 36, and a second differential operation unit 37. Prepare. Accordingly, the vibration component of the car 14 is extracted using the rotation detection signal S7 output from the rotation detector 34.
  • the vibration acceleration component signal S11 obtained in this way is substantially the same as the vibration signal S3 from which the high-pass filter 24 force in FIG. 1 is also output, and represents the vibration component generated in the car 14 during movement. ing.
  • the vibration component of the car 14 can be efficiently reduced using the tension variation of the rope 13.
  • noise reduction is achieved by adding a low-pass filter having an appropriate cutoff frequency after the first differential operation unit 35 and the second differential operation unit 37. It is also possible to perform processing.
  • the car 1 is detected using the rotation detection signal S7 output from the rotation detector 34.
  • the present invention can be applied regardless of the accuracy of the lifting machine 11 and the height of the elevator (lifting range of the car).
  • the rope 13 will not slide smoothly if the production and assembly accuracy of the elevator components such as sheaves 12, 16 and guide rails 17, 18 are poor. For this reason, even if the lifting machine 11 rotates with low vibration, the vibration generated at that time is increased via the rope 13 and transmitted to the car 14. In the present invention, it is possible to effectively reduce the vibration components caused by such elevator components.
  • a monotonous vibration component is transmitted from a vibration source (lifting machine 11) to a vibration control target part (car 14) via a connection part (rope 13) like an elevator. Any device can be applied.
  • a specific example is a robot arm.
  • the robot arm is composed of a motor (drive source), an arm (connecting portion) whose length for transmitting the power of the drive source can be changed, and a robot hand (vibration control target portion) operating via this arm.
  • the microcomputer that controls the robot arm has a function to detect the vibration of the robot hand and the arm If the function of controlling the motor torque by giving a phase shift corresponding to the length of the motor is incorporated, the vibration transmitted to the robot node via the arm can also be reduced. This realizes precise positioning of the robot node, assembly of parts with high accuracy, or stable gripping of articles.
  • the vibration can be effectively suppressed by adjusting the phase shift according to the frequency component that appears most prominently. I'll do it.
  • the present invention is not limited to the above-described embodiments as they are, but can be embodied by modifying the constituent elements without departing from the spirit of the invention in the implementation stage. Further, various forms can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be omitted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined. Industrial applicability

Abstract

A load signal (S2) outputted from a load sensor (19) installed in an elevator car (14) is passed through a highpass filter (24) to acquire a vibration signal (S3) of the elevator car (14). A phase control section (25) generates a dumping signal (S4) by imparting a phase variation corresponding to the length of the rope (13) between the hoist (11) and the elevator car (14) to the vibration signal (S3). A gain multiplying section (26) multiplies the dumping signal (S4) by a predetermined gain, adds the product to a torque command signal (S1), and gives the resultant signal to the hoist (11). Thus, the rope (13) is swung by the torque control of the hoist (11), and the vibration component of the elevator car (14) is reduced.

Description

明 細 書  Specification
制振装置  Vibration control device
技術分野  Technical field
[0001] 本発明は、制振装置に係り、特にエレベータの卷上機力もロープを介して乗りかご に伝わる振動を低減する場合などに好適な制振装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a vibration damping device, and more particularly, to a vibration damping device suitable for a case where the lifting force of an elevator also reduces vibrations transmitted to a car via a rope.
背景技術  Background art
[0002] エレベータの乗りかごは、卷上機に巻き架けられたロープを介して昇降路内を昇降 動作する。その際、卷上機が回転するときに生じる振動がロープを介して乗りかごに 伝わり、乗りかご内の乗客に不快感を与えることがある。  [0002] An elevator car moves up and down in a hoistway via a rope wound around a lifting machine. At that time, vibrations generated when the lifting machine rotates may be transmitted to the car via the rope, causing discomfort to passengers in the car.
[0003] このような乗りかごの移動時に発生する振動を低減する方法として、例えば特許文 献 1に開示されて 、るようなアクティブ型の制振装置が知られて 、る。この制振装置 は、制振対象とする物体に取り付けられ、その物体の振動とは逆位相の振動を発生 させて制振するものである。特に、磁性体で構成された重りを電磁石により駆動して 振動を発生させる除振装置のことを「AMD (Active Mass Damper)」と呼んでいる。  [0003] As a method for reducing such vibration generated when the car is moving, for example, an active type vibration damping device as disclosed in Patent Document 1 is known. This vibration control device is attached to an object to be controlled, and generates vibration having a phase opposite to that of the object to control the vibration. In particular, an anti-vibration device that generates vibration by driving a weight made of magnetic material with an electromagnet is called "AMD (Active Mass Damper)".
[0004] このような制振装置をエレベータに適用する場合には、乗りかご上に制振装置と振 動センサを設置し、振動センサによって乗りかごの振動を検出し、その振動信号に基 づ 、て除振装置を駆動制御してかご自体に制振力を与えると 、つた構成を取る。 特許文献 1:特開 2000— 234646号公報  [0004] When such a vibration damping device is applied to an elevator, a vibration damping device and a vibration sensor are installed on the passenger car, the vibration of the passenger car is detected by the vibration sensor, and based on the vibration signal. When a vibration damping force is applied to the car itself by driving and controlling the vibration isolator, the configuration is as follows. Patent Document 1: Japanese Unexamined Patent Publication No. 2000-234646
発明の開示  Disclosure of the invention
[0005] し力しながら、上述したような制振装置を用いて物体の振動を低減する方法では、 制振対象に除振装置を設置する作業が必要である。また、部品点数の増力 tl、それに 伴 、コストがかかると 、つた問題がある。  However, in the method of reducing the vibration of the object using the vibration damping device as described above, it is necessary to install the vibration damping device on the vibration damping target. In addition, there is another problem when the increase in the number of parts, tl, is accompanied by a cost.
[0006] 特に、エレベータでは、制振対象である乗りかごが昇降路内を移動しているため、 制振装置を用いて制振するためには、乗りかごの位置に応じて変化する振動特性を 考慮して、事前に複雑な制御設計を必要とするなどの問題がある。  [0006] In particular, in an elevator, since the car that is the object of vibration control moves in the hoistway, vibration characteristics that vary depending on the position of the car are required for vibration control using the vibration control device. Considering this, there are problems such as requiring complex control design in advance.
[0007] 本発明は、制振用の特別な機器類を制振対象に取り付けることなぐ制振対象の振 動を効率的に低減することのできる制振装置を提供することを目的とする。 [0008] 本発明の一観点による制振装置は、卷上機と、この卷上機に巻き架けられたロープ を介して昇降路内を移動する乗りかごと、この乗りかごの移動時に生じる振動を検出 する振動検出手段と、この振動検出手段によって検出された振動信号に上記卷上機 と上記乗りかごとの間のロープ長に応じた位相ずれを与えて制振用の信号を生成す る位相制御手段と、この位相制御手段によって生成された制振用の信号に基づいて 、上記乗りかごの振動を低減するように上記卷上機のトルクを制御する駆動制御手 段とを具備する。 [0007] An object of the present invention is to provide a vibration damping device capable of efficiently reducing the vibration of a vibration suppression target without attaching special devices for vibration suppression to the vibration suppression target. [0008] A vibration damping device according to an aspect of the present invention includes a hoisting machine, a car that moves in a hoistway via a rope wound around the hoisting machine, and vibrations that occur when the car is moved. A vibration detecting means for detecting a vibration, and a vibration signal detected by the vibration detecting means is provided with a phase shift corresponding to a rope length between the hoisting machine and the riding car to generate a vibration suppression signal. Phase control means, and a drive control means for controlling the torque of the hoisting machine so as to reduce the vibration of the car based on the vibration control signal generated by the phase control means.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]図 1は、本発明の第 1の実施形態に係る制振装置をエレベータに適用した場合 の構成を示す図である。  FIG. 1 is a diagram showing a configuration when a vibration damping device according to a first embodiment of the present invention is applied to an elevator.
[図 2]図 2は、同実施形態における乗りかごの位置とロープに作用する荷重との関係 との関係を示す図である。  FIG. 2 is a diagram showing the relationship between the position of the car and the relationship between the load acting on the rope in the embodiment.
[図 3]図 3は、同実施形態における乗りかごの振動成分を含んだ荷重波形を示す図 である。  FIG. 3 is a view showing a load waveform including a vibration component of a car in the embodiment.
[図 4]図 4は、同実施形態における乗りかごの荷重波形力も抽出された振動成分の波 形を示す図である。  [FIG. 4] FIG. 4 is a diagram showing the waveform of the vibration component in which the load waveform force of the car in the embodiment is also extracted.
[図 5]図 5は、同実施形態における乗りかごの振動信号の位相ずれを説明するための 図である。  FIG. 5 is a view for explaining a phase shift of a car vibration signal in the embodiment.
[図 6]図 6は、同実施形態における卷上機の制振運動によるロープの揺れが乗りかご に届くまでの位相差(時間遅れ)を示す図である。  [FIG. 6] FIG. 6 is a diagram showing a phase difference (time delay) until a rope swaying due to the vibration control motion of the hoisting machine reaches the car in the embodiment.
[図 7]図 7は、同実施形態における卷上機に与える制振用の信号の最適な位相ずれ 量(時間遅れ量)を示す図である。  [FIG. 7] FIG. 7 is a diagram showing an optimum phase shift amount (time delay amount) of the vibration suppression signal given to the lifting machine in the embodiment.
[図 8]図 8は、本発明の第 2の実施形態に係る制振装置をエレベータに適用した場合 の構成を示す図である。  FIG. 8 is a diagram showing a configuration when the vibration damping device according to the second embodiment of the present invention is applied to an elevator.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 以下、図面を参照して本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0011] (第 1の実施形態) [0011] (First embodiment)
図 1は本発明の第 1の実施形態に係る制振装置をエレベータに適用した場合の構 成を示す図である。 FIG. 1 shows a configuration when the vibration damping device according to the first embodiment of the present invention is applied to an elevator. FIG.
[0012] エレベータは、ビル最上階の上に設けられた機械室など、適切な場所に設置される 卷上機 11を駆動源として備える。卷上機 11の回転軸 11aにはメインシーブ 12が取り 付けられており、そのメインシーブ 12にロープ 13が巻き架けられている。ロープ 13の 一端には乗りかご 14が連結され、ロープ 13の他端にはそらせシーブ 16を介してカウ ントウェイト 15が連結されている。  [0012] The elevator includes a hoisting machine 11 installed in an appropriate place such as a machine room provided on the top floor of a building as a drive source. A main sheave 12 is attached to the rotary shaft 11a of the hoisting machine 11, and a rope 13 is wound around the main sheave 12. A cage 14 is connected to one end of the rope 13, and a count weight 15 is connected to the other end of the rope 13 via a deflecting sheave 16.
[0013] 乗りかご 14とカウントウェイト 15は、昇降路内に立設された一対のガイドレール (ここ では片側のみ図示) 17, 18にガイドシユーを介して支持されている。また、乗りかご 1 4とカウントウェイト 15は、メインシーブ 12の回転に伴い、ロープ 13を介してつるべ式 に上下方向に移動する。  [0013] The passenger car 14 and the count weight 15 are supported by a pair of guide rails (only one side is shown here) 17 and 18 provided upright in the hoistway via a guide shoe. In addition, the car 14 and the count weight 15 move up and down in a slidable manner via the rope 13 as the main sheave 12 rotates.
[0014] 乗りかご 14には、乗客を乗せるためのかご室 14aと、ロープ 13との接続部付近に荷 重センサ 19が設けられている。さらに、この乗りかご 14の底部には、機械室に設置さ れたエレベータ制御装置 21との間で信号の授受を行うためのテールコード 20が取り 付けられている。  The car 14 is provided with a load sensor 19 in the vicinity of a connecting portion between a car room 14 a for carrying passengers and the rope 13. Further, a tail cord 20 for transmitting / receiving signals to / from an elevator control device 21 installed in the machine room is attached to the bottom of the car 14.
[0015] エレベータ制御装置 21は、乗りかご 14の運転制御を含め、エレベータ全体の制御 を行う。このエレベータ制御装置 21は、 CPU, ROM, RAMなどを備えた汎用のコ ンピュータによって構成され、 ROMなどに記憶されたプログラムに従って各種処理を 実行する。上記プログラムには、本発明を実現するための制振用のプログラムも含ま れる。  The elevator control device 21 controls the entire elevator including the operation control of the car 14. The elevator control device 21 is configured by a general-purpose computer including a CPU, a ROM, a RAM, and the like, and executes various processes according to programs stored in the ROM. The program includes a vibration suppression program for realizing the present invention.
[0016] このような構成において、エレベータの運転時には、エレベータ制御装置 21からト ルク指令信号が出力され、そのトルク指令信号に従って卷上機 11が駆動される。卷 上機 11が駆動されると、その回転軸 11aに取り付けられたメインシーブ 12が回転し、 そこに巻き架けられたロープ 13を介して乗りかご 14がカウントウェイト 15と共に互い に反対方向に昇降路内を移動する。その際、卷上機 11が回転するときに生じる振動 力 Sロープ 13を介して乗りかご 14に伝わり、乗りかご 14が揺れてかご室 14a内の乗客 に不快感を与えることがある。  In such a configuration, during operation of the elevator, a torque command signal is output from the elevator control device 21, and the hoisting machine 11 is driven in accordance with the torque command signal.卷 When the upper machine 11 is driven, the main sheave 12 attached to the rotary shaft 11a rotates, and the car 14 moves up and down in the opposite direction together with the count weight 15 via the rope 13 wound around the main sheave 12. Move in the street. At that time, the vibration force generated when the hoisting machine 11 rotates is transmitted to the car 14 via the S-rope 13, and the car 14 may be shaken to give a passenger discomfort in the car room 14a.
[0017] 本実施形態では、このような乗りかご 14の移動時に発生する振動を低減するため、 エレベータ制御装置 21に制振装置としての機能が備えられている。以下に、このェ レベータ制御装置 21の制振機能について説明する。 In the present embodiment, the elevator control device 21 is provided with a function as a vibration control device in order to reduce the vibration generated when the car 14 moves. The following The vibration control function of the elevator control device 21 will be described.
[0018] エレベータ制御装置 21は、速度制御部 22とかご位置検出部 23を備えると共に、制 振機能を実現するための構成要素として、ノ、ィパスフィルタ 24、位相制御部 25、ゲイ ン乗算部 26、加算部 27を備える。 [0018] The elevator control device 21 includes a speed control unit 22 and a car position detection unit 23, and as components for realizing a vibration control function, a no-pass filter 24, a phase control unit 25, and a gain multiplication. Part 26 and addition part 27.
[0019] 速度制御部 22は、乗りかご 14の運転速度を制御するためのトルク指令信号 S1を 生成する。かご位置検出部 23は、乗りかご 14の位置を検出する。なお、このかご位 置検出部 23によるかご位置の検出方法としては、例えば卷上機 11の回転軸 11aに パルスジェネレータなどの回転検出器を設置し、その回転検出器から出力されるパ ルス信号をカウントするなどの方法が用いられる。 [0019] The speed control unit 22 generates a torque command signal S1 for controlling the operation speed of the car 14. The car position detector 23 detects the position of the car 14. As a method of detecting the car position by the car position detector 23, for example, a rotation detector such as a pulse generator is installed on the rotary shaft 11a of the lifting machine 11, and a pulse signal output from the rotation detector is used. A method such as counting is used.
[0020] ノ、ィパスフィルタ 24は、乗りかご 14の振動を検出するための振動検出手段として用 いられるものである。このハイパスフィルタ 24は、荷重センサ 19から出力される荷重 信号 S2に含まれる所定周波数以下の低周波成分をカットして、その荷重信号 S2の 高周波成分を振動信号 S3として生成し、位相制御部 25に出力する。 The no-pass filter 24 is used as vibration detecting means for detecting the vibration of the car 14. The high pass filter 24 cuts a low frequency component equal to or lower than a predetermined frequency included in the load signal S2 output from the load sensor 19, and generates a high frequency component of the load signal S2 as a vibration signal S3. Output to.
[0021] 位相制御部 25は、この振動信号 S3に対して、かご位置検出部 23の検出結果に基 づいて得られた卷上機 11と乗りかご 14との間のロープ 13の長さに応じた位相ずれを 与えることにより、制振用の信号 S4を生成する。 [0021] The phase control unit 25 determines the length of the rope 13 between the lifting machine 11 and the car 14 obtained based on the detection result of the car position detection unit 23 with respect to the vibration signal S3. A signal S4 for vibration suppression is generated by giving a corresponding phase shift.
[0022] ゲイン乗算部 26は、位相制御部 25によって生成された制振用の信号 S4に所定の ゲインを乗じて加算部 27に出力する。加算部 27は、速度制御部 22によって生成さ れたトルク指令信号 S1にゲイン調整後の制振用の信号 S5を付加することで、卷上機The gain multiplication unit 26 multiplies the vibration suppression signal S4 generated by the phase control unit 25 by a predetermined gain, and outputs the result to the addition unit 27. The adding unit 27 adds a vibration-adjusted signal S5 after gain adjustment to the torque command signal S1 generated by the speed control unit 22, thereby
11に与える最終的なトルク指令信号 S6を生成する。 The final torque command signal S6 given to 11 is generated.
[0023] 次に、上記エレベータ制御装置 21の制振機能に関わる処理動作について詳しく説 明する。 Next, processing operations relating to the vibration damping function of the elevator control device 21 will be described in detail.
[0024] 図 2は乗りかご 14の位置とロープ 13に作用する荷重との関係を示す図であり、乗り 力ご 14が最下階 (例えば 1F)から最上階まで移動しているときの荷重の変化を表し ている。図 3は乗りかご 14の振動成分を含んだ荷重波形、図 4はその荷重波形から 抽出された振動成分の波形を表している。  [0024] Fig. 2 is a diagram showing the relationship between the position of the car 14 and the load acting on the rope 13. The load when the car 14 is moving from the lowest floor (eg, 1F) to the highest floor. This represents a change in. Fig. 3 shows the load waveform including the vibration component of the car 14, and Fig. 4 shows the waveform of the vibration component extracted from the load waveform.
[0025] エレベータの運転時には、荷重センサ 19によって乗りかご 14側全体に作用する荷 重が検出され、その乗りかご全体荷重を示す荷重信号 S2がエレベータ制御装置 21 に出力されている。 [0025] During the operation of the elevator, the load sensor 19 detects the load acting on the entire car 14 side, and a load signal S2 indicating the entire car load is sent to the elevator controller 21. Is output.
[0026] 今、卷上機 11が建物の最上階よりも上に設置されている場合において、乗りかご 1 4の純粋な荷重 (かご室 14aの重量 +乗客の重量)を gOと仮定する。乗りかご 14が最 下階から最上階まで移動したとすると、乗りかご全体載荷重は図 2のように変化する。 すなわち、乗りかご 14の位置に応じて変化するテールコード 20の重量 glの影響を 受け、乗りかご 14が最上階に近づくに連れて、徐々に乗りかご全体荷重が増えてい くことになる。  [0026] Now, assuming that the aircraft 11 is installed above the top floor of the building, the pure load of the car 14 (the weight of the car room 14a + the weight of the passenger) is assumed to be gO. Assuming that the car 14 has moved from the lowest floor to the top floor, the overall load on the car changes as shown in Fig. 2. That is, under the influence of the weight gl of the tail cord 20 that changes depending on the position of the car 14, the overall load of the car gradually increases as the car 14 approaches the top floor.
[0027] ただし、これは乗りかご 14が移動時に振動していない場合である。実際には、図 2 に示された線形的な乗りかご全体荷重の変化に対して、乗りかご 14の上下振動によ る加速度分の荷重が加わる。このため、荷重センサ 19の荷重信号 S2は、図 3のよう に乗りかご 14の振動成分を含んだ波形となる。図中の Δνが振動成分を表している  [0027] However, this is a case where the car 14 does not vibrate when moving. Actually, the load corresponding to the acceleration due to the vertical vibration of the car 14 is applied to the linear change in the overall car load shown in FIG. For this reason, the load signal S2 of the load sensor 19 has a waveform including the vibration component of the car 14 as shown in FIG. Δν in the figure represents the vibration component
[0028] ここで、振動成分を含まない乗りかご全体荷重 (gO+gl)はほぼ DC成分である。よ つて、この乗りかご全体荷重 (gO+gl)をその DC成分の周波数に合わせたノヽィパス フィルタ 24で除去すれば、図 4に示すように、乗りかご 14の振動成分だけを抽出する ことができる。この振動成分を抽出した後の信号は、振動信号 S3として位相制御部 2 5に与えられる。 [0028] Here, the total car load (gO + gl) not including the vibration component is substantially a DC component. Therefore, if this total car load (gO + gl) is removed by the noise-pass filter 24 that matches the frequency of the DC component, only the vibration component of the car 14 can be extracted as shown in Fig. 4. it can. The signal after extracting the vibration component is given to the phase controller 25 as the vibration signal S3.
[0029] 位相制御部 25は、この振動信号 S3に対して所定の位相ずれを与える機能を備え ている。具体的には、図 5に示すように、振動信号 S3を所定の時間 txだけ遅延させ て位相をずらすように構成されている。図 5 (a)は位相ずれ前の状態、同図(b)は位 相ずれ後の状態を表している。上記時間 txは、卷上機 11と乗りかご 14との間のロー プ 13の長さに応じて決定される力 これについては後に図 6および図 7を参照して詳 しく説明する。  [0029] The phase control unit 25 has a function of giving a predetermined phase shift to the vibration signal S3. Specifically, as shown in FIG. 5, the phase is shifted by delaying the vibration signal S3 by a predetermined time tx. Figure 5 (a) shows the state before the phase shift, and Fig. 5 (b) shows the state after the phase shift. The time tx is a force determined according to the length of the rope 13 between the lifting machine 11 and the car 14, which will be described in detail later with reference to FIG. 6 and FIG.
[0030] この位相制御部 25によって位相調整された振動信号 S3は、制振用の信号 S4とし てゲイン乗算部 26に与えられ、そこで所定のゲインが乗じられた後、加算部 27に出 力される。この加算部 27において、速度制御部 22によって生成された通常のトルク 指令信号 S1に上記ゲイン調整後の制振用の信号 S5が加えられ、最終的なトルク指 令信号 S6が生成される。 [0031] このトルク指令信号 S6は、乗りかご 14の振動成分をカ卩味したものである。このトルク 指令信号 S6を卷上機 11に与えると、卷上機 11は、ロープ 13の張力を微妙に変動さ せて、ロープ 13の先端部を揺するような制振運転を行う。このような制振運転によつ て生じるロープ 13の揺れは、卷上機 11と乗りかご 14との間のロープ 13を介して所定 の時間だけ遅れて乗りかご 14に到着する。したがって、上記ロープ 13の揺れが乗り 力ご 14の振動波形に対して位相を 90度ずらした状態で乗りかご 14に届くように調整 すれば、理想的な振動減衰力を加えたことと同じになる。 [0030] The vibration signal S3 phase-adjusted by the phase control unit 25 is supplied to the gain multiplication unit 26 as a vibration suppression signal S4, and is then multiplied by a predetermined gain, and then output to the addition unit 27. Is done. In the adding unit 27, the damping control signal S5 after the gain adjustment is added to the normal torque command signal S1 generated by the speed control unit 22, and a final torque command signal S6 is generated. [0031] This torque command signal S6 is a reflection of the vibration component of the car 14. When this torque command signal S6 is given to the hoisting machine 11, the hoisting machine 11 performs a vibration suppression operation that slightly changes the tension of the rope 13 and shakes the tip of the rope 13. The swaying of the rope 13 caused by such vibration control operation arrives at the car 14 with a predetermined time delay through the rope 13 between the lifting machine 11 and the car 14. Therefore, if the swing of the rope 13 is adjusted so that it reaches the car 14 with the phase shifted by 90 degrees with respect to the vibration waveform of the car 14, it is the same as applying the ideal vibration damping force. Become.
[0032] ここで、上記位相制御部 25では、かご位置検出部 23によって検出される乗りかご 1 4の位置に基づいて、上記卷上機 11の制振運動によるロープ 13の揺れが乗りかご 1 4に届くまでの遅れ時間を求め、その遅れ時間に応じて振動信号 S3の位相ずれ量( 遅延時間 tx)を調整して ヽる。  [0032] Here, in the phase control unit 25, based on the position of the car 14 detected by the car position detection unit 23, the swing of the rope 13 due to the vibration control motion of the hoisting machine 11 is the car 1 Find the delay time to reach 4, and adjust the phase shift amount (delay time tx) of the vibration signal S3 according to the delay time.
[0033] この様子を図 6および図 7に示す。  [0033] This state is shown in FIG. 6 and FIG.
図 6は卷上機 11の制振運動によるロープ 13の揺れが乗りかご 14に届くまでの位相 差(時間遅れ)を示したものである。図 7は卷上機 11に与える制振用の信号の最適な 位相ずれ量(時間遅れ量)を示したものである。  Fig. 6 shows the phase difference (time delay) until the rope 13 swayed by the hoisting machine 11 reaches the car 14. Fig. 7 shows the optimum amount of phase shift (time delay amount) of the vibration control signal applied to the hoisting machine 11.
[0034] 振動周波数によっても異なる力 通常、ロープ 13のばね定数と、乗りかご 14とカウ ントウェイト 15の重量などで決まるロープ 1次共振周波数に関しては、乗りかご 14の 位置に応じたロープ長 (乗りかご 14から卷上機 11までのロープ長)によって位相遅れ を一意的に求めることができる。  [0034] Forces that vary depending on vibration frequency Rope primary resonance frequency, which is usually determined by the spring constant of the rope 13 and the weight of the car 14 and the counterweight 15, etc. The rope length according to the position of the car 14 ( The phase delay can be uniquely determined by the rope length from the car 14 to the lifting machine 11).
[0035] 一般的には、乗りかご 14が最下階にいるときには、乗りかご 14が卷上機 11から離 れるため、両者間のロープ長が最も長くなる。したがって、図 6に示すように、卷上機 1 1の制振運転によって生じるロープ 13の揺れは、当該ロープ長に応じた位相差を持 つて乗りかご 14に遅れて伝わることになる。  [0035] Generally, when the car 14 is on the lowest floor, the car 14 is separated from the lifting machine 11, so that the rope length between the two is the longest. Therefore, as shown in FIG. 6, the swaying of the rope 13 caused by the damping operation of the lifting machine 11 is transmitted to the car 14 with a phase difference corresponding to the rope length.
[0036] 一方、乗りかご 14が最上階に近づくほど、両者間のロープ長も徐々に短くなるので 、ロープ 13の揺れが早く乗りかご 14に伝わる。つまり、ロープ 13の揺れが乗りかご 14 に伝わるまでの位相差は徐々に小さくなる。  [0036] On the other hand, the closer the car 14 is to the top floor, the shorter the rope length between the two, so the swing of the rope 13 is transmitted to the car 14 faster. That is, the phase difference until the swing of the rope 13 is transmitted to the car 14 gradually decreases.
[0037] したがって、上記ロープ 13の揺れを利用して乗りかご 14の振動成分を低減させる ためには、位相制御部 25にて振動信号 S3に対して施す位相ずれの量を乗りかご 14 の位置(ロープ長)に応じて調整しておけば良いことが分かる。 [0037] Therefore, in order to reduce the vibration component of the car 14 by using the swing of the rope 13, the amount of phase shift applied to the vibration signal S3 by the phase control unit 25 is reduced. It can be seen that adjustment should be made according to the position (rope length).
[0038] すなわち、図 7に示すように、乗りかご 14が最下階にいるときには、振動信号 S3の 位相ずれを少なくする。逆に、乗りかご 14が最上階に近づくに連れて、振動信号 S3 の位相ずれを大きくするように調整する。これにより、ロープ 13の揺れが乗りかご 14 に伝わる段階では、 90度遅れの位相を持つ制振トルクとして作用することになり、乗 りかご 14を制振し続けることが可能となる。  That is, as shown in FIG. 7, when the car 14 is on the lowest floor, the phase shift of the vibration signal S3 is reduced. Conversely, as the car 14 approaches the top floor, adjustment is made to increase the phase shift of the vibration signal S3. As a result, at the stage where the swing of the rope 13 is transmitted to the car 14, it acts as a damping torque having a phase delayed by 90 degrees, and the car 14 can continue to be damped.
[0039] 具体的には、例えばロープ 13の 1次共振周波数が 2. 5Hzであったとすると、振動 周期は 0. 4秒となる。したがって、ロープ 13の揺れの位相を 90度ずらすために必要 な遅れ時間は 0. 1秒と算出される。  Specifically, for example, if the primary resonance frequency of the rope 13 is 2.5 Hz, the vibration period is 0.4 seconds. Therefore, the delay time required to shift the phase of the swing of the rope 13 by 90 degrees is calculated as 0.1 seconds.
[0040] 乗りかご 14が最下階にいるときに、ロープ長による位相遅れが 0. 1秒であったとす れば、振動信号 S3の位相をずらさずに(つまり、 tx=0とする)、そのまま卷上機 11に 与えれば良い。一方、乗りかご 14が中間階に存在し、ロープ長による位相遅れ 0. 0 5秒だったとすると、 tx=0. 05秒に設定すれば、ロープ 13の揺れが 0. 1秒遅れて乗 りかご 14に届くため、乗りかご 14の振動成分を低減することができる。  [0040] If the phase delay due to the rope length is 0.1 seconds when the car 14 is at the lowest floor, the phase of the vibration signal S3 is not shifted (that is, tx = 0). And give it to the aircraft 11 as it is. On the other hand, if the car 14 is on the middle floor and the phase delay due to the rope length is 0.05 seconds, if tx = 0.05 seconds is set, the swing of the rope 13 will be delayed 0.1 seconds. Since it reaches the car 14, the vibration component of the car 14 can be reduced.
[0041] ところで、通常、乗りかご 14の振動を低減する場合には、例えば乗りかご 14、カウン トウエイト 15、卷上機 11などエレベータ全体の周波数特性をすベて取り込み、全周 波数に渡って制振が行えるような制御設計を行う。そして、その制御設計に従った高 次の制振器を設置するなど、非常に複雑な作業を必要とする。  [0041] By the way, normally, in order to reduce the vibration of the car 14, for example, all the frequency characteristics of the elevator such as the car 14, the count weight 15, and the hoisting machine 11 are taken in, and over the entire frequency. Design the control so that vibration control is possible. And it requires very complicated work such as installing higher-order vibration dampers according to the control design.
[0042] しかし、実際のエレベータの上下振動においては、ロープ 13と乗りかご 14、カウント ウェイト 15の重量などで決まるロープ 13の 1次共振周波数が振動成分として顕著に 表れる。したがって、ロープ 13の 1次共振周波数だけにポイントを絞り、その周波数 に合わせて位相ずれ量を決定してトルク制御を行えば、上述したような複雑な制御設 計を必要とせず、また、その制御設計に従った高次の制振器を設置することなぐ乗 りかごの振動を効率的に低減することができる。  However, in the actual vertical vibration of the elevator, the primary resonance frequency of the rope 13 determined by the weight of the rope 13, the car 14, the weight of the count weight 15, etc. appears remarkably as a vibration component. Therefore, if the point is limited to only the primary resonance frequency of the rope 13 and the torque control is performed by determining the phase shift amount in accordance with the frequency, the complicated control design as described above is not required, and It is possible to efficiently reduce the vibration of the car by installing a high-order vibration damper according to the control design.
[0043] なお、上記第 1の実施形態では、乗りかご 14の振動成分を抽出する際にハイパス フィルタ 24を用いた力 このハイパスフィルタ 24が強くかかり過ぎると、位相の進みが 起こるため、振動成分のみを正確に抽出できないことがある。  [0043] In the first embodiment, the force using the high-pass filter 24 when extracting the vibration component of the car 14 If this high-pass filter 24 is applied too strongly, the phase advances and the vibration component May not be extracted accurately.
[0044] ここで、振動成分を含まな!/、場合での乗りかご全体荷重 (gO+gl)の計算値 (図 2 参照)は実際の測定値とほぼ一致する。従って、荷重センサ 19によって乗りかご 14 の荷重が検出された際に、乗りかご 14の位置に対応した乗りかご全体荷重 (gO+gl )の値を求め、その乗りかご全体荷重 (gO + g 1 )の値を上記荷重センサ 19にて検出 された荷重力も減じれば、乗りかご 14の振動成分だけをほぼ正確に抽出することが 可能である。これにより、ハイパスフィルタ 24が不要となり、力ご振動情報を正確に検 出することができる。 [0044] Here, the vibration component is not included! /, The calculated value of the total car load (gO + gl) in the case (Fig. 2 (See) is almost the same as the actual measured value. Therefore, when the load of the car 14 is detected by the load sensor 19, the value of the total car load (gO + gl) corresponding to the position of the car 14 is obtained, and the total car load (gO + g 1 If the load force detected by the load sensor 19 is also reduced, only the vibration component of the car 14 can be extracted almost accurately. As a result, the high-pass filter 24 is not required, and the force vibration information can be detected accurately.
[0045] (第 2の実施形態)  [0045] (Second Embodiment)
次に、本発明の第 2の実施形態について説明する。  Next, a second embodiment of the present invention will be described.
[0046] 図 8は本発明の第 2の実施形態に係る制振装置をエレベータに適用した場合の構 成を示す図である。なお、上記第 1の実施形態における図 1の構成と同じ部分には同 一符号を付して、その説明は省略するものとする。  FIG. 8 is a diagram showing a configuration when the vibration damping device according to the second embodiment of the present invention is applied to an elevator. The same parts as those in FIG. 1 in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
[0047] エレベータでは、通常、ガバナと呼ばれる調速機 30が設置されて 、る。この調速機 30は、一対の回転体であるガバナシーブ 31, 32と、そのガバナシーブ 31, 32の間 に架設されたロープ 33とを備える。ロープ 33には乗りかご 14が連結されており、乗り かご 14の移動に連動してガバナシーブ 31 , 32が回転する。  [0047] In an elevator, a governor 30 called a governor is usually installed. The speed governor 30 includes a pair of governor sheaves 31 and 32 that are rotating bodies, and a rope 33 that is installed between the governor sheaves 31 and 32. A car 14 is connected to the rope 33, and the governor sheaves 31 and 32 rotate in conjunction with the movement of the car 14.
[0048] また、一方のガバナシーブ 31には、パルスジェネレータなど力もなる回転検出器 3 4が取り付けられている。乗りかご 14の移動に伴ってガバナシーブ 31が回転すると、 その回転数に応じて回転検出器 34から回転検出信号 (パルス信号) S7が出力され る。この回転検出信号 S7を乗りかご 14の初期位置を基準にして逐次カウントしていく ことで、乗りかご 14の現在位置を求めることができる。  [0048] In addition, to one of the governor sheaves 31, a rotation detector 34 having a force such as a pulse generator is attached. When the governor sheave 31 rotates as the car 14 moves, a rotation detection signal (pulse signal) S7 is output from the rotation detector 34 according to the rotation speed. By sequentially counting the rotation detection signal S7 with reference to the initial position of the car 14, the current position of the car 14 can be obtained.
[0049] ここで、第 2の実施形態において、エレベータ制御装置 21は、図 1のハイパスフィル タ 24に代わって、第 1の微分演算部 35、減算部 36、第 2の微分演算部 37を備える。 これにより、回転検出器 34から出力される回転検出信号 S7を利用して、乗りかご 14 の振動成分を抽出する。  [0049] Here, in the second embodiment, the elevator control device 21 replaces the high-pass filter 24 of Fig. 1 with a first differential operation unit 35, a subtraction unit 36, and a second differential operation unit 37. Prepare. Accordingly, the vibration component of the car 14 is extracted using the rotation detection signal S7 output from the rotation detector 34.
[0050] このような構成において、上記回転検出器 34から出力された回転検出信号 S7を第 1の微分演算部 35に与えて微分処理を行うと、乗りかご 14の移動速度を示す速度信 号 S8が算出される。この速度信号 S8と速度制御部 22で生成される目標速度信号 S 9との差を減算部 36にて求めれば、本来の速度信号から外れた成分、つまり、乗りか ご 14の上下振動による速度成分信号 S10が得られる。この振動の速度成分信号 S1 0を第 2の微分演算部 37に与えてさらに微分すると、乗りかご 14の上下振動による加 速度成分信号 S 11が算出される。 [0050] In such a configuration, when the rotation detection signal S7 output from the rotation detector 34 is applied to the first differentiation calculation unit 35 and subjected to differentiation processing, a speed signal indicating the moving speed of the car 14 is obtained. S8 is calculated. If the difference between the speed signal S8 and the target speed signal S9 generated by the speed controller 22 is obtained by the subtractor 36, the component deviating from the original speed signal, that is, The speed component signal S10 due to the vertical vibration of the 14 is obtained. When this vibration speed component signal S10 is given to the second differential operation section 37 and further differentiated, an acceleration component signal S11 due to vertical vibration of the car 14 is calculated.
[0051] このようにして得られた振動の加速度成分信号 S 11は、図 1のハイパスフィルタ 24 力も出力される振動信号 S3とほぼ同じものであり、移動時に乗りかご 14に生じる振動 成分を表している。 [0051] The vibration acceleration component signal S11 obtained in this way is substantially the same as the vibration signal S3 from which the high-pass filter 24 force in FIG. 1 is also output, and represents the vibration component generated in the car 14 during movement. ing.
[0052] 以後は、上記第 1の実施形態と同様の手順でトルク制御を行えば、ロープ 13の張 力変動を利用して乗りかご 14の振動成分を効率的に低減することができる。  Thereafter, if torque control is performed in the same procedure as in the first embodiment, the vibration component of the car 14 can be efficiently reduced using the tension variation of the rope 13.
[0053] なお、微分演算を行うと高周波のノイズが載るため、第 1の微分演算部 35と第 2の 微分演算部 37の後段に適当なカットオフ周波数を持つローパスフィルタを追加して ノイズ低減処理を行うことも可能である。 [0053] In addition, since high-frequency noise is recorded when differential operation is performed, noise reduction is achieved by adding a low-pass filter having an appropriate cutoff frequency after the first differential operation unit 35 and the second differential operation unit 37. It is also possible to perform processing.
[0054] このように、回転検出器 34から出力された回転検出信号 S7を利用して、乗りかご 1[0054] In this way, the car 1 is detected using the rotation detection signal S7 output from the rotation detector 34.
4の移動時に振動を検出する構成とした場合でも、上記第 1の実施形態と同様の効 果が得られる。 Even when the configuration is such that vibration is detected during the movement of 4, the same effect as in the first embodiment can be obtained.
[0055] なお、本発明は、卷上機 11の精度やエレベータの高さ (乗りかごの昇降範囲)に関 係なく適用可能である。例えばシーブ 12, 16や、ガイドレール 17, 18などのエレべ ータの構成部品の制作精度や組立精度が悪いと、ロープ 13がスムーズに摺動しな い。このため、たとえ卷上機 11が低振動で回転したとしても、そのときに生じる振動が ロープ 13を介して増長されて乗りかご 14に伝わってしまうことになる。本発明では、こ のようなエレベータの構成部品を起因として生じる振動成分を含めて効果的に低減 することができる。  It should be noted that the present invention can be applied regardless of the accuracy of the lifting machine 11 and the height of the elevator (lifting range of the car). For example, the rope 13 will not slide smoothly if the production and assembly accuracy of the elevator components such as sheaves 12, 16 and guide rails 17, 18 are poor. For this reason, even if the lifting machine 11 rotates with low vibration, the vibration generated at that time is increased via the rope 13 and transmitted to the car 14. In the present invention, it is possible to effectively reduce the vibration components caused by such elevator components.
[0056] さらに、本発明は、エレベータのように、振動源 (卷上機 11)から接続部(ロープ 13) を介して制振対象部 (乗りかご 14)に単調な振動成分が伝達される機器類であれば 、そのすべてに適用可能である。  [0056] Further, according to the present invention, a monotonous vibration component is transmitted from a vibration source (lifting machine 11) to a vibration control target part (car 14) via a connection part (rope 13) like an elevator. Any device can be applied.
[0057] 具体的には、例えばロボットアームが挙げられる。ロボットアームは、モータ(駆動源 )と、その駆動源の動力を伝達するための長さが可変可能なアーム (接続部)と、この アームを介して動作するロボットハンド (制振対象部)とを備える。このロボットアームを 制御するマイコンに、ロボットハンドの振動を検出する機能と、その振動信号にアーム の長さに応じた位相ずれを与えてモータのトルクを制御する機能を組み込めば、モ 一タカもアームを介してロボットノヽンドに伝わる振動を低減することが可能である。こ れによって、ロボットノヽンドの精密な位置決めや部品の精度良い組み立て、あるいは 、物品の安定した把持などが実現する。 A specific example is a robot arm. The robot arm is composed of a motor (drive source), an arm (connecting portion) whose length for transmitting the power of the drive source can be changed, and a robot hand (vibration control target portion) operating via this arm. Is provided. The microcomputer that controls the robot arm has a function to detect the vibration of the robot hand and the arm If the function of controlling the motor torque by giving a phase shift corresponding to the length of the motor is incorporated, the vibration transmitted to the robot node via the arm can also be reduced. This realizes precise positioning of the robot node, assembly of parts with high accuracy, or stable gripping of articles.
[0058] なお、制振対象部の振動として様々な周波数成分を含む場合には、その中で最も 顕著に表れる周波数成分に合わせて位相ずれを調整すれば、効果的に制振するこ とがでさる。  [0058] When various frequency components are included as the vibration of the vibration suppression target portion, the vibration can be effectively suppressed by adjusting the phase shift according to the frequency component that appears most prominently. I'll do it.
[0059] なお、本発明は上記各実施形態そのままに限定されるものではなぐ実施段階では その要旨を逸脱しない範囲で構成要素を変形して具体ィ匕できる。また、上記各実施 形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の形態を形 成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を省略し てもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 産業上の利用可能性  It should be noted that the present invention is not limited to the above-described embodiments as they are, but can be embodied by modifying the constituent elements without departing from the spirit of the invention in the implementation stage. Further, various forms can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be omitted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined. Industrial applicability
[0060] 本発明によれば、制振用の特別な機器類を制振対象に取り付けることなぐ制振対 象の振動を効率的に低減することができる。 [0060] According to the present invention, it is possible to efficiently reduce vibration of a vibration control target without attaching special devices for vibration suppression to a vibration control target.

Claims

請求の範囲 The scope of the claims
[1] 卷上機と、  [1] With the aircraft
この卷上機に巻き架けられたロープを介して昇降路内を移動する乗りかごと、 この乗りかごの移動時に生じる振動を検出する振動検出手段と、  Vibration detection means for detecting vibration generated when the car moves in the hoistway via a rope wound around the lifting machine,
この振動検出手段によって検出された振動信号に上記卷上機と上記乗りかごとの 間のロープ長に応じた位相ずれを与えて制振用の信号を生成する位相制御手段と、 この位相制御手段によって生成された制振用の信号に基づいて、上記乗りかごの 振動を低減するように上記卷上機のトルクを制御する駆動制御手段と  A phase control means for generating a vibration control signal by giving a phase shift according to a rope length between the lifting machine and the car to the vibration signal detected by the vibration detection means; and the phase control means Drive control means for controlling the torque of the hoisting machine so as to reduce the vibration of the car based on the vibration control signal generated by
を具備したことを特徴とする制振装置。  A vibration damping device comprising:
[2] 上記乗りかごの位置を検出するかご位置検出手段を備え、  [2] Car position detecting means for detecting the position of the car is provided,
上記位相制御手段は、上記かご位置検出手段によって検出された上記乗りかごの 位置に応じて位相ずれの量を調整することを特徴とする請求項 1記載の制振装置。  2. The vibration damping device according to claim 1, wherein the phase control means adjusts the amount of phase shift according to the position of the car detected by the car position detection means.
[3] 上記卷上機は、建物の最上階より上に設置されており、 [3] The above aircraft is installed above the top floor of the building,
上記位相制御手段は、上記乗りかごが最上階に近づくほど位相ずれの量を増やし 、最下階に近づくほど位相ずれの量を減らすことを特徴とする請求項 2記載の制振 装置。  3. The vibration damping device according to claim 2, wherein the phase control means increases the amount of phase shift as the car approaches the top floor and decreases the amount of phase shift as the car approaches the bottom floor.
[4] 上記ロープに作用する荷重を検出するための荷重センサを備え、  [4] A load sensor for detecting the load acting on the rope is provided,
上記振動検出手段は、上記荷重センサから出力される荷重信号を用いて上記乗り 力ごの振動成分に相当する信号を生成することを特徴とする請求項 1記載の制振装 置。  2. The vibration damping device according to claim 1, wherein the vibration detecting unit generates a signal corresponding to a vibration component of the riding force using a load signal output from the load sensor.
[5] 上記振動検出手段は、上記荷重センサから出力される荷重信号に所定周波数以 下の低周波成分をカットするフィルタ処理を施して、上記乗りかごの振動成分に相当 する信号を生成することを特徴とする請求項 4記載の制振装置。  [5] The vibration detection means performs a filtering process to cut a low-frequency component below a predetermined frequency on the load signal output from the load sensor, and generates a signal corresponding to the vibration component of the car. The vibration damping device according to claim 4, wherein:
[6] 上記乗りかごの移動に伴って回転する回転体と、  [6] A rotating body that rotates as the car moves,
この回転体の回転数を検出する回転検出器とを備え、  A rotation detector for detecting the number of rotations of the rotating body,
上記振動検出手段は、上記回転検出器から出力される回転検出信号を微分処理 して得られる上記乗りかごの速度信号と予め与えられ目標速度信号との誤差信号を さらに微分処理することで、上記乗りかごの振動成分に相当する信号を生成すること を特徴とする請求項 1記載の制振装置。 The vibration detection means further differentiates the error signal between the car speed signal obtained in advance and the target speed signal obtained by differentiating the rotation detection signal output from the rotation detector. Generate a signal corresponding to the vibration component of the car The vibration damping device according to claim 1, wherein:
駆動源と、  A driving source;
この駆動源の動力を伝達するための長さが可変可能な接続部と、  A connecting portion having a variable length for transmitting the power of the driving source;
この接続部を介して動作する制振対象部と、  A vibration suppression target part that operates through this connection part;
上記制振対象部の動作時に生じる振動を検出する振動検出手段と、  Vibration detecting means for detecting vibration generated during operation of the vibration suppression target part;
この振動検出手段によって検出された振動信号に上記接続部の長さに応じた位相 ずれを与えて制振用の信号を生成する位相制御手段と、  Phase control means for generating a signal for damping by giving a phase shift according to the length of the connecting portion to the vibration signal detected by the vibration detection means;
この位相制御手段によって生成された制振用の信号に基づいて、上記制振対象部 の振動を低減するように上記駆動源のトルクを制御する駆動制御手段と  Drive control means for controlling the torque of the drive source so as to reduce the vibration of the vibration suppression target portion based on the vibration suppression signal generated by the phase control means;
を具備したことを特徴とする制振装置。  A vibration damping device comprising:
PCT/JP2007/058332 2006-04-28 2007-04-17 Damper WO2007125781A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006126904A JP2007297179A (en) 2006-04-28 2006-04-28 Damping device
JP2006-126904 2006-04-28

Publications (1)

Publication Number Publication Date
WO2007125781A1 true WO2007125781A1 (en) 2007-11-08

Family

ID=38655311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058332 WO2007125781A1 (en) 2006-04-28 2007-04-17 Damper

Country Status (3)

Country Link
JP (1) JP2007297179A (en)
CN (1) CN101432214A (en)
WO (1) WO2007125781A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116986A1 (en) * 2008-03-17 2009-09-24 Otis Elevator Company Elevator dispatching control for sway mitigation
WO2019081076A1 (en) * 2017-10-27 2019-05-02 Contitech Antriebssysteme Gmbh Method and device for determining the tensile force in a carrying, conveying or traction means
US10947088B2 (en) 2015-07-03 2021-03-16 Otis Elevator Company Elevator vibration damping device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5327836B2 (en) * 2008-03-18 2013-10-30 東芝エレベータ株式会社 Elevator control device
JP5698378B2 (en) * 2010-11-30 2015-04-08 オーチス エレベータ カンパニーOtis Elevator Company Method and system for active control of noise or vibration in a device
KR20130057902A (en) 2011-11-24 2013-06-03 엘에스산전 주식회사 A method for controlling an elevator, a control apparatus of elevator using it and an elevator using it
DE112018008011T5 (en) * 2018-09-25 2021-06-17 Mitsubishi Electric Corporation Elevator control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127882A (en) * 1984-07-17 1986-02-07 三菱電機株式会社 Controller for speed of elevator
JPH1053378A (en) * 1996-06-07 1998-02-24 Otis Elevator Co Elevator speed control circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127882A (en) * 1984-07-17 1986-02-07 三菱電機株式会社 Controller for speed of elevator
JPH1053378A (en) * 1996-06-07 1998-02-24 Otis Elevator Co Elevator speed control circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116986A1 (en) * 2008-03-17 2009-09-24 Otis Elevator Company Elevator dispatching control for sway mitigation
GB2470535A (en) * 2008-03-17 2010-11-24 Otis Elevator Co Elevator dispatching control for sway mitigation
GB2470535B (en) * 2008-03-17 2012-06-20 Otis Elevator Co Elevator dispatching control for sway mitigation
US8297412B2 (en) 2008-03-17 2012-10-30 Otis Elevator Company Elevator dispatching control for sway mitigation
US10947088B2 (en) 2015-07-03 2021-03-16 Otis Elevator Company Elevator vibration damping device
WO2019081076A1 (en) * 2017-10-27 2019-05-02 Contitech Antriebssysteme Gmbh Method and device for determining the tensile force in a carrying, conveying or traction means

Also Published As

Publication number Publication date
CN101432214A (en) 2009-05-13
JP2007297179A (en) 2007-11-15

Similar Documents

Publication Publication Date Title
WO2007125781A1 (en) Damper
JP5645564B2 (en) Sensor device and robot device
JP3916295B2 (en) Elevator motion control system and active elevator hitch
EP2646357B1 (en) Method and system for active noise or vibration control of systems
JP4148189B2 (en) Control device for flexible joint robot arm
WO2007094190A1 (en) Device for preventing sway of suspended load
US20140067111A1 (en) Method and control device for the low-vibrational movement of a moveable crane element in a crane system
JP7205645B2 (en) Vibration damping device for elevator cable
JP7008839B2 (en) Governor system characteristic control device and elevator device
CN1046483C (en) Swing-stop control method for a crane
JP2003192246A (en) Speed control device, speed control method, and speed control program for elevator
JP4419517B2 (en) Control method of motor for driving lifting machine
JP7384025B2 (en) Control equipment and inverter equipment for suspended cranes
JP4460526B2 (en) Stabilizer for rope trolley crane
JP2003160281A (en) Elevator vibration control device
JPH09267989A (en) Control method for preventing oscillation of hoisted load of crane
JP2004123256A (en) Speed control device for elevator
JP2003095579A (en) Vibration damping device for automatic crane
JP2001139266A (en) Roped elevator control device
JP5285583B2 (en) Longitudinal vibration suppression device for elevator cars
JP3112050B2 (en) Elevator vibration suppressor
JP6984758B2 (en) Elevator control device
JP2011131976A (en) Conveying apparatus, and control system for conveying apparatus
JP5642326B2 (en) A method of automatically transshipping a suspended load suspended from a suspended load rope by a crane or bagger
KR101129176B1 (en) Simultaneous position and rope sway control method of an unmanned overhead crane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741768

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200780015437.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741768

Country of ref document: EP

Kind code of ref document: A1