WO2007125726A1 - Method and apparatus for ionization by cluster ion impact which can realize imaging, and etching method and apparatus - Google Patents

Method and apparatus for ionization by cluster ion impact which can realize imaging, and etching method and apparatus Download PDF

Info

Publication number
WO2007125726A1
WO2007125726A1 PCT/JP2007/057328 JP2007057328W WO2007125726A1 WO 2007125726 A1 WO2007125726 A1 WO 2007125726A1 JP 2007057328 W JP2007057328 W JP 2007057328W WO 2007125726 A1 WO2007125726 A1 WO 2007125726A1
Authority
WO
WIPO (PCT)
Prior art keywords
charged
sample
mask
charged droplets
etching
Prior art date
Application number
PCT/JP2007/057328
Other languages
French (fr)
Japanese (ja)
Inventor
Kenzo Hiraoka
Original Assignee
University Of Yamanashi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Yamanashi filed Critical University Of Yamanashi
Priority to JP2008513117A priority Critical patent/JP4639341B2/en
Publication of WO2007125726A1 publication Critical patent/WO2007125726A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • H01J49/142Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers using a solid target which is not previously vapourised

Definitions

  • the present invention provides an ion book by cluster ion bombardment capable of imaging.
  • the mass spectrometry of environmental science-related and life science-related samples such as drugs, plasticizers, pigments, fullerenes, amino acids, peptides, protein molecules, and DNA molecules.
  • the present invention relates to an ionization method opto-apparatus that is suitable for this purpose and can acquire (imaging) molecular level spatial information (particularly two-dimensional distribution information) of a sample.
  • the present invention relates to a fine etching method and apparatus for material surfaces (including metals and semiconductor materials) by cluster ion bombardment.
  • Tato ⁇ is "Imaging mass spectrometry: a new tool to investigate the spatial organization of peptides and proteins in mammalian tissue sections" Current Opinion in Chemical Biology 2002, 6, 676-681, "Direct molecular imaging of Lymnaea s tagnal is nervous tissue at subcellular spatial resolution by mass spectrometry "See Anal. Chera. 2005, 77, 735-741.
  • MA LDI irradiates a sample with a laser and uses the energy from this.
  • the sample is desorbed and ionized by the ablation of the matrix and analyzed.
  • a matrix for example, sinapinic acid
  • laser light generally a wavelength of 337 nra
  • a matrix agent is applied to the sample surface, there is a problem in that chemical noise occurs when imaging a biological sample.
  • Another problem is that the sample is damaged by laser irradiation, which causes damage to the sample.
  • Electrosprayed droplet impact ionization (E D I) 3 ⁇ 4: proposal 7 (WO 2 0 0 5/0 8 3 4 1 5 A 1).
  • This EDI method enables extremely soft desorption and ionization without destroying biological samples or drugs. This is because the energy per unit mass of the multiply-charged ion cluster used in EDI is less than 1 eV / u, and only the surface layer molecules are desorbed and ionized only by shock wave heating.
  • the present invention provides a method and apparatus in which the above ionization method and apparatus using cluster ion bombardment are improved so that imaging can be performed.
  • the present invention provides an etching method and an optical apparatus utilizing the above-described ionization method and apparatus by cluster ion bombardment.
  • ionization method by cluster ion bombardment charged droplets of a volatile liquid are generated by an electrospray method under atmospheric pressure, and the generated charged droplets are guided to a vacuum chamber and formed in the vacuum chamber.
  • the charged droplet is accelerated by the electric field toward the sample position, and the spread of the beam (beam diameter) of the charged droplet that collides with the sample is limited by the fine holes in the mask placed in front of the sample position. is there.
  • the ionization method according to the present invention can be used for mass spectrometry, in which case the generated ions are guided to a mass spectrometer.
  • a large number of charged droplets of volatile liquid are continuously generated as a group and accelerated to form a beam that travels toward the sample.
  • the spread (beam diameter) of the charged droplet beam is limited by the mask placed in front of the sample, and some of the charged droplets that have passed through the fine holes in the mask Collide with sample. In this way, the position and range of the charged droplets that collide with the sample can be controlled. If the collision position of the charged droplet is fixed, information on the depth direction of the sample can be obtained, and if the collision position is scanned two-dimensionally with respect to the sample surface, the molecules of the sample surface layer Two-dimensional distribution information can be obtained.
  • the present invention increases its utility value by determining the position where the charged droplet should collide with the sample by the position of the micropore.
  • At least one of the fine holes in the mask and the sample should be scanned relatively two-dimensionally.
  • the mask microhole and the sample do not necessarily have to be displaced in parallel, but may be inclined.
  • the fine holes in the mask are scanned two-dimensionally with respect to the sample.
  • charged droplets may be scanned by electric or magnetic fields.
  • the fine hole may be a single fine hole formed in a mask or may be formed by two intersecting fine slits formed in two mask members.
  • a mass spectrometry method can also be realized using the ionization method described above. In this case, ions of the sample that have been desorbed and ionized by the collision of charged droplets are introduced into the mass spectrometer.
  • the volatile liquid is preferably water, but methanol or ethanol is also acceptable.
  • Water includes water with the addition of weakly acidic solutions and weakly alkaline solutions. In order to facilitate the generation of charged droplets, it is recommended that an electrolyte be dissolved in water to form an aqueous solution, which is used as the charged droplet liquid.
  • the ionization apparatus is provided outside the ion inlet of the mass spectrometer, communicates with the inside of the mass spectrometer through the ion inlet, and has a vacuum acceleration chamber in which an acceleration electrode, a mask, and a sample stage are arranged. Acceleration with A charged droplet generation chamber that communicates with the vacuum acceleration chamber through a droplet inlet of the vacuum acceleration chamber, and a charged liquid that generates charged droplets of a volatile liquid in the charged droplet generation chamber.
  • the mask has micropores and is placed in front of the sample stage. The sample stage and the micropores in the mask are related to the direction of the surface of the sample stage.
  • the fine holes of the mask and the surface of the sample stage are not necessarily displaced in parallel, but may be displaced in an oblique direction.
  • the charged droplets generated by the droplet generator are guided from the charged droplet generation chamber to the vacuum acceleration chamber through the droplet inlet and accelerated by the acceleration electrode to which a high voltage is applied. The spread is limited by the fine holes in the mask.
  • the charged droplets that have passed through the fine holes collide with the sample on the sample stage, and as a result, desorbed and ionized ions from the specimen are introduced into the mass spectrometer through the ion inlet. It is designed to be
  • the vacuum accelerating chamber and the droplet generating chamber do not need to be separated from each other, and may be simply divided into regions (spaces) (may be partially overlapped).
  • the ionization method according to the present invention can be realized by using the above ionizer.
  • the electrospray method is preferably used to generate charged droplets.
  • cold nitrogen (N 2 ) gas with controlled temperature is used in combination, cooling, generation of charged droplets (spraying), and transfer to the vacuum chamber (vacuum acceleration chamber) can be performed efficiently.
  • the generation of charged droplets can be performed under atmospheric pressure (including reduced pressure).
  • nitrogen gas which may be cooled
  • the charged droplet generation chamber (ion source) in Fig. 6 is a space (closed space) isolated from the atmospheric air. This is because atmospheric air (laboratory air) can contaminate the ion source gas, including the electrospray device. By using a clean nitrogen nebulizer gas, atmospheric pressure gas in the ion source is not contaminated.
  • the present invention (especially according to the above-mentioned electrospray method), it is possible to generate a beam by a charged droplet group of a micro-order.
  • the charged droplet beam is sampled in the vacuum chamber (vacuum acceleration chamber) while maintaining the micron-order droplet size (beam spread or beam diameter).
  • the beam diameter is limited by the mask before colliding with the sample, and the charged droplet beam diameter is on the order of submicron by passing through the microhole.
  • Such cluster ions are accelerated by an electric field in the vacuum chamber (vacuum acceleration chamber), which gives kinetic energy and impinges on the sample (for example, a biological sample thin film).
  • a shock wave is generated at the collision interface, and the sample is desorbed and ionized in picosecond order.
  • the target molecules are excited by electrons and vibration at the same time, and the kinetic energy of the molecules in the sample film is also efficiently excited. In this way, the sample is impacted by the soft ion due to the cluster ions, so even molecules with molecular weights exceeding tens of thousands are ionized without being damaged.
  • the sample is vaporized and ionized within a short period of picoseconds shorter than the recombination lifetime between the positive and negative ions, recombination between the positive and negative ions is suppressed, and the generated ions are efficiently massed. It can be led to an analysis device.
  • the present invention also provides an etching method using charged droplets.
  • charged droplets of the etching solution are generated and guided to the vacuum chamber, and the charged droplets are accelerated toward the position of the object by the electric field formed in the vacuum chamber and collide with the surface of the object. Thus, the surface of the object is etched.
  • the etching device includes a charged droplet generator that generates a droplet of an etching solution under atmospheric pressure, and an accelerating electrode and a holding table for holding an object, and the charged droplet. It has a vacuum accelerating chamber in which fine charged holes for charged droplets generated by the generator are formed, and the charged liquid droplets generated by the charged droplet generator and introduced through the fine introduced holes are subjected to high voltage.
  • An acceleration device is provided that accelerates the applied acceleration electrode to collide with the surface of the object held on the holding table and etches the surface of the object.
  • Charged droplets can be generated by electrospray at atmospheric pressure.
  • Hydrofluoric acid, dilute nitric acid, acetic acid, etc. can be used as the solution for generating the electrospray (etching solution, mainly aqueous solution).
  • Atomic level etching of silicon or silicon oxide can be performed by impact of charged droplets of hydrofluoric acid.
  • Atomic level etching of metal thin films can be performed by impact of charged droplets of dilute nitric acid.
  • Atom and molecular level etching of organic thin film materials and inorganic materials can also be performed by electromagnetic wave impact of acetic acid aqueous solution.
  • the etching solution need not cause a chemical reaction with the object.
  • the etching solution may be an aqueous solution, an organic solvent (for example, methanol), or an organic solvent in an aqueous solution. Need In other words, the etching solution only needs to be multivalently charged.
  • water pure water
  • charged droplets are more likely to be generated by the electrospray method when an electrolyte such as acetic acid or ammonia is dissolved in water to form an aqueous solution.
  • the charged droplets are desirably multivalent charged droplets having a charge of several tens or hundreds.
  • the present invention accelerates charged droplets of a multivalent number (for example, a mass of 10 million (u), a valence of 100, or a larger size and a higher valence) at high speed. ) Based on the technology of collision with the surface.
  • a multivalent number for example, a mass of 10 million (u), a valence of 100, or a larger size and a higher valence
  • a shock wave is generated at the interface.
  • the interface gas generated by this shock wave is a supercritical fluid gas that far exceeds the critical limit of water supercritical fluid (water). Since collisions at the interface are coherent (all colliding water molecules collide with the substrate in the same direction), the reproducibility of the phenomenon is extremely high.
  • this supercritical state is relaxed (cooled) in about picoseconds by the fast energy dissipation process, so the inside of the film is not damaged.
  • the film thickness that desorbs from the surface is limited to a few atoms (molecules), making it an optimal ultra-fine processing technology.
  • various semiconductors Si, Ge, etc.
  • silicon oxides semiconductor oxides
  • insulators organic material thin films
  • metals stainless steel, nickel, iron, copper, tin, gold, silver, etc.
  • the ion source electrostatic droplet source
  • the ion source is an atmospheric pressure electrical spray, it can be easily installed in semiconductor manufacturing equipment, and the principle is simple, so no skilled technology is required. It is a simple, highly efficient and inexpensive technology.
  • the beam can be swept in two orthogonal directions (X and Y directions) by a deflection electrode.
  • Large-area machining technology can be realized by sweeping or scanning the charged droplet beam or target (its holding base) in a wide range (two-dimensionally) in the X and Y directions.
  • Precision processing of large-area high-definition semiconductor materials, metals, organic thin films, and insulator films is possible. To form a fine pattern, it is only necessary to etch only the necessary part using a mask.
  • ions desorbed and ionized from the surface of the object by collision of charged droplets can be introduced into the mass spectrometer. That is, the etching apparatus and the mass spectrometer according to the present invention can realize a complex etching surface analyzer, a complex mass spectrometer, or various complex apparatuses (scanning tunnel microscope, photoelectron spectrometer, etc.).
  • Fig. 1 shows the configuration of the ionizer.
  • Fig. 2 is a perspective view showing the mask and its drive unit.
  • Fig. 3 is a perspective view showing a modification of the mask and its driving device.
  • Fig. 4 is a block diagram showing an embodiment of the etching apparatus.
  • Figures 5A to 5C show the phenomenon that the surface of the object is etched.
  • FIG. 6 is a block diagram showing another embodiment of the etching apparatus. T / JP2007 / 057328
  • Fig. 7 shows the configuration of the etching equipment used in the experiment.
  • Fig. 8 and Fig. 9 show the mass analysis results of ions produced by etching.
  • the ionizer 20 is installed in the part of the mass spectrometer 10 that includes the ion inlet.
  • a mass spectrometer for example, a time-of-flight mass spectrometer 10 is provided with a gap 11 having a hole 11a at the ion inlet. Ions with the same direction are introduced to the inside of the mass spectrometer through the hole 11a (ion inlet). The inside of the mass spectrometer 10 is kept at a high vacuum by an exhaust device (not shown).
  • the ionization device 20 includes a charged droplet generator 30 (an ion source chamber, a chamber equipped with a general electrospray, nanoelectrospray, or corona red electrospray) 31,
  • the charging droplet generating chamber 31 and an accelerating device 40 having a vacuum accelerating chamber 41 connected in a straight line are configured.
  • the charged droplet generator 30 includes the above-described electrospray device 32.
  • the electrospray device 32 has a metal (conductive) capillary tube (capillary) 33 to which a high voltage is applied and a space around it. And a surrounding go pipe 34. The tips of the metal thin tube 33 and the surrounding tube 34 protrude into the charged droplet generation chamber 31.
  • the metal thin tube 33 is supplied with a cooled or room temperature volatile liquid (solution) as charged droplets.
  • a cooling medium such as nitrogen (N 2 ) gas is supplied as a nebulizer gas in the space between the metal thin tube 33 and the surrounding tube 34 (atmospheric pressure or pressure in the vicinity thereof: atmospheric pressure including these) )
  • Nitrogen gas is supplied from a nitrogen production machine or a nitrogen cylinder, or is generated from liquid nitrogen, and is introduced into the surrounding pipe 34 under temperature control. Cooling with nitrogen gas makes it possible to generate larger-sized charged droplets (cluster ions).
  • the tip of the capillary 33 is sufficiently close to the small hole 34a of the charged droplet sampling orifice 34 described later to prevent the charged droplets from drying out. Large charged droplets can be taken into the vacuum. The temperature of the droplets taken into the vacuum decreases rapidly due to the vaporization of the solvent. As a result, the vapor pressure drops, so there is little reduction in the size of the droplets under vacuum. Fly in a vacuum while maintaining almost the same volume.
  • a highly charged droplet group D is sprayed into the charged droplet generation chamber 31 in the form of a beam (a few millimeters in diameter).
  • nitrogen gas is sprayed into the charged droplet generation chamber 31 from the tip of the surrounding tube 34 around the tip of the metal thin tube 33. Nitrogen gas assists fogging of the charged droplets and cools the charged droplets.
  • the charged droplet beam D is transferred toward the vacuum acceleration chamber 41 in the cooled state. Nitrogen gas is discharged to the outside from the charged droplet generation chamber 31 through the exhaust port. Depending on the experimental conditions, it is not necessary to cool the charged droplets, but it is preferable to cool them.
  • a charged droplet is a volatile liquid.
  • nitrogen gas cools the charged droplets during the generation of the charged droplets and until the charged droplets reach the vacuum acceleration chamber 41.
  • the cooling temperature is preferably about immediately before the charged droplets solidify. However, it may not always be necessary to cool charged droplets. If the distance between the tip of the thin metal tube 33 and the small hole 34a of the charged droplet sampling orifice 34 is shortened (closed), the drying (vaporization) of the charged droplets can be prevented. .
  • the volatile liquid that forms charged droplets is typically an aqueous solution containing an electrolyte (for example, water with a weakly acidic or weakly alkaline solution such as acetic acid or ammonia) or water.
  • an electrolyte for example, water with a weakly acidic or weakly alkaline solution such as acetic acid or ammonia
  • water Etc. You can mix methanol or acetonitrile with water, or just methanol.
  • a charged droplet generator is an ultrasonic vibration device.
  • the charged droplet generation chamber 31 is at atmospheric pressure, but may be kept at a reduced pressure.
  • the charged liquid droplet generation chamber 31 may be opened to the atmosphere (for example, the peripheral wall is omitted).
  • An orifice 34 is provided at the boundary between the charged droplet generation chamber 31 and the vacuum acceleration chamber 41, and a small hole 34a is formed in the orifice 34. These small holes 34a are charged droplet introduction ports.
  • the charged droplet generation chamber 31 and the vacuum charged droplet acceleration chamber 41 communicate with each other through the charged droplet introduction port 34a.
  • the charged droplet group D sprayed from the tip of the thin metal tube 33 and formed into a beam shape moves in the charged droplet generation chamber 31 in the direction of the vacuum accelerating chamber 41 together with the cooling and transporting nitrogen gas. It is introduced into the vacuum acceleration chamber 41 through the small hole 34a.
  • an acceleration electrode 42 In the vacuum acceleration chamber 41, an acceleration electrode 42, a sample stage 43, and a mask 50 are provided.
  • the acceleration electrode 42 is applied with a positive or negative high voltage (opposite to the polarity of the charged droplet) (for example, 10 KV).
  • the charged droplet D introduced into the vacuum acceleration chamber 41 is accelerated and converged (focused) by the accelerating electrode 42, and obliquely collides with the sample S provided on the sample stage 43, and the ionized molecules are released from the sample. Release.
  • the inside of the mass spectrometer 10 and the vacuum acceleration chamber 41 communicate with each other through the ion inlet 1 1a opened in the skimmer 11.
  • the sample S (sample stage 43) is generated by the collision of charged droplets.
  • Ion molecules (or atoms) that have jumped out from the surface are introduced into the mass spectrometer 10 through the ion introduction port 1 1 a.
  • Charged droplet beam generated by the charged droplet generator 30 as described above The diameter (spread) of the (charged droplet group) is in the millimeter order.
  • the diameter of a charged droplet (cluster single ion) ranges from a few microns to a few nanometers. This is a giant cluster ion.
  • This giant clusterion beam is introduced from the charged droplet generation chamber 31 to the vacuum acceleration chamber 41 while maintaining a spread on the millimeter order, and is accelerated by the electric field of the acceleration electrode 42. For example, a kinetic energy of about 1 million eV (10 6 eV) is given to a single large cluster ion.
  • the specimen stage 43 holds, for example, a frozen biological specimen thin film S to prevent drying.
  • the accelerated cluster single ion strikes this biological sample thin film S (for example, a biological tissue sample placed on a substrate attached to a low-temperature refrigerator).
  • the thin film sample is vaporized within a short time of picoseconds.
  • Equal amounts of positive and negative ions are present in the desorbed ions, but ions are generated in a time period shorter than their recombination lifetime, preventing recombination (neutralization) of the generated ions.
  • Many ions are supplied into the mass spectrometer 10 from the vacuum acceleration chamber 41 through the ion inlet 11a. This enables highly sensitive mass spectrometry.
  • the mask 50 is on the flight path of the beam D by the charged droplet group accelerated in the vacuum acceleration chamber 41 and slightly before the sample stage 41, and its surface is the flight direction of the charged droplet beam (Z direction). It is arranged so that it is in the vertical direction (in line with the XY direction).
  • the mask 50 is driven by the driving device 60 so as to be slightly displaced two-dimensionally in the direction along the surface.
  • the mask 50 is a thin plate (preferably an insulating plate) 50 in which fine holes 50a are formed. , It is supported on a stage (not shown) that can move in the Y direction.
  • the displacement of the mask 50 in the X direction is driven by the piezo element 61, and the displacement in the Y direction is driven by the piezo element 62.
  • the driving device 60 includes piezo elements 61 and 62.
  • mechanical devices other than piezo elements may be used.
  • the cluster ion beam can be deflected by an electric field to adjust the ion beam with the maximum intensity.
  • the surface of the mask 50 is perpendicular to the flight path of the charged droplet group.
  • the spread of the charged droplet group D in the order of millimeters is mostly limited by the mask 50 and does not reach the sample S.
  • a part of the charged droplets passes through the fine hole 50a of the mask 50 and collides with the sample as described above to ionize the sample.
  • the sample For example, with a spread of diameters 3 mm (beam diameter) charged droplets beam diameter of several mu [pi! It collides with sample S, limited to a beam with a size of ⁇ 0.1 ⁇ m.
  • the position of the sample where the charged droplet collides is limited to a small range.
  • the mask 50 By moving the mask 50 in the X and Y directions, the position of the specimen where the charged droplet collides can be changed. Therefore, two-dimensional molecular level information can be obtained by two-dimensionally scanning the impact position of the charged droplet on the surface of the sample.
  • the mask 50 determines the position where the charged droplets collide on the sample surface. If the collision position of charged droplets is fixed, distribution information in the depth direction at the molecular level can be obtained. As described above, one-dimensional or two-dimensional information on the molecular level of the sample surface layer can be obtained by displacing the collision position of the charged droplets one-dimensionally or two-dimensionally. Instead of displacing (scanning) the mask 50, even if the sample stage 43 is displaced (scanning) Also good. If possible, charged droplets can be deflected by an electric or magnetic field and scanned.
  • the mask 50 is formed by superposing two mask plates 51, 52 on which fine slits 51a, 52a intersecting each other are formed, so that the fine slits 51a, 52 are overlapped.
  • the crossing position of a may be a fine hole.
  • the mask plate 51 is supported so as to be displaceable in the X direction, and is driven in the X direction by the piezo element 61.
  • the mask plate 52 is supported so as to be displaceable in the Y direction, and is driven in the Y direction by the piezo element 62.
  • FIG. 4 shows an etching apparatus 20 A combined with a mass spectrometer.
  • the same components as those shown in Fig. 1 are denoted by the same reference numerals, and redundant explanation is avoided.
  • etching solution including an aqueous solution
  • the charged droplets of the etching solution generated by electrospray at atmospheric pressure are guided into the vacuum, and this is accelerated with a potential difference of about 10 kV, and the target Su is impacted.
  • Hydrofluoric acid, dilute nitric acid, acetic acid, etc. can be used as the etching solution for generating electrospray.
  • Atomic level etching of silicon or silicon oxide can be performed by impact of charged droplets of hydrofluoric acid.
  • Atomic level etching of metal thin films can be performed by impact of charged droplets of dilute nitric acid.
  • Atomic and molecular level etching of organic thin film materials can be performed by charged droplet impact of acetic acid.
  • the etching solution may be just water or an organic solvent.
  • the etching solution needs to have a chemical reaction with the object. Absent.
  • the etching solution may be an aqueous solution, an organic solvent (for example, methanol), or an organic solvent in an aqueous solution.
  • the etching solution only needs to be multivalently charged.
  • water pure water
  • charged droplets are more likely to be generated by the electric-orifice spray method when an electrolyte such as acetic acid or ammonia is dissolved in water to form an aqueous solution.
  • the charged droplets are desirably multivalent charged droplets having a charge of several tens or hundreds.
  • Etching with water is possible because various reactive species are generated in the region of the shock wave generated at the collision interface between the charged droplet and the sample, which etches metals, semiconductors, insulators, etc. It is. Such an etching action is a reactive individual etching, which enables layer-by-layer etching at the atomic level. In etching using such cluster ions, craters are not generated on the surface, so that only the surface can be etched without damage inside the sample.
  • the second difference from the method shown in Fig. 1 is that a holding base 43A is provided in the vacuum acceleration chamber 41 in place of the sample base.
  • the object to be etched Su is fixedly held on the holding table 43A.
  • Nitrogen gas is not necessarily used. It is not always necessary to cool charged droplets. By introducing or filling the charged droplet generation chamber 31 with high-purity nitrogen gas at a temperature close to room temperature, contamination of impurities can be suppressed. It is not always necessary to provide the mask 50. Charged droplets are multivalent
  • the charged droplet beam can be swept in two orthogonal directions (X and Y directions) by the deflection electrode. Sweep charged droplet beam or holder 43 A
  • this supercritical state relaxes (cools) in about picoseconds, so the inside of the film is not damaged.
  • the thickness of the film that desorbs from the surface is limited to a few atoms (molecules), so there are ultra-fine processing techniques and layer-by-layer surface analysis techniques. This is the optimal etching method.
  • FIG. 6 shows another embodiment of the etching method op- eration apparatus.
  • An electrospray device 32B with a metal tube 33B to which a high voltage is applied is installed outside the main body of the etching device 20B and is exposed to the atmosphere.
  • an electrospray device 32B may be installed in the charged droplet generation chamber.
  • the electrospray device 32B generates charged droplets of the etching solution.
  • the main body of the etching apparatus 20B includes a roughing chamber 71, an adjustment chamber 72, and a vacuum acceleration chamber 41B of the acceleration device 40B. These chambers 71, 72, and 41B are connected in a straight line. .
  • the roughing chamber 71 has a slightly low degree of vacuum exhausted by a rotary pump or the like.
  • the adjustment chamber 72 and the vacuum acceleration chamber 41B are kept at a high vacuum.
  • the adjustment chamber 72 is provided with a quadrupole ion guide 73.
  • the charged droplets of the etching solution generated in the electrospray device 32 B enter the roughing chamber 71 through the fine holes 71 a of the orifice in the roughing chamber 71, and further enter the adjusting chamber 72 through the fine holes 72 a. Then, the spread is suppressed by the ion guide 73 and a confined charged droplet beam is formed.
  • a high-frequency electric field is applied to the ion guide 73, and only charged droplets with a relatively large charge and mass are selected.
  • the selected charged droplet beam is introduced into the vacuum accelerating chamber 41B through the fine hole 41a.
  • an acceleration electrode 42B In the vacuum acceleration chamber 41B, an acceleration electrode 42B, a deflection electrode 44, and a holding table 43B are arranged in this order. An object Su to be etched is fixed on the holding table 43B.
  • the charged droplet beam is accelerated by the acceleration electrode 42B to which a high voltage is applied. Colliding with the object S u, the object S u is etched as described above. In this embodiment, the charged droplet beam collides perpendicularly with the surface of the object Su. When the charged droplet beam passes between the deflection electrodes 44, it is swept according to the sweep voltage applied to the deflection electrodes 44. Therefore, the charged droplet scans the surface of the object.
  • the charged droplet may be swept by a magnetic field by energizing the coil.
  • the holder 43B may be scanned two-dimensionally.
  • a mask can also be provided.
  • FIG. 7 shows an etching apparatus 20 C used in the experiment.
  • This etching device 20 C is a force s that is combined with the time-of-flight mass spectrometer 10, and the basic structure is the same as the etching device 20B shown in FIG. Add a sign to avoid duplication.
  • the roughing chamber 71 is provided with a ring lens 71b, and the adjustment chamber 72 is divided into two chambers 72A and 72B which are separately evacuated, and the high-frequency quadrupole ion guide is divided into these two chambers 72A and 72B. 73 is provided.
  • the ions released from the surface of the target S u are collected by the extraction electrode 19, placed in the introduction chamber 14 of the mass spectrometer 10, and passed through the high-frequency quadrupole ion guide 16 into which N 2 gas has been introduced. It converges and slows down (collision / dubbing) and is guided into the analysis chamber 17.
  • the vacuum acceleration chamber 41B is also provided with an entrance 18 for the object Su.
  • a 1 M acetic acid aqueous solution is used, and as shown in Fig. 5A, about 100-valent water molecules collide with the target Su at a speed of about 10 times the speed of sound (12 Km / s).
  • Figure 8 shows the case where a 10ML (monolayer) gramicidin layer is formed on a 100ML (monolayer) arginine (Arg) layer as the object (sample). Shows the obtained mass spectrometry results. side The axis shows time (minutes) and the vertical axis shows relative intensity. First, the upper gramicidin is etched, and then the lower arginine is gradually etched. In other words, it can be seen that etching is being performed layer-by-layer or close to this.
  • Figure 9 shows the experimental results obtained when using an object (S n (1 nra) on S i) with a 1 nm thick tin (S n) foil on silicon.
  • Etching is initially tin (S n) (+ S n , H + (S n O), ⁇ + (S ⁇ ⁇ ) 2) dominant for gradually silicon ( ⁇ + (S i O 2 ) 2, It can be seen that H + (S i O 2 ) 3 ) is etched.
  • Tin (Sn) one of the metals, is etched layer-by-layer or close to it.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • ing And Chemical Polishing (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

A beam of a population of charged drops on micron order is produced within a charged drop generation chamber (31), for example, by various electrosprays (for example, nanoelectrosprays) (32) including cold electrosprays and is accelerated by a high voltage electric field of about 10 kV within a vacuum acceleration chamber (41) to impact the beam against a biological sample thin film coated onto a cooled sample substrate to achieve ionization of a biopolymer. A mask (50) is disposed in front of the sample substrate to restrict the spreading of beam-shaped charged drops, and only charged drops passed through a micropore (50a) in a mask (50) are allowed to collide against the sample. The position of collision of charged drops can be varied by changing the position of the mask (50) to obtain two-dimensional information (imaging). Charged drops of an etching solution (including an aqueous solution) are produced and are led to a vacuum acceleration chamber (41, 41B). The charged drops are accelerated toward the position of an object Su by an electric field formed within the acceleration chamber and are allowed to collide against the surface of the object, whereby the surface of the object is etched in a layer-by-layer state or in a state closed to the layer-by-layer state.

Description

イメージングが可能なクラスタイオン衝擊によるィ  Due to cluster ion impact that can be imaged
オン化方法おょぴ装置ならぴにエッチング方法およ ぴ装置 明  Etching method and device
技術分野  Technical field
この発明は, イメージングが可能なクラスタイオン衝撃によるイオン 書  The present invention provides an ion book by cluster ion bombardment capable of imaging.
化方法および装置に関し, 特に薬物, 可塑剤, 顔料, フラーレン, アミ ノ酸, ペプチド, タンパク質の分子や D N A分子などの環境科学関連, ライフサイエンス関連試料 (生体高分子試料を含む) の質量分析のため に好適で, かつ試料の分子レベル空間情報 (とくに二次元分布情報) の 取得 (イメージング) が可能なイオン化方法おょぴ装置に関する。 さら にこの発明はク ラスタイオン衝撃による材料表面 (金属, 半導体材料を 含む) の微細なエッチング方法および装置に関する。 In particular, the mass spectrometry of environmental science-related and life science-related samples (including biopolymer samples) such as drugs, plasticizers, pigments, fullerenes, amino acids, peptides, protein molecules, and DNA molecules. The present invention relates to an ionization method opto-apparatus that is suitable for this purpose and can acquire (imaging) molecular level spatial information (particularly two-dimensional distribution information) of a sample. Furthermore, the present invention relates to a fine etching method and apparatus for material surfaces (including metals and semiconductor materials) by cluster ion bombardment.
背景技術 Background art
従来の生体試料のイメージングには, マ ト リ ックス支援レーザー脱離 イオン化法 (MA L D I ) と, イオン衝撃法 (F A B Z S I M S ) が主 に禾 II用されてレヽる。 たと ^は, " Imaging mass spectrometry: a new t ool to investigate the spatial organization of peptides and prot eins in mammalian tissue sections" Current Opinion in Chemical B iology 2002, 6, 676-681 , "Direct molecular imaging of Lymnaea s tagnal is nervous tissue at subcellular spatial resolution by mas s spectrometry" Anal. Chera. 2005, 77, 735 - 741を参照。  Matrix-assisted laser desorption / ionization (MALDI) and ion bombardment (FABZSIMS) are mainly used for conventional biological imaging. Tato ^ is "Imaging mass spectrometry: a new tool to investigate the spatial organization of peptides and proteins in mammalian tissue sections" Current Opinion in Chemical Biology 2002, 6, 676-681, "Direct molecular imaging of Lymnaea s tagnal is nervous tissue at subcellular spatial resolution by mass spectrometry "See Anal. Chera. 2005, 77, 735-741.
MA L D I は, レーザーを試料に照射し, これによるエネルギーによ りマ ト リ ッタスがアブレーションを受けて試料が脱離, イオン化されて 分析されるものである。 このため, レーザー光 (一般的には 337nraの波長 ) を吸収するマ ト リ ックス (例えばシナピン酸) を試料に塗布する必要 がある。 試料表面にマ ト リ ックス剤が塗布されているため, 生体試料の ィメ一ジング測定に際してケミカルノィズが発生するという問題がある。 また, レーザー照射で, 表面深く試料がダメージを受けるので, 破壊分 析となってしま う という問題もある。 さらに, レーザー光の集光 (スポ ッ トサイズ) に限界があり (Bragg回折条件) , その上, 照射箇所が激し くスパッターされるので, 高分解能のイメージング像を得ることが本質 的に難しい。 一回のレーザー照射で, 多く のマ ト リ ックスや生体試料そ のものが飛散するので, 深さ方向分析には向かず, 検出感度も低いとい う問題がある。 MA LDI irradiates a sample with a laser and uses the energy from this. The sample is desorbed and ionized by the ablation of the matrix and analyzed. For this reason, it is necessary to apply a matrix (for example, sinapinic acid) that absorbs laser light (generally a wavelength of 337 nra) to the sample. Since a matrix agent is applied to the sample surface, there is a problem in that chemical noise occurs when imaging a biological sample. Another problem is that the sample is damaged by laser irradiation, which causes damage to the sample. In addition, there is a limit to laser beam focusing (spot size) (Bragg diffraction conditions), and the irradiated area is sputtered severely, making it difficult to obtain high-resolution imaging images. Since many matrices and biological samples themselves are scattered by a single laser irradiation, they are not suitable for depth analysis and have low detection sensitivity.
F A B Z S I M Sでは, 高速原子, イオンを使用するので, 一次衝撃 粒子が深く試料に侵入し, 試料を化学的に激しく破壊するという問題が ある。  Since F A B Z S I M S uses fast atoms and ions, there is a problem in that the primary impact particles penetrate deeply into the sample and destroy it violently chemically.
既に発明者は 「クラスタイオン衝撃によるイオン化方法おょぴ装置」 (. electrosprayed droplet impact ionization) (E D I ) ¾:淀案 し 7こ (WO 2 0 0 5 / 0 8 3 4 1 5 A 1 ) 。 この E D I法によれば, 生 体試料, 薬物などを破壊することなく, 極めてソフ トに脱離, イオン化 ができる。 これは, E D I で用いる多価イオンクラスターの単位質量に 対するエネルギーが 1 eV/u 以下なので, 衝撃波加熱のみによって表面 層数分子のみが脱離, イオン化されるためである。  The inventor has already described “ionization method by cluster ion bombardment” (. Electrosprayed droplet impact ionization) (E D I) ¾: proposal 7 (WO 2 0 0 5/0 8 3 4 1 5 A 1). This EDI method enables extremely soft desorption and ionization without destroying biological samples or drugs. This is because the energy per unit mass of the multiply-charged ion cluster used in EDI is less than 1 eV / u, and only the surface layer molecules are desorbed and ionized only by shock wave heating.
他方, シリ コン系半導体の微細化は, 数 100オングス トロームの膜厚に まで進んでいる。 このような薄膜は, プラズマ C VDや MB E (raolecu lar beam epitaxy) などを用いて製作されている。 膜を堆積する技術は 大きな進展を見せているが, —且生成した膜を再現性よく , 原子レベル でエッチングし, 除去する技術は開発が遅れている。 プラズマエツチン グでは, イオンの衝撃によるスパッタ リ ングが主過程となり, 極薄膜の 損傷が避けられない。 また, アルゴン原子 (あるいはイオン) ビームを 使用する技術 ( S I M S ) もあるが, 薄膜の表面数原子層のみをエッチ ングすることができず, 薄膜の内部構造が損傷を受け, 極精細半導体技 術への応用が難しい。 このような産業界の行き詰まりを打破するには, 内部構造を全く損傷せず, 表面数原子 (分子) 層のみをエッチングする ブレークスルー技術の開発が必須となっている。 発明の開示 On the other hand, the miniaturization of silicon-based semiconductors has progressed to a thickness of several hundred angstroms. Such thin films are manufactured using plasma CVD or MBE (raole molecular beam epitaxy). The technology for depositing films is making great progress, but—and the resulting films are reproducible at the atomic level. The technology for etching and removing at this time has been delayed. In plasma etching, spattering by ion bombardment is the main process, and damage to the ultrathin film is inevitable. There is also a technology (SIMS) that uses an argon atom (or ion) beam, but only a few atomic layers on the surface of the thin film cannot be etched, and the internal structure of the thin film is damaged, resulting in extremely fine semiconductor technology. Application to is difficult. In order to overcome this industrial deadlock, it is essential to develop breakthrough technology that etches only a few atomic (molecular) layers without damaging the internal structure at all. Disclosure of the invention
この発明は, 上記のクラスタイオン衝撃を利用したイオン化方法およ ぴ装置をィメージングが可能なよ うに改良した方法および装置を提供す るものである。  The present invention provides a method and apparatus in which the above ionization method and apparatus using cluster ion bombardment are improved so that imaging can be performed.
さらにこの発明は上記のクラスタイオン衝撃によるイオン化方法およ び装置を利用したエッチング方法おょぴ装置を提供するものである。 この発明によるクラスタイオン衝撃によるィオン化方法は, 揮発性の 液体の帯電液滴を大気圧下でエレク トロスプレー法によって生成して, 生成した帯電液滴を真空室に導き, 真空室内に形成した電場によって帯 電液滴を試料の位置に向けて加速し, 試料の位置の前方に配置したマス クの微細孔によって試料に衝突する帯電液滴のビームの広がり (ビーム 径) を制限するものである。 この発明によるイオン化方法は質量分析方 法に利用でき, この場合には生成されたイオンを質量分析装置に導く。 揮発性の液体による帯電液滴はその多数が集団となって連続的に生成 され, 加速されて一種のビームとなって試料に向って進んでいく。 この ような帯電液滴ビームの広がり (ビーム径) が試料の前方に配置された マスクによって制限され, マスクの微細孔を通過した一部の帯電液滴が 試料に衝突する。 このよ うにして, 試料に衝突する帯電液滴の位置と範 囲を制御することができる。 帯電液滴の衝突位置を固定しておけば, 試 料の深さ方向の情報を得ることができるし, 衝突位置を試料表面に対し て二次元的に走査すれば, 試料表面層の分子の二次元分布情報を得るこ とができる。 Furthermore, the present invention provides an etching method and an optical apparatus utilizing the above-described ionization method and apparatus by cluster ion bombardment. In the ionization method by cluster ion bombardment according to the present invention, charged droplets of a volatile liquid are generated by an electrospray method under atmospheric pressure, and the generated charged droplets are guided to a vacuum chamber and formed in the vacuum chamber. The charged droplet is accelerated by the electric field toward the sample position, and the spread of the beam (beam diameter) of the charged droplet that collides with the sample is limited by the fine holes in the mask placed in front of the sample position. is there. The ionization method according to the present invention can be used for mass spectrometry, in which case the generated ions are guided to a mass spectrometer. A large number of charged droplets of volatile liquid are continuously generated as a group and accelerated to form a beam that travels toward the sample. The spread (beam diameter) of the charged droplet beam is limited by the mask placed in front of the sample, and some of the charged droplets that have passed through the fine holes in the mask Collide with sample. In this way, the position and range of the charged droplets that collide with the sample can be controlled. If the collision position of the charged droplet is fixed, information on the depth direction of the sample can be obtained, and if the collision position is scanned two-dimensionally with respect to the sample surface, the molecules of the sample surface layer Two-dimensional distribution information can be obtained.
この発明は, 特に, 帯電液滴を試料に衝突させるべき位置を, 上記微 細孔の位置によって定めることにより, その利用価値が高まる。  In particular, the present invention increases its utility value by determining the position where the charged droplet should collide with the sample by the position of the micropore.
二次元分布情報を得るために, 上記マスクの微細孔と試料の少なく と もいずれかを相対的に二次元的に走査するようにすればよい。この場合, マスクの微細孔と試料が必ずしも平行に変位する必要はなく, 傾いてい てもよい。 特殊な形態では, 上記マスクの微細孔を試料に対して二次元 的に走査する。 加えて, 帯電液滴を電界または磁界により走査してもよ い。  In order to obtain two-dimensional distribution information, at least one of the fine holes in the mask and the sample should be scanned relatively two-dimensionally. In this case, the mask microhole and the sample do not necessarily have to be displaced in parallel, but may be inclined. In a special form, the fine holes in the mask are scanned two-dimensionally with respect to the sample. In addition, charged droplets may be scanned by electric or magnetic fields.
上記微細孔はマスクに形成された一つの微細孔であってもよいし, 2 つのマスク部材に形成された 2つの交叉する微細ス リ ッ トによって形成 することもできる。  The fine hole may be a single fine hole formed in a mask or may be formed by two intersecting fine slits formed in two mask members.
上記イオン化方法を用いて質量分析方法を実現することもでき, この 場合には, 帯電液滴の衝突によって脱離, イオン化された試料のイオン を質量分析装置に導入する。  A mass spectrometry method can also be realized using the ionization method described above. In this case, ions of the sample that have been desorbed and ionized by the collision of charged droplets are introduced into the mass spectrometer.
揮発性の液体と しては水が好ましいがメタノールゃエタノールでもよ い。水には,水に弱酸性溶液,弱アル力リ性溶液を添加したものを含む。 帯電液滴の生成を容易にするために水に電解質を溶かして水溶液と し, これを帯電液滴の液体と して用いるとよい。  The volatile liquid is preferably water, but methanol or ethanol is also acceptable. Water includes water with the addition of weakly acidic solutions and weakly alkaline solutions. In order to facilitate the generation of charged droplets, it is recommended that an electrolyte be dissolved in water to form an aqueous solution, which is used as the charged droplet liquid.
この発明によるイオン化装置は, 質量分析装置のイオン導入口の外側 に設けられ, 上記イオン導入口を通して質量分析装置の内部と連通し, 内部に加速電極とマスク と試料台が配置された真空加速室を有する加速 装置, および上記真空加速室の液滴導入口を通して上記真空加速室と連 通する帯電液滴生成室を備え, この帯電液滴生成室内において, 揮発性 の液体の帯電液滴を生成する帯電液滴生成装置を備え, 上記マスクは微 細孔を有し, 試料台の前方に配置され, 試料台とマスクの微細孔とは試 料台の面の方向に関連して ( 「関連して J とは, マスク の微細孔と試料 台の面とが必ずしも平行に変位せず, 斜め方向に変位してもよいことを 含むことを意味する) 相対的に位置調整可能に設けられ, 上記帯電液滴 生成装置によつて生成された帯電液滴が上記帯電液滴生成室から上記液 滴導入口を通して上記真空加速室に導かれ, 高電圧が印加された上記加 速電極によって加速されると ともに上記マスクの微細孔によってその広 がりが制限され, 上記微細孔を通過した帯電液滴が上記試料台上の試料 に衝突し, これによつて脱離, イオン化された試科のイオンが上記ィォ ン導入口を通して質量分析装置に導入されるようになされているもので ある。 The ionization apparatus according to the present invention is provided outside the ion inlet of the mass spectrometer, communicates with the inside of the mass spectrometer through the ion inlet, and has a vacuum acceleration chamber in which an acceleration electrode, a mask, and a sample stage are arranged. Acceleration with A charged droplet generation chamber that communicates with the vacuum acceleration chamber through a droplet inlet of the vacuum acceleration chamber, and a charged liquid that generates charged droplets of a volatile liquid in the charged droplet generation chamber. The mask has micropores and is placed in front of the sample stage. The sample stage and the micropores in the mask are related to the direction of the surface of the sample stage. Means that the fine holes of the mask and the surface of the sample stage are not necessarily displaced in parallel, but may be displaced in an oblique direction. The charged droplets generated by the droplet generator are guided from the charged droplet generation chamber to the vacuum acceleration chamber through the droplet inlet and accelerated by the acceleration electrode to which a high voltage is applied. The spread is limited by the fine holes in the mask. The charged droplets that have passed through the fine holes collide with the sample on the sample stage, and as a result, desorbed and ionized ions from the specimen are introduced into the mass spectrometer through the ion inlet. It is designed to be
真空加速室と液滴生成室はこれらの間が特に区切られている必要はな く, 単に領域 (空間) を分けただけのものでもよい (一部重複していて もよい) 。  The vacuum accelerating chamber and the droplet generating chamber do not need to be separated from each other, and may be simply divided into regions (spaces) (may be partially overlapped).
上記のイオン化装置を用いて, この発明によるィオン化方法を実現す ることができる。  The ionization method according to the present invention can be realized by using the above ionizer.
帯電液滴の生成には, 好ましくはエレク ト ロスプ ー法を用いる。 温 度制御された冷たい窒素 (N 2 ) ガスを併用すると, 冷却と帯電液滴の 生成 (噴霧) と真空室 (真空加速室) への移送とを効率的に行うことが できる。 帯電液滴の生成は大気圧下 (減圧された状態を含む) で行う こ とができる。 大気圧下で帯電液滴を生成する場合, エレク トロスプレー 法による帯電液滴の発生を効率よく行う ことを目的と して, 窒素ガス ( 冷却してもよい) をネプライザ一ガスと して用いるとよい。 大気圧下で 2007/057328 The electrospray method is preferably used to generate charged droplets. When cold nitrogen (N 2 ) gas with controlled temperature is used in combination, cooling, generation of charged droplets (spraying), and transfer to the vacuum chamber (vacuum acceleration chamber) can be performed efficiently. The generation of charged droplets can be performed under atmospheric pressure (including reduced pressure). When generating charged droplets under atmospheric pressure, nitrogen gas (which may be cooled) is used as the nebulizer gas for the purpose of efficiently generating charged droplets by the electrospray method. Good. Under atmospheric pressure 2007/057328
6 の帯電液滴生成室 (イオン源) は, 大気圧外気と隔絶した空間 (閉空間 ) とすることが望ましい。 これは, 大気圧の外気 (実験室内空気) によ つてエレク トロスプレー装置を含むイオン源の気体が汚染される可能性 があるからである。清浄な窒素ネブライザ一ガスを使用することによ り, ィオン源内大気圧ガスは汚染されることがない。  It is desirable that the charged droplet generation chamber (ion source) in Fig. 6 is a space (closed space) isolated from the atmospheric air. This is because atmospheric air (laboratory air) can contaminate the ion source gas, including the electrospray device. By using a clean nitrogen nebulizer gas, atmospheric pressure gas in the ion source is not contaminated.
この発明によると (特に上記エレク トロスプレー法によると) , ミク 口ンオーダの帯電液滴集団によるビームを生成することが可能である。 帯電液滴ビームはこのミクロンオーダの液滴サイズ (ビームの広がり, 又はビームの径) を保ったまま, 真空室 (真空加速室) 内にサンプリ ン グされる。 さらに, 試料に衝突する前にマスクによってビーム径が制限 され, 微細孔を通過することによりサブミクロンオーダの帯電液滴ビー ム径となる。  According to the present invention (especially according to the above-mentioned electrospray method), it is possible to generate a beam by a charged droplet group of a micro-order. The charged droplet beam is sampled in the vacuum chamber (vacuum acceleration chamber) while maintaining the micron-order droplet size (beam spread or beam diameter). In addition, the beam diameter is limited by the mask before colliding with the sample, and the charged droplet beam diameter is on the order of submicron by passing through the microhole.
このよ うなクラスタイオンが真空室 (真空加速室) 内で電場により加 速され, これによつて運動エネルギーが付与され, 試料 (たとえば生体 試料薄膜) を衝擊する。 衝突界面において衝撃波が発生し, 試料がピコ 秒オーダーで脱離, イオン化される。  Such cluster ions are accelerated by an electric field in the vacuum chamber (vacuum acceleration chamber), which gives kinetic energy and impinges on the sample (for example, a biological sample thin film). A shock wave is generated at the collision interface, and the sample is desorbed and ionized in picosecond order.
ク ラスタイオンで試料を衝撃しているので, 衝突時にターゲッ ト分子 の電子, 振動励起が起こると同時に, 試料薄膜中の分子の運動エネルギ 一も効率よく励起される。 このようにして, 試料はクラスタイオンによ つてソフ トに衝撃を受けるので, 数万を超える分子量の分子であっても 損傷を受けずにィオン化される。  Since the sample is bombarded with cluster ions, the target molecules are excited by electrons and vibration at the same time, and the kinetic energy of the molecules in the sample film is also efficiently excited. In this way, the sample is impacted by the soft ion due to the cluster ions, so even molecules with molecular weights exceeding tens of thousands are ionized without being damaged.
また, 正, 負イオン同士の再結合寿命より も短いピコ秒という短時間 内に試料が気化され, イオン化されるので, 正, 負イオン同士の再結合 が抑制され, 発生したィオンを効率よく質量分析装置に導く ことができ る。  In addition, since the sample is vaporized and ionized within a short period of picoseconds shorter than the recombination lifetime between the positive and negative ions, recombination between the positive and negative ions is suppressed, and the generated ions are efficiently massed. It can be led to an analysis device.
用いる生体試料と しては, その乾燥を防ぐために凍結したものを用い T/JP2007/057328 As a biological sample to be used, use a frozen sample to prevent its drying. T / JP2007 / 057328
7 るとよいが, この発明は乾燥した試料にも適用できるのはいうまでもな レ、。  However, it goes without saying that this invention can also be applied to dried samples.
また,この発明は帯電液滴を利用したエッチング方法を提供している。 この発明によるエッチング方法は, エッチング用溶液の帯電液滴を生 成して真空室に導き, 真空室内に形成した電場によって帯電液滴を対象 物の位置に向けて加速し, 対象物表面に衝突させ, これによつて対象物 表面をエッチングするものである。  The present invention also provides an etching method using charged droplets. In the etching method according to the present invention, charged droplets of the etching solution are generated and guided to the vacuum chamber, and the charged droplets are accelerated toward the position of the object by the electric field formed in the vacuum chamber and collide with the surface of the object. Thus, the surface of the object is etched.
この発明によるェツチング装置は, 大気圧下でェツチング用溶液の帯 電波滴を生成する帯電液滴生成装置, および内部に加速電極と対象物を 保持する保持台とが配置されるとともに上記帯電液滴生成装置で生成さ れた帯電液滴の微細導入孔が形成された真空加速室を有し, 上記帯電液 滴生成装置において生成され上記微細導入孔を通して導入された帯電液 滴を, 高電圧が印加された上記加速電極で加速して上記保持台に保持さ れた対象物の表面に衝突させ, 対象物の表面をエッチングする加速装置 を備えているものである。  The etching device according to the present invention includes a charged droplet generator that generates a droplet of an etching solution under atmospheric pressure, and an accelerating electrode and a holding table for holding an object, and the charged droplet. It has a vacuum accelerating chamber in which fine charged holes for charged droplets generated by the generator are formed, and the charged liquid droplets generated by the charged droplet generator and introduced through the fine introduced holes are subjected to high voltage. An acceleration device is provided that accelerates the applied acceleration electrode to collide with the surface of the object held on the holding table and etches the surface of the object.
帯電液滴は, 大気圧下でのエレク トロスプレーで発生することができ る。 エレク トロスプレー発生用の溶液 (エッチング用溶液, 主に水溶液 ) と して, フッ化水素酸, 稀硝酸, 酢酸などを用いることができる。 フ ッ化水素酸の帯電液滴衝撃により, シリ コンまたは酸化シリ コンの原子 レベルエッチングを行う ことができる。 稀硝酸の帯電液滴衝撃によ り , 金属薄膜の原子レベルェツチングを行う ことができる。 酢酸水溶液の帯 電波滴衝撃によっても, 有機薄膜材料や無機材料 (金属, 半導体, 絶縁 体など) の原子, 分子レベルェツチングを行う ことができる。  Charged droplets can be generated by electrospray at atmospheric pressure. Hydrofluoric acid, dilute nitric acid, acetic acid, etc. can be used as the solution for generating the electrospray (etching solution, mainly aqueous solution). Atomic level etching of silicon or silicon oxide can be performed by impact of charged droplets of hydrofluoric acid. Atomic level etching of metal thin films can be performed by impact of charged droplets of dilute nitric acid. Atom and molecular level etching of organic thin film materials and inorganic materials (metals, semiconductors, insulators, etc.) can also be performed by electromagnetic wave impact of acetic acid aqueous solution.
ェツチング用溶液は対象物と化学反応を生じさせるものである必要は ない。 エッチング用溶液は水溶液でもよく, 有機溶媒 (たとえばメタノ ール) でもよい, または水溶液に有機溶媒を入れたものでもよい。 要す 8 るに, エッチング用溶液は多価に帯電するものであればよい。 たとえば 水 (純水) をエッチング用溶液と して用いることができる。 もっとも, 水に酢酸やアンモニア等の電解質を溶かして水溶液とする方がェレク ト ロスプレー法によつて帯電液滴が生成しやすい。 帯電液滴は数十価ない し数百価の電荷を帯びた多価帯電液滴であることが望ましい。 The etching solution need not cause a chemical reaction with the object. The etching solution may be an aqueous solution, an organic solvent (for example, methanol), or an organic solvent in an aqueous solution. Need In other words, the etching solution only needs to be multivalently charged. For example, water (pure water) can be used as the etching solution. However, charged droplets are more likely to be generated by the electrospray method when an electrolyte such as acetic acid or ammonia is dissolved in water to form an aqueous solution. The charged droplets are desirably multivalent charged droplets having a charge of several tens or hundreds.
生成された帯電液滴をイオン · ガイ ドに通し, 帯電した電荷が相対的 に大きい液滴のみを選別して加速装置に導き,加速することが好ましレ、。 帯電液滴は上述のように多価に帯電したものであるから電場によって きわめて高速に (たとえば音速の 10倍程度) に加速することが可能であ る。  It is preferable to pass the generated charged droplets through the ion guide, select only the droplets with a relatively large charged charge, guide them to the accelerator, and accelerate. Since charged droplets are charged with multiple charges as described above, they can be accelerated by an electric field at a very high speed (for example, about 10 times the speed of sound).
この発明は, 多価 (たとえば質量が 1000万 (u ) , 価数が 100価, また はサイズがもっと大きくかつ価数がもっと多い) の帯電液滴を高速に加 速して対象物 (材料) 表面に衝突させる技術を基盤とする。 多価 (たと えば 100価) の電荷をもつ帯電液滴が高速で固体表面に衝突すると, 界面 に衝撃波が発生する。 この衝撃波で生成する界面のガスは, 水の超臨界 流体 (水) の臨界極限をはるかに超える極限的超臨界流体ガスである。 界面における衝突は, コヒーレン ト (衝突する水分子がすべて同一方向 をもって基板と衝突すること) に行われるので, 現象の再現性が極めて 高い。 しかも, この超臨界状態は, 高速なエネルギーの散逸過程によつ てピコ秒程度で緩和 (冷却) するので, 膜内部が損傷を受けない。 さら に, 表面から脱離する膜厚は数原子 (分子) 層に限定されるので, 最適 な超精細加工技術となる。 エレク トロスプレーするェッチング用溶液の 種類を選択することによって, 上述のように各種半導体 ( S i , G eな ど) , 酸化シリ コン (半導体酸化物) , 絶縁体, 有機材料薄膜など, そ して金属 (ステンレス鋼, ニッケル, 鉄, 銅, スズ, 金, 銀など) まで も, 原子レべノレでのレイヤー . ノ ィ · レイヤー ( l ayer-by- l ayer; で, またこれに近い状態でエッチングすることが可能となる。 イオン源 (帯 電液滴源) は大気圧エレク トロスプレ一であるので, 半導体製造装置へ の搭載が容易であり, 原理が簡単なので, 熟練した技術も必要ない。 簡 単かつ高効率, 安価な技術である。 The present invention accelerates charged droplets of a multivalent number (for example, a mass of 10 million (u), a valence of 100, or a larger size and a higher valence) at high speed. ) Based on the technology of collision with the surface. When charged droplets with multivalent (for example, 100) charges collide with a solid surface at high speed, a shock wave is generated at the interface. The interface gas generated by this shock wave is a supercritical fluid gas that far exceeds the critical limit of water supercritical fluid (water). Since collisions at the interface are coherent (all colliding water molecules collide with the substrate in the same direction), the reproducibility of the phenomenon is extremely high. In addition, this supercritical state is relaxed (cooled) in about picoseconds by the fast energy dissipation process, so the inside of the film is not damaged. In addition, the film thickness that desorbs from the surface is limited to a few atoms (molecules), making it an optimal ultra-fine processing technology. By selecting the type of etching solution to be electrosprayed, various semiconductors (Si, Ge, etc.), silicon oxides (semiconductor oxides), insulators, organic material thin films, etc. Even metals (stainless steel, nickel, iron, copper, tin, gold, silver, etc.) can be layered at atomic level, with a layer of layer-by-layer. Moreover, it becomes possible to perform etching in a state close to this. Since the ion source (electrostatic droplet source) is an atmospheric pressure electrical spray, it can be easily installed in semiconductor manufacturing equipment, and the principle is simple, so no skilled technology is required. It is a simple, highly efficient and inexpensive technology.
帯電液滴は電荷微粒子であるから, そのビームを, 偏向電極によって 直交する 2方向 (X , Y方向) に掃引することが可能である。 帯電液滴 ビームまたは対象物 (その保持台) を X Y方向に ( 2次元的に) 広範囲 に掃引または走査することにより, 大面積加工技術を実現することも可 能である。 大面積高精細半導体材料, 金属, 有機薄膜, 絶縁体膜などの 精密加工が可能となる。 微細パターンの形成には, マスクを用いて必要 な部分のみをェツチングすればよい。  Since charged droplets are charged fine particles, the beam can be swept in two orthogonal directions (X and Y directions) by a deflection electrode. Large-area machining technology can be realized by sweeping or scanning the charged droplet beam or target (its holding base) in a wide range (two-dimensionally) in the X and Y directions. Precision processing of large-area high-definition semiconductor materials, metals, organic thin films, and insulator films is possible. To form a fine pattern, it is only necessary to etch only the necessary part using a mask.
この発明によるェツチング方法における帯電液滴の衝突によって対象 物表面から脱離, イオン化されたイオンを質量分析装置に導入するよう にすることもできる。 すなわち, この発明によるエッチング装置と質量 分析装置とによって複合的エッチング表面分析装置, 複合的質量分析装 置または各種複合装置 (走査型トンネル顕微鏡, 光電子分光装置など) を実現することができる。 図面の簡単な説明  In the etching method according to the present invention, ions desorbed and ionized from the surface of the object by collision of charged droplets can be introduced into the mass spectrometer. That is, the etching apparatus and the mass spectrometer according to the present invention can realize a complex etching surface analyzer, a complex mass spectrometer, or various complex apparatuses (scanning tunnel microscope, photoelectron spectrometer, etc.). Brief Description of Drawings
第 1図は, イオン化装置の構成図である。  Fig. 1 shows the configuration of the ionizer.
第 2図は, マスク とその駆動装置を示す斜視図である。  Fig. 2 is a perspective view showing the mask and its drive unit.
第 3図は, マスク とその駆動装置の変形例を示す斜視図である。  Fig. 3 is a perspective view showing a modification of the mask and its driving device.
第 4図は, ェツチング装置の実施例を示す構成図である。  Fig. 4 is a block diagram showing an embodiment of the etching apparatus.
第 5 A図ないし第 5 C図は対象物表面がェツチングされる現象を図案 化して示すものである。  Figures 5A to 5C show the phenomenon that the surface of the object is etched.
第 6図は, ェツチング装置の他の実施例を示す構成図である。 T/JP2007/057328 FIG. 6 is a block diagram showing another embodiment of the etching apparatus. T / JP2007 / 057328
10 第 7図は実験に用いたエッチング装置の構成を示すものである。 Fig. 7 shows the configuration of the etching equipment used in the experiment.
第 8図おょぴ第 9図はエッチングにより生じるィオンの質量分析結果 を示すものである。 発明を実施するための最良の形態  Fig. 8 and Fig. 9 show the mass analysis results of ions produced by etching. BEST MODE FOR CARRYING OUT THE INVENTION
まずイオン化方法および装置の実施例について説明する。  First, an embodiment of an ionization method and apparatus will be described.
第 1図において, 質量分析装置 10のイオン導入口を含む部分にイオン 化装置 20が装備されている。  In Fig. 1, the ionizer 20 is installed in the part of the mass spectrometer 10 that includes the ion inlet.
質量分析装置 (たとえば飛行時間型質量分析装置) 10のイオン導入口 の部分には, 孔 1 1 aがあけられたスキマ一 11が取付けられている。 方向 の揃ったイオンを孔 1 1 a (イオン導入口) を通して質量分析装置の内部 へと導く。 質量分析装置 10の内部は, 排気装置 (図示略) により高真空 に保たれている。  A mass spectrometer (for example, a time-of-flight mass spectrometer) 10 is provided with a gap 11 having a hole 11a at the ion inlet. Ions with the same direction are introduced to the inside of the mass spectrometer through the hole 11a (ion inlet). The inside of the mass spectrometer 10 is kept at a high vacuum by an exhaust device (not shown).
イオン化装置 20は, 帯電液滴生成室 (イオン源室。 一般的なエレク ト ロスプレー, ナノエレク ト ロスプレー, またはコーノレ ドエレク ト ロスプ レーを備えたチャンバ一) 31を備えた帯電液滴生成装置 30と, 帯電液滴 生成室 31と一直線状に連なる真空加速室 41を備えた加速装置 40とから構 成されている。  The ionization device 20 includes a charged droplet generator 30 (an ion source chamber, a chamber equipped with a general electrospray, nanoelectrospray, or corona red electrospray) 31, The charging droplet generating chamber 31 and an accelerating device 40 having a vacuum accelerating chamber 41 connected in a straight line are configured.
帯電液滴生成装置 30は上述のエレク トロスプレー装置 32を備え, この エレク ト ロスプレー装置 32は, 高電圧が印加される金属 (導電性) 細管 (キヤピラ リー) 33と, その周囲を間隔をあけて覆う囲繞管 34とを備え ている。 これらの金属細管 33と囲繞管 34の先端部は帯電液滴生成室 31内 に突出している。 金属細管 33には帯電液滴となる冷却された, または室 温の揮発性の液体 (溶液) が供給される。 金属細管 33と囲繞管 34との間 の空間には冷却媒体, たとえば窒素 (N 2 ) ガスがネブライザ一ガスと して供給される (大気圧またはその付近の圧力 : これらを含めて大気圧 という) 。 窒素ガスは窒素製造機もしくは窒素ボンベから供給され, ま たは液体窒素から生成され, 温度制御されて囲繞管 34に導入される。 窒 素ガスによる冷却によって, よりサイズの大きな帯電液滴 (クラスター イオン) の生成が可能となる。 また, 窒素ガスによる冷却を行なわなく ても, キヤピラ リー 33の先端を, 後述する帯電液滴サンプリ ング用オリ フィス 34の小孔 34aに十分近づけることにより, 帯電液滴の乾燥を防ぎ, サイズの大きな帯電液滴を真空中に取り込むことができる。 真空中に取 り込まれた液滴は, 溶媒の気化によってその温度が急減し, その結果, 蒸気圧が下がるので, 真空下での液滴のサイズの縮小はわずかであり, 取り込まれた時点での体積をほぼ保って, 真空中を飛行する。 The charged droplet generator 30 includes the above-described electrospray device 32. The electrospray device 32 has a metal (conductive) capillary tube (capillary) 33 to which a high voltage is applied and a space around it. And a surrounding go pipe 34. The tips of the metal thin tube 33 and the surrounding tube 34 protrude into the charged droplet generation chamber 31. The metal thin tube 33 is supplied with a cooled or room temperature volatile liquid (solution) as charged droplets. A cooling medium such as nitrogen (N 2 ) gas is supplied as a nebulizer gas in the space between the metal thin tube 33 and the surrounding tube 34 (atmospheric pressure or pressure in the vicinity thereof: atmospheric pressure including these) ) Nitrogen gas is supplied from a nitrogen production machine or a nitrogen cylinder, or is generated from liquid nitrogen, and is introduced into the surrounding pipe 34 under temperature control. Cooling with nitrogen gas makes it possible to generate larger-sized charged droplets (cluster ions). Also, without cooling with nitrogen gas, the tip of the capillary 33 is sufficiently close to the small hole 34a of the charged droplet sampling orifice 34 described later to prevent the charged droplets from drying out. Large charged droplets can be taken into the vacuum. The temperature of the droplets taken into the vacuum decreases rapidly due to the vaporization of the solvent. As a result, the vapor pressure drops, so there is little reduction in the size of the droplets under vacuum. Fly in a vacuum while maintaining almost the same volume.
高電圧が印加された金属細管 33の先端からは高度に帯電した微細な液 滴集団 Dがビーム状に (直径数ミ リ メー トル程度) 帯電液滴生成室 31内 に噴霧される。 また, 窒素ガスが金属細管 33の先端の周囲において囲繞 管 34の先端から帯電液滴生成室 31内に嘖射される。 窒素ガスは帯電液滴 の嘖霧を助けるとともに帯電液滴を冷却し, さらに, 冷却した状態で帯 電液滴ビーム Dを真空加速室 41の方向に移送する。 窒素ガスは排気口を 通して帯電液滴生成室 31から外部に排出される。 実験条件によっては, 帯電液滴を冷却する必要はないが, 冷却する方が望ましい。  From the tip of the metal tube 33 to which a high voltage is applied, a highly charged droplet group D is sprayed into the charged droplet generation chamber 31 in the form of a beam (a few millimeters in diameter). Also, nitrogen gas is sprayed into the charged droplet generation chamber 31 from the tip of the surrounding tube 34 around the tip of the metal thin tube 33. Nitrogen gas assists fogging of the charged droplets and cools the charged droplets. In addition, the charged droplet beam D is transferred toward the vacuum acceleration chamber 41 in the cooled state. Nitrogen gas is discharged to the outside from the charged droplet generation chamber 31 through the exhaust port. Depending on the experimental conditions, it is not necessary to cool the charged droplets, but it is preferable to cool them.
帯電液滴は揮発性の液体である。 帯電液滴が気化 (乾燥) すると液滴 サイズが小さくなる。 帯電液滴の気化を抑制するために, 帯電液滴の生 成において, そして帯電液滴が真空加速室 41に到達するまで, 帯電液滴 を冷却するのが窒素ガスである。 冷却の温度は帯電液滴が固化する直前 程度が好ましい。 もっとも, 帯電液滴を冷却することが必ずしも必要と ならない場合もある。 金属細管 33の先端と帯電液滴サンプリ ング用オリ フィ ス 34の小孔 34 a との距離を短くすれば (接近させれば) ,· 帯電液滴 の乾燥 (気化) を防ぐこ とができる。 帯電液滴となる揮発性の液体と しては, 代表的には電解質を含む水溶 液 (たとえば, 水に酢酸またはアンモニアなどの弱酸性または弱アル力 リ性溶液を添加したもの) , または水等を挙げることができる。 メタノ ールゃァセ トニ ト リルなどを水に混ぜてもよいし, メタノールなどのみ でもよい。 A charged droplet is a volatile liquid. When charged droplets vaporize (dry), the droplet size decreases. In order to suppress the vaporization of the charged droplets, nitrogen gas cools the charged droplets during the generation of the charged droplets and until the charged droplets reach the vacuum acceleration chamber 41. The cooling temperature is preferably about immediately before the charged droplets solidify. However, it may not always be necessary to cool charged droplets. If the distance between the tip of the thin metal tube 33 and the small hole 34a of the charged droplet sampling orifice 34 is shortened (closed), the drying (vaporization) of the charged droplets can be prevented. . The volatile liquid that forms charged droplets is typically an aqueous solution containing an electrolyte (for example, water with a weakly acidic or weakly alkaline solution such as acetic acid or ammonia) or water. Etc. You can mix methanol or acetonitrile with water, or just methanol.
帯電液滴生成装置の他の例と しては, 超音波振動装置がある。 帯電液 滴生成室 31内は大気圧程度であるが, 減圧状態に保ってもよい。 帯電液 滴生成室 31を大気に開放してもよい (たとえば周壁等を省略する) 。 帯電液滴生成室 31と真空加速室 41との境界にはオリ フィス 34が設けら れ, このオリ フィス 34に小さな孔 34 aが形成されている。 この小さな孔 34 aが帯電液滴導入口である。 帯電液滴導入口 34 aを通して帯電液滴生 成室 31と真空の帯電液滴加速室 41とが連通している.。  Another example of a charged droplet generator is an ultrasonic vibration device. The charged droplet generation chamber 31 is at atmospheric pressure, but may be kept at a reduced pressure. The charged liquid droplet generation chamber 31 may be opened to the atmosphere (for example, the peripheral wall is omitted). An orifice 34 is provided at the boundary between the charged droplet generation chamber 31 and the vacuum acceleration chamber 41, and a small hole 34a is formed in the orifice 34. These small holes 34a are charged droplet introduction ports. The charged droplet generation chamber 31 and the vacuum charged droplet acceleration chamber 41 communicate with each other through the charged droplet introduction port 34a.
金属細管 33の先端から噴霧されビーム状となった帯電液滴集団 Dは, 冷却兼搬送用窒素ガスと ともに帯電液滴生成室 31内を真空加速室 41の方 向に移動し, オリフィス 34の小さな孔 34 aを通って真空加速室 41内に導 入される。  The charged droplet group D sprayed from the tip of the thin metal tube 33 and formed into a beam shape moves in the charged droplet generation chamber 31 in the direction of the vacuum accelerating chamber 41 together with the cooling and transporting nitrogen gas. It is introduced into the vacuum acceleration chamber 41 through the small hole 34a.
真空加速室 41内には, 加速.電極 42と試料台 43とマスク 50とが設けられ ている。 加速電極 42には正または負の (帯電液滴の極性とは反対の) 高 電圧 (たとえば 10KV) が印加される。 真空加速室 41内に導入された帯電 液滴 Dは加速電極 42によって加速かつ収束 (フォーカス) され, 試料台 43上に設けられた試料 Sに斜めに衝突し, 試料からイオン化された分子 が脱離する。 スキマー 11にあけられたイオン導入口 1 1 a を通して質量分 析装置 10の内部と真空加速室 41とは連通しており, 帯電液滴の衝突によ り発生し, 試料 S (試料台 43) の面から飛び出たイオン分子 (または原 子) はこのイオン導入口 1 1 aを通して質量分析装置 10内に導入される。 上述のように帯電液滴生成装置 30によって生成される帯電液滴ビーム (帯電液滴集団)の径(広がり)はミ リ メートルオーダーのものである。 帯電液滴 (ク ラスタ一イオン) の直径は数ミ ク ロンから数ナノメー トル の範囲に及ぶ。 これを巨大クラスタ一イオンとレ、う。 この巨大クラスタ ーィオンビームがミ リメートルオーダ一の広がりを保ったまま帯電液滴 生成室 31から真空加速室 41に導入され, 加速電極 42の電場によって加速 される。 たとえば巨大クラスタ一イオンには百万 eV ( 10 6 eV) 程度の運 動エネルギーが付与される。 In the vacuum acceleration chamber 41, an acceleration electrode 42, a sample stage 43, and a mask 50 are provided. The acceleration electrode 42 is applied with a positive or negative high voltage (opposite to the polarity of the charged droplet) (for example, 10 KV). The charged droplet D introduced into the vacuum acceleration chamber 41 is accelerated and converged (focused) by the accelerating electrode 42, and obliquely collides with the sample S provided on the sample stage 43, and the ionized molecules are released from the sample. Release. The inside of the mass spectrometer 10 and the vacuum acceleration chamber 41 communicate with each other through the ion inlet 1 1a opened in the skimmer 11. The sample S (sample stage 43) is generated by the collision of charged droplets. Ion molecules (or atoms) that have jumped out from the surface are introduced into the mass spectrometer 10 through the ion introduction port 1 1 a. Charged droplet beam generated by the charged droplet generator 30 as described above The diameter (spread) of the (charged droplet group) is in the millimeter order. The diameter of a charged droplet (cluster single ion) ranges from a few microns to a few nanometers. This is a giant cluster ion. This giant clusterion beam is introduced from the charged droplet generation chamber 31 to the vacuum acceleration chamber 41 while maintaining a spread on the millimeter order, and is accelerated by the electric field of the acceleration electrode 42. For example, a kinetic energy of about 1 million eV (10 6 eV) is given to a single large cluster ion.
試料台 43には, たとえば乾燥を防ぐために凍結した生体試料薄膜 Sが 保持される。 加速されたクラスタ一イオンがこの生体試料薄膜 S (たと えば低温冷凍機に取り付けられた基板に乗せられた生体組織試料) を衝  The specimen stage 43 holds, for example, a frozen biological specimen thin film S to prevent drying. The accelerated cluster single ion strikes this biological sample thin film S (for example, a biological tissue sample placed on a substrate attached to a low-temperature refrigerator).
(  (
撃する。 これによつてピコ秒という短時間内に薄膜試料が気化される。 脱離したイオンには正イオンと負イオンが等量存在するが, これらの再 結合寿命より も短い時間帯でイオンが発生するので, 発生したイオンの 再結合 (中性化反応) が防止され, 多くのイオンが真空加速室 41からィ オン導入口 11 a を通って質量分析装置 10内に供給される。 これによつて 高感度の質量分析が可能となる。 Shoot. As a result, the thin film sample is vaporized within a short time of picoseconds. Equal amounts of positive and negative ions are present in the desorbed ions, but ions are generated in a time period shorter than their recombination lifetime, preventing recombination (neutralization) of the generated ions. Many ions are supplied into the mass spectrometer 10 from the vacuum acceleration chamber 41 through the ion inlet 11a. This enables highly sensitive mass spectrometry.
また, クラスタイオンによって試料を衝撃する際に, 衝突界面に衝撃 波が発生する。 この衝撃波の働きによってタンパク質のよ うな数万を超 える分子量の分子であっても損傷を受けることなく脱離 · イオン化され る。 すなわち, タンパク質を含む生体分子の質量分析 (たとえば, ォー ソゴナル (直交型) 飛行時間型質量分析) が可能となる。  In addition, when a sample is bombarded by cluster ions, a shock wave is generated at the collision interface. Due to the action of this shock wave, even molecules with a molecular weight exceeding tens of thousands, such as proteins, are desorbed and ionized without being damaged. In other words, mass spectrometry (for example, orthogonal (orthogonal) time-of-flight mass spectrometry) of biomolecules including proteins becomes possible.
真空加速室 41内で加速される帯電液滴集団によるビーム Dの飛行経路 上であって試料台 41の少し前の位置に, マスク 50が, その面が帯電液滴 ビームの飛行方向 (Z方向とレ、う) とほぼ垂直方向 (X Y方向とレヽう) になる (沿う) ように配置されている。 マスク 50は駆動装置 60によって その面に沿う方向に二次元的に微少変位するよ うに駆動される。 マスク 50は具体的には第 2図に示すように, 1枚のうすい板 (絶縁板 が好ましい) 50に微細孔 50 aが形成されたものであり, 試料台 43の手前 において, 直交する X, Y方向に移動自在なステージ (図示略) 上に支 持されている。 マスク 50の X方向の変位はピエゾ素子 61によって, Y方 向の変位はピエゾ素子 62によって駆動される。 駆動装置 60はピエゾ素子 61, 62を含む。 X , Y方向の駆動は, ピエゾ素子以外に機械的なものを 用いてもよい。 マスク 50の駆動と連動して, クラスターイオンビームを 電場で偏向し, 最大強度のイオンビームを調整することもできる。 帯電液滴集団の飛行経路に対してマスク 50の面は垂直になっている。 ミ リ メー トルオーダーのビーム状帯電液滴集団 Dの広がりはその殆どが マスク 50によって制限され, 試料 Sには達しない。 帯電液滴の一部がマ スク 50の微細孔 50 aを通り, 上述のように試料に衝突して, 試料をィォ ン化する。 たとえば, 直径 3 mmの広がり をもつ (ビーム径の) 帯電液滴 ビームが直径数 μ π!〜 0. 1 μ mの大きさのビームに制限されて試料 Sに 衝突する。 The mask 50 is on the flight path of the beam D by the charged droplet group accelerated in the vacuum acceleration chamber 41 and slightly before the sample stage 41, and its surface is the flight direction of the charged droplet beam (Z direction). It is arranged so that it is in the vertical direction (in line with the XY direction). The mask 50 is driven by the driving device 60 so as to be slightly displaced two-dimensionally in the direction along the surface. Specifically, as shown in Fig. 2, the mask 50 is a thin plate (preferably an insulating plate) 50 in which fine holes 50a are formed. , It is supported on a stage (not shown) that can move in the Y direction. The displacement of the mask 50 in the X direction is driven by the piezo element 61, and the displacement in the Y direction is driven by the piezo element 62. The driving device 60 includes piezo elements 61 and 62. For driving in the X and Y directions, mechanical devices other than piezo elements may be used. In conjunction with the driving of the mask 50, the cluster ion beam can be deflected by an electric field to adjust the ion beam with the maximum intensity. The surface of the mask 50 is perpendicular to the flight path of the charged droplet group. The spread of the charged droplet group D in the order of millimeters is mostly limited by the mask 50 and does not reach the sample S. A part of the charged droplets passes through the fine hole 50a of the mask 50 and collides with the sample as described above to ionize the sample. For example, with a spread of diameters 3 mm (beam diameter) charged droplets beam diameter of several mu [pi! It collides with sample S, limited to a beam with a size of ~ 0.1 μm.
このよ う にして, 帯電液滴が衝突する試料の位置が小さい範囲に制限 される。 マスク 50を X Y方向に動かすことによ り, 帯電液滴が衝突する 試料の位置を変えることができる。 したがって, 試料の表面において帯 電液滴の衝突位置を二次元的に走査して, 二次元的な分子レベル情報を 得ることが可能となる。  In this way, the position of the sample where the charged droplet collides is limited to a small range. By moving the mask 50 in the X and Y directions, the position of the specimen where the charged droplet collides can be changed. Therefore, two-dimensional molecular level information can be obtained by two-dimensionally scanning the impact position of the charged droplet on the surface of the sample.
マスク 50 (その微細孔 50 a ) は試料表面上の帯電液滴が衝突する位置 を定めるものである。 帯電液滴の衝突位置を固定しておけば分子レベル の深さ方向の分布情報を得ることができる。 上記のよ うに, 帯電液滴の 衝突位置を一次元的または二次元的に変位させれば, 試料表面層の分子 レベルの一次元的または二次元的情報を得ることができる。 マスク 50を 変位させる (走査する) 代わりに, 試料台 43を変位させても (走査して も) よい。 可能ならば, 帯電液滴を電場または磁場によって偏向させ, 走査することもできる。 The mask 50 (its fine hole 50 a) determines the position where the charged droplets collide on the sample surface. If the collision position of charged droplets is fixed, distribution information in the depth direction at the molecular level can be obtained. As described above, one-dimensional or two-dimensional information on the molecular level of the sample surface layer can be obtained by displacing the collision position of the charged droplets one-dimensionally or two-dimensionally. Instead of displacing (scanning) the mask 50, even if the sample stage 43 is displaced (scanning) Also good. If possible, charged droplets can be deflected by an electric or magnetic field and scanned.
マスク 50は,第 3図に示すように,互いに交叉する微細スリ ッ ト 51 a, 52 aが形成された 2つのマスク板 51, 52を重ねて構成し, 微細ス リ ッ ト 51 a , 52 a の交叉位置を微細孔と してもよい。 マスク板 51は X方向に変 位可能に支持され, かつピエゾ素子 61により X方向に駆動され, マスク 板 52は Y方向に変位可能に支持され, かつピエゾ素子 62により Y方向に 駆動される。  As shown in FIG. 3, the mask 50 is formed by superposing two mask plates 51, 52 on which fine slits 51a, 52a intersecting each other are formed, so that the fine slits 51a, 52 are overlapped. The crossing position of a may be a fine hole. The mask plate 51 is supported so as to be displaceable in the X direction, and is driven in the X direction by the piezo element 61. The mask plate 52 is supported so as to be displaceable in the Y direction, and is driven in the Y direction by the piezo element 62.
次にエッチング方法および装置の実施例について説明する。  Next, examples of the etching method and apparatus will be described.
第 4図は質量分析装置と複合化されたエッチング装置 20 Aを示してい る。 この図において第 1図に示すものと同一物には同一符号を付し, 重 複説明を避ける。  FIG. 4 shows an etching apparatus 20 A combined with a mass spectrometer. In this figure, the same components as those shown in Fig. 1 are denoted by the same reference numerals, and redundant explanation is avoided.
第 1図に示すイオン化装置と異なる点は, まず第 1に, エレク ト ロス プレーによって生成される帯電液滴の溶液と してエッチング用溶液 (水 溶液を含む) が用いられていることである。  The difference from the ionizer shown in Fig. 1 is that, first of all, an etching solution (including an aqueous solution) is used as a solution for the charged droplets generated by electrospray. .
エッチング装置おょぴ方法は, 大気圧下でのエレク トロスプレーで発 生させたエッチング用溶液の帯電液滴を真空中に導き, これを 10kV程度 の電位差で加速し, 対象物 S uを衝撃するものである。 エ レク ト ロスプ レー発生用のエッチング溶液と して, フッ化水素酸, 稀硝酸, 酢酸など を用いることができる。 フッ化水素酸の帯電液滴衝撃により, シリ コ ン または酸化シリ コンの原子レベルェツチングを行うことができる。 稀硝 酸の帯電液滴衝撃により, 金属薄膜の原子レベルエッチングを行う こと ができる。 酢酸の帯電液滴衝擊により, 有機薄膜材料の原子, 分子レべ ルエッチングを行うことができる。 エッチング用溶液は単なる水, 有機 溶媒などでもよい。  In the etching system, the charged droplets of the etching solution generated by electrospray at atmospheric pressure are guided into the vacuum, and this is accelerated with a potential difference of about 10 kV, and the target Su is impacted. To do. Hydrofluoric acid, dilute nitric acid, acetic acid, etc. can be used as the etching solution for generating electrospray. Atomic level etching of silicon or silicon oxide can be performed by impact of charged droplets of hydrofluoric acid. Atomic level etching of metal thin films can be performed by impact of charged droplets of dilute nitric acid. Atomic and molecular level etching of organic thin film materials can be performed by charged droplet impact of acetic acid. The etching solution may be just water or an organic solvent.
エッチング用溶液は对象物と化学反応を生じさせるものである必要は ない。 エッチング用溶液は水溶液でもよく , 有機溶媒 (たとえばメタノ ール) でもよい, または水溶液に有機溶媒を入れたものでもよい。 要す るに, エッチング用溶液は多価に帯電するものであればよい。 たとえば 水 (純水) をエッチング用溶液と して用いることができる。 もっとも, 水に酢酸やアンモニア等の電解質を溶かして水溶液とする方がエレク ト 口スプレー法によって帯電液滴が生成しやすい。 帯電液滴は数十価ない し数百価の電荷を帯びた多価帯電液滴であることが望ましい。 水でもェ ツチングが可能となるのは, 帯電液滴と試料との衝突界面に生じる衝撃 波の領域に種々の反応活性種が生成し, これらが, 金属, 半導体, 絶縁 体などをエッチングするからである。 このようなエッチング作用は, 反 応个生エッチングであり, 原子レべノレでの l ayer- by- l ayerェツチングを可 能にする。 このようなクラスターイオンを用いるエッチングでは, 表面 にクレーターが生じないので, 試料内部の損傷なしで, 表面のみ.のエツ チングが可能となる。 The etching solution needs to have a chemical reaction with the object. Absent. The etching solution may be an aqueous solution, an organic solvent (for example, methanol), or an organic solvent in an aqueous solution. In short, the etching solution only needs to be multivalently charged. For example, water (pure water) can be used as the etching solution. However, charged droplets are more likely to be generated by the electric-orifice spray method when an electrolyte such as acetic acid or ammonia is dissolved in water to form an aqueous solution. The charged droplets are desirably multivalent charged droplets having a charge of several tens or hundreds. Etching with water is possible because various reactive species are generated in the region of the shock wave generated at the collision interface between the charged droplet and the sample, which etches metals, semiconductors, insulators, etc. It is. Such an etching action is a reactive individual etching, which enables layer-by-layer etching at the atomic level. In etching using such cluster ions, craters are not generated on the surface, so that only the surface can be etched without damage inside the sample.
第 1図に示す方法おょぴ装置と異なる点は, 第 2に, 真空加速室 41内 に試料台に代えて保持台 43 Aが設けられていることである。 保持台 43 A には, エッチングすべき対象物 S uが固定的に保持される。  The second difference from the method shown in Fig. 1 is that a holding base 43A is provided in the vacuum acceleration chamber 41 in place of the sample base. The object to be etched Su is fixedly held on the holding table 43A.
窒素ガスは必ずしも使用する必要はない。 帯電液滴を冷却する必要も 必ずしもない。 常温に近い温度の純度の高い窒素ガスを帯電液滴生成室 31に導入する, または充満させることによって不純物の混入を抑制する ことができる。 マスク 50を設ける必要は必ずしもない。 帯電液滴は多価 Nitrogen gas is not necessarily used. It is not always necessary to cool charged droplets. By introducing or filling the charged droplet generation chamber 31 with high-purity nitrogen gas at a temperature close to room temperature, contamination of impurities can be suppressed. It is not always necessary to provide the mask 50. Charged droplets are multivalent
(数十価ないし数百価) に帯電したものであるから電場によってきわめ て高速に (たとえば音速の 10倍程度) に加速することが可能である。 ま た帯電液滴のビームを偏向電極によって直交する 2方向 (X , Y方向) に掃引することが可能である。 帯電液滴ビームまたは保持台 43 Aを掃引Because it is charged to several tens or hundreds of valences, it can be accelerated by an electric field at high speed (for example, about 10 times the speed of sound). In addition, the charged droplet beam can be swept in two orthogonal directions (X and Y directions) by the deflection electrode. Sweep charged droplet beam or holder 43 A
( 2次元的に走査) することにより, '大面積ェツチングが可能となる。 このエッチング方法は, 一例と して質量が 1000万 ( u ) , 価数が 100 価という ような帯電液滴を対象物 S uの表面に高速で衝突させるもので ある。 第 5 A図に示すように, 100価の電荷をもつ帯電液滴が音速の約 10 倍の速度で固体表面に衝突すると, 第 5 B図に示すよ うに界面に衝擊波 が発生する。 この衝撃波で生成する界面ガスは, 水の超臨界流体 (水) の臨界極限をはるかに超える極限的超臨界流体ガスである。 界面におけ る衝突は, コヒーレン ト (衝突する水分子がすべて同一方向をもって基 板と衝突すること) に行われるので, 現象の再現性が極めて高い。 しか も, . この超臨界状態は, ピコ秒程度で緩和 (冷却) するので, 膜内部が 損傷を受けない。 さらに, 第 5 C図に示すように, 表面から脱離する膜 厚は数原子 (分子) 層 に限定 さ れる の で, 超精細加工技術や layer- by- l ayerでの表面分析技術には最適なエッチング法である。 (2D scanning) 'Large area etching becomes possible. In this etching method, for example, charged droplets having a mass of 10 million (u) and a valence of 100 are collided with the surface of the object Su at high speed. As shown in Fig. 5A, when a charged droplet with a 100-valent charge collides with a solid surface at a speed about 10 times the speed of sound, an impulse wave is generated at the interface as shown in Fig. 5B. The interface gas generated by this shock wave is a supercritical fluid gas that far exceeds the critical limit of water supercritical fluid (water). Since collisions at the interface are coherent (all colliding water molecules collide with the substrate in the same direction), the reproducibility of the phenomenon is extremely high. However, this supercritical state relaxes (cools) in about picoseconds, so the inside of the film is not damaged. Furthermore, as shown in Fig. 5C, the thickness of the film that desorbs from the surface is limited to a few atoms (molecules), so there are ultra-fine processing techniques and layer-by-layer surface analysis techniques. This is the optimal etching method.
エレク トロスプレーする液体の種類を選択することによって, 上述の ように各種半導体 ( S i , G eなど) , 酸化シリ コン (半導体酸化物) , 絶縁体, 有機材料薄膜などの, さらには上述したよ うな金属についてさ えも l ayer-by- l ayerでのエッチング技術が可能となる。 イオン源 (帯電 液滴源) は, 大気圧エレク ト ロスプレーであるので, 半導体製造装置へ の搭載が容易であり, 原理が簡単なので, 熟練した技術も必要ない。 簡 単かつ高効率, 安価な技術である。 微細パターンの形成には, マスク 50 を用いて, 必要な部分のみをエッチングすればよい。 帯電液滴または保 持台 43 Aを x y方向に掃引することによ り, 大面積高精細半導体材料, 金属, 有機薄膜, 絶縁体膜などの精密加工が可能となる。  By selecting the type of liquid to be electrosprayed, various semiconductors (Si, Ge, etc.), silicon oxide (semiconductor oxides), insulators, organic material thin films, etc. For such metals, it is possible to carry out etching technology using a layer-by-layer. Since the ion source (charged droplet source) is an atmospheric pressure electrospray, it can be easily installed in semiconductor manufacturing equipment, and the principle is simple, so no skilled technology is required. It is a simple, highly efficient and inexpensive technology. For the formation of a fine pattern, it is only necessary to use mask 50 to etch only the necessary parts. By sweeping charged droplets or holding base 43 A in the xy direction, precision processing of large-area, high-definition semiconductor materials, metals, organic thin films, and insulator films becomes possible.
実験によると, 1回の帯電液滴衝撃で, 有機材料表面の数分子層のみ が脱離し, 下層の試料は全く損傷を受けないことが確認された。 これは 脱離効率が大きく, かつ脱離する膜の厚さが数分子層に限られるという 優れたエッチング技術だからである。 帯電液滴の衝突によって (すなわちエッチングによって) 対象物 S u の表面から脱離, イオン化されたイ オンは, 質量分析装置 10に導入路 ( イオン導入口 11 a ) を通って導入され, 質量分析される。 According to experiments, it was confirmed that only a few molecular layers on the surface of the organic material were detached by a single charged droplet impact, and the underlying sample was not damaged at all. This is because it is an excellent etching technology that has high desorption efficiency and the thickness of the desorbed film is limited to a few molecular layers. Ions desorbed and ionized from the surface of the target object Su by the impact of charged droplets (ie, by etching) are introduced into the mass spectrometer 10 through the introduction channel (ion inlet 11a), and mass spectrometry is performed. Is done.
第 6図はエッチング方法おょぴ装置の他の実施例を示している。  FIG. 6 shows another embodiment of the etching method op- eration apparatus.
高電圧が印加される金属細管 33 Bをもつエレク トロスプレー装置 32 B はエッチング装置 20B本体の外部に設けられ, 大気に露出している。 も ちろん, エレク トロスプレー装置 32Bを帯電液滴生成室内に設けてもよ い。 エレク トロスプレー装置 32Bによってエッチング用溶液の帯電液滴 が生成される。  An electrospray device 32B with a metal tube 33B to which a high voltage is applied is installed outside the main body of the etching device 20B and is exposed to the atmosphere. Of course, an electrospray device 32B may be installed in the charged droplet generation chamber. The electrospray device 32B generates charged droplets of the etching solution.
エッチング装置 20Bの本体は, 荒引き室 71と, 調整室 72と, 加速装置 40Bの真空加速室 41Bとを備え, これらの室 71, 72, 41Bがー直線状に 連なっている。 .  The main body of the etching apparatus 20B includes a roughing chamber 71, an adjustment chamber 72, and a vacuum acceleration chamber 41B of the acceleration device 40B. These chambers 71, 72, and 41B are connected in a straight line. .
荒引き室 71はロータ リーポンプ等で排気された真空度がやや低いもの である。 調整室 72と真空加速室 41Bは高真空に保たれる。 調整室 72には 四重極イオンガイ ド 73が設けられている。 エレク トロスプレー装置 32 B で生成されたエッチング用溶液の帯電液滴は荒引き室 71のオリ フィスの 微細孔 71 aを経て荒引き室 71に入り, さらに微細孔 72 aを経て調整室 72 に導かれ, イオンガイ ド 73によってその広がりが抑制され, 絞られた帯 電液滴ビームが形成される。 また, イオンガイ ド 73には高周波電界が印 加され, 帯電した電荷と質量がが比較的大きい液滴のみが選別される。 選別された帯電液滴ビームは微細孔 41 a を経て真空加速室 41 Bに導入さ れる。  The roughing chamber 71 has a slightly low degree of vacuum exhausted by a rotary pump or the like. The adjustment chamber 72 and the vacuum acceleration chamber 41B are kept at a high vacuum. The adjustment chamber 72 is provided with a quadrupole ion guide 73. The charged droplets of the etching solution generated in the electrospray device 32 B enter the roughing chamber 71 through the fine holes 71 a of the orifice in the roughing chamber 71, and further enter the adjusting chamber 72 through the fine holes 72 a. Then, the spread is suppressed by the ion guide 73 and a confined charged droplet beam is formed. In addition, a high-frequency electric field is applied to the ion guide 73, and only charged droplets with a relatively large charge and mass are selected. The selected charged droplet beam is introduced into the vacuum accelerating chamber 41B through the fine hole 41a.
真空加速室 41B内には, 加速電極 42B , 偏向電極 44および保持台 43B がこの順序で配置されている。 保持台 43B上にはェツチング加工すべき 対象物 S uが固定されている。  In the vacuum acceleration chamber 41B, an acceleration electrode 42B, a deflection electrode 44, and a holding table 43B are arranged in this order. An object Su to be etched is fixed on the holding table 43B.
帯電液滴ビームは高電圧が印加された加速電極 42Bによ り加速され, 対象物 S uに衝突し, 上述のように対象物 S uがエッチングされる。 こ の実施例では帯電液滴ビームは対象物 S uの表面に垂直に衝突する。 帯 電液滴ビームは偏向電極 44の間を通過するときに, 偏向電極 44に印加さ れる掃引電圧に応じて掃引される。 したがって, 帯電液滴は対象物表面 を走査することになる。 The charged droplet beam is accelerated by the acceleration electrode 42B to which a high voltage is applied. Colliding with the object S u, the object S u is etched as described above. In this embodiment, the charged droplet beam collides perpendicularly with the surface of the object Su. When the charged droplet beam passes between the deflection electrodes 44, it is swept according to the sweep voltage applied to the deflection electrodes 44. Therefore, the charged droplet scans the surface of the object.
偏向電極 44に代えてコィルに通電することにより磁界により帯電液滴 を掃引してもよい。 帯電液滴ビームを掃引する代わりに保持台 43Bを 2 次元的に走査してもよい。 また, マスクを設けることもできる。  Instead of the deflection electrode 44, the charged droplet may be swept by a magnetic field by energizing the coil. Instead of sweeping the charged droplet beam, the holder 43B may be scanned two-dimensionally. A mask can also be provided.
第 7図は実験に用いたエッチング装置 20 Cを示している。 このエッチ ング装置 20 Cは飛行時間型質量分析装置 10と複合化されたものである力 s, 基本的な構造は第 6図に示すェツチング装置 20Bと同じであるので, 同 一物には同一符号を付し重複を避ける。  FIG. 7 shows an etching apparatus 20 C used in the experiment. This etching device 20 C is a force s that is combined with the time-of-flight mass spectrometer 10, and the basic structure is the same as the etching device 20B shown in FIG. Add a sign to avoid duplication.
荒引き室 71にはリ ングレンズ 71bが設けられ, 調整室 72は, 別個に排 気される 2つの室 72A, 72Bに分けられ, これらの両室 72A, 72Bにわ たって高周波四重極イオンガイ ド 73が設けられている。  The roughing chamber 71 is provided with a ring lens 71b, and the adjustment chamber 72 is divided into two chambers 72A and 72B which are separately evacuated, and the high-frequency quadrupole ion guide is divided into these two chambers 72A and 72B. 73 is provided.
対象物 S uの表面から離脱したィオンは引出し電極 19によって集めら れ, 質量分析装置 10の導入室 14内に配置され, N 2ガスが導入された高 周波四重極ィオンガイ ド 16を通って収束かつ低速度化 (コ リジョ ン · ダ ンビング) されて分析室 17内に導かれる。 真空加速室 41Bには対象物 S uの出入口 18も設けられている。 The ions released from the surface of the target S u are collected by the extraction electrode 19, placed in the introduction chamber 14 of the mass spectrometer 10, and passed through the high-frequency quadrupole ion guide 16 into which N 2 gas has been introduced. It converges and slows down (collision / dubbing) and is guided into the analysis chamber 17. The vacuum acceleration chamber 41B is also provided with an entrance 18 for the object Su.
エッチング液には 1 Mの酢酸水溶液が用いられ, 第 5 A図に示すよう に, 約 100価の水分子が音速の約 10倍 (12Km/s) の速度で対象物 S uに 衝突する。  As the etchant, a 1 M acetic acid aqueous solution is used, and as shown in Fig. 5A, about 100-valent water molecules collide with the target Su at a speed of about 10 times the speed of sound (12 Km / s).
第 8図は対象物 (試料) と して, 100ML (モノ レイヤ) アルギニン (A rg) 層上に, 10ML (モノ レイヤ) のグラ ミ シジン (Gramicidin) の層カ 形成されたものを用いたときに得られた質量分析結果を示している。 横 軸は時間 (分) , 縦軸は相対強度を示している。 最初は上層のグラミシ ジンがエッチングされ, その後, しだいに下層のアルギニンがエツチン グされている.. とが分る。 すなわち, layer- by- layerまたはこれに近い 状態でェツチングが行なわれていることが分る。 Figure 8 shows the case where a 10ML (monolayer) gramicidin layer is formed on a 100ML (monolayer) arginine (Arg) layer as the object (sample). Shows the obtained mass spectrometry results. side The axis shows time (minutes) and the vertical axis shows relative intensity. First, the upper gramicidin is etched, and then the lower arginine is gradually etched. In other words, it can be seen that etching is being performed layer-by-layer or close to this.
第 9図は, シリ コ ン上に l nm厚の錫 ( S n ) 箔が形成された対象物 ( S n ( 1 nra) on S i )を用いたときに得られた実験結果を示している。 エッチングは, 最初は錫 ( S n ) ( S n +, H+ ( S n O) , Η+ ( S η Ο) 2) について支配的で, 次第にシリ コン (Η+ ( S i O 2) 2 , H+ ( S i O 2) 3) がエッチングされている様子が分る。 金属の一つである錫 ( S n ) が layer- by-layerで, またはこれに近い状態でエッチングされ るのである。 Figure 9 shows the experimental results obtained when using an object (S n (1 nra) on S i) with a 1 nm thick tin (S n) foil on silicon. Yes. Etching is initially tin (S n) (+ S n , H + (S n O), Η + (S η Ο) 2) dominant for gradually silicon (Η + (S i O 2 ) 2, It can be seen that H + (S i O 2 ) 3 ) is etched. Tin (Sn), one of the metals, is etched layer-by-layer or close to it.
以上により, 有機材料薄膜, 半導体, 絶縁体, 金属等のエッチングが layer- by - layerで (またはこれに近い状態で) 行なわれていることが分 る。 酸化物半導体, グラフアイ ト, ダイヤモン ドなどのエッチングも可 能である。  From the above, it can be seen that etching of organic material thin films, semiconductors, insulators, metals, etc. is performed layer-by-layer (or close to this). Etching of oxide semiconductors, graph items, diamonds, etc. is also possible.

Claims

請求の範囲 The scope of the claims
1 . 揮発性の液体の帯電液滴を生成して真空室に導き, 1. Generate charged droplets of volatile liquid and introduce them into the vacuum chamber,
真空室内に形成した電場によって帯電液滴を試料の位置に向けて加速 し,  Charged droplets are accelerated toward the sample by the electric field formed in the vacuum chamber,
試料の位置の前方に配置したマスクの微細孔によつて試料に衝突する 帯電液滴ビームの広がり を制限する,  The spread of the charged droplet beam that collides with the sample is limited by the fine holes in the mask placed in front of the sample position.
ィメージングが可能なクラスタイオン衝撃によるイオン化方法。 An ionization method using cluster ion bombardment capable of imaging.
2 . 帯電液滴を試料に衝突させるべき位置を, 上記微細孔の位置によつ て定める, 請求の範囲第 1項に記載のイオン化方法。 2. The ionization method according to claim 1, wherein a position where the charged droplet should collide with the sample is determined by the position of the micropore.
3 . 上記マスクと試料の少なく ともいずれかを相対的に二次元的に走査 する, 請求の範囲第 1項または第 2項に記載のイオン化方法。  3. The ionization method according to claim 1 or 2, wherein at least one of the mask and the sample is relatively two-dimensionally scanned.
4 . 上記マスクを試料に対して二次元的に走査する, 請求の範囲第 1項 から第 3項のいずれか一項に記載のイオン化方法。  4. The ionization method according to any one of claims 1 to 3, wherein the sample is scanned two-dimensionally with respect to the sample.
5 . 上記微細孔を, 2つのマスク部材に形成された 2つの交叉する微細 ス リ ッ トによつて形成する, 請求の範囲第 1項ないし第 4項のいずれか —項に記載のイオン化方法。  5. The ionization method according to any one of claims 1 to 4, wherein the micro holes are formed by two intersecting micro slits formed in two mask members. .
6 - 帯電液滴を大気圧下でエレク トロスプレー法により生成する, 請求 の範囲第 1項ないし第 5項のいずれか一項に記載のイオン化方法。 6. The ionization method according to any one of claims 1 to 5, wherein charged droplets are generated by an electrospray method under atmospheric pressure.
7 . 請求の範囲第 1項ないし第 6項のいずれか一項に記載のイオン化方 法における帯電液滴の衝突によって脱離, ィオン化された試料のイオン を質量分析装置に導入する, 質量分析方法。 7. Introducing ions of the sample desorbed or ionized by collision of charged droplets in the ionization method according to any one of claims 1 to 6 into a mass spectrometer. Method.
8 . 質量分析装置のイオン導入口の外側に設けられ, 上記イオン導入口 を通して質量分析装置の内部と連通し, 内部に加速電極とマスク と試料 台が配置された真空加速室を有する加速装置, および  8. An accelerating device that is provided outside the ion inlet of the mass spectrometer, communicates with the inside of the mass spectrometer through the ion inlet, and has a vacuum accelerating chamber in which an accelerating electrode, a mask, and a sample stage are arranged. and
上記真空加速室の液滴導入口を通して上記真空加速室と連通する帯電 液滴生成室を備え, この帯電液滴生成室内において, 揮発性の液体の帯 電液滴を生成する帯電液滴生成装置を備え, Charging that communicates with the vacuum acceleration chamber through the droplet inlet of the vacuum acceleration chamber A droplet generation chamber, and a charged droplet generation device that generates charged droplets of volatile liquid in the charged droplet generation chamber.
上記マスクは微細孔を有し, 試料台の前方に配置され, 試料台とマス クの微細孔とは試料台の面の方向に関連して相対的に位置調整可能に設 けられ,  The mask has fine holes and is placed in front of the sample table. The sample table and the mask micro-holes are positioned so that they can be adjusted relative to the direction of the sample table surface.
上記帯電液滴生成装置によつて生成された帯電液滴が上記帯電液滴生 成室から上記液滴導入口を通して上記真空加速室に導かれ, 高電圧が印 加された上記加速電極によつて加速されると ともに上記マスクの微細孔 によって広がりが制限され, 上記微細孔を通過した帯電液滴が上記試料 台上の試料に衝突し, これによつて脱離, イオン化された試料のイオン が上記イオン導入口を通して質量分析装置に導入されるようになされて いる,  Charged droplets generated by the charged droplet generation device are guided from the charged droplet generation chamber to the vacuum acceleration chamber through the droplet introduction port, and are applied to the acceleration electrode to which a high voltage is applied. In addition, the spread is limited by the micropores in the mask, and the charged droplets that have passed through the micropores collide with the sample on the sample stage, and are desorbed and ionized by the ions in the sample. Is introduced into the mass spectrometer through the ion inlet,
ィメ一ジングが可能なクラスタイオン衝撃によるイオン化装置。 An ionizer using cluster ion bombardment capable of imaging.
9 . 上記帯電液滴生成装置がエレク ト ロスプレー装置を備え, 上記帯電 液滴生成室が大気に開放されている, 請求の範囲第 8項に記載のイオン 化方法。 9. The ionization method according to claim 8, wherein the charged droplet generation device includes an electrospray device, and the charged droplet generation chamber is open to the atmosphere.
10. エッチング用溶液の帯電液滴を生成して真空室に導き,  10. Generate charged droplets of the etching solution and introduce them into the vacuum chamber.
真空室内に形成した電場によって帯電液滴を対象物の位置に向けて加 速し, 対象物表面に衝突させ, これによつて対象物表面をエッチングす る,  Charged droplets are accelerated toward the target by the electric field formed in the vacuum chamber, collide with the target surface, and the target surface is etched by this.
クラスタイオン衝撃によるエッチング方法。  Etching method by cluster ion bombardment.
1 1 . 上記エッチング用溶液が水溶液である, 請求の範囲第 10項に記載の エツチング方法。  11. The etching method according to claim 10, wherein the etching solution is an aqueous solution.
12. 大気圧下でエレク ト ロ スプレー法により帯電液滴を生成する, 請求 の範囲第 10項または第 1 1項に記載のェツチング方法。  12. The etching method according to claim 10 or 11, wherein charged droplets are generated by an electrospray method at atmospheric pressure.
13. 上記帯電液滴が数十価ないし数百価の電荷を帯びた多価帯電液滴で ある, 請求の範囲第 10項ないし第 12項のいずれか一項に記載のェッチン グ方法。 13. The charged droplets are multivalent charged droplets with a charge of several tens or hundreds of valences. 13. The etching method according to any one of claims 10 to 12, wherein:
14. 帯電液滴および対象物の少なく ともいずれか一方を二次元的に走査 する, 請求の範囲第 10項に記載のエッチング方法。  14. The etching method according to claim 10, wherein at least one of the charged droplet and the object is two-dimensionally scanned.
15. 対象物の位置の前方にマスクを配置し, マスクの微細孔によって対 象物に衝突する帯電液滴ビームの広がりを制限する, 請求の範囲第 10項 に記載のエッチング方法。  15. The etching method according to claim 10, wherein a mask is arranged in front of the position of the object, and the spread of the charged droplet beam colliding with the object is limited by the fine holes of the mask.
16. 帯電液滴を対象物に衝突させるべき位置を, 上記微細孔の位置によ つて定める, 請求の範囲第 15項に記載のエッチング方法。  16. The etching method according to claim 15, wherein a position where the charged droplet should collide with the object is determined by the position of the micro hole.
17. 上記マスクと対象物の少なく ともいずれかを相対的に二次元的に走 查する, 請求の範囲第 15項または第 16項に記載のエッチング方法。 17. The etching method according to claim 15 or 16, wherein at least one of the mask and the target is moved relatively two-dimensionally.
18. 請求の範囲第 10項ないし第 17項のいずれか一項に記載のエッチング 方法における帯電液滴の衝突によって対象物表面から脱離, イオン化さ れたイオンを質量分析装置に導入する, 質量分析方法。 18. Introducing ions that are desorbed and ionized from the surface of an object by collision of charged droplets in the etching method according to any one of claims 10 to 17 into a mass spectrometer. Analysis method.
17. 大気圧下でェツチング用溶液の帯電液滴を生成する帯電液滴生成装 置, および  17. Charged droplet generator that generates charged droplets of etching solution under atmospheric pressure, and
内部に加速電極と対象物を保持する保持台とが配置されると ともに上 記帯電液滴生成装置で生成された帯電液滴の微細導入孔が形成された真 空加速室を有し, 上記帯電液滴生成装置において生成され上記微細導入 孔を通して導入された帯電液滴を, 高電圧が印加された上記加速電極で 加速して上記保持台に保持された対象物の表面に衝突させ, 対象物の表 面をエッチングする加速装置,  An acceleration electrode and a holding table for holding an object are disposed inside, and a vacuum accelerating chamber is formed in which fine introduction holes for charged droplets generated by the charged droplet generator are formed. Charged droplets generated in the charged droplet generator and introduced through the fine introduction holes are accelerated by the acceleration electrode to which a high voltage is applied and collide with the surface of the object held on the holding table. An accelerator that etches the surface of objects,
を有するエッチング装置。  An etching apparatus having:
20. 帯電液滴生成装置で生成された帯電液滴の中から, 帯電した電荷と 質量が相対的に大きい液滴を選別して上記加速装置に導くイオン · ガイ ドをさらに備えた, 請求の範囲第 19項に記載のェツチング装置。 20. The apparatus further comprises an ion guide for selecting a charged charge and a droplet having a relatively large mass from the charged droplets generated by the charged droplet generating device and guiding them to the accelerator. The etching apparatus according to the item 19 in the range.
21. 帯電液滴の衝突によって対象物表面から脱離, イオン化されたィォ ンを質量分析装置に導入する導入路を有する, 請求の範囲第 19項に記載 のェツチング装置。 21. The etching apparatus according to claim 19, further comprising an introduction path for introducing ions desorbed and ionized from the surface of the object by the collision of the charged droplets into the mass spectrometer.
22. 請求の範囲第 21項に記載のエッチング装置と質量分析装置とから構 成される複合装置。  22. A composite apparatus comprising the etching apparatus according to claim 21 and a mass spectrometer.
PCT/JP2007/057328 2006-04-28 2007-03-26 Method and apparatus for ionization by cluster ion impact which can realize imaging, and etching method and apparatus WO2007125726A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008513117A JP4639341B2 (en) 2006-04-28 2007-03-26 Etching method by cluster ion bombardment and mass spectrometric method using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006125397 2006-04-28
JP2006-125397 2006-04-28
JP2006230177 2006-08-28
JP2006-230177 2006-08-28

Publications (1)

Publication Number Publication Date
WO2007125726A1 true WO2007125726A1 (en) 2007-11-08

Family

ID=38655261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057328 WO2007125726A1 (en) 2006-04-28 2007-03-26 Method and apparatus for ionization by cluster ion impact which can realize imaging, and etching method and apparatus

Country Status (2)

Country Link
JP (1) JP4639341B2 (en)
WO (1) WO2007125726A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048584A (en) * 2008-08-19 2010-03-04 Univ Of Yamanashi X-ray photoelectron spectrometer, total reflection x-ray photoelectron spectrometer and angle-resolved x-ray photoelectron spectrometer
US9147568B2 (en) 2013-04-30 2015-09-29 Ionoptika Limited Water cluster ion beam mass spectrometer apparatus and method
GB2526650A (en) * 2014-02-26 2015-12-02 Micromass Ltd Ambient ionisation with an impactor spray source
US9870908B2 (en) 2014-02-26 2018-01-16 Micromass Uk Limited Ambient ionisation with an impactor spray source
CN113646867A (en) * 2019-03-29 2021-11-12 浜松光子学株式会社 Ionization method and mass analysis method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02295040A (en) * 1989-05-10 1990-12-05 Hitachi Ltd Focusing ion beam device
JPH03209200A (en) * 1990-01-11 1991-09-12 Mitsubishi Electric Corp Aperture for shaping shape of charged particle beam
JPH07161322A (en) * 1993-12-06 1995-06-23 Hitachi Ltd Electro spray type ion source and focusing ion beam device using it
JPH1012525A (en) * 1996-06-24 1998-01-16 Mitsubishi Electric Corp X-ray aligner
JPH10239258A (en) * 1997-02-26 1998-09-11 Hitachi Ltd Inspection apparatus and manufacturing process for electronic device
JP2002025488A (en) * 2000-07-13 2002-01-25 Sumitomo Heavy Ind Ltd Beam-forming slit
WO2005083415A1 (en) * 2004-02-27 2005-09-09 Yamanashi Tlo Co., Ltd. Method of ionization by cluster ion bombardment and apparatus therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02295040A (en) * 1989-05-10 1990-12-05 Hitachi Ltd Focusing ion beam device
JPH03209200A (en) * 1990-01-11 1991-09-12 Mitsubishi Electric Corp Aperture for shaping shape of charged particle beam
JPH07161322A (en) * 1993-12-06 1995-06-23 Hitachi Ltd Electro spray type ion source and focusing ion beam device using it
JPH1012525A (en) * 1996-06-24 1998-01-16 Mitsubishi Electric Corp X-ray aligner
JPH10239258A (en) * 1997-02-26 1998-09-11 Hitachi Ltd Inspection apparatus and manufacturing process for electronic device
JP2002025488A (en) * 2000-07-13 2002-01-25 Sumitomo Heavy Ind Ltd Beam-forming slit
WO2005083415A1 (en) * 2004-02-27 2005-09-09 Yamanashi Tlo Co., Ltd. Method of ionization by cluster ion bombardment and apparatus therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048584A (en) * 2008-08-19 2010-03-04 Univ Of Yamanashi X-ray photoelectron spectrometer, total reflection x-ray photoelectron spectrometer and angle-resolved x-ray photoelectron spectrometer
US9147568B2 (en) 2013-04-30 2015-09-29 Ionoptika Limited Water cluster ion beam mass spectrometer apparatus and method
GB2526650A (en) * 2014-02-26 2015-12-02 Micromass Ltd Ambient ionisation with an impactor spray source
US9870908B2 (en) 2014-02-26 2018-01-16 Micromass Uk Limited Ambient ionisation with an impactor spray source
GB2526650B (en) * 2014-02-26 2018-05-02 Micromass Ltd Ambient ionisation with an impactor spray source
US10217622B2 (en) 2014-02-26 2019-02-26 Micromass Uk Limited Ambient ionisation with an impactor spray source
CN113646867A (en) * 2019-03-29 2021-11-12 浜松光子学株式会社 Ionization method and mass analysis method

Also Published As

Publication number Publication date
JP4639341B2 (en) 2011-02-23
JPWO2007125726A1 (en) 2009-09-10

Similar Documents

Publication Publication Date Title
US8007871B2 (en) Electrospray deposition: devices and methods thereof
US7247845B1 (en) Method and device for cluster fragmentation
JP4734628B2 (en) Collision-induced ionization method and apparatus
US8030621B2 (en) Focused ion beam field source
EP2899742B1 (en) Analysis instrument comprising an ion source
JP2002502086A (en) Mass spectrometry from the surface
JP5010766B2 (en) Method and apparatus for statistically characterizing nanoparticles
WO2006039573A2 (en) Ultra high mass range mass spectrometer systems
JP5738050B2 (en) Information acquisition apparatus and information acquisition method for acquiring information about mass
US8963081B2 (en) Mass selector, and ion gun, ion irradiation apparatus and mass microscope
US20130207000A1 (en) Laser-Ablation Ion Source with Ion Funnel
JP4639341B2 (en) Etching method by cluster ion bombardment and mass spectrometric method using the same
JP2007165116A (en) Mass spectrometer
JP5071179B2 (en) Mass spectrometer and mass spectrometry method
Klipp et al. Deposition of mass-selected cluster ions using a pulsed arc cluster-ion source
JP4069169B2 (en) Method and apparatus for ionization by cluster ion bombardment
JP4998614B2 (en) Ionization method and ionization apparatus
US10535508B2 (en) Devices and methods for MAI ionization
EP1628335A1 (en) Surface treating method using ion beam and surface treating device
US20240177986A1 (en) Method for desorbing and ionizing of sample material
JP4134312B2 (en) Molecular beam equipment
JP4534020B2 (en) Molecular beam equipment
Adams et al. Mass Spectrometry and Chemical Imaging
JP2013522921A (en) Method for disposing a metal electrode on the surface of a hydrophobic material
JP2007134346A (en) Molecular beam apparatus

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740764

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008513117

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07740764

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)