WO2007125747A1 - Plasma display panel - Google Patents

Plasma display panel Download PDF

Info

Publication number
WO2007125747A1
WO2007125747A1 PCT/JP2007/057864 JP2007057864W WO2007125747A1 WO 2007125747 A1 WO2007125747 A1 WO 2007125747A1 JP 2007057864 W JP2007057864 W JP 2007057864W WO 2007125747 A1 WO2007125747 A1 WO 2007125747A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
terminal
data
sealing material
data electrode
Prior art date
Application number
PCT/JP2007/057864
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroto Yanagawa
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Publication of WO2007125747A1 publication Critical patent/WO2007125747A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/46Connecting or feeding means, e.g. leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/48Sealing, e.g. seals specially adapted for leading-in conductors

Definitions

  • the present invention relates to a plasma display panel (hereinafter abbreviated as “PDP”), and more particularly to a technique for preventing ion migration of an electrode for a PDP terminal joined to an external terminal.
  • PDP plasma display panel
  • Such AC-type PDP electrode materials are roughly classified into transparent electrodes and metal electrodes. Indium stannate (ITO) or tin oxide (SnO) is used for the transparent electrode.
  • ITO Indium stannate
  • SnO tin oxide
  • silver (Ag), aluminum (A1) or CrZCuZCr three-layer systems are used for the metal electrodes.
  • the Ag-based electrode has the disadvantage of being easily ion-migrated (see Non-Patent Document 1), and in particular, it is a flexible printed circuit film (hereinafter abbreviated as "FPC").
  • FPC flexible printed circuit film
  • the terminal joint of the Ag-based electrode for connection with the terminal is easily exposed to the outside air (moisture).
  • Patent Document 1 Japanese Patent Laid-Open No. 216502 (FIG. 3)
  • FIG. 8 is a cross-sectional view of a portion along the line AA in FIG. 7
  • FIG. 9 is a cross-sectional view of a portion along the line BB in FIG.
  • the Ag-based electrode is not limited to the PDP data electrode, the PDP scan electrode, and the sustain electrode, but as described later, the PDP data electrode is connected to the scan electrode and the sustain electrode. Since it is estimated that Ag migration is easier and in the environment, the data electrode will be described as an example here.
  • a conventional PDP 200 shown in FIG. 7 includes a front plate 210 and a back plate 220.
  • the back plate 220 has an extending portion 220a that extends further outward from the front plate 210 from the sealing material 230 and functions as a terminal region.
  • the Ag-based data electrode 222 of the back plate 220 crosses the sealing material 230 from the inside of the PDP 200 (an area inside the sealing material 230; not shown), and passes through the extending portion 220a of the back plate 220. It extends to the vicinity of one end face of the back plate 220.
  • the data electrode 222 is joined to the terminal 243 of the wiring of the FPC 240 via an anisotropic conductive film 241 (hereinafter abbreviated as “AC F241”).
  • a silicon resin 244 is provided so as to cover the data electrode 222 of the extension 220 a of the back plate 220 and the terminal 243 of the wiring of the FPC 240.
  • the sealing material 230 is a material containing glass as a main component, the matching of material characteristics with the data electrode 222 in which silver metal particles are dispersed in a glass component is improved. As a result, the adhesion between the sealing material 230 and the data electrode 222 as shown in FIG. 9 is appropriately ensured. Similarly, since the dielectric layer (not shown) and the back plate 220 are both composed mainly of glass, the adhesion between the sealing material 230 and the back plate 220 is shown in FIG. It is secured appropriately as shown.
  • the thickness of the PDP electrode described in Patent Document 2 is usually about 5 ⁇ m (for example, a screen). In this case, the resistance of the PDP electrode is reduced.
  • the voltage applied to the data electrode (data voltage) for the purpose of increasing the luminous efficiency of PDP is a reflective effect that will increase the xenon (Xe) gas partial pressure ratio in the future. It is predicted that the voltage will increase. For example, if the Xe gas partial pressure ratio shifts from the existing 5% to more than 10%, the PDP cannot emit light well unless the data voltage is set high (for example, the data voltage is shifted from about 67V to about 75V).
  • such a data voltage may be similarly increased from the viewpoint of appropriately securing the voltage margin of the PDP.
  • a margin for the voltage applied to the scan voltage can be secured. Is preferred.
  • the data electrode pitch (cell pitch) is narrow from the viewpoint of achieving high definition of the PDP (for example, the data electrode pitch is shifted from 240 m in the existing high-vision specification to 150 ⁇ m or less). It is estimated that.
  • the electric field strength between adjacent data electrodes may greatly increase due to the synergistic effect of both the high data voltage and the narrow pitch between the data electrodes. Ag migration prevention needs to be dealt with more carefully.
  • the scan electrode and the sustain electrode have a wide inter-electrode pitch, and it is difficult for a high potential difference to occur between adjacent electrodes over a long period of time.
  • the possibility of close-up is less than the problem of Ag migration.
  • the bonding technique between the Ag electrode portion and the Au electrode portion described in Patent Document 2 incorporates inconveniences such as generation of cracks in the thin dielectric layer, and has a viewpoint of appropriate terminal bonding formation. This is a half-finished technology.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a plasma display panel that can appropriately prevent misregistration of a terminal portion of a data electrode.
  • a plasma display panel includes a first substrate having a plurality of display electrode pairs, and a plurality of data electrodes bonded to the first substrate by an annular sealing material. And the display electrode pair and the data electrode extend so as to intersect each other with a gap, and a plurality of gaps between the display electrode pair and the data electrode are used as respective discharge spaces.
  • a dielectric layer covering the data electrode reaches at least the panel region force and the sealing material, and a step generated between the data electrode and the terminal electrode is caused by the step. It is a panel covered with a stopper
  • the sealing material does not have poor coverage at the step. Therefore, it is possible to appropriately avoid the exposure of the difficult step to the outside of the sealing material.
  • the entire area force of the data electrode including the glass frit is covered with an insulator layer or a sealing material having a low melting point glass force, the adhesion between the two can be kept in a good state. Thus, migration of the data electrode can be prevented appropriately.
  • the dielectric layer may be interposed between the sealing material and the step.
  • the data electrode may be made of silver
  • the terminal electrode may be made of a metal selected from copper, aluminum, nickel, or a silver alloy.
  • the data electrode is made of silver, for example, Ag metal particles are made into a resistance paste-like fluid containing glass frit (hereinafter referred to as “silver paste”), and an appropriate coating method (for example, a screen).
  • the printing method can be formed to an appropriate thickness, and the resistance value can be reduced.
  • a data electrode using such a silver paste has an advantage that the resistance value of silver is low, and is suitable for forming an electrode while ensuring high productivity by a screen printing method.
  • metals with a medium strength of copper, aluminum, and nickel, and silver alloys are highly reliable materials with superior migration resistance compared to silver, which makes terminal electrode migration appropriate. Can be prevented.
  • the core electrode is formed so that the terminal electrode overlaps with the data electrode and the core material portion extending outside the region.
  • a covered electrode that covers the surface of the portion.
  • the data electrode and the core member may be made of silver, and the covered electrode may be made of a metal selected from among copper, aluminum, nickel, or a silver alloy. .
  • the data electrode and the core member are made of silver, for example, Ag metal particles are made into a resistance paste-like fluid containing glass frit, and an appropriate thickness is obtained by an appropriate application method (for example, a screen printing method).
  • the resistance value can be reduced.
  • the data electrode and the core member using such a silver paste have the advantage that the resistance value of silver is low, and the script The electrode can be formed while ensuring high productivity by the tone printing method.
  • Metals that have been selected to have a medium strength of copper, aluminum, and nickel, and silver alloys are highly reliable materials that have superior migration resistance compared to silver. Can be prevented.
  • the occurrence of migration is appropriately suppressed by alloying silver such as an Ag-Pd (palladium) alloy.
  • the coated electrode using such an Ag-Pd alloy easily inherits the existing technology that has been cultivated so far and forms the data electrode by screen printing using silver paste. It is estimated that it can be efficiently formed in the thickness of the metal, and is promising as a future migration-resistant electrode material.
  • a separate terminal electrode (in the case of the first configuration example) or a covered electrode (in the case of the second configuration example) that conducts with the data electrode or the like having the configuration described above is provided, and the material is migrated.
  • Appropriate selection of the prevention and cost increase viewpoint power is to increase the xenon partial pressure and increase the data voltage to improve the brightness of the PDP, or to ensure the PDP voltage margin appropriately, or This is particularly useful when attempting to increase the definition of PDPs by narrowing the pitch of the data electrodes.
  • the present invention has the above-described configuration, and has an effect that the migration of the terminal portion of the data electrode can be appropriately prevented in the plasma display panel.
  • FIG. 3 is a view showing a cross section along the data electrode and the terminal electrode around the sealing material shown in FIG. 1.
  • FIG. 4 is a view showing a cross section along the data electrode and the terminal electrode around the sealing material in the PDP of the modification of the first embodiment.
  • FIG. 5 is a view showing a cross section along the data electrode and the terminal electrode in the peripheral portion of the sealing material at the peripheral portion of the PDP according to the second embodiment.
  • FIG. 6 is a view showing a cross section along the data electrode and the terminal electrode around the sealing material in the PDP of the modification of the second embodiment.
  • FIG. 7 is a cross-sectional view showing a peripheral structure of a terminal portion of an Ag-based electrode covered with silicon resin in a conventional PDP.
  • FIG. 8 is a cross-sectional view of a portion along line AA in FIG.
  • FIG. 9 is a cross-sectional view of the portion along line BB in FIG.
  • FIG. 1 is a perspective view showing a configuration example of the PDP and its peripheral members according to the present embodiment.
  • the PDP 100 of the present embodiment includes a front plate 10 and a back plate 20 disposed so as to face each other, as shown in FIG. Twenty peripheral edges and force Thickness (height) are joined by a rectangular sealing material 30 extending in a rectangular shape of 100 m or more.
  • a panel region 201 having a plurality of discharge cells (see FIG. 1 and FIG. 2) and a terminal electrode 22a and an external terminal of the FPC are joined.
  • a terminal area 202 (see Fig. 3).
  • FIG. 2 is a perspective view in which a portion corresponding to several pixels in the panel region of the PDP shown in FIG. 1 is cut out.
  • the front plate 10 includes a rectangular front glass substrate 11 as shown in FIG. 2, a display electrode pair 12, a transparent dielectric layer 13, and a transparent protective layer 14.
  • the front glass substrate 11 is a member that serves as a base of the front plate 10, and the front glass substrate 1
  • a plurality of display electrode pairs 12 extending in parallel with each other are formed on the inner surface of 1.
  • One of the display electrode pair 12 is a scan electrode 12a, and the other is a sustain electrode 12b.
  • the scan electrode 12a (panel electrode) is a narrow bus electrode (indicated by a dotted line in FIG. 2) at the edge along the longitudinal direction of a strip-shaped transparent electrode (eg, indium tin oxide electrode; ITO electrode). Are formed to overlap each other, extend to one side surface of the front glass substrate 11, and are joined to a circuit substrate (not shown) for the scan electrode 12a via an FPC (not shown) in the vicinity of the side surface.
  • a strip-shaped transparent electrode eg, indium tin oxide electrode; ITO electrode
  • the sustain electrode 12b panel electrode
  • the sustain electrode 12b panel electrode
  • a narrow bus electrode shown by a dotted line in FIG. 2
  • the glass substrate 11 extends to the other side surface of the glass substrate 11 and is joined to a circuit substrate (not shown) for the sustain electrode 12b via an FPC (not shown) in the vicinity of the side surface.
  • the bus electrode is a highly conductive metal film such as an Ag-based film, an A1-based film, or Cr. / Cu / Cr3 layer-based material is used as a main component, and serves to lower the overall resistance value of each of the scan electrode 12a and the sustain electrode 12b.
  • the inner surfaces of the display electrode pair 12 and the front glass substrate 11 are low-melting glass (thickness of about several tens of thousands) mainly composed of lead oxide (PbO), bismuth oxide (BiO), or phosphorus oxide (PO). / zm)
  • the back plate 20 is a dielectric layer formed so as to cover the rectangular back glass substrate 21, the data electrode 22, the data electrode 22, and the back glass substrate 21 as shown in FIG. 23, barrier ribs 24 formed on the dielectric layer 23 at a predetermined interval, and phosphor layers 25 (25R, 25G, 25B) formed on the wall surfaces of the gaps between the adjacent barrier ribs 24.
  • the back glass substrate 21 is a member that serves as a base for the back plate 20.
  • the back electrode substrate 12 intersects the display electrode pair 12 (to be exact, orthogonal) and extends in parallel with each other.
  • a plurality of strip-shaped data electrodes 22 are formed.
  • the data electrode 22 in the present embodiment is made of an appropriate film formed by an appropriate coating method (for example, screen printing method) using Ag metal particles as a resistance paste-like fluid (silver paste) containing glass frit. It can be formed to a thickness (for example, 5 m), and the resistance value is reduced.
  • the data electrode 22 using such a silver paste has an advantage that the resistance value of silver is low, and it is preferable that the electrode can be formed while ensuring high productivity by a screen printing method.
  • the data electrode 22 as such a panel electrode is electrically connected (conducted) with the terminal electrode 22a (see FIG. 1) in the terminal region 202 as described in detail later.
  • the dielectric layer 23 having a thickness of about several tens / zm also has a lead-based or non-lead-based low melting point glass force, like the dielectric layer 13 of the front plate 10.
  • the partition wall 24 extending in parallel with the data electrode 22 and forming a groove-like space is, for example, a mark.
  • a paste of a lead-based or non-lead-based low-melting glass material is applied in a solid form so as to reach a predetermined thickness over a plurality of times, and after an appropriate drying process.
  • This is called the sand blasting method, and the laminated coating layer is drilled and finely processed by spraying a blasting material (a kind of gun particle).
  • examples of materials of the red, green, and blue phosphor layers 25R, 25G, and 25B are a red phosphor material (YO: Eu) and a green phosphor material (Zn SiO), respectively. : M
  • the front plate 10 and the back plate 20 are overlapped so that the inner surfaces thereof face each other as shown in FIG.
  • the front plate 10 and the back plate 20 are bonded to the front glass substrate 11 and the back plate in a state where the front plate 10 and the back plate 20 are bonded together by a sealing material 30 (a paste containing glass frit) provided on the peripheral edge thereof.
  • the distance from the glass substrate 21 is regulated by the partition wall 24 and kept constant.
  • a gap between each of the red phosphor layer 25R, the green phosphor layer 25G, and the blue phosphor layer 25B and the protective layer 14 forms a discharge space.
  • the discharge space is sealed at a pressure of about 7 to 801 ⁇ 1 ⁇ 2 (200 to 6001 ⁇ r) of a discharge gas (filled gas) composed of rare gas components such as He, Xe, Ne, and Ar.
  • the annular sealing material 30 extending in such a rectangle is surrounded.
  • a portion having the discharge cells sandwiched between the front plate 10 and the back plate 20 within the region formed constitutes a panel region 201.
  • FIG. 3 is a view showing a cross section along the data electrode and the terminal electrode around the sealing material shown in FIG.
  • illustration of the FPC 40 and the back plate side ACF 41a of FIG. 1 is omitted.
  • the front plate 10 in FIG. 3 is abbreviated to be configured only by the front glass substrate 11, and the back plate 20 in FIG. Except for the body layer 23, it is abbreviated as a configuration composed only of the rear glass substrate 21.
  • the dielectric layer 23 covering the data electrode 22 extends from the panel region 201 of the PDP 100 to the sealing material 30 with the data electrode 22, and further between the sealing material 30 and the data electrode 22. And between the sealing material 30 and the terminal electrode 22a. That is, the dielectric layer 23 is interposed and sealed between the sealing material 30 and the step S1 so as to cover the step S1 in the conductive portion (overlapping portion) between the data electrode 22 and the terminal electrode 22a. It intersects with the stopper 30 and extends to the extending portion 20 a of the back plate 20.
  • the back plate side and the circuit board side ACF 41a, 41b are formed in a film by dispersing conductive particles in an adhesive binder, and the ACF 41a, 41b is attached to the adherend (back) of the panel end.
  • the binder flows and the conductive particles are pressed directly onto the terminal surface, so that the electrode of the adherend Conduction between is obtained.
  • the control device (not shown) can control the driver IC 51 so as to supply an appropriate drive signal to the data electrode 22.
  • the image 1TV field (one frame) of the PDP 100 is time-divided into a plurality of subfields, whereby the control device controls the number of discharges for each subfield to display grayscales.
  • the voltage application timing of the data electrode 22 and the display electrode pair 12 is controlled as possible.
  • a PDP100 image 1TV field period an initializing period in which wall charges necessary for the subsequent address period are formed on the wall of the discharge cell, and a discharge cell that is discharged in the subsequent sustain period! Is divided into 8 sub-field periods having a discharge period selected in the address period and a sustain period for discharging the selected discharge cells, the ratio of the light emission time lengths of the 8 sub-fields is 1: 2: 4: 8: 19: 32: 64: 128 to the power of 2, and in each discharge cell, all subfields are in a “0 (zero)” state with no light emission (ie, all subfields 256-level gray scale display ranging from “without writing period selection in the field” to “255” with light emission in all subfields (ie, with writing period selection in all subfields). Become feasible .
  • Such a control operation of the PDP 100 is publicly known, and a more detailed description is omitted here.
  • the terminal electrode 22a is made of a highly reliable metal superior in migration resistance compared to silver, for example, a metal having a medium force selected from copper (Cu), aluminum (A1), and nickel (Ni). It is made.
  • the terminal electrode 22a may be formed using a vacuum deposition process using a deposition material made of metal powder or the like, or a plating process.
  • the front plate 10 having a plurality of pairs of scan electrodes 12a and sustain electrodes 12b, and the back plate 20 having a plurality of data electrodes 22 are provided.
  • the pair of the scan electrode 12a and the sustain electrode 12b and the data electrode 22 extend so as to be orthogonal with a gap, and the pair of the scan electrode 12a and the sustain electrode 12b and the data
  • Data electrode 22 and Step S 1 that occurs in order to obtain continuity between the child electrode 20a is intended to be covered by the sealing member 30 of the thick film than at least a dielectric layer 23.
  • the step S1 at the conductive portion between the data electrode 22 and the terminal electrode 22a is covered with the sufficiently thick sealing material 30 (100 m or more).
  • Level difference S1 sealant 30 It is possible to avoid exposure to the outside appropriately.
  • the entire area force of the Ag-based data electrode 22 containing glass frit is covered with the dielectric layer 23 which also has a low melting point glass force, the adhesion between the two can be maintained in a good state. As a result, Ag migration of the data electrode 22 can be prevented appropriately.
  • the terminal electrode 22a is a material excellent in migration resistance and suitable for cost. Migration of the terminal electrode 22a can be appropriately prevented due to the power of being made of a metal such as Cu, Al, Ni, or an Ag—Pd alloy.
  • the xenon partial pressure is increased, This is especially useful when increasing the data voltage to improve the brightness of the PDP, to ensure an adequate PDP voltage margin, or to increase the PDP precision by narrowing the data electrode pitch. is there.
  • the dielectric layer 23 extends to the extending portion 20a while intersecting the sealing material 30, but it is not always necessary that the dielectric layer 23 reaches the extending portion 20a. is not .
  • the dielectric layer 23a as in the modification shown in FIG. 4 reaches an appropriate position in the width direction of the sealing material 30, the effect of preventing Ag migration of the present technology is exhibited.
  • the Ag-based data electrode 22 containing glass frit is covered with at least one of the dielectric layer 23a made of low-melting glass and the sealing material 30 containing glass frit, the data Ag migration of the electrode 22 can be prevented appropriately.
  • FIG. 5 is a view showing a cross section along the data electrode and the terminal electrode in the peripheral portion of the sealing material at the peripheral portion of the PDP according to the present embodiment.
  • the terminal electrode 160 has a laminated (two-layered) electrode structure as shown in FIG. 5, and more specifically, a core material portion 160a continuously extending from the data electrode 122, and a core material portion. And a covering electrode 160b covering the entire surface thereof so as to overlap with 160a.
  • a terminal electrode 160 is an electrode that extends to the outside of the panel region 201 and exhibits the function of the terminal region 402 and forms a joint with the external terminal.
  • the core material portion 160a of the terminal electrode 160 is made of the same material (Ag-based electrode) formed at the same time as the data electrode 122. As a result, the core material portion 160a It extends continuously with the data electrode 122. In other words, the portion that is simultaneously formed in the same shape as the data electrode 122 and is covered with the covering electrode 160b is referred to as the core portion 160a of the terminal electrode 160 for convenience in this specification.
  • both electrodes integrated in this way extends from the panel region 201 to the sealing material 130 on the back glass substrate 21 to the extended portion 20a of the back plate 20.
  • the back glass substrate 21 extends toward the end surface with force.
  • the coated electrode 160b of the terminal electrode 160 extends from the end of the core member 160a toward the panel region 201 of the PDP 110, and the width of the sealing material 130 having a thickness of 100 m or more as shown in FIG. It reaches to just below the center of the direction. For this reason, the step S2 in the conductive portion between the terminal electrode 160 (covered electrode 160b) and the data electrode 122 is covered with the sealing material 130.
  • the coated electrode 160b is also made of a highly reliable metal having excellent migration resistance compared to silver, such as Cu, Al, and Ni, similar to the material of the terminal electrode 22a described in the first embodiment. It is made of a selected metal or a silver alloy such as an Ag—Pd alloy.
  • the dielectric layer 123 covering the data electrode 122 extends from the panel region 201 of the PDP 110 to the seal material 130 with the data electrode 122, and further, the seal material 130 and the data electrode 122. And between the sealing material 130 and the covered electrode 160b.
  • the dielectric layer 123 is interposed and sealed between the sealing material 130 and the step S2 so as to cover the step S2 in the conductive portion between the terminal electrode 160 and the data electrode 122. It intersects with the material 130 and extends to the extending portion 20a of the back plate 20.
  • a belt-like portion located between the terminal electrode 160 and the external terminals constitutes a terminal region 402.
  • the terminal electrode 160 force data
  • the dielectric layer 123 covering the data electrode 122 includes a core member 160a continuously extending from the data electrode 122 and a covering electrode 160b covering the surface so as to overlap the core member 160a.
  • the step S2 in the conductive portion between the data electrode 122 and the terminal electrode 160 is at least thicker than the dielectric layer 123. It is covered with the sealing material 130.
  • the step S2 at the conductive portion between the data electrode 122 and the terminal electrode 160 is covered with the sufficiently thick sealing material 130 (100 m or more), so that the sealing material 1 30 is formed at the step S2. It is possible to appropriately avoid exposure of 130 to the outside of such a step S2, which is difficult to cause poor coverage.
  • the adhesion between the two can be maintained in a good state. Thereby, Ag migration of the data electrode 122 can also be prevented appropriately.
  • the entire area force of the Ag-based core member 160a is covered with the covered electrode 160b, whereby the Ag migration of the core member 160a can be appropriately prevented.
  • the Ag-based data electrode 122 containing glass frit is covered with either the dielectric layer 123a made of low-melting glass or the sealing material 130 containing glass frit, the data electrode 122 Ag migration can be prevented appropriately.
  • the plasma display panel of the present invention can be used for a display device using a thin panel as an application of a television device for transportation, public facilities, or homes, for example.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

Provided is a plasma display panel (100) including a first substrate (10) having a plurality of display electrode pairs, a second substrate (20) adhered to the first substrate (10) by a sealing member (30) and having a plurality of data electrodes (22), which extend to intersect with the display electrode pairs through clearances, a panel region enclosed by a sealing member (30) and having a plurality of discharge cells using the individual clearances between the display electrode pairs and the data electrodes (22) as the individual discharge spaces, and terminal electrodes (22a) making junctions to an external terminal outside of the regionenclosed by the sealing member (30) and conducting with the data electrodes (22). A dielectric layer (23) covering the data electrodes (22) extends from the panel region to at least the sealing member (30), and steps (S1) formed by the conductions between the data electrodes (22) and the terminal electrodes (22a) are covered with the sealing member (30).

Description

明 細 書  Specification
プラズマディスプレイパネノレ  Plasma display panel
技術分野  Technical field
[0001] 本発明は、プラズマディスプレイパネル(以下、「PDP」と略す)に係り、更に詳しくは 、外部端子に接合する PDP端子用の電極のイオンマイグレーション防止技術に関す る。  The present invention relates to a plasma display panel (hereinafter abbreviated as “PDP”), and more particularly to a technique for preventing ion migration of an electrode for a PDP terminal joined to an external terminal.
背景技術  Background art
[0002] PDPは、ガス放電で発生した紫外線によって蛍光体を励起発光させ、画像表示す るガス放電パネルである。 PDPは、その放電の形成手法から AC型(交流型)と DC型 (直流型)に分類することができ、その中でも特に AC型は、輝度、発光効率および寿 命の点で DC型よりも優れており、現在の PDPの主流となっている。  [0002] A PDP is a gas discharge panel that displays an image by exciting phosphors with ultraviolet rays generated by gas discharge. PDP can be categorized into AC type (AC type) and DC type (DC type) according to its discharge formation method. Among them, AC type is more than DC type in terms of brightness, luminous efficiency and life. It is excellent and has become the mainstream of the current PDP.
[0003] このような AC型の PDPの電極用の材料としては、透明電極と金属電極に大別され る。当該透明電極には、インジウムスズ酸ィ匕物(ITO)または酸化スズ (SnO )が用い  [0003] Such AC-type PDP electrode materials are roughly classified into transparent electrodes and metal electrodes. Indium stannate (ITO) or tin oxide (SnO) is used for the transparent electrode.
2 られ、当該金属電極には、銀 (Ag)系、アルミ (A1)系または CrZCuZCrの 3層系が 用いられている。  In addition, silver (Ag), aluminum (A1) or CrZCuZCr three-layer systems are used for the metal electrodes.
[0004] 以上に例示した金属電極のうちの Ag系電極は、通常、 Ag金属粒子を、ガラスフリツ トを含む抵抗ペースト状の流動体にして、適宜の塗布方法、例えばスクリーン印刷法 、により、形成されている。このような Ag系電極は、銀の抵抗値が低いという利点を有 し、スクリーン印刷法により高効率に電極を形成できることから、 PDP電極として好適 である。  [0004] Of the metal electrodes exemplified above, an Ag-based electrode is usually formed by forming an Ag metal particle into a resistive paste-like fluid containing glass frit and applying an appropriate coating method, for example, a screen printing method. Has been. Such an Ag-based electrode is advantageous as a PDP electrode because it has an advantage that the resistance value of silver is low and can be formed with high efficiency by a screen printing method.
[0005] し力しながら反面、 Ag系電極はイオンマイグレートし易 、と 、う欠点を有し (非特許 文献 1参照)、特に、フレキシブル印刷回路フィルム (以下、「FPC」と略す)の端子と の間の接続用の Ag系電極の端子接合部は、外気 (水分)に曝され易い。  [0005] On the other hand, the Ag-based electrode has the disadvantage of being easily ion-migrated (see Non-Patent Document 1), and in particular, it is a flexible printed circuit film (hereinafter abbreviated as "FPC"). The terminal joint of the Ag-based electrode for connection with the terminal is easily exposed to the outside air (moisture).
[0006] このため、水分の存在下で Ag系電極の端子間に電圧を印加した際の Agマイダレ ーシヨンを防止する、各種の対応策が従来力も検討されている。  [0006] For this reason, various countermeasures for preventing Ag miridation when a voltage is applied between terminals of an Ag-based electrode in the presence of moisture have been studied.
[0007] 例えば、 Ag系電極の端子部をシリコン榭脂で塗布することにより、この端子部に水 分が浸入することを防ぎ、ひ 、ては Agマイグレーション発生を防止する手法が提案さ れて 、る (従来例としての特許文献 1参照)。 [0007] For example, a method has been proposed in which the terminal part of an Ag-based electrode is coated with silicon resin to prevent water from entering the terminal part, thereby preventing the occurrence of Ag migration. (See Patent Document 1 as a conventional example).
[0008] また、 Ag系電極を、 Ag電極部位 (配線部)と耐マイグレーション性に優れた金 (Au )電極部位 (端子部)とに分け、 Ag電極部位を、 PDPの前面および背面基板の接合 用封止材の内側に位置させ、これにより、封止材の外部(外気)に露出する部分を A u電極部分に限定して、 Agマイグレーション発生が解消するよう、構成された PDPも ある(従来例としての特許文献 2参照)。なお、この場合、 Ag電極部位と Au電極部位 との間の接続箇所は、 PDPの誘電体層の下に置かれている。 [0008] In addition, the Ag-based electrode is divided into an Ag electrode part (wiring part) and a gold (Au) electrode part (terminal part) excellent in migration resistance, and the Ag electrode part is formed on the front and rear substrates of the PDP. Some PDPs are configured to eliminate the occurrence of Ag migration by limiting the part exposed to the outside (outside air) of the sealing material to the Au electrode part by positioning it inside the sealing material for bonding. (See Patent Document 2 as a conventional example). In this case, the connection portion between the Ag electrode portion and the Au electrode portion is placed under the PDP dielectric layer.
特許文献 1:特開平 216502号公報(図 3)  Patent Document 1: Japanese Patent Laid-Open No. 216502 (FIG. 3)
特許文献 2:特開 2001— 357788号公報  Patent Document 2: Japanese Patent Laid-Open No. 2001-357788
非特許文献 1:大島利行、「プリント回路板の絶縁劣化要因としてのイオンマイグレー シヨン」、回路実装学会、 vol.10 no.2、 1995  Non-Patent Document 1: Toshiyuki Oshima, “Ion migration as a cause of insulation degradation of printed circuit boards”, Circuit Packaging Society, vol.10 no.2, 1995
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] し力しながら、従来例に記載の PDP電極の端子部の Agマイグレーション防止技術 には、以下のような問題がある。 [0009] However, the technology for preventing Ag migration of the terminal portion of the PDP electrode described in the conventional example has the following problems.
[0010] まず、 Ag系電極の端子接合部へのシリコン榭脂塗布に基づく Agマイグレーション 防止技術 (特許文献 1に記載の Agマイグレーション防止技術に類する技術)の問題 点を説明する。 [0010] First, problems of Ag migration prevention technology (technology similar to the Ag migration prevention technology described in Patent Document 1) based on application of silicon resin to the terminal joint portion of the Ag-based electrode will be described.
[0011] 図 7は、従来の PDPのシリコン榭脂で覆われた Ag系電極の端子部の周辺構造を 示した断面図である。  FIG. 7 is a cross-sectional view showing a peripheral structure of a terminal portion of an Ag-based electrode covered with a conventional PDP silicon resin.
[0012] 図 8は、図 7の A— A線に沿った部分の断面図であり、図 9は、同図の B— B線に沿 つた部分の断面図である。  FIG. 8 is a cross-sectional view of a portion along the line AA in FIG. 7, and FIG. 9 is a cross-sectional view of a portion along the line BB in FIG.
[0013] 但し、本明細書の図 7は、特許文献 1記載の Ag系電極の端子接合部へのシリコン 榭脂塗布に基づく Agマイグレーション防止技術について吟味する上で支障とならな い範囲内で、その説明の都合上、特許文献 1記載の図 3に示された構成を改変して いる。 However, FIG. 7 of the present specification is within a range that does not hinder the examination of the Ag migration prevention technology based on the application of silicon resin to the terminal joint portion of the Ag-based electrode described in Patent Document 1. For the convenience of explanation, the configuration shown in FIG. 3 described in Patent Document 1 is modified.
[0014] 例えば、特許文献 1の図 3では、背面ガラス基板の Ag系電極の端子部の一部を露 出させた形態を例示しているが、本明細書の図 7では、 Ag系電極の端子部全域をシ リコン榭脂により覆った形態を想定している。 For example, FIG. 3 of Patent Document 1 illustrates a form in which a part of the terminal portion of the Ag-based electrode of the rear glass substrate is exposed, but FIG. 7 of this specification shows an Ag-based electrode. The entire terminal area of The form covered with reconn resin is assumed.
[0015] また、特許文献 1では、 Ag系電極を、 PDPのデータ電極とも PDPのスキャン電極 およびサスティン電極とも限定していないが、後記のとおり、 PDPのデータ電極は、 スキャン電極およびサスティン電極に比べて Agマイグレートし易 、環境にあると、推 認されることから、ここではデータ電極を例に説明する。 [0015] In Patent Document 1, the Ag-based electrode is not limited to the PDP data electrode, the PDP scan electrode, and the sustain electrode, but as described later, the PDP data electrode is connected to the scan electrode and the sustain electrode. Since it is estimated that Ag migration is easier and in the environment, the data electrode will be described as an example here.
[0016] 図 7に示した従来の PDP200は、前面板 210および背面板 220を備える。 A conventional PDP 200 shown in FIG. 7 includes a front plate 210 and a back plate 220.
[0017] 前面板 210および背面板 220は、互いに主面(以下、「内面」という)が対向するよう に重ね合わせられ、前面板 210および背面板 220の周縁部に設けられた環状の封 止材 230 (ガラスフリットを含んだペースト)により接合されている。前面板 210と背面 板 220との間の距離は、 PDP200の内部の隔壁(不図示)により一定に保たれている [0017] The front plate 210 and the back plate 220 are overlapped so that their main surfaces (hereinafter referred to as "inner surfaces") face each other, and are annular sealing provided at the peripheral portions of the front plate 210 and the back plate 220. Bonded with material 230 (paste containing glass frit). The distance between front panel 210 and rear panel 220 is kept constant by a partition (not shown) inside PDP 200.
[0018] また、背面板 220は、封止材 230から前面板 210よりも更に外側に延び、端子領域 としての機能を果たす延在部 220aを有する。そして、背面板 220の Ag系のデータ 電極 222は、 PDP200の内部(封止材 230より内側の領域;不図示)から封止材 230 と交差して、背面板 220の延在部 220aを経て背面板 220の一方の端面近傍にまで 延びている。 [0018] In addition, the back plate 220 has an extending portion 220a that extends further outward from the front plate 210 from the sealing material 230 and functions as a terminal region. The Ag-based data electrode 222 of the back plate 220 crosses the sealing material 230 from the inside of the PDP 200 (an area inside the sealing material 230; not shown), and passes through the extending portion 220a of the back plate 220. It extends to the vicinity of one end face of the back plate 220.
[0019] この端面付近において、データ電極 222は、異方導電性フィルム 241 (以下、「AC F241」と略す)を介して FPC240の配線の端子 243に、接合されて!、る。  Near this end face, the data electrode 222 is joined to the terminal 243 of the wiring of the FPC 240 via an anisotropic conductive film 241 (hereinafter abbreviated as “AC F241”).
[0020] 更に、背面板 220の延在部 220aのデータ電極 222および FPC240の配線の端子 243を覆うように、シリコン榭脂 244が設けられて 、る。  Furthermore, a silicon resin 244 is provided so as to cover the data electrode 222 of the extension 220 a of the back plate 220 and the terminal 243 of the wiring of the FPC 240.
[0021] ここで、 Agマイグレーション防止用の封止材として採用されたシリコン榭脂 244の材 料特性は、銀金属粒子をガラス成分に分散させたデータ電極 222 (被着体物)や、ガ ラスを主成分として構成される背面板 220 (被着体物)の材料特性と大いに相違する ことにより、シリコン榭脂 244と被着体物との間における、初期の両者間の密着性が 劣ることが懸念される。  [0021] Here, the material properties of silicon resin 244 employed as a sealing material for preventing Ag migration are the data electrode 222 (adhered object) in which silver metal particles are dispersed in a glass component, and the gas properties. Due to the material characteristics of the back plate 220 (adhered article) composed mainly of lath, the initial adhesion between the silicone resin 244 and the adherend is inferior. There is concern.
[0022] そして、例えばこれらの部材が昇温すれば、シリコン榭脂 244と被着体物との間の 熱膨張係数の相違に起因して、図 8に示す如ぐシリコン榭脂 244の被着体物力もの 剥離に基づく微小な空隙 250の発生が予測される。 [0023] このような空隙 250を内包する PDP200は、使用環境 (例えば高湿環境)に依拠し て空隙 250中に水分存在をきたす場合がある。そうなれば、隣接するデータ電極 22 2間に電圧を印加(電界形成)することにより、 Agマイグレーションの発生条件が揃う 可能性がある。 [0022] Then, for example, when these members are heated, due to the difference in thermal expansion coefficient between the silicon resin 244 and the adherend, the silicon resin 244 as shown in FIG. It is predicted that minute voids 250 will be generated due to peeling. [0023] The PDP 200 including the void 250 may cause moisture to exist in the void 250 depending on the use environment (for example, a high humidity environment). If this happens, applying the voltage between the adjacent data electrodes 222 (electric field formation) may cause the conditions for the occurrence of Ag migration to be met.
[0024] なおここで、封止材 230は、ガラスを主成分とした材料であることから、銀金属粒子 をガラス成分に分散させたデータ電極 222との材料特性のマッチングが良好になる。 その結果、図 9に示す如ぐ封止材 230とデータ電極 222との間の密着性は適切に 確保される。同様に、誘電体層(不図示)および背面板 220は何れも、ガラスを主成 分として構成されていることから、封止材 230と背面板 220との間の密着性は、図 9に 示す如ぐ適切に確保される。また、仮に、封止材 230およびデータ電極 222間に誘 電体層が介在する場合であっても、封止材 230と誘電体層との間および誘電体層と データ電極 222との間並びに誘電体層と背面板 220との間の密着性も適切に確保さ れる。  Here, since the sealing material 230 is a material containing glass as a main component, the matching of material characteristics with the data electrode 222 in which silver metal particles are dispersed in a glass component is improved. As a result, the adhesion between the sealing material 230 and the data electrode 222 as shown in FIG. 9 is appropriately ensured. Similarly, since the dielectric layer (not shown) and the back plate 220 are both composed mainly of glass, the adhesion between the sealing material 230 and the back plate 220 is shown in FIG. It is secured appropriately as shown. Further, even if an dielectric layer is interposed between the sealing material 230 and the data electrode 222, and between the sealing material 230 and the dielectric layer, between the dielectric layer and the data electrode 222, and Adhesion between the dielectric layer and the back plate 220 is also ensured appropriately.
[0025] 一方、 Ag系電極を、 Ag電極部位と耐マイグレーション性に優れた Au電極部位と に分けた、 Agマイグレーション防止技術 (特許文献 2に記載の Agマイグレーション防 止技術)には、 Ag電極部位と Au電極部位との間の接続箇所を誘電体層の下に置く ことに起因して、以下の不都合がある。  [0025] On the other hand, the Ag migration prevention technology (Ag migration prevention technology described in Patent Document 2) in which the Ag-based electrode is divided into an Ag electrode portion and an Au electrode portion having excellent migration resistance includes an Ag electrode. There are the following inconveniences caused by placing the connection part between the part and the Au electrode part under the dielectric layer.
[0026] 特許文献 2記載の PDP電極(特許文献 2でも、 Ag系電極をデータ電極ともスキャン 電極およびサスティン電極とも限定して ヽな 、)の厚みは、通常、 5 μ m程度(例えば 、スクリーン印刷法による膜形成の場合)であり、これにより、 PDP電極の低抵抗化が 図られている。  [0026] The thickness of the PDP electrode described in Patent Document 2 (In Patent Document 2, Ag-based electrodes should be limited to both data electrodes, scan electrodes, and sustain electrodes) is usually about 5 μm (for example, a screen). In this case, the resistance of the PDP electrode is reduced.
[0027] ここで、特許文献 2に記載の技術に倣 ヽ、 Ag電極部位と Au電極部位 (端子電極) との間を適切に導通するには、両者を重ねる必要があり、その結果、 Ag電極部位と Au電極部位との重畳部分は、現実的には、 5 mの段差をなした 10 mの厚みに なる。  [0027] Here, following the technique described in Patent Document 2, it is necessary to overlap the Ag electrode part and the Au electrode part (terminal electrode) in order to properly conduct the connection. The overlap between the electrode part and the Au electrode part is actually 10 m thick with a 5 m step.
[0028] そうであるにもかかわらず、このような重畳部分を、厚み略数十/ z m (例えば 10 m 程度)の薄い誘電体層で被覆すれば、重畳部分の段差における誘電体層の力バレ ッジ不良に起因して、当該重畳部分の段差が、薄い誘電体層のクラック等を引き起こ し、このような段差の誘電体層外部への露出を招く可能性がある。 [0028] Despite this, if such a superimposed portion is covered with a thin dielectric layer having a thickness of about several tens / zm (for example, about 10 m), the force of the dielectric layer at the step of the superimposed portion Due to poor leverage, the step in the overlapping area causes cracks in the thin dielectric layer. However, there is a possibility that such a step is exposed to the outside of the dielectric layer.
[0029] このような不都合に対し、誘電体層の厚みを増やすといった方策が考えられるが、 そうするには、誘電体層の厚みは、 PDPの電流制限機能を左右する重要な設計ス ペックであることから、 PDPの放電素子部の再設計が必要になる。よって、これは有 益な解決策になり得ない。  [0029] To deal with such inconveniences, measures such as increasing the thickness of the dielectric layer can be considered. To do so, the thickness of the dielectric layer is an important design spec that affects the current limiting function of the PDP. For this reason, it is necessary to redesign the PDP discharge element. Therefore, this cannot be a useful solution.
[0030] なお、特許文献 2の如ぐ端子電極全体を Au金属で構成すること自体、 Au金属の コストを勘案すれば現実的でな 、。  [0030] It should be noted that the entire terminal electrode as in Patent Document 2 itself is made of Au metal, which is not practical considering the cost of Au metal.
[0031] ところで、 PDPの将来動向によれば、 PDPの発光効率を高める目的で、データ電 極に印加する電圧 (データ電圧)は、今後、キセノン (Xe)ガス分圧比を上げる反射的 影響として、高電圧化すると予測される。例えば、 Xeガス分圧比が既存の 5%から 10 %以上に移行すれば、データ電圧を高め(例えば、データ電圧を 67V程度から 75V 程度に移行)に設定しなければ、 PDPを上手く発光できない。  [0031] By the way, according to the future trend of PDP, the voltage applied to the data electrode (data voltage) for the purpose of increasing the luminous efficiency of PDP is a reflective effect that will increase the xenon (Xe) gas partial pressure ratio in the future. It is predicted that the voltage will increase. For example, if the Xe gas partial pressure ratio shifts from the existing 5% to more than 10%, the PDP cannot emit light well unless the data voltage is set high (for example, the data voltage is shifted from about 67V to about 75V).
[0032] また、 PDPの更なる高精細化ゃ大画面化を目指す場合、 PDPの電圧マージンを 適切に確保する観点から、このようなデータ電圧は、同様に高電圧化する可能性が ある。例えば、維持期間において放電させる放電セルを選択するため、この維持期 間よりも前の書込み期間において、データ電極に高めの電圧を印加できれば、その 分、スキャン電圧に印加する電圧のマージンを確保でき好適である。  [0032] Further, when aiming to further increase the definition of the PDP and to increase the screen size, such a data voltage may be similarly increased from the viewpoint of appropriately securing the voltage margin of the PDP. For example, in order to select a discharge cell to be discharged in the sustain period, if a higher voltage can be applied to the data electrode in the address period prior to the sustain period, a margin for the voltage applied to the scan voltage can be secured. Is preferred.
[0033] 更に、データ電極ピッチ(セルピッチ)は、 PDPの高精細化を図る観点から狭ピッチ ィ匕(例えば、データ電極ピッチが既存のハイビジョン仕様における 240 mから、 150 μ m以下への移行)すると推定される。  [0033] In addition, the data electrode pitch (cell pitch) is narrow from the viewpoint of achieving high definition of the PDP (for example, the data electrode pitch is shifted from 240 m in the existing high-vision specification to 150 μm or less). It is estimated that.
[0034] 要するに、隣接するデータ電極間の電界強度は、データ電圧の高電圧化およびデ ータ電極間の狭ピッチ化の両面の相乗作用から大幅に増加する可能性があり、デー タ電極の Agマイグレーション防止については、より慎重に対処する必要がある。  [0034] In short, the electric field strength between adjacent data electrodes may greatly increase due to the synergistic effect of both the high data voltage and the narrow pitch between the data electrodes. Ag migration prevention needs to be dealt with more carefully.
[0035] なお、スキャン電極およびサスティン電極につ!、ては、電極間ピッチが広 、こと、お よび、隣接する電極間に長期に亘り高い電位差が生じ難いことから、データ電極に 比べて、 Agマイグレーション問題力 よりクローズアップされる可能性は低い。  [0035] Note that the scan electrode and the sustain electrode have a wide inter-electrode pitch, and it is difficult for a high potential difference to occur between adjacent electrodes over a long period of time. The possibility of close-up is less than the problem of Ag migration.
[0036] 以上のような PDPにおけるデータ電極特有の技術トレンドを見越して、従来例記載 の Agマイグレーション防止技術を総括すれば、特許文献 1に記載のシリコン榭脂の 保護に基づく Ag系電極の Agマイグレーション防止技術は、少なくともデータ電極に ついては、シリコン榭脂と被着体物との間の不充分な密着性ゆえ、早晩、行き詰る可 能性がある。 [0036] In anticipation of the technical trends peculiar to the data electrode in the PDP as described above, the Ag migration prevention technologies described in the conventional examples can be summarized as follows. Ag migration prevention technology for Ag-based electrodes based on protection, at least for the data electrode, is likely to get stuck sooner or later due to insufficient adhesion between the silicone resin and the adherend.
[0037] また、特許文献 2に記載の Ag電極部位と Au電極部位の接合技術は、薄 ヽ誘電体 層におけるクラック等の発生といった不都合を内包しており、適切な端子接合形成と いう観点力 見て中途半端な技術である。  [0037] Further, the bonding technique between the Ag electrode portion and the Au electrode portion described in Patent Document 2 incorporates inconveniences such as generation of cracks in the thin dielectric layer, and has a viewpoint of appropriate terminal bonding formation. This is a half-finished technology.
[0038] 本発明は、上記事情に鑑みてなされたものであり、データ電極の端子部のマイダレ ーシヨンを適切に防止可能なプラズマディスプレイパネルを提供することを目的として いる。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a plasma display panel that can appropriately prevent misregistration of a terminal portion of a data electrode.
課題を解決するための手段  Means for solving the problem
[0039] 上記課題を解決するため、本発明によるプラズマディスプレイパネルは、複数の表 示電極対を有する第 1基板と、前記第 1基板と環状の封止材により貼り合わされ、複 数のデータ電極を有する第 2基板と、前記表示電極対と前記データ電極とが間隙を 有して交差するように延び、前記表示電極対と前記データ電極との夫々の間隙を夫 々の放電空間とする複数の放電セルを有してなる、前記封止材に囲まれたパネル領 域と、前記封止材に囲まれた領域外において外部端子との間の接合をなし、前記デ ータ電極に導通する端子電極と、を備え、前記データ電極を覆う誘電体層が前記パ ネル領域力 少なくとも前記封止材にまで至るとともに、前記データ電極と前記端子 電極との間の導通力 生じる段差が前記封止材に覆われるパネルである。  [0039] In order to solve the above problems, a plasma display panel according to the present invention includes a first substrate having a plurality of display electrode pairs, and a plurality of data electrodes bonded to the first substrate by an annular sealing material. And the display electrode pair and the data electrode extend so as to intersect each other with a gap, and a plurality of gaps between the display electrode pair and the data electrode are used as respective discharge spaces. A panel region surrounded by the sealing material and an external terminal outside the region surrounded by the sealing material, and is electrically connected to the data electrode. And a dielectric layer covering the data electrode reaches at least the panel region force and the sealing material, and a step generated between the data electrode and the terminal electrode is caused by the step. It is a panel covered with a stopper
[0040] このように、データ電極と端子電極との間の導通による段差を、充分に厚膜 (例えば 100 μ m以上)の封止材で覆ったため、段差において封止材のカバレッジ不良にな り難ぐ段差の封止材外部への露出を適切に回避できる。  [0040] As described above, since the step due to conduction between the data electrode and the terminal electrode is covered with a sufficiently thick sealing material (for example, 100 μm or more), the sealing material does not have poor coverage at the step. Therefore, it is possible to appropriately avoid the exposure of the difficult step to the outside of the sealing material.
[0041] また、ガラスフリットを含んだデータ電極の全域力 例えば、低融点ガラス力 なる誘 電体層や封止材に覆われることから、両者間の密着性を良好な状態に保つことがで き、これにより、データ電極のマイグレーションは適切に防止できる。  [0041] Further, since the entire area force of the data electrode including the glass frit is covered with an insulator layer or a sealing material having a low melting point glass force, the adhesion between the two can be kept in a good state. Thus, migration of the data electrode can be prevented appropriately.
[0042] なお、前記誘電体層を、前記封止材と前記段差との間に介在させても良い。  [0042] The dielectric layer may be interposed between the sealing material and the step.
[0043] これにより、データ電極の全域が、誘電体層に覆われ、かつ、段差が封止材と誘電 体層の両方に覆われる。 [0044] ここで、前記端子電極の第 1構成例としては、この端子電極は、前記データ電極に 重畳するとともに、前記データ電極と別体に前記領域外に延びる電極である。 [0043] Thereby, the entire area of the data electrode is covered with the dielectric layer, and the step is covered with both the sealing material and the dielectric layer. Here, as a first configuration example of the terminal electrode, the terminal electrode is an electrode that overlaps with the data electrode and extends outside the region separately from the data electrode.
[0045] そして、この場合、前記データ電極は銀により構成され、前記端子電極は、銅、ァ ルミ-ゥム、ニッケルの中カゝら選ばれる金属、または銀合金により構成されても良い。  [0045] In this case, the data electrode may be made of silver, and the terminal electrode may be made of a metal selected from copper, aluminum, nickel, or a silver alloy.
[0046] データ電極を銀により構成すれば、例えば、 Ag金属粒子を、ガラスフリットを含む抵 抗ペースト状の流動体 (以下、「銀ペースト」という)にして、適宜の塗布法 (例えばスク リーン印刷法)により適宜の厚みに形成でき、抵抗値の低減が図れる。そして、このよ うな銀ペーストを用いたデータ電極は、銀の抵抗値が低いという利点を有し、スクリー ン印刷法により高い生産性を確保して電極を形成でき好適である。  If the data electrode is made of silver, for example, Ag metal particles are made into a resistance paste-like fluid containing glass frit (hereinafter referred to as “silver paste”), and an appropriate coating method (for example, a screen). The printing method can be formed to an appropriate thickness, and the resistance value can be reduced. A data electrode using such a silver paste has an advantage that the resistance value of silver is low, and is suitable for forming an electrode while ensuring high productivity by a screen printing method.
[0047] また、銅、アルミニウム、ニッケルの中力も選ばれた金属や、銀合金は、銀に比べて マイグレーション耐性に優れた信頼性の高い材料であり、これにより、端子電極のマ ィグレーシヨンを適切に防止できる。  [0047] In addition, metals with a medium strength of copper, aluminum, and nickel, and silver alloys are highly reliable materials with superior migration resistance compared to silver, which makes terminal electrode migration appropriate. Can be prevented.
[0048] 特に、 Ag—Pd (パラジウム)合金の如く銀を合金化することにより、マイグレーション の発生を適切に抑えることが知られている。そして、このような Ag— Pd合金を使用し た端子電極は、銀ペーストを用いたスクリーン印刷によりデータ電極を形成するとい つたこれまで培ってきた既存の技術を容易に引き継げ、スクリーン印刷法により適宜 の厚みに効率的に形成可能であると推定され、将来の耐マイグレーション電極材料 として有望視されている。  [0048] In particular, it is known to appropriately suppress the occurrence of migration by alloying silver such as an Ag-Pd (palladium) alloy. The terminal electrode using such an Ag-Pd alloy easily inherits the existing technology that has been cultivated so far by forming a data electrode by screen printing using a silver paste, and appropriately uses a screen printing method. It is estimated that it can be efficiently formed in the thickness of the metal, and is promising as a future migration-resistant electrode material.
[0049] また、前記端子電極の第 2構成例としては、この端子電極が、前記データ電極と一 体に前記領域外に延びる芯材部と、前記芯材部に重畳するよう、前記芯材部の表面 を覆う被覆電極と、を備えても良い。 [0049] In addition, as a second configuration example of the terminal electrode, the core electrode is formed so that the terminal electrode overlaps with the data electrode and the core material portion extending outside the region. A covered electrode that covers the surface of the portion.
[0050] そして、この場合、前記データ電極および前記芯材部は銀により構成され、前記被 覆電極は、銅、アルミニウム、ニッケルの中力 選ばれる金属、または銀合金により構 成されても良い。 [0050] In this case, the data electrode and the core member may be made of silver, and the covered electrode may be made of a metal selected from among copper, aluminum, nickel, or a silver alloy. .
[0051] データ電極および芯材部を銀により構成すれば、例えば、 Ag金属粒子を、ガラスフ リットを含む抵抗ペースト状の流動体にして、適宜の塗布法 (例えばスクリーン印刷法 )により適宜の厚みに形成でき、抵抗値の低減が図れる。そして、このような銀ペース トを用いたデータ電極および芯材部は、銀の抵抗値が低いという利点を有し、スクリ ーン印刷法により高い生産性を確保して電極を形成でき好適である。 [0051] If the data electrode and the core member are made of silver, for example, Ag metal particles are made into a resistance paste-like fluid containing glass frit, and an appropriate thickness is obtained by an appropriate application method (for example, a screen printing method). The resistance value can be reduced. The data electrode and the core member using such a silver paste have the advantage that the resistance value of silver is low, and the script The electrode can be formed while ensuring high productivity by the tone printing method.
[0052] また、銅、アルミニウム、ニッケルの中力も選ばれた金属や、銀合金は、銀に比べて マイグレーション耐性に優れた信頼性の高い材料であり、これにより、被覆電極のマ ィグレーシヨンを適切に防止できる。  [0052] Metals that have been selected to have a medium strength of copper, aluminum, and nickel, and silver alloys are highly reliable materials that have superior migration resistance compared to silver. Can be prevented.
[0053] 特に、 Ag—Pd (パラジウム)合金の如く銀を合金化することにより、マイグレーション の発生を適切に抑えることが知られている。そして、このような Ag— Pd合金を使用し た被覆電極は、銀ペーストを用いたスクリーン印刷によりデータ電極を形成するとい つたこれまで培ってきた既存の技術を容易に引き継げ、スクリーン印刷法により適宜 の厚みに効率的に形成可能であると推定され、将来の耐マイグレーション電極材料 として有望視されている。  [0053] In particular, it is known that the occurrence of migration is appropriately suppressed by alloying silver such as an Ag-Pd (palladium) alloy. The coated electrode using such an Ag-Pd alloy easily inherits the existing technology that has been cultivated so far and forms the data electrode by screen printing using silver paste. It is estimated that it can be efficiently formed in the thickness of the metal, and is promising as a future migration-resistant electrode material.
なお、以上に述べた構成の如ぐデータ電極等と導通する別個の端子電極 (第 1構 成例の場合)または被覆電極 (第 2構成例の場合)を設け、その材料をマイグレーショ ン防止およびコストアップ抑制の観点力も適切に選別することは、キセノン分圧を高 めて、データ電圧を増して PDPの輝度向上を図る際、または、 PDPの電圧マージン を適切に確保する際、或いは、データ電極の狭ピッチ化により PDPの高精細化を図 る際には、とりわけ有益である。  In addition, a separate terminal electrode (in the case of the first configuration example) or a covered electrode (in the case of the second configuration example) that conducts with the data electrode or the like having the configuration described above is provided, and the material is migrated. Appropriate selection of the prevention and cost increase viewpoint power is to increase the xenon partial pressure and increase the data voltage to improve the brightness of the PDP, or to ensure the PDP voltage margin appropriately, or This is particularly useful when attempting to increase the definition of PDPs by narrowing the pitch of the data electrodes.
[0054] 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好 適な実施態様の詳細な説明から明らかにされる。 [0054] The above object, other objects, features, and advantages of the present invention will become apparent from the following detailed description of the preferred embodiments with reference to the accompanying drawings.
発明の効果  The invention's effect
[0055] 本発明は、以上に説明した構成を有し、プラズマディスプレイパネルにぉ 、て、デ ータ電極の端子部のマイグレーションを適切に防止できるという効果を奏する。  The present invention has the above-described configuration, and has an effect that the migration of the terminal portion of the data electrode can be appropriately prevented in the plasma display panel.
図面の簡単な説明  Brief Description of Drawings
[0056] [図 1]図 1は実施の形態 1の PDPおよびその周辺部材のー構成例を示した斜視図で ある。  FIG. 1 is a perspective view showing a configuration example of the PDP and its peripheral members according to the first embodiment.
[図 2]図 2は図 1に示した PDPのパネル領域内の数個の画素に対応する部分を切り 出して見た斜視図である。  [FIG. 2] FIG. 2 is a perspective view of a portion corresponding to several pixels in the panel area of the PDP shown in FIG.
[図 3]図 3は図 1に示した封止材周辺の、データ電極および端子電極に沿った断面を 示した図である。 [図 4]図 4は実施の形態 1の変形例の PDPにおける封止材周辺の、データ電極およ び端子電極に沿った断面を示した図である。 FIG. 3 is a view showing a cross section along the data electrode and the terminal electrode around the sealing material shown in FIG. 1. FIG. 4 is a view showing a cross section along the data electrode and the terminal electrode around the sealing material in the PDP of the modification of the first embodiment.
[図 5]図 5は実施の形態 2による PDPの周縁部の封止材周辺部の、データ電極およ び端子電極に沿った断面を示した図である。  FIG. 5 is a view showing a cross section along the data electrode and the terminal electrode in the peripheral portion of the sealing material at the peripheral portion of the PDP according to the second embodiment.
[図 6]図 6は実施の形態 2の変形例の PDPにおける封止材周辺の、データ電極およ び端子電極に沿った断面を示した図である。  FIG. 6 is a view showing a cross section along the data electrode and the terminal electrode around the sealing material in the PDP of the modification of the second embodiment.
[図 7]図 7は従来の PDPにおけるシリコン榭脂で覆われた Ag系電極の端子部の周辺 構造を示した断面図である。  [FIG. 7] FIG. 7 is a cross-sectional view showing a peripheral structure of a terminal portion of an Ag-based electrode covered with silicon resin in a conventional PDP.
[図 8]図 8は図 7の A— A線に沿った部分の断面図である。  [FIG. 8] FIG. 8 is a cross-sectional view of a portion along line AA in FIG.
[図 9]図 9は同 7の B—B線に沿った部分の断面図である。 [FIG. 9] FIG. 9 is a cross-sectional view of the portion along line BB in FIG.
符号の説明 Explanation of symbols
10 前面板  10 Front plate
11 前面ガラス基板  11 Front glass substrate
12 表示電極対  12 Display electrode pair
12a スキャン電極  12a scan electrode
12b サスティン電極  12b sustain electrode
13、 23 誘電体層  13, 23 Dielectric layer
14 保護膜  14 Protective film
20 背面板  20 Back plate
20a 延在部  20a Extension
21 背面ガラス基板  21 Rear glass substrate
22 データ電極  22 Data electrode
22a, 160 端子電極  22a, 160 terminal electrode
24 隔壁  24 Bulkhead
25 蛍光体層  25 Phosphor layer
25R 赤色蛍光体層  25R red phosphor layer
25G 緑色蛍光体層  25G green phosphor layer
25B 青色蛍光体層 30、 130 封止材 25B Blue phosphor layer 30, 130 Encapsulant
40 FPC  40 FPC
41a 背面板側 ACF  41a Back plate side ACF
41b 回路基板側 ACF  41b Circuit board side ACF
50 回路基板  50 circuit board
51 ドライバ IC  51 Driver IC
100 PDP  100 PDP
160a 芯材部  160a Core part
160b 被覆電極  160b coated electrode
201 パネル領域  201 Panel area
202 端子領域  202 terminal area
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0058] 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
(実施の形態 1)  (Embodiment 1)
図 1は、本実施の形態の PDPおよびその周辺部材のー構成例を示した斜視図であ る。  FIG. 1 is a perspective view showing a configuration example of the PDP and its peripheral members according to the present embodiment.
[0059] 本実施の形態の PDP100は、図 1に示す如ぐ互いに内面を対向するよう配設され た前面板 10および背面板 20を有してなり、この前面板 10の周縁部と背面板 20の周 縁部と力 厚み(高さ) 100 m以上の、矩形に延びる環状の封止材 30により接合さ れている。  [0059] The PDP 100 of the present embodiment includes a front plate 10 and a back plate 20 disposed so as to face each other, as shown in FIG. Twenty peripheral edges and force Thickness (height) are joined by a rectangular sealing material 30 extending in a rectangular shape of 100 m or more.
[0060] 図 1では、封止材 30から外側に延びる背面板 20の延在部 20aが図示され、この延 在部 20aには、多数のデータ電極 22 (図 2参照)の各々に導通して、封止材 30から 引き出された多数の端子電極 22aが配設されている。なお、この延在部 20aの一部 乃至全部が、後記の端子領域 202として機能する。  [0060] FIG. 1 shows an extended portion 20a of the back plate 20 extending outward from the sealing material 30, and this extended portion 20a is electrically connected to each of a number of data electrodes 22 (see FIG. 2). Thus, a large number of terminal electrodes 22a drawn from the sealing material 30 are provided. A part or all of the extended portion 20a functions as a terminal region 202 described later.
[0061] 但し、実際の PDPでは、封止材 30から外側に延びる基板の延在部は、図 1の背面 板 20の延在部 20aに限らず、前面板 10にも、表示電極対 12 (図 2参照)用の延在部 がある。ここでは、図示簡素化の観点から、前面板 10の延在部の図示は省いている [0062] また、図 1には、シングルスキャン方式の PDP100を例示しているが、もしダブルス キャン方式の PDPであれば、図 1に示した延在部と同等のもの力 背面板 20の両側 に存在する。 However, in an actual PDP, the extended portion of the substrate extending outward from the sealing material 30 is not limited to the extended portion 20a of the back plate 20 of FIG. There is an extension for (see Figure 2). Here, from the viewpoint of simplifying the illustration, the extension portion of the front plate 10 is not shown. [0062] FIG. 1 illustrates a single-scan PDP 100. If a double-scan PDP 100 is used, the same force as the extension shown in FIG. Exists.
[0063] 以上に述べた如ぐ PDP100には、複数の放電セルを有する後記のパネル領域 2 01 (図 1および図 2参照)と、端子電極 22aと FPCの外部端子との間の接合をなす後 記の端子領域 202 (図 3参照)と、がある。  [0063] In the PDP 100 as described above, a panel region 201 having a plurality of discharge cells (see FIG. 1 and FIG. 2) and a terminal electrode 22a and an external terminal of the FPC are joined. There is a terminal area 202 (see Fig. 3).
[0064] 以下、 PDP100のパネル領域 201の詳細な構成および端子領域 202の詳細な構 成を順に述べる。  [0064] Hereinafter, a detailed configuration of panel region 201 of PDP 100 and a detailed configuration of terminal region 202 will be described in order.
[0065] まず、 PDP100のパネル領域 201の一構成例について、図 1および図 2を参照して 説明する。  First, a configuration example of the panel region 201 of the PDP 100 will be described with reference to FIGS. 1 and 2.
[0066] 図 2は、図 1に示した PDPのパネル領域内の数個の画素に対応する部分を切り出 して見た斜視図である。  [0066] FIG. 2 is a perspective view in which a portion corresponding to several pixels in the panel region of the PDP shown in FIG. 1 is cut out.
[0067] 前面板 10は、図 2に示す如ぐ矩形状の前面ガラス基板 11と、表示電極対 12と、 透明な誘電体層 13と、透明な保護層 14とを備える。 The front plate 10 includes a rectangular front glass substrate 11 as shown in FIG. 2, a display electrode pair 12, a transparent dielectric layer 13, and a transparent protective layer 14.
[0068] この前面ガラス基板 11は、前面板 10のベースとなる部材で、この前面ガラス基板 1The front glass substrate 11 is a member that serves as a base of the front plate 10, and the front glass substrate 1
1の内面上に、互いに並行に延びる複数の表示電極対 12が形成されている。 A plurality of display electrode pairs 12 extending in parallel with each other are formed on the inner surface of 1.
[0069] この表示電極対 12の一方がスキャン電極 12aであり、もう一方がサスティン電極 12 bである。 [0069] One of the display electrode pair 12 is a scan electrode 12a, and the other is a sustain electrode 12b.
[0070] スキャン電極 12a (パネル電極)は、帯状の透明電極(例えばインジウムスズ酸化物 電極; ITO電極)の長手方向に沿った縁部に幅細のバス電極(図 2では点線により図 示)を重ねた形態に構成され、前面ガラス基板 11の一方の側面にまで延びて、当該 側面付近で FPC (不図示)を介してスキャン電極 12a用の回路基板 (不図示)に接合 される。  [0070] The scan electrode 12a (panel electrode) is a narrow bus electrode (indicated by a dotted line in FIG. 2) at the edge along the longitudinal direction of a strip-shaped transparent electrode (eg, indium tin oxide electrode; ITO electrode). Are formed to overlap each other, extend to one side surface of the front glass substrate 11, and are joined to a circuit substrate (not shown) for the scan electrode 12a via an FPC (not shown) in the vicinity of the side surface.
[0071] サスティン電極 12b (パネル電極)も同様に、帯状の透明電極の長手方向に沿った 縁部に幅細のバス電極(図 2では点線により図示)を重ねた形態に構成され、前面ガ ラス基板 11の他方の側面にまで延びて、当該側面付近で FPC (不図示)を介してサ スティン電極 12b用の回路基板 (不図示)に接合される。  [0071] Similarly, the sustain electrode 12b (panel electrode) is configured in such a manner that a narrow bus electrode (shown by a dotted line in FIG. 2) is superimposed on an edge along the longitudinal direction of the strip-shaped transparent electrode, The glass substrate 11 extends to the other side surface of the glass substrate 11 and is joined to a circuit substrate (not shown) for the sustain electrode 12b via an FPC (not shown) in the vicinity of the side surface.
[0072] 上記バス電極は、高 、導電性を有する金属膜、例えば、 Ag系膜、 A1系膜または Cr /Cu/Cr3層系膜などを主成分とした材料、を用いて形成され、スキャン電極 12aおよ びサスティン電極 12bのそれぞれの全体の抵抗値を下げる役割を果たす。 [0072] The bus electrode is a highly conductive metal film such as an Ag-based film, an A1-based film, or Cr. / Cu / Cr3 layer-based material is used as a main component, and serves to lower the overall resistance value of each of the scan electrode 12a and the sustain electrode 12b.
[0073] 表示電極対 12および前面ガラス基板 11の内面は、酸ィ匕鉛 (PbO)または酸化ビス マス (Bi O )或いは酸化燐 (PO )を主成分とする低融点ガラス (厚み略数十/ z m)か[0073] The inner surfaces of the display electrode pair 12 and the front glass substrate 11 are low-melting glass (thickness of about several tens of thousands) mainly composed of lead oxide (PbO), bismuth oxide (BiO), or phosphorus oxide (PO). / zm)
2 3 4 2 3 4
らなる誘電体層 13により覆われ、これにより、 AC型 PDPに特有の電流制限機能を発 揮して、 DC型 PDPに比べて長寿命が実現される。  This is covered with a dielectric layer 13, thereby providing a current limiting function peculiar to the AC type PDP and realizing a longer life than the DC type PDP.
[0074] さらに誘電体層 13の表面上には、放電開始電圧低下を可能にするために 2次電子 放出係数 γが大きぐ放電イオン衝撃カゝら誘電体層 34を保護するように耐スパッタ性 が高ぐしカゝも透明性および絶縁耐性に優れた金属酸ィ匕物材料、例えば酸ィ匕マグネ シゥム (MgO)材料、を主成分とする、厚み略 1.0 /z mの保護層 14が設けられている [0074] Furthermore, on the surface of the dielectric layer 13, in order to reduce the discharge start voltage, the secondary electron emission coefficient γ is large, so that the sputtering layer is protected so as to protect the dielectric layer 34 from the discharge ion bombardment. A protective layer 14 with a thickness of approximately 1.0 / zm is provided, which is mainly composed of a metal oxide material that is highly transparent and has excellent transparency and insulation resistance, such as an acid magnesium (MgO) material. Has been
[0075] 背面板 20は、図 2に示す如ぐ矩形状の背面ガラス基板 21と、データ電極 22と、デ ータ電極 22および背面ガラス基板 21の内面を覆うように形成された誘電体層 23と、 誘電体層 23上に所定間隔をもって形成された隔壁 24と、隣接する隔壁 24同士の間 隙の壁面に形成された蛍光体層 25 (25R、 25G、 25B)とを備える。 [0075] The back plate 20 is a dielectric layer formed so as to cover the rectangular back glass substrate 21, the data electrode 22, the data electrode 22, and the back glass substrate 21 as shown in FIG. 23, barrier ribs 24 formed on the dielectric layer 23 at a predetermined interval, and phosphor layers 25 (25R, 25G, 25B) formed on the wall surfaces of the gaps between the adjacent barrier ribs 24.
[0076] 背面ガラス基板 21は、背面板 20のベースとなる部材で、この背面ガラス基板 21の 内面上には、上記表示電極対 12に交差 (正確には直交)し、かつ互いに並行に延び る帯状の複数のデータ電極 22が形成されて 、る。  The back glass substrate 21 is a member that serves as a base for the back plate 20. On the inner surface of the back glass substrate 21, the back electrode substrate 12 intersects the display electrode pair 12 (to be exact, orthogonal) and extends in parallel with each other. A plurality of strip-shaped data electrodes 22 are formed.
[0077] 本実施の形態におけるデータ電極 22は、 Ag金属粒子を、ガラスフリットを含む抵抗 ペースト状の流動体 (銀ペースト)にして、適宜の塗布法 (例えばスクリーン印刷法)に より適宜の膜厚 (例えば 5 m)に形成でき、抵抗値の低減が図られている。そして、 このような銀ペーストを用いたデータ電極 22は、銀の抵抗値が低 ヽと 、う利点を有し 、スクリーン印刷法により高 、生産性を確保して電極を形成でき好適である。  [0077] The data electrode 22 in the present embodiment is made of an appropriate film formed by an appropriate coating method (for example, screen printing method) using Ag metal particles as a resistance paste-like fluid (silver paste) containing glass frit. It can be formed to a thickness (for example, 5 m), and the resistance value is reduced. The data electrode 22 using such a silver paste has an advantage that the resistance value of silver is low, and it is preferable that the electrode can be formed while ensuring high productivity by a screen printing method.
[0078] なお、このようなパネル電極としてのデータ電極 22は、後程詳しく述べるとおり、端 子領域 202の端子電極 22a (図 1参照)と電気的に接続 (導通)されて!/ヽる。  It should be noted that the data electrode 22 as such a panel electrode is electrically connected (conducted) with the terminal electrode 22a (see FIG. 1) in the terminal region 202 as described in detail later.
[0079] なお、厚み略数十/ z mの誘電体層 23は、前面板 10の誘電体層 13と同様、鉛系あ るいは非鉛系の低融点ガラス力もなる。  It should be noted that the dielectric layer 23 having a thickness of about several tens / zm also has a lead-based or non-lead-based low melting point glass force, like the dielectric layer 13 of the front plate 10.
[0080] また、データ電極 22と並行に延びて、溝状の空間を形作る隔壁 24は、例えば、印 刷リブ用ペーストを用いたスクリーン印刷法やサンドブラスト法により製造される。 [0080] The partition wall 24 extending in parallel with the data electrode 22 and forming a groove-like space is, for example, a mark. Manufactured by a screen printing method or a sandblasting method using a paste for printing ribs.
[0081] 上述のサンドブラスト法では、鉛系或いは非鉛系の低融点ガラス材料のペーストを 複数回に亘つて所定の厚みに到達するようにベタ状に積層塗布させ、適宜の乾燥処 理の後、サンドブラスト法と称されて 、るブラスト材 (一種の砲粒子)の吹き付けによる 積層塗布層の掘り下げ微細加工がなされる。  [0081] In the above-described sandblasting method, a paste of a lead-based or non-lead-based low-melting glass material is applied in a solid form so as to reach a predetermined thickness over a plurality of times, and after an appropriate drying process. This is called the sand blasting method, and the laminated coating layer is drilled and finely processed by spraying a blasting material (a kind of gun particle).
[0082] また、蛍光体層 25は、例えば、赤、緑および青のうちの何れかの色に対応した蛍光 体材料を、有機バインダに分散しペーストイ匕して、これを隔壁 24の壁面を覆うようにス クリーン印刷法により塗布させ、この塗布層を乾燥および焼成するという一連の蛍光 体形成工程により形成されて!、る。  In addition, the phosphor layer 25 is prepared by dispersing a phosphor material corresponding to any one of red, green, and blue in an organic binder and pasting it, for example, to coat the wall surface of the partition wall 24. It is formed by a series of phosphor forming processes in which it is applied by a screen printing method so that it is covered, and this coating layer is dried and baked.
[0083] なお、本実施の形態では、赤色、緑色および青色蛍光体層 25R、 25G、 25Bの材 料例として各々、赤色の蛍光体材料 (Y O: Eu)、緑色の蛍光体材料 (Zn SiO: M  [0083] In the present embodiment, examples of materials of the red, green, and blue phosphor layers 25R, 25G, and 25B are a red phosphor material (YO: Eu) and a green phosphor material (Zn SiO), respectively. : M
2 3 2 4 n)および青色の蛍光体材料 (BaMgAl O : Eu)が用いられる力 特にこれに限定  2 3 2 4 n) and blue phosphor material (BaMgAl 2 O: Eu) force used Especially limited to this
10 17  10 17
されるものでは無い。  It is not what is done.
[0084] このような前面板 10および背面板 20は、上述の図 1に示す如ぐ互いに内面が対 向するように重ね合わせられる。そして、この場合、前面板 10および背面板 20は、そ れらの周縁部に設けられた封止材 30 (ガラスフリットを含んだペースト)により接合さ れた状態で、前面ガラス基板 11と背面ガラス基板 21との間の距離が、隔壁 24に規 制されて一定に保たれる。  [0084] The front plate 10 and the back plate 20 are overlapped so that the inner surfaces thereof face each other as shown in FIG. In this case, the front plate 10 and the back plate 20 are bonded to the front glass substrate 11 and the back plate in a state where the front plate 10 and the back plate 20 are bonded together by a sealing material 30 (a paste containing glass frit) provided on the peripheral edge thereof. The distance from the glass substrate 21 is regulated by the partition wall 24 and kept constant.
[0085] そして、赤色蛍光体層 25R、緑色蛍光体層 25Gおよび青色蛍光体層 25Bの夫々 と、保護層 14と、の間隙が放電空間を構成している。この放電空間には、 He、 Xe、 N e、 Arなどの希ガス成分からなる放電ガス(封入ガス)カ 7〜801^½ (200〜6001 ^ r)程度の圧力で封入されて 、る。  [0085] A gap between each of the red phosphor layer 25R, the green phosphor layer 25G, and the blue phosphor layer 25B and the protective layer 14 forms a discharge space. The discharge space is sealed at a pressure of about 7 to 801 ^ ½ (200 to 6001 ^ r) of a discharge gas (filled gas) composed of rare gas components such as He, Xe, Ne, and Ar.
[0086] また、 1個の表示電極対 12と 1本のデータ電極 22と力 放電空間を挟んで交差す る領域およびその近傍の領域が画像表示に寄与し、赤色、青色および緑色のうちの 何れかの色を表示可能な 1個の放電セルになり、 PDP100の一画素は、このような 1 個の赤色放電セル、 1個の青色放電セルおよび 1個の緑色放電セルからなる放電セ ルの集合体として構成される。  [0086] Further, an area intersecting with one display electrode pair 12 and one data electrode 22 across the power discharge space and an area in the vicinity thereof contribute to image display, and one of red, blue and green One discharge cell that can display any color is used, and one pixel of the PDP100 is a discharge cell composed of one red discharge cell, one blue discharge cell, and one green discharge cell. It is configured as a collection of
[0087] このようにして、本実施の形態では、このような矩形に延びる環状の封止材 30に囲 まれた領域内であって、かつ、前面板 10と背面板 20に挟まれた放電セルを有する 部分が、パネル領域 201を構成している。 Thus, in the present embodiment, the annular sealing material 30 extending in such a rectangle is surrounded. A portion having the discharge cells sandwiched between the front plate 10 and the back plate 20 within the region formed constitutes a panel region 201.
[0088] 次に、 PDP100の端子領域 202の一構成例について、図 1、図 2および図 3を参照 して説明する。 Next, a configuration example of the terminal region 202 of the PDP 100 will be described with reference to FIG. 1, FIG. 2, and FIG.
[0089] 図 3は、図 1に示した封止材周辺の、データ電極および端子電極に沿った断面を示 した図である。但し、図 3では、図 1の FPC40および背面板側 ACF41aの図示を省 いている。またここでの説明簡素化の観点から、図 3の前面板 10は、前面ガラス基板 11のみで構成される形態に略記され、図 3の背面板 20は、背面板 20のデータ電極 22および誘電体層 23を除き、背面ガラス基板 21のみで構成される形態に略記され ている。  FIG. 3 is a view showing a cross section along the data electrode and the terminal electrode around the sealing material shown in FIG. However, in FIG. 3, illustration of the FPC 40 and the back plate side ACF 41a of FIG. 1 is omitted. Further, from the viewpoint of simplifying the explanation here, the front plate 10 in FIG. 3 is abbreviated to be configured only by the front glass substrate 11, and the back plate 20 in FIG. Except for the body layer 23, it is abbreviated as a configuration composed only of the rear glass substrate 21.
[0090] 図 2に図示したデータ電極 22は、背面ガラス基板 21上を、その端面に向力つて延 び、図 3に示す如ぐノ ネル領域 201内力ら、厚み 100 m以上の封止材 30の幅方 向の略中央部直下にまで、至っている。そして、この略中央部の直下において、厚み 略 5 μ mのデータ電極 22の一端と、厚み略 5 μ mの端子電極 22aの一端と力 所定 幅に亘り重なり合うようにして導通されている。このため、データ電極 22と端子電極 2 2aとの間の導通部分 (重畳部分)における段差 S1は、封止材 30に覆われている。  [0090] The data electrode 22 shown in FIG. 2 extends on the rear glass substrate 21 toward the end face thereof, and has a thickness of 100 m or more due to the internal force of the non-region 201 as shown in FIG. It extends to just below the center of the 30 width direction. Then, immediately below the substantially central portion, one end of the data electrode 22 having a thickness of about 5 μm and the one end of the terminal electrode 22a having a thickness of about 5 μm are electrically connected to overlap each other over a predetermined width. For this reason, the step S1 in the conductive portion (overlapping portion) between the data electrode 22 and the terminal electrode 22a is covered with the sealing material 30.
[0091] すなわち、このような端子電極 22aは、データ電極 22に導通(重畳)するとともに、 データ電極 22と別体に形成され、パネル領域 201の外部に延び、外部端子との間 の接合をなす端子領域 202の機能を発揮する電極になる。  That is, such a terminal electrode 22a is electrically connected (superimposed) to the data electrode 22, is formed separately from the data electrode 22, extends to the outside of the panel region 201, and has a junction with the external terminal. It becomes an electrode that exhibits the function of the terminal region 202 formed.
[0092] 一方、データ電極 22を覆う誘電体層 23は、 PDP100のパネル領域 201からデータ 電極 22ととも〖こ封止材 30〖こまで至り、更に、封止材 30とデータ電極 22との間と、封 止材 30と端子電極 22aとの間に介在している。すなわち、誘電体層 23は、データ電 極 22と端子電極 22aとの間の導通部分 (重畳部分)における段差 S1を覆うように、封 止材 30と段差 S 1との間に介在して封止材 30と交差して、背面板 20の延在部 20aに まで延びている。  On the other hand, the dielectric layer 23 covering the data electrode 22 extends from the panel region 201 of the PDP 100 to the sealing material 30 with the data electrode 22, and further between the sealing material 30 and the data electrode 22. And between the sealing material 30 and the terminal electrode 22a. That is, the dielectric layer 23 is interposed and sealed between the sealing material 30 and the step S1 so as to cover the step S1 in the conductive portion (overlapping portion) between the data electrode 22 and the terminal electrode 22a. It intersects with the stopper 30 and extends to the extending portion 20 a of the back plate 20.
[0093] このようにして、本実施の形態では、封止材 30により囲まれた領域外であって、力 つ、誘電体層 23の端と端子電極 22aの他端との間に位置する帯状の部分が、端子 電極 22aおよび外部端子間の接合をなす、端子領域 202を構成して ヽる。 [0094] このような端子電極 22aの各々は、図 1に示す如ぐ背面板 20の端面付近の端子 領域 202にお 、て、背面板側 ACF41aを介して FPC40の配線群の端子 (外部端子 )の各々に接合されている。なお、この FPC40の配線群は、回路基板側 ACF41bを 介して回路基板 50のドライバ IC51に接合されて!、る。 Thus, in the present embodiment, it is outside the region surrounded by the sealing material 30 and is positioned between the end of the dielectric layer 23 and the other end of the terminal electrode 22a. The band-shaped portion constitutes a terminal region 202 that forms a junction between the terminal electrode 22a and the external terminal. [0094] Each of such terminal electrodes 22a is connected to a terminal (external terminal) of the FPC 40 wiring group via the back plate side ACF 41a in the terminal region 202 near the end surface of the back plate 20 as shown in FIG. ). The wiring group of the FPC 40 is bonded to the driver IC 51 of the circuit board 50 via the circuit board side ACF 41b.
[0095] すなわち、背面板側および回路基板側 ACF41a、 41bは、導電性粒子を接着バイ ンダ中に分散してフィルム状にしてあり、当該 ACF41a、 41bをパネル端部の被着体 物(背面板側 ACF41aであれば背面板 20と FPC40)の電極 (端子)間に挟んで熱圧 着した際、バインダが流動して端子面に導電性粒子が直接押し付けられて、被着体 物の電極間の導通が得られる。  That is, the back plate side and the circuit board side ACF 41a, 41b are formed in a film by dispersing conductive particles in an adhesive binder, and the ACF 41a, 41b is attached to the adherend (back) of the panel end. On the face plate side ACF41a, when it is sandwiched between the electrodes (terminals) of the back plate 20 and the FPC 40), the binder flows and the conductive particles are pressed directly onto the terminal surface, so that the electrode of the adherend Conduction between is obtained.
[0096] その結果、データ電極 22とドライバ IC51との間の導通が得られ、制御装置 (不図 示)が、データ電極 22に適切な駆動信号を供給するよう、ドライバ IC51を制御できる  As a result, conduction between the data electrode 22 and the driver IC 51 is obtained, and the control device (not shown) can control the driver IC 51 so as to supply an appropriate drive signal to the data electrode 22.
[0097] なお、本実施の形態の PDP100の画像 1TVフィールド(1フレーム)は複数のサブ フィールドに時分割され、これにより、制御装置は、サブフィールド毎に放電回数を制 御して階調表示可能なように、データ電極 22や表示電極対 12の電圧印加タイミング を制御している。 [0097] Note that the image 1TV field (one frame) of the PDP 100 according to the present embodiment is time-divided into a plurality of subfields, whereby the control device controls the number of discharges for each subfield to display grayscales. The voltage application timing of the data electrode 22 and the display electrode pair 12 is controlled as possible.
[0098] 例えば、 PDP100の画像 1TVフィールド期間を、後の書込み期間に必要な壁電荷 を放電セルの壁部に形成する初期化期間と、後の維持期間にお!、て放電させる放 電セルを選択する書込み期間と、この書込み期間において選択された放電セルを放 電させる維持期間とを有する 8個のサブフィールド期間に分割すれば、 8個のサブフ ィールドの発光時間長の比率を 1: 2: 4: 8: 19: 32: 64: 128の 2のべき乗にして、各 放電セルでは、全てのサブフィールドにお 、て発光無しの「0 (ゼロ)」の状態(即ち、 全てのサブフィールドにおける書込み期間の選択無しの状態)から全てのサブフィー ルドにおいて発光有りの「255」の状態(即ち、全てのサブフィールドにおける書込み 期間の選択有りの状態)に亘る 256階調の階調表示が実現可能になる。このような P DP100の制御動作は公知であり、ここではより詳細な説明は省く。  [0098] For example, a PDP100 image 1TV field period, an initializing period in which wall charges necessary for the subsequent address period are formed on the wall of the discharge cell, and a discharge cell that is discharged in the subsequent sustain period! Is divided into 8 sub-field periods having a discharge period selected in the address period and a sustain period for discharging the selected discharge cells, the ratio of the light emission time lengths of the 8 sub-fields is 1: 2: 4: 8: 19: 32: 64: 128 to the power of 2, and in each discharge cell, all subfields are in a “0 (zero)” state with no light emission (ie, all subfields 256-level gray scale display ranging from “without writing period selection in the field” to “255” with light emission in all subfields (ie, with writing period selection in all subfields). Become feasible . Such a control operation of the PDP 100 is publicly known, and a more detailed description is omitted here.
[0099] 端子電極 22aは、銀に比べてマイグレーション耐性に優れた信頼性の高い金属、 例えば、銅(Cu)、アルミニウム (A1)、ニッケル (Ni)の中力も選ばれた金属により構 成されている。 [0099] The terminal electrode 22a is made of a highly reliable metal superior in migration resistance compared to silver, for example, a metal having a medium force selected from copper (Cu), aluminum (A1), and nickel (Ni). It is made.
[0100] また、銀合金、例えば Ag— Pd (パラジウム)合金 (銀パラジウム合金)、にすることに より、 Agマイグレーションの発生を適切に抑えることが知られている。そして、このよう な Ag— Pd合金を使用した端子電極 22aは、銀ペーストを用いたスクリーン印刷によ りデータ電極 22を形成するといつたこれまで培ってきた既存の技術を容易に引き継 げ、スクリーン印刷法により適宜の膜厚 (例えば 5 m)に効率的に形成可能であると 、推定され、将来の耐マイグレーション電極材料として有望視されている。  [0100] It is also known to appropriately suppress the occurrence of Ag migration by using a silver alloy, for example, an Ag-Pd (palladium) alloy (silver palladium alloy). The terminal electrode 22a using such an Ag—Pd alloy easily inherits the existing technology that has been cultivated until now when the data electrode 22 is formed by screen printing using silver paste. It is estimated that it can be efficiently formed to an appropriate film thickness (for example, 5 m) by the screen printing method, and is considered promising as a future migration-resistant electrode material.
[0101] 勿論、端子電極 22aを、金属粉末等からなる蒸着材を使用した真空蒸着プロセス や、めっきプロセスを用いて形成しても良い。  [0101] Of course, the terminal electrode 22a may be formed using a vacuum deposition process using a deposition material made of metal powder or the like, or a plating process.
[0102] 以上に述べた如ぐ本実施の形態の PDP100によれば、複数のスキャン電極 12a およびサスティン電極 12bの対を有する前面板 10と、複数のデータ電極 22を有する 背面板 20と、が封止材 30により貼り合わせされた、 PDP100において、スキャン電極 12aおよびサスティン電極 12bの対とデータ電極 22とが間隙を有して直交するように 延び、スキャン電極 12aおよびサスティン電極 12bの対とデータ電極 22との夫々の 間隙を夫々の放電空間とする複数の放電セルを有してなる、封止材 30に囲まれたパ ネル領域 201と、封止材 30の領域外において外部端子との間の接合をなし、データ 電極 22に導通する端子電極 22aと、を備えて構成され、データ電極 22を覆う誘電体 層 23力 PDP100のパネル領域 201から少なくとも封止材 30にまで至るとともに、デ ータ電極 22と端子電極 20aとの間の導通を得るために生じる段差 S 1が、少なくとも 誘電体層 23よりも厚膜の封止材 30により覆われるものである。  According to the PDP 100 of the present embodiment as described above, the front plate 10 having a plurality of pairs of scan electrodes 12a and sustain electrodes 12b, and the back plate 20 having a plurality of data electrodes 22 are provided. In the PDP 100 bonded by the sealing material 30, the pair of the scan electrode 12a and the sustain electrode 12b and the data electrode 22 extend so as to be orthogonal with a gap, and the pair of the scan electrode 12a and the sustain electrode 12b and the data A panel region 201 surrounded by the sealing material 30 having a plurality of discharge cells each having a respective gap with the electrode 22 as a discharge space, and an external terminal outside the region of the sealing material 30 A dielectric layer covering the data electrode 22 from the panel region 201 of the PDP 100 to at least the encapsulant 30, and the terminal electrode 22 a conducting to the data electrode 22. Data electrode 22 and Step S 1 that occurs in order to obtain continuity between the child electrode 20a is intended to be covered by the sealing member 30 of the thick film than at least a dielectric layer 23.
[0103] このように、データ電極 22と端子電極 22aとの間の導通部分における段差 S1を、 充分に厚膜(100 m以上)の封止材 30で覆ったため、段差 S1において封止材 30 のカバレッジ不良になり難ぐ段差 S1の封止材 30外部への露出を適切に回避できる  [0103] As described above, the step S1 at the conductive portion between the data electrode 22 and the terminal electrode 22a is covered with the sufficiently thick sealing material 30 (100 m or more). Level difference S1 sealant 30 It is possible to avoid exposure to the outside appropriately.
[0104] また、ガラスフリットを含んだ Ag系のデータ電極 22の全域力 低融点ガラス力もなる 誘電体層 23に覆われることから、両者間の密着性を良好な状態に保つことができ、こ れにより、データ電極 22の Agマイグレーションは適切に防止できる。 [0104] Further, since the entire area force of the Ag-based data electrode 22 containing glass frit is covered with the dielectric layer 23 which also has a low melting point glass force, the adhesion between the two can be maintained in a good state. As a result, Ag migration of the data electrode 22 can be prevented appropriately.
[0105] 更に、端子電極 22aは、耐マイグレーション性に優れ、かつ、コスト的に見合った材 料、例えば、 Cu、 Al、 Niの中力も選ばれる金属、または Ag— Pd合金により構成され ること力ら、端子電極 22aのマイグレーションも適切に防止できる。 [0105] Furthermore, the terminal electrode 22a is a material excellent in migration resistance and suitable for cost. Migration of the terminal electrode 22a can be appropriately prevented due to the power of being made of a metal such as Cu, Al, Ni, or an Ag—Pd alloy.
[0106] このように、 Ag系のデータ電極と導通する別個の端子電極を設け、その材料をマイ グレーシヨン防止およびコストアップ抑制の観点力 適切に選別することは、キセノン 分圧を高めて、データ電圧を増して PDPの輝度向上を図る際、または、 PDPの電圧 マージンを適切に確保する際、或いは、データ電極の狭ピッチ化により PDPの高精 細化を図る際には、とりわけ有益である。  [0106] Thus, providing a separate terminal electrode that conducts with the Ag-based data electrode, and appropriately selecting the material from the viewpoint of preventing migration and suppressing the cost increase, the xenon partial pressure is increased, This is especially useful when increasing the data voltage to improve the brightness of the PDP, to ensure an adequate PDP voltage margin, or to increase the PDP precision by narrowing the data electrode pitch. is there.
[0107] (変形例)  [0107] (Modification)
本実施の形態では、誘電体層 23が、封止材 30と交差して延在部 20aにまで延びる 例を述べたが、誘電体層 23が延在部 20aに至ることは、必ずしも必須事項ではない 。図 4に示した変形例の如ぐ誘電体層 23aは、封止材 30の幅方向の適所にまで至 れば、本技術の Agマイグレーション防止の効果を奏する。  In the present embodiment, an example has been described in which the dielectric layer 23 extends to the extending portion 20a while intersecting the sealing material 30, but it is not always necessary that the dielectric layer 23 reaches the extending portion 20a. is not . When the dielectric layer 23a as in the modification shown in FIG. 4 reaches an appropriate position in the width direction of the sealing material 30, the effect of preventing Ag migration of the present technology is exhibited.
[0108] 要するに、ガラスフリットを含んだ Ag系のデータ電極 22は、低融点ガラスからなる 誘電体層 23aおよびガラスフリットを含んだ封止材 30のうちの少なくとも何れか一方 に覆われれば、データ電極 22の Agマイグレーションは適切に防止できる。  In short, if the Ag-based data electrode 22 containing glass frit is covered with at least one of the dielectric layer 23a made of low-melting glass and the sealing material 30 containing glass frit, the data Ag migration of the electrode 22 can be prevented appropriately.
[0109] このようにして、本変形例では、封止材 30に囲まれた領域外、より具体的には、封 止材 30の幅方向の端と端子電極 22aの他端との間に位置する帯状の部分が、端子 電極 22aおよび外部端子間の接合をなす、端子領域 302を構成して ヽる。  [0109] Thus, in this modification, outside the region surrounded by the sealing material 30, more specifically, between the end in the width direction of the sealing material 30 and the other end of the terminal electrode 22a. The band-shaped portion positioned constitutes a terminal region 302 that forms a junction between the terminal electrode 22a and the external terminal.
[0110] (実施の形態 2)  [0110] (Embodiment 2)
図 5は、本実施の形態による PDPの周縁部の封止材周辺部の、データ電極および 端子電極に沿った断面を示した図である。  FIG. 5 is a view showing a cross section along the data electrode and the terminal electrode in the peripheral portion of the sealing material at the peripheral portion of the PDP according to the present embodiment.
[0111] なお、封止材 130の周辺部以下の PDP110の構成は、実施の形態 1に述べた PD P100の構成と同じであるため、両者に共通する構成の説明および図示は省略する 。また、図 5において、図 3と共通する構成要素には、同一の符号を付し、このような 構成要素の説明も省く。  [0111] The configuration of PDP 110 below the periphery of sealing material 130 is the same as the configuration of PDP 100 described in the first embodiment, and therefore description and illustration of the configuration common to both is omitted. In FIG. 5, the same reference numerals are given to the same components as those in FIG. 3, and the description of such components is omitted.
[0112] 端子電極 160は、図 5に示すごとぐ積層(2層)の電極構造体をなしており、より詳 しくは、データ電極 122から連続的に続く芯材部 160aと、芯材部 160aに重畳するよ う、その表面全域を覆う被覆電極 160bとを備える。 [0113] なお、このような端子電極 160は、パネル領域 201の外部に延び、外部端子との間 の接合をなす、端子領域 402の機能を発揮する電極になる。 [0112] The terminal electrode 160 has a laminated (two-layered) electrode structure as shown in FIG. 5, and more specifically, a core material portion 160a continuously extending from the data electrode 122, and a core material portion. And a covering electrode 160b covering the entire surface thereof so as to overlap with 160a. [0113] Note that such a terminal electrode 160 is an electrode that extends to the outside of the panel region 201 and exhibits the function of the terminal region 402 and forms a joint with the external terminal.
[0114] また、ここでは、端子電極 160のうちの芯材部 160aは、データ電極 122と同時に形 成された同一材料 (Ag系の電極)からなり、その結果として、芯材部 160aは、データ 電極 122と一体に連続して延びている。言い換えれば、データ電極 122と同一の形 状で同時に形成され、かつ、被覆電極 160bにより覆われた部分を、本明細書では 便宜上、端子電極 160の芯材部 160aと称している。 [0114] Here, the core material portion 160a of the terminal electrode 160 is made of the same material (Ag-based electrode) formed at the same time as the data electrode 122. As a result, the core material portion 160a It extends continuously with the data electrode 122. In other words, the portion that is simultaneously formed in the same shape as the data electrode 122 and is covered with the covering electrode 160b is referred to as the core portion 160a of the terminal electrode 160 for convenience in this specification.
[0115] なお、このように一体になつた両電極の外形は、背面ガラス基板 21上を、パネル領 域 201から封止材 130と交差して、背面板 20の延在部 20aにまで至るように、背面ガ ラス基板 21に端面に向力つて延びて 、る。 It should be noted that the outer shape of both electrodes integrated in this way extends from the panel region 201 to the sealing material 130 on the back glass substrate 21 to the extended portion 20a of the back plate 20. As described above, the back glass substrate 21 extends toward the end surface with force.
[0116] 端子電極 160のうちの被覆電極 160bは、芯材部 160aの端から PDP110のパネル 領域 201に向力つて延び、図 5に示す如ぐ厚み 100 m以上の封止材 130の幅方 向の略中央部直下にまで、至っている。このため、端子電極 160 (被覆電極 160b)と データ電極 122との間の導通部分における段差 S2は、封止材 130に覆われる。 [0116] The coated electrode 160b of the terminal electrode 160 extends from the end of the core member 160a toward the panel region 201 of the PDP 110, and the width of the sealing material 130 having a thickness of 100 m or more as shown in FIG. It reaches to just below the center of the direction. For this reason, the step S2 in the conductive portion between the terminal electrode 160 (covered electrode 160b) and the data electrode 122 is covered with the sealing material 130.
[0117] そして、被覆電極 160bは、実施の形態 1で述べた端子電極 22aの材料と同様に、 銀に比べてマイグレーション耐性に優れた信頼性の高い金属、例えば Cu、 Al、 Niの 中力も選ばれた金属、または、 Ag— Pd合金のような銀合金により構成されている。 [0117] The coated electrode 160b is also made of a highly reliable metal having excellent migration resistance compared to silver, such as Cu, Al, and Ni, similar to the material of the terminal electrode 22a described in the first embodiment. It is made of a selected metal or a silver alloy such as an Ag—Pd alloy.
[0118] 一方、データ電極 122を覆う誘電体層 123は、 PDP110のパネル領域 201からデ ータ電極 122ととも〖こ封止材 130〖こまで至り、更に、封止材 130とデータ電極 122と の間と、封止材 130と被覆電極 160bとの間に介在している。 On the other hand, the dielectric layer 123 covering the data electrode 122 extends from the panel region 201 of the PDP 110 to the seal material 130 with the data electrode 122, and further, the seal material 130 and the data electrode 122. And between the sealing material 130 and the covered electrode 160b.
[0119] すなわち、誘電体層 123は、端子電極 160とデータ電極 122との間の導通部分に おける段差 S2を覆うようにして、封止材 130と段差 S2との間に介在して封止材 130と 交差して、背面板 20の延在部 20aにまで延びて 、る。 That is, the dielectric layer 123 is interposed and sealed between the sealing material 130 and the step S2 so as to cover the step S2 in the conductive portion between the terminal electrode 160 and the data electrode 122. It intersects with the material 130 and extends to the extending portion 20a of the back plate 20.
[0120] このようにして、本実施の形態では、封止材 130により囲まれた領域外であって、か つ、誘電体層 123の端と芯材部 160aの端 (正確には当該端を覆う被覆電極 160bの 表面)との間に位置する帯状の部分が、端子電極 160および外部端子間の接合をな す、端子領域 402を構成している。 [0120] Thus, in the present embodiment, outside the region surrounded by the sealing material 130, the end of the dielectric layer 123 and the end of the core portion 160a (more precisely, the end) A belt-like portion located between the terminal electrode 160 and the external terminals constitutes a terminal region 402.
[0121] 以上の如く構成された本実施の形態の PDP110によれば、端子電極 160力 デー タ電極 122から連続して延びる芯材部 160aと、芯材部 160aに重畳するよう、その表 面を覆う被覆電極 160bと、を備えて構成され、データ電極 122を覆う誘電体層 123 は、 PDP110のパネル領域 201からデータ電極 122とともに封止材 130にまで至ると ともに、データ電極 122と端子電極 160との間の導通部分における段差 S2が、少な くとも誘電体層 123よりも厚膜の封止材 130により覆われるものである。 [0121] According to the PDP 110 of the present embodiment configured as described above, the terminal electrode 160 force data The dielectric layer 123 covering the data electrode 122 includes a core member 160a continuously extending from the data electrode 122 and a covering electrode 160b covering the surface so as to overlap the core member 160a. From the panel region 201 of the PDP 110 to the encapsulant 130 together with the data electrode 122, the step S2 in the conductive portion between the data electrode 122 and the terminal electrode 160 is at least thicker than the dielectric layer 123. It is covered with the sealing material 130.
[0122] このように、データ電極 122と端子電極 160の間の導通部分における段差 S2を、 充分に厚膜(100 m以上)の封止材 130で覆ったため、段差 S2において封止材 1 30のカバレッジ不良になり難ぐこのような段差 S2の 130外部への露出を適切に回 避できる。 [0122] As described above, the step S2 at the conductive portion between the data electrode 122 and the terminal electrode 160 is covered with the sufficiently thick sealing material 130 (100 m or more), so that the sealing material 1 30 is formed at the step S2. It is possible to appropriately avoid exposure of 130 to the outside of such a step S2, which is difficult to cause poor coverage.
[0123] また、ガラスフリットを含んだ Ag系のデータ電極 122の全域力 低融点ガラスからな る誘電体層 123に覆われることから、両者間の密着性を良好な状態に保つことができ 、これにより、データ電極 122の Agマイグレーションも適切に防止できる。  [0123] Further, since the entire area of the Ag-based data electrode 122 containing glass frit is covered with the dielectric layer 123 made of low-melting glass, the adhesion between the two can be maintained in a good state. Thereby, Ag migration of the data electrode 122 can also be prevented appropriately.
[0124] 更に、 Ag系の芯材部 160aの全域力 被覆電極 160bに覆われ、これにより、芯材 部 160aの Agマイグレーションは適切に防止できる。  [0124] Furthermore, the entire area force of the Ag-based core member 160a is covered with the covered electrode 160b, whereby the Ag migration of the core member 160a can be appropriately prevented.
[0125] 加えて、被覆電極 160bは、耐マイグレーション性に優れ、かつ、コスト的に見合つ た材料、例えば、 Cu、 Al、 Niの中カゝら選ばれる金属または Ag— Pd合金により構成さ れること力 、被覆電極 160bのマイグレーションも適切に防止できる。もっとも、この 被覆電極 160bは、真空蒸着等により薄膜 (例えば 1 μ m程度)に形成すれば、仮に Au金属を用いても、 PDPのコストアップを抑えることができる。  [0125] In addition, the coated electrode 160b is made of a material excellent in migration resistance and suitable for cost, for example, a metal selected from Cu, Al, Ni, or an Ag-Pd alloy. Therefore, the migration of the covered electrode 160b can also be prevented appropriately. However, if the coated electrode 160b is formed into a thin film (for example, about 1 μm) by vacuum deposition or the like, the cost of the PDP can be suppressed even if Au metal is used.
[0126] このように、 Ag系のデータ電極と導通する別個の被覆電極を設け、その材料をマイ グレーシヨン防止およびコストアップ抑制の観点力 適切に選別することは、キセノン 分圧を高めて、データ電圧を増して PDPの輝度向上を図る際、または、 PDPの電圧 マージンを適切に確保する際、或いは、データ電極の狭ピッチ化により PDPの高精 細化を図る際に、とりわけ有益である。  [0126] Thus, providing a separate coated electrode that conducts with the Ag-based data electrode, and appropriately selecting the material from the viewpoint of preventing migration and suppressing cost increase, increases the partial pressure of xenon, This is especially useful when increasing the data voltage to improve the brightness of the PDP, when ensuring a suitable voltage margin for the PDP, or when increasing the precision of the PDP by narrowing the data electrode pitch. .
[0127] (変形例)  [0127] (Modification)
本実施の形態では、誘電体層 123が、封止材 130と交差して延在部 20aにまで延 びる例を述べたが、誘電体層 123が延在部 20aに至ることは、必ずしも必須事項で はない。図 6に示した変形例の如ぐ誘電体層 123aは、封止材 130の幅方向の適所 にまで至れば、本技術の Agマイグレーション防止効果を奏する。 In the present embodiment, the example in which the dielectric layer 123 extends to the extending portion 20a crossing the sealing material 130 has been described. However, it is not always necessary that the dielectric layer 123 reaches the extending portion 20a. It is not a matter. The dielectric layer 123a as in the modification shown in FIG. If it reaches, it will have the effect of preventing Ag migration of this technology.
[0128] 要するに、ガラスフリットを含んだ Ag系のデータ電極 122は、低融点ガラスからなる 誘電体層 123aおよびガラスフリットを含んだ封止材 130の何れか一方に覆われれば 、データ電極 122の Agマイグレーションは適切に防止できる。 In short, if the Ag-based data electrode 122 containing glass frit is covered with either the dielectric layer 123a made of low-melting glass or the sealing material 130 containing glass frit, the data electrode 122 Ag migration can be prevented appropriately.
このようにして、本変形例では、封止材 130により囲まれた領域外、より具体的には 、封止材 130の端と芯材部 160aの端 (正確には当該端を覆う被覆電極 160bの表面 )との間に位置する帯状の部分が、端子電極 160および外部端子間の接合をなす、 端子領域 502を構成して ヽる。  Thus, in this modification, outside the region surrounded by the sealing material 130, more specifically, the end of the sealing material 130 and the end of the core material portion 160a (more precisely, the covered electrode covering the end) A band-like portion located between the terminal electrode 160 and the external terminals constitutes a terminal region 502 that forms a junction between the terminal electrode 160 and the external terminals.
[0129] 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らか である。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行 する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を 逸脱することなぐその構造及び Z又は機能の詳細を実質的に変更できる。 From the above description, many modifications and other embodiments of the present invention are obvious to one skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. Details of the structure and Z or function thereof can be substantially changed without departing from the spirit of the invention.
産業上の利用可能性  Industrial applicability
[0130] 本発明のプラズマディスプレイパネルは、例えば交通機関または公共施設或いは 家庭用のテレビジョン装置の用途として薄型パネルを用 、た表示装置等に利用する ことが可能である。 [0130] The plasma display panel of the present invention can be used for a display device using a thin panel as an application of a television device for transportation, public facilities, or homes, for example.

Claims

請求の範囲 The scope of the claims
[1] 複数の表示電極対を有する第 1基板と、  [1] a first substrate having a plurality of display electrode pairs;
前記第 1基板と環状の封止材により貼り合わされ、複数のデータ電極を有する第 2 基板と、  A second substrate bonded to the first substrate by an annular sealing material and having a plurality of data electrodes;
前記表示電極対と前記データ電極とが間隙を有して交差するように延び、前記表 示電極対と前記データ電極との夫々の間隙を夫々の放電空間とする複数の放電セ ルを有してなる、前記封止材に囲まれたパネル領域と、  The display electrode pair and the data electrode have a plurality of discharge cells extending so as to intersect each other with a gap, and each gap between the display electrode pair and the data electrode is a discharge space. A panel region surrounded by the sealing material,
前記封止材に囲まれた領域外において外部端子との間の接合をなし、前記データ 電極に導通する端子電極と、  A terminal electrode connected to an external terminal outside the region surrounded by the sealing material, and conducting to the data electrode;
を備え、  With
前記データ電極を覆う誘電体層が前記パネル領域カゝら少なくとも前記封止材にま で至るとともに、前記データ電極と前記端子電極との間の導通から生じる段差が前記 封止材に覆われる、プラズマディスプレイパネル。  A dielectric layer covering the data electrode extends from the panel region cover to at least the sealing material, and a step resulting from conduction between the data electrode and the terminal electrode is covered with the sealing material. Plasma display panel.
[2] 前記誘電体層が、前記封止材と前記段差との間に介在する、請求項 1記載のブラ ズマディスプレイパネノレ。 [2] The plasma display panel according to claim 1, wherein the dielectric layer is interposed between the sealing material and the step.
[3] 前記端子電極は、前記データ電極に重畳するとともに、前記データ電極と別体に 前記領域外に延びる、前記請求項 1または 2記載のプラズマディスプレイパネル。 3. The plasma display panel according to claim 1, wherein the terminal electrode overlaps with the data electrode and extends outside the region separately from the data electrode.
[4] 前記端子電極は、前記データ電極と一体に前記領域外に延びる芯材部と、前記芯 材部に重畳するよう、前記芯材部の表面を覆う被覆電極と、を有する、請求項 1また は 2記載のプラズマディスプレイパネル。 [4] The terminal electrode includes: a core part extending out of the region integrally with the data electrode; and a covering electrode covering a surface of the core part so as to overlap the core part. The plasma display panel according to 1 or 2.
[5] 前記データ電極は銀により構成され、前記端子電極は、銅、アルミニウム、ニッケル の中から選ばれる何れかの金属、または銀合金により構成される、請求項 3記載のプ ラズマディスプレイパネル。 5. The plasma display panel according to claim 3, wherein the data electrode is made of silver, and the terminal electrode is made of any metal selected from copper, aluminum, and nickel, or a silver alloy.
[6] 前記データ電極および前記芯材部は銀により構成され、前記被覆電極は、銅、ァ ルミ-ゥム、ニッケルの中から選ばれる金属、または銀合金により構成される、請求項[6] The data electrode and the core member are made of silver, and the coated electrode is made of a metal selected from copper, aluminum, nickel, or a silver alloy.
4記載のプラズマディスプレイパネル。 4. The plasma display panel according to 4.
[7] 前記銀合金は銀パラジウム合金である、請求項 5または 6記載のプラズマディスプレ ィパネノレ。 7. The plasma display panel according to claim 5 or 6, wherein the silver alloy is a silver palladium alloy.
PCT/JP2007/057864 2006-04-28 2007-04-10 Plasma display panel WO2007125747A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-126143 2006-04-28
JP2006126143 2006-04-28

Publications (1)

Publication Number Publication Date
WO2007125747A1 true WO2007125747A1 (en) 2007-11-08

Family

ID=38655280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057864 WO2007125747A1 (en) 2006-04-28 2007-04-10 Plasma display panel

Country Status (1)

Country Link
WO (1) WO2007125747A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220864Y2 (en) * 1977-07-01 1987-05-27
JPH01272030A (en) * 1988-04-22 1989-10-31 Oki Electric Ind Co Ltd Display panel
JPH0728681Y2 (en) * 1988-03-22 1995-06-28 沖電気工業株式会社 DC type plasma display panel
JPH11154461A (en) * 1997-11-20 1999-06-08 Dainippon Printing Co Ltd Blast protective layer forming method for plasma display panel and substrate sealing method for plasma display panel
JP2001189136A (en) * 1999-10-19 2001-07-10 Matsushita Electric Ind Co Ltd Plasma display device and its production
JP2002110052A (en) * 2000-09-28 2002-04-12 Kyocera Corp Substrate for plasma display device and plasma display device using the same
JP2003031133A (en) * 2001-07-12 2003-01-31 Dainippon Printing Co Ltd Plasma display panel and manufacturing method of the same
JP2005063701A (en) * 2003-08-20 2005-03-10 Tohoku Pioneer Corp Flat panel display device and manufacturing method of same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220864Y2 (en) * 1977-07-01 1987-05-27
JPH0728681Y2 (en) * 1988-03-22 1995-06-28 沖電気工業株式会社 DC type plasma display panel
JPH01272030A (en) * 1988-04-22 1989-10-31 Oki Electric Ind Co Ltd Display panel
JPH11154461A (en) * 1997-11-20 1999-06-08 Dainippon Printing Co Ltd Blast protective layer forming method for plasma display panel and substrate sealing method for plasma display panel
JP2001189136A (en) * 1999-10-19 2001-07-10 Matsushita Electric Ind Co Ltd Plasma display device and its production
JP2002110052A (en) * 2000-09-28 2002-04-12 Kyocera Corp Substrate for plasma display device and plasma display device using the same
JP2003031133A (en) * 2001-07-12 2003-01-31 Dainippon Printing Co Ltd Plasma display panel and manufacturing method of the same
JP2005063701A (en) * 2003-08-20 2005-03-10 Tohoku Pioneer Corp Flat panel display device and manufacturing method of same

Similar Documents

Publication Publication Date Title
JPH0950769A (en) Plasma display panel and manufacture thereof
US20040119397A1 (en) Flat-panel display device, and process of sealing the device along its periphery
KR20080089149A (en) Plasma display panel
US20070247053A1 (en) Display apparatus
JPH11306994A (en) Plasma display panel and its manufacture
KR20050112576A (en) Plasma display module and method for manufacturing the same
US20080036381A1 (en) Plasma display panel and method of fabricating the same
US6159066A (en) Glass material used in, and fabrication method of, a plasma display panel
US6538381B1 (en) Plasma display panel and method for manufacturing the same
US20100133974A1 (en) Plasma display panel
WO2007125747A1 (en) Plasma display panel
JP2001015042A (en) Color plasma display panel
KR100718053B1 (en) Plasma Display Panel
JP2007053079A (en) Plasma display panel
KR100795808B1 (en) Plasma display panel
JP2001229839A (en) Plate with electrode, its manufacturing method, gas- discharge panel therewith and its manufacturing method
JPH0765729A (en) Plasma display panel and manufacture thereof
EP1830377A2 (en) Plasma display panel
JP3206571B2 (en) Plasma display panel and method of manufacturing the same
US8022629B2 (en) Plasma display panel and method for manufacturing the same
JP2003162964A (en) Plasma display panel and manufacturing method therefor, and plasma display device
JP2006024490A (en) Plasma display panel and its manufacturing method
JP4177917B2 (en) Method for manufacturing gas discharge display device
US20080297049A1 (en) Plasma display panel and method for fabricating the same
JP3444875B2 (en) Plate with electrodes, method of manufacturing the same, gas discharge panel using the same, and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP