WO2007125761A1 - Compound eye camera module - Google Patents

Compound eye camera module Download PDF

Info

Publication number
WO2007125761A1
WO2007125761A1 PCT/JP2007/058139 JP2007058139W WO2007125761A1 WO 2007125761 A1 WO2007125761 A1 WO 2007125761A1 JP 2007058139 W JP2007058139 W JP 2007058139W WO 2007125761 A1 WO2007125761 A1 WO 2007125761A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens array
light shielding
optical filter
reference surface
Prior art date
Application number
PCT/JP2007/058139
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Tamaki
Tatsutoshi Suenaga
Katsumi Imada
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Publication of WO2007125761A1 publication Critical patent/WO2007125761A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Definitions

  • the present invention relates to a small and thin camera module.
  • the present invention relates to a compound-eye camera module that captures an image with a plurality of photographing optical lenses.
  • a subject image is converted into two-dimensional image information by forming a subject image on an image sensor such as a CCD or CMOS through a lens. Furthermore, a camera that measures distance information to a subject has also been proposed.
  • a diaphragm member 111, a lens array 112, a light shielding block 113, an optical filter array 114, and an image sensor 116 are arranged in this order from the subject side.
  • the lens array 112 includes a plurality of lenses.
  • the diaphragm member 111 includes a diaphragm (aperture) at a position that coincides with the optical axis of each lens of the lens array 112.
  • the optical filter array 114 includes a plurality of optical filters having different spectral characteristics for each region corresponding to each lens of the lens array 112, and covers the light receiving surface of the image sensor 116.
  • the light blocking block 113 includes a light blocking wall 113a at a position that coincides with the boundary between adjacent lenses of the lens array 112, that is, the boundary between adjacent optical filters of the optical filter array 114.
  • the image sensor 116 is mounted on the semiconductor substrate 115.
  • a driving circuit 117 and a signal processing circuit 118 are further mounted.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-143459
  • the camera module shown in FIG. 19 has the following problems due to assembly variations.
  • a force that does not form an image is generated, or unnecessary light is generated due to reflection of light by the light shielding wall 113a, thereby causing ghost. Both of these cause the measurement distance accuracy to deteriorate.
  • the base line length may be increased, but this is not preferable because it leads to an increase in the size of the camera module.
  • An object of the present invention is to provide a camera module that is small in size, has a short base line length, and can improve measurement distance accuracy.
  • the compound-eye camera module of the present invention includes a lens array having a plurality of lenses arranged on a single plane and having different optical axes, and a plurality of one-to-one correspondences to each of the plurality of lenses.
  • An image pickup device having an image pickup area; and a light-shielding block disposed between the lens array and the image pickup device and having a plurality of openings corresponding to each of the plurality of lenses.
  • the light shielding block is in contact with the lens array, a first reference plane that positions the lens array in the optical axis direction, and a second reference surface that is in contact with the imaging element and positions the imaging element in the optical axis direction.
  • a reference surface a third reference surface that contacts the lens array and positions the lens array in a first direction orthogonal to the optical axis, and a contact with the lens array that aligns the lens array with the optical axis and the first array.
  • a fourth reference plane positioned in a second direction orthogonal to one direction.
  • the assembly variation can be reduced, it is possible to prevent the measurement distance accuracy from being deteriorated due to the assembly variation. Accordingly, it is possible to provide a camera module with improved measurement distance accuracy even with a small camera module having a short base line length.
  • FIG. 1 is an exploded perspective view of a compound-eye camera module according to Embodiment 1 of the present invention.
  • Fig. 2 is a perspective view of the upper lens barrel as viewed from the side of the imaging device in the compound eye type camera module according to Embodiment 1 of the present invention.
  • FIG. 3A is a perspective view of the compound-eye camera module according to Embodiment 1 of the present invention as viewed from the subject side of the lens array.
  • FIG. 3B is a perspective view of the compound-eye camera module according to Embodiment 1 of the present invention as viewed from the image sensor side of the lens array.
  • FIG. 4A is a perspective view showing the subject side force of the light-shielding block in the compound-eye camera module according to Embodiment 1 of the present invention.
  • FIG. 4B is a perspective view of the image sensor side force of the light shielding block in the compound eye type camera module according to Embodiment 1 of the present invention.
  • FIG. 4C is a perspective view showing the subject side force of the light-blocking block in the compound-eye camera module according to Embodiment 1 of the present invention.
  • FIG. 5 is an exploded perspective view of another compound-eye camera module according to Embodiment 1 of the present invention, in which the light shielding wall and the outer cylinder portion are configured separately.
  • FIG. 6A is a ray diagram when no light-shielding film is provided in the compound-eye camera module according to Embodiment 1 of the present invention.
  • FIG. 6B is a ray diagram when a light-shielding film is provided in the compound-eye camera module according to Embodiment 1 of the present invention.
  • FIG. 7 is a plan view of a light shielding film in the compound-eye camera module according to Embodiment 1 of the present invention.
  • FIG. 8A is a plan view of a compound-eye camera module according to Embodiment 1 of the present invention.
  • FIG. 8B is a cross-sectional view taken along line 8B-8B in FIG. 8A.
  • FIG. 9 is an exploded perspective view of a compound-eye camera module according to Embodiment 2 of the present invention.
  • FIG. 10 is a cross-sectional view of a compound eye type camera module according to Embodiment 2 of the present invention.
  • FIG. 11 is an exploded perspective view of a compound eye camera module according to Embodiment 3 of the present invention.
  • FIG. 12 is a cross-sectional view of a compound eye type camera module according to Embodiment 3 of the present invention.
  • FIG. 13 is an exploded perspective view of a compound-eye camera module according to Embodiment 4 of the present invention.
  • FIG. 14 is an exploded perspective view of another compound-eye camera module according to Embodiment 4 of the present invention.
  • FIG. 15 is an exploded perspective view of still another compound-eye camera module according to Embodiment 4 of the present invention.
  • FIG. 16 is an exploded perspective view of still another compound-eye camera module according to Embodiment 4 of the present invention.
  • FIG. 17 is an exploded perspective view of still another compound eye camera module according to Embodiment 4 of the present invention.
  • FIG. 18 is a perspective view of another outer cylinder portion viewed from the image sensor side in a compound eye type camera module according to the present invention.
  • FIG. 19 is an exploded perspective view of an imaging system of a conventional camera module.
  • the compound eye type camera module of the present invention described above is an optical filter module that is disposed between the lens array and the image sensor and transmits light in a specific wavelength band among light transmitted through the plurality of lenses. Furthermore, it is preferable to have. In this case, it is preferable that the light shielding block has a fifth reference surface that abuts the optical filter module and positions the optical filter module in the optical axis direction. As a result, the tilt of the optical filter module can be suppressed. Thus, it is possible to further prevent bad measurement distance accuracy due to variations.
  • the compound-eye camera module of the present invention described above is disposed between the lens array and the optical filter module, and has a plurality of openings corresponding to each of the plurality of lenses. It is preferable to further have a light shielding film. In this case, it is preferable that the plurality of openings of the light shielding film have the same size as or smaller than the plurality of openings of the light shielding block. Thereby, it is possible to prevent unnecessary light that has passed through a lens not corresponding to the imaging region from entering each imaging region. Therefore, it is possible to further prevent the measurement distance accuracy from being deteriorated.
  • Embodiment 1 of the present invention will be described below with reference to the drawings.
  • FIG. 1 is an exploded perspective view of a compound-eye camera module according to Embodiment 1 of the present invention.
  • 1 is a lens array
  • 2 is an optical filter module
  • 3 is a substrate
  • 4 is an image sensor
  • 5 is an upper barrel
  • 6 is a light-blocking block
  • 7 is a lens module
  • 8 is a light-shielding film.
  • the XYZ Cartesian coordinate system as shown is set.
  • the Z-axis passes through almost the center of the effective pixel area of the image sensor 4 and is perpendicular to this.
  • the X axis is perpendicular to the Z axis and is parallel to the light shielding walls 6 la and 61c described later of the light shielding block 6, and the Y axis is orthogonal to the Z axis and is described later as light shielding walls 6 lb and 6 Id of the light shielding block 6. It is a parallel axis.
  • the arrow side of the X, Y, and Z axes is the positive side of each axis. In the Z-axis direction, the positive side of the Z-axis (upper side of the paper in FIG. 1, the subject side) is the “upper side” of the camera module, and the negative side of the Z-axis (lower side of the paper in FIG. 1, image side) is the camera module. Called the "lower side”.
  • the lens array 1 integrally has four single lenses la to ld arranged on the same plane parallel to the XY plane.
  • Four lenses la ⁇ Each optical axis of Ld is parallel to the Z axis, and is arranged at four vertices of a virtual rectangle parallel to the XY plane.
  • Lens la ⁇ Two of Ld should satisfy the optical specifications such as MTF required for light in the wavelength band of red, blue, or green among the three primary colors of light. The remaining two are designed to satisfy the optical specifications such as MTF required for light in the near-infrared wavelength band!
  • the lenses la and lb are optimally designed for light in the wavelength bands of green and the lenses lc and Id in the near infrared.
  • Lens la ⁇ is made of a material such as glass or plastic. Formed in the body.
  • the flange back deviation between the lenses optimally designed for light in the same wavelength band is It is considered to be zero as much as possible.
  • Each of the lenses la to ld causes light from a subject (not shown) to form an image on the image sensor 4 after passing through the optical filter module 2.
  • the optical filter module 2 is disposed between the lens array 1 and the image sensor 4. Similarly to the lens array 1, the optical filter module 2 includes two optical filters 2a and 2c arranged on the same plane parallel to the XY plane. The two optical filters 2a and 2c transmit only light in any wavelength band of red, green, blue, and near infrared, respectively. In one embodiment, the optical filter 2a transmits light only in the wavelength band of green and the optical filter 2c transmits in the near-infrared wavelength band. When it is necessary to cut off infrared rays, the characteristics may be added to the optical filter 2a that transmits light in the visible wavelength band. The optical filter that transmits light in the same wavelength band is integrally formed. The optical filter 2a is disposed on the optical axes of the lenses la and lb, and the optical filter 2c is disposed on the optical axes of the lenses lc and Id.
  • the image sensor 4 is an image sensor such as a CCD or a CMOS, and includes a large number of pixels arranged two-dimensionally in the vertical and horizontal directions.
  • the effective pixel area of the image sensor 4 is substantially equally divided into four image areas 4a to 4d.
  • the four imaging regions 4a to 4d are arranged on the optical axes of the four lenses la to Id, respectively. As a result, on the four imaging regions 4a to 4d, subject images that have power only in the wavelength components of red, green, blue, and near infrared are independently formed.
  • the light from the subject that has passed through the lens la enters the optical filter 2a, and only the light in the green wavelength band passes through it and forms a subject image consisting of only the green wavelength component on the imaging region 4a.
  • Image the light from the subject that has passed through the lens lb enters the optical filter 2a, and only the light in the green wavelength band passes through it to form a subject image in which only the green wavelength component has power on the imaging region 4b.
  • Light from the subject that has passed through the lens lc is incident on the optical filter 2c, and only near-infrared wavelength band light passes through it, forming an image of the subject that has power only in the near-infrared wavelength component on the imaging region 4c.
  • the light from the subject that has passed through the lens Id enters the optical filter 2c, and only the light in the near-infrared wavelength band passes through it.
  • a subject image consisting only of near-infrared wavelength components is formed on the imaging region 4d.
  • Each pixel constituting the imaging regions 4a to 4d of the imaging device 4 photoelectrically converts light from an incident subject and outputs an electrical signal (not shown) corresponding to the intensity of the light.
  • the electric signal output from the image sensor 4 is subjected to various signal processing and image processing. For example, by using two images captured by the imaging regions 4a and 4b where green wavelength band light is imaged, the amount of parallax between these images can be obtained and the distance to the subject can be measured. Similarly, using two images captured by the imaging regions 4c and 4d where near-infrared wavelength band light is imaged, the amount of parallax between these images may be obtained and the distance to the subject measured. . Since two visible light images and two near-infrared light images are available, the distance to the subject can be measured day and night. These processes can be performed using a digital signal processor (DSP, not shown).
  • DSP digital signal processor
  • the upper barrel 5 is provided with a recess 51 on the lower surface thereof for holding and fixing the lens array 1.
  • the upper lens barrel 5 includes reference surfaces 52 and 53 facing the concave portion 51 side.
  • the reference planes 52 and 53 are parallel to the Z axis.
  • the reference plane 52 is parallel to the Y axis, and the reference plane 53 is parallel to the X axis.
  • the upper lens barrel 5 has four apertures (openings) 5a to 5d at positions where the optical axes of the four lenses la to Ld of the held lens array 1 pass.
  • the upper lens barrel 5 is made of a material that does not transmit light, and blocks external light that does not require any force other than the diaphragms 5a to 5d from entering the lenses la to Ld.
  • FIG. 3A and 3B are perspective views of the lens array.
  • 3A is a perspective view seen from the subject side
  • FIG. 3B is a perspective view seen from the image sensor side.
  • the lens array 1 includes reference surfaces 12 and 13 around the lens array 1.
  • the reference plane 12 is parallel to the Z axis and points in the positive direction of the X axis.
  • the reference plane 13 is parallel to the Z axis and points in the positive direction of the Y axis.
  • the lens array 1 includes four reference surfaces 14 facing the image sensor side.
  • the reference surface 52 provided on the upper lens barrel 5 and the reference surface 12 provided on the lens array 1 are pressed in the X-axis direction, and the reference surface 53 provided on the upper lens barrel 5 is The reference surface 13 provided on the lens array 1 is pressed against the Y-axis direction, and the lens array 1 is fitted and fixed in the recess 51 of the upper barrel 5.
  • the centers of the four stops 5a to 5d provided in the upper barrel 5 and the optical axes of the lenses 1a to Id coincide with each other.
  • the lens module 7 is composed of the lens barrel 5.
  • the depth of the recess 51 in the Z-axis direction is shallower than the thickness of the lens array 1 in the Z-axis direction. Accordingly, in a state where the lens array 1 is held by the upper lens barrel 5, a part of the reference surfaces 12 and 13 provided around the lens array 1 is exposed.
  • the light shielding block 6 includes light shielding walls 6 la to 6 Id arranged in a cross shape so as to form four openings 6a to 6d independent of each other, and the light shielding walls 6 la to 6 Provided with an outer cylindrical portion 62 for holding Id.
  • the light shielding walls 61a to 61d extend radially with respect to the Z axis, which is the central axis of the light shielding block 6, the light shielding walls 61a and 61c are along the XZ plane, and the light shielding walls 61b and 61d are along the YZ plane. .
  • the four openings 6a to 6d are arranged on the optical axes of the four lenses la to ld, respectively.
  • the light shielding walls 61a to 61d divide the effective pixel area of the image sensor 4 into four image areas 4a to 4d.
  • the sizes of the openings 6a to 6d viewed along the Z axis are substantially the same as or larger than the imaging regions 4a to 4d.
  • Lenses la ⁇ The light from the subject that has passed through Ld passes through the openings 6a-6d and is imaged on the imaging regions 4a-4d, respectively.
  • the light shielding walls 61a to 61d prevent the light force that has passed through one of the lenses la to ld from entering an imaging area that does not correspond to this lens.
  • the green wavelength band light incident obliquely on the lens la and passed through the optical filter 2a is not incident on the imaging region 4c where only the near-infrared wavelength band light should be incident.
  • a light shielding wall 6 Id that blocks light in the green wavelength band is provided along the boundary between the imaging region 4a and the imaging region 4c.
  • the outer cylindrical portion 62 surrounding the openings 6a to 6d prevents external light that does not pass through the lens array 1 and the optical filter module 2 from entering the imaging regions 4a to 4d. In this manner, the light blocking block 6 can prevent the generation of stray light or the like that prevents unnecessary light from entering each of the imaging regions 4a to 4d.
  • the light shielding block 6 also has a material force that does not transmit light, like the upper lens barrel 5. Further, the inner surfaces of the light shielding walls 61a to 61d and the outer cylindrical portion 62 exposed in the openings 6a to 6d are subjected to various surface treatments (for example, roughening treatment, plating, black, etc.) so that light reflection is minimized. It is preferable that the surface is subjected to a shading process, or a light shielding surface having a taper (that is, a surface inclined with respect to the Z axis) is formed.
  • a shading process or a light shielding surface having a taper (that is, a surface inclined with respect to the Z axis) is formed.
  • the light shielding walls 61a to 61d and the outer cylindrical portion 62 are configured separately to give a desired shape to the surfaces of the light shielding walls 61a to 61d and reduce the reflection of light on the light shielding wall surfaces.
  • Figure 5 shows an exploded perspective view of an example. Integrally formed light shielding wall 6 la ⁇ 6 Id and outer cylinder part 62 By assembling, the shading block 6 is obtained.
  • the light shielding walls 61a to 61d separately from the outer cylindrical portion 62, it is possible to eliminate the restrictions caused by the mold structure and the like regarding the shape to be imparted to the light shielding wall surface, and the light from the light shielding walls 61a to 61d can be removed. It is possible to further reduce reflection.
  • a light shielding wall 64 is formed on the subject side end face of the light shielding walls 61b and 61d so as to shield light between the optical filters 2a and 2c.
  • the lens array 1 side surface of the light blocking block 6 is provided with a recess 63 for holding and fixing the optical filter module 2.
  • the optical filter module 2 is positioned and fixed with respect to the light shielding block 6 by being inserted into the recess 63.
  • the optical filter 2a and the optical filter 2c are arranged so as to close the openings 6a and 6b and the openings 6c and 6d, respectively.
  • the optical filters 2a and 2c are brought into contact with a reference surface (fifth reference surface) 612 that is orthogonal to the Z axis provided on the light shielding block 6 that is the bottom surface of the recess 63, and positioned in the Z axis direction. The tilt of each optical filter 2a, 2c is suppressed.
  • FIG. 4B shows a perspective view of the light blocking block 6 as viewed from the image sensor 4 side.
  • the Z axis which is the central axis of the light shielding block 6, passes through a predetermined position of the effective pixel area of the image sensor 4, and the light shielding walls 61 a to 61 d of the light shielding block 6 include a large number of pixels constituting the image sensor 4.
  • the light shielding block 6 is positioned with respect to the image sensor 4 and fixed on the substrate 3 so as to coincide with the vertical and horizontal arrangement directions. As a result, the effective pixel area of the image sensor 4 is divided into four image areas 4a to 4d corresponding to the four openings 6a to 6d.
  • a reference plane (second reference plane) 65 abuts on the upper surface of the image sensor 4.
  • the light-blocking block 6 includes a reference plane (third reference plane) 67 that is parallel to the Z axis and faces the negative direction of the X axis, and a Y axis that is parallel to the Z axis.
  • the lens module 7 in which the lens array 1 is fixed to the upper barrel 5 presses the reference surface 12 provided on the lens array 1 against the reference surface 67 provided on the light shielding block 6, and the light shielding probe. Press the reference surface 13 provided on the lens array 1 against the reference surface 66 provided on the It is inserted into the shading block 6 and fixed.
  • the optical axis of each lens and the corresponding imaging area are positioned in a direction orthogonal to the Z axis.
  • the light that has passed through each of the lenses la to Ld is incident on the inner walls of the light shielding walls 61a to 61d and the outer cylinder 62, and the force that does not form a part of the subject image in the imaging areas 4a to 4d. It is possible to prevent the reflected light from entering the imaging areas 4a to 4d as unnecessary light.
  • assembly windows (through holes) 69x, 69y are provided in the outer cylindrical portion 62 of the light shielding block 6, and the lens array 1 is placed on the positive side of the X axis and the Y axis through the windows 69x, 69y.
  • the positioning accuracy in the direction perpendicular to the Z axis may be improved by pressing directly toward the positive side.
  • a light shielding film 8 is preferably provided.
  • the light shielding film 8 is provided between the lens array 1 and the optical filter module 2 on the upper surfaces of the optical filters 2a and 2c. The operation of the light shielding film 8 will be described with reference to FIGS. 6A and 6B.
  • FIG. 6A shows a ray diagram when the light shielding film 8 is not provided.
  • Incident light 31 emitted from the subject passes through the lens la, passes through the optical filter 2a, and forms an image on the original imaging region 4a.
  • the incident light ray 33 emitted from the subject passes through the lens lb, passes through the optical filter 2a, and returns to the original imaging area. Forms an image in area 4b.
  • incident light 32 from a subject that has a large incident angle and does not necessarily need to be imaged passes through lens la and filter 2a in order, and forms an image as unnecessary light in imaging area 4b that does not correspond to lens la. Will deteriorate.
  • the incident light beam 34 having a large incident angle and having a large incident angle passes through the lens lb, and is then shielded by the outer cylindrical portion 62 and does not form an image.
  • FIG. 6B shows a ray diagram when the light shielding film 8 is provided.
  • incident rays 31 and 33 emitted from the subject normally form images in the original imaging areas 4a and 4b, respectively.
  • the incident light beam 32 from the object passes through the lens la and is then shielded by the light shielding film 8 disposed on the optical filter module 2, thereby preventing the incident light 32 from being imaged as unnecessary light. It becomes possible.
  • the incident light beam 34 from the subject passes through the lens lb after being passed through the lens lb as in FIG.
  • the light blocking film 8 includes light blocking portions 81a to 81d arranged in a cross shape so as to form four independent openings 8a to 8d, as shown in FIG. And an outer frame portion 82 for holding the light shielding portions 81a to 81d.
  • the light shielding portions 81a to 81d extend radially with respect to the Z axis, which is the central axis of the light shielding block 6, the light shielding portions 81a and 81c are along the XZ plane, and the light shielding portions 81b and 8 Id are along the YZ plane. Yes.
  • the four openings 8a to 8d are arranged on the optical axes of the four lenses la to ld, respectively.
  • the four openings 8a to 8d have the same or slightly smaller opening area than the four openings 61a to 61d formed in the light blocking block 6.
  • the light shielding film 8 is formed on the light shielding block 6 by fitting two concave portions (notches) 83 provided on the outer frame portion 82 to two convex portions 611 (see FIG. 4A) provided on the light shielding block 6. The positioning is fixed.
  • the three reference surfaces 65 provided on the light shielding block 6 are brought into direct contact with the surface of the imaging element 4 in the Z-axis direction, and the four reference surfaces 65 provided on the lens array 1 are provided.
  • the reference surface 14 is brought into direct contact with the four reference surfaces 68 provided on the light blocking block 6 in the Z-axis direction.
  • the deviation of the focal point of the lens la ⁇ : Ld in the Z-axis direction with respect to the light receiving surfaces of the corresponding imaging regions 4a to 4d is different from the reference surface 65 and the reference surface 68 of the light shielding block 6. It is possible to suppress the distance accuracy between the values. Further, since the lenses la to Id are integrally formed, the flange back difference between the lenses that allow light of the same wavelength band to pass through can be made extremely small. As a result, the error amount of the generated parallax can be ignored.
  • the optical filters 2 a and 2 c are brought into direct contact with the reference surface 612 provided in the light shielding block 6 in the Z-axis direction.
  • the tilt of the optical filters 2a and 2b with respect to the image sensor 4 can be suppressed. Therefore, the error amount of the parallax generated due to the tilt of the optical filters 2a and 2c is very small and can be ignored.
  • an optical filter corresponding to a plurality of lenses optimally designed for the same wavelength band light is integrally formed.
  • two optical filters are applied to two lenses la and lb that are optimally designed for green light. Images can be obtained even if provided separately.
  • each optical filter may tilt in a different direction and angle due to assembly variations. In such a case, a large error in the amount of parallax for measuring the distance can occur. Will occur.
  • one optical filter integrated with a plurality of lenses optimally designed for the same wavelength band light is provided as in this embodiment, the optical filter tilts at the time of assembly. Even so, the two images that are compared to determine the parallax change in the same way due to this tilt, so the parallax error caused by the tilt is very small and can be ignored.
  • the lens array 1 is positioned in the X-axis direction with respect to the light shielding block 6 by directly contacting the reference surface 67 provided on the lens array 1 with the reference surface 67 provided on the light shielding block 6.
  • the lens array 1 is positioned in the Y-axis direction with respect to the light shielding block 6 by directly contacting the reference surface 13 provided on the lens array 1 with the reference surface 66 provided on the light shielding block 6.
  • the light shielding wall 64 can be provided between adjacent optical filters, and generation of stray light or the like (see FIG. 6A) can be prevented to some extent.
  • the light shielding wall 64 cannot be provided at a position corresponding to the boundary between adjacent imaging regions. Therefore, in this case, as described above, it is particularly desirable to provide the light shielding film 8 on the optical filter.
  • FIG. 8A shows a plan view of the camera module of the present embodiment.
  • FIG. 8B shows a cross-sectional view taken along the line 8B-8B in FIG. 8A.
  • the imaging surface (upper surface) of the imaging device 4 serving as a reference surface is in contact with the reference surface 65 provided on the light shielding block 6, and the reference surface 14 provided on the lens array 1 is shielded from light.
  • the reference surface 68 provided on the block 6 comes into contact,
  • the imaging device 4 the light shielding block 6, the lens array 1, and the optical filter module 2 are positioned in the Z-axis direction, and the imaging device It is obvious that the tilt of the lens array 1 and the optical filter module 2 with respect to 4 is suppressed.
  • the four imaging regions are almost equally divided regions.
  • the optical system of the present invention is not limited to this.
  • non-uniform regions in consideration of generated parallax It may be.
  • the linear expansion coefficient is uniform. Therefore, if the lens array 1 is made as symmetrical as possible, the shape against the temperature change is obtained. The change of becomes uniform. Therefore, by detecting the temperature using a thermistor or the like, the distance between the lenses at each temperature can be estimated, and the change in the optical axis position of each lens can be estimated. As a result, it is possible to correct the amount of parallax due to temperature changes and ensure the measurement distance accuracy.
  • FIG. 9 is an exploded perspective view of the compound-eye camera module according to Embodiment 2 of the present invention. Only the configuration of the light shielding block 6 is different from the first embodiment.
  • the light shielding walls 6 la to 6 Id and the outer cylindrical portion 62 are configured separately.
  • Light shielding portions 661a to 661d are integrally formed on the light shielding walls 61a to 61d, respectively.
  • a reference surface (first reference surface) 68 that contacts the reference surface 14 of the lens array 1 is formed integrally with the light shielding portions 661b to 661d, and a reference surface (third third surface) that contacts the reference surface 12 of the lens array 1 is formed.
  • Reference surface 67 is formed integrally with the light shielding portion 661a, and a reference surface (fourth reference surface) 66 that is in contact with the reference surface 13 of the lens array 1 is formed integrally with the light shielding portion 661d.
  • Contact Reference surface (fifth reference surface) 612 is formed integrally with the light shielding parts 661a to 661d, and a reference surface (second reference surface) 65 that contacts the imaging element 4 is formed integrally with the light shielding walls 61a to 61d. It has been done.
  • the imaging device 4 is brought into contact with the reference surface 65, and the lens array 1 and the optical filter module 2 are brought into contact with the reference surface 68 and the reference surface 612, respectively, so that the imaging device 4, the light shielding block 6, and the lens array 1 are brought into contact.
  • the optical filter module 2 is positioned and fixed in the Z-axis direction.
  • the lens array 1 is brought into contact with the reference surfaces 67 and 66, and the lens array 1 is positioned and fixed in a direction perpendicular to the Z axis.
  • FIG. 10 shows a cross-sectional view of a compound-eye camera module excluding the outer cylindrical portion 62 of the light shielding block 6.
  • it is the reference surface 65 that positions the image sensor 4 in the Z-axis direction, and it is the reference that positions the lens array 1 and the optical filter module 2 in the Z-axis direction.
  • the light shielding block 6 is assembled by extrapolating and fitting the outer cylindrical portion 62 to the light shielding portions 66la to 66Id.
  • the outer cylindrical portion 62 of the light shielding block 6 is provided for the purpose of preventing the light beam that does not pass through each lens from forming an image on the imaging region, and suppresses tilt, focus shift, etc. of each component constituting the optical system. Unlike Embodiment 1, this is performed by the light shielding walls 61a to 61d and the light shielding parts 661a to 661d.
  • the relative tilt and defocus of the lens array 1 and the optical filters 2a and 2c with respect to the image sensor 4 and the Z axis of the lens array 1 with respect to the light shielding block 6 are as follows. Displacement in a direction orthogonal to the direction can be suppressed. Therefore, even if simple assembly is performed without using a complicated and expensive adjustment mechanism at the time of assembly, the error generated when measuring the distance to the subject can be extremely reduced, and the measurement distance accuracy can be improved. Becomes pretty.
  • FIG. 11 shows an exploded perspective view of the main components of the compound eye camera module according to Embodiment 3 of the present invention.
  • the difference from the first embodiment is only the lens array 1, the optical filter module 2, and the light shielding walls 61a to 61d.
  • the upper barrel 5 and the outer cylinder 62, which are components of the light shielding block 6, and the substrate 3 having the same functions as those of the first and second embodiments are not shown.
  • a reference plane 14 for positioning and fixing the lens array 1 with respect to the image sensor 4 in the Z-axis direction is provided in a region of the lens array 1 facing the optical filter module 2.
  • the optical filter module 2 is composed of four optical filters 2a to 2d.
  • the optical filters 2a and 2b transmit only light in the same wavelength band, and the optical filters 2c and 2d only transmit light in the same wavelength band. Permeate. In one embodiment, the optical filters 2a and 2b transmit only light in the green wavelength band, and the optical filters 2c and 2d transmit only light in the near-infrared wavelength band.
  • a reference surface (first reference surface) 68 that comes into contact with the reference surface 14 of the lens array 1 is provided on the upper end surface of the wall surface 64 in which the light shielding walls 61a to 6 Id extend in the Z-axis direction toward the lens array 1 side. It has been.
  • a reference surface (third reference surface) 67 that contacts the reference surface 12 of the lens array 1 is integrally formed with the light shielding wall 61a, and a reference surface that contacts the reference surface 13 of the lens array 1 (fourth reference surface) 66. Is formed integrally with the light shielding wall 61d, and a reference surface (second reference surface) 65 that comes into contact with the image sensor 4 is formed integrally with the light shielding walls 6la to 61d.
  • a reference surface (fifth reference surface) 612 that contacts the optical filters 2a to 2d is provided on the light shielding walls 61a to 61d.
  • Fig. 12 shows a cross-sectional view to explain the mutual relationship between the components.
  • the reference surface 65 of the light shielding walls 61a to 61d is brought into contact with the imaging element 4.
  • the optical filters 2a to 2d are brought into contact with a reference surface 612 provided on the light shielding walls 61a to 61d, and the optical filters 2a to 2d are positioned and fixed in the Z-axis direction.
  • the reference surface 14 of the lens array 1 is brought into contact with a reference surface 68 provided on the light shielding walls 61a to 61d, and the lens array 1 is positioned and fixed in the Z-axis direction.
  • the reference surface 12 and the reference surface 13 of the lens array 1 are brought into contact with the reference surface 67 provided on the light shielding wall 61a and the reference surface 66 provided on the light shielding wall 61d, respectively, so that the lens array 1 is orthogonal to the Z axis. Position in the direction.
  • the lens array 1 and the optical filters 2a to 2d with respect to the image sensor 4 are relatively tilted, defocused, and the Z of the lens array 1 with respect to the light blocking block 6 is Z.
  • the positional deviation in the direction orthogonal to the axis can be suppressed. Therefore, even if simple assembly is performed without using a complicated and expensive adjustment mechanism at the time of assembly, the error that occurs when measuring the distance to the subject can be extremely reduced and the measurement distance accuracy can be improved. Is possible.
  • the wall surface 64 on the light shielding walls 61a to 61d is in contact with the lens array 1, the light beam 32 described in FIG. 6A collides with the wall surface 64. Therefore, in the present embodiment, the light shielding film 8 between the lens array 1 and the optical filter module 2 can be omitted. Therefore, the cost can be reduced.
  • FIG. 13 shows a case where light in the visible light region needs to be imaged in the imaging regions 4a and 4b by blocking light in the near infrared and lower frequencies (hereinafter simply referred to as "near infrared light”).
  • FIG. 3 is an exploded perspective view of the camera module.
  • an optical filter that blocks near-infrared light.
  • the near-infrared light is applied to the optical filter 2a that transmits green light.
  • the region 9a corresponding to the optical filter 2a of the base material (for example, a transparent glass substrate) 9 provided separately from the optical filter 2a is provided. It is preferable to form an IR filter that blocks near infrared light. In this case, the optical filter function is not given to the region 9c of the base material 9 corresponding to the optical filter 2c that transmits near-infrared light.
  • the substrate 9 is positioned in the Z-axis direction by contacting the optical filter module 2.
  • the light shielding film 8 is provided between the lens array 1 and the substrate 9.
  • the base material 9 may be disposed between the optical filter module 2 and the light shielding block 6. In this case, the base material 9 comes into contact with the reference surface 612.
  • the light shielding film 8 is provided between the lens array 1 and the optical filter module 2.
  • the camera module shown in FIG. 14 uses the light shielding block 6 in which the light shielding walls 6 la to 6 Id that divide the imaging region and the outer cylindrical portion 62 are separate from each other as in FIG. Different from the camera module shown in Fig.13.
  • the camera module shown in FIG. 15 is provided between the light shielding film 8 force lens array 1 and the base material 9 on which the IR filter 9a is formed, and between the base material 9 and the optical filter module 2. This is different from the camera module shown in FIG.
  • the IR filter 9a is formed on the base material 9 different from the optical filter module 2
  • the total thickness of the base material 9 and the optical filter module 2 is increased. Therefore, in the configuration shown in FIG. There is a high possibility that light from the light enters the imaging area that does not correspond to the lens that has passed through.
  • a two-layer light shielding film 8 is provided as shown in FIG. Thereby, it is possible to prevent unnecessary light that has passed through the lens corresponding to the imaging area from entering each imaging area. As a result, it is possible to prevent the measurement distance accuracy from deteriorating.
  • the camera module shown in FIG. 16 is different from the camera module shown in FIG. 13 in that the base material 9 on which the IR filter 9a is formed is provided closer to the subject than the upper lens barrel 5.
  • the parts that make up the optical system, such as the lens module 7 and the light-blocking block 6, may be broken when touched directly by the user, so the camera module is covered with a camera chassis (not shown).
  • the portion of the lens module 7 including the apertures 5a to 5d needs to expose the camera chassis force.
  • the lens module 7 is covered with a highly transparent protective cover in order to prevent the user from directly touching the exposed portion.
  • the base material 9 on which the IR filter 9a is formed is used as a protective cover for preventing the user from directly touching the camera module.
  • the number of parts can be reduced and the thickness of the camera module can be reduced as compared with the case where a protective cover is provided separately from the base material 9.
  • the optical filter module 2 is used so that each of the imaging regions 4a to 4d images light of a specific wavelength band.
  • the camera module shown in FIG. 17 is different from the above-described camera modules in that the optical filter module 2 is used!
  • each of the imaging regions 4 a to 4 d images light in all wavelength bands in which the imaging element 4 has sensitivity.
  • an inexpensive camera module can be provided.
  • the gap between the lens array 1 and the light shielding walls 61a to 61d can be reduced. This can reduce the possibility of unnecessary light described with reference to FIG. 6A. Accordingly, the light shielding film 8 is also omitted in the camera module of FIG.
  • the optical filters (optical filters 2a, 2b, 2c, 2d and IR filter 9a) that selectively transmit light in a specific wavelength band are formed on a base material (for example, a transparent glass substrate).
  • a base material for example, a transparent glass substrate.
  • the present invention is not limited to this.
  • an optical filter may be formed directly on the image sensor 4, the same effect as described above can be obtained.
  • an optical filter having the same characteristics may be formed on all pixels in one imaging area, but each color light of red, green, and blue is selectively transmitted.
  • Optical filters may be arranged in a bay array on the pixels in the imaging area.
  • a color image can be obtained by arranging the optical filters in such a Bayer arrangement.
  • the effective pixel area of the imaging element 4 is divided into four imaging areas as described above, and optical filters are arranged in a Bayer array in two of the imaging areas, and near red in the remaining two imaging areas. You may arrange
  • the effective pixel area of the imaging element 4 is divided into four imaging areas, but the number of imaging areas, the arrangement of a plurality of imaging areas, and the like can be changed as appropriate.
  • the optical filter module 2 described above is composed of a plurality of components separately created for each wavelength band of light to be transmitted (for example, green light and near-infrared light). It is not limited to. For example, it may be composed of a single component in which optical filters having different characteristics (for example, a green optical filter and a near infrared optical filter) are formed in different regions of a common base material.
  • optical filters having different characteristics for example, a green optical filter and a near infrared optical filter
  • the light shielding film 8 is a force provided separately from the optical filter 2 and the substrate 9.
  • the present invention is not limited to this.
  • the light shielding film 8 may be directly formed on the optical filter 2 and the substrate 9 using printing or the like, the same effect as described above can be obtained.
  • two reference surfaces that are in contact with each other to suppress tilt and the like are flat surfaces, and the force that the two planar reference surfaces are in surface contact with each other.
  • the present invention is not limited thereto.
  • the planar reference surface and the spherical reference surface may be brought into point contact, or the planar reference surface and the bowl-shaped reference surface may be brought into line contact.
  • the reference surface (second reference surface) that contacts the image sensor 4 may be composed of three spherical surfaces 65R on which fillets are formed as shown in FIG. This part is also used to position the part in one direction.
  • the number of reference surfaces provided on the product is not limited to the above-described embodiment, and can be changed as appropriate.
  • the field of application of the compound eye camera module of the present invention is not particularly limited, but it is preferably used for, for example, a small-sized and thin mobile phone having a camera function, a digital still camera, a surveillance camera, an in-vehicle camera, and the like. can do.

Abstract

A compound eye camera module where a light shielding block (6) having openings (6a-6d) is provided between a lens array (1) and an imaging element (4). The lens array (1) is provided with lenses (1a-1d) having optical axes different from each other, and the imaging element (4) has imaging regions (4a-4d). The light shielding block has a first standard surface (68) in contact with the lens array and positioning it in the optical axis direction, a second standard surface (65) in contact with the imaging element and positioning it in the optical axis direction, a third standard surface (67) in contact with the lens array and positioning it ina first direction perpendicular to the optical axis direction, and a fourth standard surface (66) in contact with the lens array and positioning the lens array in a second direction perpendicular to the optical axis direction and the first direction. Although simply assembled, the compound eye camera module has high accuracy of measured distances and is small-sized and thin.

Description

明 細 書  Specification
複眼方式のカメラモジュール  Compound eye camera module
技術分野  Technical field
[0001] 本発明は、小型、薄型のカメラモジュールに関する。特に、複数の撮影光学レンズ によって画像を撮像する複眼方式のカメラモジュールに関する。  The present invention relates to a small and thin camera module. In particular, the present invention relates to a compound-eye camera module that captures an image with a plurality of photographing optical lenses.
背景技術  Background art
[0002] デジタルビデオやデジタルカメラのような撮像装置では、レンズを介して被写体像を CCDや CMOS等の撮像素子上に結像することにより、被写体を 2次元の画像情報 に変換する。さらには被写体までの距離情報を測定するカメラも提案されている。  In an imaging apparatus such as a digital video or a digital camera, a subject image is converted into two-dimensional image information by forming a subject image on an image sensor such as a CCD or CMOS through a lens. Furthermore, a camera that measures distance information to a subject has also been proposed.
[0003] 複眼方式のカメラモジュールで、被写体までの距離を測定する一例が特許文献 1 に記載されており、これを図 19を用いて説明する。被写体側から順に、絞り部材 111 、レンズアレイ 112、遮光ブロック 113、光学フィルタアレイ 114、撮像素子 116が配 置されている。レンズアレイ 112は複数のレンズを備える。絞り部材 111は、レンズァ レイ 112の各レンズの光軸と一致する位置にそれぞれ絞り(開口)を備える。光学フィ ルタアレイ 114は、レンズアレイ 112の各レンズに対応する領域ごとに分光特性が異 なる複数の光学フィルタを備え、撮像素子 116の受光面を覆っている。遮光ブロック 113は、レンズアレイ 112の隣り合うレンズ間の境界、即ち、光学フィルタアレイ 114 の隣り合う光学フィルタ間の境界と一致する位置に遮光壁 113aを備えている。撮像 素子 116は半導体基板 115上に搭載されている。半導体基板 115上には、更に、駆 動回路 117、信号処理回路 118が実装されている。このように構成されたカメラモジ ユールでは、視差を有する複数の画像が得られ、この複数の画像から視差量を算出 し、視差量に基づ 、て被写体までの距離を算出して 、る。  [0003] An example of measuring a distance to a subject with a compound eye camera module is described in Patent Document 1, which will be described with reference to FIG. A diaphragm member 111, a lens array 112, a light shielding block 113, an optical filter array 114, and an image sensor 116 are arranged in this order from the subject side. The lens array 112 includes a plurality of lenses. The diaphragm member 111 includes a diaphragm (aperture) at a position that coincides with the optical axis of each lens of the lens array 112. The optical filter array 114 includes a plurality of optical filters having different spectral characteristics for each region corresponding to each lens of the lens array 112, and covers the light receiving surface of the image sensor 116. The light blocking block 113 includes a light blocking wall 113a at a position that coincides with the boundary between adjacent lenses of the lens array 112, that is, the boundary between adjacent optical filters of the optical filter array 114. The image sensor 116 is mounted on the semiconductor substrate 115. On the semiconductor substrate 115, a driving circuit 117 and a signal processing circuit 118 are further mounted. With the camera module configured as described above, a plurality of images having parallax are obtained, and the amount of parallax is calculated from the plurality of images, and the distance to the subject is calculated based on the amount of parallax.
[0004] さらに距離精度を向上させるために、レンズの組合せを変え、レンズ間距離 (基線 長)を変更して距離精度を向上させるカメラモジュールが提案されている。  [0004] In order to further improve the distance accuracy, a camera module has been proposed that improves the distance accuracy by changing the combination of lenses and changing the inter-lens distance (base line length).
特許文献 1 :特開 2003— 143459号公報  Patent Document 1: Japanese Unexamined Patent Publication No. 2003-143459
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0005] しかしながら、図 19のカメラモジュールでは、組立てのばらつきに起因して以下のよ うな問題が生じる。第 1に、演算で算出した視差量に誤差が生じ、その結果、測定距 離の精度が悪化してしまう。第 2に、レンズアレイ 112の各レンズを通過した光が遮光 ブロック 113の遮光壁 113aに入射して、光が遮光壁 113aに吸収されることで撮像素 子 116の受光面に被写体像の全部又は一部が結像されな力つたり、光が遮光壁 11 3aで反射することで不要光が発生してゴーストが生じたりする。これらはいずれも測 定距離精度を悪化させる原因となる。 Problems to be solved by the invention However, the camera module shown in FIG. 19 has the following problems due to assembly variations. First, an error occurs in the amount of parallax calculated by the calculation, and as a result, the accuracy of the measurement distance deteriorates. Second, the light that has passed through each lens of the lens array 112 enters the light shielding wall 113a of the light shielding block 113, and the light is absorbed by the light shielding wall 113a, so that the entire subject image is captured on the light receiving surface of the imaging element 116. Alternatively, a force that does not form an image is generated, or unnecessary light is generated due to reflection of light by the light shielding wall 113a, thereby causing ghost. Both of these cause the measurement distance accuracy to deteriorate.
[0006] 測定距離精度を向上させるためには基線長を長くすれば良いが、これはカメラモジ ユールの大型化を招き、好ましくない。  [0006] In order to improve the measurement distance accuracy, the base line length may be increased, but this is not preferable because it leads to an increase in the size of the camera module.
[0007] 本発明は、小型で基線長が短ぐかつ測定距離精度を向上できるカメラモジュール を提供することを目的とする。  An object of the present invention is to provide a camera module that is small in size, has a short base line length, and can improve measurement distance accuracy.
課題を解決するための手段  Means for solving the problem
[0008] 本願発明の複眼方式のカメラモジュールは、一平面上に配置された、互いに光軸 が異なる複数のレンズを有するレンズアレイと、前記複数のレンズのそれぞれに 1対 1 に対応する複数の撮像領域を有する撮像素子と、前記レンズアレイと前記撮像素子 との間に配置され、前記複数のレンズのそれぞれに 1対 1に対応する複数の開口部 を有する遮光ブロックとを有する。前記遮光ブロックは、前記レンズアレイと当接し前 記レンズアレイを前記光軸方向に位置決めする第 1の基準面と、前記撮像素子と当 接し前記撮像素子を前記光軸方向に位置決めする第 2の基準面と、前記レンズァレ ィと当接し前記レンズアレイを前記光軸と直交する第 1方向に位置決めする第 3の基 準面と、前記レンズアレイと当接し前記レンズアレイを前記光軸及び前記第 1方向に 直交する第 2方向に位置決めする第 4の基準面とを有する。 [0008] The compound-eye camera module of the present invention includes a lens array having a plurality of lenses arranged on a single plane and having different optical axes, and a plurality of one-to-one correspondences to each of the plurality of lenses. An image pickup device having an image pickup area; and a light-shielding block disposed between the lens array and the image pickup device and having a plurality of openings corresponding to each of the plurality of lenses. The light shielding block is in contact with the lens array, a first reference plane that positions the lens array in the optical axis direction, and a second reference surface that is in contact with the imaging element and positions the imaging element in the optical axis direction. A reference surface, a third reference surface that contacts the lens array and positions the lens array in a first direction orthogonal to the optical axis, and a contact with the lens array that aligns the lens array with the optical axis and the first array. And a fourth reference plane positioned in a second direction orthogonal to one direction.
発明の効果  The invention's effect
[0009] 本発明によれば、組立てばらつきを低減できるので、組立てばらつきに起因する測 定距離精度の悪ィ匕を防止することができる。従って、基線長が短い小型のカメラモジ ユールであっても、測定距離精度が向上したカメラモジュールを提供することが可能 となる。  [0009] According to the present invention, since the assembly variation can be reduced, it is possible to prevent the measurement distance accuracy from being deteriorated due to the assembly variation. Accordingly, it is possible to provide a camera module with improved measurement distance accuracy even with a small camera module having a short base line length.
[0010] さらに、組立ての際に複雑でコスト高となる調整機構を用いることなく簡易な組立て を行なっても、測定距離精度を向上することができるため、安価なカメラモジュールを 提供することが可能となる。 [0010] Furthermore, simple assembly without using a complicated and expensive adjustment mechanism during assembly. Even if the measurement is performed, the measurement distance accuracy can be improved, so that an inexpensive camera module can be provided.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1は、本発明の実施の形態 1に係る複眼方式のカメラモジュールの分解斜視 図である。 FIG. 1 is an exploded perspective view of a compound-eye camera module according to Embodiment 1 of the present invention.
[図 2]図 2は、本発明の実施の形態 1に係る複眼方式のカメラモジュールにおいて、 上鏡筒の撮像素子側力 見た斜視図である。  [Fig. 2] Fig. 2 is a perspective view of the upper lens barrel as viewed from the side of the imaging device in the compound eye type camera module according to Embodiment 1 of the present invention.
[図 3A]図 3Aは、本発明の実施の形態 1に係る複眼方式のカメラモジュールにおいて 、レンズアレイの被写体側から見た斜視図である。  FIG. 3A is a perspective view of the compound-eye camera module according to Embodiment 1 of the present invention as viewed from the subject side of the lens array.
[図 3B]図 3Bは、本発明の実施の形態 1に係る複眼方式のカメラモジュールにおいて 、レンズアレイの撮像素子側から見た斜視図である。  FIG. 3B is a perspective view of the compound-eye camera module according to Embodiment 1 of the present invention as viewed from the image sensor side of the lens array.
[図 4A]図 4Aは、本発明の実施の形態 1に係る複眼方式のカメラモジュールにおいて 、遮光ブロックの被写体側力 見た斜視図である。  [FIG. 4A] FIG. 4A is a perspective view showing the subject side force of the light-shielding block in the compound-eye camera module according to Embodiment 1 of the present invention.
[図 4B]図 4Bは、本発明の実施の形態 1に係る複眼方式のカメラモジュールにおいて 、遮光ブロックの撮像素子側力 見た斜視図である。  FIG. 4B is a perspective view of the image sensor side force of the light shielding block in the compound eye type camera module according to Embodiment 1 of the present invention.
[図 4C]図 4Cは、本発明の実施の形態 1に係る複眼方式のカメラモジュールにおいて 、遮光ブロックの被写体側力 見た斜視図である。  [FIG. 4C] FIG. 4C is a perspective view showing the subject side force of the light-blocking block in the compound-eye camera module according to Embodiment 1 of the present invention.
[図 5]図 5は、遮光壁と外筒部とが別体で構成された、本発明の実施の形態 1に係る 別の複眼方式のカメラモジュールの分解斜視図である。  FIG. 5 is an exploded perspective view of another compound-eye camera module according to Embodiment 1 of the present invention, in which the light shielding wall and the outer cylinder portion are configured separately.
[図 6A]図 6Aは、本発明の実施の形態 1に係る複眼方式のカメラモジュールにおいて 、遮光膜が設けられていない場合の光線図である。  FIG. 6A is a ray diagram when no light-shielding film is provided in the compound-eye camera module according to Embodiment 1 of the present invention.
[図 6B]図 6Bは、本発明の実施の形態 1に係る複眼方式のカメラモジュールにおいて 、遮光膜が設けられた場合の光線図である。  FIG. 6B is a ray diagram when a light-shielding film is provided in the compound-eye camera module according to Embodiment 1 of the present invention.
[図 7]図 7は、本発明の実施の形態 1に係る複眼方式のカメラモジュールにおいて、 遮光膜の平面図である。  FIG. 7 is a plan view of a light shielding film in the compound-eye camera module according to Embodiment 1 of the present invention.
[図 8A]図 8Aは、本発明の実施の形態 1に係る複眼方式のカメラモジュールの平面 図である。  FIG. 8A is a plan view of a compound-eye camera module according to Embodiment 1 of the present invention.
[図 8B]図 8Bは、図 8Aの 8B— 8B線での矢視断面図である。 [図 9]図 9は、本発明の実施の形態 2に係る複眼方式のカメラモジュールの分解斜視 図である。 FIG. 8B is a cross-sectional view taken along line 8B-8B in FIG. 8A. FIG. 9 is an exploded perspective view of a compound-eye camera module according to Embodiment 2 of the present invention.
[図 10]図 10は、本発明の実施の形態 2に係る複眼方式のカメラモジュールの断面図 である。  FIG. 10 is a cross-sectional view of a compound eye type camera module according to Embodiment 2 of the present invention.
[図 11]図 11は、本発明の実施の形態 3に係る複眼方式のカメラモジュールの分解斜 視図である。  FIG. 11 is an exploded perspective view of a compound eye camera module according to Embodiment 3 of the present invention.
[図 12]図 12は、本発明の実施の形態 3に係る複眼方式のカメラモジュールの断面図 である。  FIG. 12 is a cross-sectional view of a compound eye type camera module according to Embodiment 3 of the present invention.
[図 13]図 13は、本発明の実施の形態 4に係る複眼方式のカメラモジュールの分解斜 視図である。  FIG. 13 is an exploded perspective view of a compound-eye camera module according to Embodiment 4 of the present invention.
[図 14]図 14は、本発明の実施の形態 4に係る別の複眼方式のカメラモジュールの分 解斜視図である。  FIG. 14 is an exploded perspective view of another compound-eye camera module according to Embodiment 4 of the present invention.
[図 15]図 15は、本発明の実施の形態 4に係る更に別の複眼方式のカメラモジュール の分解斜視図である。  FIG. 15 is an exploded perspective view of still another compound-eye camera module according to Embodiment 4 of the present invention.
[図 16]図 16は、本発明の実施の形態 4に係る更に別の複眼方式のカメラモジュール の分解斜視図  FIG. 16 is an exploded perspective view of still another compound-eye camera module according to Embodiment 4 of the present invention.
[図 17]図 17は、本発明の実施の形態 4に係る更に別の複眼方式のカメラモジュール の分解斜視図  FIG. 17 is an exploded perspective view of still another compound eye camera module according to Embodiment 4 of the present invention.
[図 18]図 18は、本発明に係る複眼方式のカメラモジュールにおいて、別の外筒部の 撮像素子側から見た斜視図である。  FIG. 18 is a perspective view of another outer cylinder portion viewed from the image sensor side in a compound eye type camera module according to the present invention.
[図 19]図 19は従来のカメラモジュールの撮像系の分解斜視図である。  FIG. 19 is an exploded perspective view of an imaging system of a conventional camera module.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
上記の本発明の複眼方式のカメラモジュールは、前記レンズアレイと前記撮像素子 との間に配置され、前記複数のレンズを透過した光のうち特定の波長帯域の光を透 過させる光学フィルタモジュールを更に有することが好ましい。この場合、前記遮光 ブロックは、前記光学フィルタモジュールと当接し前記光学フィルタモジュールを前記 光軸方向に位置決めする第 5の基準面を有することが好ましい。これにより、光学フィ ルタモジュールのチルトを抑制することができるので、簡易な組立を行っても、組み立 てばらつきに起因する測定距離精度の悪ィ匕を更に防止することができる。 The compound eye type camera module of the present invention described above is an optical filter module that is disposed between the lens array and the image sensor and transmits light in a specific wavelength band among light transmitted through the plurality of lenses. Furthermore, it is preferable to have. In this case, it is preferable that the light shielding block has a fifth reference surface that abuts the optical filter module and positions the optical filter module in the optical axis direction. As a result, the tilt of the optical filter module can be suppressed. Thus, it is possible to further prevent bad measurement distance accuracy due to variations.
[0013] 上記の本発明の複眼方式のカメラモジュールは、前記レンズアレイと前記光学フィ ルタモジュールとの間に配置され、前記複数のレンズのそれぞれに 1対 1に対応する 複数の開口部を有する遮光膜を更に有することが好ましい。この場合、前記遮光膜 の前記複数の開口部の大きさは、前記遮光ブロックの前記複数の開口部と同じかま たはこれより小さいことが好ましい。これにより、各撮像領域に、この撮像領域に対応 しないレンズを通過した不要光が入射するのを防止することができる。従って、測定 距離精度が悪ィ匕するのを更に防止することができる。  [0013] The compound-eye camera module of the present invention described above is disposed between the lens array and the optical filter module, and has a plurality of openings corresponding to each of the plurality of lenses. It is preferable to further have a light shielding film. In this case, it is preferable that the plurality of openings of the light shielding film have the same size as or smaller than the plurality of openings of the light shielding block. Thereby, it is possible to prevent unnecessary light that has passed through a lens not corresponding to the imaging region from entering each imaging region. Therefore, it is possible to further prevent the measurement distance accuracy from being deteriorated.
[0014] (実施の形態 1)  [0014] (Embodiment 1)
以下、本発明の実施の形態 1について、図面を参照しながら説明する。  Embodiment 1 of the present invention will be described below with reference to the drawings.
[0015] 図 1は、本発明の実施の形態 1における複眼方式のカメラモジュールの分解斜視図 である。図 1において、 1はレンズアレイ、 2は光学フィルタモジュール、 3は基板、 4は 撮像素子、 5は上鏡筒、 6は遮光ブロック、 7はレンズモジュール、 8は遮光膜である。 説明の便宜のために、図示したような XYZ直交座標系を設定する。ここで Z軸は、撮 像素子 4の有効画素領域のほぼ中心を通り、これと垂直な軸とする。 X軸は Z軸と直 交し遮光ブロック 6の後述する遮光壁 6 la, 61cと平行な軸であり、 Y軸は Z軸と直交 し遮光ブロック 6の後述する遮光壁 6 lb, 6 Idと平行な軸である。 X軸、 Y軸、 Z軸の 矢印の側を各軸の正の側とする。 Z軸方向において、 Z軸の正の側(図 1の紙面上側 、被写体側)をカメラモジュールの「上側」、 Z軸の負の側(図 1の紙面下側、像面側) をカメラモジュールの「下側」と呼ぶ。  FIG. 1 is an exploded perspective view of a compound-eye camera module according to Embodiment 1 of the present invention. In FIG. 1, 1 is a lens array, 2 is an optical filter module, 3 is a substrate, 4 is an image sensor, 5 is an upper barrel, 6 is a light-blocking block, 7 is a lens module, and 8 is a light-shielding film. For convenience of explanation, the XYZ Cartesian coordinate system as shown is set. Here, the Z-axis passes through almost the center of the effective pixel area of the image sensor 4 and is perpendicular to this. The X axis is perpendicular to the Z axis and is parallel to the light shielding walls 6 la and 61c described later of the light shielding block 6, and the Y axis is orthogonal to the Z axis and is described later as light shielding walls 6 lb and 6 Id of the light shielding block 6. It is a parallel axis. The arrow side of the X, Y, and Z axes is the positive side of each axis. In the Z-axis direction, the positive side of the Z-axis (upper side of the paper in FIG. 1, the subject side) is the “upper side” of the camera module, and the negative side of the Z-axis (lower side of the paper in FIG. 1, image side) is the camera module. Called the "lower side".
[0016] レンズアレイ 1は、 XY面と平行な同一平面上に配置された 4つの単レンズ la〜ld を一体に有する。 4つのレンズ la〜: Ldの各光軸は Z軸と平行であり、 XY面に平行な 仮想の長方形の 4つの頂点に配置されている。レンズ la〜: Ldのうち 2個は、それぞ れ光の 3原色のうちの赤、青、緑のいずれかの波長帯域の光に対して要求される MT F等の光学仕様を満足するよう設計されており、残りの 2個は近赤外の波長帯域の光 に対して要求される MTF等の光学仕様を満足するように設計されて!、る。一実施例 では、レンズ la、 lbは緑色、レンズ lc、 Idは近赤外の各波長帯域の光に最適に設 計されている。レンズ la〜: Ldは、ガラスあるいはプラスチックなどの材料を用いて一 体に形成されている。そして、同一波長帯域の光に最適設計されたレンズ間(一実施 例では緑色光に対応するレンズ la, lb間、及び近赤外光に対応するレンズ lc, Id 間)のフランジバックのずれは極力ゼロになるよう考慮されている。 The lens array 1 integrally has four single lenses la to ld arranged on the same plane parallel to the XY plane. Four lenses la ~: Each optical axis of Ld is parallel to the Z axis, and is arranged at four vertices of a virtual rectangle parallel to the XY plane. Lens la ~: Two of Ld should satisfy the optical specifications such as MTF required for light in the wavelength band of red, blue, or green among the three primary colors of light. The remaining two are designed to satisfy the optical specifications such as MTF required for light in the near-infrared wavelength band! In one embodiment, the lenses la and lb are optimally designed for light in the wavelength bands of green and the lenses lc and Id in the near infrared. Lens la ~: Ld is made of a material such as glass or plastic. Formed in the body. The flange back deviation between the lenses optimally designed for light in the same wavelength band (in one embodiment, between the lenses la and lb corresponding to green light and between the lenses lc and Id corresponding to near-infrared light) is It is considered to be zero as much as possible.
[0017] レンズ la〜ldの各々は、被写体(図示せず)からの光を、光学フィルタモジュール 2 を通過した後、撮像素子 4上に結像させる。  Each of the lenses la to ld causes light from a subject (not shown) to form an image on the image sensor 4 after passing through the optical filter module 2.
[0018] 光学フィルタモジュール 2はレンズアレイ 1と撮像素子 4との間に配置されている。光 学フィルタモジュール 2も、レンズアレイ 1と同様に、 XY面と平行な同一平面上に配 置された 2つの光学フィルタ 2a、 2cを有する。 2つの光学フィルタ 2a、 2cは、それぞ れ赤、緑、青、近赤外のうちのいずれかの波長帯域の光のみを透過する。一実施例 では、光学フィルタ 2aは緑色、光学フィルタ 2cは近赤外の各波長帯域のみの光を透 過させる。なお、赤外線をカットする必要がある場合には、可視光の波長帯域の光を 透過させる光学フィルタ 2aにその特性が付加されていても良い。そして、同一の波長 帯域の光を透過させる光学フィルタは一体で形成されて 、る。光学フィルタ 2aはレン ズ la、 lbの光軸上に、光学フィルタ 2cはレンズ lc、 Idの光軸上にそれぞれ配置さ れる。  The optical filter module 2 is disposed between the lens array 1 and the image sensor 4. Similarly to the lens array 1, the optical filter module 2 includes two optical filters 2a and 2c arranged on the same plane parallel to the XY plane. The two optical filters 2a and 2c transmit only light in any wavelength band of red, green, blue, and near infrared, respectively. In one embodiment, the optical filter 2a transmits light only in the wavelength band of green and the optical filter 2c transmits in the near-infrared wavelength band. When it is necessary to cut off infrared rays, the characteristics may be added to the optical filter 2a that transmits light in the visible wavelength band. The optical filter that transmits light in the same wavelength band is integrally formed. The optical filter 2a is disposed on the optical axes of the lenses la and lb, and the optical filter 2c is disposed on the optical axes of the lenses lc and Id.
[0019] 撮像素子 4は、 CCD又は CMOS等の撮像センサであり、縦横方向に 2次元配列さ れた多数の画素を備えている。撮像素子 4の有効画素領域は、 4つの撮像領域 4a〜 4dにほぼ等分されている。 4つの撮像領域 4a〜4dは、 4つのレンズ la〜 Idの各光 軸上にそれぞれ配置されている。これにより、 4つの撮像領域 4a〜4d上に、赤、緑、 青、近赤外のうちのいずれかの波長成分のみ力 なる被写体像が独立して形成され る。一実施例では、レンズ laを通過した被写体からの光は光学フィルタ 2aに入射し、 緑色の波長帯域光のみがこれを通過して撮像領域 4a上に緑色の波長成分のみから なる被写体像を結像する。同様に、レンズ lbを通過した被写体からの光は光学フィ ルタ 2aに入射し、緑色の波長帯域光のみがこれを通過して撮像領域 4b上に緑色の 波長成分のみ力もなる被写体像を結像する。レンズ lcを通過した被写体からの光は 光学フィルタ 2cに入射し、近赤外の波長帯域光のみがこれを通過して撮像領域 4c 上に近赤外の波長成分のみ力もなる被写体像を結像する。レンズ Idを通過した被写 体からの光は光学フィルタ 2cに入射し、近赤外の波長帯域光のみがこれを通過して 撮像領域 4d上に近赤外の波長成分のみからなる被写体像を結像する。 The image sensor 4 is an image sensor such as a CCD or a CMOS, and includes a large number of pixels arranged two-dimensionally in the vertical and horizontal directions. The effective pixel area of the image sensor 4 is substantially equally divided into four image areas 4a to 4d. The four imaging regions 4a to 4d are arranged on the optical axes of the four lenses la to Id, respectively. As a result, on the four imaging regions 4a to 4d, subject images that have power only in the wavelength components of red, green, blue, and near infrared are independently formed. In one embodiment, the light from the subject that has passed through the lens la enters the optical filter 2a, and only the light in the green wavelength band passes through it and forms a subject image consisting of only the green wavelength component on the imaging region 4a. Image. Similarly, the light from the subject that has passed through the lens lb enters the optical filter 2a, and only the light in the green wavelength band passes through it to form a subject image in which only the green wavelength component has power on the imaging region 4b. To do. Light from the subject that has passed through the lens lc is incident on the optical filter 2c, and only near-infrared wavelength band light passes through it, forming an image of the subject that has power only in the near-infrared wavelength component on the imaging region 4c. To do. The light from the subject that has passed through the lens Id enters the optical filter 2c, and only the light in the near-infrared wavelength band passes through it. A subject image consisting only of near-infrared wavelength components is formed on the imaging region 4d.
[0020] 撮像素子 4の撮像領域 4a〜4dを構成する各画素は、入射した被写体からの光を 光電変換し、光の強度に応じた電気信号 (図示せず)をそれぞれ出力する。 [0020] Each pixel constituting the imaging regions 4a to 4d of the imaging device 4 photoelectrically converts light from an incident subject and outputs an electrical signal (not shown) corresponding to the intensity of the light.
[0021] 撮像素子 4から出力された電気信号は、様々な信号処理が施され、映像処理され る。たとえば、緑色の波長帯域光が結像する撮像領域 4a、 4bが撮像した 2つの画像 を用いて、これらの画像間の視差量を求め、被写体までの距離を測定することができ る。同様に、近赤外の波長帯域光が結像する撮像領域 4c, 4dが撮像した 2つの画 像を用いて、これらの画像間の視差量を求め、被写体までの距離を測定しても良い。 2つの可視光の画像と 2つの近赤外光の画像とを入手することができるため、昼夜を 問わず被写体までの距離を測定することもできる。これらの処理はデジタル信号プロ セッサ (DSP、図示せず)等を用いて行うことができる。 [0021] The electric signal output from the image sensor 4 is subjected to various signal processing and image processing. For example, by using two images captured by the imaging regions 4a and 4b where green wavelength band light is imaged, the amount of parallax between these images can be obtained and the distance to the subject can be measured. Similarly, using two images captured by the imaging regions 4c and 4d where near-infrared wavelength band light is imaged, the amount of parallax between these images may be obtained and the distance to the subject measured. . Since two visible light images and two near-infrared light images are available, the distance to the subject can be measured day and night. These processes can be performed using a digital signal processor (DSP, not shown).
[0022] 上鏡筒 5は、図 2に示すように、その下面に、レンズアレイ 1を保持し固定する凹部 5 1を備える。上鏡筒 5は、凹部 51側に向いた基準面 52, 53を備える。基準面 52, 53 は Z軸と平行である。基準面 52は Y軸と平行であり、基準面 53は X軸と平行である。 また、上鏡筒 5には、保持されたレンズアレイ 1の 4つレンズ la〜: Ldの各光軸が通過 する位置に 4つの絞り(開口) 5a〜5dが形成されている。上鏡筒 5は光を透過しない 材料からなり、絞り 5a〜5d以外力も不要な外光がレンズ la〜: Ldに入射するのを遮蔽 する。 As shown in FIG. 2, the upper barrel 5 is provided with a recess 51 on the lower surface thereof for holding and fixing the lens array 1. The upper lens barrel 5 includes reference surfaces 52 and 53 facing the concave portion 51 side. The reference planes 52 and 53 are parallel to the Z axis. The reference plane 52 is parallel to the Y axis, and the reference plane 53 is parallel to the X axis. The upper lens barrel 5 has four apertures (openings) 5a to 5d at positions where the optical axes of the four lenses la to Ld of the held lens array 1 pass. The upper lens barrel 5 is made of a material that does not transmit light, and blocks external light that does not require any force other than the diaphragms 5a to 5d from entering the lenses la to Ld.
[0023] 図 3A及び図 3Bにレンズアレイの斜視図を示す。図 3Aは被写体側、図 3Bは撮像 素子側から見た斜視図である。レンズアレイ 1は、その周囲に基準面 12, 13を備える 。基準面 12は Z軸と平行で、 X軸の正の方向に向いている。基準面 13は Z軸と平行 で、 Y軸の正の方向に向いている。また、レンズアレイ 1は、撮像素子側に向いた 4つ の基準面 14を備える。  3A and 3B are perspective views of the lens array. 3A is a perspective view seen from the subject side, and FIG. 3B is a perspective view seen from the image sensor side. The lens array 1 includes reference surfaces 12 and 13 around the lens array 1. The reference plane 12 is parallel to the Z axis and points in the positive direction of the X axis. The reference plane 13 is parallel to the Z axis and points in the positive direction of the Y axis. The lens array 1 includes four reference surfaces 14 facing the image sensor side.
[0024] 上鏡筒 5に設けられた基準面 52とレンズアレイ 1に設けられた基準面 12とを X軸方 向に押し当てて、且つ、上鏡筒 5に設けられた基準面 53とレンズアレイ 1に設けられ た基準面 13とを Y軸方向に押し当てて、レンズアレイ 1を上鏡筒 5の凹部 51内に嵌 入し固定する。これにより、上鏡筒 5に設けられた 4つの絞り 5a〜5dの中心とレンズ 1 a〜 Idの光軸とがそれぞれ一致する。力くして、レンズアレイ 1と、これを保持する上 鏡筒 5とで、レンズモジュール 7が構成される。凹部 51の Z軸方向の深さは、レンズァ レイ 1の Z軸方向の厚さより浅い。従って、レンズアレイ 1が上鏡筒 5に保持された状態 において、レンズアレイ 1の周囲に設けられた基準面 12, 13の一部は露出する。 [0024] The reference surface 52 provided on the upper lens barrel 5 and the reference surface 12 provided on the lens array 1 are pressed in the X-axis direction, and the reference surface 53 provided on the upper lens barrel 5 is The reference surface 13 provided on the lens array 1 is pressed against the Y-axis direction, and the lens array 1 is fitted and fixed in the recess 51 of the upper barrel 5. As a result, the centers of the four stops 5a to 5d provided in the upper barrel 5 and the optical axes of the lenses 1a to Id coincide with each other. Force the lens array 1 and hold it The lens module 7 is composed of the lens barrel 5. The depth of the recess 51 in the Z-axis direction is shallower than the thickness of the lens array 1 in the Z-axis direction. Accordingly, in a state where the lens array 1 is held by the upper lens barrel 5, a part of the reference surfaces 12 and 13 provided around the lens array 1 is exposed.
[0025] 遮光ブロック 6は、図 4Aに示すように、互いに独立した 4つの開口部 6a〜6dを形成 するように十字状に配置された遮光壁 6 la〜6 Idと、遮光壁 6 la〜6 Idを保持する外 筒部 62とを備える。遮光壁 61a〜61dは遮光ブロック 6の中心軸である Z軸に対して 放射状に伸びており、遮光壁 61a、 61cは XZ面に沿っており、遮光壁 61b, 61dは Y Z面に沿っている。 4つの開口部 6a〜6dは、 4つのレンズ la〜ldの各光軸上にそれ ぞれ配置される。遮光壁 61a〜61dが撮像素子 4の有効画素領域を 4つの撮像領域 4a〜4dに分割している。 Z軸に沿って見た開口部 6a〜6dの大きさは、撮像領域 4a 〜4dとほぼ同じかこれより大きい。レンズ la〜: Ldをそれぞれ通過した被写体からの 光は、開口部 6a〜6dを通過して、撮像領域 4a〜4d上にそれぞれ結像される。遮光 壁 61a〜61dは、レンズ la〜ldのうちの一つを通過した光力 このレンズと対応しな い撮像領域に入射するのを防ぐ。例えば、レンズ laに斜めに入射し、光学フィルタ 2 aを通過した緑色の波長帯域光が、本来、近赤外の波長帯域光のみが入射すべきで ある撮像領域 4cに入射しないように、この緑色の波長帯域光を遮断する遮光壁 6 Id が撮像領域 4aと撮像領域 4cとの境界に沿って設けられている。開口部 6a〜6dを取 り囲む外筒部 62は、レンズアレイ 1及び光学フィルタモジュール 2を通過しない外光 が撮像領域 4a〜4dに入射するのを防止する。このように遮光ブロック 6によって、各 撮像領域 4a〜4dに不要光が入射することがなぐ迷光等の発生を防止できる。この 機能を有効に発揮させるため、遮光ブロック 6は、上鏡筒 5と同様に光を透過しない 材料力もなる。さらに開口部 6a〜6d内に露出された遮光壁 61a〜61d及び外筒部 6 2の内面は光の反射が極力小さくなるように、各種表面処理 (例えば、粗面化処理、メ ツキ、黒色化処理など)ゃシボカ卩ェが施されたり、テーパを有する遮光面 (即ち、 Z軸 に対して傾斜した面)が形成されて 、たりすることが好ま 、。  As shown in FIG. 4A, the light shielding block 6 includes light shielding walls 6 la to 6 Id arranged in a cross shape so as to form four openings 6a to 6d independent of each other, and the light shielding walls 6 la to 6 Provided with an outer cylindrical portion 62 for holding Id. The light shielding walls 61a to 61d extend radially with respect to the Z axis, which is the central axis of the light shielding block 6, the light shielding walls 61a and 61c are along the XZ plane, and the light shielding walls 61b and 61d are along the YZ plane. . The four openings 6a to 6d are arranged on the optical axes of the four lenses la to ld, respectively. The light shielding walls 61a to 61d divide the effective pixel area of the image sensor 4 into four image areas 4a to 4d. The sizes of the openings 6a to 6d viewed along the Z axis are substantially the same as or larger than the imaging regions 4a to 4d. Lenses la ~: The light from the subject that has passed through Ld passes through the openings 6a-6d and is imaged on the imaging regions 4a-4d, respectively. The light shielding walls 61a to 61d prevent the light force that has passed through one of the lenses la to ld from entering an imaging area that does not correspond to this lens. For example, the green wavelength band light incident obliquely on the lens la and passed through the optical filter 2a is not incident on the imaging region 4c where only the near-infrared wavelength band light should be incident. A light shielding wall 6 Id that blocks light in the green wavelength band is provided along the boundary between the imaging region 4a and the imaging region 4c. The outer cylindrical portion 62 surrounding the openings 6a to 6d prevents external light that does not pass through the lens array 1 and the optical filter module 2 from entering the imaging regions 4a to 4d. In this manner, the light blocking block 6 can prevent the generation of stray light or the like that prevents unnecessary light from entering each of the imaging regions 4a to 4d. In order to effectively exhibit this function, the light shielding block 6 also has a material force that does not transmit light, like the upper lens barrel 5. Further, the inner surfaces of the light shielding walls 61a to 61d and the outer cylindrical portion 62 exposed in the openings 6a to 6d are subjected to various surface treatments (for example, roughening treatment, plating, black, etc.) so that light reflection is minimized. It is preferable that the surface is subjected to a shading process, or a light shielding surface having a taper (that is, a surface inclined with respect to the Z axis) is formed.
[0026] なお、遮光壁 61a〜61dの面に所望する形状を付与して遮光壁面での光の反射を 低減するために、遮光壁 61a〜61dと外筒部 62とを別体で構成してもよい。図 5にそ の一例の分解斜視図を示す。一体で形成された遮光壁 6 la〜6 Idと外筒部 62とを 組立てることで、遮光ブロック 6が得られる。遮光壁 61a〜61dを外筒部 62とは別体 で構成することで、遮光壁面に付与する形状に関して金型構造等に起因する制約を なくすことができ、遮光壁 61a〜61dでの光の反射をさらに低減させることが可能とな る。 [0026] It should be noted that the light shielding walls 61a to 61d and the outer cylindrical portion 62 are configured separately to give a desired shape to the surfaces of the light shielding walls 61a to 61d and reduce the reflection of light on the light shielding wall surfaces. May be. Figure 5 shows an exploded perspective view of an example. Integrally formed light shielding wall 6 la ~ 6 Id and outer cylinder part 62 By assembling, the shading block 6 is obtained. By configuring the light shielding walls 61a to 61d separately from the outer cylindrical portion 62, it is possible to eliminate the restrictions caused by the mold structure and the like regarding the shape to be imparted to the light shielding wall surface, and the light from the light shielding walls 61a to 61d can be removed. It is possible to further reduce reflection.
[0027] さらに、図 4Cに示すように、遮光壁 61b、 61dの被写体側の端面には光学フィルタ 2a、 2cの間を遮光できるよう遮光壁 64が形成されている。  Further, as shown in FIG. 4C, a light shielding wall 64 is formed on the subject side end face of the light shielding walls 61b and 61d so as to shield light between the optical filters 2a and 2c.
[0028] また、遮光ブロック 6のレンズアレイ 1側の面には、光学フィルタモジュール 2を保持 し固定する凹部 63を備える。光学フィルタモジュール 2は凹部 63内に嵌入されること で、遮光ブロック 6に対して位置決めされ固定される。光学フィルタ 2a及び光学フィル タ 2cは、開口部 6a, 6b及び開口部 6c, 6dをそれぞれ塞ぐように配置される。さらに、 凹部 63の底面である、遮光ブロック 6に設けられた Z軸と直交する基準面 (第 5の基 準面) 612に光学フィルタ 2a、 2cを当接させ Z軸方向に位置決めすることで、各光学 フィルタ 2a, 2cのチルトを抑制する。  [0028] Further, the lens array 1 side surface of the light blocking block 6 is provided with a recess 63 for holding and fixing the optical filter module 2. The optical filter module 2 is positioned and fixed with respect to the light shielding block 6 by being inserted into the recess 63. The optical filter 2a and the optical filter 2c are arranged so as to close the openings 6a and 6b and the openings 6c and 6d, respectively. Furthermore, the optical filters 2a and 2c are brought into contact with a reference surface (fifth reference surface) 612 that is orthogonal to the Z axis provided on the light shielding block 6 that is the bottom surface of the recess 63, and positioned in the Z axis direction. The tilt of each optical filter 2a, 2c is suppressed.
[0029] 図 4Bに遮光ブロック 6を撮像素子 4側から見た斜視図を示す。遮光ブロック 6の中 心軸である Z軸が撮像素子 4の有効画素領域の所定の位置を通り、且つ、遮光プロ ック 6の遮光壁 61a〜61dが撮像素子 4を構成する多数の画素の縦横の配列方向と 一致するように、遮光ブロック 6が撮像素子 4に対して位置決めされて基板 3上に固 定される。この結果、撮像素子 4の有効画素領域が、 4つの開口部 6a〜6dに対応し て 4つの撮像領域 4a〜4dに分割される。このとき、レンズ la〜: Ldの焦点位置を撮像 領域 4a〜4dの受光面にそれぞれ一致させ、レンズアレイ 1及び光学フィルタモジュ ール 2のチルトを抑制するため、遮光ブロック 6に設けた 3つの基準面 (第 2の基準面 ) 65が撮像素子 4の上面に当接する。  FIG. 4B shows a perspective view of the light blocking block 6 as viewed from the image sensor 4 side. The Z axis, which is the central axis of the light shielding block 6, passes through a predetermined position of the effective pixel area of the image sensor 4, and the light shielding walls 61 a to 61 d of the light shielding block 6 include a large number of pixels constituting the image sensor 4. The light shielding block 6 is positioned with respect to the image sensor 4 and fixed on the substrate 3 so as to coincide with the vertical and horizontal arrangement directions. As a result, the effective pixel area of the image sensor 4 is divided into four image areas 4a to 4d corresponding to the four openings 6a to 6d. At this time, in order to make the focal positions of the lenses la to Ld coincide with the light receiving surfaces of the imaging regions 4a to 4d, respectively, and to suppress the tilt of the lens array 1 and the optical filter module 2, the three light shielding blocks 6 are provided. A reference plane (second reference plane) 65 abuts on the upper surface of the image sensor 4.
[0030] 図 4Aに示すように、遮光ブロック 6は、 Z軸と平行で、 X軸の負の方向に向いた基準 面 (第 3の基準面) 67と、 Z軸と平行で、 Y軸の負の方向に向いた基準面 (第 4の基準 面) 66と、 Z軸の正の方向に向!、た 4つの基準面(第 1の基準面) 68とを有する。  [0030] As shown in FIG. 4A, the light-blocking block 6 includes a reference plane (third reference plane) 67 that is parallel to the Z axis and faces the negative direction of the X axis, and a Y axis that is parallel to the Z axis. The negative reference plane (fourth reference plane) 66 and the four positive reference planes (first reference plane) 68 in the positive Z-axis direction.
[0031] 上鏡筒 5にレンズアレイ 1が固定されたレンズモジュール 7は、遮光ブロック 6に設け られた基準面 67にレンズアレイ 1に設けられた基準面 12を押し当て、且つ、遮光プロ ック 6に設けられた基準面 66にレンズアレイ 1に設けられた基準面 13を押し当てて、 遮光ブロック 6に嵌入され固定される。これにより、各レンズの光軸とそれに対応する 各撮像領域とが Z軸と直交する方向に位置決めされる。その結果、レンズ la〜: Ldを それぞれ通過した光が遮光壁 61a〜61dや外筒部 62の内壁面に入射して、撮像領 域 4a〜4dに被写体像の一部が結像されな力つたり、反射光が不要光として撮像領 域 4a〜4dに入射したりするのを防止できる。 The lens module 7 in which the lens array 1 is fixed to the upper barrel 5 presses the reference surface 12 provided on the lens array 1 against the reference surface 67 provided on the light shielding block 6, and the light shielding probe. Press the reference surface 13 provided on the lens array 1 against the reference surface 66 provided on the It is inserted into the shading block 6 and fixed. As a result, the optical axis of each lens and the corresponding imaging area are positioned in a direction orthogonal to the Z axis. As a result, the light that has passed through each of the lenses la to Ld is incident on the inner walls of the light shielding walls 61a to 61d and the outer cylinder 62, and the force that does not form a part of the subject image in the imaging areas 4a to 4d. It is possible to prevent the reflected light from entering the imaging areas 4a to 4d as unnecessary light.
[0032] なお、遮光ブロック 6の外筒部 62に組立て用の窓(貫通孔) 69x, 69yを設けて、こ の窓 69x, 69yを通じてレンズアレイ 1を X軸の正の側及び Y軸の正の側に向かって 直接押すことで、 Z軸と直交する方向の位置決め精度を向上させても良い。  [0032] It should be noted that assembly windows (through holes) 69x, 69y are provided in the outer cylindrical portion 62 of the light shielding block 6, and the lens array 1 is placed on the positive side of the X axis and the Y axis through the windows 69x, 69y. The positioning accuracy in the direction perpendicular to the Z axis may be improved by pressing directly toward the positive side.
[0033] さらに、遮光ブロック 6に設けられた基準面 68にレンズアレイ 1に設けられた基準面 14を押し当てて遮光ブロック 6に対してレンズモジュール 7を Z軸方向に位置決めす ることで、撮像領域 4a〜4dの受光面に対する対応するレンズ la〜: Ldの焦点位置の Z軸方向におけるズレをそれぞれ限りなくゼロにすることができる。  [0033] Further, by pressing the reference surface 14 provided in the lens array 1 against the reference surface 68 provided in the light shielding block 6, and positioning the lens module 7 in the Z-axis direction with respect to the light shielding block 6, Corresponding lens la to the light receiving surfaces of the imaging regions 4a to 4d: The deviation of the focal position of Ld in the Z-axis direction can be made zero as much as possible.
[0034] 被写体力もの光は、通過したレンズに対応する撮像領域に入射すべきである。とこ ろ力 レンズを通過した光の光学フィルタモジュール 2に対する入射角が大きいと、光 力 通過したレンズと対応しない撮像領域に入射する可能性がある。例えば、レンズ laを通過した光は、本来、光学フィルタ 2aを通過して、遮光ブロック 6の開口部 6a内 に出射して、撮像領域 4aのみに結像すべきである。ところが、レンズ laを通過した光 の光学フィルタモジュール 2に対する入射角が大きいと、レンズ laを通過した光が、 例えば光学フィルタ 2aを通過して、遮光ブロック 6の開口部 6b内に出射して、撮像領 域 4bに入射したり、光学フィルタ 2cを通過して、遮光ブロック 6の開口部 6c内に出射 して、撮像領域 4cに入射したりすることがある。このように、各撮像領域に、この撮像 領域に対応しな!ヽレンズを通過した不要光が入射すると、測定距離精度が悪化する 。これを防止するために、遮光膜 8が設けられることが好ましい。本実施の形態では、 遮光膜 8は、レンズアレイ 1と光学フィルタモジュール 2との間に、光学フィルタ 2a, 2c の上面に設けられている。遮光膜 8の作用を図 6A、図 6Bを用いて説明する。  [0034] Light with strong subject power should be incident on the imaging region corresponding to the lens that has passed through. If the incident angle of the light passing through the lens with respect to the optical filter module 2 is large, there is a possibility that the light enters the imaging region not corresponding to the lens through which the light passes. For example, light that has passed through the lens la should originally pass through the optical filter 2a, exit into the opening 6a of the light blocking block 6, and form an image only in the imaging region 4a. However, when the incident angle of the light that has passed through the lens la with respect to the optical filter module 2 is large, the light that has passed through the lens la passes through, for example, the optical filter 2a and exits into the opening 6b of the light shielding block 6, The light may enter the imaging region 4b, pass through the optical filter 2c, exit into the opening 6c of the light shielding block 6, and enter the imaging region 4c. As described above, when unnecessary light that has passed through the lens that does not correspond to the imaging region is incident on each imaging region, the measurement distance accuracy deteriorates. In order to prevent this, a light shielding film 8 is preferably provided. In the present embodiment, the light shielding film 8 is provided between the lens array 1 and the optical filter module 2 on the upper surfaces of the optical filters 2a and 2c. The operation of the light shielding film 8 will be described with reference to FIGS. 6A and 6B.
[0035] 図 6Aに遮光膜 8がない場合の光線図を示す。被写体から出た入射光線 31はレン ズ laを通過し光学フィルタ 2aを通過し本来の撮像領域 4aに結像する。同様に被写 体から出た入射光線 33はレンズ lbを通過し光学フィルタ 2aを通過し本来の撮像領 域 4bに結像する。しかし、入射角度が大きぐ本来結像させる必要がない被写体から の入射光線 32はレンズ la、フィルタ 2aを順に通過し、レンズ laに対応しない撮像領 域 4bに不要光として結像し、撮像性能を劣化させてしまう。入射光線 32と同様に入 射角度が大きな被写体力もの入射光線 34は、レンズ lbを通過した後、外筒部 62に 遮蔽され、結像しない。 FIG. 6A shows a ray diagram when the light shielding film 8 is not provided. Incident light 31 emitted from the subject passes through the lens la, passes through the optical filter 2a, and forms an image on the original imaging region 4a. Similarly, the incident light ray 33 emitted from the subject passes through the lens lb, passes through the optical filter 2a, and returns to the original imaging area. Forms an image in area 4b. However, incident light 32 from a subject that has a large incident angle and does not necessarily need to be imaged passes through lens la and filter 2a in order, and forms an image as unnecessary light in imaging area 4b that does not correspond to lens la. Will deteriorate. Like the incident light beam 32, the incident light beam 34 having a large incident angle and having a large incident angle passes through the lens lb, and is then shielded by the outer cylindrical portion 62 and does not form an image.
[0036] 図 6Bに遮光膜 8を有する場合の光線図を示す。図 6Aと同様に被写体から出た入 射光線 31、 33は、正常にそれぞれ本来の撮像領域 4a、 4bに結像する。一方、被写 体からの入射光線 32は、レンズ laを通過した後、光学フィルタモジュール 2上に配置 された遮光膜 8によって遮蔽されるので、撮像領域 4bに不要光として結像することを 防ぐことが可能となる。被写体からの入射光線 34は、図 6Aと同様に、レンズ lbを通 過した後、外筒部 62に遮蔽され、結像しない。  FIG. 6B shows a ray diagram when the light shielding film 8 is provided. In the same way as in FIG. 6A, incident rays 31 and 33 emitted from the subject normally form images in the original imaging areas 4a and 4b, respectively. On the other hand, the incident light beam 32 from the object passes through the lens la and is then shielded by the light shielding film 8 disposed on the optical filter module 2, thereby preventing the incident light 32 from being imaged as unnecessary light. It becomes possible. The incident light beam 34 from the subject passes through the lens lb after being passed through the lens lb as in FIG.
[0037] 上記の図 6Aでは、隣り合うレンズ la, lbに対して共通するフィルタ 2aが設けられて いる場合に、レンズ laを通過した光がフィルタ 2aを通過後、レンズ lbに対応する撮 像領域 4bに入射する例を説明した。しかしながら、隣り合うレンズ la, lcに対して別 体のフィルタ 2a, 2cがそれぞれ設けられ、フィルタ 2aとフィルタ 2cとの間に遮光壁 64 (図 4C参照)が設けられる場合であっても、レンズ laを通過した光力 レンズ lcに対 応する撮像領域 4cに入射することがある。  [0037] In FIG. 6A above, when the common filter 2a is provided for the adjacent lenses la and lb, the light that has passed through the lens la passes through the filter 2a, and then the image corresponding to the lens lb. The example of entering the region 4b has been described. However, even when the adjacent filters la and lc are provided with separate filters 2a and 2c, respectively, and the light shielding wall 64 (see FIG. 4C) is provided between the filters 2a and 2c, the lens It may enter the imaging area 4c corresponding to the light power lens lc that has passed through la.
[0038] 遮光膜 8は、遮光ブロック 6と同様に、図 7に示すように、互いに独立した 4つの開口 部 8a〜8dを形成するように十字状に配置された遮光部 81a〜81dと、遮光部 81a〜 81dを保持する外枠部 82とを備える。遮光部 81a〜81dは遮光ブロック 6の中心軸で ある Z軸に対して放射状に伸びており、遮光部 81a、 81cは XZ面に沿っており、遮光 部 81b、 8 Idは YZ面に沿っている。 4つの開口部 8a〜8dは、 4つレンズ la〜ldの各 光軸上にそれぞれ配置される。 4つの開口部 8a〜8dは遮光ブロック 6に形成された 4 つの開口部 61a〜61dに比べて開口面積が同じかわずかに小さい。遮光膜 8は、外 枠部 82に設けられた 2つの凹部 (切り欠き) 83を遮光ブロック 6に設けられた 2つの凸 部 611 (図 4A参照)に嵌合させることにより、遮光ブロック 6に対して位置決め固定さ れる。  [0038] Similar to the light blocking block 6, the light blocking film 8 includes light blocking portions 81a to 81d arranged in a cross shape so as to form four independent openings 8a to 8d, as shown in FIG. And an outer frame portion 82 for holding the light shielding portions 81a to 81d. The light shielding portions 81a to 81d extend radially with respect to the Z axis, which is the central axis of the light shielding block 6, the light shielding portions 81a and 81c are along the XZ plane, and the light shielding portions 81b and 8 Id are along the YZ plane. Yes. The four openings 8a to 8d are arranged on the optical axes of the four lenses la to ld, respectively. The four openings 8a to 8d have the same or slightly smaller opening area than the four openings 61a to 61d formed in the light blocking block 6. The light shielding film 8 is formed on the light shielding block 6 by fitting two concave portions (notches) 83 provided on the outer frame portion 82 to two convex portions 611 (see FIG. 4A) provided on the light shielding block 6. The positioning is fixed.
[0039] 以上のように構成されたカメラモジュールで、被写体までの距離を測定するために は、以下のような演算を行う。同一波長の 2つの画像、即ち、 2つの撮像領域 4a、 4b あるいは 2つの撮像領域 4c、 4dから得られる 2つの画像を比較してブロックマツチン グ等の演算処理を行 ヽ、 2つの画像内に存在する対応する被写体像の視差量を求 める。次いで、この視差量から三角測量の原理に基づいて被写体までの距離を測定 することができる。 [0039] In order to measure the distance to the subject with the camera module configured as described above Performs the following operations. Two images of the same wavelength, that is, two imaging areas 4a and 4b or two images obtained from the two imaging areas 4c and 4d are compared, and arithmetic processing such as block matching is performed. The amount of parallax of the corresponding subject image existing in is obtained. Next, the distance to the subject can be measured from the parallax amount based on the principle of triangulation.
[0040] しかし、組立てばらつきにより演算で求めた視差量に誤差が発生する。誤差を発生 させる主要因として、レンズアレイ 1の撮像素子 4に対する相対的なチルト、光学フィ ルタ 2a, 2cのチルト、焦点ズレ、遮光ブロック 6に対するレンズアレイ 1の Z軸と直交す る方向の位置ズレがある。  [0040] However, an error occurs in the amount of parallax obtained by calculation due to assembly variation. The main factors that cause errors are the relative tilt of the lens array 1 with respect to the imaging device 4, the tilt of the optical filters 2a and 2c, the focus shift, and the position of the lens array 1 in the direction perpendicular to the Z axis of the light blocking block 6. There is a gap.
[0041] そこで、本実施の形態では、遮光ブロック 6に設けられた 3つの基準面 65を撮像素 子 4の面に Z軸方向に直接当接させ、かつレンズアレイ 1に設けられた 4つの基準面 1 4を遮光ブロック 6に設けられた 4つの基準面 68に Z軸方向に直接当接させる。これ により、レンズアレイ 1の撮像素子 4に対する相対的なチルトを、遮光ブロック 6に設け られた 3つの基準面 65を含む平面と 4つの基準面 68を含む平面との平行度の値に まで抑えることができる。また、上述した構成をとることで、レンズ la〜: Ldの焦点の、 対応する撮像領域 4a〜4dの受光面に対する Z軸方向のズレは、遮光ブロック 6の基 準面 65と基準面 68との間の距離精度の値にまで抑えることができる。また、レンズ la 〜 Idを一体で形成していることより、同一波長帯域光を通過させるレンズ間のフラン ジバック差を非常に小さくすることができる。以上の結果、発生する視差の誤差量は 無視することができる。  Therefore, in this embodiment, the three reference surfaces 65 provided on the light shielding block 6 are brought into direct contact with the surface of the imaging element 4 in the Z-axis direction, and the four reference surfaces 65 provided on the lens array 1 are provided. The reference surface 14 is brought into direct contact with the four reference surfaces 68 provided on the light blocking block 6 in the Z-axis direction. As a result, the relative tilt of the lens array 1 with respect to the image sensor 4 is suppressed to the value of parallelism between the plane including the three reference surfaces 65 and the plane including the four reference surfaces 68 provided in the light shielding block 6. be able to. Further, by adopting the above-described configuration, the deviation of the focal point of the lens la˜: Ld in the Z-axis direction with respect to the light receiving surfaces of the corresponding imaging regions 4a to 4d is different from the reference surface 65 and the reference surface 68 of the light shielding block 6. It is possible to suppress the distance accuracy between the values. Further, since the lenses la to Id are integrally formed, the flange back difference between the lenses that allow light of the same wavelength band to pass through can be made extremely small. As a result, the error amount of the generated parallax can be ignored.
[0042] また、本実施の形態では、遮光ブロック 6に設けられた基準面 612に光学フィルタ 2 a、 2cを Z軸方向に直接当接させる。これ〖こより、レンズアレイ 1と同様に、光学フィル タ 2a, 2bの撮像素子 4に対するチルトを抑制することができる。従って、光学フィルタ 2a, 2cのチルトに起因して発生する視差の誤差量は非常に小さぐ無視することがで きる。  In the present embodiment, the optical filters 2 a and 2 c are brought into direct contact with the reference surface 612 provided in the light shielding block 6 in the Z-axis direction. Thus, as with the lens array 1, the tilt of the optical filters 2a and 2b with respect to the image sensor 4 can be suppressed. Therefore, the error amount of the parallax generated due to the tilt of the optical filters 2a and 2c is very small and can be ignored.
[0043] 光学フィルタのチルトによる視差の誤差量を更に抑制するため、同一波長帯域光 に最適設計された複数のレンズに対応する光学フィルタを一体で構成して 、る。たと えば、緑色光に最適設計された 2つのレンズ la、 lbに対して、 2つの光学フィルタを 個別に設けても画像を得ることはできる。しかし、レンズごとに個別に光学フィルタを 設けると、組立てバラツキにより各光学フィルタが異なった方向及び角度でチルトす る可能性があり、このような場合、距離を測定するための視差量に大きな誤差が生じ てしまう。これに対して、本実施の形態のように、同一波長帯域光に最適設計された 複数のレンズに対して一体ィ匕された 1つの光学フィルタを設ければ、組立て時にたと え光学フィルタがチルトしても、視差を求めるために比較される 2つの画像はこのチル トによって同じように変化するので、チルトにより生じる視差の誤差量は非常に小さぐ 無視することができる。 In order to further suppress an error amount of parallax due to the tilt of the optical filter, an optical filter corresponding to a plurality of lenses optimally designed for the same wavelength band light is integrally formed. For example, two optical filters are applied to two lenses la and lb that are optimally designed for green light. Images can be obtained even if provided separately. However, if an optical filter is provided for each lens individually, each optical filter may tilt in a different direction and angle due to assembly variations. In such a case, a large error in the amount of parallax for measuring the distance can occur. Will occur. On the other hand, if one optical filter integrated with a plurality of lenses optimally designed for the same wavelength band light is provided as in this embodiment, the optical filter tilts at the time of assembly. Even so, the two images that are compared to determine the parallax change in the same way due to this tilt, so the parallax error caused by the tilt is very small and can be ignored.
[0044] 更に、遮光ブロック 6に設けられた基準面 67にレンズアレイ 1に設けられた基準面 1 2を直接当接させることでレンズアレイ 1は遮光ブロック 6に対して X軸方向に位置決 めされ、遮光ブロック 6に設けられた基準面 66にレンズアレイ 1に設けられた基準面 1 3を直接当接させることでレンズアレイ 1は遮光ブロック 6に対して Y軸方向に位置決 めされる。これらにより、レンズ la〜ldの光軸と遮光ブロック 6の開口部 6a〜6dの中 心とがー致するので、レンズ la〜: Ldをそれぞれ通過した光が遮光壁 6 la〜6 Idや外 筒部 62の内壁面に入射して、撮像領域 4a〜4dに被写体像の一部が結像されなか つたり、反射光が不要光として撮像領域 4a〜4dに入射したりするのを防止できる。従 つて、これらに起因して発生する視差の誤差量は非常に小さぐ無視することができ る。  Furthermore, the lens array 1 is positioned in the X-axis direction with respect to the light shielding block 6 by directly contacting the reference surface 67 provided on the lens array 1 with the reference surface 67 provided on the light shielding block 6. The lens array 1 is positioned in the Y-axis direction with respect to the light shielding block 6 by directly contacting the reference surface 13 provided on the lens array 1 with the reference surface 66 provided on the light shielding block 6. The As a result, the optical axis of the lens la to ld and the center of the openings 6a to 6d of the light blocking block 6 are matched, so that the light passing through the lens la to Ld is blocked by the light blocking wall 6 la to 6 Id and the outside. It is possible to prevent a part of the subject image from being incident on the inner wall surface of the cylindrical part 62 and forming a part of the subject image in the imaging regions 4a to 4d, or the reflected light to enter the imaging regions 4a to 4d as unnecessary light. . Therefore, the parallax error caused by these is very small and can be ignored.
[0045] 個々のレンズに対して個別に光学フィルタを設ける場合、隣り合う光学フィルタ間に 遮光壁 64を設けることができ、迷光等の発生(図 6A参照)をある程度防止することが できる。し力しながら、複数のレンズに対して一体ィ匕された 1つの光学フィルタを設け る場合、隣り合う撮像領域の境界に対応する位置に遮光壁 64を設けることができな い。従って、この場合には、上述したように、光学フィルタ上に遮光膜 8を設けることが 特に望ましい。  [0045] When an optical filter is individually provided for each lens, the light shielding wall 64 can be provided between adjacent optical filters, and generation of stray light or the like (see FIG. 6A) can be prevented to some extent. However, when one optical filter integrated with a plurality of lenses is provided, the light shielding wall 64 cannot be provided at a position corresponding to the boundary between adjacent imaging regions. Therefore, in this case, as described above, it is particularly desirable to provide the light shielding film 8 on the optical filter.
[0046] 図 8Aに本実施の形態のカメラモジュールの平面図を示す。また、図 8Bに、図 8A の 8B— 8B線での矢視断面図を示す。図 8Bに示されているように、基準面としての 撮像素子 4の撮像面 (上面)と遮光ブロック 6に設けられた基準面 65と当接し、レンズ アレイ 1に設けられた基準面 14と遮光ブロック 6に設けられた基準面 68とが当接し、 光学フィルタモジュール 2と遮光ブロック 6に設けられた基準面 612とが当接すること で、撮像素子 4、遮光ブロック 6、レンズアレイ 1、及び、光学フィルタモジュール 2が Z 軸方向に位置決めされ、撮像素子 4に対するレンズアレイ 1及び光学フィルタモジュ ール 2のチルトが抑制されることがわ力る。 FIG. 8A shows a plan view of the camera module of the present embodiment. FIG. 8B shows a cross-sectional view taken along the line 8B-8B in FIG. 8A. As shown in FIG. 8B, the imaging surface (upper surface) of the imaging device 4 serving as a reference surface is in contact with the reference surface 65 provided on the light shielding block 6, and the reference surface 14 provided on the lens array 1 is shielded from light. The reference surface 68 provided on the block 6 comes into contact, When the optical filter module 2 and the reference surface 612 provided on the light shielding block 6 come into contact with each other, the imaging device 4, the light shielding block 6, the lens array 1, and the optical filter module 2 are positioned in the Z-axis direction, and the imaging device It is obvious that the tilt of the lens array 1 and the optical filter module 2 with respect to 4 is suppressed.
[0047] 以上のように、本発明の実施の形態 1によれば、組立て時に複雑で高コストな調整 機構を用いることなく簡易な組立てを行なっても、被写体までの距離を測定する際に 発生する誤差を極めて小さくすることができ、測定距離精度を向上させることが可能 となる。 [0047] As described above, according to the first embodiment of the present invention, even when simple assembly is performed without using a complicated and expensive adjustment mechanism at the time of assembly, it occurs when measuring the distance to the subject. Therefore, the measurement error can be made extremely small and the measurement distance accuracy can be improved.
[0048] 上記の実施の形態では、 4つの撮像領域はほぼ等分された領域であった力 本発 明の光学系はこれに限定されず、たとえば、発生する視差を考慮した非均等の領域 であってもよい。また、撮像素子 4の有効画素領域を最大限活用し且つレンズ間距離 を可能な限り広げることで測定距離精度が少しでも向上するように、撮像領域を設定 しても良ぐこの場合も本実施の形態の上記の効果を得ることができる。  [0048] In the above embodiment, the four imaging regions are almost equally divided regions. The optical system of the present invention is not limited to this. For example, non-uniform regions in consideration of generated parallax It may be. It is also possible to set the imaging area so that the measurement distance accuracy can be improved as much as possible by making the best use of the effective pixel area of the imaging device 4 and widening the distance between the lenses as much as possible. The above effect of the form can be obtained.
[0049] さらに、レンズアレイ 1には複数のレンズが一体で成形されているので線膨張率が 一様であるので、レンズアレイ 1をできる限り対称な形状に作製すれば、温度変化に 対する形状の変化は一様となる。そのためサーミスタ等を用いて温度を検出すること で、各温度でのレンズ間距離を推定し、各レンズの光軸位置の変化を推定することが できる。その結果、温度変化による視差量を補正し、測定距離精度を確保することが 可能となる。  [0049] Further, since a plurality of lenses are integrally molded in the lens array 1, the linear expansion coefficient is uniform. Therefore, if the lens array 1 is made as symmetrical as possible, the shape against the temperature change is obtained. The change of becomes uniform. Therefore, by detecting the temperature using a thermistor or the like, the distance between the lenses at each temperature can be estimated, and the change in the optical axis position of each lens can be estimated. As a result, it is possible to correct the amount of parallax due to temperature changes and ensure the measurement distance accuracy.
[0050] (実施の形態 2)  [0050] (Embodiment 2)
図 9は、本発明の実施の形態 2における複眼方式のカメラモジュールの分解斜視図 である。実施の形態 1と異なるのは、遮光ブロック 6の構成のみである。本実施の形態 の遮光ブロック 6は、遮光壁 6 la〜6 Idと外筒部 62が別体で構成されている。遮光壁 61a〜61dには遮光部 661a〜661dがそれぞれ一体に形成されている。更に、レン ズアレイ 1の基準面 14と当接する基準面 (第 1の基準面) 68が遮光部 661b〜661d に一体に形成され、レンズアレイ 1の基準面 12と当接する基準面 (第 3の基準面) 67 が遮光部 661aに一体に形成され、レンズアレイ 1の基準面 13と当接する基準面 (第 4の基準面) 66が遮光部 661dに一体に形成され、光学フィルタモジュール 2と当接 する基準面 (第 5の基準面) 612が遮光部 661a〜661dに一体に形成され、撮像素 子 4と当接する基準面 (第 2の基準面) 65が遮光壁 61a〜61dに一体に形成されてい る。そして、基準面 65に撮像素子 4を当接させ、基準面 68及び基準面 612にレンズ アレイ 1及び光学フィルタモジュール 2をそれぞれ当接させて、撮像素子 4、遮光プロ ック 6、レンズアレイ 1、及び光学フィルタモジュール 2を Z軸方向に位置決め固定する 。同時に、基準面 67, 66にレンズアレイ 1を当接させてレンズアレイ 1を Z軸と直交す る方向に位置決め固定する。 FIG. 9 is an exploded perspective view of the compound-eye camera module according to Embodiment 2 of the present invention. Only the configuration of the light shielding block 6 is different from the first embodiment. In the light shielding block 6 of the present embodiment, the light shielding walls 6 la to 6 Id and the outer cylindrical portion 62 are configured separately. Light shielding portions 661a to 661d are integrally formed on the light shielding walls 61a to 61d, respectively. Further, a reference surface (first reference surface) 68 that contacts the reference surface 14 of the lens array 1 is formed integrally with the light shielding portions 661b to 661d, and a reference surface (third third surface) that contacts the reference surface 12 of the lens array 1 is formed. (Reference surface) 67 is formed integrally with the light shielding portion 661a, and a reference surface (fourth reference surface) 66 that is in contact with the reference surface 13 of the lens array 1 is formed integrally with the light shielding portion 661d. Contact Reference surface (fifth reference surface) 612 is formed integrally with the light shielding parts 661a to 661d, and a reference surface (second reference surface) 65 that contacts the imaging element 4 is formed integrally with the light shielding walls 61a to 61d. It has been done. Then, the imaging device 4 is brought into contact with the reference surface 65, and the lens array 1 and the optical filter module 2 are brought into contact with the reference surface 68 and the reference surface 612, respectively, so that the imaging device 4, the light shielding block 6, and the lens array 1 are brought into contact. The optical filter module 2 is positioned and fixed in the Z-axis direction. At the same time, the lens array 1 is brought into contact with the reference surfaces 67 and 66, and the lens array 1 is positioned and fixed in a direction perpendicular to the Z axis.
[0051] 図 10に遮光ブロック 6の外筒部 62を除く複眼方式のカメラモジュールの断面図を 示す。図 10より明らかなように、撮像素子 4を Z軸方向に位置決めしているのは基準 面 65であり、レンズアレイ 1及び光学フィルタモジュール 2を Z軸方向に位置決め固 定しているのは基準面 68及び基準面 612であることがわかる。  FIG. 10 shows a cross-sectional view of a compound-eye camera module excluding the outer cylindrical portion 62 of the light shielding block 6. As is clear from FIG. 10, it is the reference surface 65 that positions the image sensor 4 in the Z-axis direction, and it is the reference that positions the lens array 1 and the optical filter module 2 in the Z-axis direction. It can be seen that surface 68 and reference surface 612.
[0052] そして、遮光部 66 la〜66 Idに外筒部 62を外挿して嵌合させることで遮光ブロック 6を組み立てる。遮光ブロック 6の外筒部 62は各レンズを通過しな ヽ光線が撮像領域 に結像するのを防止する目的で設けられており、光学系を構成する各部品のチルト 抑制、焦点ズレ抑制等は、実施の形態 1と異なり、遮光壁 61a〜61dおよび遮光部 6 61a〜661dで行われる。  [0052] Then, the light shielding block 6 is assembled by extrapolating and fitting the outer cylindrical portion 62 to the light shielding portions 66la to 66Id. The outer cylindrical portion 62 of the light shielding block 6 is provided for the purpose of preventing the light beam that does not pass through each lens from forming an image on the imaging region, and suppresses tilt, focus shift, etc. of each component constituting the optical system. Unlike Embodiment 1, this is performed by the light shielding walls 61a to 61d and the light shielding parts 661a to 661d.
[0053] 上記の構成により、実施の形態 1と同様に、撮像素子 4に対するレンズアレイ 1およ び光学フィルタ 2a, 2cの相対的なチルト、焦点ズレ、遮光ブロック 6に対するレンズァ レイ 1の Z軸と直交する方向の位置ズレを抑制することができる。従って、組立て時に 複雑で高コストな調整機構を用いることなく簡易な組立てを行なっても、被写体まで の距離を測定する際に発生する誤差を極めて小さくすることができ、測定距離精度を 向上させることが可會となる。  [0053] With the above configuration, as in the first embodiment, the relative tilt and defocus of the lens array 1 and the optical filters 2a and 2c with respect to the image sensor 4 and the Z axis of the lens array 1 with respect to the light shielding block 6 are as follows. Displacement in a direction orthogonal to the direction can be suppressed. Therefore, even if simple assembly is performed without using a complicated and expensive adjustment mechanism at the time of assembly, the error generated when measuring the distance to the subject can be extremely reduced, and the measurement distance accuracy can be improved. Becomes pretty.
[0054] (実施の形態 3)  [Embodiment 3]
図 11に本発明の実施の形態 3における複眼方式のカメラモジュールの主要構成部 品の分解斜視図を示す。図 11において、実施の形態 1と異なるのは、レンズアレイ 1 、光学フィルタモジュール 2、遮光壁 61a〜61dのみである。前述の実施の形態 1, 2 と同じ機能を持つ、上鏡筒 5、遮光ブロック 6の構成部品である外筒部 62、基板 3は 図示していない。 [0055] レンズアレイ 1を撮像素子 4に対して Z軸方向に位置決め固定するための基準面 14 は、光学フィルタモジュール 2に対向するレンズアレイ 1の領域に設けられている。光 学フィルタモジュール 2は、 4つ光学フィルタ 2a〜2dで構成されており、光学フィルタ 2a、 2bは同一の波長帯域の光のみを透過させ、光学フィルタ 2c、 2dは同一の波長 帯域の光のみを透過させる。一実施例では、光学フィルタ 2a、 2bは緑色の波長帯域 の光のみを透過させ、光学フィルタ 2c、 2dは近赤外の波長帯域の光のみを透過させ る。 FIG. 11 shows an exploded perspective view of the main components of the compound eye camera module according to Embodiment 3 of the present invention. In FIG. 11, the difference from the first embodiment is only the lens array 1, the optical filter module 2, and the light shielding walls 61a to 61d. The upper barrel 5 and the outer cylinder 62, which are components of the light shielding block 6, and the substrate 3 having the same functions as those of the first and second embodiments are not shown. A reference plane 14 for positioning and fixing the lens array 1 with respect to the image sensor 4 in the Z-axis direction is provided in a region of the lens array 1 facing the optical filter module 2. The optical filter module 2 is composed of four optical filters 2a to 2d. The optical filters 2a and 2b transmit only light in the same wavelength band, and the optical filters 2c and 2d only transmit light in the same wavelength band. Permeate. In one embodiment, the optical filters 2a and 2b transmit only light in the green wavelength band, and the optical filters 2c and 2d transmit only light in the near-infrared wavelength band.
[0056] レンズアレイ 1の基準面 14と当接する基準面 (第 1の基準面) 68が、遮光壁 61a〜6 Idを Z軸方向にレンズアレイ 1側に延長した壁面 64の上端面に設けられている。レン ズアレイ 1の基準面 12と当接する基準面 (第 3の基準面) 67が遮光壁 61aに一体に 形成され、レンズアレイ 1の基準面 13と当接する基準面 (第 4の基準面) 66が遮光壁 61dに一体に形成され、撮像素子 4と当接する基準面 (第 2の基準面) 65が遮光壁 6 la〜61dに一体に形成されている。光学フィルタ 2a〜2dと当接する基準面(第 5の 基準面) 612は遮光壁 61a〜61d上に設けられている。  [0056] A reference surface (first reference surface) 68 that comes into contact with the reference surface 14 of the lens array 1 is provided on the upper end surface of the wall surface 64 in which the light shielding walls 61a to 6 Id extend in the Z-axis direction toward the lens array 1 side. It has been. A reference surface (third reference surface) 67 that contacts the reference surface 12 of the lens array 1 is integrally formed with the light shielding wall 61a, and a reference surface that contacts the reference surface 13 of the lens array 1 (fourth reference surface) 66. Is formed integrally with the light shielding wall 61d, and a reference surface (second reference surface) 65 that comes into contact with the image sensor 4 is formed integrally with the light shielding walls 6la to 61d. A reference surface (fifth reference surface) 612 that contacts the optical filters 2a to 2d is provided on the light shielding walls 61a to 61d.
[0057] 図 12に断面図を示し、各部品の相互関係を説明する。実施の形態 2と同様に、撮 像素子 4上に遮光壁 61a〜61dの基準面 65が当接される。そして、遮光壁 61a〜61 dを基準として、遮光壁 61a〜61dに設けられた基準面 612に光学フィルタ 2a〜2dを 当接させて光学フィルタ 2a〜2dを Z軸方向に位置決め固定する。そして、レンズァレ ィ 1の基準面 14を遮光壁 61a〜61d上に設けられた基準面 68に当接させてレンズァ レイ 1を Z軸方向に位置決め固定する。同時に、レンズアレイ 1の基準面 12及び基準 面 13を遮光壁 61aに設けられた基準面 67及び遮光壁 61dに設けられた基準面 66 にそれぞれ当接させてレンズアレイ 1を Z軸と直交する方向に位置決めする。  [0057] Fig. 12 shows a cross-sectional view to explain the mutual relationship between the components. As in the second embodiment, the reference surface 65 of the light shielding walls 61a to 61d is brought into contact with the imaging element 4. Then, using the light shielding walls 61a to 61d as a reference, the optical filters 2a to 2d are brought into contact with a reference surface 612 provided on the light shielding walls 61a to 61d, and the optical filters 2a to 2d are positioned and fixed in the Z-axis direction. Then, the reference surface 14 of the lens array 1 is brought into contact with a reference surface 68 provided on the light shielding walls 61a to 61d, and the lens array 1 is positioned and fixed in the Z-axis direction. At the same time, the reference surface 12 and the reference surface 13 of the lens array 1 are brought into contact with the reference surface 67 provided on the light shielding wall 61a and the reference surface 66 provided on the light shielding wall 61d, respectively, so that the lens array 1 is orthogonal to the Z axis. Position in the direction.
[0058] 上記の構成により、実施の形態 1, 2と同様に、撮像素子 4に対するレンズアレイ 1お よび光学フィルタ 2a〜2dの相対的なチルト、焦点ズレ、遮光ブロック 6に対するレン ズアレイ 1の Z軸と直交する方向の位置ズレを抑制することができる。従って、組立て 時に複雑で高コストな調整機構を用いることなく簡易な組立てを行なっても、被写体 までの距離を測定する際に発生する誤差を極めて小さくすることができ測定距離精 度を向上させることが可能となる。 [0059] また、遮光壁 61a〜61d上の壁面 64がレンズアレイ 1に当接しているので、図 6Aで 説明した光線 32は壁面 64に衝突する。従って、本実施の形態では、レンズアレイ 1と 光学フィルタモジュール 2との間の遮光膜 8を省略することができる。よって、低コスト 化できる。 [0058] With the above configuration, as in the first and second embodiments, the lens array 1 and the optical filters 2a to 2d with respect to the image sensor 4 are relatively tilted, defocused, and the Z of the lens array 1 with respect to the light blocking block 6 is Z. The positional deviation in the direction orthogonal to the axis can be suppressed. Therefore, even if simple assembly is performed without using a complicated and expensive adjustment mechanism at the time of assembly, the error that occurs when measuring the distance to the subject can be extremely reduced and the measurement distance accuracy can be improved. Is possible. Further, since the wall surface 64 on the light shielding walls 61a to 61d is in contact with the lens array 1, the light beam 32 described in FIG. 6A collides with the wall surface 64. Therefore, in the present embodiment, the light shielding film 8 between the lens array 1 and the optical filter module 2 can be omitted. Therefore, the cost can be reduced.
[0060] (実施の形態 4)  [0060] (Embodiment 4)
被写体力 の光を選択的に透過させる光学フィルタの構成の変形例について以下 に図面を用いて説明する。  A modification of the configuration of the optical filter that selectively transmits light of subject power will be described below with reference to the drawings.
[0061] 図 13は近赤外及びこれより低い周波数の光(以下、単に「近赤外光」という)を遮断 して可視光領域の光を撮像領域 4a, 4bで撮像する必要がある場合のカメラモジユー ルの分解斜視図である。被写体力もの光のうち近赤外光を含まない可視光領域の光 を撮影する場合、近赤外光を遮断する光学フィルタを設ける必要がある。例えば、実 施の形態 1で説明したカメラモジュールにおいて、撮像領域 4a, 4bに近赤外光が入 射するのを防止するためには、緑色光を透過させる光学フィルタ 2aに近赤外光を遮 断する光学フィルタを重ねて形成すればよい。し力しながら、より安価に製造するた めには、図 13に示すように、光学フィルタ 2aとは別に設けた基材 (例えば透明ガラス 基板) 9の、光学フィルタ 2aに対応する領域 9aのみに近赤外光を遮断する IRフィルタ を形成することが好ましい。この場合、基材 9の、近赤外光を透過させる光学フィルタ 2cに対応する領域 9cには光学フィルタ機能を付与しな 、。基材 9は光学フィルタモ ジュール 2に当接することで Z軸方向に位置決めされる。本例では、遮光膜 8はレンズ アレイ 1と基材 9との間に設けられる。  [0061] Fig. 13 shows a case where light in the visible light region needs to be imaged in the imaging regions 4a and 4b by blocking light in the near infrared and lower frequencies (hereinafter simply referred to as "near infrared light"). FIG. 3 is an exploded perspective view of the camera module. When photographing light in the visible light region that does not include near-infrared light among light with strong subject power, it is necessary to provide an optical filter that blocks near-infrared light. For example, in the camera module described in Embodiment 1, in order to prevent near-infrared light from entering the imaging regions 4a and 4b, the near-infrared light is applied to the optical filter 2a that transmits green light. What is necessary is just to overlap and form the optical filter to interrupt. However, in order to manufacture more inexpensively, as shown in FIG. 13, only the region 9a corresponding to the optical filter 2a of the base material (for example, a transparent glass substrate) 9 provided separately from the optical filter 2a is provided. It is preferable to form an IR filter that blocks near infrared light. In this case, the optical filter function is not given to the region 9c of the base material 9 corresponding to the optical filter 2c that transmits near-infrared light. The substrate 9 is positioned in the Z-axis direction by contacting the optical filter module 2. In this example, the light shielding film 8 is provided between the lens array 1 and the substrate 9.
[0062] 図 13と異なり、基材 9を光学フィルタモジュール 2と遮光ブロック 6との間に配置して も良い。この場合、基準面 612には基材 9が当接する。また、遮光膜 8はレンズアレイ 1と光学フィルタモジュール 2との間に設けられる。  Unlike FIG. 13, the base material 9 may be disposed between the optical filter module 2 and the light shielding block 6. In this case, the base material 9 comes into contact with the reference surface 612. The light shielding film 8 is provided between the lens array 1 and the optical filter module 2.
[0063] 図 14に示すカメラモジュールは、撮像領域を分割する遮光壁 6 la〜6 Idと外筒部 62とが図 5と同様に別体である遮光ブロック 6を用いている点で、図 13に示したカメラ モジュールと異なる。  The camera module shown in FIG. 14 uses the light shielding block 6 in which the light shielding walls 6 la to 6 Id that divide the imaging region and the outer cylindrical portion 62 are separate from each other as in FIG. Different from the camera module shown in Fig.13.
[0064] 図 15に示すカメラモジュールは、遮光膜 8力 レンズアレイ 1と IRフィルタ 9aが形成 された基材 9との間、及び基材 9と光学フィルタモジュール 2との間のそれぞれに設け られて 、る点で図 13に示したカメラモジュールと異なる。 IRフィルタ 9aを光学フィルタ モジュール 2とは別の基材 9上に形成する場合、基材 9及び光学フィルタモジュール 2の合計厚みが厚くなるので、図 13の構成では、レンズに斜めに入射した被写体か らの光が、通過したレンズと対応しない撮像領域に入射する可能性が高くなる。これ を防止するために、図 15に示すように 2層の遮光膜 8を設ける。これにより、各撮像領 域に、この撮像領域に対応しな ヽレンズを通過した不要光が入射するのを防止する ことができる。その結果、測定距離精度が悪ィ匕するのを防止できる。 The camera module shown in FIG. 15 is provided between the light shielding film 8 force lens array 1 and the base material 9 on which the IR filter 9a is formed, and between the base material 9 and the optical filter module 2. This is different from the camera module shown in FIG. When the IR filter 9a is formed on the base material 9 different from the optical filter module 2, the total thickness of the base material 9 and the optical filter module 2 is increased. Therefore, in the configuration shown in FIG. There is a high possibility that light from the light enters the imaging area that does not correspond to the lens that has passed through. In order to prevent this, a two-layer light shielding film 8 is provided as shown in FIG. Thereby, it is possible to prevent unnecessary light that has passed through the lens corresponding to the imaging area from entering each imaging area. As a result, it is possible to prevent the measurement distance accuracy from deteriorating.
[0065] 図 16に示すカメラモジュールは、 IRフィルタ 9aが形成された基材 9が、上鏡筒 5より 被写体側に設けられている点で、図 13に示したカメラモジュールと異なる。レンズモ ジュール 7や遮光ブロック 6などの光学系を構成する部品は、使用者に直接触れられ ると壊れる可能性があるため、カメラモジュールはカメラシャーシ(図示せず)に覆わ れている。但し、被写体からの光を取り込むために、レンズモジュール 7の絞り 5a〜5 dを含む部分はカメラシャーシ力も露出させる必要がある。この場合に、使用者がこの 露出した部分を直接触れるのを防止するために、レンズモジュール 7が透明度の高 い保護カバーで覆われていることが好ましい。図 16では、 IRフィルタ 9aが形成された 基材 9を、使用者がカメラモジュールを直接触れないための保護カバーとして用いて いる。これにより、基材 9とは別に保護カバーを設ける場合に比べて、部品点数を削 減でき、また、カメラモジュールの厚みを小さくすることができる。  The camera module shown in FIG. 16 is different from the camera module shown in FIG. 13 in that the base material 9 on which the IR filter 9a is formed is provided closer to the subject than the upper lens barrel 5. The parts that make up the optical system, such as the lens module 7 and the light-blocking block 6, may be broken when touched directly by the user, so the camera module is covered with a camera chassis (not shown). However, in order to capture light from the subject, the portion of the lens module 7 including the apertures 5a to 5d needs to expose the camera chassis force. In this case, it is preferable that the lens module 7 is covered with a highly transparent protective cover in order to prevent the user from directly touching the exposed portion. In FIG. 16, the base material 9 on which the IR filter 9a is formed is used as a protective cover for preventing the user from directly touching the camera module. As a result, the number of parts can be reduced and the thickness of the camera module can be reduced as compared with the case where a protective cover is provided separately from the base material 9.
[0066] 上述したいずれのカメラモジュールでも、撮像領域 4a〜4dのそれぞれが特定の波 長帯域の光を撮像するために、光学フィルタモジュール 2を用いている。図 17に示す カメラモジュールでは、光学フィルタモジュール 2を用いて!/ヽな 、点でこれらの上述し たカメラモジュールと異なる。図 17では、撮像領域 4a〜4dのそれぞれが、撮像素子 4が感度を有する全ての波長帯域の光を撮像する。光学フィルタモジュール 2を用い ないことで、安価なカメラモジュールを提供することができる。また、光学フィルタモジ ユール 2を用いないことにより、レンズアレイ 1と遮光壁 61a〜61dとの間の隙間を小さ くすることができる。これにより、図 6Aで説明した不要光が発生する可能性を低減で きる。従って、図 17のカメラモジュールでは遮光膜 8も省略している。これにより、更に 安価なカメラモジュールを提供することができる。 [0067] 上記の説明では、特定の波長帯域の光を選択的に透過させる光学フィルタ (光学 フィルタ 2a, 2b, 2c, 2d及び IRフィルタ 9a)は、基材 (例えば透明ガラス基板)上に 形成されていたが、本発明はこれに限定されない。例えば、撮像素子 4上に、光学フ ィルタを直接形成しても良ぐその場合も上記と同様の効果が得られる。撮像素子 4 上に光学フィルタを形成する場合、 1つの撮像領域内の全ての画素に同一特性の光 学フィルタを形成しても良いが、赤、緑、青の各色光を選択的に透過させる光学フィ ルタを撮像領域内の画素上にべィヤー配列で配置しても良 、。光学フィルタをこのよ うなべィヤー配列で配置することで、カラー画像を得ることが可能となる。例えば、撮 像素子 4の有効画素領域を上述したように 4つの撮像領域に分割し、そのうちの 2つ の撮像領域では光学フィルタをべィヤー配列で配置し、残りの 2つの撮像領域では 近赤外光を透過させる光学フィルタを全画素上に配置してもよい。 [0066] In any of the camera modules described above, the optical filter module 2 is used so that each of the imaging regions 4a to 4d images light of a specific wavelength band. The camera module shown in FIG. 17 is different from the above-described camera modules in that the optical filter module 2 is used! In FIG. 17, each of the imaging regions 4 a to 4 d images light in all wavelength bands in which the imaging element 4 has sensitivity. By not using the optical filter module 2, an inexpensive camera module can be provided. Further, by not using the optical filter module 2, the gap between the lens array 1 and the light shielding walls 61a to 61d can be reduced. This can reduce the possibility of unnecessary light described with reference to FIG. 6A. Accordingly, the light shielding film 8 is also omitted in the camera module of FIG. Thereby, an inexpensive camera module can be provided. [0067] In the above description, the optical filters (optical filters 2a, 2b, 2c, 2d and IR filter 9a) that selectively transmit light in a specific wavelength band are formed on a base material (for example, a transparent glass substrate). However, the present invention is not limited to this. For example, in the case where an optical filter may be formed directly on the image sensor 4, the same effect as described above can be obtained. When an optical filter is formed on the image sensor 4, an optical filter having the same characteristics may be formed on all pixels in one imaging area, but each color light of red, green, and blue is selectively transmitted. Optical filters may be arranged in a bay array on the pixels in the imaging area. A color image can be obtained by arranging the optical filters in such a Bayer arrangement. For example, the effective pixel area of the imaging element 4 is divided into four imaging areas as described above, and optical filters are arranged in a Bayer array in two of the imaging areas, and near red in the remaining two imaging areas. You may arrange | position the optical filter which permeate | transmits external light on all the pixels.
[0068] 上記のカメラモジュールでは、撮像素子 4の有効画素領域は 4つの撮像領域に分 割されていたが、撮像領域の数や、複数の撮像領域の配置などは適宜変更すること ができる。  [0068] In the camera module described above, the effective pixel area of the imaging element 4 is divided into four imaging areas, but the number of imaging areas, the arrangement of a plurality of imaging areas, and the like can be changed as appropriate.
[0069] 上記の光学フィルタモジュール 2は、透過させる光の波長帯域 (例えば、緑色光、 近赤外光)ごとに別個に作成された複数の部品から構成されていたが、本発明はこ れに限定されない。例えば、共通する基材の異なる領域に異なる特性を有する光学 フィルタ (例えば緑色光学フィルタと近赤外光学フィルタ)をそれぞれ形成した一部品 で構成されていても良い。  [0069] The optical filter module 2 described above is composed of a plurality of components separately created for each wavelength band of light to be transmitted (for example, green light and near-infrared light). It is not limited to. For example, it may be composed of a single component in which optical filters having different characteristics (for example, a green optical filter and a near infrared optical filter) are formed in different regions of a common base material.
[0070] 上記の遮光膜 8は、光学フィルタ 2及び基材 9とは別体に設けられていた力 本発 明はこれに限定されない。例えば、遮光膜 8を光学フィルタ 2及び基材 9上に印刷等 を用いて直接形成しても良ぐその場合も上記と同様の効果が得られる。  [0070] The light shielding film 8 is a force provided separately from the optical filter 2 and the substrate 9. The present invention is not limited to this. For example, in the case where the light shielding film 8 may be directly formed on the optical filter 2 and the substrate 9 using printing or the like, the same effect as described above can be obtained.
[0071] 上記のカメラモジュールでは、チルトなどを抑制するために互いに当接される 2つの 基準面が平面であり、この 2つの平面状基準面が面接触していた力 本発明はこれ に限定されない。例えば、平面状基準面と球面状基準面とを点接触させても良ぐあ るいは平面状基準面と畝状基準面とを線接触させても良い。例えば、撮像素子 4ど当 接する基準面 (第 2の基準面)が、図 18に示すように、フィレットが形成された 3つの 球面 65Rで構成されても良い。また、部品の一方向の位置決めを行うためにこの部 品に設けられる基準面の数も上述した実施の形態に限定されず、適宜変更可能であ る。 [0071] In the camera module described above, two reference surfaces that are in contact with each other to suppress tilt and the like are flat surfaces, and the force that the two planar reference surfaces are in surface contact with each other. The present invention is not limited thereto. Not. For example, the planar reference surface and the spherical reference surface may be brought into point contact, or the planar reference surface and the bowl-shaped reference surface may be brought into line contact. For example, the reference surface (second reference surface) that contacts the image sensor 4 may be composed of three spherical surfaces 65R on which fillets are formed as shown in FIG. This part is also used to position the part in one direction. The number of reference surfaces provided on the product is not limited to the above-described embodiment, and can be changed as appropriate.
[0072] 以上に説明した実施の形態は、いずれもあくまでも本発明の技術的内容を明らか にする意図のものであって、本発明はこのような具体例にのみ限定して解釈されるも のではなぐその発明の精神と請求の範囲に記載する範囲内でいろいろと変更して 実施することができ、本発明を広義に解釈すべきである。  [0072] The embodiments described above are intended to clarify the technical contents of the present invention, and the present invention is to be interpreted as being limited to such specific examples. However, various modifications may be made within the spirit and scope of the invention described in the claims, and the present invention should be interpreted broadly.
産業上の利用可能性  Industrial applicability
[0073] 本発明の複眼方式のカメラモジュールの利用分野は特に制限はな 、が、例えば小 型、薄型でカメラ機能を備えた携帯電話、デジタルスチルカメラ、監視用カメラ、車載 カメラなどに好ましく利用することができる。 [0073] The field of application of the compound eye camera module of the present invention is not particularly limited, but it is preferably used for, for example, a small-sized and thin mobile phone having a camera function, a digital still camera, a surveillance camera, an in-vehicle camera, and the like. can do.

Claims

請求の範囲 The scope of the claims
[1] 一平面上に配置された、互いに光軸が異なる複数のレンズを有するレンズアレイと 前記複数のレンズのそれぞれに 1対 1に対応する複数の撮像領域を有する撮像素 子と、  [1] A lens array having a plurality of lenses having different optical axes arranged on a single plane, and an imaging element having a plurality of imaging areas corresponding to each of the plurality of lenses,
前記レンズアレイと前記撮像素子との間に配置され、前記複数のレンズのそれぞれ に 1対 1に対応する複数の開口部を有する遮光ブロックとを有し、  A light-shielding block that is disposed between the lens array and the image sensor and has a plurality of openings corresponding to the lenses on a one-to-one basis,
前記遮光ブロックは、前記レンズアレイと当接し前記レンズアレイを前記光軸方向 に位置決めする第 1の基準面と、前記撮像素子と当接し前記撮像素子を前記光軸 方向に位置決めする第 2の基準面と、前記レンズアレイと当接し前記レンズアレイを 前記光軸と直交する第 1方向に位置決めする第 3の基準面と、前記レンズアレイと当 接し前記レンズアレイを前記光軸及び前記第 1方向に直交する第 2方向に位置決め する第 4の基準面とを有する複眼方式のカメラモジュール。  The shading block is in contact with the lens array and has a first reference surface for positioning the lens array in the optical axis direction, and a second reference surface that is in contact with the imaging element and positions the imaging element in the optical axis direction. A surface, a third reference surface that contacts the lens array and positions the lens array in a first direction orthogonal to the optical axis, and abuts the lens array to align the lens array with the optical axis and the first direction. A compound-eye camera module having a fourth reference surface positioned in a second direction orthogonal to the first direction.
[2] 前記レンズアレイと前記撮像素子との間に配置され、前記複数のレンズを透過した 光のうち特定の波長帯域の光を透過させる光学フィルタモジュールを更に有し、 前記遮光ブロックは、前記光学フィルタモジュールと当接し前記光学フィルタモジュ ールを前記光軸方向に位置決めする第 5の基準面を有する請求項 1に記載の複眼 方式のカメラモジュール。 [2] The optical filter module is further disposed between the lens array and the imaging device, and transmits light in a specific wavelength band among light transmitted through the plurality of lenses. The compound-eye camera module according to claim 1, further comprising a fifth reference surface that abuts on the optical filter module and positions the optical filter module in the optical axis direction.
[3] 前記レンズアレイと前記光学フィルタモジュールとの間に配置され、前記複数のレ ンズのそれぞれに 1対 1に対応する複数の開口部を有する遮光膜を更に有し、 前記遮光膜の前記複数の開口部の大きさは、前記遮光ブロックの前記複数の開口 部と同じかまたはこれより小さい請求項 1に記載の複眼方式のカメラモジュール。 [3] It further includes a light shielding film disposed between the lens array and the optical filter module and having a plurality of openings corresponding to each of the plurality of lenses in a one-to-one relationship. 2. The compound-eye camera module according to claim 1, wherein the sizes of the plurality of openings are the same as or smaller than the plurality of openings of the light shielding block.
PCT/JP2007/058139 2006-04-24 2007-04-13 Compound eye camera module WO2007125761A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006118659A JP2009164654A (en) 2006-04-24 2006-04-24 Compound eye camera module
JP2006-118659 2006-04-24

Publications (1)

Publication Number Publication Date
WO2007125761A1 true WO2007125761A1 (en) 2007-11-08

Family

ID=38655294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058139 WO2007125761A1 (en) 2006-04-24 2007-04-13 Compound eye camera module

Country Status (2)

Country Link
JP (1) JP2009164654A (en)
WO (1) WO2007125761A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087974A1 (en) * 2008-01-11 2009-07-16 Panasonic Corporation Binocular camera module
WO2009104394A1 (en) * 2008-02-18 2009-08-27 パナソニック株式会社 Compound eye camera module
US8194169B2 (en) 2006-01-20 2012-06-05 Panasonic Corporation Compound eye camera module and method of producing the same
JP2012226245A (en) * 2011-04-22 2012-11-15 Canon Inc Focus detector and optical device
WO2015178079A1 (en) * 2014-05-20 2015-11-26 コニカミノルタ株式会社 Image capturing device, control method for image capturing device, and control program for image capturing device
CN106918889A (en) * 2015-12-25 2017-07-04 吉佳科技股份有限公司 Camera group correction method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5555046B2 (en) * 2010-05-18 2014-07-23 日本電信電話株式会社 Image input device, image input method, and image input program
US9876992B2 (en) 2014-04-30 2018-01-23 Panasonic Intellectual Property Management Co., Ltd. Imaging apparatus and distance measuring apparatus using the same
CN105223756B (en) * 2015-10-06 2018-03-09 瑞声光电科技(常州)有限公司 Array camera lens module
JP6878111B2 (en) 2017-04-21 2021-05-26 ソニーモバイルコミュニケーションズ株式会社 Solid-state image sensor and information processing device
EP3742489A4 (en) * 2018-01-15 2021-06-23 Sony Corporation Living body information acquisition device, living body information acquisition method and wearable device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04306607A (en) * 1991-04-03 1992-10-29 Fuji Photo Film Co Ltd Positioning of distance measuring lens
JP2000352663A (en) * 1999-04-07 2000-12-19 Olympus Optical Co Ltd Range-finding device
JP2001174682A (en) * 1999-12-20 2001-06-29 Canon Inc Focus detector and optical equipment provided with it
JP2003133336A (en) * 2001-10-30 2003-05-09 Fuji Electric Co Ltd Semiconductor device
JP2003143459A (en) * 2001-11-02 2003-05-16 Canon Inc Compound-eye image pickup system and device provided therewith

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04306607A (en) * 1991-04-03 1992-10-29 Fuji Photo Film Co Ltd Positioning of distance measuring lens
JP2000352663A (en) * 1999-04-07 2000-12-19 Olympus Optical Co Ltd Range-finding device
JP2001174682A (en) * 1999-12-20 2001-06-29 Canon Inc Focus detector and optical equipment provided with it
JP2003133336A (en) * 2001-10-30 2003-05-09 Fuji Electric Co Ltd Semiconductor device
JP2003143459A (en) * 2001-11-02 2003-05-16 Canon Inc Compound-eye image pickup system and device provided therewith

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8194169B2 (en) 2006-01-20 2012-06-05 Panasonic Corporation Compound eye camera module and method of producing the same
WO2009087974A1 (en) * 2008-01-11 2009-07-16 Panasonic Corporation Binocular camera module
WO2009104394A1 (en) * 2008-02-18 2009-08-27 パナソニック株式会社 Compound eye camera module
US8106344B2 (en) 2008-02-18 2012-01-31 Panasonic Corporation Compound eye camera module
JP2012226245A (en) * 2011-04-22 2012-11-15 Canon Inc Focus detector and optical device
WO2015178079A1 (en) * 2014-05-20 2015-11-26 コニカミノルタ株式会社 Image capturing device, control method for image capturing device, and control program for image capturing device
CN106918889A (en) * 2015-12-25 2017-07-04 吉佳科技股份有限公司 Camera group correction method

Also Published As

Publication number Publication date
JP2009164654A (en) 2009-07-23

Similar Documents

Publication Publication Date Title
WO2007125761A1 (en) Compound eye camera module
JP4374078B2 (en) Compound eye camera module
JP4147273B2 (en) Compound eye camera module and manufacturing method thereof
US7700904B2 (en) Compound-eye imaging device
KR101823195B1 (en) Lens assembly and camera module including the same
WO2007123064A1 (en) Compound eye camera module
JP3848062B2 (en) Imaging apparatus and mobile phone using the same
JP2009201008A (en) Compound-eye imaging apparatus
TWI584643B (en) Camera devices and systems based on a single imaging sensor and methods for manufacturing the same
JP2020064161A (en) Optical device and imaging system equipped with the same
CN217825080U (en) Camera module, camera device and electronic equipment
US20210006694A1 (en) Image-sensor fixing structure
JP2004302095A (en) Image pickup device
JP2013044893A (en) Compound-eye imaging device, and distance image acquisition device
JP2012195758A (en) Imaging module
CN109756656B (en) Handheld electronic equipment and camera device thereof
JP2005031460A (en) Compound eye optical system
JP2005027155A (en) Camera module
JP2009180976A (en) Compound-eye camera module
US11829053B2 (en) Optical unit, optical apparatus, imaging apparatus, and imaging system
JP4314476B2 (en) Imaging device
US20220400194A1 (en) Lens mount and lens apparatus having the same
JP2005257850A (en) Optical unit, imaging device provided with the same, and personal digital assistant provided with the imaging device
JP2007295140A (en) Imaging apparatus
WO2007125876A1 (en) Imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741575

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)