WO2007123099A1 - Switching power supply circuit - Google Patents

Switching power supply circuit Download PDF

Info

Publication number
WO2007123099A1
WO2007123099A1 PCT/JP2007/058308 JP2007058308W WO2007123099A1 WO 2007123099 A1 WO2007123099 A1 WO 2007123099A1 JP 2007058308 W JP2007058308 W JP 2007058308W WO 2007123099 A1 WO2007123099 A1 WO 2007123099A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
circuit
transformer
winding
detection
Prior art date
Application number
PCT/JP2007/058308
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Sato
Takahiro Kobayashi
Hiroaki Takahashi
Original Assignee
Oki Power Tech Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Power Tech Co., Ltd. filed Critical Oki Power Tech Co., Ltd.
Publication of WO2007123099A1 publication Critical patent/WO2007123099A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop

Definitions

  • the present invention generally relates to a switching power supply circuit used in an electronic device such as an impact printer, and more particularly to a switching power supply circuit having a plurality of outputs.
  • switching power supplies that are small and light and can efficiently extract electric power are widely used along with the small and light electronic devices. Especially in electronic devices such as impact printers, switching power supplies having multiple outputs are often used.
  • a control circuit for controlling transmission / reception of data to / from a personal computer or the like and control of the plunger is incorporated in the impact printer.
  • the solenoid of the plunger operates at a voltage of about 24V to 42V
  • the force control circuit operates at a voltage of about 3.3V to 5V.
  • impact power printers use switching power supplies that can extract a plurality of different output voltages.
  • Loads such as plungers of impact printers are in milliseconds or seconds! /, And dynamically fluctuates from a no-load state to a state that consumes 2 to 3 times the rated output current of the power circuit.
  • a load such as a plunger may instantaneously consume about 10 times the rated output current of the power circuit.
  • a load such as a control circuit is relatively stable with a small fluctuation range of current consumption over a long period of time.
  • a stable load in which the fluctuation range of the current consumption is within about 50% of the rated output current of the power supply circuit is called a steady load, and the fluctuation range of the current consumption is larger than that! Called Mick load.
  • a ferrite magnetic material is often used as a core of a transformer for stepping up or down an input voltage.
  • the primary circuit is shared to handle multiple loads.
  • multiple secondary circuits are provided.
  • JP-P2001-333577A discloses a power supply device that can insulate from the primary side of the main transformer and extract many outputs. In this power supply, an output circuit that outputs power via the auxiliary transformer is newly connected to the secondary winding of the main transformer.
  • JP—P2001—333577A has a structural limitation on the number of secondary windings that can be installed in the main transformer. By connecting another auxiliary transformer to the secondary winding of the main transformer, It is described that many output circuits can be easily and inexpensively added.
  • JP-P2001-333577A does not describe solving a problem caused by a dynamic load.
  • the present invention improves the current supply capability for a dynamic load in which the current consumption increases instantaneously, such as a plunger of an impact printer, and at the same time as a control circuit.
  • An object of the present invention is to provide a switching power supply circuit that efficiently and stably supplies a steady load with a small current fluctuation range.
  • a switching power supply circuit includes a core including an amorphous magnetic body, and a primary side wire and a secondary side wire wound around the core.
  • Input voltage is 1
  • the second transformer applied to one end of the secondary winding and the primary side of the first transformer connected to the other end of the primary winding of the first transformer and according to the pulsed first drive signal
  • the first switching element for passing current through the winding and the other end of the primary winding of the second transformer, and the primary winding of the second transformer according to the pulse-shaped second drive signal
  • a second switching element that supplies current to the first transformer, a first output circuit that generates a first output voltage based on a voltage generated on the secondary side of the first transformer, and a second transformer
  • a second output circuit that generates a second output voltage based on the voltage generated on the secondary side winding, and a first and second drive circuit that independently generate the first and second drive signals, respectively.
  • a second control circuit is 1
  • a transformer or a choke coil having a core containing an amorphous metal magnetic body is used to improve saturation characteristics and to improve cross-regulation between outputs of a plurality of systems, thereby preventing dynamic loads.
  • the current supply capability can be improved, while efficient and stable power supply can be performed for a steady load.
  • FIG. 2 is a diagram showing in detail the configuration of a control circuit and the like in the first voltage conversion circuit shown in FIG.
  • FIG. 4 is a waveform diagram for explaining the operation of the control circuit in the first voltage conversion circuit shown in FIG. 2 in an overload state.
  • FIG. 7 is a diagram showing a configuration of a switching power supply circuit according to a second embodiment of the present invention.
  • FIG. 8 is a diagram showing in detail the configuration of a control circuit and the like in the first voltage conversion circuit shown in FIG.
  • FIG. 9 is a diagram showing in detail the configuration of a control circuit and the like in the second voltage conversion circuit shown in FIG.
  • FIG. 10 is a diagram showing a configuration of a switching power supply circuit according to a third embodiment of the present invention.
  • FIG. 12 is a diagram showing a second configuration example of the constant voltage output circuit shown in FIG.
  • FIG. 13 is a diagram showing a configuration of a switching power supply circuit according to a fourth embodiment of the present invention.
  • FIG. 14 is a diagram showing a configuration example of the PFC circuit shown in FIG. 12.
  • FIG. 15 is a diagram showing a configuration of a switching power supply circuit according to a fifth embodiment of the present invention.
  • FIG. 16 is a diagram showing a configuration of a switching power supply circuit according to the sixth embodiment of the present invention. Best mode for carrying out
  • FIG. 1 is a diagram showing a configuration of a switching power supply circuit according to the first embodiment of the present invention.
  • This switching power supply circuit includes a rectifying / smoothing circuit 10 connected to the input terminals 1 and 2 of the AC power supply voltage, a first voltage conversion circuit 11 connected to the output terminal 3 and the output terminal 4, an output terminal 5 and And a second voltage conversion circuit 12 connected to the output terminal 6.
  • the rectifying / smoothing circuit 10 includes, for example, a diode bridge and a capacitor.
  • the AC voltage applied between the input terminal 1 and the input terminal 2 is full-wave rectified by the diode bridge and smoothed by the capacitor. .
  • the first voltage conversion circuit 11 is connected in series with a transformer 20 that steps up or steps down an AC voltage on the primary side and outputs it to the secondary side, and a primary side wire 21 of the transformer.
  • a switching element 30 for passing a current to the primary winding 21 of the transformer in accordance with the drive signal, and a primary current detection circuit 40 for detecting a current flowing to the primary winding 21 of the transformer. .
  • the first voltage conversion circuit 11 generates a half-wave voltage generated on the secondary side winding 22 of the transformer.
  • a control circuit 70 that generates a drive signal based on the detection result of the secondary side voltage detection circuit 60 and limits the period during which current flows through the primary side winding 21 of the transformer.
  • An optical signal transmission element such as a photo force bra is used for a part of the feedback signal path from the secondary side voltage detection circuit 60 to the control circuit 70.
  • the second voltage conversion circuit 12 is connected in series to a transformer 90 that boosts or steps down the AC voltage on the primary side and outputs it to the secondary side, and a primary side 91 of the transformer.
  • Switching element 100 that allows current to flow through the primary side 91 of the transformer, a primary current detection circuit 110 that detects current that flows through the primary side 91 of the transformer, and the secondary of the transformer
  • a diode 53 for half-wave rectifying the voltage generated on the side wire 92, a capacitor 54 for smoothing the rectified voltage, a secondary-side voltage detection circuit 115 for detecting the smoothed voltage at both ends of the capacitor 54,
  • a control circuit 120 that generates a drive signal based on the detection result of the primary side current detection circuit 110 and the detection result of the secondary side voltage detection circuit 115.
  • the transformer 90 includes a magnetic core 94, a primary side wire 91, a secondary side wire 92, and an auxiliary wire 93 that are wound around the core 94. If the number of primary side wires 91 is N3, and the number of secondary side wires 92 is N4, then if there is no loss, the step-up ratio between the primary side and the secondary side is N4ZN3.
  • the auxiliary feeder 93 is used to supply a power supply voltage to the control circuit 120. Note that the dot symbol attached to the transformer 90 indicates the polarity of the winding.
  • the magnetic field tries to maintain the current, so that the voltage polarity of the transformer 20 is reversed and a current flows on the secondary side of the transformer 20.
  • the secondary current of the transformer 20 is charged to the capacitor 52 through the diode 51 connected in series to the secondary side feeder 22 of the transformer, so that a DC output is generated between the output terminal 3 and the output terminal 4. Generate voltage.
  • the first voltage conversion circuit 11 has been described above, but the same applies to the second voltage conversion circuit 12.
  • the first voltage conversion circuit 11 is used for a limited time in milliseconds or seconds from a no-load state to a state that consumes 2 to 3 times the rated output current. Therefore, the first output voltage is supplied to a dynamic load that fluctuates dynamically until it consumes 10 times the rated output current.
  • the second voltage conversion circuit 12 supplies the second output voltage to a stable steady load in which the fluctuation range of the consumption current falls within about 50% of the rated output current.
  • the rated output current represents the magnitude of the output current at which the MOSFET used as a switching element in each voltage conversion circuit can operate stably and stably. It is determined in advance based on the input voltage and MOSFET specifications.
  • suitable materials are selected for the transformer core 24 in the first voltage conversion circuit 11 and the transformer core 94 in the second voltage conversion circuit 12 according to the load.
  • an amorphous metal magnetic material having a high saturation magnetic flux density is used as the transformer core 24 in the first voltage conversion circuit 11 that supplies power to the dynamic load.
  • an amorphous alloy Fe—Co (60 to 80 wt%) containing iron (Fe) and conoleto (Co) can be used as the core type.
  • a Balta type molded by sintering a powder material is suitable.
  • a laminate type in which ribbon-like cores are laminated can also be used.
  • ferrite magnetic materials have been characterized by their low loss and high efficiency, and so far have been commonly used as core materials for transformers.
  • Amorphous metal magnetic materials have the characteristics that the hysteresis characteristics and the eddy current loss are small and the high frequency characteristics are good because the change in the magnetic characteristics due to the temperature at which the saturation magnetic flux density is higher than that of ferrite.
  • the heat generation amount of the core which is hard to be saturated magnetically, is small, so that it is possible to supply more than twice as much power as when ferrite is used. Because there is no need to form a gap in the gap, leakage of magnetic flux with gap force is no longer a problem.
  • the inductance per power (also referred to as "AL value") is smaller than when ferrite is used. Even if it increases, the inductance of a winding will become small and the electric current which flows into a winding will increase.
  • the magnetic material of amorphous metal is difficult to saturate, the peak current flowing in the shoreline can be increased. However, when the peak current increases, there is a problem that the switching element is easily destroyed. Therefore, in this embodiment, the switching element is protected by devising a circuit.
  • the primary side current detection circuit 40 detects the primary side current based on the drain-source voltage of the MOSFET 31.
  • the on-resistance between the drain and the source of the MOSFET 31 becomes a value determined by the characteristics of the element and the gate and the source-to-source voltage.
  • the primary winding 21 of the transformer which is the load of MOSFE T31, contains an inductance component! /, The drain current gradually increases from zero.
  • the product of this drain current and the on-resistance of MOSFET 31 is the drain-source voltage of MOSFET 31. Therefore, if the voltage between the drain and source of MOSFE T31 is measured, a detection voltage proportional to the magnitude of the current flowing through the primary side winding 21 of the transformer can be obtained.
  • the control circuit 70 includes a detection voltage generation circuit 71, a comparator 72, a clock signal generation circuit 73, an AND circuit 74, a comparator 75, a blanking pulse generation circuit 76, an AND circuit 77, It includes a noise width setting circuit 78 and a gate driver 79.
  • the detection result of the secondary side voltage detection circuit 60 shown in FIG. 1 is transmitted as an optical signal to the detection voltage generation circuit 71 by using an optical signal transmission element such as a photopower bra. This allows secondary voltage detection while maintaining isolation between the primary and secondary sides of transformer 20.
  • the detection result of the circuit 60 can be transmitted to the detection voltage generation circuit 71 on the primary side.
  • the detection voltage generation circuit 71 generates a detection voltage based on the detection result of the secondary side voltage detection circuit 60.
  • FIG. 3 is a circuit diagram showing a configuration example of a secondary side voltage detection circuit and a detection voltage generation circuit in the first voltage conversion circuit shown in FIG.
  • the secondary side voltage detection circuit 60 includes a resistor 61, a light emitting diode 62, and a shunt regulator 63 connected between both terminals of the capacitor 52, and a voltage generated between both terminals of the capacitor 52. And resistors 64 and 65 for dividing the voltage. The voltage divided by the resistors 64 and 65 is applied to the control terminal of the shunt regulator 63. Thereby, when the secondary side voltage exceeds a predetermined voltage, a current flows through the light emitting diode 62, and the light emitting diode 62 emits light with an intensity corresponding to the magnitude of the current to generate an optical signal.
  • the detection voltage generation circuit 71 is smoothed by the diode 81 that rectifies the voltage generated in the auxiliary auxiliary wire 23 of the transformer, the capacitor 82 that smoothes the voltage rectified by the diode 81, and the capacitor 82. It has a phototransistor 83 to which a voltage is applied to the collector, resistors 84 to 86, an operational amplifier 87, and a diode 88 for limiter.
  • resistors 85 and 86 are connected to the inverting input terminal of the operational amplifier 87 to form a negative feedback loop, and the control voltage V is applied to the non-inverting input terminal.
  • the clock signal generation circuit 73 generates a clock signal.
  • the AND circuit 74 obtains a logical product of the load state signal and the clock signal.
  • the pulse width setting circuit 78 In the light load state, since the detection voltage decreases, the load state signal becomes low level, and the output signal of the AND circuit 74 is also fixed at low level, so the pulse width setting circuit 78 does not generate a pulse. .
  • the detection voltage on the secondary side decreases, the detection voltage increases, so that the load state signal becomes high level, and the clock signal generated by the clock signal generation circuit 73 is supplied to the AND circuit 74 force pulse width setting circuit 78. Therefore, the pulse width setting circuit 78 generates a plurality of pulses in synchronization with the clock signal. In this way, when the control circuit 70 determines that the secondary side is in a light load state, the control circuit 70 can cause the switching element 30 to operate intermittently by reducing the number of pulses in the drive signal.
  • FIG. 4 shows the clock signal V generated by the clock signal generation circuit 73.
  • the period of the pulse included in the clock signal is T, and the pulse width (period of noise level) is T.
  • the duty (T ZT) of the clock signal is 50%
  • the impedance of the primary side wire is reduced when the number of power is the same as compared with the case of using ferrite.
  • the dance is getting smaller. Therefore, as shown in Fig. 4 (b), compared to the case where ferrite is used, the current flowing through the primary side wire 21 of the transformer, that is, the drain current I of the MOSFET 31, becomes larger. MOSFET31 may be destroyed by heat generation
  • control circuit 70 sets the upper limit of the pulse width in the drive signal so that the MOSFET 31 is turned off at the point A shown in FIG. 4B.
  • the operation of the control circuit 70 will be described in detail.
  • the output signal of the pulse width setting circuit 78 is synchronized with the rising edge of the clock signal V generated by the clock signal generation circuit 73.
  • the output comparison signal V ((d) in Figure 4) shifts from high level to low level.
  • the comparison signal V output from the comparator 75 is supplied from the primary-side current detection circuit 40.
  • the detection voltage generation circuit 71 has an upper limit for the second detection voltage. Therefore, when the second detection voltage reaches the upper limit, if the first detection voltage exceeds the upper limit, the comparison signal V output from the comparator 75 becomes a high level.
  • the primary-side current detection circuit 40 detects the detection voltage based on the drain voltage V of the MOSFET 31.
  • the drain current V begins to flow when the gate voltage V becomes high.
  • control circuit 70 turns on the MOSFET 31 at a constant cycle and turns off the MOSFET 31 in synchronization with the rising edge of the comparison signal V.
  • Figure 4 (e) e
  • the period is represented by T.
  • the control circuit 120 includes a clock signal generation circuit 73 that generates a clock signal, a detection voltage generation circuit 121 that generates a detection voltage based on the detection result of the secondary side voltage detection circuit 115 shown in FIG.
  • a comparator 75 that generates a comparison signal by comparing the detection voltage output from the secondary current detection circuit 110 and the detection voltage output from the detection voltage generation circuit 121, and a blanking pulse that generates a blanking pulse.
  • the drive signal may be generated based on the detection result of the primary side current detection circuit 40.
  • the output signal of the pulse width setting circuit 78 is reset when the detection voltage output from the primary side current detection circuit 40 exceeds a predetermined voltage.
  • the drive signal may be generated based on the detection result of the secondary side voltage detection circuit 60. The same applies to the second voltage conversion circuit 12.
  • One end of the first voltage conversion circuit 11 is connected to the rectifying and smoothing circuit 10, and the choke coil 130 that stores magnetic energy generated by the current flowing in the winding in the core and the other end of the choke coil 130 are connected.
  • the switching element 30 is connected and flows current through the choke coil 130 in accordance with the pulsed drive signal, and the switching current detection circuit 140 detects current flowing through the switching element 30.
  • the primary side winding of the transformer is used as the choke coil 130
  • the secondary side winding of the transformer can be used for generating an internal power source.
  • the first voltage conversion circuit 11 includes a diode 51 for half-wave rectifying the voltage generated at the other end of the choke coil 130, and an output terminal by generating an output voltage by smoothing the rectified voltage.
  • the output voltage detection circuit 150 that detects the output voltage at the output terminals 3 and 4, the detection result of the switching current detection circuit 140, and the detection result of the output voltage detection circuit 150 And a control circuit 160 for generating a signal.
  • Choke coil 130 stores energy in the core when switching element 30 is on. Next, when the switching element 30 is turned off, the magnetic field tries to maintain the current, so that the current of the choke coil 130 flows to the capacitor 52 via the diode 51, and the capacitor When the sensor 52 is charged, a DC output voltage is generated between the output terminals 3 and 4.
  • an amorphous metal magnetic material having a high saturation magnetic flux density is used as the core of the choke coil 130 in the first voltage conversion circuit 11 that supplies power to the dynamic load.
  • an amorphous alloy Fe—Co (60 to 80 wt%) containing iron (Fe) and cobalt (Co) can be used.
  • the core type a Balta type formed by sintering a powder material or a laminate type in which ribbon-like cores are laminated can be used.
  • a ferrite magnetic body is used as the core of the choke coil 170 in the second voltage conversion circuit 12 that supplies power to the steady load.
  • Ferrite magnetic materials have been characterized by their low loss and high efficiency, and so far have been commonly used as core materials for transformers.
  • FIG. 8 is a diagram showing in detail the configuration of the control circuit and the like in the first voltage conversion circuit shown in FIG.
  • an N-channel MOSFET 31 is used as the switching element 30 shown in FIG.
  • MOSFET 31 has a drain connected to the other end of choke coil 130, a source connected to rectifying and smoothing circuit 10 via switching current detection circuit 140, and a gate to which a drive signal is applied from gate driver 169. ing.
  • the clock signal generation circuit 163 generates a clock signal. Also, the detection voltage output from the switching current detection circuit 140 is input to the non-inverting input terminal of the comparator 165, and the detection voltage output from the output voltage detection circuit 150 shown in FIG. Input to the power terminal.
  • the output voltage detection circuit 150 when the load of the switching power supply circuit is light, the detection voltage decreases as the output voltage of the switching power supply circuit increases, and when the load of the switching power supply circuit is heavy, the switching power supply The detection voltage increases as the output voltage of the circuit decreases. Furthermore, an upper limit is set for the detection voltage output from the output voltage detection circuit 150 by the limiter circuit.
  • the pulse width setting circuit 168 is configured by, for example, an RS flip-flop having a set terminal S, a reset terminal R, and an output terminal Q.
  • the pulse width setting circuit 168 sets the output signal in synchronization with the clock signal generated by the clock signal generation circuit 163.
  • the pulse width in the drive signal is set by resetting the output signal in synchronization with the comparison signal generated by the comparator 165 when the blanking pulse signal is at a high level.
  • the gate driver 169 drives the gate of the MOSFET 31 based on the drive signal output from the pulse width setting circuit 168.
  • the comparison signal output from the comparator 165 compares the first detection voltage output from the switching current detection circuit 140 with the second detection voltage output from the output voltage detection circuit 150. It is obtained. In overload condition, MOSFET 31 drain current I
  • the output voltage detection circuit 150 has an upper limit for the second detection voltage. Therefore, when the second detection voltage reaches the upper limit and the first detection voltage exceeds the upper limit, the comparison signal output from the comparator 165 becomes high level. As a result, the output signal of the pulse width setting circuit 168 is reset, and the gate voltage V of the MOSFET 31 becomes the input.
  • the drain current I stops at the point A shown in Fig. 4 (b).
  • control circuit 160 turns on the MOSFET 31 at a constant period and turns off the MOSFET 31 in synchronization with the rising edge of the comparison signal.
  • the period during which V and MOSFET 31 are turned on is represented by T and the period during which MOSFET 31 is turned off.
  • FIG. 9 is a diagram showing in detail the configuration of the control circuit and the like in the second voltage conversion circuit shown in FIG.
  • MOSFET 101 has a drain connected to the winding of choke coil 170, a source connected to rectifying and smoothing circuit 10, and a gate to which a drive signal is applied from gate driver 169.
  • the winding of choke coil 170 and the drain 'source path of MOSFET 101 are connected in series. Then, the voltage obtained by rectifying and smoothing the AC power supply voltage in the rectifying and smoothing circuit 10 is supplied to these series circuits.
  • the MOSFET 101 causes a current to flow through the winding of the choke coil 170 in accordance with a pulsed drive signal applied to the gate.
  • the control circuit 200 includes a clock signal generation circuit 163 that generates a clock signal, a detection voltage output from the switching current detection circuit 180, and a detection voltage output from the output voltage detection circuit 190 shown in FIG.
  • Comparator 165 that generates a comparison signal by comparison, blanking pulse generation circuit 166 that generates a blanking pulse, AND circuit 167 that obtains a logical product of the comparison signal and the blanking pulse, and an output of AND circuit 167
  • a pulse width setting circuit 168 for setting the pulse width in the drive signal based on the signal and a gate driver 169 for driving the gate of the MOSFET 101 based on the drive signal output from the pulse width setting circuit 168. It is out.
  • the configuration of the output voltage detection circuit 190 shown in FIG. 7 is the same as that of the output voltage detection circuit 150 except for the limiter circuit. Since the second voltage conversion circuit 12 is for supplying electric power to a stable steady load, a ferrite magnetic material is used for the core of the choke coil 170. In that case, the limiter circuit is omitted because there is no possibility of overcurrent flowing through the primary primary wire 91 of the transformer.
  • the drive signal may be generated based on the detection result of the switching current detection circuit 140. Even in that case, if the detection voltage output from the switching current detection circuit 140 exceeds the predetermined voltage, the output signal of the pulse width setting circuit 168 is reset, so the upper limit of the pulse width in the drive signal must be set. Can do. On the other hand, the drive signal may be generated based on the detection result of the output voltage detection circuit 190. The same applies to the second voltage conversion circuit 12.
  • FIG. 10 is a diagram showing a configuration of a switching power supply circuit according to the third embodiment of the present invention.
  • This switching power supply circuit includes a transformer core, a primary side wire, and a primary side between the first voltage conversion circuit 11 and the second voltage conversion circuit 12 in the first embodiment shown in FIG.
  • the side circuit is used in common. According to this, it is possible to reduce the cost of the switching power supply circuit having a plurality of outputs.
  • the transformer 20 includes a magnetic core 24, a primary side wire 21, a secondary side wire 22, a secondary side wire 25, which are wound around the core 24, And an auxiliary feeder 23. Also in this embodiment, an amorphous metal magnetic material is used as the core 24 of the transformer. If the number of primary side wires 21 is N1, the number of secondary side wires 22 is N 2 and the number of secondary side wires 25 is N5, 2 The induced voltage generated in the secondary winding 22 is determined by the ratio of the power N1 and the power N2, and the induced voltage generated in the secondary winding 25 is determined by the ratio of the power N1 and the power N5.
  • the voltage force diode 51 and the capacitor 52 obtained from the secondary side wire 22 of the transformer 20 are rectified and smoothed, respectively, and the smoothed voltage is output to the output terminal 3 as the first output voltage. And 4 supplied.
  • the secondary side winding 25 of the transformer 20 is also rectified and smoothed by the voltage force diode 53 and the capacitor 54, respectively, and the smoothed voltage is stabilized by the constant voltage output circuit 210 to obtain the second output voltage.
  • the configurations of the primary side current detection circuit 40, the secondary side voltage detection circuit 60, and the control circuit 70 are the same as those in the first embodiment.
  • the first output voltage is supplied to a dynamic load such as a plunger that drives the print head in the impact printer. Therefore, the effect obtained by using an amorphous magnetic material for the transformer core 24 is the same as that in the first embodiment.
  • the second output voltage is supplied to a steady load such as a control circuit for controlling transmission / reception of data with a personal computer or the like and driving of the plunger.
  • the second output voltage is stable at a low voltage that does not need to be a high voltage like the first output voltage.
  • 3.3V to 5V is often used as the power supply voltage for the control circuit, so a steady voltage of 3.3V to 5V is desired as the second output voltage.
  • the induced voltage generated in the secondary winding 25 varies depending on the state of the dynamic load to which the first output voltage is supplied. Assuming such a state, this embodiment In this case, a constant voltage output circuit 210 is provided after the diode 53 and the capacitor 54.
  • FIG. 11 is a diagram showing a first configuration example of the constant voltage output circuit shown in FIG.
  • the constant voltage output circuit 210 includes a step-down chopper circuit 220, a chopper control circuit 230 for controlling the step-down chopper circuit 220, and a voltage detection signal detected by detecting the voltage across the capacitor 54.
  • a voltage monitoring circuit 240 that outputs to The input / output of the step-down chitoclover circuit 220 is not isolated, but is isolated from the primary circuit and other secondary circuits by the transformer 20 shown in FIG.
  • the step-down chopper circuit 220 includes an N-channel MOSFET 221 as a switching element, a diode 222, a choke coil 223, and a capacitor 224.
  • a magnetic material of farite is used as the core of the choke coil 223, a magnetic material of farite is used.
  • the drain of the MOSFET 221 is connected to one end (high potential side) of the capacitor 54, the source is connected to the force sword of the diode 222 and one end of the choke coil 223, and the gate is connected from the chopper control circuit 230.
  • a pulsed drive signal is supplied.
  • the other end of the choke coil 223 is connected to one end (high potential side) of the capacitor 224.
  • the anode of the diode 222 is connected to the other end (low potential side) of the capacitor 54 and the other end (low potential side) of the capacitor 224!
  • chitsuba control circuit 230 Based on the voltage detection signal output from voltage monitoring circuit 240, chitsuba control circuit 230 generates a drive signal for causing MOSFET 221 to perform a switching operation.
  • MOSFET 221 performs a switching operation
  • an alternating current flows through the choke coil 223, and the alternating voltage generated across the choke coil 223 is rectified by the diode 222.
  • the voltage across the capacitor 54 is stepped down and supplied to the output terminals 5 and 6 as the second output voltage.
  • FIG. 12 is a diagram showing a second configuration example of the constant voltage output circuit in FIG. In this example, a boosting chiba circuit is used instead of the step-down chiba circuit.
  • the constant voltage output circuit 210 detects the voltage across the capacitor 54 by detecting the voltage across the step-up chopper circuit 250, the chopper control circuit 260 for controlling the step-up chopper circuit 250, and the chopper control circuit 260.
  • Output voltage monitoring circuit 240 detects the voltage across the capacitor 54 by detecting the voltage across the step-up chopper circuit 250, the chopper control circuit 260 for controlling the step-up chopper circuit 250, and the chopper control circuit 260.
  • the step-up chopper circuit 250 includes a choke coil 251, an N-channel MOSFET 252 as a switching element, a diode 253, and a capacitor 254.
  • a ferrite magnetic material is used as the core of the choke coil 251.
  • One end of the choke coil 251 is connected to one end (high potential side) of the capacitor 54, and the other end of the choke coil 251 is connected to the drain of the MOSFET 252 and the anode of the diode 253.
  • the force sword of the diode 253 is connected to one end (high potential side) of the capacitor 254.
  • the source of the MOSFE T252 is connected to the other end (low potential side) of the capacitor 54 and the other end (low potential side) of the capacitor 254.
  • a pulsed drive signal is sent from the chopper control circuit 260 to the gate of the MOSFET 252. Supplied.
  • chitsuba control circuit 260 Based on the voltage detection signal output from voltage monitoring circuit 240, chitsuba control circuit 260 generates a drive signal for causing MOSFET 252 to perform a switching operation.
  • MOSFET 252 When the MOS FET 252 performs a switching operation, an alternating current flows through the choke coil 251, and the alternating voltage generated across the choke coil 251 is rectified by the diode 253. As a result, the voltage across the capacitor 54 is boosted and supplied to the output terminal 5 as the second output voltage.
  • the chopper control circuit 260 reduces the duty of the drive signal so that the ON period of the MOSFET 252 is reduced from the predetermined period,
  • the duty of the drive signal is increased so that the ON period of the MOSFET 221 is longer than the predetermined period.
  • FIG. 13 is a diagram showing a configuration of a switching power supply circuit according to the fourth embodiment of the present invention.
  • a PFC (power factor controller) circuit 15 is used.
  • the PFC circuit converts the voltage obtained by rectifying the AC voltage into an AC voltage by switching, and when converting the obtained AC voltage into a DC voltage again, the waveform and phase of the voltage and current are changed. In addition, this circuit improves the power factor.
  • an output system (output terminals 7 and 8) for supplying a third output signal to the load through a constant voltage output circuit 210 similar to that shown in FIG. 10 is connected to the second voltage conversion circuit 12. Yes.
  • FIG. 14 is a diagram showing a configuration example of the PFC circuit shown in FIG.
  • the PFC circuit 15 includes a rectifier circuit 18 connected to the input terminals 1 and 2 of the AC voltage, a choke coil 270 connected to the rectifier circuit 18 and storing magnetic energy generated by current flowing in the winding in the core.
  • the switching element 30 is connected to the other end of the choke coil 270 and flows a current through the choke coil 270 in accordance with a pulsed drive signal, and a switching current detection circuit 280 detects the current flowing through the switching element 30.
  • the transformer primary side winding is used as the choke coil 270
  • the transformer secondary side winding can be used for generating the internal power supply.
  • the PFC circuit 15 includes a diode 51 that half-wave rectifies the voltage generated at the other end of the choke coil 270, and generates a PFC output voltage by smoothing the rectified voltage to generate a PFC output terminal 16 and 17 includes a capacitor 52 supplied to 17, an output voltage detection circuit 290 that detects the PFC output voltage at the PFC output terminals 16 and 17, and a control circuit 300 that sets the pulse width of the drive signal.
  • the rectifier circuit 18 is configured by, for example, a diode bridge, and full-wave rectifies the AC voltage applied between the input terminal 1 and the input terminal 2.
  • the choke coil 270 stores energy in the core when the switching element is on. Next, when the switching element is turned off, the magnetic field tries to maintain the current, so that the current in the choke coil 270 flows to the capacitor 52 through the diode 51, and the capacitor 52 is charged. DC output voltage is generated between
  • the core of the choke coil 270 in the PFC circuit 15 is made of an amorphous metal magnetic material, like the transformer core 24 in the first voltage conversion circuit 11 at the subsequent stage. Improves resistance to overcurrent due to dynamic load. Further, a switching current detection circuit 280 and an output voltage detection circuit 290 are provided in order not to destroy the switching element 30 due to overcurrent. The configuration and operation of the output voltage detection circuit 290 are the same as those of the secondary side voltage detection circuit 60 shown in FIG.
  • Control circuit 300 performs pulse width control for overcurrent based on the detection signal generated by switching current detection circuit 280. Further, the detection signal force generated by the output voltage detection circuit 290 is fed back to the control circuit 300.
  • the configuration and operation of the control circuit 300 are the same as those of the control circuit 160 shown in FIG.
  • the first voltage conversion circuit 11 supplies power to a dynamic load such as a plunger that drives a head in the printer. Therefore, the effect obtained by using an amorphous magnetic material for the core 24 of the transformer is the same as that in the first embodiment.
  • the second voltage conversion circuit 12 supplies power to a steady load such as a control circuit for controlling transmission / reception of data with a personal computer or the like and driving of the plunger.
  • the constant voltage output circuit 210 supplies power to a small-capacity dynamic load.
  • FIG. 15 is a diagram showing a configuration of a switching power supply circuit according to the fifth embodiment of the present invention.
  • this switching power supply circuit by adding an inverter circuit to the first embodiment shown in FIG. 1, the first voltage conversion circuit 11 outputs an AC voltage.
  • an NPN bipolar transistor 331 is used as a switching element.
  • the voltage force rectified and smoothed by the voltage force diode 51 and the capacitor 52 obtained from the secondary side winding 22 of the transformer 20, respectively, is constituted by the NPN bipolar transistors 371 to 374, the coil 375 and the capacitor 376.
  • the control circuit 360 is a drive signal for driving the transistors 331 and 371 to 374 based on the detection signal output from the primary side current detection circuit 40 and the detection signal output from the secondary side voltage detection circuit 60. Is generated.
  • the collector of the transistor 371 is connected to the force sword of the diode 51, and the emitter is connected to the output terminal 4.
  • transistor 372 The Kuta is connected to the output terminal 4, and the emitter is connected to the polarity side of the transformer where the dot of the secondary side winding 22 is attached.
  • the collector of the transistor 373 is connected to the force sword of the diode 51, and the emitter is connected to one end of the coil 375.
  • the collector of the transistor 374 is connected to one end of the coil 375, and the emitter is connected to the polarity side of the transformer where the dot of the secondary winding 22 is attached.
  • the other end of the coil 375 is connected to the output terminal 3.
  • a capacitor 376 is connected between the output terminals 3 and 4.
  • a plurality of control signals output from the control circuit 360 are supplied to the bases of the transistors 331 and 371 to 374, and perform switching control of each transistor. As a result, it is output from the secondary side winding 22 of the transformer 20 and converted into a DC voltage force AC voltage rectified by the diode 51.
  • the second voltage conversion circuit 12 may be the same as the second voltage conversion circuit 12 shown in FIG. 1 or outputs an AC voltage in the same way as the first voltage conversion circuit 11 shown in FIG. It may be what you do.
  • FIG. 16 is a diagram showing a configuration of a switching power supply circuit according to the sixth embodiment of the present invention.
  • the first voltage conversion circuit 11 outputs an alternating voltage by adding an inverter circuit to the second embodiment shown in FIG.
  • the control circuit 380 drives the transistors 331 and 371 to 374 based on the detection signal output from the switching current detection circuit 140 and the detection signal output from the output voltage detection circuit 150.
  • a drive signal for generating the signal is generated.
  • a plurality of control signals output from the control circuit 360 are supplied to the bases of the transistors 331 and 371 to 374 to perform switching control of each transistor. As a result, it is output from the choke coil 130 and converted into a DC voltage force AC voltage rectified by the transistor 331.
  • the second voltage conversion circuit 12 may be the same as the second voltage conversion circuit 12 shown in FIG. 7, or, like the first voltage conversion circuit 11 shown in FIG. 16, outputs an AC voltage. It may be something that helps.
  • the present invention can be used in a switching power supply used in an electronic device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A switching power supply circuit having an improved ability to supply current to a dynamic load in which the current consumption increases instantaneously and adapted for efficiently and stably supplying electric power to a steady load whose consumption current varies with a small variation width. The switching power supply circuit comprises a first transformer having a core of an amorphous magnetic material, a second transformer having a core of a ferrite magnetic material, a first switching element for flowing a current through the primary-side winding of the first transformer according to a first drive signal, a second switching element for flowing a current through the primary-side winding of the second transformer according to a second drive signal, first and second output circuits for generating first and second output voltages according to the voltages induced in the secondary-side windings of the first and second transformers, respectively, and first and second control circuits for independently generating the first and second drive signals.

Description

明 細 書  Specification
スイッチング電源回路  Switching power supply circuit
技術分野  Technical field
[0001] 本発明は、一般に、インパクトプリンタ等の電子機器において用いられるスィッチン グ電源回路に関し、特に、複数系統の出力を有するスイッチング電源回路に関する。 背景技術  TECHNICAL FIELD [0001] The present invention generally relates to a switching power supply circuit used in an electronic device such as an impact printer, and more particularly to a switching power supply circuit having a plurality of outputs. Background art
[0002] 近年においては、電子機器の小型軽量ィ匕に伴い、小型軽量で効率良く電力を取り 出すことのできるスイッチング電源が広く使用されている。特に、インパクトプリンタ等 の電子機器においては、複数系統の出力を有するスイッチング電源が使用されること が多い。  In recent years, switching power supplies that are small and light and can efficiently extract electric power are widely used along with the small and light electronic devices. Especially in electronic devices such as impact printers, switching power supplies having multiple outputs are often used.
[0003] 例えば、インパクトプリンタの内部には、印字ヘッドを電磁的に駆動するプランジャ の他に、パーソナルコンピュータ等との間のデータの送受信やプランジャの駆動を制 御するための制御回路が組み込まれている。一般的に、プランジャのソレノイドは、 2 4V〜42V程度の電圧で動作する力 制御回路は、 3. 3V〜5V程度の電圧で動作 する。このような事情により、インパクトプリンタにおいては、複数の異なる出力電圧を 取り出すことのできるスイッチング電源が使用されて 、る。  [0003] For example, in addition to a plunger that electromagnetically drives a print head, a control circuit for controlling transmission / reception of data to / from a personal computer or the like and control of the plunger is incorporated in the impact printer. ing. Generally, the solenoid of the plunger operates at a voltage of about 24V to 42V, and the force control circuit operates at a voltage of about 3.3V to 5V. Under these circumstances, impact power printers use switching power supplies that can extract a plurality of different output voltages.
[0004] インパクトプリンタのプランジャのような負荷は、ミリ秒単位や秒単位の時間にお!/、て 、無負荷状態から、電源回路の定格出力電流の 2〜3倍の電流を消費する状態まで 、ダイナミックに変動する。また、プランジャのような負荷は、瞬時的に電源回路の定 格出力電流の 10倍程度の電流を消費する場合もある。一方、制御回路のような負荷 は、長時間に亘つて消費電流の変動幅が小さぐ比較的安定している。本願におい ては、消費電流の変動幅が電源回路の定格出力電流の約 50%以内に収まるような 安定な負荷を定常負荷と呼び、消費電流の変動幅がそれよりも大き!、負荷をダイナ ミック負荷と呼ぶ。  [0004] Loads such as plungers of impact printers are in milliseconds or seconds! /, And dynamically fluctuates from a no-load state to a state that consumes 2 to 3 times the rated output current of the power circuit. In addition, a load such as a plunger may instantaneously consume about 10 times the rated output current of the power circuit. On the other hand, a load such as a control circuit is relatively stable with a small fluctuation range of current consumption over a long period of time. In this application, a stable load in which the fluctuation range of the current consumption is within about 50% of the rated output current of the power supply circuit is called a steady load, and the fluctuation range of the current consumption is larger than that! Called Mick load.
[0005] 従来から、スイッチング電源回路においては、入力電圧を昇圧又は降圧するトラン スのコアとして、フェライトの磁性体が多く用いられている。また、複数系統の出力を 有するスイッチング電源回路においては、 1次側回路を共通とし、複数の負荷に対応 して複数の 2次側回路を設ける場合が多い。 Conventionally, in a switching power supply circuit, a ferrite magnetic material is often used as a core of a transformer for stepping up or down an input voltage. In switching power supply circuits with multiple outputs, the primary circuit is shared to handle multiple loads. In many cases, multiple secondary circuits are provided.
[0006] し力しながら、このような構成で、ダイナミック負荷に対して電力を供給する出力と、 定常負荷に対して電力を供給する出力とを設けた場合には、複数系統の出力間に おけるクロスレギュレーションの問題が発生する。例えば、ダイナミック負荷に瞬時的 に定格電流の 10倍程度の電流が流れた場合に、フェライトの磁性体を用いたトラン スのコアが飽和状態に達し、その結果、定常負荷に対する出力電圧も大幅に変動し てしまう。出力電圧の安定ィ匕を図るために 3端子レギユレータを用いることも考えられ るが、 3端子レギユレータの入力側の電圧変動範囲を大きく設定しなければならない However, when an output for supplying electric power to a dynamic load and an output for supplying electric power to a steady load are provided in such a configuration, Cross-regulation problems occur. For example, when a current about 10 times the rated current flows instantaneously in a dynamic load, the core of the transformer using the magnetic material of ferrite reaches a saturation state, and as a result, the output voltage for a steady load is greatly increased. It will fluctuate. Although it is conceivable to use a 3-terminal regulator to stabilize the output voltage, the voltage fluctuation range on the input side of the 3-terminal regulator must be set large.
[0007] 関連する技術として、 日本国特許出願公開 JP— P2001— 333577Aには、主トラ ンスの 1次側と絶縁して多くの出力を取り出すことのできる電源装置が開示されて ヽ る。この電源装置においては、主トランスの 2次卷線に、補助トランスを経由して電力 を出力する出力回路が新たに接続される。 JP— P2001— 333577Aには、主トラン スに設けることのできる 2次卷線の数に構造上の制約があっても、主トランスの 2次卷 線に別の補助トランスを接続することにより、多くの出力回路を容易に且つ安価に付 加できると記載されている。しかしながら、 JP— P2001— 333577Aには、ダイナミツ ク負荷によって生じる問題を解決することに関しては記載されていない。 [0007] As a related technique, Japanese Patent Application Publication JP-P2001-333577A discloses a power supply device that can insulate from the primary side of the main transformer and extract many outputs. In this power supply, an output circuit that outputs power via the auxiliary transformer is newly connected to the secondary winding of the main transformer. JP—P2001—333577A has a structural limitation on the number of secondary windings that can be installed in the main transformer. By connecting another auxiliary transformer to the secondary winding of the main transformer, It is described that many output circuits can be easily and inexpensively added. However, JP-P2001-333577A does not describe solving a problem caused by a dynamic load.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] そこで、上記の点に鑑み、本発明は、インパクトプリンタのプランジャのように瞬間的 に消費電流が大きくなるようなダイナミック負荷に対する電流供給能力を向上させると 共に、制御回路のように消費電流の変動幅が小さい定常負荷に対して効率的かつ 安定な給電を行うスイッチング電源回路を提供することを目的とする。 Therefore, in view of the above points, the present invention improves the current supply capability for a dynamic load in which the current consumption increases instantaneously, such as a plunger of an impact printer, and at the same time as a control circuit. An object of the present invention is to provide a switching power supply circuit that efficiently and stably supplies a steady load with a small current fluctuation range.
課題を解決するための手段  Means for solving the problem
[0009] 上記課題を解決するため、本発明の 1つの観点に係るスイッチング電源回路は、ァ モルファス磁性体を含むコア及び該コアに回卷された 1次側卷線及び 2次側卷線を 有し、入力電圧が 1次側卷線の一端に印加される第 1のトランスと、フェライト磁性体 を含むコア及び該コアに回卷された 1次側卷線及び 2次側卷線を有し、入力電圧が 1 次側卷線の一端に印加される第 2のトランスと、第 1のトランスの 1次側卷線の他端に 接続され、パルス状の第 1の駆動信号に従って第 1のトランスの 1次側卷線に電流を 流す第 1のスイッチング素子と、第 2のトランスの 1次側卷線の他端に接続され、パル ス状の第 2の駆動信号に従って第 2のトランスの 1次側卷線に電流を流す第 2のスイツ チング素子と、第 1のトランスの 2次側卷線に発生する電圧に基づいて第 1の出力電 圧を生成する第 1の出力回路と、第 2のトランスの 2次側卷線に発生する電圧に基づ V、て第 2の出力電圧を生成する第 2の出力回路と、第 1及び第 2の駆動信号をそれぞ れ独立して生成する第 1及び第 2の制御回路とを具備する。 In order to solve the above-described problem, a switching power supply circuit according to one aspect of the present invention includes a core including an amorphous magnetic body, and a primary side wire and a secondary side wire wound around the core. A first transformer in which an input voltage is applied to one end of the primary side wire, a core including a ferrite magnetic body, and a primary side wire and a secondary side wire wound around the core. Input voltage is 1 The second transformer applied to one end of the secondary winding and the primary side of the first transformer connected to the other end of the primary winding of the first transformer and according to the pulsed first drive signal The first switching element for passing current through the winding and the other end of the primary winding of the second transformer, and the primary winding of the second transformer according to the pulse-shaped second drive signal A second switching element that supplies current to the first transformer, a first output circuit that generates a first output voltage based on a voltage generated on the secondary side of the first transformer, and a second transformer A second output circuit that generates a second output voltage based on the voltage generated on the secondary side winding, and a first and second drive circuit that independently generate the first and second drive signals, respectively. And a second control circuit.
発明の効果  The invention's effect
[0010] 本発明によれば、アモルファス金属の磁性体を含むコアを有するトランス又はチヨ ークコイルを用いて飽和特性を改善すると共に、複数系統の出力間におけるクロスレ ギユレーシヨンを改善することにより、ダイナミック負荷に対する電流供給能力を向上 させ、一方、定常負荷に対して効率的かつ安定な給電を行うことができる。  [0010] According to the present invention, a transformer or a choke coil having a core containing an amorphous metal magnetic body is used to improve saturation characteristics and to improve cross-regulation between outputs of a plurality of systems, thereby preventing dynamic loads. The current supply capability can be improved, while efficient and stable power supply can be performed for a steady load.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]本発明の第 1の実施形態におけるスイッチング電源回路の構成を示す図である  FIG. 1 is a diagram showing a configuration of a switching power supply circuit according to a first embodiment of the present invention.
[図 2]図 1に示す第 1の電圧変換回路における制御回路等の構成を詳しく示す図で ある。 2 is a diagram showing in detail the configuration of a control circuit and the like in the first voltage conversion circuit shown in FIG.
[図 3]図 1に示す第 1の電圧変換回路における 2次側電圧検出回路と検出電圧生成 回路の構成例を示す回路図である。  3 is a circuit diagram showing a configuration example of a secondary side voltage detection circuit and a detection voltage generation circuit in the first voltage conversion circuit shown in FIG. 1.
[図 4]図 2に示す第 1の電圧変換回路における制御回路の過負荷状態における動作 を説明するための波形図である。  4 is a waveform diagram for explaining the operation of the control circuit in the first voltage conversion circuit shown in FIG. 2 in an overload state.
[図 5]図 2に示す制御回路の通常状態における動作を説明するための波形図である  5 is a waveform diagram for explaining the operation of the control circuit shown in FIG. 2 in a normal state.
[図 6]図 1に示す第 2の電圧変換回路における制御回路等の構成を示す図である。 6 is a diagram showing a configuration of a control circuit and the like in the second voltage conversion circuit shown in FIG.
[図 7]本発明の第 2の実施形態に係るスイッチング電源回路の構成を示す図である。  FIG. 7 is a diagram showing a configuration of a switching power supply circuit according to a second embodiment of the present invention.
[図 8]図 7に示す第 1の電圧変換回路における制御回路等の構成を詳しく示す図で ある。 [図 9]図 7に示す第 2の電圧変換回路における制御回路等の構成を詳しく示す図で ある。 8 is a diagram showing in detail the configuration of a control circuit and the like in the first voltage conversion circuit shown in FIG. FIG. 9 is a diagram showing in detail the configuration of a control circuit and the like in the second voltage conversion circuit shown in FIG.
[図 10]本発明の第 3の実施形態に係るスイッチング電源回路の構成を示す図である  FIG. 10 is a diagram showing a configuration of a switching power supply circuit according to a third embodiment of the present invention.
[図 11]図 9に示す定電圧出力回路の第 1の構成例を示す図である。 11 is a diagram showing a first configuration example of the constant voltage output circuit shown in FIG. 9.
[図 12]図 9に示す定電圧出力回路の第 2の構成例を示す図である。  12 is a diagram showing a second configuration example of the constant voltage output circuit shown in FIG.
[図 13]本発明の第 4の実施形態に係るスイッチング電源回路の構成を示す図である  FIG. 13 is a diagram showing a configuration of a switching power supply circuit according to a fourth embodiment of the present invention.
[図 14]図 12に示す PFC回路の構成例を示す図である。 14 is a diagram showing a configuration example of the PFC circuit shown in FIG. 12.
[図 15]本発明の第 5の実施形態に係るスイッチング電源回路の構成を示す図である [図 16]本発明の第 6の実施形態に係るスイッチング電源回路の構成を示す図である 発明を実施するための最良の形態  FIG. 15 is a diagram showing a configuration of a switching power supply circuit according to a fifth embodiment of the present invention. FIG. 16 is a diagram showing a configuration of a switching power supply circuit according to the sixth embodiment of the present invention. Best mode for carrying out
[0012] 以下に、本発明を実施するための最良の形態について、図面を参照しながら詳しく 説明する。なお、同一の構成要素には同一の参照番号を付して、説明を省略する。  Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings. The same constituent elements are denoted by the same reference numerals, and the description thereof is omitted.
[0013] 図 1は、本発明の第 1の実施形態に係るスイッチング電源回路の構成を示す図であ る。このスイッチング電源回路は、交流電源電圧の入力端子 1及び 2に接続された整 流平滑回路 10と、出力端子 3及び出力端子 4に接続された第 1の電圧変換回路 11と 、出力端子 5及び出力端子 6に接続された第 2の電圧変換回路 12とを有する。  FIG. 1 is a diagram showing a configuration of a switching power supply circuit according to the first embodiment of the present invention. This switching power supply circuit includes a rectifying / smoothing circuit 10 connected to the input terminals 1 and 2 of the AC power supply voltage, a first voltage conversion circuit 11 connected to the output terminal 3 and the output terminal 4, an output terminal 5 and And a second voltage conversion circuit 12 connected to the output terminal 6.
[0014] 整流平滑回路 10は、例えば、ダイオードブリッジとコンデンサとを含んでおり、入力 端子 1と入力端子 2との間に印加される交流電圧をダイオードブリッジによって全波整 流し、コンデンサによって平滑する。  [0014] The rectifying / smoothing circuit 10 includes, for example, a diode bridge and a capacitor. The AC voltage applied between the input terminal 1 and the input terminal 2 is full-wave rectified by the diode bridge and smoothed by the capacitor. .
[0015] 第 1の電圧変換回路 11は、 1次側の交流電圧を昇圧又は降圧して 2次側に出力す るトランス 20と、トランスの 1次側卷線 21に直列に接続され、パルス状の駆動信号に 従ってトランスの 1次側卷線 21に電流を流すスイッチング素子 30と、トランスの 1次側 卷線 21に流れる電流を検出する 1次側電流検出回路 40とを有している。  [0015] The first voltage conversion circuit 11 is connected in series with a transformer 20 that steps up or steps down an AC voltage on the primary side and outputs it to the secondary side, and a primary side wire 21 of the transformer. A switching element 30 for passing a current to the primary winding 21 of the transformer in accordance with the drive signal, and a primary current detection circuit 40 for detecting a current flowing to the primary winding 21 of the transformer. .
[0016] さらに、第 1の電圧変換回路 11は、トランスの 2次側卷線 22に発生する電圧を半波 整流するダイオード 51と、整流された電圧を平滑するコンデンサ 52と、コンデンサ 52 の両端における平滑された電圧を検出する 2次側電圧検出回路 60と、 1次側電流検 出回路 40の検出結果及び 2次側電圧検出回路 60の検出結果に基づいて駆動信号 を生成すると共に、トランスの 1次側卷線 21に電流を流す期間に制限を設ける制御 回路 70とを有している。 2次側電圧検出回路 60から制御回路 70への帰還信号経路 の一部には、フォト力ブラ等の光信号伝送素子が用いられる。 [0016] Further, the first voltage conversion circuit 11 generates a half-wave voltage generated on the secondary side winding 22 of the transformer. The rectifying diode 51, the capacitor 52 for smoothing the rectified voltage, the secondary side voltage detecting circuit 60 for detecting the smoothed voltage at both ends of the capacitor 52, and the detection result of the primary side current detecting circuit 40 and A control circuit 70 that generates a drive signal based on the detection result of the secondary side voltage detection circuit 60 and limits the period during which current flows through the primary side winding 21 of the transformer. An optical signal transmission element such as a photo force bra is used for a part of the feedback signal path from the secondary side voltage detection circuit 60 to the control circuit 70.
[0017] トランス 20は、磁性体のコア 24と、コア 24に回卷された 1次側卷線 21、 2次側卷線 22、及び、補助卷線 23とを有している。 1次側卷線 21の卷数を N1とし、 2次側卷線 22の卷数を N2とすると、損失がないとした場合に、 1次側と 2次側との間の昇圧比は 、 N2ZN1となる。また、補助卷線 23は、制御回路 70に電源電圧を供給するために 使用される。なお、トランス 20に付されたドットの記号は、卷線の極性を示している。  The transformer 20 includes a magnetic core 24, a primary side wire 21, a secondary side wire 22, and an auxiliary wire 23 that are wound around the core 24. Assuming that the number of primary side wires 21 is N1 and the number of secondary side wires 22 is N2, when there is no loss, the step-up ratio between the primary side and the secondary side is N2ZN1. In addition, the auxiliary feeder 23 is used to supply a power supply voltage to the control circuit 70. The dot symbol attached to the transformer 20 indicates the polarity of the winding.
[0018] 第 2の電圧変換回路 12は、 1次側の交流電圧を昇圧又は降圧して 2次側に出力す るトランス 90と、トランスの 1次側卷線 91に直列に接続され、パルス状の駆動信号に 従ってトランスの 1次側卷線 91に電流を流すスイッチング素子 100と、トランスの 1次 側卷線 91に流れる電流を検出する 1次側電流検出回路 110と、トランスの 2次側卷 線 92に発生する電圧を半波整流するダイオード 53と、整流された電圧を平滑するコ ンデンサ 54と、コンデンサ 54の両端における平滑された電圧を検出する 2次側電圧 検出回路 115と、 1次側電流検出回路 110の検出結果及び 2次側電圧検出回路 11 5の検出結果に基づいて駆動信号を生成する制御回路 120とを有している。  [0018] The second voltage conversion circuit 12 is connected in series to a transformer 90 that boosts or steps down the AC voltage on the primary side and outputs it to the secondary side, and a primary side 91 of the transformer. Switching element 100 that allows current to flow through the primary side 91 of the transformer, a primary current detection circuit 110 that detects current that flows through the primary side 91 of the transformer, and the secondary of the transformer A diode 53 for half-wave rectifying the voltage generated on the side wire 92, a capacitor 54 for smoothing the rectified voltage, a secondary-side voltage detection circuit 115 for detecting the smoothed voltage at both ends of the capacitor 54, And a control circuit 120 that generates a drive signal based on the detection result of the primary side current detection circuit 110 and the detection result of the secondary side voltage detection circuit 115.
[0019] トランス 90は、磁性体のコア 94と、コア 94に回卷された 1次側卷線 91、 2次側卷線 92、及び、補助卷線 93とを有している。 1次側卷線 91の卷数を N3とし、 2次側卷線 92の卷数を N4とすると、損失がないとした場合に、 1次側と 2次側との間の昇圧比は 、 N4ZN3となる。補助卷線 93は、制御回路 120に電源電圧を供給するために使用 される。なお、トランス 90に付されたドットの記号は、卷線の極性を示している。  The transformer 90 includes a magnetic core 94, a primary side wire 91, a secondary side wire 92, and an auxiliary wire 93 that are wound around the core 94. If the number of primary side wires 91 is N3, and the number of secondary side wires 92 is N4, then if there is no loss, the step-up ratio between the primary side and the secondary side is N4ZN3. The auxiliary feeder 93 is used to supply a power supply voltage to the control circuit 120. Note that the dot symbol attached to the transformer 90 indicates the polarity of the winding.
[0020] 一般に、スイッチング電源において、トランスの 1次側から 2次側への電力伝達方式 としては、スイッチング素子がオンした時に 1次側から 2次側に電力を伝達するフォヮ ード方式と、スイッチング素子がオフした時に 1次側から 2次側に電力を伝達するフラ ィバック方式とがある。本発明は、そのどちらにも適用できる力 本実施形態において は、フライバック方式を採用している。 [0020] Generally, in a switching power supply, as a power transmission system from the primary side to the secondary side of the transformer, a forward system that transmits power from the primary side to the secondary side when the switching element is turned on, and There is a flyback system that transmits power from the primary side to the secondary side when the switching element is turned off. In the present embodiment, the present invention can be applied to both of them. Adopts the flyback method.
[0021] 図 1に示すようなフライバック方式のスイッチング電源においては、トランスの 1次側 卷線 21と 2次側卷線 22とが逆極性の関係となっており、スイッチング素子 30がオンし ている間は、トランス 20の 1次側電流は増加する力 トランス 20の 2次側においては ダイオードで逆バイアスされているので 2次側電流は流れない。トランス 20は、スイツ チング素子 30がオンしている時に、コア 24にエネルギーを蓄える。  In a flyback type switching power supply as shown in FIG. 1, the primary side winding 21 and the secondary side winding 22 of the transformer have a reverse polarity relationship, and the switching element 30 is turned on. During this period, the primary current of the transformer 20 increases. On the secondary side of the transformer 20, the secondary current does not flow because it is reverse-biased by a diode. The transformer 20 stores energy in the core 24 when the switching element 30 is on.
[0022] 次に、スイッチング素子 30がオフすると、磁場が電流を維持しょうとするので、トラン ス 20の電圧極性が反転して、トランス 20の 2次側において電流が流れる。トランス 20 の 2次側電流は、トランスの 2次側卷線 22に直列接続されたダイオード 51を介してコ ンデンサ 52に充電されることにより、出力端子 3と出力端子 4との間に直流出力電圧 を発生させる。以上、第 1の電圧変換回路 11について説明したが、第 2の電圧変換 回路 12についても同様である。  Next, when the switching element 30 is turned off, the magnetic field tries to maintain the current, so that the voltage polarity of the transformer 20 is reversed and a current flows on the secondary side of the transformer 20. The secondary current of the transformer 20 is charged to the capacitor 52 through the diode 51 connected in series to the secondary side feeder 22 of the transformer, so that a DC output is generated between the output terminal 3 and the output terminal 4. Generate voltage. The first voltage conversion circuit 11 has been described above, but the same applies to the second voltage conversion circuit 12.
[0023] 第 1の電圧変換回路 11は、ミリ秒単位又は秒単位の限られた時間において、無負 荷状態から定格出力電流の 2〜3倍の電流を消費する状態まで、又は、場合によつ ては定格出力電流の 10倍の電流を消費する状態までダイナミックに変動するダイナ ミック負荷に対して第 1の出力電圧を供給する。一方、第 2の電圧変換回路 12は、消 費電流の変動幅が定格出力電流の約 50%以内に収まる安定的な定常負荷に対し て第 2の出力電圧を供給する。ここで、定格出力電流とは、それぞれの電圧変換回 路においてスイッチング素子として用いられる MOSFET等が安定して定常動作を行 うことができる出力電流の大きさを表しており、スイッチング電源回路の AC入力電圧 や MOSFETの規格等に基づいて予め定められる。  [0023] The first voltage conversion circuit 11 is used for a limited time in milliseconds or seconds from a no-load state to a state that consumes 2 to 3 times the rated output current. Therefore, the first output voltage is supplied to a dynamic load that fluctuates dynamically until it consumes 10 times the rated output current. On the other hand, the second voltage conversion circuit 12 supplies the second output voltage to a stable steady load in which the fluctuation range of the consumption current falls within about 50% of the rated output current. Here, the rated output current represents the magnitude of the output current at which the MOSFET used as a switching element in each voltage conversion circuit can operate stably and stably. It is determined in advance based on the input voltage and MOSFET specifications.
[0024] 本実施形態においては、スイッチング電源回路の負荷装置力インパクトプリンタで あるものとする。第 1の電圧変換回路 11は、インパクトプリンタの印字ヘッドを駆動す るプランジャのソレノイドに対して電力を供給する。一方、第 2の電圧変換回路 12は、 パーソナルコンピュータ等との間のデータの送受信やプランジャの駆動を制御するた めの制御回路に対して電力を供給する。  In the present embodiment, it is assumed that the impact power printer is a load power device of a switching power supply circuit. The first voltage conversion circuit 11 supplies power to the solenoid of the plunger that drives the print head of the impact printer. On the other hand, the second voltage conversion circuit 12 supplies power to a control circuit for controlling transmission / reception of data to / from a personal computer or the like and driving of the plunger.
[0025] そこで、第 1の電圧変換回路 11におけるトランスのコア 24、及び、第 2の電圧変換 回路 12におけるトランスのコア 94のために、負荷に応じて適切な材料が選択される。 ダイナミック負荷に対して電力を供給する第 1の電圧変換回路 11におけるトランスの コア 24としては、高 、飽和磁束密度を有するアモルファス金属の磁性体が用いられ る。具体的な材料としては、例えば、鉄 (Fe)とコノ レト(Co)を含むアモルファス合金 Fe— Co (60〜80wt%)を用いることができる。コアのタイプとしては、粉末材料を焼 結することにより成型したバルタタイプが好適である。また、リボン状のコアを積層した ラミネートタイプを用いることもできる。 Therefore, suitable materials are selected for the transformer core 24 in the first voltage conversion circuit 11 and the transformer core 94 in the second voltage conversion circuit 12 according to the load. As the transformer core 24 in the first voltage conversion circuit 11 that supplies power to the dynamic load, an amorphous metal magnetic material having a high saturation magnetic flux density is used. As a specific material, for example, an amorphous alloy Fe—Co (60 to 80 wt%) containing iron (Fe) and conoleto (Co) can be used. As the core type, a Balta type molded by sintering a powder material is suitable. A laminate type in which ribbon-like cores are laminated can also be used.
[0026] 一方、定常負荷に対して電力を供給する第 2の電圧変換回路 12におけるトランス のコア 94としては、フェライトの磁性体が用いられる。フェライトの磁性体は、低損失 で効率が良いという特徴があるので、従来から、トランスのコア材料として一般的に用 いられている。 On the other hand, as the transformer core 94 in the second voltage conversion circuit 12 that supplies power to the steady load, a ferrite magnetic material is used. Ferrite magnetic materials have been characterized by their low loss and high efficiency, and so far have been commonly used as core materials for transformers.
[0027] アモルファス金属の磁性体は、フェライトよりも飽和磁束密度が高ぐ温度による磁 気特性の変化が小さぐヒステリシス損失や渦電流損失が小さくて高周波特性が良い という特徴を有している。また、アモルファス金属の磁性体をトランスのコアとして使用 することにより、コアが磁気的に飽和し難ぐコアの発熱量も小さいので、フェライトを 用いる場合の 2倍以上の電力を供給できると共に、コアにギャップを形成する必要が な!、ので、ギャップ力もの磁束の漏洩が問題とならなくなる。  [0027] Amorphous metal magnetic materials have the characteristics that the hysteresis characteristics and the eddy current loss are small and the high frequency characteristics are good because the change in the magnetic characteristics due to the temperature at which the saturation magnetic flux density is higher than that of ferrite. In addition, by using an amorphous metal magnetic body as the core of the transformer, the heat generation amount of the core, which is hard to be saturated magnetically, is small, so that it is possible to supply more than twice as much power as when ferrite is used. Because there is no need to form a gap in the gap, leakage of magnetic flux with gap force is no longer a problem.
[0028] ただし、アモルファス金属の磁性体を用いる場合には、フェライトを用いる場合と比 較して、卷数当りのインダクタンス(「AL値」ともいう)が小さくなるので、卷数をある程 度増やしても卷線のインダクタンスが小さくなり、卷線に流れる電流が増加する。また 、アモルファス金属の磁性体は飽和し難いので、卷線に流れるピーク電流を大きくす ることができる。し力しながら、ピーク電流が大きくなると、スイッチング素子が破壊され 易くなるという問題がある。そこで、本実施形態においては、回路的な工夫をすること によって、スイッチング素子を保護している。  [0028] However, when an amorphous metal magnetic material is used, the inductance per power (also referred to as "AL value") is smaller than when ferrite is used. Even if it increases, the inductance of a winding will become small and the electric current which flows into a winding will increase. In addition, since the magnetic material of amorphous metal is difficult to saturate, the peak current flowing in the shoreline can be increased. However, when the peak current increases, there is a problem that the switching element is easily destroyed. Therefore, in this embodiment, the switching element is protected by devising a circuit.
[0029] 図 2は、図 1に示す第 1の電圧変換回路における制御回路等の構成を詳しく示す図 である。本実施形態においては、図 1に示すスイッチング素子 30として、 Nチャネル MOSFET31が用いられる。 MOSFET31は、トランスの 1次卷線 21に接続されたド レインと、整流平滑回路 10に接続されたソースと、ゲートドライバ 79から駆動信号が 印加されるゲートとを有して 、る。 [0030] トランスの 1次側卷線 21と MOSFET31のドレイン ·ソース経路とは直列に接続され 、整流平滑回路 10において交流電源電圧を整流及び平滑することにより得られた電 圧が、これらの直列回路に供給される。 MOSFET31は、ゲートに印加されるパルス 状の駆動信号に従って、トランスの 1次側卷線 21に電流を流す。 FIG. 2 is a diagram showing in detail the configuration of the control circuit and the like in the first voltage conversion circuit shown in FIG. In the present embodiment, an N-channel MOSFET 31 is used as the switching element 30 shown in FIG. The MOSFET 31 has a drain connected to the primary winding 21 of the transformer, a source connected to the rectifying / smoothing circuit 10, and a gate to which a drive signal is applied from the gate driver 79. [0030] The transformer primary side wire 21 and the drain / source path of the MOSFET 31 are connected in series, and the voltage obtained by rectifying and smoothing the AC power supply voltage in the rectifying and smoothing circuit 10 is the series voltage. Supplied to the circuit. The MOSFET 31 allows a current to flow through the primary side winding 21 of the transformer in accordance with a pulsed drive signal applied to the gate.
[0031] 通常は、トランスの 1次側卷線 21に流れる電流を検出するために、 1次側卷線 21と 直列に抵抗を挿入し、この抵抗の両端電圧を測定することが行われている力 その 場合には、抵抗によって電力損失が発生してしまう。そこで、本実施形態においては 、 1次側電流検出回路 40が MOSFET31のドレイン 'ソース間電圧に基づいて 1次 側電流を検出するようにして 、る。  [0031] Normally, in order to detect the current flowing through the primary side wire 21 of the transformer, a resistor is inserted in series with the primary side wire 21 and the voltage across this resistor is measured. In that case, power loss occurs due to resistance. Therefore, in the present embodiment, the primary side current detection circuit 40 detects the primary side current based on the drain-source voltage of the MOSFET 31.
[0032] 1次側電流検出回路 40は、 PNPバイポーラトランジスタ 41と、トランジスタ 41のエミ ッタに電流を供給する電流源 42とを含んでいる。トランジスタ 41は、 MOSFET31の ドレイン力も電位が印加されるベースを有し、ェミッタフォロア動作を行うことにより、ェ ミッタから検出電圧を出力する。なお、図 2においては、トランジスタ 41のベースが、 MOSFET31のドレインに直接接続されている力 抵抗やトランジスタを介して MOS FET31のドレインに間接的に接続されるようにしても良 、。  The primary-side current detection circuit 40 includes a PNP bipolar transistor 41 and a current source 42 that supplies a current to the emitter of the transistor 41. The transistor 41 has a base to which the potential of the drain force of the MOSFET 31 is applied, and outputs a detection voltage from the emitter by performing an emitter follower operation. In FIG. 2, the base of the transistor 41 may be indirectly connected to the drain of the MOS FET 31 via a force resistor or transistor directly connected to the drain of the MOSFET 31.
[0033] MOSFET31がオン状態になると、 MOSFET31のドレイン 'ソース間のオン抵抗 は、素子の特性及びゲート'ソース間電圧によって定まる値となる。ただし、 MOSFE T31の負荷となるトランスの 1次側卷線 21はインダクタンス成分を含んで!/、るので、ド レイン電流はゼロから徐々に増加することになる。このドレイン電流と MOSFET31の オン抵抗との積力 MOSFET31のドレイン 'ソース間電圧となる。そこで、 MOSFE T31のドレイン 'ソース間電圧を測定すれば、トランスの 1次側卷線 21に流れる電流 の大きさに比例した検出電圧を得ることができる。  When the MOSFET 31 is turned on, the on-resistance between the drain and the source of the MOSFET 31 becomes a value determined by the characteristics of the element and the gate and the source-to-source voltage. However, since the primary winding 21 of the transformer, which is the load of MOSFE T31, contains an inductance component! /, The drain current gradually increases from zero. The product of this drain current and the on-resistance of MOSFET 31 is the drain-source voltage of MOSFET 31. Therefore, if the voltage between the drain and source of MOSFE T31 is measured, a detection voltage proportional to the magnitude of the current flowing through the primary side winding 21 of the transformer can be obtained.
[0034] 制御回路 70は、検出電圧生成回路 71と、比較器 72と、クロック信号生成回路 73と 、 AND回路 74と、比較器 75と、ブランキングパルス生成回路 76と、 AND回路 77と 、ノ ルス幅設定回路 78と、ゲートドライバ 79とを含んでいる。  The control circuit 70 includes a detection voltage generation circuit 71, a comparator 72, a clock signal generation circuit 73, an AND circuit 74, a comparator 75, a blanking pulse generation circuit 76, an AND circuit 77, It includes a noise width setting circuit 78 and a gate driver 79.
[0035] 図 1に示す 2次側電圧検出回路 60の検出結果は、フォト力ブラ等の光信号伝送素 子を用いることにより、光信号として検出電圧生成回路 71に伝送される。これにより、 トランス 20の 1次側と 2次側との間でアイソレーションを保ちながら、 2次側電圧検出 回路 60の検出結果を 1次側の検出電圧生成回路 71に伝送することができる。検出 電圧生成回路 71は、 2次側電圧検出回路 60の検出結果に基づいて検出電圧を生 成する。 The detection result of the secondary side voltage detection circuit 60 shown in FIG. 1 is transmitted as an optical signal to the detection voltage generation circuit 71 by using an optical signal transmission element such as a photopower bra. This allows secondary voltage detection while maintaining isolation between the primary and secondary sides of transformer 20. The detection result of the circuit 60 can be transmitted to the detection voltage generation circuit 71 on the primary side. The detection voltage generation circuit 71 generates a detection voltage based on the detection result of the secondary side voltage detection circuit 60.
[0036] 図 3は、図 1に示す第 1の電圧変換回路における 2次側電圧検出回路と検出電圧 生成回路の構成例を示す回路図である。この例において、 2次側電圧検出回路 60 は、コンデンサ 52の両端子間に接続された抵抗 61と発光ダイオード 62とシャントレ ギユレータ 63との直列接続回路と、コンデンサ 52の両端子間に発生する電圧を分圧 するための抵抗 64及び 65とを有している。抵抗 64及び 65によって分圧された電圧 は、シャントレギユレータ 63の制御端子に印加される。これにより、 2次側電圧が所定 の電圧を超えると発光ダイオード 62に電流が流れるようになっており、発光ダイォー ド 62が電流の大きさに応じた強度で発光して光信号を生成する。  FIG. 3 is a circuit diagram showing a configuration example of a secondary side voltage detection circuit and a detection voltage generation circuit in the first voltage conversion circuit shown in FIG. In this example, the secondary side voltage detection circuit 60 includes a resistor 61, a light emitting diode 62, and a shunt regulator 63 connected between both terminals of the capacitor 52, and a voltage generated between both terminals of the capacitor 52. And resistors 64 and 65 for dividing the voltage. The voltage divided by the resistors 64 and 65 is applied to the control terminal of the shunt regulator 63. Thereby, when the secondary side voltage exceeds a predetermined voltage, a current flows through the light emitting diode 62, and the light emitting diode 62 emits light with an intensity corresponding to the magnitude of the current to generate an optical signal.
[0037] 検出電圧生成回路 71は、トランスの補助卷線 23に発生する電圧を整流するダイォ ード 81と、ダイオード 81によって整流された電圧を平滑するコンデンサ 82と、コンデ ンサ 82によって平滑された電圧がコレクタに印加されるフォトトランジスタ 83と、抵抗 84〜86と、オペアンプ 87と、リミッタ用のダイオード 88とを有している。  The detection voltage generation circuit 71 is smoothed by the diode 81 that rectifies the voltage generated in the auxiliary auxiliary wire 23 of the transformer, the capacitor 82 that smoothes the voltage rectified by the diode 81, and the capacitor 82. It has a phototransistor 83 to which a voltage is applied to the collector, resistors 84 to 86, an operational amplifier 87, and a diode 88 for limiter.
[0038] フォトトランジスタ 83は、発光ダイオード 62によって生成された光信号を受けて、そ の強度に応じた電流をェミッタから出力する。フォトトランジスタ 83のェミッタから出力 された電流は、抵抗 84を介してオペアンプ 87の反転入力端子に入力される。  [0038] The phototransistor 83 receives the optical signal generated by the light emitting diode 62, and outputs a current corresponding to the intensity from the emitter. The current output from the emitter of the phototransistor 83 is input to the inverting input terminal of the operational amplifier 87 via the resistor 84.
[0039] また、オペアンプ 87の反転入力端子には抵抗 85及び 86が接続されて負帰還ルー プが構成され、非反転入力端子には制御電圧 Vが印加されており、これらに基づい  [0039] In addition, resistors 85 and 86 are connected to the inverting input terminal of the operational amplifier 87 to form a negative feedback loop, and the control voltage V is applied to the non-inverting input terminal.
C  C
て、フォトトランジスタ 83の出力電流に応じた検出電圧が生成される。 2次側の負荷 が軽い状態においては、 2次側の電圧が上昇するので検出電圧が下降し、 2次側の 負荷が重い状態においては、 2次側の電圧が下降するので検出電圧が上昇する。  Thus, a detection voltage corresponding to the output current of the phototransistor 83 is generated. When the load on the secondary side is light, the detection voltage decreases because the voltage on the secondary side increases, and when the load on the secondary side is heavy, the detection voltage increases because the voltage on the secondary side decreases. To do.
[0040] さらに、オペアンプ 87の出力端子と反転入力端子との間には、リミッタ用のダイォー ド 88が接続されている。このリミッタ用のダイオード 88によって、オペアンプ 87から出 力される検出電圧に上限が設定される。図 3においては 1つのダイオードを示してい る力 複数のダイオードを直列接続するようにしても良い。ダイオードの数によって、 検出電圧の上限を変更することができる。 [0041] 再び図 2を参照すると、比較器 72は、シュミットトリガ特性を有し、検出電圧生成回 路 71によって生成される検出電圧と参照電圧 V とを比較して 2次側の負荷の状態 Furthermore, a limiter diode 88 is connected between the output terminal and the inverting input terminal of the operational amplifier 87. The limiter diode 88 sets an upper limit on the detection voltage output from the operational amplifier 87. In FIG. 3, a force indicating one diode A plurality of diodes may be connected in series. The upper limit of the detection voltage can be changed depending on the number of diodes. [0041] Referring to FIG. 2 again, the comparator 72 has a Schmitt trigger characteristic, and compares the detection voltage generated by the detection voltage generation circuit 71 with the reference voltage V to determine the state of the load on the secondary side.
REF  REF
を判定し、判定結果として軽負荷状態か否力を表す負荷状態信号を出力する。クロ ック信号生成回路 73は、クロック信号を生成する。 AND回路 74は、負荷状態信号と クロック信号との論理積を求める。  And a load state signal indicating whether or not the light load state is present is output as a determination result. The clock signal generation circuit 73 generates a clock signal. The AND circuit 74 obtains a logical product of the load state signal and the clock signal.
[0042] 軽負荷状態においては、検出電圧が下降するので負荷状態信号がローレベルとな り、 AND回路 74の出力信号もローレベルに固定されるので、パルス幅設定回路 78 がパルスを発生しない。一方、 2次側の出力電圧が低下すると、検出電圧が上昇する ので、負荷状態信号カ 、ィレベルとなり、クロック信号生成回路 73によって生成され たクロック信号が AND回路 74力 パルス幅設定回路 78に供給されるので、パルス 幅設定回路 78がクロック信号に同期して複数のノ ルスを発生する。このようにして、 制御回路 70は、 2次側が軽負荷状態にあると判定したときに、駆動信号におけるパ ルスの数を低減させて、スイッチング素子 30を間欠動作させることができる。  [0042] In the light load state, since the detection voltage decreases, the load state signal becomes low level, and the output signal of the AND circuit 74 is also fixed at low level, so the pulse width setting circuit 78 does not generate a pulse. . On the other hand, when the output voltage on the secondary side decreases, the detection voltage increases, so that the load state signal becomes high level, and the clock signal generated by the clock signal generation circuit 73 is supplied to the AND circuit 74 force pulse width setting circuit 78. Therefore, the pulse width setting circuit 78 generates a plurality of pulses in synchronization with the clock signal. In this way, when the control circuit 70 determines that the secondary side is in a light load state, the control circuit 70 can cause the switching element 30 to operate intermittently by reducing the number of pulses in the drive signal.
[0043] 比較器 75は、 1次側電流検出回路 40から出力される検出電圧と、 2次側の出力電 圧の検出結果に基づいて検出電圧生成回路 71によって生成される検出電圧とを比 較して、比較結果を表す比較信号を生成する。また、ブランキングパルス生成回路 7 6は、トランスの 1次側電流が小さい内に MOSFET31がオフ状態となる誤動作を防 止するために、クロック信号に同期した所定の期間においてのみハイレベルとなるブ ランキングノ ルス信号を生成する。ブランキングパルス信号がハイレベルとなる期間 において、比較器 75によって生成された比較信号が AND回路 77から出力される。  The comparator 75 compares the detection voltage output from the primary side current detection circuit 40 and the detection voltage generated by the detection voltage generation circuit 71 based on the detection result of the secondary side output voltage. In comparison, a comparison signal representing the comparison result is generated. In addition, the blanking pulse generation circuit 76 is a high level only in a predetermined period synchronized with the clock signal in order to prevent a malfunction in which the MOSFET 31 is turned off while the primary current of the transformer is small. Generate ranking noise signal. The comparison signal generated by the comparator 75 is output from the AND circuit 77 during the period when the blanking pulse signal is at a high level.
[0044] パルス幅設定回路 78は、例えば、セット端子 Sとリセット端子 Rと出力端子 Qとを有 する RSフリップフロップによって構成される。パルス幅設定回路 78は、負荷状態信 号がハイレベルであるときに、クロック信号生成回路 73によって生成されるクロック信 号に同期して出力信号をセットすると共に、ブランキングパルス信号カ 、ィレベルで あるときに、比較器 75によって生成される比較信号に同期して出力信号をリセットす ることにより、駆動信号におけるパルス幅を設定する。ゲートドライバ 79は、パルス幅 設定回路 78から出力される駆動信号に基づいて、 MOSFET31のゲートを駆動する [0045] 次に、図 2に示す制御回路の動作について、図 4及び図 5を参照しながら説明する 。図 4は、図 2に示す第 1の電圧変換回路における制御回路の過負荷状態における 動作を説明するための波形図である。 [0044] The pulse width setting circuit 78 is configured by, for example, an RS flip-flop having a set terminal S, a reset terminal R, and an output terminal Q. The pulse width setting circuit 78 sets the output signal in synchronization with the clock signal generated by the clock signal generation circuit 73 when the load state signal is at the high level, and at the blanking pulse signal level at the high level. At some point, the pulse width in the drive signal is set by resetting the output signal in synchronization with the comparison signal generated by the comparator 75. The gate driver 79 drives the gate of the MOSFET 31 based on the drive signal output from the pulse width setting circuit 78. Next, the operation of the control circuit shown in FIG. 2 will be described with reference to FIGS. 4 and 5. FIG. 4 is a waveform diagram for explaining the operation of the control circuit in the first voltage conversion circuit shown in FIG. 2 in an overload state.
図 4の(a)は、クロック信号生成回路 73によって生成されるクロック信号 V を示して  (A) of FIG. 4 shows the clock signal V generated by the clock signal generation circuit 73.
CK  CK
いる。クロック信号に含まれているパルスの周期は Tであり、パルス幅(ノヽィレベルの 期間)は Tである。ここでは、クロック信号のデューティ (T ZT)が 50%となっている  Yes. The period of the pulse included in the clock signal is T, and the pulse width (period of noise level) is T. Here, the duty (T ZT) of the clock signal is 50%
H H  H H
[0046] 本実施形態においては、トランスのコア 24にアモルファス金属の磁性体を用いてい るので、フェライトを用いた場合と比較して、卷数が同じ場合には 1次側卷線のインピ 一ダンスが小さくなつている。そのために、図 4の(b)に示すように、フェライトを用いた 場合と比較して、トランスの 1次側卷線 21に流れる電流、即ち、 MOSFET31のドレ イン電流 Iの値が大きくなり、発熱によって MOSFET31が破壊されるおそれがある In this embodiment, since an amorphous metal magnetic material is used for the core 24 of the transformer, the impedance of the primary side wire is reduced when the number of power is the same as compared with the case of using ferrite. The dance is getting smaller. Therefore, as shown in Fig. 4 (b), compared to the case where ferrite is used, the current flowing through the primary side wire 21 of the transformer, that is, the drain current I of the MOSFET 31, becomes larger. MOSFET31 may be destroyed by heat generation
D  D
。一方、卷線のインピーダンスを大きくするためには、卷数を増やさなければならず、 トランスが大型化してしまう。そこで、本実施形態においては、以下のような手法によ つて、この問題を解決した。  . On the other hand, in order to increase the impedance of the wire, the number of wires must be increased, and the transformer becomes large. Therefore, in this embodiment, this problem is solved by the following method.
[0047] トランスの 1次側電流が増加すれば、コア 24にエネルギーが蓄積されるスピードが 速くなる。さらに、ダイナミック負荷において瞬間的に消費電流が大きくなつた場合に は、ドレイン電流 I [0047] If the primary current of the transformer increases, the speed at which energy is stored in the core 24 increases. Furthermore, if the current consumption increases momentarily in a dynamic load, the drain current I
Dを流す期間を増加させることによって対応することができる。その 際に、ドレイン電流 Iを流す期間に上限を設けておけば、 MOSFET31の温度が異  This can be dealt with by increasing the period of flowing D. At this time, if an upper limit is set for the period during which the drain current I flows, the temperature of the MOSFET 31 varies.
D  D
常に上昇する前に消費電力が元に戻るので、 MOSFET31が破壊されるおそれは ない。そのような動作を行うために、制御回路 70は、図 4の(b)に示す A点において MOSFET31をオフ状態とするように、駆動信号におけるパルス幅の上限を設定して いる。  Since the power consumption returns to the original level before it always rises, there is no possibility that the MOSFET 31 is destroyed. In order to perform such an operation, the control circuit 70 sets the upper limit of the pulse width in the drive signal so that the MOSFET 31 is turned off at the point A shown in FIG. 4B.
[0048] 制御回路 70の動作を詳しく説明すると、クロック信号生成回路 73によって生成され るクロック信号 V の立ち上がりエッジに同期してパルス幅設定回路 78の出力信号  [0048] The operation of the control circuit 70 will be described in detail. The output signal of the pulse width setting circuit 78 is synchronized with the rising edge of the clock signal V generated by the clock signal generation circuit 73.
CK  CK
がセットされ、ゲート電圧 V (図 4の(e) )がハイレベルとなる。これにより、比較器 75  Is set and the gate voltage V ((e) in Fig. 4) goes high. This makes the comparator 75
G  G
力 出力される比較信号 V (図 4の(d) )が、ハイレベルからローレベルに移行す  The output comparison signal V ((d) in Figure 4) shifts from high level to low level.
COMP  COMP
る。 [0049] 二こで、比較器 75から出力される比較信号 V は、 1次側電流検出回路 40から The [0049] Here, the comparison signal V output from the comparator 75 is supplied from the primary-side current detection circuit 40.
COMP  COMP
出力される第 1の検出電圧と、 2次側電圧検出回路 60の検出結果に基づいて検出 電圧生成回路 71によって生成される第 2の検出電圧とを比較して得られるものである 。過負荷状態においては、 MOSFET31のドレイン電流 Iが増加して第 1の検出電  This is obtained by comparing the output first detection voltage with the second detection voltage generated by the detection voltage generation circuit 71 based on the detection result of the secondary side voltage detection circuit 60. In an overload condition, the drain current I of the MOSFET 31 increases and the first detection current
D  D
圧が増加すると共に、トランスの 2次側における出力電圧が低下して第 2の検出電圧 も増加するが、第 2の検出電圧には検出電圧生成回路 71において上限が設けられ ている。従って、第 2の検出電圧が上限に達したときに、第 1の検出電圧がその上限 を超えると、比較器 75から出力される比較信号 V カ 、ィレベルとなる。  As the voltage increases, the output voltage on the secondary side of the transformer decreases and the second detection voltage also increases. However, the detection voltage generation circuit 71 has an upper limit for the second detection voltage. Therefore, when the second detection voltage reaches the upper limit, if the first detection voltage exceeds the upper limit, the comparison signal V output from the comparator 75 becomes a high level.
COMP  COMP
1次側電流検出回路 40は、 MOSFET31のドレイン電圧 Vに基づいて検出電圧  The primary-side current detection circuit 40 detects the detection voltage based on the drain voltage V of the MOSFET 31.
D  D
を生成するので、上記の動作をドレイン電圧 V (図 4の(c) )に基づいて説明する。ゲ  The above operation will be described based on the drain voltage V ((c) in FIG. 4). Get
D  D
ート電圧 V がハイレベルになると、ドレイン電流 I が流れ始める力 ドレイン電圧 V  The drain current V begins to flow when the gate voltage V becomes high.
G D D  G D D
はー且低下するので、比較器 75から出力される比較信号 V 力 Sハイレベル力も口  The comparison signal V force S high level force output from the comparator 75
COMP  COMP
一レベルに移行する。その後、ドレイン電流 Iが次第に増加し、ドレイン電圧 Vも次  Move to one level. After that, the drain current I gradually increases and the drain voltage V also increases.
D D  D D
第に上昇する。図 4の(c)に示す B点において、ドレイン電圧 V力 2次側電圧検出  Rises second. Drain voltage V force Secondary side voltage detection at point B shown in Fig. 4 (c)
D  D
回路 60の検出結果に基づいて定まるしきい電圧 V (この場合には、第 2の検出電  The threshold voltage V determined based on the detection result of the circuit 60 (in this case, the second detection voltage)
TH  TH
圧の上限に対応する)を越えると、比較器 75から出力される比較信号 V 力 Sハイレ  The comparison signal V force S high level output from the comparator 75 is exceeded.
COMP  COMP
ベルとなる。その結果、パルス幅設定回路 78の出力信号がリセットされ、 MOSFET 31のゲート電圧 V力  Become a bell. As a result, the output signal of the pulse width setting circuit 78 is reset, and the MOSFET 31 gate voltage V power
G 一レベルとなり、図 4の(b)に示す A点においてドレイン電流 I が停止する。  G becomes one level, and the drain current I stops at the point A shown in Fig. 4 (b).
D  D
[0051] このようにして、制御回路 70は、一定の周期で MOSFET31をオンさせると共に、 比較信号 V の立ち上がりエッジに同期して MOSFET31をオフさせる。図 4の(e  In this way, the control circuit 70 turns on the MOSFET 31 at a constant cycle and turns off the MOSFET 31 in synchronization with the rising edge of the comparison signal V. Figure 4 (e
COMP  COMP
)にお!/、て、 MOSFET31がオンする期間は T で表され、 MOSFET31がオフする  ) !, and the period during which the MOSFET 31 is turned on is represented by T, and the MOSFET 31 is turned off.
ON  ON
期間は T で表される。  The period is represented by T.
OFF  OFF
[0052] 図 5は、図 2に示す制御回路の通常状態における動作を説明するための波形図で ある。図 5の(a)は、クロック信号生成回路 73によって生成されるクロック信号 V を示  FIG. 5 is a waveform diagram for explaining the operation of the control circuit shown in FIG. 2 in a normal state. Figure 5 (a) shows the clock signal V generated by the clock signal generation circuit 73.
CK  CK
している。また、図 5の(b)は、 MOSFET31のドレイン電流 Iを示しており、図 5の(c  is doing. 5 (b) shows the drain current I of the MOSFET 31, and FIG.
D  D
)は、 MOSFET31のドレイン電圧 Vを示している。  ) Indicates the drain voltage V of the MOSFET 31.
D  D
[0053] 通常状態においては、過負荷状態と比較して 2次側の負荷が軽いので、 2次側の 出力電圧が上昇し、 2次側電圧検出回路 60の検出結果に基づいて検出電圧生成 回路 71によって生成される第 2の検出電圧が低くなつている。従って、図 5の(c)に 示すように、 2次側電圧検出回路 60の検出結果に基づいて定まるしきい電圧 V も [0053] In the normal state, the load on the secondary side is light compared to the overload state. The output voltage increases, and the second detection voltage generated by the detection voltage generation circuit 71 based on the detection result of the secondary side voltage detection circuit 60 is low. Therefore, as shown in (c) of FIG. 5, the threshold voltage V determined based on the detection result of the secondary side voltage detection circuit 60 is also
TH  TH
低くなつている。その結果、ドレイン電流 Iが流れ始めてからドレイン電圧 V力  It is getting lower. As a result, after drain current I begins to flow, drain voltage V force
D D sしきい 電圧 V を越えるまでの期間も短くなる。図 5の(c)に示す D点において、ドレイン電 D D s threshold The period until the voltage V is exceeded is also shortened. At point D shown in Fig. 5 (c), the drain current
TH TH
圧 V力 Sしきい電圧 V を越えると、比較器 75から出力される比較信号 V (図 5の When the voltage V force S threshold voltage V is exceeded, the comparison signal V (Fig. 5
D TH COMP D TH COMP
(d) )がハイレベルとなる。その結果、パルス幅設定回路 78の出力信号がリセットされ 、 MOSFET31のゲート電圧 V (図 5の(e) )がローレベルとなり、図 5の(b)に示す C  (d)) goes high. As a result, the output signal of the pulse width setting circuit 78 is reset, the gate voltage V of the MOSFET 31 ((e) in FIG. 5) becomes a low level, and C shown in FIG. 5 (b).
G  G
点においてドレイン電流 Iが停止する。このように、通常状態においては、 MOSFE  The drain current I stops at the point. Thus, in normal conditions, MOSFE
D  D
T31にドレイン電流 Iを流す期間が縮小される。  The period during which the drain current I flows through T31 is reduced.
D  D
[0054] さらに、軽負荷状態となった場合には、制御回路 70の比較器 72が、検出電圧生成 回路 71によって生成される検出電圧に基づいて、 2次側が軽負荷状態であると判定 し、比較信号をローレベルとする。その結果、 AND回路 74の出力信号もローレベル となり、パルス幅設定回路 78にクロック信号が供給されなくなって、駆動信号におけ るパルスの数が減少する。  Further, when the light load state is entered, the comparator 72 of the control circuit 70 determines that the secondary side is in the light load state based on the detection voltage generated by the detection voltage generation circuit 71. The comparison signal is set to a low level. As a result, the output signal of the AND circuit 74 also becomes low level, the clock signal is not supplied to the pulse width setting circuit 78, and the number of pulses in the drive signal decreases.
[0055] 本実施形態においては、図 2に示すように、比較器 75が出力する比較信号とブラン キングパルス生成回路 76が生成するブランキングノ ルス信号との論理積を AND回 路 77によって求めるようにした力 ブランキングパルス生成回路 76が生成するブラン キングパルス信号によって 1次側電流検出回路 40の動作をオン Zオフするようにし ても良い。その場合には、 AND回路 77を省略することができる。  In the present embodiment, as shown in FIG. 2, the AND circuit 77 obtains the logical product of the comparison signal output from the comparator 75 and the blanking pulse signal generated by the blanking pulse generation circuit 76. The power of the primary side current detection circuit 40 may be turned on and off by the blanking pulse signal generated by the force blanking pulse generation circuit 76. In that case, the AND circuit 77 can be omitted.
[0056] 図 6は、図 1に示す第 2の電圧変換回路における制御回路等の構成を示す図であ る。第 2の電圧変換回路 12においても、第 1の電圧変換回路 11と同様に、スィッチン グ素子 100として Nチャネル MOSFET101が用いられる。 MOSFET101は、トラン スの 1次卷線 91に接続されたドレインと、整流平滑回路 10に接続されたソースと、ゲ ートドライバ 79から駆動信号が印加されるゲートとを有している。  FIG. 6 is a diagram showing a configuration of a control circuit and the like in the second voltage conversion circuit shown in FIG. In the second voltage conversion circuit 12, as in the first voltage conversion circuit 11, an N-channel MOSFET 101 is used as the switching element 100. MOSFET 101 has a drain connected to primary winding 91 of the transformer, a source connected to rectifying and smoothing circuit 10, and a gate to which a drive signal is applied from gate driver 79.
[0057] トランスの 1次側卷線 91と MOSFET101のドレイン ·ソース経路とは直列に接続さ れ、整流平滑回路 10において交流電源電圧を整流及び平滑することにより得られた 電圧が、これらの直列回路に供給される。 MOSFET101は、ゲートに印加されるパ ルス状の駆動信号に従って、トランスの 1次側卷線 91に電流を流す。 [0057] The transformer primary 91 and the drain / source path of the MOSFET 101 are connected in series, and the voltage obtained by rectifying and smoothing the AC power supply voltage in the rectifying and smoothing circuit 10 is connected to the series. Supplied to the circuit. MOSFET 101 has a voltage applied to the gate. A current is passed through the transformer primary 91 according to the driving signal in the form of a pulse.
[0058] 制御回路 120は、クロック信号を生成するクロック信号生成回路 73と、図 1に示す 2 次側電圧検出回路 115の検出結果に基づいて検出電圧を生成する検出電圧生成 回路 121と、 1次側電流検出回路 110から出力される検出電圧と検出電圧生成回路 121から出力される検出電圧とを比較することにより比較信号を生成する比較器 75と 、ブランキングパルスを生成するブランキングノ ルス生成回路 76と、比較信号とブラ ンキングパルスとの論理積を求める AND回路 77と、 AND回路 77の出力信号に基 づ ヽて駆動信号におけるパルス幅を設定するパルス幅設定回路 78と、パルス幅設 定回路 78から出力される駆動信号に基づいて MOSFET101のゲートを駆動するゲ ートドライバ 79とを含んで ヽる。 The control circuit 120 includes a clock signal generation circuit 73 that generates a clock signal, a detection voltage generation circuit 121 that generates a detection voltage based on the detection result of the secondary side voltage detection circuit 115 shown in FIG. A comparator 75 that generates a comparison signal by comparing the detection voltage output from the secondary current detection circuit 110 and the detection voltage output from the detection voltage generation circuit 121, and a blanking pulse that generates a blanking pulse. A generation circuit 76, an AND circuit 77 that obtains a logical product of the comparison signal and the blanking pulse, a pulse width setting circuit 78 that sets a pulse width in the drive signal based on the output signal of the AND circuit 77, and a pulse width A gate driver 79 that drives the gate of the MOSFET 101 based on the drive signal output from the setting circuit 78 is included.
[0059] 図 1に示す 2次側電圧検出回路 115の構成は、図 3に示す 2次側電圧検出回路 60 の構成と同一である。 2次側電圧検出回路 115の検出結果は、フォト力ブラ等の光信 号伝送素子を用いることにより、光信号として検出電圧生成回路 121に伝送される。 これにより、トランス 90の 1次側と 2次側との間でアイソレーションを保ちながら、 2次側 電圧検出回路 115の検出結果を 1次側の検出電圧生成回路 121に伝送することが できる。検出電圧生成回路 121は、 2次側電圧検出回路 115の検出結果に基づいて 検出電圧を生成する。 The configuration of secondary side voltage detection circuit 115 shown in FIG. 1 is the same as the configuration of secondary side voltage detection circuit 60 shown in FIG. The detection result of the secondary side voltage detection circuit 115 is transmitted to the detection voltage generation circuit 121 as an optical signal by using an optical signal transmission element such as a photopower bra. As a result, the detection result of the secondary side voltage detection circuit 115 can be transmitted to the primary side detection voltage generation circuit 121 while maintaining isolation between the primary side and the secondary side of the transformer 90. The detection voltage generation circuit 121 generates a detection voltage based on the detection result of the secondary side voltage detection circuit 115.
[0060] 図 6に示す検出電圧生成回路 121の構成は、リミッタ用のダイオード 88を除き、図 3 に示す検出電圧生成回路 71の構成と同一である。第 2の電圧変換回路 12は、安定 的な定常負荷に対して電力を供給するためのものであるので、トランスのコア 94には フェライトの磁性体が用いられる。その場合にはトランスの 1次卷線 91に過電流が流 れるおそれがな 、ので、ドレイン電流を制御するリミッタ用のダイオード 88が省略され ている。  The configuration of the detection voltage generation circuit 121 shown in FIG. 6 is the same as the configuration of the detection voltage generation circuit 71 shown in FIG. 3 except for the diode 88 for limiter. Since the second voltage conversion circuit 12 supplies power to a stable steady load, a ferrite magnetic material is used for the core 94 of the transformer. In this case, since there is no possibility of an overcurrent flowing through the primary winding 91 of the transformer, the limiter diode 88 for controlling the drain current is omitted.
[0061] 本実施形態の変形として、第 1の電圧変換回路 11において、比較器 75の反転入 力端子に、検出電圧生成回路 71によって生成される検出電圧の替わりに所定の電 圧を印加することにより、 1次側電流検出回路 40の検出結果に基づいて駆動信号を 生成するようにしても良い。その場合でも、 1次側電流検出回路 40から出力される検 出電圧が所定の電圧を超えるとパルス幅設定回路 78の出力信号がリセットされるの で、駆動信号におけるパルス幅の上限を設定することができる。一方、 2次側電圧検 出回路 60の検出結果に基づいて駆動信号を生成するようにしても良い。第 2の電圧 変換回路 12においても、同様である。 As a modification of the present embodiment, in the first voltage conversion circuit 11, a predetermined voltage is applied to the inverting input terminal of the comparator 75 instead of the detection voltage generated by the detection voltage generation circuit 71. Thus, the drive signal may be generated based on the detection result of the primary side current detection circuit 40. Even in this case, the output signal of the pulse width setting circuit 78 is reset when the detection voltage output from the primary side current detection circuit 40 exceeds a predetermined voltage. Thus, the upper limit of the pulse width in the drive signal can be set. On the other hand, the drive signal may be generated based on the detection result of the secondary side voltage detection circuit 60. The same applies to the second voltage conversion circuit 12.
[0062] 本実施形態によれば、第 1の電圧変換回路 11と第 2の電圧変換回路 12とにおいて 、それぞれの負荷に適した別個のトランスを使用すると共に、 1次側回路を独立として いるので、複数系統の出力を有する電源回路において問題となるダイナミック負荷に 対するクロスレギュレーションを改善することができる。  [0062] According to the present embodiment, the first voltage conversion circuit 11 and the second voltage conversion circuit 12 use separate transformers suitable for respective loads, and the primary circuit is independent. Therefore, it is possible to improve the cross regulation with respect to the dynamic load which is a problem in the power supply circuit having outputs of a plurality of systems.
[0063] 次に、本発明の第 2の実施形態について説明する。  [0063] Next, a second embodiment of the present invention will be described.
図 7は、本発明の第 2の実施形態に係るスイッチング電源回路の構成を示す図であ る。第 2の実施形態に係るスイッチング電源回路においては、第 1及び第 2の電圧変 換回路 11及び 12の各々において、トランスの替わりにチョークコイルを含む昇圧型 のチヨッパ回路を用いて 、る。  FIG. 7 is a diagram showing a configuration of a switching power supply circuit according to the second embodiment of the present invention. In the switching power supply circuit according to the second embodiment, each of the first and second voltage conversion circuits 11 and 12 uses a step-up type chopper circuit including a choke coil instead of a transformer.
[0064] 第 1の電圧変換回路 11は、整流平滑回路 10に一端が接続され、卷線に流れる電 流によって発生する磁気エネルギーをコアに蓄えるチョークコイル 130と、チョークコ ィル 130の他端に接続され、パルス状の駆動信号に従ってチョークコイル 130に電 流を流すスイッチング素子 30と、スイッチング素子 30に流れる電流を検出するスイツ チング電流検出回路 140とを有している。ここで、チョークコイル 130としてトランスの 1次側卷線を用いる場合には、トランスの 2次側卷線を内部電源の生成用に利用する ことができる。  [0064] One end of the first voltage conversion circuit 11 is connected to the rectifying and smoothing circuit 10, and the choke coil 130 that stores magnetic energy generated by the current flowing in the winding in the core and the other end of the choke coil 130 are connected. The switching element 30 is connected and flows current through the choke coil 130 in accordance with the pulsed drive signal, and the switching current detection circuit 140 detects current flowing through the switching element 30. Here, when the primary side winding of the transformer is used as the choke coil 130, the secondary side winding of the transformer can be used for generating an internal power source.
[0065] さらに、第 1の電圧変換回路 11は、チョークコイル 130の他端に発生する電圧を半 波整流するダイオード 51と、整流された電圧を平滑することにより出力電圧を生成し て出力端子 3及び 4に供給するコンデンサ 52と、出力端子 3及び 4における出力電圧 を検出する出力電圧検出回路 150と、スイッチング電流検出回路 140の検出結果及 び出力電圧検出回路 150の検出結果に基づいて駆動信号を生成する制御回路 16 0とを有して!/ヽる。  [0065] Further, the first voltage conversion circuit 11 includes a diode 51 for half-wave rectifying the voltage generated at the other end of the choke coil 130, and an output terminal by generating an output voltage by smoothing the rectified voltage. Driven based on the capacitor 52 supplied to 3 and 4, the output voltage detection circuit 150 that detects the output voltage at the output terminals 3 and 4, the detection result of the switching current detection circuit 140, and the detection result of the output voltage detection circuit 150 And a control circuit 160 for generating a signal.
[0066] チョークコイル 130は、スイッチング素子 30がオンしている時に、コアにエネルギー を蓄える。次に、スイッチング素子 30がオフすると、磁場が電流を維持しょうとするの で、チョークコイル 130の電流がダイオード 51を介してコンデンサ 52に流れ、コンデ ンサ 52が充電されることにより、出力端子 3と出力端子 4との間に直流出力電圧を発 生させる。 [0066] Choke coil 130 stores energy in the core when switching element 30 is on. Next, when the switching element 30 is turned off, the magnetic field tries to maintain the current, so that the current of the choke coil 130 flows to the capacitor 52 via the diode 51, and the capacitor When the sensor 52 is charged, a DC output voltage is generated between the output terminals 3 and 4.
[0067] 第 2の電圧変換回路 12は、整流平滑回路 10に一端が接続され、卷線に流れる電 流によって発生する磁気エネルギーをコアに蓄えるチョークコイル 170と、チョークコ ィル 170の他端に接続され、パルス状の駆動信号に従ってチョークコイル 170に電 流を流すスイッチング素子 100と、スイッチング素子 100に流れる電流を検出するス イッチング電流検出回路 180と、チョークコイル 170の他端に発生する電圧を半波整 流するダイオード 53と、整流された電圧を平滑することにより出力電圧を生成して出 力端子 5及び 6に供給するコンデンサ 54と、出力端子 5及び 6における出力電圧を検 出する出力電圧検出回路 190と、スイッチング電流検出回路 180によって生成される 検出信号及び出力電圧検出回路 190によって生成される検出信号に基づいて駆動 信号を生成する制御回路 200とを有して 、る。  [0067] The second voltage conversion circuit 12 has one end connected to the rectifying and smoothing circuit 10, and stores the magnetic energy generated by the current flowing in the winding in the core, and the other end of the choke coil 170. Switching element 100 that is connected and flows current through choke coil 170 according to a pulsed drive signal, switching current detection circuit 180 that detects the current flowing through switching element 100, and the voltage generated at the other end of choke coil 170 Diode 53 that performs half-wave rectification, capacitor 54 that generates an output voltage by smoothing the rectified voltage and supplies it to output terminals 5 and 6, and an output that detects the output voltage at output terminals 5 and 6 Based on the detection signal generated by the voltage detection circuit 190 and the switching current detection circuit 180 and the detection signal generated by the output voltage detection circuit 190 And a control circuit 200 for generating a signal, Ru.
[0068] 本実施形態においては、ダイナミック負荷に対して電力を供給する第 1の電圧変換 回路 11におけるチョークコイル 130のコアとして、高い飽和磁束密度を有するァモル ファス金属の磁性体が用いられる。具体的な材料としては、例えば、鉄 (Fe)とコバル ト(Co)を含むアモルファス合金 Fe— Co (60〜80wt%)を用いることができる。コア のタイプとしては、粉末材料を焼結することにより成型したバルタタイプや、リボン状の コアを積層したラミネートタイプを用いることができる。  In the present embodiment, an amorphous metal magnetic material having a high saturation magnetic flux density is used as the core of the choke coil 130 in the first voltage conversion circuit 11 that supplies power to the dynamic load. As a specific material, for example, an amorphous alloy Fe—Co (60 to 80 wt%) containing iron (Fe) and cobalt (Co) can be used. As the core type, a Balta type formed by sintering a powder material or a laminate type in which ribbon-like cores are laminated can be used.
[0069] 一方、定常負荷に対して電力を供給する第 2の電圧変換回路 12におけるチョーク コイル 170のコアとしては、フェライトの磁性体が用いられる。フェライトの磁性体は、 低損失で効率が良いという特徴があるので、従来から、トランスのコア材料として一般 的に用いられている。  On the other hand, a ferrite magnetic body is used as the core of the choke coil 170 in the second voltage conversion circuit 12 that supplies power to the steady load. Ferrite magnetic materials have been characterized by their low loss and high efficiency, and so far have been commonly used as core materials for transformers.
[0070] 図 8は、図 7に示す第 1の電圧変換回路における制御回路等の構成を詳しく示す図 である。本実施形態においては、図 7に示すスイッチング素子 30として、 Nチャネル MOSFET31が用いられる。 MOSFET31は、チョークコイル 130の他端に接続され たドレインと、スイッチング電流検出回路 140を介して整流平滑回路 10に接続された ソースと、ゲートドライバ 169から駆動信号が印加されるゲートとを有している。  FIG. 8 is a diagram showing in detail the configuration of the control circuit and the like in the first voltage conversion circuit shown in FIG. In the present embodiment, an N-channel MOSFET 31 is used as the switching element 30 shown in FIG. MOSFET 31 has a drain connected to the other end of choke coil 130, a source connected to rectifying and smoothing circuit 10 via switching current detection circuit 140, and a gate to which a drive signal is applied from gate driver 169. ing.
[0071] チョークコイル 130と MOSFET31のドレイン 'ソース経路とスイッチング電流検出回 路 140とは直列に接続され、整流平滑回路 10において交流電源電圧を整流及び平 滑することにより得られた電圧が、これらの直列回路に供給される。 MOSFET31は 、ゲートに印加されるパルス状の駆動信号に従って、チョークコイル 130に電流を流 す。 [0071] Drain of choke coil 130 and MOSFET 31 'source path and switching current detection circuit The voltage obtained by rectifying and smoothing the AC power supply voltage in the rectifying and smoothing circuit 10 is supplied to these series circuits. The MOSFET 31 causes a current to flow through the choke coil 130 in accordance with a pulsed drive signal applied to the gate.
[0072] 制御回路 160は、クロック信号生成回路 163と、比較器 165と、ブランキングパルス 生成回路 166と、 AND回路 167と、パルス幅設定回路 168と、ゲートドライバ 169と を含んでいる。  The control circuit 160 includes a clock signal generation circuit 163, a comparator 165, a blanking pulse generation circuit 166, an AND circuit 167, a pulse width setting circuit 168, and a gate driver 169.
[0073] クロック信号生成回路 163は、クロック信号を生成する。また、スイッチング電流検出 回路 140から出力される検出電圧が、比較器 165の非反転入力端子に入力され、図 7に示す出力電圧検出回路 150から出力される検出電圧が、比較器 165の反転入 力端子に入力される。出力電圧検出回路 150において、スイッチング電源回路の負 荷が軽い状態においては、スイッチング電源回路の出力電圧が上昇することにより検 出電圧が下降し、スイッチング電源回路の負荷が重い状態においては、スイッチング 電源回路の出力電圧が下降することにより検出電圧が上昇する。さらに、出力電圧 検出回路 150から出力される検出電圧には、リミッタ回路によって上限が設定されて いる。  The clock signal generation circuit 163 generates a clock signal. Also, the detection voltage output from the switching current detection circuit 140 is input to the non-inverting input terminal of the comparator 165, and the detection voltage output from the output voltage detection circuit 150 shown in FIG. Input to the power terminal. In the output voltage detection circuit 150, when the load of the switching power supply circuit is light, the detection voltage decreases as the output voltage of the switching power supply circuit increases, and when the load of the switching power supply circuit is heavy, the switching power supply The detection voltage increases as the output voltage of the circuit decreases. Furthermore, an upper limit is set for the detection voltage output from the output voltage detection circuit 150 by the limiter circuit.
[0074] 比較器 165は、スイッチング電流検出回路 140から出力される検出電圧と、出力電 圧検出回路 150から出力される検出電圧とを比較して、比較結果を表す比較信号を 出力する。また、ブランキングパルス生成回路 166は、チョークコイルの電流が小さい 内に MOSFET31がオフ状態となる誤動作を防止するために、クロック信号に同期し た所定の期間においてのみハイレベルとなるブランキングパルス信号を生成する。 A ND回路 167は、比較器 165から出力される比較信号とブランキングパルス生成回路 166から出力されるブランキングパルス信号との論理積を求める。ブランキングパル ス信号がハイレベルとなる期間において、比較器 165によって生成された比較信号 力 AND回路 167から出力される。  The comparator 165 compares the detection voltage output from the switching current detection circuit 140 with the detection voltage output from the output voltage detection circuit 150, and outputs a comparison signal representing the comparison result. The blanking pulse generation circuit 166 is a blanking pulse signal that becomes a high level only during a predetermined period synchronized with the clock signal in order to prevent a malfunction in which the MOSFET 31 is turned off while the current of the choke coil is small. Is generated. The A ND circuit 167 obtains a logical product of the comparison signal output from the comparator 165 and the blanking pulse signal output from the blanking pulse generation circuit 166. During the period when the blanking pulse signal is at the high level, the comparison signal is generated from the comparison signal output AND circuit 167 generated by the comparator 165.
[0075] パルス幅設定回路 168は、例えば、セット端子 Sとリセット端子 Rと出力端子 Qとを有 する RSフリップフロップによって構成される。パルス幅設定回路 168は、クロック信号 生成回路 163によって生成されるクロック信号に同期して出力信号をセットすると共 に、ブランキングパルス信号がハイレベルであるときに、比較器 165によって生成され る比較信号に同期して出力信号をリセットすることにより、駆動信号におけるパルス幅 を設定する。ゲートドライバ 169は、パルス幅設定回路 168から出力される駆動信号 に基づいて、 MOSFET31のゲートを駆動する。 [0075] The pulse width setting circuit 168 is configured by, for example, an RS flip-flop having a set terminal S, a reset terminal R, and an output terminal Q. The pulse width setting circuit 168 sets the output signal in synchronization with the clock signal generated by the clock signal generation circuit 163. In addition, the pulse width in the drive signal is set by resetting the output signal in synchronization with the comparison signal generated by the comparator 165 when the blanking pulse signal is at a high level. The gate driver 169 drives the gate of the MOSFET 31 based on the drive signal output from the pulse width setting circuit 168.
[0076] 図 8に示す制御回路の動作は、図 4及び図 5に示すのと概ね同様であるので、図 4 を参照しながら制御回路 160の動作を詳しく説明する。 Since the operation of the control circuit shown in FIG. 8 is substantially the same as that shown in FIGS. 4 and 5, the operation of the control circuit 160 will be described in detail with reference to FIG.
クロック信号生成回路 163によって生成されるクロック信号 V の立ち上がりエッジ  Rising edge of clock signal V generated by clock signal generation circuit 163
CK  CK
に同期してパルス幅設定回路 168の出力信号がセットされ、ゲート電圧 V (図 4の(e  The output signal of the pulse width setting circuit 168 is set in synchronization with the gate voltage V ((e
G  G
) )がハイレベルとなる。  )) Becomes high level.
[0077] 比較器 165から出力される比較信号は、スイッチング電流検出回路 140から出力さ れる第 1の検出電圧と、出力電圧検出回路 150から出力される第 2の検出電圧とを比 較して得られるものである。過負荷状態においては、 MOSFET31のドレイン電流 I  The comparison signal output from the comparator 165 compares the first detection voltage output from the switching current detection circuit 140 with the second detection voltage output from the output voltage detection circuit 150. It is obtained. In overload condition, MOSFET 31 drain current I
D  D
が増加して第 1の検出電圧が増加すると共に、出力電圧が低下して第 2の検出電圧 も増加するが、第 2の検出電圧には出力電圧検出回路 150において上限が設けられ ている。従って、第 2の検出電圧が上限に達したときに、第 1の検出電圧がその上限 を超えると、比較器 165から出力される比較信号がハイレベルとなる。その結果、パ ルス幅設定回路 168の出力信号がリセットされ、 MOSFET31のゲート電圧 Vが口  Increases, the first detection voltage increases, the output voltage decreases, and the second detection voltage also increases. However, the output voltage detection circuit 150 has an upper limit for the second detection voltage. Therefore, when the second detection voltage reaches the upper limit and the first detection voltage exceeds the upper limit, the comparison signal output from the comparator 165 becomes high level. As a result, the output signal of the pulse width setting circuit 168 is reset, and the gate voltage V of the MOSFET 31 becomes the input.
G  G
一レベルとなり、図 4の(b)に示す A点においてドレイン電流 Iが停止する。  The drain current I stops at the point A shown in Fig. 4 (b).
D  D
[0078] このようにして、制御回路 160は、一定の周期で MOSFET31をオンさせると共に、 比較信号の立ち上がりエッジに同期して MOSFET31をオフさせる。図 4の(e)にお V、て、 MOSFET31がオンする期間は T で表され、 MOSFET31がオフする期間  In this manner, the control circuit 160 turns on the MOSFET 31 at a constant period and turns off the MOSFET 31 in synchronization with the rising edge of the comparison signal. In Fig. 4 (e), the period during which V and MOSFET 31 are turned on is represented by T and the period during which MOSFET 31 is turned off.
ON  ON
は T で表される。  Is represented by T.
OFF  OFF
[0079] 図 9は、図 7に示す第 2の電圧変換回路における制御回路等の構成を詳しく示す図 である。第 2の電圧変換回路 12においても、第 1の電圧変換回路 11と同様に、スイツ チング素子 100として Nチャネル MOSFET101が用いられる。 MOSFET101は、 チョークコイル 170の卷線に接続されたドレインと、整流平滑回路 10に接続されたソ ースと、ゲートドライバ 169から駆動信号が印加されるゲートとを有している。  FIG. 9 is a diagram showing in detail the configuration of the control circuit and the like in the second voltage conversion circuit shown in FIG. In the second voltage conversion circuit 12, as in the first voltage conversion circuit 11, an N-channel MOSFET 101 is used as the switching element 100. MOSFET 101 has a drain connected to the winding of choke coil 170, a source connected to rectifying and smoothing circuit 10, and a gate to which a drive signal is applied from gate driver 169.
[0080] チョークコイル 170の卷線と MOSFET101のドレイン 'ソース経路とは直列に接続 され、整流平滑回路 10において交流電源電圧を整流及び平滑することにより得られ た電圧が、これらの直列回路に供給される。 MOSFET101は、ゲートに印加される パルス状の駆動信号に従って、チョークコイル 170の卷線に電流を流す。 [0080] The winding of choke coil 170 and the drain 'source path of MOSFET 101 are connected in series. Then, the voltage obtained by rectifying and smoothing the AC power supply voltage in the rectifying and smoothing circuit 10 is supplied to these series circuits. The MOSFET 101 causes a current to flow through the winding of the choke coil 170 in accordance with a pulsed drive signal applied to the gate.
[0081] 制御回路 200は、クロック信号を生成するクロック信号生成回路 163と、スィッチン グ電流検出回路 180から出力される検出電圧と図 7に示す出力電圧検出回路 190 から出力される検出電圧とを比較することにより比較信号を生成する比較器 165と、 ブランキングパルスを生成するブランキングパルス生成回路 166と、比較信号とブラ ンキングパルスとの論理積を求める AND回路 167と、 AND回路 167の出力信号に 基づ!/、て駆動信号におけるパルス幅を設定するパルス幅設定回路 168と、パルス幅 設定回路 168から出力される駆動信号に基づいて MOSFET101のゲートを駆動す るゲートドライバ 169とを含んでいる。  The control circuit 200 includes a clock signal generation circuit 163 that generates a clock signal, a detection voltage output from the switching current detection circuit 180, and a detection voltage output from the output voltage detection circuit 190 shown in FIG. Comparator 165 that generates a comparison signal by comparison, blanking pulse generation circuit 166 that generates a blanking pulse, AND circuit 167 that obtains a logical product of the comparison signal and the blanking pulse, and an output of AND circuit 167 A pulse width setting circuit 168 for setting the pulse width in the drive signal based on the signal and a gate driver 169 for driving the gate of the MOSFET 101 based on the drive signal output from the pulse width setting circuit 168. It is out.
[0082] 図 7に示す出力電圧検出回路 190の構成は、リミッタ回路を除き、出力電圧検出回 路 150の構成と同一である。第 2の電圧変換回路 12は、安定的な定常負荷に対して 電力を供給するためのものであるので、チョークコイル 170のコアにはフェライトの磁 性体が用いられる。その場合にはトランスの 1次卷線 91に過電流が流れるおそれが ないので、リミッタ回路が省略されている。  The configuration of the output voltage detection circuit 190 shown in FIG. 7 is the same as that of the output voltage detection circuit 150 except for the limiter circuit. Since the second voltage conversion circuit 12 is for supplying electric power to a stable steady load, a ferrite magnetic material is used for the core of the choke coil 170. In that case, the limiter circuit is omitted because there is no possibility of overcurrent flowing through the primary primary wire 91 of the transformer.
[0083] 本実施形態の変形として、第 1の電圧変換回路 11において、比較器 165の反転入 力端子に、出力電圧検出回路 150から出力される検出電圧の替わりに所定の電圧 を印加することにより、スイッチング電流検出回路 140の検出結果に基づいて駆動信 号を生成するようにしても良い。その場合でも、スイッチング電流検出回路 140から出 力される検出電圧が所定の電圧を超えるとパルス幅設定回路 168の出力信号がリセ ットされるので、駆動信号におけるパルス幅の上限を設定することができる。一方、出 力電圧検出回路 190の検出結果に基づいて駆動信号を生成するようにしても良い。 第 2の電圧変換回路 12においても、同様である。  As a modification of the present embodiment, in the first voltage conversion circuit 11, a predetermined voltage is applied to the inverting input terminal of the comparator 165 instead of the detection voltage output from the output voltage detection circuit 150. Thus, the drive signal may be generated based on the detection result of the switching current detection circuit 140. Even in that case, if the detection voltage output from the switching current detection circuit 140 exceeds the predetermined voltage, the output signal of the pulse width setting circuit 168 is reset, so the upper limit of the pulse width in the drive signal must be set. Can do. On the other hand, the drive signal may be generated based on the detection result of the output voltage detection circuit 190. The same applies to the second voltage conversion circuit 12.
[0084] 次に、本発明の第 3の実施形態について説明する。  [0084] Next, a third embodiment of the present invention will be described.
図 10は、本発明の第 3の実施形態に係るスイッチング電源回路の構成を示す図で ある。このスイッチング電源回路は、図 1に示す第 1の実施形態における第 1の電圧 変換回路 11と第 2の電圧変換回路 12との間で、トランスのコア及び 1次側卷線と 1次 側回路とを共通に用いるものである。これによれば、複数系統の出力を有するスイツ チング電源回路のコストダウンを実現することができる。 FIG. 10 is a diagram showing a configuration of a switching power supply circuit according to the third embodiment of the present invention. This switching power supply circuit includes a transformer core, a primary side wire, and a primary side between the first voltage conversion circuit 11 and the second voltage conversion circuit 12 in the first embodiment shown in FIG. The side circuit is used in common. According to this, it is possible to reduce the cost of the switching power supply circuit having a plurality of outputs.
[0085] 図 10におけるスイッチング電源回路において、トランス 20は、磁性体のコア 24と、 コア 24に回卷された 1次側卷線 21、 2次側卷線 22、 2次側卷線 25、及び、補助卷線 23とを有している。本実施形態においても、トランスのコア 24として、アモルファス金 属の磁性体が用いられる。 1次側卷線 21の卷数を N1とし、 2次側卷線 22の卷数を N 2とし、 2次側卷線 25の卷数を N5とすると、損失がないとした場合に、 2次卷線 22に 生ずる誘起電圧は、卷数 N1と卷数 N2との比によって定まり、 2次卷線 25に生ずる誘 起電圧は、卷数 N1と卷数 N5との比によって定まる。  In the switching power supply circuit in FIG. 10, the transformer 20 includes a magnetic core 24, a primary side wire 21, a secondary side wire 22, a secondary side wire 25, which are wound around the core 24, And an auxiliary feeder 23. Also in this embodiment, an amorphous metal magnetic material is used as the core 24 of the transformer. If the number of primary side wires 21 is N1, the number of secondary side wires 22 is N 2 and the number of secondary side wires 25 is N5, 2 The induced voltage generated in the secondary winding 22 is determined by the ratio of the power N1 and the power N2, and the induced voltage generated in the secondary winding 25 is determined by the ratio of the power N1 and the power N5.
[0086] 本実施形態においては、トランス 20の 2次側卷線 22から得られる電圧力 ダイォー ド 51及びコンデンサ 52によってそれぞれ整流及び平滑され、平滑された電圧が第 1 の出力電圧として出力端子 3及び 4に供給される。一方、トランス 20の 2次側卷線 25 力も得られる電圧力 ダイオード 53及びコンデンサ 54によってそれぞれ整流及び平 滑され、平滑された電圧が定電圧出力回路 210によって安定化されて第 2の出力電 圧として出力端子 5及び 6に供給される。なお、 1次側電流検出回路 40、 2次側電圧 検出回路 60、及び、制御回路 70の構成は、第 1の実施形態におけるのと同一である  In this embodiment, the voltage force diode 51 and the capacitor 52 obtained from the secondary side wire 22 of the transformer 20 are rectified and smoothed, respectively, and the smoothed voltage is output to the output terminal 3 as the first output voltage. And 4 supplied. On the other hand, the secondary side winding 25 of the transformer 20 is also rectified and smoothed by the voltage force diode 53 and the capacitor 54, respectively, and the smoothed voltage is stabilized by the constant voltage output circuit 210 to obtain the second output voltage. To the output terminals 5 and 6. The configurations of the primary side current detection circuit 40, the secondary side voltage detection circuit 60, and the control circuit 70 are the same as those in the first embodiment.
[0087] 本実施形態においても、第 1の出力電圧は、インパクトプリンタ内の印字ヘッドを駆 動するプランジャのようなダイナミック負荷に対して供給される。従って、トランスのコ ァ 24にアモルファス磁性体が用いられることによる効果は、第 1の実施形態における のと同じである。また、第 2の出力電圧は、パーソナルコンピュータ等との間のデータ の送受信やプランジャの駆動を制御するための制御回路のような定常負荷に対して 供給される。 Also in the present embodiment, the first output voltage is supplied to a dynamic load such as a plunger that drives the print head in the impact printer. Therefore, the effect obtained by using an amorphous magnetic material for the transformer core 24 is the same as that in the first embodiment. The second output voltage is supplied to a steady load such as a control circuit for controlling transmission / reception of data with a personal computer or the like and driving of the plunger.
[0088] 第 2の出力電圧は、第 1の出力電圧のように高電圧である必要はなぐ低電圧で安 定していることが望ましい。一般的には、制御回路の電源電圧としては 3. 3V〜5Vが 用いられることが多いので、第 2の出力電圧として、 3. 3V〜5Vの定常電圧が望まれ る。し力しながら、第 1の出力電圧が供給されるダイナミック負荷の状態によっては、 2 次卷線 25に生じる誘起電圧が変動する。このような状態を想定して、本実施形態に おいては、ダイオード 53及びコンデンサ 54の後段に、定電圧出力回路 210を設けて いる。 [0088] It is desirable that the second output voltage is stable at a low voltage that does not need to be a high voltage like the first output voltage. Generally, 3.3V to 5V is often used as the power supply voltage for the control circuit, so a steady voltage of 3.3V to 5V is desired as the second output voltage. However, the induced voltage generated in the secondary winding 25 varies depending on the state of the dynamic load to which the first output voltage is supplied. Assuming such a state, this embodiment In this case, a constant voltage output circuit 210 is provided after the diode 53 and the capacitor 54.
[0089] 図 11は、図 10に示す定電圧出力回路の第 1の構成例を示す図である。定電圧出 力回路 210は、降圧チヨツバ回路 220と、降圧チヨツバ回路 220を制御するためのチ ョッパ制御回路 230と、コンデンサ 54の両端間の電圧を検出して電圧検出信号をチ ョッパ制御回路 230に出力する電圧監視回路 240とを含む。降圧チヨツバ回路 220 の入出力間は非絶縁となるが、図 10に示すトランス 20によって、 1次側回路や他の 2 次側回路から絶縁される。  FIG. 11 is a diagram showing a first configuration example of the constant voltage output circuit shown in FIG. The constant voltage output circuit 210 includes a step-down chopper circuit 220, a chopper control circuit 230 for controlling the step-down chopper circuit 220, and a voltage detection signal detected by detecting the voltage across the capacitor 54. A voltage monitoring circuit 240 that outputs to The input / output of the step-down chitoclover circuit 220 is not isolated, but is isolated from the primary circuit and other secondary circuits by the transformer 20 shown in FIG.
[0090] 降圧チヨッパ回路 220は、スイッチング素子としての Nチャネル MOSFET221と、 ダイオード 222と、チョークコイル 223と、コンデンサ 224とを有している。チョークコィ ル 223のコアとしては、ファライトの磁性体が用いられる。 MOSFET221のドレインは 、コンデンサ 54の一端(高電位側)に接続されており、ソースは、ダイオード 222の力 ソード及びチョークコイル 223の一端に接続されており、ゲートには、チヨッパ制御回 路 230からパルス状の駆動信号が供給される。チョークコイル 223の他端は、コンデ ンサ 224の一端 (高電位側)に接続されている。ダイオード 222のアノードは、コンデ ンサ 54の他端 (低電位側)及びコンデンサ 224の他端 (低電位側)に接続されて!、る  The step-down chopper circuit 220 includes an N-channel MOSFET 221 as a switching element, a diode 222, a choke coil 223, and a capacitor 224. As the core of the choke coil 223, a magnetic material of farite is used. The drain of the MOSFET 221 is connected to one end (high potential side) of the capacitor 54, the source is connected to the force sword of the diode 222 and one end of the choke coil 223, and the gate is connected from the chopper control circuit 230. A pulsed drive signal is supplied. The other end of the choke coil 223 is connected to one end (high potential side) of the capacitor 224. The anode of the diode 222 is connected to the other end (low potential side) of the capacitor 54 and the other end (low potential side) of the capacitor 224!
[0091] チヨツバ制御回路 230は、電圧監視回路 240から出力される電圧検出信号に基づ いて、 MOSFET221にスイッチング動作を行わせるための駆動信号を生成する。 M OSFET221がスイッチング動作を行うことにより、チョークコイル 223に交流電流が 流れ、チョークコイル 223の両端間に発生する交流電圧がダイオード 222によって整 流される。その結果、コンデンサ 54の両端間の電圧が降圧されて、第 2の出力電圧と して出力端子 5及び 6に供給される。 [0091] Based on the voltage detection signal output from voltage monitoring circuit 240, chitsuba control circuit 230 generates a drive signal for causing MOSFET 221 to perform a switching operation. When the MOS FET 221 performs a switching operation, an alternating current flows through the choke coil 223, and the alternating voltage generated across the choke coil 223 is rectified by the diode 222. As a result, the voltage across the capacitor 54 is stepped down and supplied to the output terminals 5 and 6 as the second output voltage.
[0092] ここで、チヨッパ制御回路 230は、コンデンサ 54の両端間の電圧が所定の値よりも 高くなると、 MOSFET221のオン期間が所定の期間よりも減少するように駆動信号 のデューティを小さくし、コンデンサ 54の両端間の電圧が所定の値よりも低くなると、 MOSFET221のオン期間が所定の期間よりも増加するように駆動信号のデューティ を大きくする。 [0093] 図 12は、図 10における定電圧出力回路の第 2の構成例を示す図である。この例に おいては、降圧チヨツバ回路の替わりに昇圧チヨツバ回路が用いられる。定電圧出力 回路 210は、昇圧チヨッパ回路 250と、昇圧チヨッパ回路 250を制御するためのチヨッ パ制御回路 260と、コンデンサ 54の両端間の電圧を検出して電圧検出信号をチヨッ パ制御回路 260に出力する電圧監視回路 240とを含む。 Here, when the voltage between both ends of the capacitor 54 becomes higher than a predetermined value, the chopper control circuit 230 decreases the duty of the drive signal so that the ON period of the MOSFET 221 is decreased from the predetermined period, When the voltage across the capacitor 54 becomes lower than a predetermined value, the duty of the drive signal is increased so that the ON period of the MOSFET 221 is longer than the predetermined period. FIG. 12 is a diagram showing a second configuration example of the constant voltage output circuit in FIG. In this example, a boosting chiba circuit is used instead of the step-down chiba circuit. The constant voltage output circuit 210 detects the voltage across the capacitor 54 by detecting the voltage across the step-up chopper circuit 250, the chopper control circuit 260 for controlling the step-up chopper circuit 250, and the chopper control circuit 260. Output voltage monitoring circuit 240.
[0094] 昇圧チヨッパ回路 250は、チョークコイル 251と、スイッチング素子としての Nチヤネ ル MOSFET252と、ダイオード 253と、コンデンサ 254とを有している。チョークコィ ル 251のコアとしては、フェライトの磁性体が用いられる。チョークコイル 251の一端は 、コンデンサ 54の一端 (高電位側)に接続されており、チョークコイル 251の他端は、 MOSFET252のドレイン及びダイオード 253のアノードに接続されている。ダイォー ド 253の力ソードは、コンデンサ 254の一端(高電位側)に接続されている。 MOSFE T252のソースは、コンデンサ 54の他端 (低電位側)及びコンデンサ 254の他端 (低 電位側)に接続されており、 MOSFET252のゲートには、チヨッパ制御回路 260から パルス状の駆動信号が供給される。  The step-up chopper circuit 250 includes a choke coil 251, an N-channel MOSFET 252 as a switching element, a diode 253, and a capacitor 254. As the core of the choke coil 251, a ferrite magnetic material is used. One end of the choke coil 251 is connected to one end (high potential side) of the capacitor 54, and the other end of the choke coil 251 is connected to the drain of the MOSFET 252 and the anode of the diode 253. The force sword of the diode 253 is connected to one end (high potential side) of the capacitor 254. The source of the MOSFE T252 is connected to the other end (low potential side) of the capacitor 54 and the other end (low potential side) of the capacitor 254. A pulsed drive signal is sent from the chopper control circuit 260 to the gate of the MOSFET 252. Supplied.
[0095] チヨツバ制御回路 260は、電圧監視回路 240から出力される電圧検出信号に基づ いて、 MOSFET252にスイッチング動作を行わせるための駆動信号を生成する。 M OSFET252がスイッチング動作を行うことにより、チョークコイル 251に交流電流が 流れ、チョークコイル 251の両端間に発生する交流電圧がダイオード 253によって整 流される。その結果、コンデンサ 54の両端間の電圧が昇圧されて、第 2の出力電圧と して出力端子 5に供給される。  Based on the voltage detection signal output from voltage monitoring circuit 240, chitsuba control circuit 260 generates a drive signal for causing MOSFET 252 to perform a switching operation. When the MOS FET 252 performs a switching operation, an alternating current flows through the choke coil 251, and the alternating voltage generated across the choke coil 251 is rectified by the diode 253. As a result, the voltage across the capacitor 54 is boosted and supplied to the output terminal 5 as the second output voltage.
[0096] ここで、チヨッパ制御回路 260は、コンデンサ 54の両端間の電圧が所定の値よりも 高くなると、 MOSFET252のオン期間が所定の期間よりも減少するように駆動信号 のデューティを小さくし、コンデンサ 54の両端間の電圧が所定の値よりも低くなると、 MOSFET221のオン期間が所定の期間よりも増加するように駆動信号のデューティ を大きくする。  Here, when the voltage across the capacitor 54 becomes higher than a predetermined value, the chopper control circuit 260 reduces the duty of the drive signal so that the ON period of the MOSFET 252 is reduced from the predetermined period, When the voltage across the capacitor 54 becomes lower than a predetermined value, the duty of the drive signal is increased so that the ON period of the MOSFET 221 is longer than the predetermined period.
[0097] 次に、本発明の第 4の実施形態について説明する。  [0097] Next, a fourth embodiment of the present invention will be described.
図 13は、本発明の第 4の実施形態に係るスイッチング電源回路の構成を示す図で ある。このスイッチング電源回路においては、図 1に示す第 1の実施形態における整 流平滑回路 10の替わりに、 PFC (power factor controller:力率改善コントロール)回 路 15が用いられている。 PFC回路とは、交流電圧を整流して得られた電圧をスイツ チングすることにより交流電圧に変換し、得られた交流電圧を再び直流電圧に変換 する際に、電圧及び電流における波形及び位相を合わせて力率を改善する回路で ある。また、第 2の電圧変換回路 12に、図 10に示すのと同様の定電圧出力回路 210 を介して第 3の出力信号を負荷に供給する出力系統(出力端子 7及び 8)が接続され ている。 FIG. 13 is a diagram showing a configuration of a switching power supply circuit according to the fourth embodiment of the present invention. In this switching power supply circuit, the adjustment in the first embodiment shown in FIG. Instead of the flow smoothing circuit 10, a PFC (power factor controller) circuit 15 is used. The PFC circuit converts the voltage obtained by rectifying the AC voltage into an AC voltage by switching, and when converting the obtained AC voltage into a DC voltage again, the waveform and phase of the voltage and current are changed. In addition, this circuit improves the power factor. In addition, an output system (output terminals 7 and 8) for supplying a third output signal to the load through a constant voltage output circuit 210 similar to that shown in FIG. 10 is connected to the second voltage conversion circuit 12. Yes.
[0098] 図 14は、図 13に示す PFC回路の構成例を示す図である。 PFC回路 15は、交流電 圧の入力端子 1及び 2に接続された整流回路 18と、整流回路 18に一端が接続され、 卷線に流れる電流によって発生する磁気エネルギーをコアに蓄えるチョークコイル 2 70と、チョークコイル 270の他端に接続され、パルス状の駆動信号に従ってチョーク コイル 270に電流を流すスイッチング素子 30と、スイッチング素子 30に流れる電流を 検出するスイッチング電流検出回路 280とを有している。ここで、チョークコイル 270と してトランスの 1次側卷線を用いる場合には、トランスの 2次側卷線を内部電源の生成 用に利用することができる。  FIG. 14 is a diagram showing a configuration example of the PFC circuit shown in FIG. The PFC circuit 15 includes a rectifier circuit 18 connected to the input terminals 1 and 2 of the AC voltage, a choke coil 270 connected to the rectifier circuit 18 and storing magnetic energy generated by current flowing in the winding in the core. The switching element 30 is connected to the other end of the choke coil 270 and flows a current through the choke coil 270 in accordance with a pulsed drive signal, and a switching current detection circuit 280 detects the current flowing through the switching element 30. Here, when the transformer primary side winding is used as the choke coil 270, the transformer secondary side winding can be used for generating the internal power supply.
[0099] さらに、 PFC回路 15は、チョークコイル 270の他端に発生する電圧を半波整流する ダイオード 51と、整流された電圧を平滑することにより PFC出力電圧を生成して PFC 出力端子 16及び 17に供給するコンデンサ 52と、 PFC出力端子 16及び 17における PFC出力電圧を検出する出力電圧検出回路 290と、駆動信号のパルス幅を設定す る制御回路 300とを有して 、る。  Furthermore, the PFC circuit 15 includes a diode 51 that half-wave rectifies the voltage generated at the other end of the choke coil 270, and generates a PFC output voltage by smoothing the rectified voltage to generate a PFC output terminal 16 and 17 includes a capacitor 52 supplied to 17, an output voltage detection circuit 290 that detects the PFC output voltage at the PFC output terminals 16 and 17, and a control circuit 300 that sets the pulse width of the drive signal.
[0100] 整流回路 18は、例えば、ダイオードブリッジによって構成され、入力端子 1と入力端 子 2との間に印加される交流電圧を全波整流する。チョークコイル 270は、スィッチン グ素子がオンしている時に、コアにエネルギーを蓄える。次に、スイッチング素子がォ フすると、磁場が電流を維持しょうとするので、チョークコイル 270の電流がダイォー ド 51を介してコンデンサ 52に流れ、コンデンサ 52が充電されることにより、端子 16と 端子 17との間に直流出力電圧を発生させる。  [0100] The rectifier circuit 18 is configured by, for example, a diode bridge, and full-wave rectifies the AC voltage applied between the input terminal 1 and the input terminal 2. The choke coil 270 stores energy in the core when the switching element is on. Next, when the switching element is turned off, the magnetic field tries to maintain the current, so that the current in the choke coil 270 flows to the capacitor 52 through the diode 51, and the capacitor 52 is charged. DC output voltage is generated between
[0101] PFC回路 15におけるチョークコイル 270のコアには、後段の第 1の電圧変換回路 1 1におけるトランスのコア 24と同様に、アモルファス金属の磁性体が用いられており、 ダイナミック負荷による過電流に対する耐性を高めている。また、スイッチング素子 30 を過電流によって破壊しないために、スイッチング電流検出回路 280及び出力電圧 検出回路 290が設けられている。出力電圧検出回路 290の構成と動作は、図 3に示 す 2次側電圧検出回路 60と同様である。 [0101] The core of the choke coil 270 in the PFC circuit 15 is made of an amorphous metal magnetic material, like the transformer core 24 in the first voltage conversion circuit 11 at the subsequent stage. Improves resistance to overcurrent due to dynamic load. Further, a switching current detection circuit 280 and an output voltage detection circuit 290 are provided in order not to destroy the switching element 30 due to overcurrent. The configuration and operation of the output voltage detection circuit 290 are the same as those of the secondary side voltage detection circuit 60 shown in FIG.
[0102] 制御回路 300は、スイッチング電流検出回路 280によって生成される検出信号に 基づいて、過電流に対するパルス幅制御を行う。また、制御回路 300には、出力電 圧検出回路 290によって生成される検出信号力フィードバックされる。制御回路 300 の構成と動作は、図 8に示す制御回路 160と同様である。  Control circuit 300 performs pulse width control for overcurrent based on the detection signal generated by switching current detection circuit 280. Further, the detection signal force generated by the output voltage detection circuit 290 is fed back to the control circuit 300. The configuration and operation of the control circuit 300 are the same as those of the control circuit 160 shown in FIG.
[0103] 再び図 13を参照すると、第 1の電圧変換回路 11は、プリンタ内のヘッドを駆動する プランジャのようなダイナミック負荷に対して電源を供給する。従って、トランスのコア 2 4にアモルファス磁性体が用いられることによる効果は、第 1の実施形態におけるのと 同様である。また、第 2の電圧変換回路 12は、パーソナルコンピュータ等との間のデ ータの送受信やプランジャの駆動を制御するための制御回路のような定常負荷に対 して電源を供給する。さらに、定電圧出力回路 210は、小容量のダイナミック負荷に 対して電力を供給する。  Referring again to FIG. 13, the first voltage conversion circuit 11 supplies power to a dynamic load such as a plunger that drives a head in the printer. Therefore, the effect obtained by using an amorphous magnetic material for the core 24 of the transformer is the same as that in the first embodiment. The second voltage conversion circuit 12 supplies power to a steady load such as a control circuit for controlling transmission / reception of data with a personal computer or the like and driving of the plunger. Furthermore, the constant voltage output circuit 210 supplies power to a small-capacity dynamic load.
[0104] 次に、本発明の第 5の実施形態について説明する。  [0104] Next, a fifth embodiment of the present invention will be described.
図 15は、本発明の第 5の実施形態に係るスイッチング電源回路の構成を示す図で ある。このスイッチング電源回路においては、図 1に示す第 1の実施形態にインバー タ回路を付加することにより、第 1の電圧変換回路 11が交流電圧を出力する。  FIG. 15 is a diagram showing a configuration of a switching power supply circuit according to the fifth embodiment of the present invention. In this switching power supply circuit, by adding an inverter circuit to the first embodiment shown in FIG. 1, the first voltage conversion circuit 11 outputs an AC voltage.
[0105] 本実施形態においては、スイッチング素子として、 NPNノイポーラトランジスタ 331 を用いている。また、トランス 20の 2次側卷線 22から得られる電圧力 ダイオード 51 及びコンデンサ 52によってそれぞれ整流及び平滑され、平滑された電圧が、 NPN バイポーラトランジスタ 371〜374とコイル 375とコンデンサ 376とによって構成される インバータ回路に入力される。制御回路 360は、 1次側電流検出回路 40から出力さ れる検出信号及び 2次側電圧検出回路 60から出力される検出信号に基づいて、トラ ンジスタ 331及び 371〜374を駆動するための駆動信号を生成する。  In the present embodiment, an NPN bipolar transistor 331 is used as a switching element. Also, the voltage force rectified and smoothed by the voltage force diode 51 and the capacitor 52 obtained from the secondary side winding 22 of the transformer 20, respectively, is constituted by the NPN bipolar transistors 371 to 374, the coil 375 and the capacitor 376. Input to the inverter circuit. The control circuit 360 is a drive signal for driving the transistors 331 and 371 to 374 based on the detection signal output from the primary side current detection circuit 40 and the detection signal output from the secondary side voltage detection circuit 60. Is generated.
[0106] 第 1の電圧変換回路 11において、トランジスタ 371のコレクタは、ダイオード 51の力 ソードに接続され、ェミッタは、出力端子 4に接続される。また、トランジスタ 372のコレ クタは、出力端子 4に接続され、ェミッタは、トランスの 2次側卷線 22のドットが付され た極性側に接続される。一方、トランジスタ 373のコレクタは、ダイオード 51の力ソード に接続され、ェミッタは、コイル 375の一端に接続される。また、トランジスタ 374のコ レクタは、コイル 375の一端に接続され、ェミッタは、トランスの 2次側卷線 22のドット が付された極性側に接続される。コイル 375の他端は、出力端子 3に接続される。ま た、出力端子 3及び 4の間には、コンデンサ 376が接続される。 In the first voltage conversion circuit 11, the collector of the transistor 371 is connected to the force sword of the diode 51, and the emitter is connected to the output terminal 4. Also, transistor 372 The Kuta is connected to the output terminal 4, and the emitter is connected to the polarity side of the transformer where the dot of the secondary side winding 22 is attached. On the other hand, the collector of the transistor 373 is connected to the force sword of the diode 51, and the emitter is connected to one end of the coil 375. The collector of the transistor 374 is connected to one end of the coil 375, and the emitter is connected to the polarity side of the transformer where the dot of the secondary winding 22 is attached. The other end of the coil 375 is connected to the output terminal 3. A capacitor 376 is connected between the output terminals 3 and 4.
[0107] 制御回路 360から出力される複数の制御信号は、トランジスタ 331及び 371〜374 のベースに供給され、それぞれのトランジスタのスイッチング制御を行う。その結果、ト ランス 20の 2次側卷線 22から出力され、ダイオード 51によって整流された直流電圧 力 交流電圧に変換される。また、第 2の電圧変換回路 12は、図 1に示す第 2の電圧 変換回路 12と同一であっても良いし、図 15に示す第 1の電圧変換回路 11と同様に 、交流電圧を出力するものであっても良い。  A plurality of control signals output from the control circuit 360 are supplied to the bases of the transistors 331 and 371 to 374, and perform switching control of each transistor. As a result, it is output from the secondary side winding 22 of the transformer 20 and converted into a DC voltage force AC voltage rectified by the diode 51. Further, the second voltage conversion circuit 12 may be the same as the second voltage conversion circuit 12 shown in FIG. 1 or outputs an AC voltage in the same way as the first voltage conversion circuit 11 shown in FIG. It may be what you do.
[0108] 次に、本発明の第 6の実施形態について説明する。  [0108] Next, a sixth embodiment of the present invention will be described.
図 16は、本発明の第 6の実施形態に係るスイッチング電源回路の構成を示す図で ある。このスイッチング電源回路においては、図 7に示す第 2の実施形態にインバー タ回路を付加することにより、第 1の電圧変換回路 11が交流電圧を出力する。  FIG. 16 is a diagram showing a configuration of a switching power supply circuit according to the sixth embodiment of the present invention. In this switching power supply circuit, the first voltage conversion circuit 11 outputs an alternating voltage by adding an inverter circuit to the second embodiment shown in FIG.
[0109] 本実施形態においては、制御回路 380が、スイッチング電流検出回路 140から出 力される検出信号及び出力電圧検出回路 150から出力される検出信号に基づいて 、トランジスタ 331及び 371〜374を駆動するための駆動信号を生成する。制御回路 360から出力される複数の制御信号は、トランジスタ 331及び 371〜374のベースに 供給され、それぞれのトランジスタのスイッチング制御を行う。その結果、チョークコィ ル 130から出力され、トランジスタ 331によって整流された直流電圧力 交流電圧に 変換される。また、第 2の電圧変換回路 12は、図 7に示す第 2の電圧変換回路 12と 同一であっても良いし、図 16に示す第 1の電圧変換回路 11と同様に、交流電圧を出 力するものであっても良い。  In the present embodiment, the control circuit 380 drives the transistors 331 and 371 to 374 based on the detection signal output from the switching current detection circuit 140 and the detection signal output from the output voltage detection circuit 150. A drive signal for generating the signal is generated. A plurality of control signals output from the control circuit 360 are supplied to the bases of the transistors 331 and 371 to 374 to perform switching control of each transistor. As a result, it is output from the choke coil 130 and converted into a DC voltage force AC voltage rectified by the transistor 331. Further, the second voltage conversion circuit 12 may be the same as the second voltage conversion circuit 12 shown in FIG. 7, or, like the first voltage conversion circuit 11 shown in FIG. 16, outputs an AC voltage. It may be something that helps.
産業上の利用可能性  Industrial applicability
[0110] 本発明は、電子機器において用いられるスイッチング電源において利用することが 可能である。 [0110] The present invention can be used in a switching power supply used in an electronic device.

Claims

請求の範囲 The scope of the claims
[1] アモルファス磁性体を含むコア及び該コアに回卷された 1次側卷線及び 2次側卷線 を有し、入力電圧が 1次側卷線の一端に印加される第 1のトランスと、  [1] A first transformer having a core including an amorphous magnetic material, a primary side winding and a secondary side winding wound around the core, and an input voltage applied to one end of the primary side winding. When,
フェライト磁性体を含むコア及び該コアに回卷された 1次側卷線及び 2次側卷線を 有し、前記入力電圧が 1次側卷線の一端に印加される第 2のトランスと、  A second transformer having a core including a ferrite magnetic body, a primary winding and a secondary winding wound around the core, and the input voltage is applied to one end of the primary winding;
前記第 1のトランスの 1次側卷線の他端に接続され、パルス状の第 1の駆動信号に 従つて前記第 1のトランスの 1次側卷線に電流を流す第 1のスイッチング素子と、 前記第 2のトランスの 1次側卷線の他端に接続され、パルス状の第 2の駆動信号に 従って前記第 2のトランスの 1次側卷線に電流を流す第 2のスイッチング素子と、 前記第 1のトランスの 2次側卷線に発生する電圧に基づいて第 1の出力電圧を生成 する第 1の出力回路と、  A first switching element connected to the other end of the primary winding of the first transformer, and causing a current to flow through the primary winding of the first transformer in accordance with a pulsed first drive signal; A second switching element connected to the other end of the primary winding of the second transformer and for passing a current through the primary winding of the second transformer in accordance with a pulsed second drive signal; A first output circuit for generating a first output voltage based on a voltage generated in the secondary side winding of the first transformer;
前記第 2のトランスの 2次側卷線に発生する電圧に基づいて第 2の出力電圧を生成 する第 2の出力回路と、  A second output circuit for generating a second output voltage based on a voltage generated in the secondary side winding of the second transformer;
前記第 1及び第 2の駆動信号をそれぞれ独立して生成する第 1及び第 2の制御回 路と、  First and second control circuits for independently generating the first and second drive signals, respectively
を具備するスイッチング電源回路。  A switching power supply circuit comprising:
[2] 前記第 1の制御回路が、前記第 1のトランスの 1次側卷線に流れる電流又は前記第 1の出力電圧に基づいて前記第 1の駆動信号を生成し、  [2] The first control circuit generates the first drive signal based on the current flowing through the primary side of the first transformer or the first output voltage,
前記第 2の制御回路が、前記第 2のトランスの 1次側卷線に流れる電流又は前記第 2の出力電圧に基づいて前記第 2の駆動信号を生成する、  The second control circuit generates the second drive signal based on a current flowing in a primary side wire of the second transformer or the second output voltage;
請求項 1記載のスイッチング電源回路。  The switching power supply circuit according to claim 1.
[3] 前記第 1のトランスの 1次側卷線に流れる電流を検出する 1次側電流検出回路と、 前記第 1の出力電圧を検出する 2次側電圧検出回路と、  [3] A primary-side current detection circuit that detects a current flowing in a primary-side winding of the first transformer, a secondary-side voltage detection circuit that detects the first output voltage,
をさらに具備し、前記第 1の制御回路が、前記 1次側電流検出回路の検出結果及び 前記 2次側電圧検出回路の検出結果に基づいて前記第 1の駆動信号を生成すると 共に、前記 2次側電圧検出回路の検出結果に基づいて前記第 1の駆動信号におけ るパルス幅の上限を設定する、請求項 2記載のスイッチング電源回路。  And the first control circuit generates the first drive signal based on the detection result of the primary-side current detection circuit and the detection result of the secondary-side voltage detection circuit, and the 2 3. The switching power supply circuit according to claim 2, wherein an upper limit of a pulse width in the first drive signal is set based on a detection result of the secondary voltage detection circuit.
[4] 前記第 1の制御回路が、 前記 2次側電圧検出回路の検出結果に基づいて、上限が設定された検出電圧を 生成する検出電圧生成回路と、 [4] The first control circuit includes: A detection voltage generation circuit that generates a detection voltage with an upper limit set based on a detection result of the secondary side voltage detection circuit;
前記 1次側電流検出回路によって生成される検出電圧と前記検出電圧生成回路に よって生成される検出電圧とを比較して比較結果を表す信号を生成する比較器と、 クロック信号を生成するクロック信号生成回路と、  A comparator that compares a detection voltage generated by the primary-side current detection circuit with a detection voltage generated by the detection voltage generation circuit to generate a signal representing a comparison result; and a clock signal that generates a clock signal A generation circuit;
前記クロック信号生成回路によって生成されるクロック信号に同期して出力信号を セットし、前記比較器によって生成される信号に同期して出力信号をリセットすること により、前記第 1の駆動信号におけるパルス幅を設定するパルス幅設定回路と、 を含む、請求項 3記載のスイッチング電源回路。  By setting the output signal in synchronization with the clock signal generated by the clock signal generation circuit and resetting the output signal in synchronization with the signal generated by the comparator, the pulse width in the first drive signal is set. The switching power supply circuit according to claim 3, further comprising: a pulse width setting circuit for setting
[5] アモルファス磁性体を含むコア及び該コアに回卷された卷線を有し、入力電圧が卷 線の一端に印加される第 1のチョークコイルと、 [5] a first choke coil having a core including an amorphous magnetic material and a winding wound around the core, and an input voltage applied to one end of the winding;
フェライト磁性体を含むコア及び該コアに回卷された卷線を有し、前記入力電圧が 卷線の一端に印加される第 2のチョークコイルと、  A second choke coil having a core including a ferrite magnetic body and a winding wound around the core, wherein the input voltage is applied to one end of the winding;
前記第 1のチョークコイルの卷線の他端に接続され、パルス状の第 1の駆動信号に 従って前記第 1のチョークコイルの卷線に電流を流す第 1のスイッチング素子と、 前記第 2のチョークコイルの卷線の他端に接続され、パルス状の第 2の駆動信号に 従って前記第 2のチョークコイルの卷線に電流を流す第 2のスイッチング素子と、 前記第 1のチョークコイルと前記第 1のスイッチング素子との接続点に発生する電圧 に基づいて第 1の出力電圧を生成する第 1の出力回路と、  A first switching element connected to the other end of the winding of the first choke coil and passing a current through the winding of the first choke coil according to a pulsed first drive signal; A second switching element that is connected to the other end of the winding of the choke coil, and causes a current to flow through the winding of the second choke coil in accordance with a pulsed second drive signal; the first choke coil; A first output circuit for generating a first output voltage based on a voltage generated at a connection point with the first switching element;
前記第 2のチョークコイルと前記第 2のスイッチング素子との接続点に発生する電圧 に基づいて第 2の出力電圧を生成する第 2の出力回路と、  A second output circuit for generating a second output voltage based on a voltage generated at a connection point between the second choke coil and the second switching element;
前記第 1及び第 2の駆動信号をそれぞれ独立して生成する第 1及び第 2の制御回 路と、  First and second control circuits for independently generating the first and second drive signals, respectively
を具備するスイッチング電源回路。  A switching power supply circuit comprising:
[6] 前記第 1の制御回路が、前記第 1のトランスの 1次側卷線に流れる電流又は前記第 1の出力電圧に基づいて前記第 1の駆動信号を生成し、 [6] The first control circuit generates the first drive signal based on the current flowing in the primary side winding of the first transformer or the first output voltage,
前記第 2の制御回路が、前記第 2のトランスの 1次側卷線に流れる電流又は前記第 2の出力電圧に基づいて前記第 2の駆動信号を生成する、 請求項 5記載のスイッチング電源回路。 The second control circuit generates the second drive signal based on a current flowing in a primary side wire of the second transformer or the second output voltage; The switching power supply circuit according to claim 5.
[7] 前記第 1のスイッチング素子の電流を検出するスイッチング電流検出回路と、 前記第 1の出力電圧を検出する出力電圧検出回路と、 [7] a switching current detection circuit that detects a current of the first switching element; an output voltage detection circuit that detects the first output voltage;
をさらに具備し、前記第 1の制御回路が、前記スイッチング電流検出回路の検出結果 及び前記出力電圧検出回路の検出結果に基づいて前記第 1の駆動信号を生成す ると共に、前記出力電圧検出回路の検出結果に基づいて前記第 1の駆動信号にお けるパルス幅の上限を設定する、請求項 6記載のスイッチング電源回路。  The first control circuit generates the first drive signal based on the detection result of the switching current detection circuit and the detection result of the output voltage detection circuit, and the output voltage detection circuit 7. The switching power supply circuit according to claim 6, wherein an upper limit of a pulse width in the first drive signal is set based on the detection result.
[8] 前記第 1の制御回路が、 [8] The first control circuit includes:
前記出力電圧検出回路の検出結果に基づいて、上限が設定された検出電圧を生 成する検出電圧生成回路と、  A detection voltage generation circuit for generating a detection voltage with an upper limit set based on a detection result of the output voltage detection circuit;
前記スイッチング電流検出回路によって生成される検出電圧と前記検出電圧生成 回路によって生成される検出電圧とを比較して比較結果を表す信号を生成する比較 器と、  A comparator that compares the detection voltage generated by the switching current detection circuit with the detection voltage generated by the detection voltage generation circuit to generate a signal representing a comparison result;
クロック信号を生成するクロック信号生成回路と、  A clock signal generation circuit for generating a clock signal;
前記クロック信号生成回路によって生成されるクロック信号に同期して出力信号を セットし、前記比較器によって生成される信号に同期して出力信号をリセットすること により、前記第 1の駆動信号におけるパルス幅を設定するパルス幅設定回路と、 を含む、請求項 7記載のスイッチング電源回路。  By setting the output signal in synchronization with the clock signal generated by the clock signal generation circuit and resetting the output signal in synchronization with the signal generated by the comparator, the pulse width in the first drive signal is set. The switching power supply circuit according to claim 7, further comprising: a pulse width setting circuit that sets
[9] アモルファス磁性体を含むコア及び該コアに回卷された 1次側卷線、第 1の 2次側 卷線及び第 2の 2次側卷線を有し、入力電圧が 1次側卷線の一端に印加されるトラン スと、 [9] A core including an amorphous magnetic material, a primary side winding wound around the core, a first secondary side winding and a second secondary side winding, and the input voltage is the primary side A transformer applied to one end of the winding;
前記トランスの 1次側卷線の他端に接続され、パルス状の駆動信号に従って前記ト ランスの 1次側卷線に電流を流すスイッチング素子と、  A switching element connected to the other end of the primary side of the transformer, and for passing a current to the primary side of the transformer according to a pulsed drive signal;
前記トランスの第 1の 2次側卷線に発生する電圧に基づいて第 1の出力電圧を生成 する出力回路と、  An output circuit for generating a first output voltage based on a voltage generated in the first secondary side wire of the transformer;
フェライトの磁性体を含むコア及び該コアに回卷された卷線を有するチョークコイル を有し、前記トランスの第 2の 2次側卷線力 前記チョークコイルの卷線に流れる電流 をオン Zオフ制御することによって第 2の出力電圧を生成するチヨツバ回路と、 前記駆動信号を生成する制御回路と、 A choke coil having a core containing a magnetic material of ferrite and a winding wound around the core, and a second secondary side winding force of the transformer is turned on. A chitotsuba circuit that generates a second output voltage by controlling; A control circuit for generating the drive signal;
を具備するスイッチング電源回路。  A switching power supply circuit comprising:
[10] 前記トランスの 1次側卷線に流れる電流を検出する 1次側電流検出回路と、  [10] A primary-side current detection circuit that detects a current flowing in the primary side of the transformer,
前記第 1の出力電圧を検出する 2次側電圧検出回路と、  A secondary side voltage detection circuit for detecting the first output voltage;
をさらに具備し、前記制御回路が、前記 1次側電流検出回路の検出結果及び前記 2 次側電圧検出回路の検出結果に基づいて前記駆動信号を生成すると共に、前記 2 次側電圧検出回路の検出結果に基づいて前記駆動信号におけるパルス幅の上限 を設定する、請求項 9記載のスイッチング電源回路。  And the control circuit generates the drive signal based on the detection result of the primary-side current detection circuit and the detection result of the secondary-side voltage detection circuit, and the control circuit of the secondary-side voltage detection circuit The switching power supply circuit according to claim 9, wherein an upper limit of a pulse width in the drive signal is set based on a detection result.
[11] アモルファス磁性体を含むコア及び該コアに回卷された卷線を有し、入力電圧が卷 線の一端に印加されるチョークコイルと、 [11] a choke coil having a core including an amorphous magnetic body and a winding wound around the core, and an input voltage is applied to one end of the winding;
前記チョークコイルの卷線の他端に接続され、パルス状の第 1の駆動信号に従って 前記チョークコイルの卷線に電流を流す第 1のスイッチング素子と、  A first switching element connected to the other end of the winding of the choke coil, and causing a current to flow through the winding of the choke coil in accordance with a pulsed first drive signal;
前記チョークコイルと前記第 1のスイッチング素子との接続点に発生する第 1の電圧 に基づ!/、て第 2の電圧を生成する電圧生成回路と、  A voltage generating circuit for generating a second voltage based on a first voltage generated at a connection point between the choke coil and the first switching element;
アモルファス磁性体を含むコア及び該コアに回卷された 1次側卷線及び 2次側卷線 を有し、前記電圧生成回路によって生成される第 2の電圧が 1次側卷線の一端に印 カロされる第 1のトランスと、  A core including an amorphous magnetic material, and a primary winding and a secondary winding wound around the core, and a second voltage generated by the voltage generation circuit is applied to one end of the primary winding. Mark with the first trance,
フェライトの磁性体を含むコア及び該コアに回卷された 1次側卷線及び 2次側卷線 を有し、前記電圧生成回路によって生成される第 2の電圧が 1次側卷線の一端に印 カロされる第 2のトランスと、  A core including a magnetic body of ferrite, and a primary side wire and a secondary side wire wound around the core, and the second voltage generated by the voltage generation circuit is connected to one end of the primary side wire With a second trance carved in,
前記第 1のトランスの 1次側卷線の他端に接続され、パルス状の第 2の駆動信号に 従って前記第 1のトランスの 1次側卷線に電流を流す第 2のスイッチング素子と、 前記第 2のトランスの 1次側卷線の他端に接続され、パルス状の第 3の駆動信号に 従って前記第 2のトランスの 1次側卷線に電流を流す第 3のスイッチング素子と、 前記第 1のトランスの 2次側卷線に発生する電圧に基づいて第 1の出力電圧を生成 する第 1の出力回路と、  A second switching element connected to the other end of the primary winding of the first transformer, and causing a current to flow through the primary winding of the first transformer in accordance with a pulsed second drive signal; A third switching element connected to the other end of the primary winding of the second transformer, and for passing a current through the primary winding of the second transformer in accordance with a pulsed third drive signal; A first output circuit for generating a first output voltage based on a voltage generated on a secondary side winding of the first transformer;
前記第 2のトランスの 2次側卷線に発生する電圧に基づいて第 2の出力電圧を生成 する第 2の出力回路と、 前記第 1及び第 2の駆動信号をそれぞれ独立して生成する第 1及び第 2の制御回 路と、 A second output circuit for generating a second output voltage based on a voltage generated in the secondary side winding of the second transformer; First and second control circuits for independently generating the first and second drive signals, respectively
を具備するスイッチング電源回路。 A switching power supply circuit comprising:
前記第 1のトランスの 1次側卷線に流れる電流を検出する 1次側電流検出回路と、 前記第 1の出力電圧を検出する 2次側電圧検出回路と、  A primary-side current detection circuit that detects a current flowing through a primary-side winding of the first transformer; a secondary-side voltage detection circuit that detects the first output voltage;
をさらに具備し、前記第 1の制御回路が、前記 1次側電流検出回路の検出結果及び 前記 2次側電圧検出回路の検出結果に基づいて前記第 2の駆動信号を生成すると 共に、前記 2次側電圧検出回路の検出結果に基づいて前記第 2の駆動信号におけ るパルス幅の上限を設定する、請求項 11記載のスイッチング電源回路。 And the first control circuit generates the second drive signal based on the detection result of the primary-side current detection circuit and the detection result of the secondary-side voltage detection circuit, and the 2 12. The switching power supply circuit according to claim 11, wherein an upper limit of a pulse width in the second drive signal is set based on a detection result of the secondary side voltage detection circuit.
PCT/JP2007/058308 2006-04-18 2007-04-17 Switching power supply circuit WO2007123099A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006114936A JP2007288951A (en) 2006-04-18 2006-04-18 Switching supply circuit
JP2006-114936 2006-04-18

Publications (1)

Publication Number Publication Date
WO2007123099A1 true WO2007123099A1 (en) 2007-11-01

Family

ID=38624999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058308 WO2007123099A1 (en) 2006-04-18 2007-04-17 Switching power supply circuit

Country Status (2)

Country Link
JP (1) JP2007288951A (en)
WO (1) WO2007123099A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136746A1 (en) * 2014-03-12 2015-09-17 日本電気株式会社 Power supply device and power supply device operating method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354384U (en) * 1989-09-29 1991-05-27
JPH04249301A (en) * 1991-02-05 1992-09-04 Takeshi Masumoto Converter
JPH0993927A (en) * 1995-09-19 1997-04-04 Origin Electric Co Ltd Operation method of dc high voltage generator and multioutput dc high voltage generator
JPH11178347A (en) * 1997-12-12 1999-07-02 Hitachi Ltd Electric motor drive device and air-conducting equipment using the same
JP2002354790A (en) * 2001-05-21 2002-12-06 Sanken Electric Co Ltd Converter and its starting method
JP2005039921A (en) * 2003-07-18 2005-02-10 Sharp Corp Switching power supply apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354384U (en) * 1989-09-29 1991-05-27
JPH04249301A (en) * 1991-02-05 1992-09-04 Takeshi Masumoto Converter
JPH0993927A (en) * 1995-09-19 1997-04-04 Origin Electric Co Ltd Operation method of dc high voltage generator and multioutput dc high voltage generator
JPH11178347A (en) * 1997-12-12 1999-07-02 Hitachi Ltd Electric motor drive device and air-conducting equipment using the same
JP2002354790A (en) * 2001-05-21 2002-12-06 Sanken Electric Co Ltd Converter and its starting method
JP2005039921A (en) * 2003-07-18 2005-02-10 Sharp Corp Switching power supply apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136746A1 (en) * 2014-03-12 2015-09-17 日本電気株式会社 Power supply device and power supply device operating method

Also Published As

Publication number Publication date
JP2007288951A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
US7894223B2 (en) Switching power supply circuit
US9621053B1 (en) Peak power control technique for primary side controller operation in continuous conduction mode
JP5691712B2 (en) Constant current power supply
US8031494B2 (en) Method and apparatus for providing an initial bias and enable signal for a power converter
JP4950320B2 (en) Switching power supply
JP5885399B2 (en) Switching power supply
JP2009273329A (en) Switching power supply unit
JP2009284667A (en) Power supply device, its control method, and semiconductor device
JP2009055712A (en) Multiple-output switching power supply
US6724642B2 (en) Method and apparatus for providing an initial bias and enable signal for a power converter
JP4454530B2 (en) Power factor correction circuit
JP4816908B2 (en) Multi-output switching power supply
WO2007123098A1 (en) Switching power supply circuit and its control method
JP2006304429A (en) Switching power supply circuit
CN110401347B (en) DC power supply device
WO2007123099A1 (en) Switching power supply circuit
EP3079244B1 (en) Power supply system
JP2004328837A (en) Switching power supply circuit and switching regulator comprising the same
JP2008278639A (en) Switching power supply unit
JP2006109543A (en) Dc-dc converter
JP3468092B2 (en) Switching power supply
JP2000245144A (en) Switching power supply
JP2006304471A (en) Self-excited type switching power supply device
JP2010193685A (en) Switching power supply circuit
JPH04217866A (en) Dc-dc converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741744

Country of ref document: EP

Kind code of ref document: A1