WO2007123098A1 - Switching power supply circuit and its control method - Google Patents

Switching power supply circuit and its control method Download PDF

Info

Publication number
WO2007123098A1
WO2007123098A1 PCT/JP2007/058307 JP2007058307W WO2007123098A1 WO 2007123098 A1 WO2007123098 A1 WO 2007123098A1 JP 2007058307 W JP2007058307 W JP 2007058307W WO 2007123098 A1 WO2007123098 A1 WO 2007123098A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
output
mode
voltage
switching
Prior art date
Application number
PCT/JP2007/058307
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Sato
Takahiro Kobayashi
Hiroaki Takahashi
Original Assignee
Oki Power Tech Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Power Tech Co., Ltd. filed Critical Oki Power Tech Co., Ltd.
Priority to JP2008512107A priority Critical patent/JPWO2007123098A1/en
Publication of WO2007123098A1 publication Critical patent/WO2007123098A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop

Definitions

  • the present invention generally relates to a switching power supply circuit used in an electronic device such as an impact printer, and a method for controlling the operation of such a switching power supply circuit.
  • switching power supplies that are small and light and can efficiently extract electric power are widely used along with the small and light electronic devices.
  • a transformer is used when electrical insulation is required between the input side and the output side.
  • a chopper type switching power supply using a choke coil instead of a transformer may be used.
  • a ferrite having a low loss and high efficiency is used as a magnetic body serving as a core of a transformer or a choke coil.
  • ferrite is easily magnetically saturated, if the core is saturated and the magnetic properties are deteriorated, the winding current wound around the core exceeds the allowable value. To avoid this, it is necessary to form a gap in the core. In that case, leakage of magnetic flux from the gap becomes a problem.
  • a switching power supply that can output a current even in an overload state is desired.
  • a standby mode is provided to reduce power consumption.
  • the switching operation is completely stopped in the standby mode, it takes time for the output voltage to rise when returning from the standby mode to the normal operation mode.
  • JP-A-8-51774 discloses a switching power source that can obtain a desired optimum frequency at a light load with a simple and low-cost structure.
  • a circuit is disclosed.
  • This switching power supply circuit is a high cycle for heavy loads.
  • Switching means for supplying a DC voltage to the load side using either a low-frequency switching frequency or a low-cycle switching frequency for a light load, and a load signal indicating a light load condition.
  • Switching frequency switching means for switching the switching frequency of the switching means to the switching frequency for the light load.
  • it is difficult to achieve both reduction in power consumption and reduction in recovery time.
  • Japanese Patent Application Publication JP-A-9-134096 discloses an image forming apparatus capable of reducing power loss during standby.
  • This image forming apparatus includes a drive system power supply circuit for supplying voltage to a device that operates during image formation, a controller that turns on the drive system power supply circuit, standby during non-image formation, and image formation. And a control system power supply circuit for supplying a voltage to the controller.
  • the control system power supply circuit supplies a voltage to the controller both during standby and during image formation, the controller can turn on and off the drive system power supply circuit. In standby mode when images are not formed, the controller turns off the drive system power supply circuit, eliminating the standby power loss of the drive system power supply circuit and improving the power saving effect.
  • JP-A-9-134096 does not mention shortening the recovery time or dealing with overload.
  • the image forming apparatus power supply includes a detection circuit for detecting an output voltage, a comparison circuit for comparing the detected output voltage with a reference voltage, and a constant output voltage based on a comparison result by the comparison circuit.
  • a PWM control circuit that performs PWM control and a transformer that is driven by the output of the PWM control circuit are provided. On the secondary side of the transformer, there are a plurality of control outputs that are output at a constant voltage and drive outputs that are subordinate output.
  • a power supply for an image forming apparatus configured to have an output
  • the power is output from the reference voltage changing unit based on the energy saving signal from the control unit of the image forming apparatus.
  • the reference voltage change signal is used to change the reference voltage of the control output voltage of the comparison circuit, and the control output voltage and the drive output voltage are output lower than the rated output voltage during the image forming operation.
  • the reference voltage of the comparison circuit is changed by the reference voltage change signal output based on the energy saving signal from the control unit of the image forming apparatus, and the control output voltage and the drive output are changed.
  • the rated output voltage during image forming operation is output as the voltage.
  • the power consumption can be reduced by making the drive output voltage during standby of the image forming apparatus lower than the drive output voltage during operation of the image forming apparatus. Can do. However, since both the control output voltage and the drive output voltage change based on the energy saving signal, if these output voltages are set to low in the energy saving mode, the control circuit cannot operate. If the output voltage is set to a high value, the energy saving effect will be diminished.
  • the present invention provides a switching power supply circuit that can quickly cope with a change to a standby state force overload state by reducing power consumption and shortening the recovery time. And it aims at providing the method of controlling operation
  • a switching power supply circuit includes a core including an amorphous magnetic body, and a primary side wire and a secondary side wire wound around the core.
  • a transformer that has an input voltage applied to one end of the primary winding, and is connected to the other end of the primary winding of the transformer, and supplies current to the primary winding of the transformer in accordance with a pulsed drive signal.
  • a control method for a switching power supply circuit includes a core including an amorphous magnetic body, and a primary side wire and a secondary side wire wound around the core.
  • the input voltage is applied to one end of the primary winding and the other end of the primary winding of the transformer.
  • the current is applied to the primary winding of the transformer according to the pulsed drive signal.
  • a switching power supply circuit control method including a switching element that flows and an output circuit that generates an output voltage based on a voltage generated on the secondary side of the transformer, in a normal operation mode. Reduce the pulse width or the number of pulses in the drive signal so that the normal operation mode shifts to the first standby mode when the output current is lower than the predetermined value for more than the first predetermined period.
  • Step (a) and the first standby mode In the first standby mode when the output current of the output circuit is smaller than the predetermined value for more than the second predetermined period or according to the mode switching signal to which the external force is also supplied.
  • step (b) of stopping or deactivating the drive signal so as to shift to the second standby mode and the mode switching signal supplied from the outside in the normal operation mode.
  • the drive signal is stopped or deactivated so as to shift to the mode, and in the second standby mode, the mode shifts from the second standby mode to the normal operation mode according to the mode switching signal supplied from the outside.
  • the transformer or choke coil having the core including the amorphous magnetic material is used to improve the characteristics of the output current supplied to the load, and two different standby modes. By providing a balance between reducing power consumption and shortening recovery time, it is possible to respond quickly even if the standby state force changes to an overload state.
  • FIG. 1 is a diagram showing a configuration of a switching power supply circuit according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing in detail the configuration of a control circuit and the like in the switching power supply circuit shown in FIG. is there.
  • FIG. 3 is a circuit diagram showing a configuration example of a secondary side voltage detection circuit and a detection voltage generation circuit in the switching power supply circuit shown in FIG. 1.
  • FIG. 4 is a waveform diagram for explaining the operation of the control circuit shown in FIG. 2 in an overload state.
  • FIG. 5 is a waveform diagram for explaining the operation of the control circuit shown in FIG. 2 in a normal state.
  • FIG. 6 is a diagram showing an example of a change in output power of the switching power supply circuit according to the first embodiment of the present invention.
  • FIG. 7 is a waveform diagram of a drain current in the switching power supply circuit according to the first embodiment of the present invention.
  • FIG. 8 is a diagram showing a configuration of a switching power supply circuit according to a second embodiment of the present invention.
  • FIG. 9 is a diagram showing in detail the configuration of the control circuit and the like shown in FIG.
  • FIG. 10 is a diagram showing a configuration of a switching power supply circuit according to a third embodiment of the present invention.
  • FIG. 11 is a diagram showing a configuration of a control circuit and the like in the second voltage conversion circuit shown in FIG. 12]
  • FIG. 13 A diagram showing a configuration of a control circuit and the like in the second voltage conversion circuit shown in FIG. Best mode for carrying out
  • FIG. 1 is a diagram showing a configuration of a switching power supply circuit according to the first embodiment of the present invention.
  • This switching power supply circuit includes a rectifying / smoothing circuit 10 connected to input terminals 1 and 2 of an AC power supply voltage, a transformer 20 that boosts or steps down an AC voltage on the primary side, and outputs the boosted voltage to the secondary side. Is connected in series to the primary side wire 21 of the A switching element 30 for flowing a current through the primary side winding 21 of the power source, and a primary side current detection circuit 40 for detecting a current flowing through the primary side winding 21 of the transformer.
  • this switching power supply circuit includes a diode 51 that half-wave rectifies the voltage generated on the secondary side winding 22 of the transformer, a capacitor 52 that smoothes the rectified voltage and generates an output voltage, The detection result of the secondary side voltage detection circuit 60 detecting the output voltage at both ends of the capacitor 52, the secondary side current detection circuit 80 detecting the secondary side output current, and the primary side current detection circuit 40 A control circuit 70 that generates a drive signal based on the detection result of the secondary side voltage detection circuit 60 and switches the mode of the switching power supply circuit based on the detection result of the secondary side current detection circuit 80 is provided.
  • the diode 51 and the capacitor 52 constitute an output circuit.
  • An optical signal transmission element such as a photo force bra is used for a part of the feedback signal path from the secondary side voltage detection circuit 60 and the secondary side current detection circuit 80 to the control circuit 70.
  • the rectifying / smoothing circuit 10 includes, for example, a diode bridge and a capacitor.
  • the AC voltage applied between the input terminal 1 and the input terminal 2 is full-wave rectified by the diode bridge and smoothed by the capacitor. .
  • the transformer 20 includes a magnetic core 24, a primary side wire 21, a secondary side wire 22, and an auxiliary wire 23 that are wound around the core 24. Assuming that the number of primary side wires 21 is N1 and the number of secondary side wires 22 is N2, when there is no loss, the step-up ratio between the primary side and the secondary side is N2ZN1. In addition, the auxiliary feeder 23 is used to supply a power supply voltage to the control circuit 70. The dot symbol attached to the transformer 20 indicates the polarity of the winding.
  • a forward method that transmits power from the primary side to the secondary side when the switching element is turned on
  • a flyback system that transmits power from the primary side to the secondary side when the switching element is turned off.
  • the present invention can be applied to either of them. In the present embodiment, a flyback method is adopted.
  • the primary side winding 21 and the secondary side winding 22 of the transformer have a reverse polarity relationship, and the switching element 30 is turned on.
  • the primary current of the transformer 20 increases.
  • the diode Since the diode is reverse-biased, no secondary current flows.
  • the transformer 20 stores energy in the core 24 when the switching element 30 is on.
  • the magnetic field tries to maintain current, so that the voltage polarity of the transformer 20 is reversed and current flows on the secondary side of the transformer 20.
  • the secondary current of the transformer 20 is charged to the capacitor 52 through the diode 51 connected in series to the secondary side feeder 22 of the transformer, so that a DC output is generated between the output terminal 3 and the output terminal 4. Generate voltage.
  • the load power of the switching power supply circuit is an impact printer.
  • the switching power supply circuit supplies power to the solenoid of the plunger that drives the print head of the impact printer.
  • the current consumption fluctuates greatly in a short time in milliseconds or seconds.
  • an amorphous metal magnetic body having a high saturation magnetic flux density is used as the core 24 of the transformer.
  • a specific material for example, amorphous alloy Fe—Co (60 to 80 wt%) containing iron (Fe) and cobalt (Co) can be used.
  • a norotype molded by sintering a powder material is suitable.
  • a laminate type in which ribbon-like cores are laminated can be used.
  • Amorphous metal magnetic material has the characteristics that the hysteresis characteristic and the eddy current loss are small and the high frequency characteristic is good because the change in the magnetic characteristic due to the temperature at which the saturation magnetic flux density is higher than that of ferrite.
  • the heat generation amount of the core which is hard to be saturated magnetically, is small, so that it is possible to supply more than twice as much power as when ferrite is used. Because there is no need to form a gap in the gap, leakage of magnetic flux with gap force is no longer a problem.
  • the inductance per power (also referred to as “AL value”) is smaller than when ferrite is used. Even if it increases, the inductance of a winding will become small and the electric current which flows into a winding will increase.
  • the magnetic material of amorphous metal is difficult to saturate, the peak current flowing in the shoreline can be increased. However, when the peak current increases, there is a problem that the switching element is easily destroyed. Therefore, in this embodiment, a circuit device is devised. Thus, the switching element is protected.
  • the normal operation mode refers to a mode in which the switching power supply circuit can supply at least predetermined power (rated output power) to the load.
  • the rated output power represents the output power at which the MOSFET 31 can stably operate and is determined in advance based on the AC input voltage of the switching power supply circuit, the standard of the MOSFET 31, and the like.
  • a voltage of 40 V required to drive the print head is supplied to a blanker in an impact printer serving as a load.
  • the output current of the switching power supply circuit varies depending on the load state. For example, it is about 1 A in the normal state, but is about 1 OA in a predetermined period in the overload state.
  • the normal standby mode refers to a mode in which a power that is smaller than the rated output power can be supplied to the load in order to save energy.
  • the normal standby mode for example, the voltage of 20V required to fix the print head is supplied to the flanger in the impact printer that becomes the load.
  • the switching operation of the MOSFET 31 may be performed intermittently while the output voltage of the switching power supply circuit is the same as that in the normal operation mode.
  • the complete standby mode refers to a mode in which the output power is zero with the output voltage and output current of the switching power supply circuit set to zero for further energy saving.
  • FIG. 2 is a diagram showing in detail the configuration of a control circuit and the like in the switching power supply circuit shown in FIG.
  • an N-channel MOSFET 31 is used as the switching element 30 shown in FIG.
  • MOSFET 31 has a drain connected to primary winding 21 of the transformer, a source connected to rectifying and smoothing circuit 10, and a gate to which a drive signal is applied from gate driver 79.
  • the transformer primary side wire 21 and the drain / source path of the MOSFET 31 are connected in series, and the voltage obtained by rectifying and smoothing the AC power supply voltage in the rectifying and smoothing circuit 10 is the series voltage. Supplied to the circuit.
  • the MOSFET 31 allows a current to flow through the primary side winding 21 of the transformer in accordance with a pulsed drive signal applied to the gate.
  • a resistor is inserted in series with the primary side wire 21 and the voltage across this resistor is measured. In that case, power loss occurs due to resistance. Therefore, in the present embodiment, the primary side current detection circuit 40 detects the primary side current based on the drain-source voltage of the MOSFET 31.
  • the primary side current detection circuit 40 includes a PNP bipolar transistor 41 and a current source 42 that supplies a current to the emitter of the transistor 41.
  • the transistor 41 has a base to which the potential of the drain force of the MOSFET 31 is applied, and outputs a detection voltage from the emitter by performing an emitter follower operation.
  • the base of the transistor 41 may be indirectly connected to the drain of the MOS FET 31 via a force resistor or transistor directly connected to the drain of the MOSFET 31.
  • the on-resistance between the drain and the source of the MOSFET 31 becomes a value determined by the element characteristics and the gate and source voltage.
  • the primary winding 21 of the transformer which is the load of MOSFE T31, contains an inductance component! /, The drain current gradually increases from zero.
  • the product of this drain current and the on-resistance of MOSFET 31 is the drain-source voltage of MOSFET 31. Therefore, if the voltage between the drain and source of MOSFE T31 is measured, a detection voltage proportional to the magnitude of the current flowing through the primary side winding 21 of the transformer can be obtained.
  • the control circuit 70 includes a detection voltage generation circuit 71, a clock signal generation circuit 73, a mode switching circuit 74, a comparator 75, a blanking pulse generation circuit 76, an AND circuit 77, and an OR circuit 72.
  • the detection result of the secondary side voltage detection circuit 60 shown in FIG. 1 is transmitted as an optical signal to the detection voltage generation circuit 71 by using an optical signal transmission element such as a photopower bra.
  • the detection result of the secondary side voltage detection circuit 60 can be transmitted to the primary side detection voltage generation circuit 71 while maintaining isolation between the primary side and the secondary side of the transformer 20.
  • the detection voltage generation circuit 71 generates a detection voltage based on the detection result of the secondary side voltage detection circuit 60.
  • FIG. 3 shows the secondary side voltage detection circuit and the detection voltage in the switching power supply circuit shown in FIG. It is a circuit diagram which shows the structural example of a production
  • the secondary side voltage detection circuit 60 includes a resistor 61, a light emitting diode 62, and a shunt regulator 63 connected between both terminals of the capacitor 52, and a voltage generated between both terminals of the capacitor 52. And resistors 64 and 65 for dividing the voltage. The voltage divided by the resistors 64 and 65 is applied to the control terminal of the shunt regulator 63.
  • a current flows through the light emitting diode 62, and the light emitting diode 62 emits light with an intensity corresponding to the magnitude of the current to generate an optical signal.
  • the detection voltage generation circuit 71 is smoothed by a diode 81 that rectifies the voltage generated on the auxiliary auxiliary wire 23 of the transformer, a capacitor 82 that smoothes the voltage rectified by the diode 81, and the capacitor 82. It has a phototransistor 83 to which a voltage is applied to the collector, resistors 84 to 86, an operational amplifier 87, and a diode 88 for limiter.
  • the light-emitting diode 62 and the phototransistor 83 are usually often configured as a photopower bra.
  • the phototransistor 83 receives the optical signal generated by the light-emitting diode 62 and depends on its intensity. Output current from the emitter.
  • the current from which the emitter power of the phototransistor 83 is also output is input to the inverting input terminal of the operational amplifier 87 via the resistor 84.
  • resistors 85 and 86 are connected to the inverting input terminal of the operational amplifier 87 to form a negative feedback loop, and a control voltage V is applied to the non-inverting input terminal.
  • a detection voltage corresponding to the output current of the phototransistor 83 is generated.
  • the detection voltage decreases because the voltage on the secondary side increases, and when the load on the secondary side is heavy, the detection voltage increases because the voltage on the secondary side decreases. To do.
  • a limiter diode 88 is connected between the output terminal and the inverting input terminal of the operational amplifier 87.
  • the limiter diode 88 sets an upper limit on the detection voltage output from the operational amplifier 87.
  • a force indicating one diode A plurality of diodes may be connected in series. The upper limit of the detection voltage can be changed depending on the number of diodes.
  • the mode switching circuit 74 measures the time by counting the clock signal supplied from the clock signal generation circuit 73 and from the secondary side current detection circuit 80. Switching between the normal operation mode, the normal standby mode, and the complete standby mode is performed based on the output optical signal or the mode switching signal to which an external force is also supplied. For example, in the normal operation mode, the mode switching circuit 74, when the state where the output current detected by the secondary side current detection circuit 80 is smaller than a predetermined value continues beyond the first predetermined period, Transition from the normal operation mode to the normal standby mode, and in the normal standby mode, the state where the output current detected by the secondary-side current detection circuit 80 is smaller than the predetermined value continues beyond the second predetermined period. Or from the normal standby mode to the complete standby mode according to the mode switching signal supplied from the outside, and in the normal operation mode, the normal operation mode is completely switched from the normal operation mode according to the mode switching signal supplied by the external force. Enter standby mode.
  • the mode switching circuit 74 shifts from the complete standby mode to the normal operation mode in accordance with the mode switching signal supplied from the outside in the complete standby mode.
  • the mode switching signal shall be low level in the normal operation mode or normal standby mode and high level in the complete standby mode. For example, by detecting the temperature of the print head of the printer, the mode switching signal may be generated so that when the temperature of the print head falls below a predetermined value, the mode shifts to the complete standby mode.
  • the mode switching circuit 74 switches the value of the control voltage V supplied to the detection voltage generation circuit 71 between the normal operation mode, the normal standby mode, and the complete standby mode.
  • the output voltage of the switching power supply circuit can be changed.
  • the mode switching circuit 74 can reduce the number of pulses by thinning out pulses in the drive signal by periodically activating the forced reset signal in the normal standby mode, or in the complete standby mode. By activating the forcible reset signal, the drive signal may be deactivated to stop the switching operation of the MOS FET 31.
  • the mode switching circuit 74 may stop the oscillation operation in the clock signal generation circuit 73 in the complete standby mode.
  • the mode switching circuit 74 outputs from the secondary side current detection circuit 80.
  • the load state on the secondary side is detected based on the optical signal to protect the MOSFET 31.
  • the mode switching circuit 74 generates a drive signal so as to supply power greater than the rated output power to the load in accordance with the magnitude of the output current detected by the secondary-side current detection circuit 80.
  • Set the first period and the second period for generating the drive signal so that the power within the rated output power is supplied to the load, and in the second period, the output power will be within the rated output power.
  • the forced reset signal is periodically activated.
  • the comparator 75 compares the detection voltage output from the primary side current detection circuit 40 and the detection voltage generated by the detection voltage generation circuit 71 based on the detection result of the secondary side output voltage. In comparison, a comparison signal representing the comparison result is generated.
  • the blanking pulse generation circuit 76 is a high level only in a predetermined period synchronized with the clock signal in order to prevent a malfunction in which the MOSFET 31 is turned off while the primary current of the transformer is small. Generate ranking noise signal.
  • the AND circuit 77 calculates a logical product of the comparison signal output from the comparator 75 and the blanking pulse signal output from the blanking pulse generation circuit 76.
  • the OR circuit 72 calculates the logical sum of the output signal of the AND circuit 77 and the forced reset signal output from the mode switching circuit 74.
  • the pulse width setting circuit 78 is configured by, for example, an RS flip-flop having a set terminal S, a reset terminal R, and an output terminal Q.
  • the reset signal has priority over the set signal.
  • the clock signal generated by the clock signal generation circuit 73 is supplied to the set terminal S of the pulse width setting circuit 78. Also supplied to the reset terminal R of the comparison signal power pulse width setting circuit 78 generated by the comparator 75 during the period when the forced reset signal is at low level and the blanking pulse signal is at high level. Is done.
  • the pulse width setting circuit 78 sets the output signal in synchronization with the clock signal, and resets the output signal in synchronization with the comparison signal output from the comparator 75, whereby the pulse width in the drive signal is set. Set. When the forced reset signal becomes high level, the pulse width setting circuit 78 is always reset, and the drive signal becomes low level.
  • the gate driver 79 drives the gate of the MOSFET 31 based on the drive signal output from the pulse width setting circuit 78.
  • FIG. 4 is a waveform diagram for explaining the operation of the control circuit shown in FIG. 2 in an overload state.
  • Fig. 4 (a) shows the clock signal V generated by the clock signal generation circuit 73.
  • the period of the pulse included in the clock signal is T, and the pulse width (noise level period) is T.
  • the duty (T ZT) of the clock signal is 50%
  • the impedance of the primary side wire is reduced when the number of power is the same as compared with the case of using ferrite.
  • the dance is getting smaller. Therefore, as shown in Fig. 4 (b), compared to the case where ferrite is used, the current flowing through the primary side wire 21 of the transformer, that is, the drain current I of the MOSFET 31, becomes larger. MOSFET31 may be destroyed by heat generation
  • control circuit 70 sets the upper limit of the pulse width in the drive signal so that the MOSF ET31 is turned off at the point A shown in FIG. 4 (b).
  • the operation of the control circuit 70 will be described in detail.
  • the output signal of the pulse width setting circuit 78 is synchronized with the rising edge of the clock signal V generated by the clock signal generation circuit 73.
  • the output comparison signal V ((d) in Figure 4) shifts from high level to low level.
  • the comparison signal V output from the comparator 75 is supplied from the primary side current detection circuit 40.
  • the detection voltage generation circuit 71 has an upper limit for the second detection voltage. Therefore, when the second detection voltage reaches the upper limit, if the first detection voltage exceeds the upper limit, the comparison signal V output from the comparator 75 becomes a high level.
  • the primary-side current detection circuit 40 detects the detection voltage based on the drain voltage V of the MOSFET 31.
  • the drain current V begins to flow when the gate voltage V becomes high.
  • the threshold voltage V determined based on the detection result of the circuit 60 (in this case, the second detection voltage)
  • control circuit 70 turns on the MOSFET 31 at a constant period and turns off the MOSFET 31 in synchronization with the rising edge of the comparison signal V.
  • Figure 4 (e) e
  • the period is represented by T.
  • FIG. 5 is a waveform diagram for explaining the operation of the control circuit shown in FIG. 2 in a normal state.
  • Figure 5 (a) shows the clock signal V generated by the clock signal generation circuit 73.
  • FIG. 5 (b) shows the drain current I of the MOSFET 31, and FIG.
  • the AND circuit 77 obtains the logical product of the comparison signal output from the comparator 75 and the blanking pulse signal generated by the blanking pulse generation circuit 76.
  • the power of the primary side current detection circuit 40 may be turned on and off by the blanking pulse signal generated by the force blanking pulse generation circuit 76. In that case, the AND circuit 77 can be omitted.
  • FIG. 6 is a diagram illustrating an example of a change in output power of the switching power supply circuit according to the first embodiment of the present invention.
  • the horizontal axis represents the elapsed time
  • the vertical axis represents the output power of the switching power supply circuit.
  • the mode switching circuit 74 sets the mode of the switching power supply circuit to the normal operation mode.
  • the switching power supply circuit is in the normal operation mode, and the mode switching circuit 74 sets the control voltage V so that the output voltage becomes, for example, 40V.
  • a current of 1A flows through the load, and the output power is 40V X
  • the mode switching circuit 74 has a time T for supplying electric power larger than the rated output power to the load based on the value of the output current detected by the secondary-side current detection circuit 80, and the rated current.
  • the pulse width of the drive signal is set by the comparison signal generated by the comparator 75, and in the subsequent period (d), the mode switching circuit 74 forcibly resets the output power to be within the rated output power. Activate the signal periodically to limit the pulse width in the drive signal. In period (d), the output voltage and output current of the switching power supply circuit decrease, but the output current is maintained, so that the operation of the plunger driving the print head in the impact printer is continued. Is called.
  • the mode switching circuit 74 sets a shorter time for supplying power larger than the rated output power to the load as the output current increases in order to protect the MOSFET 31.
  • the mode switching circuit 74 In the period (i), when the printing operation by the printer is interrupted and the state in which the output current is smaller than a predetermined value continues for a predetermined period (for example, 5 minutes), the mode switching circuit 74 In the period (j), the mode of the switching power supply circuit is set to the normal standby mode to save energy. In the normal standby mode, the mode switching circuit 74 reduces the reference voltage V supplied to the detection voltage generation circuit 71. As a result, the comparator 75
  • the detection voltage supplied to the inverting input terminal is lowered, the reset timing in the pulse width setting circuit 78 is advanced, the pulse width in the drive signal is shortened, and the output voltage of the switching power supply circuit is lowered.
  • the mode switching circuit 74 sets the control voltage V so that the output voltage becomes 20V.
  • the mode switching circuit 74 is a switching power supply circuit.
  • the number of pulses in the drive signal is reduced by periodically activating the forced reset signal while maintaining the same output voltage as in normal operation mode. 31 switching operations may be performed intermittently!
  • the switching power supply circuit again shifts to the normal operation mode in the period (k).
  • MOS FET 31 is performing switching operation, so that the output voltage of the switching power supply circuit can be quickly raised when the normal operation mode is entered.
  • the mode switching circuit 74 In period (1), the mode of the switching power supply circuit is set to the normal standby mode.
  • the mode switching circuit 74 changes the mode of the switching power supply circuit to the complete standby mode in the period (m). To further save energy.
  • the mode switching circuit 74 sets the mode of the switching power supply circuit to the complete standby mode.
  • the mode switching circuit 74 sets the forced reset signal to the low level in the period (n). As a result, the drive signal is activated, and the MOSFET 31 starts the switching operation. However, it takes a certain time for the output voltage to rise. Thereafter, in the period (o), the normal operation mode is continued.
  • the normal standby mode there are two types of standby modes, the normal standby mode and the complete standby mode.
  • the complete standby mode the switching element can be turned off to completely reduce the output power to zero, but the disadvantage is that the time until the output voltage rises is increased.
  • the output power cannot be completely reduced to zero, but a normal standby mode is provided that can shorten the time until the output voltage rises.When the load current decreases for a short period, the normal standby mode is entered. As a result, a rapid rise in output voltage can be realized while saving energy.
  • FIG. 7 is a waveform diagram of the drain current in the switching power supply circuit according to the first embodiment of the present invention.
  • the horizontal axis represents the elapsed time
  • the vertical axis represents the drain current value.
  • Periods (b) to (j) shown in Fig. 7 correspond to periods (b) to (1) shown in Fig. 6, respectively.
  • the pulse width in the drive signal is set so that the switching power supply circuit supplies the rated output power to the load.
  • the current flowing through the load suddenly increases, so the mode switching circuit 74 supplies output power exceeding the rated output power to the load according to the output current detected by the secondary current detection circuit 80.
  • the mode switching circuit 74 sets a period during which the output power exceeding the rated output power is supplied to the load according to the output current detected by the secondary current detection circuit 80 at time T. Within the rated output power for time T during the subsequent period (f)
  • the pulse width in the drive signal is limited so that output power is supplied to the load.
  • the mode switching circuit 74 sets a period during which the output power exceeding the rated output power is supplied to the load according to the output current detected by the secondary side current detection circuit 80 at time T. Within the rated output power for time T during the subsequent period (h)
  • the pulse width in the drive signal is limited so that output power is supplied to the load.
  • mode switching circuit 74 sets the switching power supply circuit in the normal standby mode in period (j). To reduce the control voltage V.
  • the secondary side current detection circuit 80 shown in FIG. 1 detects the output current (secondary side current) of the output circuit, and the control circuit 70 determines the load of the output circuit based on the output current.
  • the present invention is not limited to this. Since it is a well-known fact that the output current of the output circuit is also reflected in the primary side current of the transformer, the primary side voltage waveform, and the voltage waveform of the third side wire provided separately in the transformer. It is also possible to indirectly determine the load status of the output circuit by measuring the current on the primary side of the transformer.
  • FIG. 8 is a diagram showing a configuration of a switching power supply circuit according to the second embodiment of the present invention.
  • a description will be given by taking as an example a Chietsuba boost type switching power supply circuit.
  • This switching power supply circuit includes a rectifying / smoothing circuit 10 connected to AC voltage input terminals 1 and 2, and one end connected to the rectifying / smoothing circuit 10, and cores magnetic energy generated by a current flowing in the winding. Is connected to the other end of the choke coil 100, the switching element 110 is configured to flow current through the choke coil 100 in accordance with the Norse drive signal, and the switching current detection circuit 120 is configured to detect the current flowing through the switching element 110. And have.
  • the primary side of the transformer is used as the choke coil 100
  • the secondary side of the transformer can be used for generating an internal power source.
  • this switching power supply circuit includes a diode 51 that half-wave rectifies the voltage generated at the other end of the choke coil 100, a capacitor 52 that generates an output voltage by smoothing the rectified voltage, and an output terminal Output voltage detection circuit 130 that detects the output voltage at 3 and 4; output current detection circuit 140 that is inserted between the capacitor 52 and output terminal 4 to detect the output current; and the detection result of the switching current detection circuit 120 And a control circuit 150 that generates a drive signal based on the detection result of the output voltage detection circuit 130 and switches the mode of the switching power supply circuit based on the detection result of the output current detection circuit 140.
  • the diode 51 and the capacitor 52 constitute an output circuit.
  • the choke coil 100 stores energy in the core when the switching element 110 is on. Next, when switching element 110 is turned off, the magnetic field attempts to maintain the current. Therefore, the current of the choke coil 100 flows to the capacitor 52 via the diode 51, and the capacitor 52 is charged, so that a DC output voltage is generated between the output terminal 3 and the output terminal 4.
  • an amorphous metal magnetic material having a high saturation magnetic flux density is used as the core of the choke coil 100.
  • a specific material for example, an amorphous alloy Fe—Co (60 to 80 wt%) containing iron (Fe) and connort (Co) can be used.
  • a norotype molded by sintering a powder material is suitable.
  • a laminate type in which ribbon-like cores are laminated can also be used.
  • Amorphous metal magnetic material is easy to mold even when performing E-shaped core molding, which has a higher saturation magnetic flux density than ferrite, and hysteresis loss and magnetic property change with temperature are small. It has the characteristics of low eddy current loss and good high frequency characteristics.
  • the core is less likely to be saturated magnetically and the amount of heat generated is small. Since there is no need to form a gap, leakage of magnetic flux with gap force is no longer a problem.
  • the inductance per power (also referred to as “AL value”) is smaller than when ferrite is used. Even if it increases, the inductance of a winding will become small and the electric current which flows into a winding will increase.
  • the magnetic material of amorphous metal is difficult to saturate, the peak current flowing in the shoreline can be increased. However, when the peak current increases, there is a problem that the switching element is easily destroyed. Therefore, in this embodiment, the switching element is protected by devising a circuit.
  • FIG. 9 is a diagram showing in detail the configuration of the control circuit and the like shown in FIG.
  • an N-channel MOSFET 111 is used as the switching element 110 shown in FIG.
  • MOSFET 111 has a drain connected to the other end of choke coil 100, a source connected to rectifying and smoothing circuit 10 via switching current detection circuit 120, and a gate to which a drive signal is applied from gate driver 159. is doing.
  • the control circuit 150 includes a mode switching circuit 151, a clock signal generation circuit 152, a comparator 154, a blanking pulse generation circuit 155, an AND circuit 156, an OR circuit 157, and a pulse width setting circuit 158. And a gate driver 159.
  • the mode switching circuit 151 measures the time by powering the clock signal supplied from the clock signal generation circuit 152, and the detection voltage output from the output current detection circuit 140 or an external force is also supplied. Switching between the normal operation mode, normal standby mode, and complete standby mode is performed based on the mode switching signal. For example, in the normal operation mode, the mode switching circuit 151 operates when the state in which the output current detected by the output current detection circuit 140 is smaller than a predetermined value continues beyond the first predetermined period.
  • the mode switching circuit 151 shifts from the complete standby mode to the normal operation mode in accordance with the mode switching signal supplied from the outside.
  • the output current detection circuit 140 When the detected output current becomes larger than the predetermined value, the normal standby mode is shifted to the normal operation mode.
  • the mode switching circuit 151 switches the value of the control voltage V supplied to the output voltage detection circuit 130 between the normal operation mode, the normal standby mode, and the complete standby mode.
  • the output voltage of the switching power supply circuit can be changed.
  • the mode switching circuit 151 periodically activates the forced reset signal in the normal standby mode, thereby reducing the number of pulses in the drive signal and reducing the number of pulses in the complete standby mode.
  • the drive signal is deactivated and M
  • the switching operation of the OSFET 111 may be stopped.
  • the mode switching circuit 151 may stop the oscillation operation in the clock signal generation circuit 152 in the complete standby mode.
  • mode switching circuit 151 detects the load state on the secondary side based on the detection voltage output from output current detection circuit 140, and protects MOSFET 111. That is, the mode switching circuit 151 generates a drive signal so as to supply a power larger than the rated output power to the load according to the magnitude of the output current detected by the output current detection circuit 140. Set a second period for generating a drive signal so that power within the rated output power is supplied to the load, and forcibly reset signal so that the output power is within the rated output power in the second period. Is activated periodically.
  • the clock signal generation circuit 152 generates a clock signal. Further, the detection voltage output from the switching current detection circuit 120 is input to the non-inverting input terminal of the comparator 154, and the detection voltage output from the output voltage detection circuit 130 shown in FIG. Input to the power terminal.
  • the output voltage detection circuit 130 when the load of the switching power supply circuit is light, the detection voltage decreases as the output voltage of the switching power supply circuit increases, and when the load of the switching power supply circuit is heavy, the switching power supply The detection voltage increases as the output voltage of the circuit decreases. Furthermore, an upper limit is set for the detection voltage output from the output voltage detection circuit 130 by the limiter circuit.
  • Comparator 154 compares the detection voltage output from switching current detection circuit 120 with the detection voltage output from output voltage detection circuit 130, and outputs a comparison signal representing the comparison result.
  • the blanking pulse generation circuit 155 is a blanking pulse that becomes a high level only during a predetermined period synchronized with the clock signal in order to prevent a malfunction in which the MOSFET 111 is turned off while the primary current of the transformer is small. Generate a signal.
  • the AND circuit 156 obtains a logical product of the comparison signal output from the comparator 154 and the blanking pulse signal output from the blanking pulse generation circuit 155.
  • the OR circuit 157 obtains the logical sum of the output signal of the AND circuit 156 and the forced reset signal output from the mode switching circuit 151.
  • the pulse width setting circuit 158 is configured by, for example, an RS flip-flop having a set terminal S, a reset terminal R, and an output terminal Q.
  • the reset signal has priority over the set signal.
  • the clock signal generated by the clock signal generation circuit 152 is supplied to the set terminal S of the pulse width setting circuit 158.
  • the comparison signal generated by the comparator 154 is supplied to the reset terminal R of the noise width setting circuit 158 during the period when the forced reset signal is at the low level and the blanking pulse signal is at the high level. .
  • the pulse width setting circuit 158 sets the output signal in synchronization with the clock signal and resets the output signal in synchronization with the comparison signal output from the comparator 154. Set. When the forced reset signal becomes high level, the pulse width setting circuit 158 is always reset and the drive signal becomes low level.
  • the gate driver 159 drives the gate of the MOSFET 111 based on the drive signal output from the pulse width setting circuit 158.
  • the output signal of the pulse width setting circuit 158 is set in synchronization with the rising edge, and the gate voltage V ((e) in Fig. 4) goes high.
  • the comparison signal output from the comparator 154 compares the first detection voltage output from the switching current detection circuit 120 and the second detection voltage output from the output voltage detection circuit 130. It is obtained. In an overload condition, the drain current I of the MOSFET 111 increases and the first detection voltage increases, and the output voltage decreases and the second detection voltage
  • an upper limit is set in the output voltage detection circuit 130 for the second detection voltage. Therefore, when the second detection voltage reaches the upper limit and the first detection voltage exceeds the upper limit, the comparison signal output from the comparator 154 becomes high level. As a result, the output signal of the pulse width setting circuit 158 is reset, and the gate voltage V of the MOSFET 111 becomes the input.
  • the drain current I stops at the point A shown in Fig. 4 (b).
  • control circuit 150 turns on the MOSFET 111 at a constant period and The MOSFET 111 is turned off in synchronization with the rising edge of the comparison signal.
  • Fig. 4 (e) the period during which the MOSFET 111 is turned on is represented by T, and the MOSFET 111 is turned off.
  • the period is represented by T.
  • the mode switching circuit 151 changes the mode of the switching power supply circuit to the normal operation mode.
  • the switching power supply circuit is in the normal operation mode, and the mode switching circuit 151 has an output voltage of, for example, 4
  • the normal operation mode continues from period (b) to period (i).
  • MOSFET 111 Since there is an upper limit on current I, MOSFET 111 is protected against instantaneous breakdown force
  • the mode switching circuit 151 based on the value of the output current detected by the output current detection circuit 140, and the time T for supplying power larger than the rated output power to the load
  • the pulse width of the drive signal is set by the comparison signal generated by the comparator 154, and in the subsequent period (d), the mode switching circuit 151 forces the output power to be within the rated output power. Periodically activate the reset signal to limit the pulse width in the drive signal. In the period (d), although the output voltage and output current of the switching power supply circuit are reduced, the output current is maintained, so that the plunger drives the print head continuously in the impact printer.
  • the mode switching circuit 151 has a time T to T for supplying power larger than the rated output power to the load according to the value of the output current detected by the output current detection circuit 140 and the rated current.
  • the time to supply power within the output power to the load is different from ⁇ to ⁇
  • mode switching circuit 151 sets a shorter time for supplying power larger than the rated output power to the load as the output current increases.
  • the mode switching circuit 151 In the period (i), when the printing operation by the printer is interrupted, and the state where the output current is smaller than the predetermined value continues for a predetermined period (for example, 5 minutes), the mode switching circuit 151 In the period (j), the switching power supply circuit mode is set to the normal standby mode to save energy. In the normal standby mode, the mode switching circuit 151 reduces the reference voltage V supplied to the output voltage detection circuit 130. This makes the comparator 1
  • the mode switching circuit 151 sets the control voltage V so that the output voltage becomes 2 OV.
  • the mode switching circuit 151 may be a switch
  • the number of pulses in the drive signal is reduced by periodically activating the forced reset signal while keeping the output voltage of the power supply circuit the same as in the normal operation mode.
  • the switching power supply circuit again shifts to the normal operation mode in the period (k).
  • the MOSFET 111 performs the switching operation, so that the output voltage of the switching power supply circuit can be quickly raised when shifting to the normal operation mode.
  • the mode switching circuit 151 In period (1), the mode of the switching power supply circuit is set to normal standby mode.
  • the mode switching circuit 151 switches the switching power supply circuit during the period (m).
  • the road mode is set to the complete standby mode to further save energy.
  • the mode switching circuit 151 sets the mode of the switching power supply circuit to the complete standby mode. It ’s okay.
  • the mode switching circuit 151 sets the forced reset signal to a low level in the period (n).
  • the drive signal is activated, and the MOSFET 111 starts the switching operation.
  • the normal operation mode is continued.
  • FIG. 10 is a diagram showing a configuration of a switching power supply circuit according to the third embodiment of the present invention.
  • This switching power supply circuit includes a rectifying / smoothing circuit 10 connected to the input terminals 1 and 2 of the AC power supply voltage, a first voltage conversion circuit 11 connected to the output terminal 3 and the output terminal 4, an output terminal 5 and And a second voltage conversion circuit 12 connected to the output terminal 6.
  • the configurations of the rectifying / smoothing circuit 10 and the first voltage conversion circuit 11 are the same as the configuration of the switching power supply circuit according to the first embodiment shown in FIG.
  • the second voltage conversion circuit 12 is connected in series to a transformer 160 that boosts or steps down the AC voltage on the primary side and outputs it to the secondary side, and a primary side wire 161 of the transformer.
  • a switching element 170 that allows current to flow through the primary winding 161 of the transformer according to the drive signal, a primary current detection circuit 180 that detects current flowing through the primary winding 161 of the transformer, and a secondary winding of the transformer 16 Diode 53 that half-wave rectifies the voltage generated at 2; capacitor 54 that smoothes the rectified voltage; secondary voltage detection circuit 190 that detects the smoothed voltage across capacitor 54; and primary Side current detection circuit 180 detection result and secondary side voltage detection circuit 190 And a control circuit 200 that generates a drive signal based on the detection result.
  • the configuration of secondary side voltage detection circuit 190 is the same as the configuration of secondary side voltage detection circuit 60 shown in FIG.
  • the transformer 160 includes a magnetic core 164, a primary side wire 161, a secondary side wire 162, and an auxiliary wire 163 wound around the core 164. If the number of primary side wires 161 is N3 and the number of secondary side wires 162 is N4, and there is no loss, the step-up ratio between the primary side and secondary side is N4ZN3.
  • the auxiliary feeder 163 is used to supply a power supply voltage to the control circuit 200.
  • the dot symbol attached to the transformer 160 indicates the polarity of the winding.
  • the first voltage conversion circuit 11 can be used until the no-load state power consumes 2 to 3 times the rated output current for a short time in milliseconds or seconds, or in some cases rated.
  • the first output voltage is supplied to a dynamic load that fluctuates dynamically until it consumes 10 times the output current.
  • the second voltage conversion circuit 12 supplies the second output voltage to a stable steady load in which the fluctuation range of the consumption current is within about 50% of the rated output current.
  • the rated output current represents the magnitude of the output current that can stably operate the MOSFET used as a switching element in each voltage conversion circuit. It is determined in advance based on the input voltage and MOSF ET standards.
  • the load power of the switching power supply circuit is an impact printer.
  • the first voltage conversion circuit 11 supplies power to the solenoid of the plunger that drives the print head of the impact printer.
  • the second voltage conversion circuit 12 supplies power to a control circuit for controlling transmission / reception of data to / from a personal computer or the like and driving of the plunger.
  • an appropriate material is selected for the transformer core 24 in the first voltage conversion circuit 11 and the transformer core 164 in the second voltage conversion circuit 12 according to the load.
  • an amorphous metal magnetic material having a high saturation magnetic flux density is used as the transformer core 24 in the first voltage conversion circuit 11 that supplies power to the dynamic load.
  • a ferrite magnetic material is used as the transformer core 164 in the second voltage conversion circuit 12 that supplies power to the steady load. Ferrite magnetic material is low Since it has characteristics of loss and efficiency, it has been generally used as a core material for transformers.
  • FIG. 11 is a diagram showing a configuration of a control circuit and the like in the second voltage conversion circuit shown in FIG.
  • the basic configuration of the control circuit in the second voltage conversion circuit is the same as that of the control circuit 70 shown in FIG. 2 except that there is no component for limiting the drain current and no mode switching circuit.
  • MOSFET 171 In the second voltage conversion circuit 12, similarly to the first voltage conversion circuit 11, an N-channel MOSFET 171 is used as the switching element 170.
  • MOSFET 171 has a drain connected to primary winding 161 of the transformer, a source connected to rectifying and smoothing circuit 10, and a gate to which a drive signal is applied from gate driver 79.
  • the primary side wire 161 of the transformer and the drain 'source path of the MOSFET 171 are connected in series, and the voltage obtained by rectifying and smoothing the AC power supply voltage in the rectifying and smoothing circuit 10 is the series voltage. Supplied to the circuit.
  • the MOSFET 171 causes a current to flow through the primary side winding 161 of the transformer in accordance with a pulsed drive signal applied to the gate.
  • the control circuit 200 includes a detection voltage generation circuit 201 that generates a detection voltage based on the detection result of the secondary side voltage detection circuit 190 shown in FIG. 10, and a clock signal generation circuit 73 that generates a clock signal.
  • the comparator 75 that compares the detection voltage output from the primary-side current detection circuit 40 and the detection voltage generated by the detection voltage generation circuit 201 to generate a comparison signal that represents a comparison result, and the clock signal
  • a blanking pulse generation circuit 76 that generates a blanking pulse signal that becomes a high level only during a predetermined period, an AND circuit 77, an output signal that is set in synchronization with the clock signal, and a comparison signal that is output from the comparator 75.
  • the pulse width setting circuit 78 sets the pulse width in the drive signal by resetting the output signal in synchronization with the signal, and the drive signal output from the pulse width setting circuit 78 And a gate driver 79 for driving the gate of MOSFET171 Te.
  • the configuration of the detection voltage generation circuit 201 is the same as the configuration of the detection voltage generation circuit 71 shown in FIG. 3 except for the diode 88 for the limiter. Since the second voltage conversion circuit 12 is for supplying power to a stable steady load, a magnetic material of ferrite is used for the core 164 of the transformer. In that case, an overcurrent is generated in the primary primary wire 161 of the transformer. Since there is no possibility of flowing, the limiter diode 88 for limiting the drain current is omitted.
  • the first voltage conversion circuit 11 and the second voltage conversion circuit 12 use separate transformers suitable for respective loads, and the primary circuit is independent. Therefore, it is possible to improve the cross regulation with respect to the dynamic load which is a problem in the power supply circuit having outputs of a plurality of systems.
  • the primary-side current detection circuit 40 by applying a predetermined voltage to the inverting input terminal of the comparator 75 instead of the detection voltage generated by the detection voltage generation circuit 201, the primary-side current detection circuit 40 The drive signal may be generated based on the detection result. Even in that case, if the detection voltage output from the primary current detection circuit 40 exceeds the predetermined voltage, the output signal of the pulse width setting circuit 78 is reset, so the upper limit of the pulse width in the drive signal is set. be able to.
  • FIG. 12 is a diagram showing a configuration of a switching power supply circuit according to the fourth embodiment of the present invention.
  • each of the first and second voltage conversion circuits 11 and 12 uses a step-up type chopper circuit including a choke coil instead of a transformer.
  • the configurations of the rectifying / smoothing circuit 10 and the first voltage conversion circuit 11 are the same as the configuration of the switching power supply circuit according to the second embodiment shown in FIG.
  • the second voltage conversion circuit 12 has one end connected to the rectifying / smoothing circuit 10 and connected to the choke coil 210 that stores magnetic energy generated by the current flowing in the winding in the core, and the other end of the choke coil 210.
  • Switching element 220 for passing current to choke coil 210 in accordance with the driving signal, switching current detection circuit 230 for detecting current flowing to switching element 220, and half-wave rectification of the voltage generated at the other end of choke coil 210 Detection of the diode 53, the capacitor 54 that generates the output voltage by smoothing the rectified voltage, the output voltage detection circuit 240 that detects the output voltage at the output terminals 5 and 6, and the switching current detection circuit 230 And a control circuit 250 that generates a drive signal V based on the result and the detection result of the output voltage detection circuit 240.
  • an appropriate material for the core of the choke coil 100 in the first voltage conversion circuit 11 and the core of the choke coil 210 in the second voltage conversion circuit 12 is used depending on the load. Selected.
  • an amorphous metal magnetic material having a high saturation magnetic flux density is used as the core of the choke coil 100 in the first voltage conversion circuit 11 that supplies power to the dynamic load.
  • a ferrite magnetic material is used as the core of the choke coil 210 in the second voltage conversion circuit 12 that supplies power to a steady load.
  • FIG. 13 is a diagram showing a configuration of a control circuit and the like in the second voltage conversion circuit shown in FIG.
  • the basic configuration of the control circuit in the second voltage conversion circuit is the same as that of the control circuit 150 shown in FIG. 9 except that there is no function for limiting the drain current and no mode switching circuit.
  • MOSFET 221 In the second voltage conversion circuit 12, as in the first voltage conversion circuit 11, an N-channel MOSFET 221 is used as the switching element 220.
  • MOSFET 221 has a drain connected to choke coil 210, a source connected to rectifying and smoothing circuit 10, and a gate to which a drive signal is applied from gate driver 159.
  • the choke coil 210 and the drain / source path of the MOSFET 221 are connected in series, and the voltage 1S obtained by rectifying and smoothing the AC power supply voltage in the rectifying and smoothing circuit 10 is supplied to these series circuits.
  • the MOSFET 221 causes a current to flow through the choke coil 210 in accordance with a pulsed drive signal applied to the gate.
  • the control circuit 250 compares the clock signal generation circuit 152 that generates the clock signal, the detection voltage output from the switching current detection circuit 230, and the detection voltage generated by the output voltage detection circuit 240.
  • a comparator 154 that generates a comparison signal that represents a comparison result
  • a blanking pulse generation circuit 155 that generates a blanking pulse signal that is high only during a predetermined period synchronized with the clock signal
  • an AND circuit 156 a clock
  • the pulse width setting circuit 158 sets the pulse width in the drive signal by setting the output signal in synchronization with the signal and resetting the output signal in synchronization with the comparison signal output from the comparator 154, and the pulse width setting A gate driver 159 that drives the gate of the MOSFET 221 based on the drive signal output from the circuit 158.
  • the configuration of the output voltage detection circuit 240 shown in FIG. 12 is the same as that of the output voltage detection circuit 130 shown in FIG. 8 except for the limiter diode. Since the second voltage conversion circuit 12 is for supplying electric power to a stable steady load, a ferrite magnetic body is used for the core of the choke coil 210. In this case, since there is no possibility that an overcurrent flows through the winding of the choke coil 210, the limiter diode for limiting the drain current is omitted.
  • the first voltage conversion circuit 11 and the second voltage conversion circuit 12 use separate choke coils suitable for respective loads, and the primary side circuit is independent. Therefore, it is possible to improve the cross regulation with respect to the dynamic load which is a problem in the power supply circuit having outputs of a plurality of systems.
  • the switching current detection circuit 230 A drive signal may be generated based on the detection result! Even in this case, if the detection voltage output from the switching current detection circuit 230 exceeds a predetermined voltage, the output signal of the pulse width setting circuit 158 is reset, so the upper limit of the pulse width in the drive signal must be set. Can do.
  • the present invention can be used in a switching power supply used in an electronic device.

Abstract

A switching power supply circuit realizing both reduction of the power consumption and shortening of the reset time and quickly dealing with the change from a stand-by state to an overload state. The switching power supply circuit comprises a transformer having a core containing an amorphous magnetic material, a switching element for flowing current through the primary-side winding of the transformer according to the drive signal, an output circuit for producing an output voltage according to the voltage induced in the secondary-side winding of the transformer, and a control circuit for generating the drive signal according to the current flowing through the primary-side winding of the transformer and the output voltage of the output circuit and switching among a normal operation mode, a normal standby mode, and a complete standby mode according to the output current of the output circuit or a mode switching signal supplied from outside.

Description

明 細 書  Specification
スイッチング電源回路及びその制御方法  Switching power supply circuit and control method thereof
技術分野  Technical field
[0001] 本発明は、一般に、インパクトプリンタ等の電子機器において用いられるスィッチン グ電源回路、及び、そのようなスイッチング電源回路の動作を制御する方法に関する 背景技術  TECHNICAL FIELD [0001] The present invention generally relates to a switching power supply circuit used in an electronic device such as an impact printer, and a method for controlling the operation of such a switching power supply circuit.
[0002] 近年においては、電子機器の小型軽量ィ匕に伴い、小型軽量で効率良く電力を取り 出すことのできるスイッチング電源が広く使用されている。スイッチング電源において 、入力側と出力側との間で電気的な絶縁を必要とする場合には、トランスが用いられ る。一方、入力側と出力側との間で電気的な絶縁を必要としない場合には、トランス の替わりにチョークコイルを使用したチヨッパ方式のスイッチング電源も用いられて ヽ る。  In recent years, switching power supplies that are small and light and can efficiently extract electric power are widely used along with the small and light electronic devices. In a switching power supply, a transformer is used when electrical insulation is required between the input side and the output side. On the other hand, when electrical insulation is not required between the input side and the output side, a chopper type switching power supply using a choke coil instead of a transformer may be used.
[0003] 一般に、トランス又はチョークコイルのコアとなる磁性体としては、低損失で効率の 良いフェライトが用いられる。しかしながら、フェライトは磁気的に飽和し易いので、コ ァが飽和して磁気特性が低下してしまうと、コアに巻かれた卷線の電流が許容値を超 える。これを避けるためには、コアにギャップを形成する必要がある力 その場合には 、ギャップからの磁束の漏洩が問題となる。特に、インパクトプリンタにおいては、印字 ヘッドを駆動するプランジャのソレノイドに十分な電流を供給するために、過負荷状 態になっても電流を出力することが可能なスイッチング電源が望まれる。  [0003] Generally, a ferrite having a low loss and high efficiency is used as a magnetic body serving as a core of a transformer or a choke coil. However, since ferrite is easily magnetically saturated, if the core is saturated and the magnetic properties are deteriorated, the winding current wound around the core exceeds the allowable value. To avoid this, it is necessary to form a gap in the core. In that case, leakage of magnetic flux from the gap becomes a problem. In particular, in an impact printer, in order to supply a sufficient current to the solenoid of the plunger that drives the print head, a switching power supply that can output a current even in an overload state is desired.
[0004] ところで、インパクトプリンタ等の電子機器における省エネルギー化の一環として、 待機モードを設けて消費電力を削減することが行われている。しかしながら、待機モ ードにおいてスイッチング動作を完全に止めてしまうと、待機モードから通常動作モ ードに復帰する際に、出力電圧が立ち上がるまでに時間を要してしまう。  By the way, as part of energy saving in electronic devices such as impact printers, a standby mode is provided to reduce power consumption. However, if the switching operation is completely stopped in the standby mode, it takes time for the output voltage to rise when returning from the standby mode to the normal operation mode.
[0005] 関連する技術として、 日本国特許出願公開 JP—A— 8— 51774には、簡単かつ低 コストの構造で、し力も、軽負荷時に所望の最適な周波数を得ることができるスィッチ ング電源回路が開示されている。このスイッチング電源回路は、重負荷用の高サイク ルのスイッチング周波数と軽負荷用の低サイクルのスイッチング周波数のいずれかを 用いて直流電圧を負荷側に供給するスイッチング手段と、軽負荷状態を示す負荷信
Figure imgf000004_0001
、て、上記スイッチング手段のスイッチング周波数を上記軽負荷用のスイツ チング周波数に切り換えるスイッチング周波数切換手段とを備えて 、る。しかしながら 、このスイッチング電源回路においても、消費電力の削減と復帰時間の短縮とを両立 させることは難しい。
[0005] As a related technology, JP-A-8-51774 discloses a switching power source that can obtain a desired optimum frequency at a light load with a simple and low-cost structure. A circuit is disclosed. This switching power supply circuit is a high cycle for heavy loads. Switching means for supplying a DC voltage to the load side using either a low-frequency switching frequency or a low-cycle switching frequency for a light load, and a load signal indicating a light load condition.
Figure imgf000004_0001
Switching frequency switching means for switching the switching frequency of the switching means to the switching frequency for the light load. However, even in this switching power supply circuit, it is difficult to achieve both reduction in power consumption and reduction in recovery time.
[0006] また、日本国特許出願公開 JP—A— 9— 134096には、待機時の電力損失を低減 できる画像形成装置が開示されている。この画像形成装置は、画像形成時に動作す る機器に電圧を供給するための駆動系電源回路と、該駆動系電源回路をオン Zォ フするコントローラと、非画像形成時の待機時及び画像形成時に前記コントローラに 電圧を供給するための制御系電源回路とを備えている。この画像形成装置によれば 、待機時及び画像形成時のいずれにおいても制御系電源回路がコントローラに電圧 を供給するので、コントローラは駆動系電源回路をオン Zオフすることができる。画像 を形成しない待機時には、コントローラが駆動系電源回路をオフにすることにより、駆 動系電源回路の待機時電力損失がなくなり省電力効果が向上する。しかしながら、 J P— A— 9— 134096においては、復帰時間の短縮や過負荷への対応については言 及されていない。  [0006] Japanese Patent Application Publication JP-A-9-134096 discloses an image forming apparatus capable of reducing power loss during standby. This image forming apparatus includes a drive system power supply circuit for supplying voltage to a device that operates during image formation, a controller that turns on the drive system power supply circuit, standby during non-image formation, and image formation. And a control system power supply circuit for supplying a voltage to the controller. According to this image forming apparatus, since the control system power supply circuit supplies a voltage to the controller both during standby and during image formation, the controller can turn on and off the drive system power supply circuit. In standby mode when images are not formed, the controller turns off the drive system power supply circuit, eliminating the standby power loss of the drive system power supply circuit and improving the power saving effect. However, JP-A-9-134096 does not mention shortening the recovery time or dealing with overload.
[0007] さら〖こ、 JP— P2002— 199729A〖こは、画像形成装置の待機時及び画像形成時 における消費電力を低減することができる画像形成装置用電源が開示されている。 この画像形成装置用電源は、出力電圧を検出する検出回路と、検出された出力電 圧を基準電圧と比較する比較回路と、比較回路による比較結果に基づいて出力電 圧が一定となるように PWM制御を行う PWM制御回路と、 PWM制御回路の出力に より駆動されるトランスとを備え、トランスの 2次側に、定電圧出力される制御用出力及 び従属出力される駆動用出力の複数出力を有する構成にした画像形成装置用電源 において、画像形成動作終了後から所定時間が経過したときに、画像形成装置の制 御部からの省エネルギー信号に基づいて、基準電圧変更手段から出力された基準 電圧変更信号により比較回路の制御用出力電圧の基準電圧を変更して、制御用出 力電圧及び駆動用出力電圧を画像形成動作時の定格出力電圧より低く出力するよ うにし、復帰時には、画像形成装置の制御部からの省エネルギー信号に基づいて、 基準電圧変更手段力 出力された基準電圧変更信号により比較回路の基準電圧を 変更し、制御用出力電圧及び駆動用出力電圧として画像形成動作時の定格出力電 圧を出力する。 [0007] Sarako, JP-P2002-199729A has disclosed a power source for an image forming apparatus that can reduce power consumption during standby and image formation of the image forming apparatus. The image forming apparatus power supply includes a detection circuit for detecting an output voltage, a comparison circuit for comparing the detected output voltage with a reference voltage, and a constant output voltage based on a comparison result by the comparison circuit. A PWM control circuit that performs PWM control and a transformer that is driven by the output of the PWM control circuit are provided. On the secondary side of the transformer, there are a plurality of control outputs that are output at a constant voltage and drive outputs that are subordinate output. In a power supply for an image forming apparatus configured to have an output, when a predetermined time has elapsed after the end of the image forming operation, the power is output from the reference voltage changing unit based on the energy saving signal from the control unit of the image forming apparatus. The reference voltage change signal is used to change the reference voltage of the control output voltage of the comparison circuit, and the control output voltage and the drive output voltage are output lower than the rated output voltage during the image forming operation. At the time of return, the reference voltage of the comparison circuit is changed by the reference voltage change signal output based on the energy saving signal from the control unit of the image forming apparatus, and the control output voltage and the drive output are changed. The rated output voltage during image forming operation is output as the voltage.
[0008] この画像形成装置用電源によれば、画像形成装置の待機時における駆動用出力 電圧を画像形成装置の動作時における駆動用出力電圧よりも低くすることにより、消 費電力を低減することができる。し力しながら、省エネルギー信号に基づいて制御用 出力電圧と駆動用出力電圧との両方が変化するので、省エネルギーモードにおいて 、これらの出力電圧を低目に設定すると制御用回路が動作できず、これらの出力電 圧を高目に設定すると省エネルギー効果が薄れてしまう。  [0008] According to this image forming apparatus power supply, the power consumption can be reduced by making the drive output voltage during standby of the image forming apparatus lower than the drive output voltage during operation of the image forming apparatus. Can do. However, since both the control output voltage and the drive output voltage change based on the energy saving signal, if these output voltages are set to low in the energy saving mode, the control circuit cannot operate. If the output voltage is set to a high value, the energy saving effect will be diminished.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] そこで、上記の点に鑑み、本発明は、消費電力の削減と復帰時間の短縮とを両立 させて、待機状態力 過負荷状態に変化しても迅速に対応できるスイッチング電源回 路、及び、そのようなスイッチング電源回路の動作を制御する方法を提供することを 目的とする。 Accordingly, in view of the above points, the present invention provides a switching power supply circuit that can quickly cope with a change to a standby state force overload state by reducing power consumption and shortening the recovery time. And it aims at providing the method of controlling operation | movement of such a switching power supply circuit.
課題を解決するための手段  Means for solving the problem
[0010] 上記課題を解決するため、本発明の 1つの観点に係るスイッチング電源回路は、ァ モルファス磁性体を含むコア及び該コアに回卷された 1次側卷線及び 2次側卷線を 有し、入力電圧が 1次側卷線の一端に印加されるトランスと、トランスの 1次側卷線の 他端に接続され、パルス状の駆動信号に従ってトランスの 1次側卷線に電流を流す スイッチング素子と、トランスの 2次側卷線に発生する電圧に基づいて出力電圧を生 成する出力回路と、トランスの 1次側卷線に流れる電流及び出力回路の出力電圧に 基づいて駆動信号を生成すると共に、出力回路の出力電流に基づいて、又は、外部 力も供給されるモード切換信号に従って、少なくとも所定の電力を負荷に供給可能な 通常動作モードと、所定の電力よりも小さい電力を負荷に供給可能な第 1の待機モ ードと、供給電力がゼロとなる第 2の待機モードとを切り換える制御回路とを具備する [0011] また、本発明の 1つの観点に係るスイッチング電源回路の制御方法は、ァモルファ ス磁性体を含むコア及び該コアに回卷された 1次側卷線及び 2次側卷線を有し、入 力電圧が 1次側卷線の一端に印加されるトランスと、トランスの 1次側卷線の他端に接 続され、パルス状の駆動信号に従ってトランスの 1次側卷線に電流を流すスィッチン グ素子と、トランスの 2次側卷線に発生する電圧に基づいて出力電圧を生成する出 力回路とを含むスイッチング電源回路の制御方法であって、通常動作モードにおい て、出力回路の出力電流が所定の値よりも小さい状態が第 1の所定の期間を超えて 継続したときに、通常動作モードから第 1の待機モードに移行するように駆動信号に おけるパルス幅又はパルス数を低減するステップ(a)と、第 1の待機モードにおいて、 出力回路の出力電流が所定の値よりも小さい状態が第 2の所定の期間を超えて継続 したときに、又は、外部力も供給されるモード切換信号に従って、第 1の待機モードか ら第 2の待機モードに移行するように駆動信号を停止又は非活性化するステップ (b) と、通常動作モードにおいて、外部から供給されるモード切換信号に従って、通常動 作モードから第 2の待機モードに移行するように駆動信号を停止又は非活性ィ匕する ステップのと、第 2の待機モードにおいて、外部から供給されるモード切換信号に従 つて、第 2の待機モードから通常動作モードに移行するように駆動信号を起動又は活 性ィ匕するステップ (d)と、第 1の待機モードにおいて、出力回路の出力電流が所定の 値よりも大きくなつたときに、第 1の待機モードから通常動作モードに移行するように 駆動信号におけるパルス幅又はノ ルス数を増加するステップ (e)とを具備する。 発明の効果 In order to solve the above-described problem, a switching power supply circuit according to one aspect of the present invention includes a core including an amorphous magnetic body, and a primary side wire and a secondary side wire wound around the core. A transformer that has an input voltage applied to one end of the primary winding, and is connected to the other end of the primary winding of the transformer, and supplies current to the primary winding of the transformer in accordance with a pulsed drive signal. Switching circuit, an output circuit that generates an output voltage based on the voltage generated on the secondary side of the transformer, and a drive signal based on the current flowing in the primary side of the transformer and the output voltage of the output circuit A normal operation mode in which at least a predetermined power can be supplied to the load based on the output current of the output circuit or in accordance with a mode switching signal to which an external power is also supplied, and a load that is smaller than the predetermined power Can supply to A control circuit for switching between a first standby mode and a second standby mode in which the supplied power is zero; [0011] Further, a control method for a switching power supply circuit according to one aspect of the present invention includes a core including an amorphous magnetic body, and a primary side wire and a secondary side wire wound around the core. The input voltage is applied to one end of the primary winding and the other end of the primary winding of the transformer. The current is applied to the primary winding of the transformer according to the pulsed drive signal. A switching power supply circuit control method including a switching element that flows and an output circuit that generates an output voltage based on a voltage generated on the secondary side of the transformer, in a normal operation mode. Reduce the pulse width or the number of pulses in the drive signal so that the normal operation mode shifts to the first standby mode when the output current is lower than the predetermined value for more than the first predetermined period. Step (a) and the first standby mode In the first standby mode when the output current of the output circuit is smaller than the predetermined value for more than the second predetermined period or according to the mode switching signal to which the external force is also supplied. From the normal operation mode to the second standby mode according to the step (b) of stopping or deactivating the drive signal so as to shift to the second standby mode and the mode switching signal supplied from the outside in the normal operation mode. The drive signal is stopped or deactivated so as to shift to the mode, and in the second standby mode, the mode shifts from the second standby mode to the normal operation mode according to the mode switching signal supplied from the outside. The step (d) of starting or activating the drive signal so that the first standby mode is activated when the output current of the output circuit becomes larger than a predetermined value in the first standby mode. Comprising a step (e) to increase the pulse width or Roh number pulse in the drive signal so as to shift to Luo normal operation mode. The invention's effect
[0012] 本発明によれば、スイッチング電源回路において、アモルファス磁性体を含むコア を有するトランス又はチョークコイルを用いて、負荷に供給する出力電流の特性を改 善すると共に、 2種類の異なる待機モードを設けることにより、消費電力の削減と復帰 時間の短縮とを両立させて、待機状態力 過負荷状態に変化しても迅速に対応する ことが可能となる。  [0012] According to the present invention, in the switching power supply circuit, the transformer or choke coil having the core including the amorphous magnetic material is used to improve the characteristics of the output current supplied to the load, and two different standby modes. By providing a balance between reducing power consumption and shortening recovery time, it is possible to respond quickly even if the standby state force changes to an overload state.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]本発明の第 1の実施形態に係るスイッチング電源回路の構成を示す図である。  FIG. 1 is a diagram showing a configuration of a switching power supply circuit according to a first embodiment of the present invention.
[図 2]図 1に示すスイッチング電源回路における制御回路等の構成を詳しく示す図で ある。 2 is a diagram showing in detail the configuration of a control circuit and the like in the switching power supply circuit shown in FIG. is there.
[図 3]図 1に示すスイッチング電源回路における 2次側電圧検出回路と検出電圧生成 回路の構成例を示す回路図である。  3 is a circuit diagram showing a configuration example of a secondary side voltage detection circuit and a detection voltage generation circuit in the switching power supply circuit shown in FIG. 1.
[図 4]図 2に示す制御回路の過負荷状態における動作を説明するための波形図であ る。  FIG. 4 is a waveform diagram for explaining the operation of the control circuit shown in FIG. 2 in an overload state.
[図 5]図 2に示す制御回路の通常状態における動作を説明するための波形図である  5 is a waveform diagram for explaining the operation of the control circuit shown in FIG. 2 in a normal state.
[図 6]本発明の第 1の実施形態に係るスイッチング電源回路の出力電力の変化の例 を示す図である。 FIG. 6 is a diagram showing an example of a change in output power of the switching power supply circuit according to the first embodiment of the present invention.
[図 7]本発明の第 1の実施形態に係るスイッチング電源回路におけるドレイン電流の 波形図である。  FIG. 7 is a waveform diagram of a drain current in the switching power supply circuit according to the first embodiment of the present invention.
[図 8]本発明の第 2の実施形態に係るスイッチング電源回路の構成を示す図である。  FIG. 8 is a diagram showing a configuration of a switching power supply circuit according to a second embodiment of the present invention.
[図 9]図 8に示す制御回路等の構成を詳しく示す図である。 9 is a diagram showing in detail the configuration of the control circuit and the like shown in FIG.
[図 10]本発明の第 3の実施形態に係るスイッチング電源回路の構成を示す図である [図 11]図 10に示す第 2の電圧変換回路における制御回路等の構成を示す図である [図 12]本発明の第 4の実施形態に係るスイッチング電源回路の構成を示す図である [図 13]図 12に示す第 2の電圧変換回路における制御回路等の構成を示す図である 発明を実施するための最良の形態  10 is a diagram showing a configuration of a switching power supply circuit according to a third embodiment of the present invention. FIG. 11 is a diagram showing a configuration of a control circuit and the like in the second voltage conversion circuit shown in FIG. 12] A diagram showing a configuration of a switching power supply circuit according to a fourth embodiment of the present invention. [FIG. 13] A diagram showing a configuration of a control circuit and the like in the second voltage conversion circuit shown in FIG. Best mode for carrying out
以下に、本発明を実施するための最良の形態について、図面を参照しながら詳しく 説明する。なお、同一の構成要素には同一の参照番号を付して、説明を省略する。 図 1は、本発明の第 1の実施形態に係るスイッチング電源回路の構成を示す図であ る。このスイッチング電源回路は、交流電源電圧の入力端子 1及び 2に接続された整 流平滑回路 10と、 1次側の交流電圧を昇圧又は降圧して 2次側に出力するトランス 2 0と、トランスの 1次側卷線 21に直列に接続され、パルス状の駆動信号に従ってトラン スの 1次側卷線 21に電流を流すスイッチング素子 30と、トランスの 1次側卷線 21に流 れる電流を検出する 1次側電流検出回路 40とを有している。 Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings. The same constituent elements are denoted by the same reference numerals, and the description thereof is omitted. FIG. 1 is a diagram showing a configuration of a switching power supply circuit according to the first embodiment of the present invention. This switching power supply circuit includes a rectifying / smoothing circuit 10 connected to input terminals 1 and 2 of an AC power supply voltage, a transformer 20 that boosts or steps down an AC voltage on the primary side, and outputs the boosted voltage to the secondary side. Is connected in series to the primary side wire 21 of the A switching element 30 for flowing a current through the primary side winding 21 of the power source, and a primary side current detection circuit 40 for detecting a current flowing through the primary side winding 21 of the transformer.
[0015] さらに、このスイッチング電源回路は、トランスの 2次側卷線 22に発生する電圧を半 波整流するダイオード 51と、整流された電圧を平滑して出力電圧を生成するコンデ ンサ 52と、コンデンサ 52の両端における出力電圧を検出する 2次側電圧検出回路 6 0と、 2次側の出力電流を検出する 2次側電流検出回路 80と、 1次側電流検出回路 4 0の検出結果及び 2次側電圧検出回路 60の検出結果に基づいて駆動信号を生成 すると共に、 2次側電流検出回路 80の検出結果に基づいてスイッチング電源回路の モードを切り換える制御回路 70とを有している。ここで、ダイオード 51及びコンデンサ 52は、出力回路を構成している。なお、 2次側電圧検出回路 60及び 2次側電流検出 回路 80から制御回路 70への帰還信号経路の一部には、フォト力ブラ等の光信号伝 送素子が用いられる。 Furthermore, this switching power supply circuit includes a diode 51 that half-wave rectifies the voltage generated on the secondary side winding 22 of the transformer, a capacitor 52 that smoothes the rectified voltage and generates an output voltage, The detection result of the secondary side voltage detection circuit 60 detecting the output voltage at both ends of the capacitor 52, the secondary side current detection circuit 80 detecting the secondary side output current, and the primary side current detection circuit 40 A control circuit 70 that generates a drive signal based on the detection result of the secondary side voltage detection circuit 60 and switches the mode of the switching power supply circuit based on the detection result of the secondary side current detection circuit 80 is provided. Here, the diode 51 and the capacitor 52 constitute an output circuit. An optical signal transmission element such as a photo force bra is used for a part of the feedback signal path from the secondary side voltage detection circuit 60 and the secondary side current detection circuit 80 to the control circuit 70.
[0016] 整流平滑回路 10は、例えば、ダイオードブリッジとコンデンサとを含んでおり、入力 端子 1と入力端子 2との間に印加される交流電圧をダイオードブリッジによって全波整 流し、コンデンサによって平滑する。  [0016] The rectifying / smoothing circuit 10 includes, for example, a diode bridge and a capacitor. The AC voltage applied between the input terminal 1 and the input terminal 2 is full-wave rectified by the diode bridge and smoothed by the capacitor. .
[0017] トランス 20は、磁性体のコア 24と、コア 24に回卷された 1次側卷線 21、 2次側卷線 22、及び、補助卷線 23とを有している。 1次側卷線 21の卷数を N1とし、 2次側卷線 22の卷数を N2とすると、損失がないとした場合に、 1次側と 2次側との間の昇圧比は 、 N2ZN1となる。また、補助卷線 23は、制御回路 70に電源電圧を供給するために 使用される。なお、トランス 20に付されたドットの記号は、卷線の極性を示している。  The transformer 20 includes a magnetic core 24, a primary side wire 21, a secondary side wire 22, and an auxiliary wire 23 that are wound around the core 24. Assuming that the number of primary side wires 21 is N1 and the number of secondary side wires 22 is N2, when there is no loss, the step-up ratio between the primary side and the secondary side is N2ZN1. In addition, the auxiliary feeder 23 is used to supply a power supply voltage to the control circuit 70. The dot symbol attached to the transformer 20 indicates the polarity of the winding.
[0018] 一般に、スイッチング電源において、トランスの 1次側から 2次側への電力伝達方式 としては、スイッチング素子がオンした時に 1次側から 2次側に電力を伝達するフォヮ ード方式と、スイッチング素子がオフした時に 1次側から 2次側に電力を伝達するフラ ィバック方式とがある。本発明は、そのどちらにも適用できる力 本実施形態において は、フライバック方式を採用している。  [0018] Generally, in a switching power supply, as a power transmission method from the primary side to the secondary side of the transformer, a forward method that transmits power from the primary side to the secondary side when the switching element is turned on, and There is a flyback system that transmits power from the primary side to the secondary side when the switching element is turned off. The present invention can be applied to either of them. In the present embodiment, a flyback method is adopted.
[0019] 図 1に示すようなフライバック方式のスイッチング電源においては、トランスの 1次側 卷線 21と 2次側卷線 22とが逆極性の関係となっており、スイッチング素子 30がオンし ている間は、トランス 20の 1次側電流は増加する力 トランス 20の 2次側においては ダイオードで逆バイアスされているので 2次側電流は流れない。トランス 20は、スイツ チング素子 30がオンしている時に、コア 24にエネルギーを蓄える。 In a flyback switching power supply as shown in FIG. 1, the primary side winding 21 and the secondary side winding 22 of the transformer have a reverse polarity relationship, and the switching element 30 is turned on. During the operation, the primary current of the transformer 20 increases. On the secondary side of the transformer 20, Since the diode is reverse-biased, no secondary current flows. The transformer 20 stores energy in the core 24 when the switching element 30 is on.
[0020] 次に、スイッチング素子 30がオフすると、磁場が電流を維持しょうとするので、トラン ス 20の電圧極性が反転して、トランス 20の 2次側において電流が流れる。トランス 20 の 2次側電流は、トランスの 2次側卷線 22に直列接続されたダイオード 51を介してコ ンデンサ 52に充電されることにより、出力端子 3と出力端子 4との間に直流出力電圧 を発生させる。 Next, when the switching element 30 is turned off, the magnetic field tries to maintain current, so that the voltage polarity of the transformer 20 is reversed and current flows on the secondary side of the transformer 20. The secondary current of the transformer 20 is charged to the capacitor 52 through the diode 51 connected in series to the secondary side feeder 22 of the transformer, so that a DC output is generated between the output terminal 3 and the output terminal 4. Generate voltage.
[0021] 本実施形態においては、スイッチング電源回路の負荷装置力インパクトプリンタで あるものとする。スイッチング電源回路は、インパクトプリンタの印字ヘッドを駆動する プランジャのソレノイドに対して電力を供給する。インパクトプリンタのプランジャのよう な負荷は、ミリ秒単位又は秒単位の短時間において消費電流が大きく変動する。  In the present embodiment, it is assumed that the load power of the switching power supply circuit is an impact printer. The switching power supply circuit supplies power to the solenoid of the plunger that drives the print head of the impact printer. For a load such as a plunger of an impact printer, the current consumption fluctuates greatly in a short time in milliseconds or seconds.
[0022] そこで、トランスのコア 24として、高い飽和磁束密度を有するアモルファス金属の磁 性体が用いられる。具体的な材料としては、例えば、鉄 (Fe)とコバルト(Co)を含むァ モルファス合金 Fe— Co (60〜80wt%)を用いることができる。コアのタイプとしては、 粉末材料を焼結することにより成型したノ レクタイプが好適である。また、リボン状の コアを積層したラミネートタイプを用いることもできる。 [0022] Therefore, an amorphous metal magnetic body having a high saturation magnetic flux density is used as the core 24 of the transformer. As a specific material, for example, amorphous alloy Fe—Co (60 to 80 wt%) containing iron (Fe) and cobalt (Co) can be used. As the core type, a norotype molded by sintering a powder material is suitable. Also, a laminate type in which ribbon-like cores are laminated can be used.
[0023] アモルファス金属の磁性体は、フェライトよりも飽和磁束密度が高ぐ温度による磁 気特性の変化が小さぐヒステリシス損失や渦電流損失が小さくて高周波特性が良い という特徴を有している。また、アモルファス金属の磁性体をトランスのコアとして使用 することにより、コアが磁気的に飽和し難ぐコアの発熱量も小さいので、フェライトを 用いる場合の 2倍以上の電力を供給できると共に、コアにギャップを形成する必要が な!、ので、ギャップ力もの磁束の漏洩が問題とならなくなる。 [0023] Amorphous metal magnetic material has the characteristics that the hysteresis characteristic and the eddy current loss are small and the high frequency characteristic is good because the change in the magnetic characteristic due to the temperature at which the saturation magnetic flux density is higher than that of ferrite. In addition, by using an amorphous metal magnetic body as the core of the transformer, the heat generation amount of the core, which is hard to be saturated magnetically, is small, so that it is possible to supply more than twice as much power as when ferrite is used. Because there is no need to form a gap in the gap, leakage of magnetic flux with gap force is no longer a problem.
[0024] ただし、アモルファス金属の磁性体を用いる場合には、フェライトを用いる場合と比 較して、卷数当りのインダクタンス(「AL値」ともいう)が小さくなるので、卷数をある程 度増やしても卷線のインダクタンスが小さくなり、卷線に流れる電流が増加する。また 、アモルファス金属の磁性体は飽和し難いので、卷線に流れるピーク電流を大きくす ることができる。し力しながら、ピーク電流が大きくなると、スイッチング素子が破壊され 易くなるという問題がある。そこで、本実施形態においては、回路的な工夫をすること によって、スイッチング素子を保護している。 [0024] However, when an amorphous metal magnetic material is used, the inductance per power (also referred to as “AL value”) is smaller than when ferrite is used. Even if it increases, the inductance of a winding will become small and the electric current which flows into a winding will increase. In addition, since the magnetic material of amorphous metal is difficult to saturate, the peak current flowing in the shoreline can be increased. However, when the peak current increases, there is a problem that the switching element is easily destroyed. Therefore, in this embodiment, a circuit device is devised. Thus, the switching element is protected.
[0025] さらに、本実施形態においては、通常動作モードと通常待機モードと完全待機モー ドとの 3種類のモードが設けられている。ここで、通常動作モードとは、スイッチング電 源回路が少なくとも所定の電力(定格出力電力)を負荷に供給可能なモードをいう。 また、定格出力電力とは、 MOSFET31が安定して定常動作を行うことができる出力 電力を表しており、スイッチング電源回路の交流入力電圧や MOSFET31の規格等 に基づいて予め定められる。通常動作モードにおいては、例えば、負荷となるインパ タトプリンタ内のブランジャに、印字ヘッドを駆動するために必要な電圧 40Vが供給さ れる。スイッチング電源回路の出力電流は、負荷の状態によって変動し、例えば、通 常状態において 1 A程度であるが、過負荷状態にお 、ては所定の期間内において 1 OA程度となる。  [0025] Further, in the present embodiment, three types of modes of a normal operation mode, a normal standby mode, and a complete standby mode are provided. Here, the normal operation mode refers to a mode in which the switching power supply circuit can supply at least predetermined power (rated output power) to the load. The rated output power represents the output power at which the MOSFET 31 can stably operate and is determined in advance based on the AC input voltage of the switching power supply circuit, the standard of the MOSFET 31, and the like. In the normal operation mode, for example, a voltage of 40 V required to drive the print head is supplied to a blanker in an impact printer serving as a load. The output current of the switching power supply circuit varies depending on the load state. For example, it is about 1 A in the normal state, but is about 1 OA in a predetermined period in the overload state.
[0026] 通常待機モードとは、省エネルギー化を図るために、定格出力電力よりも小さ!ヽ電 力を負荷に供給可能なモードをいう。通常待機モードにおいては、例えば、負荷とな るインパクトプリンタ内のブランジャに、印字ヘッドを固定するために必要な電圧 20V が供給される。あるいは、スイッチング電源回路の出力電圧を通常動作モードにおけ るのと同じとしながら、 MOSFET31のスイッチング動作を間欠的に行うようにしても 良い。また、完全待機モードとは、さらに省エネルギー化を図るために、スイッチング 電源回路の出力電圧及び出力電流をゼロとして、出力電力がゼロとなるモードをいう  [0026] The normal standby mode refers to a mode in which a power that is smaller than the rated output power can be supplied to the load in order to save energy. In the normal standby mode, for example, the voltage of 20V required to fix the print head is supplied to the flanger in the impact printer that becomes the load. Alternatively, the switching operation of the MOSFET 31 may be performed intermittently while the output voltage of the switching power supply circuit is the same as that in the normal operation mode. Also, the complete standby mode refers to a mode in which the output power is zero with the output voltage and output current of the switching power supply circuit set to zero for further energy saving.
[0027] 図 2は、図 1に示すスイッチング電源回路における制御回路等の構成を詳しく示す 図である。本実施形態においては、図 1に示すスイッチング素子 30として、 Nチヤネ ル MOSFET31が用いられる。 MOSFET31は、トランスの 1次卷線 21に接続された ドレインと、整流平滑回路 10に接続されたソースと、ゲートドライバ 79から駆動信号 が印加されるゲートとを有している。 FIG. 2 is a diagram showing in detail the configuration of a control circuit and the like in the switching power supply circuit shown in FIG. In the present embodiment, an N-channel MOSFET 31 is used as the switching element 30 shown in FIG. MOSFET 31 has a drain connected to primary winding 21 of the transformer, a source connected to rectifying and smoothing circuit 10, and a gate to which a drive signal is applied from gate driver 79.
[0028] トランスの 1次側卷線 21と MOSFET31のドレイン ·ソース経路とは直列に接続され 、整流平滑回路 10において交流電源電圧を整流及び平滑することにより得られた電 圧が、これらの直列回路に供給される。 MOSFET31は、ゲートに印加されるパルス 状の駆動信号に従って、トランスの 1次側卷線 21に電流を流す。 [0029] 通常は、トランスの 1次側卷線 21に流れる電流を検出するために、 1次側卷線 21と 直列に抵抗を挿入し、この抵抗の両端電圧を測定することが行われている力 その 場合には、抵抗によって電力損失が発生してしまう。そこで、本実施形態においては 、 1次側電流検出回路 40が MOSFET31のドレイン 'ソース間電圧に基づいて 1次 側電流を検出するようにして 、る。 [0028] The transformer primary side wire 21 and the drain / source path of the MOSFET 31 are connected in series, and the voltage obtained by rectifying and smoothing the AC power supply voltage in the rectifying and smoothing circuit 10 is the series voltage. Supplied to the circuit. The MOSFET 31 allows a current to flow through the primary side winding 21 of the transformer in accordance with a pulsed drive signal applied to the gate. [0029] Normally, in order to detect the current flowing through the primary side wire 21 of the transformer, a resistor is inserted in series with the primary side wire 21 and the voltage across this resistor is measured. In that case, power loss occurs due to resistance. Therefore, in the present embodiment, the primary side current detection circuit 40 detects the primary side current based on the drain-source voltage of the MOSFET 31.
[0030] 1次側電流検出回路 40は、 PNPバイポーラトランジスタ 41と、トランジスタ 41のエミ ッタに電流を供給する電流源 42とを含んでいる。トランジスタ 41は、 MOSFET31の ドレイン力も電位が印加されるベースを有し、ェミッタフォロア動作を行うことにより、ェ ミッタから検出電圧を出力する。なお、図 2においては、トランジスタ 41のベースが、 MOSFET31のドレインに直接接続されている力 抵抗やトランジスタを介して MOS FET31のドレインに間接的に接続されるようにしても良 、。  The primary side current detection circuit 40 includes a PNP bipolar transistor 41 and a current source 42 that supplies a current to the emitter of the transistor 41. The transistor 41 has a base to which the potential of the drain force of the MOSFET 31 is applied, and outputs a detection voltage from the emitter by performing an emitter follower operation. In FIG. 2, the base of the transistor 41 may be indirectly connected to the drain of the MOS FET 31 via a force resistor or transistor directly connected to the drain of the MOSFET 31.
[0031] MOSFET31がオン状態になると、 MOSFET31のドレイン 'ソース間のオン抵抗 は、素子の特性及びゲート'ソース間電圧によって定まる値となる。ただし、 MOSFE T31の負荷となるトランスの 1次側卷線 21はインダクタンス成分を含んで!/、るので、ド レイン電流はゼロから徐々に増加することになる。このドレイン電流と MOSFET31の オン抵抗との積力 MOSFET31のドレイン 'ソース間電圧となる。そこで、 MOSFE T31のドレイン 'ソース間電圧を測定すれば、トランスの 1次側卷線 21に流れる電流 の大きさに比例した検出電圧を得ることができる。  When the MOSFET 31 is turned on, the on-resistance between the drain and the source of the MOSFET 31 becomes a value determined by the element characteristics and the gate and source voltage. However, since the primary winding 21 of the transformer, which is the load of MOSFE T31, contains an inductance component! /, The drain current gradually increases from zero. The product of this drain current and the on-resistance of MOSFET 31 is the drain-source voltage of MOSFET 31. Therefore, if the voltage between the drain and source of MOSFE T31 is measured, a detection voltage proportional to the magnitude of the current flowing through the primary side winding 21 of the transformer can be obtained.
[0032] 制御回路 70は、検出電圧生成回路 71と、クロック信号生成回路 73と、モード切換 回路 74と、比較器 75と、ブランキングパルス生成回路 76と、 AND回路 77と、 OR回 路 72と、パルス幅設定回路 78と、ゲートドライバ 79とを含んでいる。  The control circuit 70 includes a detection voltage generation circuit 71, a clock signal generation circuit 73, a mode switching circuit 74, a comparator 75, a blanking pulse generation circuit 76, an AND circuit 77, and an OR circuit 72. A pulse width setting circuit 78, and a gate driver 79.
[0033] 図 1に示す 2次側電圧検出回路 60の検出結果は、フォト力ブラ等の光信号伝送素 子を用いることにより、光信号として検出電圧生成回路 71に伝送される。これにより、 トランス 20の 1次側と 2次側との間でアイソレーションを保ちながら、 2次側電圧検出 回路 60の検出結果を 1次側の検出電圧生成回路 71に伝送することができる。検出 電圧生成回路 71は、 2次側電圧検出回路 60の検出結果に基づいて検出電圧を生 成する。  The detection result of the secondary side voltage detection circuit 60 shown in FIG. 1 is transmitted as an optical signal to the detection voltage generation circuit 71 by using an optical signal transmission element such as a photopower bra. Thus, the detection result of the secondary side voltage detection circuit 60 can be transmitted to the primary side detection voltage generation circuit 71 while maintaining isolation between the primary side and the secondary side of the transformer 20. The detection voltage generation circuit 71 generates a detection voltage based on the detection result of the secondary side voltage detection circuit 60.
[0034] 図 3は、図 1に示すスイッチング電源回路における 2次側電圧検出回路と検出電圧 生成回路の構成例を示す回路図である。この例において、 2次側電圧検出回路 60 は、コンデンサ 52の両端子間に接続された抵抗 61と発光ダイオード 62とシャントレ ギユレータ 63との直列接続回路と、コンデンサ 52の両端子間に発生する電圧を分圧 するための抵抗 64及び 65とを有している。抵抗 64及び 65によって分圧された電圧 は、シャントレギユレータ 63の制御端子に印加される。これにより、出力電圧が所定の 電圧を超えると発光ダイオード 62に電流が流れるようになっており、発光ダイオード 6 2が電流の大きさに応じた強度で発光して光信号を生成する。 FIG. 3 shows the secondary side voltage detection circuit and the detection voltage in the switching power supply circuit shown in FIG. It is a circuit diagram which shows the structural example of a production | generation circuit. In this example, the secondary side voltage detection circuit 60 includes a resistor 61, a light emitting diode 62, and a shunt regulator 63 connected between both terminals of the capacitor 52, and a voltage generated between both terminals of the capacitor 52. And resistors 64 and 65 for dividing the voltage. The voltage divided by the resistors 64 and 65 is applied to the control terminal of the shunt regulator 63. Thus, when the output voltage exceeds a predetermined voltage, a current flows through the light emitting diode 62, and the light emitting diode 62 emits light with an intensity corresponding to the magnitude of the current to generate an optical signal.
[0035] 検出電圧生成回路 71は、トランスの補助卷線 23に発生する電圧を整流するダイォ ード 81と、ダイオード 81によって整流された電圧を平滑するコンデンサ 82と、コンデ ンサ 82によって平滑された電圧がコレクタに印加されるフォトトランジスタ 83と、抵抗 84〜86と、オペアンプ 87と、リミッタ用のダイオード 88とを有している。  The detection voltage generation circuit 71 is smoothed by a diode 81 that rectifies the voltage generated on the auxiliary auxiliary wire 23 of the transformer, a capacitor 82 that smoothes the voltage rectified by the diode 81, and the capacitor 82. It has a phototransistor 83 to which a voltage is applied to the collector, resistors 84 to 86, an operational amplifier 87, and a diode 88 for limiter.
[0036] 発光ダイオード 62とフォトトランジスタ 83とは、通常、フォト力ブラとして構成される場 合が多ぐフォトトランジスタ 83は、発光ダイオード 62によって生成された光信号を受 けて、その強度に応じた電流をェミッタから出力する。フォトトランジスタ 83のェミッタ 力も出力された電流は、抵抗 84を介してオペアンプ 87の反転入力端子に入力され る。  [0036] The light-emitting diode 62 and the phototransistor 83 are usually often configured as a photopower bra. The phototransistor 83 receives the optical signal generated by the light-emitting diode 62 and depends on its intensity. Output current from the emitter. The current from which the emitter power of the phototransistor 83 is also output is input to the inverting input terminal of the operational amplifier 87 via the resistor 84.
[0037] また、オペアンプ 87の反転入力端子には抵抗 85及び 86が接続されて負帰還ルー プが構成され、非反転入力端子には制御電圧 Vが印加されており、これらに基づい  [0037] In addition, resistors 85 and 86 are connected to the inverting input terminal of the operational amplifier 87 to form a negative feedback loop, and a control voltage V is applied to the non-inverting input terminal.
C  C
て、フォトトランジスタ 83の出力電流に応じた検出電圧が生成される。 2次側の負荷 が軽い状態においては、 2次側の電圧が上昇するので検出電圧が下降し、 2次側の 負荷が重い状態においては、 2次側の電圧が下降するので検出電圧が上昇する。  Thus, a detection voltage corresponding to the output current of the phototransistor 83 is generated. When the load on the secondary side is light, the detection voltage decreases because the voltage on the secondary side increases, and when the load on the secondary side is heavy, the detection voltage increases because the voltage on the secondary side decreases. To do.
[0038] さらに、オペアンプ 87の出力端子と反転入力端子との間には、リミッタ用のダイォー ド 88が接続されている。このリミッタ用のダイオード 88によって、オペアンプ 87から出 力される検出電圧に上限が設定される。図 3においては 1つのダイオードを示してい る力 複数のダイオードを直列接続するようにしても良い。ダイオードの数によって、 検出電圧の上限を変更することができる。  Further, a limiter diode 88 is connected between the output terminal and the inverting input terminal of the operational amplifier 87. The limiter diode 88 sets an upper limit on the detection voltage output from the operational amplifier 87. In FIG. 3, a force indicating one diode A plurality of diodes may be connected in series. The upper limit of the detection voltage can be changed depending on the number of diodes.
[0039] 再び図 2を参照すると、モード切換回路 74は、クロック信号生成回路 73から供給さ れるクロック信号をカウントすることにより時間を計測し、 2次側電流検出回路 80から 出力される光信号、又は、外部力も供給されるモード切換信号に基づいて、通常動 作モードと通常待機モードと完全待機モードとの間の切換を行う。例えば、モード切 換回路 74は、通常動作モードにおいて、 2次側電流検出回路 80によって検出される 出力電流が所定の値よりも小さい状態が第 1の所定の期間を超えて継続したときに、 通常動作モードから通常待機モードに移行し、通常待機モードにおいて、 2次側電 流検出回路 80によって検出される出力電流が所定の値よりも小さい状態が第 2の所 定の期間を超えて継続したときに、又は、外部から供給されるモード切換信号に従つ て、通常待機モードから完全待機モードに移行し、通常動作モードにおいて、外部 力も供給されるモード切換信号に従って、通常動作モードから完全待機モードに移 行する。 Referring again to FIG. 2, the mode switching circuit 74 measures the time by counting the clock signal supplied from the clock signal generation circuit 73 and from the secondary side current detection circuit 80. Switching between the normal operation mode, the normal standby mode, and the complete standby mode is performed based on the output optical signal or the mode switching signal to which an external force is also supplied. For example, in the normal operation mode, the mode switching circuit 74, when the state where the output current detected by the secondary side current detection circuit 80 is smaller than a predetermined value continues beyond the first predetermined period, Transition from the normal operation mode to the normal standby mode, and in the normal standby mode, the state where the output current detected by the secondary-side current detection circuit 80 is smaller than the predetermined value continues beyond the second predetermined period. Or from the normal standby mode to the complete standby mode according to the mode switching signal supplied from the outside, and in the normal operation mode, the normal operation mode is completely switched from the normal operation mode according to the mode switching signal supplied by the external force. Enter standby mode.
[0040] また、モード切換回路 74は、完全待機モードにお!、て、外部から供給されるモード 切換信号に従って、完全待機モードから通常動作モードに移行し、通常待機モード において、 2次側電流検出回路 80によって検出される出力電流が所定の値よりも大 きくなつたときに、通常待機モードから通常動作モードに移行する。なお、モード切換 信号は、通常動作モード又は通常待機モードにおいてローレベルとなり、完全待機 モードにおいてハイレベルとなるものとする。例えば、プリンタの印字ヘッドの温度を 検出することにより、印字ヘッドの温度が所定値よりも下がると完全待機モードに移行 するように、モード切換信号を生成しても良い。  [0040] Further, the mode switching circuit 74 shifts from the complete standby mode to the normal operation mode in accordance with the mode switching signal supplied from the outside in the complete standby mode. When the output current detected by the detection circuit 80 becomes larger than a predetermined value, the normal standby mode is shifted to the normal operation mode. The mode switching signal shall be low level in the normal operation mode or normal standby mode and high level in the complete standby mode. For example, by detecting the temperature of the print head of the printer, the mode switching signal may be generated so that when the temperature of the print head falls below a predetermined value, the mode shifts to the complete standby mode.
[0041] モード切換回路 74は、通常動作モードと通常待機モードと完全待機モードとの間 で、検出電圧生成回路 71に供給する制御電圧 Vの値を切り換えることによって、ス  [0041] The mode switching circuit 74 switches the value of the control voltage V supplied to the detection voltage generation circuit 71 between the normal operation mode, the normal standby mode, and the complete standby mode.
C  C
イッチング電源回路の出力電圧を変更することができる。あるいは、モード切換回路 7 4は、通常待機モードにおいて、強制リセット信号を周期的に活性ィ匕することによって 、駆動信号におけるパルスを間引いてパルスの数を低減したり、完全待機モードに おいて、強制リセット信号を活性ィ匕することによって、駆動信号を非活性ィ匕して MOS FET31のスイッチング動作を停止させるようにしても良い。あるいは、モード切換回 路 74は、完全待機モードにおいて、クロック信号生成回路 73における発振動作を停 止させるようにしても良い。  The output voltage of the switching power supply circuit can be changed. Alternatively, the mode switching circuit 74 can reduce the number of pulses by thinning out pulses in the drive signal by periodically activating the forced reset signal in the normal standby mode, or in the complete standby mode. By activating the forcible reset signal, the drive signal may be deactivated to stop the switching operation of the MOS FET 31. Alternatively, the mode switching circuit 74 may stop the oscillation operation in the clock signal generation circuit 73 in the complete standby mode.
[0042] 通常動作モードにおいて、モード切換回路 74は、 2次側電流検出回路 80から出力 される光信号に基づいて 2次側の負荷状態を検出し、 MOSFET31を保護する。即 ち、モード切換回路 74は、 2次側電流検出回路 80によって検出される出力電流の大 きさに応じて、定格出力電力よりも大きい電力を負荷に供給するように駆動信号を生 成する第 1の期間と、定格出力電力以内の電力を負荷に供給するように駆動信号を 生成する第 2の期間とを設定し、第 2の期間において、出力電力が定格出力電力以 内となるように強制リセット信号を周期的に活性ィ匕する。 [0042] In the normal operation mode, the mode switching circuit 74 outputs from the secondary side current detection circuit 80. The load state on the secondary side is detected based on the optical signal to protect the MOSFET 31. In other words, the mode switching circuit 74 generates a drive signal so as to supply power greater than the rated output power to the load in accordance with the magnitude of the output current detected by the secondary-side current detection circuit 80. Set the first period and the second period for generating the drive signal so that the power within the rated output power is supplied to the load, and in the second period, the output power will be within the rated output power. The forced reset signal is periodically activated.
[0043] 比較器 75は、 1次側電流検出回路 40から出力される検出電圧と、 2次側の出力電 圧の検出結果に基づいて検出電圧生成回路 71によって生成される検出電圧とを比 較して、比較結果を表す比較信号を生成する。また、ブランキングパルス生成回路 7 6は、トランスの 1次側電流が小さい内に MOSFET31がオフ状態となる誤動作を防 止するために、クロック信号に同期した所定の期間においてのみハイレベルとなるブ ランキングノ ルス信号を生成する。 AND回路 77は、比較器 75から出力される比較 信号とブランキングパルス生成回路 76から出力されるブランキングパルス信号との論 理積を求める。 OR回路 72は、 AND回路 77の出力信号と、モード切換回路 74から 出力される強制リセット信号との論理和を求める。  The comparator 75 compares the detection voltage output from the primary side current detection circuit 40 and the detection voltage generated by the detection voltage generation circuit 71 based on the detection result of the secondary side output voltage. In comparison, a comparison signal representing the comparison result is generated. In addition, the blanking pulse generation circuit 76 is a high level only in a predetermined period synchronized with the clock signal in order to prevent a malfunction in which the MOSFET 31 is turned off while the primary current of the transformer is small. Generate ranking noise signal. The AND circuit 77 calculates a logical product of the comparison signal output from the comparator 75 and the blanking pulse signal output from the blanking pulse generation circuit 76. The OR circuit 72 calculates the logical sum of the output signal of the AND circuit 77 and the forced reset signal output from the mode switching circuit 74.
[0044] パルス幅設定回路 78は、例えば、セット端子 Sとリセット端子 Rと出力端子 Qとを有 する RSフリップフロップによって構成される。なお、パルス幅設定回路 78においては 、リセット信号がセット信号よりも優先される。クロック信号生成回路 73によって生成さ れるクロック信号が、パルス幅設定回路 78のセット端子 Sに供給される。また、強制リ セット信号がローレベルであり、かつ、ブランキングパルス信号がハイレベルとなる期 間において、比較器 75によって生成される比較信号力 パルス幅設定回路 78のリセ ット端子 Rに供給される。  [0044] The pulse width setting circuit 78 is configured by, for example, an RS flip-flop having a set terminal S, a reset terminal R, and an output terminal Q. In the pulse width setting circuit 78, the reset signal has priority over the set signal. The clock signal generated by the clock signal generation circuit 73 is supplied to the set terminal S of the pulse width setting circuit 78. Also supplied to the reset terminal R of the comparison signal power pulse width setting circuit 78 generated by the comparator 75 during the period when the forced reset signal is at low level and the blanking pulse signal is at high level. Is done.
[0045] パルス幅設定回路 78は、クロック信号に同期して出力信号をセットすると共に、比 較器 75から出力される比較信号に同期して出力信号をリセットすることにより、駆動 信号におけるパルス幅を設定する。強制リセット信号がハイレベルになると、パルス幅 設定回路 78が常にリセットされて、駆動信号はローレベルとなる。ゲートドライバ 79は 、パルス幅設定回路 78から出力される駆動信号に基づいて、 MOSFET31のゲート を駆動する。 [0046] 次に、図 2に示す制御回路の動作について、図 4〜図 7を参照しながら説明する。 図 4は、図 2に示す制御回路の過負荷状態における動作を説明するための波形図 である。図 4の(a)は、クロック信号生成回路 73によって生成されるクロック信号 V を [0045] The pulse width setting circuit 78 sets the output signal in synchronization with the clock signal, and resets the output signal in synchronization with the comparison signal output from the comparator 75, whereby the pulse width in the drive signal is set. Set. When the forced reset signal becomes high level, the pulse width setting circuit 78 is always reset, and the drive signal becomes low level. The gate driver 79 drives the gate of the MOSFET 31 based on the drive signal output from the pulse width setting circuit 78. Next, the operation of the control circuit shown in FIG. 2 will be described with reference to FIGS. FIG. 4 is a waveform diagram for explaining the operation of the control circuit shown in FIG. 2 in an overload state. Fig. 4 (a) shows the clock signal V generated by the clock signal generation circuit 73.
CK  CK
示している。クロック信号に含まれているパルスの周期は Tであり、パルス幅(ノヽィレべ ルの期間)は Tである。ここでは、クロック信号のデューティ(T ZT)が 50%となって  Show. The period of the pulse included in the clock signal is T, and the pulse width (noise level period) is T. Here, the duty (T ZT) of the clock signal is 50%
Η Η  Η Η
いる。  Yes.
[0047] 本実施形態においては、トランスのコア 24にアモルファス金属の磁性体を用いてい るので、フェライトを用いた場合と比較して、卷数が同じ場合には 1次側卷線のインピ 一ダンスが小さくなつている。そのために、図 4の(b)に示すように、フェライトを用いた 場合と比較して、トランスの 1次側卷線 21に流れる電流、即ち、 MOSFET31のドレ イン電流 Iの値が大きくなり、発熱によって MOSFET31が破壊されるおそれがある  In this embodiment, since an amorphous metal magnetic material is used for the core 24 of the transformer, the impedance of the primary side wire is reduced when the number of power is the same as compared with the case of using ferrite. The dance is getting smaller. Therefore, as shown in Fig. 4 (b), compared to the case where ferrite is used, the current flowing through the primary side wire 21 of the transformer, that is, the drain current I of the MOSFET 31, becomes larger. MOSFET31 may be destroyed by heat generation
D  D
。一方、卷線のインピーダンスを大きくするためには、卷数を増やさなければならず、 トランスが大型化してしまう。そこで、本実施形態においては、以下のような手法によ つて、この問題を解決した。  . On the other hand, in order to increase the impedance of the wire, the number of wires must be increased, and the transformer becomes large. Therefore, in this embodiment, this problem is solved by the following method.
[0048] トランスの 1次側電流が増加すれば、コア 24にエネルギーが蓄積されるスピードが 速くなる。さらに、負荷において瞬間的に消費電流が大きくなつた場合には、ドレイン 電流 Iを流す期間を増カロさせることによって対応することができる。その [0048] If the primary current of the transformer increases, the speed at which energy is stored in the core 24 increases. Furthermore, when the current consumption increases momentarily in the load, it can be dealt with by increasing the period during which the drain current I flows. That
D 際に、ドレイ ン電流 I  D at the time of drain current I
Dを流す期間に上限を設けておけば、 MOSFET31の温度が異常に上昇す る前に消費電力が元に戻るので、 MOSFET31が瞬時に破壊されるおそれはない。 そのような動作を行うために、制御回路 70は、図 4の(b)に示す A点において MOSF ET31をオフ状態とするように、駆動信号におけるパルス幅の上限を設定している。  If an upper limit is set for the period during which D is passed, the power consumption is restored before the temperature of the MOSFET 31 rises abnormally, so there is no possibility of the MOSFET 31 being instantly destroyed. In order to perform such an operation, the control circuit 70 sets the upper limit of the pulse width in the drive signal so that the MOSF ET31 is turned off at the point A shown in FIG. 4 (b).
[0049] 制御回路 70の動作を詳しく説明すると、クロック信号生成回路 73によって生成され るクロック信号 V の立ち上がりエッジに同期してパルス幅設定回路 78の出力信号 [0049] The operation of the control circuit 70 will be described in detail. The output signal of the pulse width setting circuit 78 is synchronized with the rising edge of the clock signal V generated by the clock signal generation circuit 73.
CK  CK
がセットされ、ゲート電圧 V (図 4の(e) )がハイレベルとなる。これにより、比較器 75  Is set and the gate voltage V ((e) in Fig. 4) goes high. This makes the comparator 75
G  G
力 出力される比較信号 V (図 4の(d) )が、ハイレベルからローレベルに移行す  The output comparison signal V ((d) in Figure 4) shifts from high level to low level.
COMP  COMP
る。  The
[0050] ここで、比較器 75から出力される比較信号 V は、 1次側電流検出回路 40から  Here, the comparison signal V output from the comparator 75 is supplied from the primary side current detection circuit 40.
COMP  COMP
出力される第 1の検出電圧と、 2次側電圧検出回路 60の検出結果に基づいて検出 電圧生成回路 71によって生成される第 2の検出電圧とを比較して得られるものである 。過負荷状態においては、 MOSFET31のドレイン電流 Iが増加して第 1の検出電 Detected based on the output first detection voltage and the detection result of the secondary voltage detection circuit 60 This is obtained by comparing with the second detection voltage generated by the voltage generation circuit 71. In an overload condition, the drain current I of the MOSFET 31 increases and the first detection current
D  D
圧が増加すると共に、トランスの 2次側における出力電圧が低下して第 2の検出電圧 も増加するが、第 2の検出電圧には検出電圧生成回路 71において上限が設けられ ている。従って、第 2の検出電圧が上限に達したときに、第 1の検出電圧がその上限 を超えると、比較器 75から出力される比較信号 V カ 、ィレベルとなる。  As the voltage increases, the output voltage on the secondary side of the transformer decreases and the second detection voltage also increases. However, the detection voltage generation circuit 71 has an upper limit for the second detection voltage. Therefore, when the second detection voltage reaches the upper limit, if the first detection voltage exceeds the upper limit, the comparison signal V output from the comparator 75 becomes a high level.
COMP  COMP
[0051] 1次側電流検出回路 40は、 MOSFET31のドレイン電圧 Vに基づいて検出電圧  [0051] The primary-side current detection circuit 40 detects the detection voltage based on the drain voltage V of the MOSFET 31.
D  D
を生成するので、上記の動作をドレイン電圧 V (図 4の(c) )に基づいて説明する。ゲ  The above operation will be described based on the drain voltage V ((c) in FIG. 4). Get
D  D
ート電圧 V がハイレベルになると、ドレイン電流 I が流れ始める力 ドレイン電圧 V  The drain current V begins to flow when the gate voltage V becomes high.
G D D  G D D
はー且低下するので、比較器 75から出力される比較信号 V 力 Sハイレベル力も口  The comparison signal V force S high level force output from the comparator 75
COMP  COMP
一レベルに移行する。その後、ドレイン電流 Iが次第に増加し、ドレイン電圧 Vも次  Move to one level. After that, the drain current I gradually increases and the drain voltage V also increases.
D D  D D
第に上昇する。図 4の(c)に示す B点において、ドレイン電圧 V 1S 2次側電圧検出  Rises second. Drain voltage V 1S Secondary voltage detection at point B shown in Fig. 4 (c)
D  D
回路 60の検出結果に基づいて定まるしきい電圧 V (この場合には、第 2の検出電  The threshold voltage V determined based on the detection result of the circuit 60 (in this case, the second detection voltage)
TH  TH
圧の上限に対応する)を越えると、比較器 75から出力される比較信号 V 力 Sハイレ  The comparison signal V force S high level output from the comparator 75 is exceeded.
COMP  COMP
ベルとなる。その結果、パルス幅設定回路 78の出力信号がリセットされ、 MOSFET 31のゲート電圧 V力 一レベルとなり、図 4の(b)に示す A点においてドレイン電流 I  Become a bell. As a result, the output signal of the pulse width setting circuit 78 is reset, the gate voltage of the MOSFET 31 becomes V level, and the drain current I at point A shown in FIG.
G  G
が停止する。  Stops.
D  D
[0052] このようにして、制御回路 70は、一定の周期で MOSFET31をオンさせると共に、 比較信号 V の立ち上がりエッジに同期して MOSFET31をオフさせる。図 4の(e  In this manner, the control circuit 70 turns on the MOSFET 31 at a constant period and turns off the MOSFET 31 in synchronization with the rising edge of the comparison signal V. Figure 4 (e
COMP  COMP
)にお!/、て、 MOSFET31がオンする期間は T で表され、 MOSFET31がオフする  ) !, and the period during which the MOSFET 31 is turned on is represented by T, and the MOSFET 31 is turned off.
ON  ON
期間は T で表される。  The period is represented by T.
OFF  OFF
[0053] 図 5は、図 2に示す制御回路の通常状態における動作を説明するための波形図で ある。図 5の(a)は、クロック信号生成回路 73によって生成されるクロック信号 V を示  FIG. 5 is a waveform diagram for explaining the operation of the control circuit shown in FIG. 2 in a normal state. Figure 5 (a) shows the clock signal V generated by the clock signal generation circuit 73.
CK  CK
している。また、図 5の(b)は、 MOSFET31のドレイン電流 Iを示しており、図 5の(c  is doing. 5 (b) shows the drain current I of the MOSFET 31, and FIG.
D  D
)は、 MOSFET31のドレイン電圧 Vを示している。  ) Indicates the drain voltage V of the MOSFET 31.
D  D
[0054] 通常状態にお!、ては、過負荷状態と比較して 2次側の負荷が軽 、ので、 2次側の 出力電圧が上昇し、 2次側電圧検出回路 60の検出結果に基づいて検出電圧生成 回路 71によって生成される第 2の検出電圧が低くなつている。従って、図 5の(c)に 示すように、 2次側電圧検出回路 60の検出結果に基づいて定まるしきい電圧 V も [0054] In the normal state! Since the load on the secondary side is light compared to the overload state, the output voltage on the secondary side rises, and the detection result of the secondary side voltage detection circuit 60 is Based on this, the second detection voltage generated by the detection voltage generation circuit 71 is decreasing. Therefore, in Fig. 5 (c) As shown, the threshold voltage V determined based on the detection result of the secondary side voltage detection circuit 60 is also
TH  TH
低くなつている。その結果、ドレイン電流 Iが流れ始めてからドレイン電圧 V力  It is getting lower. As a result, after drain current I begins to flow, drain voltage V force
D D sしきい 電圧 V を越えるまでの期間も短くなる。図 5の(c)に示す D点において、ドレイン電 D D s threshold The period until the voltage V is exceeded is also shortened. At point D shown in Fig. 5 (c), the drain current
TH TH
圧 V力 Sしきい電圧 V を越えると、比較器 75から出力される比較信号 V (図 5の When the voltage V force S threshold voltage V is exceeded, the comparison signal V (Fig. 5
D TH COMP D TH COMP
(d) )がハイレベルとなる。その結果、パルス幅設定回路 78の出力信号がリセットされ 、 MOSFET31のゲート電圧 V (図 5の(e) )がローレベルとなり、図 5の(b)に示す C  (d)) goes high. As a result, the output signal of the pulse width setting circuit 78 is reset, the gate voltage V of the MOSFET 31 ((e) in FIG. 5) becomes a low level, and C shown in FIG. 5 (b).
G  G
点においてドレイン電流 Iが停止する。このように、通常状態においては、 MOSFE  The drain current I stops at the point. Thus, in normal conditions, MOSFE
D  D
T31にドレイン電流 Iを流す期間が縮小される。  The period during which the drain current I flows through T31 is reduced.
D  D
[0055] 本実施形態においては、図 2に示すように、比較器 75が出力する比較信号とブラン キングパルス生成回路 76が生成するブランキングノ ルス信号との論理積を AND回 路 77によって求めるようにした力 ブランキングパルス生成回路 76が生成するブラン キングパルス信号によって 1次側電流検出回路 40の動作をオン Zオフするようにし ても良い。その場合には、 AND回路 77を省略することができる。  In the present embodiment, as shown in FIG. 2, the AND circuit 77 obtains the logical product of the comparison signal output from the comparator 75 and the blanking pulse signal generated by the blanking pulse generation circuit 76. The power of the primary side current detection circuit 40 may be turned on and off by the blanking pulse signal generated by the force blanking pulse generation circuit 76. In that case, the AND circuit 77 can be omitted.
[0056] 図 6は、本発明の第 1の実施形態に係るスイッチング電源回路の出力電力の変化 の例を示す図である。図 6において、横軸は経過時間を表し、縦軸はスイッチング電 源回路の出力電力を表して 、る。  FIG. 6 is a diagram illustrating an example of a change in output power of the switching power supply circuit according to the first embodiment of the present invention. In Fig. 6, the horizontal axis represents the elapsed time, and the vertical axis represents the output power of the switching power supply circuit.
[0057] プリンタ装置の電源スィッチをオンにして、スイッチング電源回路の出力電圧が立ち 上がる期間(a)において、モード切換回路 74は、スイッチング電源回路のモードを通 常動作モードに設定する。期間 (b)において、スイッチング電源回路は、通常動作モ ードとなっており、モード切換回路 74は、出力電圧が例えば 40Vとなるように制御電 圧 Vを設定する。このとき、負荷には 1Aの電流が流れており、出力電力は、 40V X [0057] During the period (a) in which the power supply switch of the printer is turned on and the output voltage of the switching power supply circuit rises, the mode switching circuit 74 sets the mode of the switching power supply circuit to the normal operation mode. In the period (b), the switching power supply circuit is in the normal operation mode, and the mode switching circuit 74 sets the control voltage V so that the output voltage becomes, for example, 40V. At this time, a current of 1A flows through the load, and the output power is 40V X
C C
1A=40Wとなる。この出力電力が、スイッチング電源回路の定格出力電力に相当す るものとする。なお、通常動作モードは、期間 (b)から期間 (i)まで継続する。  1A = 40W. This output power shall correspond to the rated output power of the switching power supply circuit. The normal operation mode continues from period (b) to period (i).
[0058] 期間(c)において、負荷の変動により出力電流が急激に増力!]して出力電力が定格 出力電力よりも大きい過負荷状態になると、トランスの 1次卷線 21に流れる電流も増 加する。本実施形態においては、トランスのコアにアモルファス金属の磁性体を用い ているので、瞬間的に出力電力が増加する場合でも、 MOSFET31のドレイン電流 I を増加させることによって対応することができる。先に説明したように、ドレイン電流 I に上限が設けられているので、 MOSFET31は、瞬時の破壊力も保護される。これに より、出力電流が、例えば 10Aに制限される。 [0058] In period (c), if the output current suddenly increases due to load fluctuations and the output power is overloaded, which is greater than the rated output power, the current flowing in the primary primary wire 21 of the transformer also increases. Add. In this embodiment, since an amorphous metal magnetic material is used for the core of the transformer, even if the output power increases momentarily, it can be dealt with by increasing the drain current I of the MOSFET 31. As explained above, the drain current I Since there is an upper limit, the MOSFET 31 is protected against instantaneous destructive force. This limits the output current to 10A, for example.
[0059] また、モード切換回路 74は、 2次側電流検出回路 80によって検出される出力電流 の値に基づいて、定格出力電力よりも大きい電力を負荷に供給する時間 T と、定格 [0059] Further, the mode switching circuit 74 has a time T for supplying electric power larger than the rated output power to the load based on the value of the output current detected by the secondary-side current detection circuit 80, and the rated current.
1A 出力電力以内の電力を負荷に供給する時間 T とを設定する。これにより、期間 (c)  Set the time T to supply power within 1A output power to the load. This allows for period (c)
1B  1B
においては、比較器 75において生成される比較信号によって駆動信号のパルス幅 が設定され、その後の期間(d)においては、モード切換回路 74が、出力電力を定格 出力電力以内となるように強制リセット信号を周期的に活性ィ匕して、駆動信号におけ るパルス幅を制限する。なお、期間(d)においては、スイッチング電源回路の出力電 圧及び出力電流が低下するが、出力電流が維持されるので、インパクトプリンタにお いてプランジャが印字ヘッドを駆動する動作は継続して行われる。  , The pulse width of the drive signal is set by the comparison signal generated by the comparator 75, and in the subsequent period (d), the mode switching circuit 74 forcibly resets the output power to be within the rated output power. Activate the signal periodically to limit the pulse width in the drive signal. In period (d), the output voltage and output current of the switching power supply circuit decrease, but the output current is maintained, so that the operation of the plunger driving the print head in the impact printer is continued. Is called.
[0060] 期間 (e)及び (f)と、期間 (g)及び (h)とにおける動作も、期間 (c)及び (d)における 動作と同様であるが、モード切換回路 74は、 2次側電流検出回路 80によって検出さ れる出力電流の値に応じて、定格出力電力よりも大きい電力を負荷に供給する時間 T 〜T と、定格出力電力以内の電力を負荷に供給する時間 Τ 〜Τ とが異なつ[0060] The operations in the periods (e) and (f) and the periods (g) and (h) are the same as the operations in the periods (c) and (d). Depending on the value of the output current detected by the side current detection circuit 80, the time T to T for supplying the load with power greater than the rated output power and the time for supplying the power within the rated output power to the load Τ to Τ Different from
1A 3Α IB 3Β ている。即ち、モード切換回路 74は、 MOSFET31を保護するために、出力電流が 大きいほど、定格出力電力よりも大きい電力を負荷に供給する時間を短く設定する。 1A 3Α IB 3Β. In other words, the mode switching circuit 74 sets a shorter time for supplying power larger than the rated output power to the load as the output current increases in order to protect the MOSFET 31.
[0061] 期間(i)において、プリンタによる印字動作が中断することにより、出力電流が所定 の値よりも小さい状態が所定の期間 (例えば、 5分間)を超えて継続すると、モード切 換回路 74は、期間 (j)において、スイッチング電源回路のモードを通常待機モードに 設定して省エネルギー化を図る。通常待機モードおいて、モード切換回路 74は、検 出電圧生成回路 71に供給する基準電圧 Vを低下させる。これにより、比較器 75の [0061] In the period (i), when the printing operation by the printer is interrupted and the state in which the output current is smaller than a predetermined value continues for a predetermined period (for example, 5 minutes), the mode switching circuit 74 In the period (j), the mode of the switching power supply circuit is set to the normal standby mode to save energy. In the normal standby mode, the mode switching circuit 74 reduces the reference voltage V supplied to the detection voltage generation circuit 71. As a result, the comparator 75
C  C
反転入力端子に供給される検出電圧が低下し、パルス幅設定回路 78におけるリセッ トのタイミングが早まり、駆動信号におけるパルス幅が短くなつて、スイッチング電源回 路の出力電圧が低下する。例えば、モード切換回路 74は、出力電圧が 20Vとなるよ うに制御電圧 Vを設定する。あるいは、モード切換回路 74は、スイッチング電源回路  The detection voltage supplied to the inverting input terminal is lowered, the reset timing in the pulse width setting circuit 78 is advanced, the pulse width in the drive signal is shortened, and the output voltage of the switching power supply circuit is lowered. For example, the mode switching circuit 74 sets the control voltage V so that the output voltage becomes 20V. Alternatively, the mode switching circuit 74 is a switching power supply circuit.
C  C
の出力電圧を通常動作モードにおけるのと同じとしながら、強制リセット信号を周期 的に活性ィ匕することによって、駆動信号におけるパルスの数を低減して、 MOSFET 31のスイッチング動作を間欠的に行わせるようにしても良!、。 The number of pulses in the drive signal is reduced by periodically activating the forced reset signal while maintaining the same output voltage as in normal operation mode. 31 switching operations may be performed intermittently!
[0062] 期間 (j)の終わりにおいて、プリンタの印字動作が再開されると、期間(k)において 、スイッチング電源回路は、再び通常動作モードに移行する。期間 (j)においては M OSFET31がスィッチング動作を行っているので、通常動作モードに移行した際に、 スイッチング電源回路の出力電圧を迅速に立ち上げることができる。 When the printing operation of the printer is resumed at the end of the period (j), the switching power supply circuit again shifts to the normal operation mode in the period (k). During period (j), MOS FET 31 is performing switching operation, so that the output voltage of the switching power supply circuit can be quickly raised when the normal operation mode is entered.
[0063] 期間(k)において、プリンタによる印字動作が中断することにより、出力電流が所定 の値よりも小さい状態が所定の期間 (例えば、 5分間)を超えて継続すると、モード切 換回路 74は、期間 (1)において、スイッチング電源回路のモードを通常待機モードに 設定する。 [0063] In the period (k), when the printing operation by the printer is interrupted and the state in which the output current is smaller than the predetermined value continues for a predetermined period (for example, 5 minutes), the mode switching circuit 74 In period (1), the mode of the switching power supply circuit is set to the normal standby mode.
[0064] さらに、期間(1)の終わりにおいて、モード切換信号が完全待機モードを表すハイレ ベルに変化すると、モード切換回路 74は、期間(m)において、スイッチング電源回 路のモードを完全待機モードに設定してさらに省エネルギー化を図る。あるいは、プ リンタによる印字動作が中断することにより出力電流が所定の期間(例えば、 30分間 )低下したままでいると、モード切換回路 74が、スイッチング電源回路のモードを完全 待機モードに設定するようにしても良 、。  [0064] Furthermore, when the mode switching signal changes to a high level indicating the complete standby mode at the end of the period (1), the mode switching circuit 74 changes the mode of the switching power supply circuit to the complete standby mode in the period (m). To further save energy. Alternatively, if the output current remains lowered for a predetermined period (for example, 30 minutes) due to the interruption of the printing operation by the printer, the mode switching circuit 74 sets the mode of the switching power supply circuit to the complete standby mode. Anyway, okay.
[0065] 完全待機モードにおいては、モード切換回路 74が強制リセット信号をノヽィレベルに することによって、 OR回路 72の出力がハイレベルとなり、ノ ルス幅設定回路 78がリ セットされて、駆動信号が非活性化される。これにより、 MOSFET31がスイッチング 動作を停止するので、出力電力がゼロとなり、大きな省エネルギー化が達成される。  [0065] In the complete standby mode, when the mode switching circuit 74 sets the forced reset signal to the noise level, the output of the OR circuit 72 becomes high level, the noise width setting circuit 78 is reset, and the drive signal is Deactivated. As a result, the MOSFET 31 stops the switching operation, so that the output power becomes zero and a great energy saving is achieved.
[0066] 期間(m)の終わりにおいて、モード切換信号が通常動作モードを表すローレベル に変化すると、期間 (n)において、モード切換回路 74が、強制リセット信号をローレ ベルに設定する。その結果、駆動信号が活性化されるので、 MOSFET31がスイツ チング動作を開始する。しかしながら、出力電圧の立上がりには一定の時間を要する 。その後、期間(o)において、通常動作モードが継続される。  [0066] When the mode switching signal changes to the low level representing the normal operation mode at the end of the period (m), the mode switching circuit 74 sets the forced reset signal to the low level in the period (n). As a result, the drive signal is activated, and the MOSFET 31 starts the switching operation. However, it takes a certain time for the output voltage to rise. Thereafter, in the period (o), the normal operation mode is continued.
[0067] このように、本実施形態に係るスイッチング電源回路においては、待機モードとして 、通常待機モードと完全待機モードとの 2種類が存在する。完全待機モードにおいて は、スイッチング素子をオフ状態として出力電力を完全にゼロにすることができるが、 デメリットとして、出力電圧が立ち上がるまでの時間が長くなることが挙げられる。そこ で、出力電力を完全にゼロにすることはできないが、出力電圧が立ち上がるまでの時 間を短くすることができる通常待機モードを設け、負荷電流が短期間低下した場合に 通常待機モードに移行することによって、省エネルギー化を図りながら出力電圧の迅 速な立上がりを実現することができる。 [0067] Thus, in the switching power supply circuit according to the present embodiment, there are two types of standby modes, the normal standby mode and the complete standby mode. In the complete standby mode, the switching element can be turned off to completely reduce the output power to zero, but the disadvantage is that the time until the output voltage rises is increased. There However, the output power cannot be completely reduced to zero, but a normal standby mode is provided that can shorten the time until the output voltage rises.When the load current decreases for a short period, the normal standby mode is entered. As a result, a rapid rise in output voltage can be realized while saving energy.
[0068] 図 7は、本発明の第 1の実施形態に係るスイッチング電源回路におけるドレイン電 流の波形図である。図 7において、横軸は経過時間を表し、縦軸はドレイン電流値を 表している。図 7に示す期間 (b)〜(j)は、図 6に示す期間 (b)〜①にそれぞれ対応 している。  FIG. 7 is a waveform diagram of the drain current in the switching power supply circuit according to the first embodiment of the present invention. In Fig. 7, the horizontal axis represents the elapsed time, and the vertical axis represents the drain current value. Periods (b) to (j) shown in Fig. 7 correspond to periods (b) to (1) shown in Fig. 6, respectively.
[0069] 期間 (b)において、スイッチング電源回路が定格出力電力を負荷に供給するように 、駆動信号におけるパルス幅が設定される。期間(c)において、負荷に流れる電流が 急増するので、モード切換回路 74は、 2次側電流検出回路 80によって検出された出 力電流に応じて、定格出力電力を超える出力電力を負荷に供給する期間を時間 T  [0069] In the period (b), the pulse width in the drive signal is set so that the switching power supply circuit supplies the rated output power to the load. During the period (c), the current flowing through the load suddenly increases, so the mode switching circuit 74 supplies output power exceeding the rated output power to the load according to the output current detected by the secondary current detection circuit 80. Time period T
1A に制限し、その後の期間(d)において、時間 T の間、定格出力電力以内の出力電  Output power within the rated output power for time T in the subsequent period (d)
1B  1B
力を負荷に供給するように、駆動信号におけるパルス幅を制限する。  Limit the pulse width in the drive signal to supply force to the load.
[0070] 期間(e)において、モード切換回路 74は、 2次側電流検出回路 80によって検出さ れた出力電流に応じて、定格出力電力を超える出力電力を負荷に供給する期間を 時間 T に制限し、その後の期間(f)において、時間 T の間、定格出力電力以内の[0070] In the period (e), the mode switching circuit 74 sets a period during which the output power exceeding the rated output power is supplied to the load according to the output current detected by the secondary current detection circuit 80 at time T. Within the rated output power for time T during the subsequent period (f)
2A 2B 2A 2B
出力電力を負荷に供給するように、駆動信号におけるパルス幅を制限する。  The pulse width in the drive signal is limited so that output power is supplied to the load.
[0071] 期間(g)において、モード切換回路 74は、 2次側電流検出回路 80によって検出さ れた出力電流に応じて、定格出力電力を超える出力電力を負荷に供給する期間を 時間 T に制限し、その後の期間(h)において、時間 T の間、定格出力電力以内の[0071] In the period (g), the mode switching circuit 74 sets a period during which the output power exceeding the rated output power is supplied to the load according to the output current detected by the secondary side current detection circuit 80 at time T. Within the rated output power for time T during the subsequent period (h)
3A 3B 3A 3B
出力電力を負荷に供給するように、駆動信号におけるパルス幅を制限する。  The pulse width in the drive signal is limited so that output power is supplied to the load.
[0072] さらに、期間 (i)において、出力電流が所定の値よりも小さい状態が所定の期間を 超えて継続すると、期間 (j)において、モード切換回路 74は、スイッチング電源回路 を通常待機モードに移行させ、制御電圧 Vを小さくすることにより、駆動信号におけ [0072] Further, when the state in which the output current is smaller than the predetermined value continues for a period exceeding the predetermined period in period (i), mode switching circuit 74 sets the switching power supply circuit in the normal standby mode in period (j). To reduce the control voltage V.
C  C
るパルス幅を小さくして、スイッチング電源回路の出力電圧を 20Vに低下させる。  Reduce the output pulse voltage of the switching power supply circuit to 20V.
[0073] 本実施形態においては、図 1に示す 2次側電流検出回路 80が、出力回路の出力 電流 (2次側電流)を検出し、制御回路 70が、それに基づいて、出力回路の負荷状 況を判断して第 1の待機モード (通常待機モード)と第 2の待機モード (完全待機モー ド)とを切り換える例を説明したが、本発明は、これに限られない。出力回路の出力電 流は、トランスの 1次側卷線電流や、 1次側電圧波形や、トランスに別途設けられる第 3卷線の電圧波形にも反映することは周知の事実であるから、トランスの 1次側卷線 電流等を測定することにより間接的に出力回路の負荷状況を判断するようにしても良 い。 In the present embodiment, the secondary side current detection circuit 80 shown in FIG. 1 detects the output current (secondary side current) of the output circuit, and the control circuit 70 determines the load of the output circuit based on the output current. Condition Although an example of switching between the first standby mode (normal standby mode) and the second standby mode (complete standby mode) by judging the situation has been described, the present invention is not limited to this. Since it is a well-known fact that the output current of the output circuit is also reflected in the primary side current of the transformer, the primary side voltage waveform, and the voltage waveform of the third side wire provided separately in the transformer. It is also possible to indirectly determine the load status of the output circuit by measuring the current on the primary side of the transformer.
[0074] 次に、本発明の第 2の実施形態について説明する。  [0074] Next, a second embodiment of the present invention will be described.
図 8は、本発明の第 2の実施形態に係るスイッチング電源回路の構成を示す図であ る。第 2の実施形態においては、チヨツバ方式昇圧型のスイッチング電源回路を例に とって説明する。  FIG. 8 is a diagram showing a configuration of a switching power supply circuit according to the second embodiment of the present invention. In the second embodiment, a description will be given by taking as an example a Chietsuba boost type switching power supply circuit.
[0075] このスイッチング電源回路は、交流電圧の入力端子 1及び 2に接続された整流平滑 回路 10と、整流平滑回路 10に一端が接続され、卷線に流れる電流によって発生す る磁気エネルギーをコアに蓄えるチョークコイル 100と、チョークコイル 100の他端に 接続され、ノルス状の駆動信号に従ってチョークコイル 100に電流を流すスィッチン グ素子 110と、スイッチング素子 110に流れる電流を検出するスイッチング電流検出 回路 120とを有している。ここで、チョークコイル 100としてトランスの 1次側卷線を用 いる場合には、トランスの 2次側卷線を内部電源の生成用に利用することができる。  [0075] This switching power supply circuit includes a rectifying / smoothing circuit 10 connected to AC voltage input terminals 1 and 2, and one end connected to the rectifying / smoothing circuit 10, and cores magnetic energy generated by a current flowing in the winding. Is connected to the other end of the choke coil 100, the switching element 110 is configured to flow current through the choke coil 100 in accordance with the Norse drive signal, and the switching current detection circuit 120 is configured to detect the current flowing through the switching element 110. And have. Here, when the primary side of the transformer is used as the choke coil 100, the secondary side of the transformer can be used for generating an internal power source.
[0076] さらに、このスイッチング電源回路は、チョークコイル 100の他端に発生する電圧を 半波整流するダイオード 51と、整流された電圧を平滑することにより出力電圧を生成 するコンデンサ 52と、出力端子 3及び 4における出力電圧を検出する出力電圧検出 回路 130と、コンデンサ 52と出力端子 4との間に挿入されて出力電流を検出する出 力電流検出回路 140と、スイッチング電流検出回路 120の検出結果及び出力電圧 検出回路 130の検出結果に基づいて駆動信号を生成すると共に、出力電流検出回 路 140の検出結果に基づいてスイッチング電源回路のモードを切り換える制御回路 150とを有している。ここで、ダイオード 51及びコンデンサ 52は、出力回路を構成し ている。  Further, this switching power supply circuit includes a diode 51 that half-wave rectifies the voltage generated at the other end of the choke coil 100, a capacitor 52 that generates an output voltage by smoothing the rectified voltage, and an output terminal Output voltage detection circuit 130 that detects the output voltage at 3 and 4; output current detection circuit 140 that is inserted between the capacitor 52 and output terminal 4 to detect the output current; and the detection result of the switching current detection circuit 120 And a control circuit 150 that generates a drive signal based on the detection result of the output voltage detection circuit 130 and switches the mode of the switching power supply circuit based on the detection result of the output current detection circuit 140. Here, the diode 51 and the capacitor 52 constitute an output circuit.
[0077] チョークコイル 100は、スイッチング素子 110がオンしている時に、コアにエネルギ 一を蓄える。次に、スイッチング素子 110がオフすると、磁場が電流を維持しようとす るので、チョークコイル 100の電流がダイオード 51を介してコンデンサ 52に流れ、コ ンデンサ 52が充電されることにより、出力端子 3と出力端子 4との間に直流出力電圧 を発生させる。 The choke coil 100 stores energy in the core when the switching element 110 is on. Next, when switching element 110 is turned off, the magnetic field attempts to maintain the current. Therefore, the current of the choke coil 100 flows to the capacitor 52 via the diode 51, and the capacitor 52 is charged, so that a DC output voltage is generated between the output terminal 3 and the output terminal 4.
[0078] 本発明にお 、ては、チョークコイル 100のコアとして、高 、飽和磁束密度を有する アモルファス金属の磁性体が用いられる。具体的な材料としては、例えば、鉄 (Fe)と コノルト(Co)を含むアモルファス合金 Fe— Co (60〜80wt%)を用いることができる 。コアのタイプとしては、粉末材料を焼結することにより成型したノ レクタイプが好適 である。また、リボン状のコアを積層したラミネートタイプを用いることもできる。  In the present invention, an amorphous metal magnetic material having a high saturation magnetic flux density is used as the core of the choke coil 100. As a specific material, for example, an amorphous alloy Fe—Co (60 to 80 wt%) containing iron (Fe) and connort (Co) can be used. As the core type, a norotype molded by sintering a powder material is suitable. A laminate type in which ribbon-like cores are laminated can also be used.
[0079] アモルファス金属の磁性体は、フェライトよりも飽和磁束密度が高ぐ E型形状のコ ァ成型を行う際にも成型が容易であり、温度による磁気特性の変化が小さぐヒステリ シス損失や渦電流損失が小さくて高周波特性が良 、と 、う特徴を有して 、る。また、 アモルファス金属の磁性体をチョークコイルのコアとして使用することにより、コアが磁 気的に飽和し難ぐ発熱量も小さいので、フェライトを用いる場合の 2倍以上の電力を 供給できると共に、コアにギャップを形成する必要がないので、ギャップ力もの磁束の 漏洩が問題とならなくなる。  [0079] Amorphous metal magnetic material is easy to mold even when performing E-shaped core molding, which has a higher saturation magnetic flux density than ferrite, and hysteresis loss and magnetic property change with temperature are small. It has the characteristics of low eddy current loss and good high frequency characteristics. In addition, by using an amorphous metal magnetic material as the core of the choke coil, the core is less likely to be saturated magnetically and the amount of heat generated is small. Since there is no need to form a gap, leakage of magnetic flux with gap force is no longer a problem.
[0080] ただし、アモルファス金属の磁性体を用いる場合には、フェライトを用いる場合と比 較して、卷数当りのインダクタンス(「AL値」ともいう)が小さくなるので、卷数をある程 度増やしても卷線のインダクタンスが小さくなり、卷線に流れる電流が増加する。また 、アモルファス金属の磁性体は飽和し難いので、卷線に流れるピーク電流を大きくす ることができる。し力しながら、ピーク電流が大きくなると、スイッチング素子が破壊され 易くなるという問題がある。そこで、本実施形態においては、回路的な工夫をすること によって、スイッチング素子を保護している。  [0080] However, when an amorphous metal magnetic material is used, the inductance per power (also referred to as “AL value”) is smaller than when ferrite is used. Even if it increases, the inductance of a winding will become small and the electric current which flows into a winding will increase. In addition, since the magnetic material of amorphous metal is difficult to saturate, the peak current flowing in the shoreline can be increased. However, when the peak current increases, there is a problem that the switching element is easily destroyed. Therefore, in this embodiment, the switching element is protected by devising a circuit.
[0081] 図 9は、図 8に示す制御回路等の構成を詳しく示す図である。本実施形態において は、図 8に示すスイッチング素子 110として、 Nチャネル MOSFET111が用いられる 。 MOSFET111は、チョークコイル 100の他端に接続されたドレインと、スイッチング 電流検出回路 120を介して整流平滑回路 10に接続されたソースと、ゲートドライバ 1 59から駆動信号が印加されるゲートとを有している。  FIG. 9 is a diagram showing in detail the configuration of the control circuit and the like shown in FIG. In the present embodiment, an N-channel MOSFET 111 is used as the switching element 110 shown in FIG. MOSFET 111 has a drain connected to the other end of choke coil 100, a source connected to rectifying and smoothing circuit 10 via switching current detection circuit 120, and a gate to which a drive signal is applied from gate driver 159. is doing.
[0082] チョークコイル 100と MOSFET111のドレイン 'ソース経路とスイッチング電流検出 回路 120とは直列に接続され、整流平滑回路 10において交流電源電圧を整流及び 平滑することにより得られた電圧力 これらの直列回路に供給される。 MOSFET11 1は、ゲートに印加されるパルス状の駆動信号に従って、チョークコイル 100に電流を 流す。 [0082] Drain of choke coil 100 and MOSFET 111 'source path and switching current detection The voltage power obtained by rectifying and smoothing the AC power supply voltage in the rectifying and smoothing circuit 10 is supplied to these series circuits. The MOSFET 111 passes current through the choke coil 100 in accordance with a pulsed drive signal applied to the gate.
[0083] 制御回路 150は、モード切換回路 151と、クロック信号生成回路 152と、比較器 15 4と、ブランキングパルス生成回路 155と、 AND回路 156と、 OR回路 157と、パルス 幅設定回路 158と、ゲートドライバ 159とを含んでいる。  The control circuit 150 includes a mode switching circuit 151, a clock signal generation circuit 152, a comparator 154, a blanking pulse generation circuit 155, an AND circuit 156, an OR circuit 157, and a pulse width setting circuit 158. And a gate driver 159.
[0084] モード切換回路 151は、クロック信号生成回路 152から供給されるクロック信号を力 ゥントすることにより時間を計測し、出力電流検出回路 140から出力される検出電圧、 又は、外部力も供給されるモード切換信号に基づいて、通常動作モードと通常待機 モードと完全待機モードとの間の切換を行う。例えば、モード切換回路 151は、通常 動作モードにおいて、出力電流検出回路 140によって検出される出力電流が所定の 値よりも小さい状態が第 1の所定の期間を超えて継続したときに、通常動作モードか ら通常待機モードに移行し、通常待機モードにおいて、出力電流検出回路 140によ つて検出される出力電流が所定の値よりも小さい状態が第 2の所定の期間を超えて 継続したときに、又は、外部力も供給されるモード切換信号に従って、通常待機モー ドから完全待機モードに移行し、通常動作モードにおいて、外部から供給されるモー ド切換信号に従って、通常動作モードから完全待機モードに移行する。  The mode switching circuit 151 measures the time by powering the clock signal supplied from the clock signal generation circuit 152, and the detection voltage output from the output current detection circuit 140 or an external force is also supplied. Switching between the normal operation mode, normal standby mode, and complete standby mode is performed based on the mode switching signal. For example, in the normal operation mode, the mode switching circuit 151 operates when the state in which the output current detected by the output current detection circuit 140 is smaller than a predetermined value continues beyond the first predetermined period. To the normal standby mode, and in the normal standby mode, when the state where the output current detected by the output current detection circuit 140 is smaller than the predetermined value continues beyond the second predetermined period, Or, transition from the normal standby mode to the complete standby mode according to the mode switching signal to which an external force is also supplied, and shift from the normal operation mode to the complete standby mode according to the mode switching signal supplied from the outside in the normal operation mode. .
[0085] また、モード切換回路 151は、完全待機モードにおいて、外部から供給されるモー ド切換信号に従って、完全待機モードから通常動作モードに移行し、通常待機モー ドにおいて、出力電流検出回路 140によって検出される出力電流が所定の値よりも 大きくなつたときに、通常待機モードから通常動作モードに移行する。  [0085] Further, in the complete standby mode, the mode switching circuit 151 shifts from the complete standby mode to the normal operation mode in accordance with the mode switching signal supplied from the outside. In the normal standby mode, the output current detection circuit 140 When the detected output current becomes larger than the predetermined value, the normal standby mode is shifted to the normal operation mode.
[0086] モード切換回路 151は、通常動作モードと通常待機モードと完全待機モードとの間 で、出力電圧検出回路 130に供給する制御電圧 V の値を切り換えることによって、  [0086] The mode switching circuit 151 switches the value of the control voltage V supplied to the output voltage detection circuit 130 between the normal operation mode, the normal standby mode, and the complete standby mode.
C  C
スイッチング電源回路の出力電圧を変更することができる。あるいは、モード切換回 路 151は、通常待機モードにおいて、強制リセット信号を周期的に活性化すること〖こ よって、駆動信号におけるノ ルスを間引いてパルスの数を低減したり、完全待機モー ドにおいて、強制リセット信号を活性ィ匕することによって、駆動信号を非活性化して M OSFET111のスイッチング動作を停止させるようにしても良い。あるいは、モード切 換回路 151は、完全待機モードにおいて、クロック信号生成回路 152における発振 動作を停止させるようにしても良 、。 The output voltage of the switching power supply circuit can be changed. Alternatively, the mode switching circuit 151 periodically activates the forced reset signal in the normal standby mode, thereby reducing the number of pulses in the drive signal and reducing the number of pulses in the complete standby mode. By deactivating the forced reset signal, the drive signal is deactivated and M The switching operation of the OSFET 111 may be stopped. Alternatively, the mode switching circuit 151 may stop the oscillation operation in the clock signal generation circuit 152 in the complete standby mode.
[0087] 通常動作モードにおいて、モード切換回路 151は、出力電流検出回路 140から出 力される検出電圧に基づいて 2次側の負荷状態を検出し、 MOSFET111を保護す る。即ち、モード切換回路 151は、出力電流検出回路 140によって検出される出力 電流の大きさに応じて、定格出力電力よりも大きい電力を負荷に供給するように駆動 信号を生成する第 1の期間と、定格出力電力以内の電力を負荷に供給するように駆 動信号を生成する第 2の期間とを設定し、第 2の期間において、出力電力が定格出 力電力以内となるように強制リセット信号を周期的に活性ィ匕する。  In the normal operation mode, mode switching circuit 151 detects the load state on the secondary side based on the detection voltage output from output current detection circuit 140, and protects MOSFET 111. That is, the mode switching circuit 151 generates a drive signal so as to supply a power larger than the rated output power to the load according to the magnitude of the output current detected by the output current detection circuit 140. Set a second period for generating a drive signal so that power within the rated output power is supplied to the load, and forcibly reset signal so that the output power is within the rated output power in the second period. Is activated periodically.
[0088] クロック信号生成回路 152は、クロック信号を生成する。また、スイッチング電流検出 回路 120から出力される検出電圧が、比較器 154の非反転入力端子に入力され、図 8に示す出力電圧検出回路 130から出力される検出電圧が、比較器 154の反転入 力端子に入力される。出力電圧検出回路 130において、スイッチング電源回路の負 荷が軽い状態においては、スイッチング電源回路の出力電圧が上昇することにより検 出電圧が下降し、スイッチング電源回路の負荷が重い状態においては、スイッチング 電源回路の出力電圧が下降することにより検出電圧が上昇する。さらに、出力電圧 検出回路 130から出力される検出電圧には、リミッタ回路によって上限が設定されて いる。  [0088] The clock signal generation circuit 152 generates a clock signal. Further, the detection voltage output from the switching current detection circuit 120 is input to the non-inverting input terminal of the comparator 154, and the detection voltage output from the output voltage detection circuit 130 shown in FIG. Input to the power terminal. In the output voltage detection circuit 130, when the load of the switching power supply circuit is light, the detection voltage decreases as the output voltage of the switching power supply circuit increases, and when the load of the switching power supply circuit is heavy, the switching power supply The detection voltage increases as the output voltage of the circuit decreases. Furthermore, an upper limit is set for the detection voltage output from the output voltage detection circuit 130 by the limiter circuit.
[0089] 比較器 154は、スイッチング電流検出回路 120から出力される検出電圧と、出力電 圧検出回路 130から出力される検出電圧とを比較して、比較結果を表す比較信号を 出力する。また、ブランキングパルス生成回路 155は、トランスの 1次側電流が小さい 内に MOSFET111がオフ状態となる誤動作を防止するために、クロック信号に同期 した所定の期間においてのみハイレベルとなるブランキングパルス信号を生成する。 AND回路 156は、比較器 154から出力される比較信号とブランキングパルス生成回 路 155から出力されるブランキングパルス信号との論理積を求める。 OR回路 157は 、 AND回路 156の出力信号と、モード切換回路 151から出力される強制リセット信号 との論理和を求める。 [0090] パルス幅設定回路 158は、例えば、セット端子 Sとリセット端子 Rと出力端子 Qとを有 する RSフリップフロップによって構成される。なお、パルス幅設定回路 158において は、リセット信号がセット信号よりも優先される。クロック信号生成回路 152によって生 成されるクロック信号が、パルス幅設定回路 158のセット端子 Sに供給される。また、 強制リセット信号がローレベルであり、かつ、ブランキングパルス信号がハイレベルと なる期間において、比較器 154によって生成される比較信号が、ノ ルス幅設定回路 158のリセット端子 Rに供給される。 Comparator 154 compares the detection voltage output from switching current detection circuit 120 with the detection voltage output from output voltage detection circuit 130, and outputs a comparison signal representing the comparison result. The blanking pulse generation circuit 155 is a blanking pulse that becomes a high level only during a predetermined period synchronized with the clock signal in order to prevent a malfunction in which the MOSFET 111 is turned off while the primary current of the transformer is small. Generate a signal. The AND circuit 156 obtains a logical product of the comparison signal output from the comparator 154 and the blanking pulse signal output from the blanking pulse generation circuit 155. The OR circuit 157 obtains the logical sum of the output signal of the AND circuit 156 and the forced reset signal output from the mode switching circuit 151. [0090] The pulse width setting circuit 158 is configured by, for example, an RS flip-flop having a set terminal S, a reset terminal R, and an output terminal Q. In the pulse width setting circuit 158, the reset signal has priority over the set signal. The clock signal generated by the clock signal generation circuit 152 is supplied to the set terminal S of the pulse width setting circuit 158. Further, the comparison signal generated by the comparator 154 is supplied to the reset terminal R of the noise width setting circuit 158 during the period when the forced reset signal is at the low level and the blanking pulse signal is at the high level. .
[0091] パルス幅設定回路 158は、クロック信号に同期して出力信号をセットすると共に、比 較器 154から出力される比較信号に同期して出力信号をリセットすることにより、駆動 信号におけるパルス幅を設定する。強制リセット信号がハイレベルになると、パルス幅 設定回路 158が常にリセットされて、駆動信号はローレベルとなる。ゲートドライバ 15 9は、パルス幅設定回路 158から出力される駆動信号に基づいて、 MOSFET111 のゲートを駆動する。  [0091] The pulse width setting circuit 158 sets the output signal in synchronization with the clock signal and resets the output signal in synchronization with the comparison signal output from the comparator 154. Set. When the forced reset signal becomes high level, the pulse width setting circuit 158 is always reset and the drive signal becomes low level. The gate driver 159 drives the gate of the MOSFET 111 based on the drive signal output from the pulse width setting circuit 158.
[0092] 図 9に示す制御回路の動作は、図 4〜図 7に示すのと概ね同様であるので、図 4及 び図 6を参照しながら制御回路 150の動作を詳しく説明する。  Since the operation of the control circuit shown in FIG. 9 is substantially the same as that shown in FIGS. 4 to 7, the operation of the control circuit 150 will be described in detail with reference to FIGS. 4 and 6.
図 4を参照すると、クロック信号生成回路 152によって生成されるクロック信号 V の  Referring to FIG. 4, the clock signal V generated by the clock signal generation circuit 152
CK  CK
立ち上がりエッジに同期してパルス幅設定回路 158の出力信号がセットされ、ゲート 電圧 V (図 4の(e) )がハイレベルとなる。  The output signal of the pulse width setting circuit 158 is set in synchronization with the rising edge, and the gate voltage V ((e) in Fig. 4) goes high.
G  G
[0093] 比較器 154から出力される比較信号は、スイッチング電流検出回路 120から出力さ れる第 1の検出電圧と、出力電圧検出回路 130から出力される第 2の検出電圧とを比 較して得られるものである。過負荷状態においては、 MOSFET111のドレイン電流 I が増加して第 1の検出電圧が増加すると共に、出力電圧が低下して第 2の検出電圧 The comparison signal output from the comparator 154 compares the first detection voltage output from the switching current detection circuit 120 and the second detection voltage output from the output voltage detection circuit 130. It is obtained. In an overload condition, the drain current I of the MOSFET 111 increases and the first detection voltage increases, and the output voltage decreases and the second detection voltage
D D
も増加するが、第 2の検出電圧には出力電圧検出回路 130において上限が設けられ ている。従って、第 2の検出電圧が上限に達したときに、第 1の検出電圧がその上限 を超えると、比較器 154から出力される比較信号がハイレベルとなる。その結果、パ ルス幅設定回路 158の出力信号がリセットされ、 MOSFET111のゲート電圧 Vが口  However, an upper limit is set in the output voltage detection circuit 130 for the second detection voltage. Therefore, when the second detection voltage reaches the upper limit and the first detection voltage exceeds the upper limit, the comparison signal output from the comparator 154 becomes high level. As a result, the output signal of the pulse width setting circuit 158 is reset, and the gate voltage V of the MOSFET 111 becomes the input.
G  G
一レベルとなり、図 4の(b)に示す A点においてドレイン電流 Iが停止する。  The drain current I stops at the point A shown in Fig. 4 (b).
D  D
[0094] このようにして、制御回路 150は、一定の周期で MOSFET111をオンさせると共に 、比較信号の立ち上がりエッジに同期して MOSFET111をオフさせる。図 4の(e)に お!、て、 MOSFET111がオンする期間は T で表され、 MOSFET111がオフする In this manner, the control circuit 150 turns on the MOSFET 111 at a constant period and The MOSFET 111 is turned off in synchronization with the rising edge of the comparison signal. In Fig. 4 (e), the period during which the MOSFET 111 is turned on is represented by T, and the MOSFET 111 is turned off.
ON  ON
期間は T で表される。  The period is represented by T.
OFF  OFF
[0095] 図 6を参照すると、プリンタ装置の電源スィッチをオンにして、スイッチング電源回路 の出力電圧が立ち上がる期間(a)において、モード切換回路 151は、スイッチング電 源回路のモードを通常動作モードに設定する。期間 (b)において、スイッチング電源 回路は、通常動作モードとなっており、モード切換回路 151は、出力電圧が例えば 4 [0095] Referring to FIG. 6, in the period (a) when the output voltage of the switching power supply circuit rises when the power supply switch of the printer device is turned on, the mode switching circuit 151 changes the mode of the switching power supply circuit to the normal operation mode. Set. In the period (b), the switching power supply circuit is in the normal operation mode, and the mode switching circuit 151 has an output voltage of, for example, 4
0Vとなるように制御電圧 Vを設定する。このとき、負荷には 1Aの電流が流れており、 Set the control voltage V to be 0V. At this time, a current of 1A flows through the load,
c  c
出力電力は、 40V X 1A=40Wとなる。この出力電力が、スイッチング電源回路の定 格出力電力に相当するものとする。なお、通常動作モードは、期間 (b)から期間 (i)ま で継続する。  The output power is 40V X 1A = 40W. This output power corresponds to the rated output power of the switching power supply circuit. The normal operation mode continues from period (b) to period (i).
[0096] 期間(c)において、負荷の変動により出力電流が急激に増力!]して出力電力が定格 出力電力よりも大きい過負荷状態になると、チョークコイル 110に流れる電流も増加 する。本実施形態においては、チョークコイルのコアにアモルファス金属の磁性体を 用いているので、瞬間的に出力電力が増加する場合でも、 MOSFET111のドレイン 電流 Iを増加させることによって対応することができる。先に説明したように、ドレイン [0096] In the period (c), when the output current suddenly increases due to the load fluctuation and the output power becomes an overload state larger than the rated output power, the current flowing through the choke coil 110 also increases. In the present embodiment, since the amorphous metal magnetic material is used for the core of the choke coil, even when the output power increases momentarily, it can be coped with by increasing the drain current I of the MOSFET 111. As explained above, the drain
D D
電流 I に上限が設けられているので、 MOSFET111は、瞬時の破壊力 保護される Since there is an upper limit on current I, MOSFET 111 is protected against instantaneous breakdown force
D D
。これにより、出力電流が、例えば 10Aに制限される。  . This limits the output current to 10A, for example.
[0097] また、モード切換回路 151は、出力電流検出回路 140によって検出される出力電 流の値に基づいて、定格出力電力よりも大きい電力を負荷に供給する時間 T と、定 [0097] Further, the mode switching circuit 151, based on the value of the output current detected by the output current detection circuit 140, and the time T for supplying power larger than the rated output power to the load
1A 格出力電力以内の電力を負荷に供給する時間 T とを設定する。これにより、期間 (c  Set the time T to supply power within 1A rated output power to the load. This allows the period (c
1B  1B
)においては、比較器 154において生成される比較信号によって駆動信号のパルス 幅が設定され、その後の期間(d)においては、モード切換回路 151が、出力電力を 定格出力電力以内となるように強制リセット信号を周期的に活性ィ匕して、駆動信号に おけるパルス幅を制限する。なお、期間(d)においては、スイッチング電源回路の出 力電圧及び出力電流が低下するが、出力電流が維持されるので、インパクトプリンタ においてプランジャが印字ヘッドを駆動する動作は継続して行われる。  ), The pulse width of the drive signal is set by the comparison signal generated by the comparator 154, and in the subsequent period (d), the mode switching circuit 151 forces the output power to be within the rated output power. Periodically activate the reset signal to limit the pulse width in the drive signal. In the period (d), although the output voltage and output current of the switching power supply circuit are reduced, the output current is maintained, so that the plunger drives the print head continuously in the impact printer.
[0098] 期間 (e)及び (f)と、期間 (g)及び (h)とにおける動作も、期間 (c)及び (d)における 動作と同様であるが、モード切換回路 151は、出力電流検出回路 140によって検出 される出力電流の値に応じて、定格出力電力よりも大きい電力を負荷に供給する時 間 T 〜T と、定格出力電力以内の電力を負荷に供給する時間 Τ 〜Τ とが異な[0098] The operations in periods (e) and (f) and periods (g) and (h) are also performed in periods (c) and (d). Although the operation is the same, the mode switching circuit 151 has a time T to T for supplying power larger than the rated output power to the load according to the value of the output current detected by the output current detection circuit 140 and the rated current. The time to supply power within the output power to the load is different from Τ to Τ
1A 3Α IB 3Β つている。即ち、モード切換回路 151は、 MOSFET111を保護するために、出力電 流が大きいほど、定格出力電力よりも大きい電力を負荷に供給する時間を短く設定 する。 1A 3Α IB 3Β That is, in order to protect MOSFET 111, mode switching circuit 151 sets a shorter time for supplying power larger than the rated output power to the load as the output current increases.
[0099] 期間(i)において、プリンタによる印字動作が中断することにより、出力電流が所定 の値よりも小さい状態が所定の期間 (例えば、 5分間)を超えて継続すると、モード切 換回路 151は、期間 (j)において、スイッチング電源回路のモードを通常待機モード に設定して省エネルギー化を図る。通常待機モードおいて、モード切換回路 151は 、出力電圧検出回路 130に供給する基準電圧 Vを低下させる。これにより、比較器 1  [0099] In the period (i), when the printing operation by the printer is interrupted, and the state where the output current is smaller than the predetermined value continues for a predetermined period (for example, 5 minutes), the mode switching circuit 151 In the period (j), the switching power supply circuit mode is set to the normal standby mode to save energy. In the normal standby mode, the mode switching circuit 151 reduces the reference voltage V supplied to the output voltage detection circuit 130. This makes the comparator 1
C  C
54の反転入力端子に供給される検出電圧が低下し、ノ ルス幅設定回路 158におけ るリセットのタイミングが早まり、駆動信号におけるパルス幅が短くなつて、スィッチン グ電源回路の出力電圧が低下する。例えば、モード切換回路 151は、出力電圧が 2 OVとなるように制御電圧 Vを設定する。あるいは、モード切換回路 151は、スィッチ  The detection voltage supplied to the inverting input terminal of 54 decreases, the reset timing in the pulse width setting circuit 158 is advanced, the pulse width in the drive signal is shortened, and the output voltage of the switching power supply circuit decreases. . For example, the mode switching circuit 151 sets the control voltage V so that the output voltage becomes 2 OV. Alternatively, the mode switching circuit 151 may be a switch
C  C
ング電源回路の出力電圧を通常動作モードにおけるのと同じとしながら、強制リセット 信号を周期的に活性ィ匕することによって、駆動信号におけるパルスの数を低減して、 The number of pulses in the drive signal is reduced by periodically activating the forced reset signal while keeping the output voltage of the power supply circuit the same as in the normal operation mode.
MOSFET111のスイッチング動作を間欠的に行わせるようにしても良!、。 It is also possible to cause the MOSFET111 to switch intermittently! ,.
[0100] 期間 (j)の終わりにおいて、プリンタの印字動作が再開されると、期間(k)において 、スイッチング電源回路は、再び通常動作モードに移行する。期間 (j)においては M OSFET111がスィッチング動作を行って 、るので、通常動作モードに移行した際に 、スイッチング電源回路の出力電圧を迅速に立ち上げることができる。 [0100] When the printing operation of the printer is resumed at the end of the period (j), the switching power supply circuit again shifts to the normal operation mode in the period (k). In the period (j), the MOSFET 111 performs the switching operation, so that the output voltage of the switching power supply circuit can be quickly raised when shifting to the normal operation mode.
[0101] 期間(k)において、プリンタによる印字動作が中断することにより、出力電流が所定 の値よりも小さい状態が所定の期間 (例えば、 5分間)を超えて継続すると、モード切 換回路 151は、期間 (1)において、スイッチング電源回路のモードを通常待機モード に設定する。 [0101] In the period (k), when the printing operation by the printer is interrupted and the state where the output current is smaller than the predetermined value continues for a predetermined period (for example, 5 minutes), the mode switching circuit 151 In period (1), the mode of the switching power supply circuit is set to normal standby mode.
[0102] さらに、期間(1)の終わりにおいて、モード切換信号が完全待機モードを表すハイレ ベルに変化すると、モード切換回路 151は、期間(m)において、スイッチング電源回 路のモードを完全待機モードに設定してさらに省エネルギー化を図る。あるいは、プ リンタによる印字動作が中断することにより出力電流が所定の期間(例えば、 30分間 )低下したままでいると、モード切換回路 151が、スイッチング電源回路のモードを完 全待機モードに設定するようにしても良 、。 [0102] Furthermore, when the mode switching signal changes to a high level indicating the complete standby mode at the end of the period (1), the mode switching circuit 151 switches the switching power supply circuit during the period (m). The road mode is set to the complete standby mode to further save energy. Alternatively, if the output current remains reduced for a predetermined period (for example, 30 minutes) due to the interruption of the printing operation by the printer, the mode switching circuit 151 sets the mode of the switching power supply circuit to the complete standby mode. It ’s okay.
[0103] 完全待機モードにおいては、モード切換回路 151が強制リセット信号をノヽィレベル にすることによって、 OR回路 157の出力がハイレベルとなり、パルス幅設定回路 158 力 Sリセットされて、駆動信号が非活性化される。これにより、 MOSFET111がスィッチ ング動作を停止するので、出力電力がゼロとなり、大きな省エネルギー化が達成され る。 [0103] In the complete standby mode, when the mode switching circuit 151 sets the forced reset signal to the noise level, the output of the OR circuit 157 becomes high level, the pulse width setting circuit 158 force S is reset, and the drive signal is not turned on. Activated. As a result, the MOSFET 111 stops the switching operation, so that the output power becomes zero and a great energy saving is achieved.
[0104] 期間(m)の終わりにおいて、モード切換信号が通常動作モードを表すローレベル に変化すると、期間 (n)において、モード切換回路 151が、強制リセット信号をローレ ベルに設定する。その結果、駆動信号が活性化されるので、 MOSFET111がスイツ チング動作を開始する。しかしながら、出力電圧の立上がりには一定の時間を要する 。その後、期間(o)において、通常動作モードが継続される。  [0104] When the mode switching signal changes to a low level indicating the normal operation mode at the end of the period (m), the mode switching circuit 151 sets the forced reset signal to a low level in the period (n). As a result, the drive signal is activated, and the MOSFET 111 starts the switching operation. However, it takes a certain time for the output voltage to rise. Thereafter, in the period (o), the normal operation mode is continued.
[0105] 次に、第 3の実施形態について説明する。  [0105] Next, a third embodiment will be described.
図 10は、本発明の第 3の実施形態に係るスイッチング電源回路の構成を示す図で ある。このスイッチング電源回路は、交流電源電圧の入力端子 1及び 2に接続された 整流平滑回路 10と、出力端子 3及び出力端子 4に接続された第 1の電圧変換回路 1 1と、出力端子 5及び出力端子 6に接続された第 2の電圧変換回路 12とを有する。  FIG. 10 is a diagram showing a configuration of a switching power supply circuit according to the third embodiment of the present invention. This switching power supply circuit includes a rectifying / smoothing circuit 10 connected to the input terminals 1 and 2 of the AC power supply voltage, a first voltage conversion circuit 11 connected to the output terminal 3 and the output terminal 4, an output terminal 5 and And a second voltage conversion circuit 12 connected to the output terminal 6.
[0106] 整流平滑回路 10及び第 1の電圧変換回路 11の構成は、図 1に示す第 1の実施形 態に係るスイッチング電源回路の構成と同一であるので、説明を省略する。第 2の電 圧変換回路 12は、 1次側の交流電圧を昇圧又は降圧して 2次側に出力するトランス 160と、トランスの 1次側卷線 161に直列に接続され、ノ ルス状の駆動信号に従って トランスの 1次側卷線 161に電流を流すスイッチング素子 170と、トランスの 1次側卷 線 161に流れる電流を検出する 1次側電流検出回路 180と、トランスの 2次側卷線 16 2に発生する電圧を半波整流するダイオード 53と、整流された電圧を平滑するコンデ ンサ 54と、コンデンサ 54の両端における平滑された電圧を検出する 2次側電圧検出 回路 190と、 1次側電流検出回路 180の検出結果及び 2次側電圧検出回路 190の 検出結果に基づいて駆動信号を生成する制御回路 200とを含んでいる。 2次側電圧 検出回路 190の構成は、図 3に示す 2次側電圧検出回路 60の構成と同一である。 The configurations of the rectifying / smoothing circuit 10 and the first voltage conversion circuit 11 are the same as the configuration of the switching power supply circuit according to the first embodiment shown in FIG. The second voltage conversion circuit 12 is connected in series to a transformer 160 that boosts or steps down the AC voltage on the primary side and outputs it to the secondary side, and a primary side wire 161 of the transformer. A switching element 170 that allows current to flow through the primary winding 161 of the transformer according to the drive signal, a primary current detection circuit 180 that detects current flowing through the primary winding 161 of the transformer, and a secondary winding of the transformer 16 Diode 53 that half-wave rectifies the voltage generated at 2; capacitor 54 that smoothes the rectified voltage; secondary voltage detection circuit 190 that detects the smoothed voltage across capacitor 54; and primary Side current detection circuit 180 detection result and secondary side voltage detection circuit 190 And a control circuit 200 that generates a drive signal based on the detection result. The configuration of secondary side voltage detection circuit 190 is the same as the configuration of secondary side voltage detection circuit 60 shown in FIG.
[0107] トランス 160は、磁性体のコア 164と、コア 164に回卷された 1次側卷線 161、 2次 側卷線 162、及び、補助卷線 163とを有している。 1次側卷線 161の卷数を N3とし、 2次側卷線 162の卷数を N4とすると、損失がないとした場合に、 1次側と 2次側との 間の昇圧比は、 N4ZN3となる。補助卷線 163は、制御回路 200に電源電圧を供給 するために使用される。なお、トランス 160に付されたドットの記号は、卷線の極性を 示している。 The transformer 160 includes a magnetic core 164, a primary side wire 161, a secondary side wire 162, and an auxiliary wire 163 wound around the core 164. If the number of primary side wires 161 is N3 and the number of secondary side wires 162 is N4, and there is no loss, the step-up ratio between the primary side and secondary side is N4ZN3. The auxiliary feeder 163 is used to supply a power supply voltage to the control circuit 200. The dot symbol attached to the transformer 160 indicates the polarity of the winding.
[0108] 第 1の電圧変換回路 11は、ミリ秒単位又は秒単位の短時間において、無負荷状態 力も定格出力電流の 2〜3倍の電流を消費する状態まで、又は、場合によっては定 格出力電流の 10倍の電流を消費する状態までダイナミックに変動するダイナミック負 荷に対して第 1の出力電圧を供給する。一方、第 2の電圧変換回路 12は、消費電流 の変動幅が定格出力電流の約 50%以内に収まる安定的な定常負荷に対して第 2の 出力電圧を供給する。ここで、定格出力電流とは、それぞれの電圧変換回路におい てスイッチング素子として用いられる MOSFET等が安定して定常動作を行うことがで きる出力電流の大きさを表しており、スイッチング電源回路の AC入力電圧や MOSF ETの規格等に基づいて予め定められる。  [0108] The first voltage conversion circuit 11 can be used until the no-load state power consumes 2 to 3 times the rated output current for a short time in milliseconds or seconds, or in some cases rated. The first output voltage is supplied to a dynamic load that fluctuates dynamically until it consumes 10 times the output current. On the other hand, the second voltage conversion circuit 12 supplies the second output voltage to a stable steady load in which the fluctuation range of the consumption current is within about 50% of the rated output current. Here, the rated output current represents the magnitude of the output current that can stably operate the MOSFET used as a switching element in each voltage conversion circuit. It is determined in advance based on the input voltage and MOSF ET standards.
[0109] 本実施形態においては、スイッチング電源回路の負荷装置力インパクトプリンタで あるものとする。第 1の電圧変換回路 11は、インパクトプリンタの印字ヘッドを駆動す るプランジャのソレノイドに対して電力を供給する。一方、第 2の電圧変換回路 12は、 パーソナルコンピュータ等との間のデータの送受信やプランジャの駆動を制御するた めの制御回路に対して電力を供給する。  In the present embodiment, it is assumed that the load power of the switching power supply circuit is an impact printer. The first voltage conversion circuit 11 supplies power to the solenoid of the plunger that drives the print head of the impact printer. On the other hand, the second voltage conversion circuit 12 supplies power to a control circuit for controlling transmission / reception of data to / from a personal computer or the like and driving of the plunger.
[0110] そこで、第 1の電圧変換回路 11におけるトランスのコア 24、及び、第 2の電圧変換 回路 12におけるトランスのコア 164のために、負荷に応じて適切な材料が選択される 。ダイナミック負荷に対して電力を供給する第 1の電圧変換回路 11におけるトランス のコア 24としては、高い飽和磁束密度を有するアモルファス金属の磁性体が用いら れる。一方、定常負荷に対して電力を供給する第 2の電圧変換回路 12におけるトラ ンスのコア 164としては、フェライトの磁性体が用いられる。フェライトの磁性体は、低 損失で効率が良いという特徴があるので、従来から、トランスのコア材料として一般的 に用いられている。 Therefore, an appropriate material is selected for the transformer core 24 in the first voltage conversion circuit 11 and the transformer core 164 in the second voltage conversion circuit 12 according to the load. As the transformer core 24 in the first voltage conversion circuit 11 that supplies power to the dynamic load, an amorphous metal magnetic material having a high saturation magnetic flux density is used. On the other hand, as the transformer core 164 in the second voltage conversion circuit 12 that supplies power to the steady load, a ferrite magnetic material is used. Ferrite magnetic material is low Since it has characteristics of loss and efficiency, it has been generally used as a core material for transformers.
[0111] 図 11は、図 10に示す第 2の電圧変換回路における制御回路等の構成を示す図で ある。第 2の電圧変換回路における制御回路の基本的な構成は、ドレイン電流を制 限する構成要素及びモード切換回路が存在しない点を除き、図 2に示す制御回路 7 0と同様である。  FIG. 11 is a diagram showing a configuration of a control circuit and the like in the second voltage conversion circuit shown in FIG. The basic configuration of the control circuit in the second voltage conversion circuit is the same as that of the control circuit 70 shown in FIG. 2 except that there is no component for limiting the drain current and no mode switching circuit.
[0112] 第 2の電圧変換回路 12においても、第 1の電圧変換回路 11と同様に、スイッチング 素子 170として Nチャネル MOSFET171が用いられる。 MOSFET171は、トランス の 1次卷線 161に接続されたドレインと、整流平滑回路 10に接続されたソースと、ゲ ートドライバ 79から駆動信号が印加されるゲートとを有している。  In the second voltage conversion circuit 12, similarly to the first voltage conversion circuit 11, an N-channel MOSFET 171 is used as the switching element 170. MOSFET 171 has a drain connected to primary winding 161 of the transformer, a source connected to rectifying and smoothing circuit 10, and a gate to which a drive signal is applied from gate driver 79.
[0113] トランスの 1次側卷線 161と MOSFET171のドレイン 'ソース経路とは直列に接続さ れ、整流平滑回路 10において交流電源電圧を整流及び平滑することにより得られた 電圧が、これらの直列回路に供給される。 MOSFET171は、ゲートに印加されるパ ルス状の駆動信号に従って、トランスの 1次側卷線 161に電流を流す。  [0113] The primary side wire 161 of the transformer and the drain 'source path of the MOSFET 171 are connected in series, and the voltage obtained by rectifying and smoothing the AC power supply voltage in the rectifying and smoothing circuit 10 is the series voltage. Supplied to the circuit. The MOSFET 171 causes a current to flow through the primary side winding 161 of the transformer in accordance with a pulsed drive signal applied to the gate.
[0114] 制御回路 200は、図 10に示す 2次側電圧検出回路 190の検出結果に基づいて検 出電圧を生成する検出電圧生成回路 201と、クロック信号を生成するクロック信号生 成回路 73と、 1次側電流検出回路 40から出力される検出電圧と検出電圧生成回路 201によって生成される検出電圧とを比較して比較結果を表す比較信号を生成する 比較器 75と、クロック信号に同期した所定の期間においてのみハイレベルとなるブラ ンキングパルス信号を生成するブランキングパルス生成回路 76と、 AND回路 77と、 クロック信号に同期して出力信号をセットすると共に比較器 75から出力される比較信 号に同期して出力信号をリセットすることにより駆動信号におけるパルス幅を設定す るパルス幅設定回路 78と、パルス幅設定回路 78から出力される駆動信号に基づい て MOSFET171のゲートを駆動するゲートドライバ 79とを含んでいる。  The control circuit 200 includes a detection voltage generation circuit 201 that generates a detection voltage based on the detection result of the secondary side voltage detection circuit 190 shown in FIG. 10, and a clock signal generation circuit 73 that generates a clock signal. The comparator 75 that compares the detection voltage output from the primary-side current detection circuit 40 and the detection voltage generated by the detection voltage generation circuit 201 to generate a comparison signal that represents a comparison result, and the clock signal A blanking pulse generation circuit 76 that generates a blanking pulse signal that becomes a high level only during a predetermined period, an AND circuit 77, an output signal that is set in synchronization with the clock signal, and a comparison signal that is output from the comparator 75. The pulse width setting circuit 78 sets the pulse width in the drive signal by resetting the output signal in synchronization with the signal, and the drive signal output from the pulse width setting circuit 78 And a gate driver 79 for driving the gate of MOSFET171 Te.
[0115] ここで、検出電圧生成回路 201の構成は、リミッタ用のダイオード 88を除き、図 3に 示す検出電圧生成回路 71の構成と同一である。第 2の電圧変換回路 12は、安定的 な定常負荷に対して電力を供給するためのものであるので、トランスのコア 164には フェライトの磁性体が用いられる。その場合にはトランスの 1次卷線 161に過電流が 流れるおそれがな 、ので、ドレイン電流を制限するリミッタ用のダイオード 88が省略さ れている。 Here, the configuration of the detection voltage generation circuit 201 is the same as the configuration of the detection voltage generation circuit 71 shown in FIG. 3 except for the diode 88 for the limiter. Since the second voltage conversion circuit 12 is for supplying power to a stable steady load, a magnetic material of ferrite is used for the core 164 of the transformer. In that case, an overcurrent is generated in the primary primary wire 161 of the transformer. Since there is no possibility of flowing, the limiter diode 88 for limiting the drain current is omitted.
[0116] 本実施形態によれば、第 1の電圧変換回路 11と第 2の電圧変換回路 12とにおいて 、それぞれの負荷に適した別個のトランスを使用すると共に、 1次側回路を独立として いるので、複数系統の出力を有する電源回路において問題となるダイナミック負荷に 対するクロスレギュレーションを改善することができる。  [0116] According to the present embodiment, the first voltage conversion circuit 11 and the second voltage conversion circuit 12 use separate transformers suitable for respective loads, and the primary circuit is independent. Therefore, it is possible to improve the cross regulation with respect to the dynamic load which is a problem in the power supply circuit having outputs of a plurality of systems.
[0117] 第 3の実施形態において、比較器 75の反転入力端子に、検出電圧生成回路 201 によって生成される検出電圧の替わりに所定の電圧を印加することにより、 1次側電 流検出回路 40の検出結果に基づ 、て駆動信号を生成するようにしても良 、。その場 合でも、 1次側電流検出回路 40から出力される検出電圧が所定の電圧を超えるとパ ルス幅設定回路 78の出力信号がリセットされるので、駆動信号におけるパルス幅の 上限を設定することができる。  In the third embodiment, by applying a predetermined voltage to the inverting input terminal of the comparator 75 instead of the detection voltage generated by the detection voltage generation circuit 201, the primary-side current detection circuit 40 The drive signal may be generated based on the detection result. Even in that case, if the detection voltage output from the primary current detection circuit 40 exceeds the predetermined voltage, the output signal of the pulse width setting circuit 78 is reset, so the upper limit of the pulse width in the drive signal is set. be able to.
[0118] 次に、本発明の第 4の実施形態について説明する。  [0118] Next, a fourth embodiment of the present invention will be described.
図 12は、本発明の第 4の実施形態に係るスイッチング電源回路の構成を示す図で ある。第 4の実施形態に係るスイッチング電源回路においては、第 1及び第 2の電圧 変換回路 11及び 12の各々において、トランスの替わりにチョークコイルを含む昇圧 型のチヨッパ回路を用いて!/、る。  FIG. 12 is a diagram showing a configuration of a switching power supply circuit according to the fourth embodiment of the present invention. In the switching power supply circuit according to the fourth embodiment, each of the first and second voltage conversion circuits 11 and 12 uses a step-up type chopper circuit including a choke coil instead of a transformer.
[0119] 整流平滑回路 10及び第 1の電圧変換回路 11の構成は、図 8に示す第 2の実施形 態に係るスイッチング電源回路の構成と同一であるので、説明を省略する。第 2の電 圧変換回路 12は、整流平滑回路 10に一端が接続され、卷線に流れる電流によって 発生する磁気エネルギーをコアに蓄えるチョークコイル 210と、チョークコイル 210の 他端に接続され、パルス状の駆動信号に従ってチョークコイル 210に電流を流すスィ ツチング素子 220と、スイッチング素子 220に流れる電流を検出するスイッチング電 流検出回路 230と、チョークコイル 210の他端に発生する電圧を半波整流するダイォ ード 53と、整流された電圧を平滑することにより出力電圧を生成するコンデンサ 54と 、出力端子 5及び 6における出力電圧を検出する出力電圧検出回路 240と、スィッチ ング電流検出回路 230の検出結果及び出力電圧検出回路 240の検出結果に基づ V、て駆動信号を生成する制御回路 250とを含んで 、る。 [0120] 本実施形態においても、第 1の電圧変換回路 11におけるチョークコイル 100のコア 、及び、第 2の電圧変換回路 12におけるチョークコイル 210のコアのために、負荷に 応じて適切な材料が選択される。ダイナミック負荷に対して電力を供給する第 1の電 圧変換回路 11におけるチョークコイル 100のコアとしては、高い飽和磁束密度を有 するアモルファス金属の磁性体が用いられる。一方、定常負荷に対して電力を供給 する第 2の電圧変換回路 12におけるチョークコイル 210のコアとしては、フェライトの 磁性体が用いられる。 The configurations of the rectifying / smoothing circuit 10 and the first voltage conversion circuit 11 are the same as the configuration of the switching power supply circuit according to the second embodiment shown in FIG. The second voltage conversion circuit 12 has one end connected to the rectifying / smoothing circuit 10 and connected to the choke coil 210 that stores magnetic energy generated by the current flowing in the winding in the core, and the other end of the choke coil 210. Switching element 220 for passing current to choke coil 210 in accordance with the driving signal, switching current detection circuit 230 for detecting current flowing to switching element 220, and half-wave rectification of the voltage generated at the other end of choke coil 210 Detection of the diode 53, the capacitor 54 that generates the output voltage by smoothing the rectified voltage, the output voltage detection circuit 240 that detects the output voltage at the output terminals 5 and 6, and the switching current detection circuit 230 And a control circuit 250 that generates a drive signal V based on the result and the detection result of the output voltage detection circuit 240. Also in the present embodiment, an appropriate material for the core of the choke coil 100 in the first voltage conversion circuit 11 and the core of the choke coil 210 in the second voltage conversion circuit 12 is used depending on the load. Selected. As the core of the choke coil 100 in the first voltage conversion circuit 11 that supplies power to the dynamic load, an amorphous metal magnetic material having a high saturation magnetic flux density is used. On the other hand, a ferrite magnetic material is used as the core of the choke coil 210 in the second voltage conversion circuit 12 that supplies power to a steady load.
[0121] 図 13は、図 12に示す第 2の電圧変換回路における制御回路等の構成を示す図で ある。第 2の電圧変換回路における制御回路の基本的な構成は、ドレイン電流を制 限する機能及びモード切換回路が存在しない点を除き、図 9に示す制御回路 150と 同様である。  FIG. 13 is a diagram showing a configuration of a control circuit and the like in the second voltage conversion circuit shown in FIG. The basic configuration of the control circuit in the second voltage conversion circuit is the same as that of the control circuit 150 shown in FIG. 9 except that there is no function for limiting the drain current and no mode switching circuit.
[0122] 第 2の電圧変換回路 12においても、第 1の電圧変換回路 11と同様に、スイッチング 素子 220として Nチャネル MOSFET221が用いられる。 MOSFET221は、チョーク コイル 210に接続されたドレインと、整流平滑回路 10に接続されたソースと、ゲートド ライバ 159から駆動信号が印加されるゲートとを有している。  In the second voltage conversion circuit 12, as in the first voltage conversion circuit 11, an N-channel MOSFET 221 is used as the switching element 220. MOSFET 221 has a drain connected to choke coil 210, a source connected to rectifying and smoothing circuit 10, and a gate to which a drive signal is applied from gate driver 159.
[0123] チョークコイル 210と MOSFET221のドレイン ·ソース経路とは直列に接続され、整 流平滑回路 10において交流電源電圧を整流及び平滑することにより得られた電圧 1S これらの直列回路に供給される。 MOSFET221は、ゲートに印加されるパルス 状の駆動信号に従って、チョークコイル 210に電流を流す。  The choke coil 210 and the drain / source path of the MOSFET 221 are connected in series, and the voltage 1S obtained by rectifying and smoothing the AC power supply voltage in the rectifying and smoothing circuit 10 is supplied to these series circuits. The MOSFET 221 causes a current to flow through the choke coil 210 in accordance with a pulsed drive signal applied to the gate.
[0124] 制御回路 250は、クロック信号を生成するクロック信号生成回路 152と、スィッチン グ電流検出回路 230から出力される検出電圧と出力電圧検出回路 240によって生 成される検出電圧とを比較して比較結果を表す比較信号を生成する比較器 154と、 クロック信号に同期した所定の期間においてのみハイレベルとなるブランキングパル ス信号を生成するブランキングパルス生成回路 155と、 AND回路 156と、クロック信 号に同期して出力信号をセットすると共に比較器 154から出力される比較信号に同 期して出力信号をリセットすることにより駆動信号におけるパルス幅を設定するパルス 幅設定回路 158と、パルス幅設定回路 158から出力される駆動信号に基づいて MO SFET221のゲートを駆動するゲートドライバ 159とを含んでいる。 [0125] 図 12に示す出力電圧検出回路 240の構成は、リミッタ用のダイオードを除き、図 8 に示す出力電圧検出回路 130の構成と同一である。第 2の電圧変換回路 12は、安 定的な定常負荷に対して電力を供給するためのものであるので、チョークコイル 210 のコアにはフェライトの磁性体が用いられる。その場合にはチョークコイル 210の卷線 に過電流が流れるおそれがな 、ので、ドレイン電流を制限するリミッタ用のダイオード が省略されている。 [0124] The control circuit 250 compares the clock signal generation circuit 152 that generates the clock signal, the detection voltage output from the switching current detection circuit 230, and the detection voltage generated by the output voltage detection circuit 240. A comparator 154 that generates a comparison signal that represents a comparison result, a blanking pulse generation circuit 155 that generates a blanking pulse signal that is high only during a predetermined period synchronized with the clock signal, an AND circuit 156, a clock The pulse width setting circuit 158 sets the pulse width in the drive signal by setting the output signal in synchronization with the signal and resetting the output signal in synchronization with the comparison signal output from the comparator 154, and the pulse width setting A gate driver 159 that drives the gate of the MOSFET 221 based on the drive signal output from the circuit 158. The configuration of the output voltage detection circuit 240 shown in FIG. 12 is the same as that of the output voltage detection circuit 130 shown in FIG. 8 except for the limiter diode. Since the second voltage conversion circuit 12 is for supplying electric power to a stable steady load, a ferrite magnetic body is used for the core of the choke coil 210. In this case, since there is no possibility that an overcurrent flows through the winding of the choke coil 210, the limiter diode for limiting the drain current is omitted.
[0126] 本実施形態によれば、第 1の電圧変換回路 11と第 2の電圧変換回路 12とにおいて 、それぞれの負荷に適した別個のチョークコイルを使用すると共に、 1次側回路を独 立としているので、複数系統の出力を有する電源回路において問題となるダイナミツ ク負荷に対するクロスレギュレーションを改善することができる。  [0126] According to the present embodiment, the first voltage conversion circuit 11 and the second voltage conversion circuit 12 use separate choke coils suitable for respective loads, and the primary side circuit is independent. Therefore, it is possible to improve the cross regulation with respect to the dynamic load which is a problem in the power supply circuit having outputs of a plurality of systems.
[0127] 第 4の実施形態において、比較器 154の反転入力端子に、出力電圧検出回路 24 0によって生成される検出電圧の替わりに所定の電圧を印加することにより、スィッチ ング電流検出回路 230の検出結果に基づ 、て駆動信号を生成するようにしても良!、 。その場合でも、スイッチング電流検出回路 230から出力される検出電圧が所定の電 圧を超えるとパルス幅設定回路 158の出力信号がリセットされるので、駆動信号にお けるパルス幅の上限を設定することができる。  In the fourth embodiment, by applying a predetermined voltage to the inverting input terminal of the comparator 154 instead of the detection voltage generated by the output voltage detection circuit 240, the switching current detection circuit 230 A drive signal may be generated based on the detection result! Even in this case, if the detection voltage output from the switching current detection circuit 230 exceeds a predetermined voltage, the output signal of the pulse width setting circuit 158 is reset, so the upper limit of the pulse width in the drive signal must be set. Can do.
産業上の利用可能性  Industrial applicability
[0128] 本発明は、電子機器において用いられるスイッチング電源において利用することが 可能である。 The present invention can be used in a switching power supply used in an electronic device.

Claims

請求の範囲 The scope of the claims
[1] アモルファス磁性体を含むコア及び該コアに回卷された 1次側卷線及び 2次側卷線 を有し、入力電圧が 1次側卷線の一端に印加されるトランスと、  [1] a core including an amorphous magnetic material, a primary winding and a secondary winding wound around the core, and an input voltage applied to one end of the primary winding,
前記トランスの 1次側卷線の他端に接続され、パルス状の駆動信号に従って前記ト ランスの 1次側卷線に電流を流すスイッチング素子と、  A switching element connected to the other end of the primary side of the transformer, and for passing a current to the primary side of the transformer according to a pulsed drive signal;
前記トランスの 2次側卷線に発生する電圧に基づいて出力電圧を生成する出力回 路と、  An output circuit for generating an output voltage based on a voltage generated on the secondary side of the transformer;
前記トランスの 1次側卷線に流れる電流及び前記出力回路の出力電圧に基づいて 前記駆動信号を生成すると共に、前記出力回路の出力電流に基づいて、又は、外 部から供給されるモード切換信号に従って、少なくとも所定の電力を負荷に供給可 能な通常動作モードと、前記所定の電力よりも小さい電力を負荷に供給可能な第 1 の待機モードと、供給電力がゼロとなる第 2の待機モードとを切り換える制御回路と、 を具備するスイッチング電源回路。  The drive signal is generated based on the current flowing through the primary side of the transformer and the output voltage of the output circuit, and the mode switching signal supplied from the outside based on the output current of the output circuit In accordance with the normal operation mode in which at least predetermined power can be supplied to the load, the first standby mode in which power smaller than the predetermined power can be supplied to the load, and the second standby mode in which the supplied power becomes zero And a switching power supply circuit comprising:
[2] フェライト磁性体を含むコア及び該コアに回卷された 1次側卷線及び 2次側卷線を 有し、入力電圧が 1次側卷線の一端に印加される第 2のトランスと、 [2] a second transformer having a core including a ferrite magnetic body and a primary side wire and a secondary side wire wound around the core, and an input voltage is applied to one end of the primary side wire When,
前記第 2のトランスの 1次側卷線の他端に接続され、パルス状の第 2の駆動信号に 従って前記第 2のトランスの 1次側卷線に電流を流す第 2のスイッチング素子と、 前記第 2のトランスの 2次側卷線に発生する電圧に基づいて第 2の出力電圧を生成 する第 2の出力回路と、  A second switching element connected to the other end of the primary winding of the second transformer, and for passing a current through the primary winding of the second transformer in accordance with a pulsed second drive signal; A second output circuit for generating a second output voltage based on a voltage generated in the secondary side winding of the second transformer;
少なくとも前記第 2のトランスの 1次側卷線に流れる電流に基づいて前記第 2の駆動 信号を生成する第 2の制御回路と、  A second control circuit for generating the second drive signal based on at least a current flowing through the primary side winding of the second transformer;
をさらに具備する請求項 1記載のスイッチング電源回路。  The switching power supply circuit according to claim 1, further comprising:
[3] アモルファス磁性体を含むコア及び該コアに回卷された卷線を有し、入力電圧が卷 線の一端に印加されるチョークコイルと、 [3] a choke coil having a core including an amorphous magnetic body and a winding wound around the core, and an input voltage is applied to one end of the winding;
前記チョークコイルの卷線の他端に接続され、パルス状の駆動信号に従って前記 チョークコイルの卷線に電流を流すスイッチング素子と、  A switching element connected to the other end of the winding of the choke coil, and for causing a current to flow through the winding of the choke coil according to a pulsed drive signal;
前記チョークコイルと前記スイッチング素子との接続点に発生する電圧に基づいて 出力電圧を生成する出力回路と、 前記チョークコイルの卷線に流れる電流及び前記出力回路の出力電圧に基づいて 前記駆動信号を生成すると共に、前記出力回路の出力電流に基づいて、又は、外 部から供給されるモード切換信号に従って、少なくとも所定の電力を負荷に供給可 能な通常動作モードと、前記所定の電力よりも小さい電力を負荷に供給可能な第 1 の待機モードと、供給電力がゼロとなる第 2の待機モードとを切り換える制御回路と、 を具備するスイッチング電源回路。 An output circuit that generates an output voltage based on a voltage generated at a connection point between the choke coil and the switching element; The drive signal is generated based on the current flowing through the winding of the choke coil and the output voltage of the output circuit, and based on the output current of the output circuit or in accordance with a mode switching signal supplied from the outside. A normal operation mode in which at least predetermined power can be supplied to the load, a first standby mode in which power smaller than the predetermined power can be supplied to the load, and a second standby mode in which the supplied power is zero. A switching power supply circuit comprising: a switching control circuit;
[4] フェライト磁性体を含むコア及び該コアに回卷された卷線を有し、入力電圧が卷線 の一端に印加される第 2のチョークコイルと、 [4] a second choke coil having a core including a ferrite magnetic body and a winding wound around the core, and an input voltage applied to one end of the winding;
前記第 2のチョークコイルの卷線の他端に接続され、パルス状の第 2の駆動信号に 従って前記第 2のチョークコイルの卷線に電流を流す第 2のスイッチング素子と、 前記第 2のチョークコイルと前記第 2のスイッチング素子との接続点に発生する電圧 に基づいて第 2の出力電圧を生成する第 2の出力回路と、  A second switching element connected to the other end of the winding of the second choke coil and passing a current through the winding of the second choke coil in accordance with a pulsed second drive signal; A second output circuit for generating a second output voltage based on a voltage generated at a connection point between the choke coil and the second switching element;
少なくとも前記第 2のチョークコイルの卷線に流れる電流に基づいて前記第 2の駆 動信号を生成する第 2の制御回路と、  A second control circuit for generating the second drive signal based on at least a current flowing through the winding of the second choke coil;
をさらに具備する請求項 3記載のスイッチング電源回路。  The switching power supply circuit according to claim 3, further comprising:
[5] 前記制御回路が、通常動作モードにおいて、前記出力回路の出力電流が所定の 値よりも小さい状態が第 1の所定の期間を超えて継続したときに、通常動作モードか ら第 1の待機モードに移行するように前記駆動信号におけるパルス幅又はパルス数 を低減し、第 1の待機モードにおいて、前記出力回路の出力電流が所定の値よりも 小さい状態が第 2の所定の期間を超えて継続したときに、又は、外部から供給される モード切換信号に従って、第 1の待機モードから第 2の待機モードに移行するように 前記駆動信号を停止又は非活性化し、通常動作モードにおいて、外部から供給され るモード切換信号に従って、通常動作モードから第 2の待機モードに移行するように 前記駆動信号を停止又は非活性ィ匕し、第 2の待機モードにおいて、外部から供給さ れるモード切換信号に従って、第 2の待機モードから通常動作モードに移行するよう に前記駆動信号を活性化し、第 1の待機モードにおいて、前記出力回路の出力電流 が所定の値よりも大きくなつたときに、第 1の待機モードから通常動作モードに移行す るように前記駆動信号におけるパルス幅又はパルス数を増加する、請求項 1〜4の 、 ずれ力 1項記載のスイッチング電源回路。 [5] In the normal operation mode, when the state in which the output current of the output circuit is smaller than a predetermined value continues for a period exceeding the first predetermined period, the control circuit switches from the normal operation mode to the first The pulse width or number of pulses in the drive signal is reduced so as to shift to the standby mode, and the state in which the output current of the output circuit is smaller than a predetermined value in the first standby mode exceeds the second predetermined period. The drive signal is stopped or deactivated so as to shift from the first standby mode to the second standby mode in accordance with a mode switching signal supplied from the outside. The drive signal is stopped or deactivated so as to shift from the normal operation mode to the second standby mode in accordance with the mode switching signal supplied from the The drive signal is activated so as to shift from the second standby mode to the normal operation mode in accordance with the mode switching signal supplied from the second standby mode, and in the first standby mode, the output current of the output circuit is larger than a predetermined value. The pulse width or number of pulses in the drive signal is increased so as to shift from the first standby mode to the normal operation mode when The switching power supply circuit according to item 1.
[6] 前記制御回路が、通常動作モードにおいて、前記出力回路の出力電流の大きさに 応じて、前記所定の電力よりも大きい電力を負荷に供給するように駆動信号を生成 する第 1の期間と、前記所定の電力以内の電力を負荷に供給するように駆動信号を 生成する第 2の期間とを設定する、請求項 1〜5のいずれか 1項記載のスイッチング 電源回路。 [6] A first period in which the control circuit generates a drive signal so as to supply power greater than the predetermined power to the load according to the magnitude of the output current of the output circuit in the normal operation mode. The switching power supply circuit according to any one of claims 1 to 5, wherein a second period for generating a drive signal is set so as to supply power within the predetermined power to a load.
[7] アモルファス磁性体を含むコア及び該コアに回卷された 1次側卷線及び 2次側卷線 を有し、入力電圧が 1次側卷線の一端に印加されるトランスと、前記トランスの 1次側 卷線の他端に接続され、パルス状の駆動信号に従って前記トランスの 1次側卷線に 電流を流すスイッチング素子と、前記トランスの 2次側卷線に発生する電圧に基づ ヽ て出力電圧を生成する出力回路とを含むスイッチング電源回路の制御方法であって 通常動作モードにおいて、前記出力回路の出力電流が所定の値よりも小さい状態 が第 1の所定の期間を超えて継続したときに、通常動作モードから第 1の待機モード に移行するように前記駆動信号におけるパルス幅又はパルス数を低減するステップ( a)と、  [7] A transformer including a core including an amorphous magnetic material, a primary winding and a secondary winding wound around the core, and an input voltage applied to one end of the primary winding, A switching element that is connected to the other end of the primary side of the transformer and flows current to the primary side of the transformer in accordance with a pulsed drive signal, and a voltage generated on the secondary side of the transformer. And a control method for a switching power supply circuit including an output circuit for generating an output voltage, wherein a state in which the output current of the output circuit is smaller than a predetermined value exceeds a first predetermined period in a normal operation mode. (A) reducing the pulse width or the number of pulses in the drive signal so as to shift from the normal operation mode to the first standby mode when the operation continues.
第 1の待機モードにおいて、前記出力回路の出力電流が所定の値よりも小さい状 態が第 2の所定の期間を超えて継続したときに、又は、外部力も供給されるモード切 換信号に従って、第 1の待機モードから第 2の待機モードに移行するように前記駆動 信号を停止又は非活性化するステップ (b)と、  In the first standby mode, when the state in which the output current of the output circuit is smaller than a predetermined value continues beyond the second predetermined period, or according to a mode switching signal to which an external force is also supplied (B) stopping or deactivating the drive signal so as to shift from the first standby mode to the second standby mode;
通常動作モードにおいて、外部から供給されるモード切換信号に従って、通常動 作モードから第 2の待機モードに移行するように前記駆動信号を停止又は非活性ィ匕 するステップ(c)と、  (C) stopping or deactivating the drive signal so as to shift from the normal operation mode to the second standby mode in accordance with a mode switching signal supplied from the outside in the normal operation mode;
第 2の待機モードにおいて、外部力も供給されるモード切換信号に従って、第 2の 待機モードから通常動作モードに移行するように前記駆動信号を起動又は活性ィ匕す るステップ (d)と、  (D) starting or activating the drive signal so as to shift from the second standby mode to the normal operation mode in accordance with the mode switching signal to which external force is also supplied in the second standby mode;
第 1の待機モードにおいて、前記出力回路の出力電流が所定の値よりも大きくなつ たときに、第 1の待機モードから通常動作モードに移行するように前記駆動信号にお けるパルス幅又はパルス数を増加するステップ(e)と、 In the first standby mode, when the output current of the output circuit becomes larger than a predetermined value, the drive signal is switched to the normal operation mode from the first standby mode. Increasing the pulse width or number of pulses (e),
を具備する制御方法。  A control method comprising:
[8] アモルファス磁性体を含むコア及び該コアに回卷された卷線を有し、入力電圧が卷 線の一端に印加されるチョークコイルと、前記チョークコイルの卷線の他端に接続さ れ、パルス状の駆動信号に従って前記チョークコイルの卷線に電流を流すスィッチン グ素子と、前記チョークコイルと前記スイッチング素子との接続点に発生する電圧に 基づいて出力電圧を生成する出力回路とを含むスイッチング電源回路の制御方法 であって、  [8] A choke coil having a core including an amorphous magnetic body and a winding wound around the core, and an input voltage is applied to one end of the winding, and connected to the other end of the winding of the choke coil. A switching element for passing a current through the winding of the choke coil in accordance with a pulsed drive signal, and an output circuit for generating an output voltage based on a voltage generated at a connection point between the choke coil and the switching element. A switching power supply circuit control method including
通常動作モードにおいて、前記出力回路の出力電流が所定の値よりも小さい状態 が第 1の所定の期間を超えて継続したときに、通常動作モードから第 1の待機モード に移行するように前記駆動信号におけるパルス幅又はパルス数を低減するステップ( a)と、  In the normal operation mode, when the state in which the output current of the output circuit is smaller than a predetermined value continues beyond the first predetermined period, the driving is performed so that the normal operation mode is shifted to the first standby mode. Reducing the pulse width or number of pulses in the signal (a);
第 1の待機モードにおいて、前記出力回路の出力電流が所定の値よりも小さい状 態が第 2の所定の期間を超えて継続したときに、又は、外部力も供給されるモード切 換信号に従って、第 1の待機モードから第 2の待機モードに移行するように前記駆動 信号を停止又は非活性化するステップ (b)と、  In the first standby mode, when the state in which the output current of the output circuit is smaller than a predetermined value continues beyond the second predetermined period, or according to a mode switching signal to which an external force is also supplied (B) stopping or deactivating the drive signal so as to shift from the first standby mode to the second standby mode;
通常動作モードにおいて、外部から供給されるモード切換信号に従って、通常動 作モードから第 2の待機モードに移行するように前記駆動信号を停止又は非活性ィ匕 するステップ(c)と、  (C) stopping or deactivating the drive signal so as to shift from the normal operation mode to the second standby mode in accordance with a mode switching signal supplied from the outside in the normal operation mode;
第 2の待機モードにおいて、外部力も供給されるモード切換信号に従って、第 2の 待機モードから通常動作モードに移行するように前記駆動信号を起動又は活性ィ匕す るステップ (d)と、  (D) starting or activating the drive signal so as to shift from the second standby mode to the normal operation mode in accordance with the mode switching signal to which external force is also supplied in the second standby mode;
第 1の待機モードにおいて、前記出力回路の出力電流が所定の値よりも大きくなつ たときに、第 1の待機モードから通常動作モードに移行するように前記駆動信号にお けるパルス幅又はパルス数を増加するステップ(e)と、  In the first standby mode, when the output current of the output circuit becomes larger than a predetermined value, the pulse width or the number of pulses in the drive signal so as to shift from the first standby mode to the normal operation mode. Step (e) to increase
を具備する制御方法。  A control method comprising:
[9] 通常動作モードにおいて、前記出力回路の出力電流の大きさに応じて、前記所定 の電力よりも大きい電力を負荷に供給するように駆動信号を生成する第 1の期間と、 前記所定の電力以内の電力を負荷に供給するように駆動信号を生成する第 2の期 間とを設定するステップ (e)をさらに具備する請求項 7又は 8記載の制御方法。 [9] In a normal operation mode, a first period for generating a drive signal so as to supply power greater than the predetermined power to the load according to the magnitude of the output current of the output circuit; 9. The control method according to claim 7, further comprising a step (e) of setting a second period for generating a drive signal so as to supply power within the predetermined power to the load.
PCT/JP2007/058307 2006-04-18 2007-04-17 Switching power supply circuit and its control method WO2007123098A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008512107A JPWO2007123098A1 (en) 2006-04-18 2007-04-17 Switching power supply circuit and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-114935 2006-04-18
JP2006114935 2006-04-18

Publications (1)

Publication Number Publication Date
WO2007123098A1 true WO2007123098A1 (en) 2007-11-01

Family

ID=38624998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058307 WO2007123098A1 (en) 2006-04-18 2007-04-17 Switching power supply circuit and its control method

Country Status (2)

Country Link
JP (1) JPWO2007123098A1 (en)
WO (1) WO2007123098A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011522508A (en) * 2008-05-29 2011-07-28 アイゴ、インク Primary side control circuit and method for ultra-low idle power operation
CN103425056A (en) * 2012-05-15 2013-12-04 珠海格力电器股份有限公司 Quasi-zero power consumption standby control circuit device and control method
JP2015070679A (en) * 2013-09-27 2015-04-13 ルネサスエレクトロニクス株式会社 Semiconductor device and control method of the same
CN108647420A (en) * 2018-05-03 2018-10-12 南昌大学 A kind of practical load capacity appraisal procedure of inverse-excitation type switch power-supply

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249301A (en) * 1991-02-05 1992-09-04 Takeshi Masumoto Converter
JPH11178347A (en) * 1997-12-12 1999-07-02 Hitachi Ltd Electric motor drive device and air-conducting equipment using the same
JP2002051550A (en) * 2000-08-01 2002-02-15 Matsushita Electric Ind Co Ltd Switching power supply and semiconductor device therefor
JP2003244949A (en) * 2002-02-14 2003-08-29 Sharp Corp Power supply

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249301A (en) * 1991-02-05 1992-09-04 Takeshi Masumoto Converter
JPH11178347A (en) * 1997-12-12 1999-07-02 Hitachi Ltd Electric motor drive device and air-conducting equipment using the same
JP2002051550A (en) * 2000-08-01 2002-02-15 Matsushita Electric Ind Co Ltd Switching power supply and semiconductor device therefor
JP2003244949A (en) * 2002-02-14 2003-08-29 Sharp Corp Power supply

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011522508A (en) * 2008-05-29 2011-07-28 アイゴ、インク Primary side control circuit and method for ultra-low idle power operation
CN103425056A (en) * 2012-05-15 2013-12-04 珠海格力电器股份有限公司 Quasi-zero power consumption standby control circuit device and control method
CN103425056B (en) * 2012-05-15 2016-05-04 珠海格力电器股份有限公司 Quasi-zero power consumption standby control circuit device and control method
JP2015070679A (en) * 2013-09-27 2015-04-13 ルネサスエレクトロニクス株式会社 Semiconductor device and control method of the same
CN108647420A (en) * 2018-05-03 2018-10-12 南昌大学 A kind of practical load capacity appraisal procedure of inverse-excitation type switch power-supply
CN108647420B (en) * 2018-05-03 2021-11-19 南昌大学 Method for evaluating actual load carrying capacity of flyback switching power supply

Also Published As

Publication number Publication date
JPWO2007123098A1 (en) 2009-09-03

Similar Documents

Publication Publication Date Title
US7894223B2 (en) Switching power supply circuit
US7095638B2 (en) Controller for complementary switches of a power converter and method of operation thereof
KR101378568B1 (en) Synchronous Rectifier
US6469484B2 (en) Power supply circuit and method thereof to detect demagnitization of the power supply
JP5691712B2 (en) Constant current power supply
US20090201705A1 (en) Energy converting apparatus, and semiconductor device and switching control method used therein
US8977157B2 (en) Switching power supply
JP2009284667A (en) Power supply device, its control method, and semiconductor device
US8982584B2 (en) Power supply regulation for ultra-low load and no-load operation
US9318961B2 (en) Switching power-supply device
KR101436967B1 (en) Current resonance power supply
JP4454530B2 (en) Power factor correction circuit
JP2011087370A (en) Self-excited switching power circuit
JP4816908B2 (en) Multi-output switching power supply
TW201830843A (en) Inductive load drive circuit especially applicable to the solenoid or motor controlled by pulse width modulation and having energy recovery
WO2007123098A1 (en) Switching power supply circuit and its control method
JP2006304429A (en) Switching power supply circuit
JP2011182482A (en) Switching step-up type dc-dc converter and semiconductor integrated circuit device
JP2013251979A (en) Power supply device and image formation apparatus
US20110140684A1 (en) Power controller having externally adjustable duty cycle
JP2005027412A (en) Oscillation control method of self-excitation type switching power supply circuit
JP2007104881A (en) Switching power supply unit
WO2007123099A1 (en) Switching power supply circuit
JP2004328837A (en) Switching power supply circuit and switching regulator comprising the same
JP5926766B2 (en) DC / DC converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741743

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008512107

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741743

Country of ref document: EP

Kind code of ref document: A1