WO2007123036A1 - Vehicle and its control method - Google Patents

Vehicle and its control method Download PDF

Info

Publication number
WO2007123036A1
WO2007123036A1 PCT/JP2007/057980 JP2007057980W WO2007123036A1 WO 2007123036 A1 WO2007123036 A1 WO 2007123036A1 JP 2007057980 W JP2007057980 W JP 2007057980W WO 2007123036 A1 WO2007123036 A1 WO 2007123036A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
output
braking force
input
drive circuit
Prior art date
Application number
PCT/JP2007/057980
Other languages
French (fr)
Japanese (ja)
Inventor
Takahiko Hirasawa
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2007123036A1 publication Critical patent/WO2007123036A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0076Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/611Engine braking features related thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/16Ratio selector position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle and a control method thereof.
  • a vehicle includes a drive motor that drives a drive shaft and a brake that outputs a braking force by hydraulic pressure.
  • a brake that outputs a braking force by hydraulic pressure.
  • the brake pedal Based on the amount of stepping on and the number of revolutions of the drive motor, it has been proposed to set the regenerative braking force of the drive motor to ensure the braking force required by the driver (for example, Patent Document 1). reference).
  • Patent Document 1 JP 2001-268703 A
  • the present invention has been made in view of such problems, and in a vehicle equipped with an electric motor, a braking position is ensured even when the shift position is a-neutral position and an abnormality occurs in the braking force applying means. It is an object of the present invention to provide a vehicle and a control method thereof.
  • the present invention employs the following means in order to achieve the above-described object.
  • An electric motor capable of inputting and outputting power to the drive shaft
  • Power storage means capable of exchanging electric power with the electric motor via the drive circuit, braking force applying means capable of outputting a braking force to the vehicle using fluid pressure, State detecting means for detecting the state of the braking force applying means;
  • the drive circuit When the shift position is a -neutral position and the state detection means detects that the braking force applying means is in a normal state, the drive circuit is stopped when it is normal, and the shift position is -a neutral position and the state is detected.
  • the drive circuit is configured to output a regenerative braking force to the drive shaft by converting the power of the drive shaft into electric power by the electric motor when an abnormality is detected by the means that the braking force applying means is in an abnormal state.
  • the drive circuit is deactivated when the shift position is the neutral position and the braking force applying means is normal, and the shift position is the-neutral position and the braking force applying means is abnormal.
  • the drive circuit is controlled so that the regenerative braking force is output to the drive shaft by converting the power of the drive shaft into electric power by the electric motor.
  • the drive circuit is deactivated during normal operation to prevent power from being output from the electric motor, and when abnormal, the regenerative braking force from the electric motor is output to the drive shaft without deactivating the drive circuit. . Therefore, the braking force can be secured even when the shift position is the -neutral position and the braking force applying means is abnormal.
  • a vehicle of the present invention is connected to an internal combustion engine, an output shaft of the internal combustion engine, and a drive shaft, and is capable of motoring the internal combustion engine and includes input / output of electric power and power.
  • Power motive power input / output means capable of outputting at least part of the power of power to the drive shaft
  • the drive circuit can also drive the power motive power input / output means
  • the power storage means is the drive
  • the power can be exchanged with the power power input / output means via a circuit
  • the control means motorizes the internal combustion engine with the power power input / output means when the abnormality occurs, so that the braking force by the internal combustion engine is controlled.
  • the drive circuit may be controlled to output the signal to the drive shaft.
  • the control means controls the drive circuit so as to cause the drive shaft to output the braking force by the power power input / output means based on the electric power that can be input to the power storage means at the time of the abnormality. It is good.
  • the control means controls the drive circuit based on the input possible power of the power storage means at the time of the abnormality, the regenerative braking force by the electric motor is obtained when the input possible power of the power storage means is larger than a predetermined power.
  • the drive circuit may be controlled such that the braking force from the internal combustion engine is output to the drive shaft by motoring the internal combustion engine.
  • the power generated by the output of the regenerative braking force of the motor is stored in the power storage means and the regenerative braking force is output to the drive shaft, and the power cannot be stored in the power storage means.
  • the generation of electric power generated by the output of the regenerative braking force of the electric motor is limited, and the electric power is consumed by the electric power power input / output means to output the braking force by the internal combustion engine. Can be secured.
  • the power drive input / output means is connected to three axes of the drive shaft, the output shaft of the internal combustion engine, and a rotatable rotary shaft, and is connected to any two of the three shafts.
  • the three-axis power input / output means for inputting / outputting power to the remaining shaft, and the generator capable of motoring the internal combustion engine and inputting / outputting power to the rotary shaft It is good also as a means provided with these.
  • the drive circuit may be an inverter, and the control means may shut off the inverter as an operation stop of the drive circuit.
  • the vehicle of the present invention includes vehicle speed detection means for detecting a vehicle speed, and the control means is configured to detect the abnormal time when the vehicle speed detected by the vehicle speed detection means is equal to or lower than a predetermined vehicle speed at the time of the abnormality.
  • the drive circuit may be deactivated, and the drive circuit may not be deactivated when the vehicle speed detected by the vehicle speed detection means is higher than the predetermined vehicle speed. In this way, when the vehicle is at a predetermined vehicle speed or less, it is possible to prevent the drive circuit force from outputting power when the vehicle is in the neutral position.
  • the “predetermined vehicle speed” is set to be equal to or less than the upper limit of the speed at which the vehicle can be stopped even by the braking force applying means in which an abnormality has occurred.
  • the vehicle of the present invention is A vehicle that travels with a drive shaft connected to an axle,
  • Power storage means capable of exchanging power with the power drive input / output means via the drive circuit
  • Braking force applying means capable of outputting a braking force to the vehicle using fluid pressure
  • State detecting means for detecting the state of the braking force applying means
  • the drive circuit When the shift position is a -neutral position and the state detection means detects that the braking force applying means is in a normal state, the drive circuit is stopped when it is normal, and the shift position is -a neutral position and the state is detected.
  • the power driving input / output means motors the internal combustion engine to output the braking force from the internal combustion engine to the drive shaft.
  • the drive circuit is deactivated when the shift position is the neutral position and the braking force applying means is in a normal state, and when the shift position is the-neutral position and the braking force applying means is in an abnormal state, the power is
  • the drive circuit is controlled so that the braking force of the internal combustion engine is output to the drive shaft by motoring the internal combustion engine by the power input / output means. In this way, the drive circuit is stopped during normal operation to prevent power output from the power / power input / output means, and when abnormal, the braking power of the internal combustion engine by the power / power input / output means is stopped without stopping the drive circuit. Is output to the drive shaft.
  • the vehicle control method of the present invention includes:
  • a motor that travels with the drive shaft connected to the axle and that can input and output power to the drive shaft, a drive circuit for driving the motor, and a braking force that can be output to the vehicle using fluid pressure
  • a braking force applying means comprising:
  • the drive circuit When the shift position is -the neutral position and the braking force applying means is in a normal state, the drive circuit is stopped.When the shift position is -the neutral position and the braking force applying means is in an abnormal state, the drive circuit is stopped. It includes controlling the drive circuit so that a regenerative braking force generated by converting the power of the drive shaft into electric power by an electric motor is output to the drive shaft.
  • the drive circuit when the shift position is the-neutral position and the braking force applying means is normal, the drive circuit is deactivated, and the shift position is the neutral position and the braking force applying means is In an abnormal state, which is an abnormal state, the drive circuit is controlled so that the regenerative braking force is output to the drive shaft by converting the power of the drive shaft into electric power by the motor. In this way, the drive circuit is stopped during normal operation to prevent power from being output from the electric motor, and when abnormal, the regenerative braking force by the electric motor is output to the drive shaft without stopping the drive circuit operation. . Therefore, the braking force can be ensured even when the shift position is in the neutral position and the braking force applying means is abnormal.
  • various aspects of the vehicle described above may be adopted, and steps for realizing the functions of the vehicle described above may be added.
  • FIG. 1 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 20 that is an embodiment of the present invention.
  • FIG. 2 is a flowchart showing an example of N-position control control executed by the hybrid electronic control unit 70 of the embodiment.
  • FIG. 3 is an explanatory diagram showing an example of the relationship between the battery temperature Tb and the input / output restrictions Win, Wout in the battery 50.
  • FIG. 5 is an explanatory diagram showing an example of a required braking torque setting map.
  • FIG. 6 is an explanatory diagram showing an example of a collinear diagram for dynamically explaining the rotating elements of the power distribution and integration mechanism 30.
  • FIG. 7 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 120 of a modified example.
  • FIG. 8 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 220 of a modified example.
  • FIG. 9 is a configuration diagram showing a schematic configuration of an electric vehicle 320 according to a modification.
  • FIG. 1 is a configuration diagram showing an outline of the configuration of a hybrid vehicle 20 equipped with a power output apparatus according to an embodiment of the present invention.
  • the hybrid vehicle 20 of the embodiment includes an engine 22, a three-shaft power distribution and integration mechanism 30 connected to a crankshaft 26 as an output shaft of the engine 22 via a damper 28, and a power distribution and integration.
  • the engine 22 is an internal combustion engine that outputs power using a hydrocarbon-based fuel such as gasoline or light oil, and inputs various sensor force signals that detect the operating state of the engine 22.
  • the engine ECU is under operation control such as fuel injection control, ignition control, and intake air amount adjustment control.
  • the engine ECU 24 communicates with the electronic control unit 70 for the hybrid, and controls the operation of the engine 22 by a control signal from the electronic control unit 70 for the hybrid and uses the data regarding the operation state of the engine 22 for the hybrid as necessary. Output to electronic control unit 70.
  • the power distribution and integration mechanism 30 includes a sun gear 31 as an external gear, a ring gear 32 as an internal gear arranged concentrically with the sun gear 31, a ring gear 3 and the sun gear 31. 2 and a carrier 34 that holds the plurality of pinion gears 33 so as to rotate and revolve freely, and the sun gear 31, the ring gear 32, and the carrier 34 are used as rotational elements to perform differential action. It is configured as a planetary gear mechanism to perform.
  • the crankshaft 26 of the engine 22 is connected to the carrier 34
  • the motor MG 1 is connected to the sun gear 31
  • the reduction gear 35 is connected to the ring gear 32 via the ring gear shaft 32 a.
  • the power from engine 22 input from carrier 34 is distributed according to the gear ratio between sun gear 31 and ring gear 32, and when motor MG1 functions as a motor 34
  • the power from the engine 22 input from the engine and the power from the motor MG1 input from the sun gear 31 are combined and output to the ring gear 32 side.
  • the power output to the ring gear 32 is finally output from the ring gear shaft 32a to the drive wheels 39a and 39b of the vehicle via the gear mechanism 37 and the differential gear 38.
  • Both the motor MG1 and the motor MG2 are configured as well-known synchronous generator motors that can be driven as a generator as well as a generator, and exchange power with the battery 50 via inverters 41 and 42.
  • the power line 54 connecting the inverters 41 and 42 and the notch 50 is configured as a positive and negative bus shared by the inverters 41 and 42, and is generated by either the motor MG1 or MG2. Can be consumed by other motors. Therefore, the battery 50 is charged / discharged by electric power generated from one of the motors MG1 and MG2 or insufficient electric power. If the balance of electric power is balanced by motors MG1 and MG2, battery 50 is not charged / discharged.
  • the motors MG1 and MG2 are both driven and controlled by a motor electronic control unit (hereinafter referred to as motor ECU) 40.
  • the motor ECU 40 includes signals necessary for driving and controlling the motors M Gl and MG2, such as signals from rotational position detection sensors 43 and 44 that detect the rotational positions of the rotors of the motors MG1 and MG2, and current sensors (not shown).
  • the phase current applied to the motors MG1 and MG2 detected by the above is input, and a switching control signal to the inverters 41 and 42 is output from the motor ECU 40.
  • the motor ECU 40 communicates with the hybrid electronic control unit 70 and drives and controls the motors MG1 and MG2 by the control signal from the electronic control unit 70 for the hybrid. At the same time, data on the operating state of the motors MG 1 and MG 2 is output to the electronic control unit 70 for the hybrid as required.
  • the battery 50 is managed by a battery electronic control unit (hereinafter referred to as a battery ECU) 52.
  • the notch ECU 52 is connected to a signal necessary for managing the notch 50, for example, a voltage between terminals of a voltage sensor (not shown) installed between the notch 50 terminals, and an output terminal of the notch 50.
  • the charging / discharging current from a current sensor (not shown) attached to the power line 54, the battery temperature Tb from the temperature sensor 51 attached to the battery 50, etc. are input, and the state of the battery 50 is Is output to the hybrid electronic control unit 70 by communication.
  • the battery ECU 52 also calculates the remaining capacity (SOC) based on the integrated value of the charge / discharge current detected by the current sensor in order to manage the battery 50.
  • SOC remaining capacity
  • the brake actuator 92 responds to the share of the brake in the braking force that is applied to the vehicle by the pressure (brake pressure) of the brake master cylinder 90 and the vehicle speed V generated when the brake pedal 85 is depressed. Regulates the hydraulic pressure of the brake wheel cylinders 96a to 96d via the hydraulic pipes 93a to 93d so that the braking torque acts on the drive wheels 39a and 39b and the driven wheels 39c and 39d. The hydraulic pressures of the brake wheel cylinders 96a to 96d can be adjusted so that the braking torque acts on the wheels 39a, 39b and the driven wheels 39c, 39d.
  • the brake actuator 92 is controlled by a brake electronic control unit (hereinafter referred to as a brake ECU) 94.
  • the brake ECU 94 is not shown in the figure attached to the drive wheels 39a, 39b and the driven wheels 39c, 39d by a signal line (not shown).
  • Anti-lock brake that prevents any of the driving wheels 39a, 39b and driven wheels 39c, 39d from slipping due to a lock when the driver depresses the brake pedal 85 by inputting a signal such as steering angle System function (ABS), traction control (TRC) to prevent one of the drive wheels 39a, 39b from slipping due to idling when the driver depresses the accelerator pedal 83, and when the vehicle is turning It also performs posture maintenance control (VSC) to maintain posture.
  • ABS steering angle System function
  • TRC traction control
  • VSC posture maintenance control
  • the brake ECU 94 receives signals from hydraulic sensors 95a to 95d that detect the hydraulic pressure provided in each of the hydraulic pipes 93a to 93d. Is also entered.
  • the brake ECU 94 communicates with the electronic control unit 70 for the hybrid, and controls the drive of the brake actuator 92 by the control signal from the hybrid electronic control unit 70, and the state of the brake actuator 92 as necessary. Data related to this is output to the hybrid electronic control unit 70.
  • the hybrid electronic control unit 70 is configured as a microprocessor centered on a CPU 72. In addition to the CPU 72, a ROM 74 that stores a processing program, a RAM 76 that temporarily stores data, and an input (not shown). An output port and a communication port are provided.
  • the hybrid electronic control unit 70 detects the idling signal from the idling switch 80, the shift position sensor 82 that detects the operating position of the shift lever 81, and the depression amount of the accelerator pedal 83 from the shift position sensor 82. Accelerator pedal position sensor Acc, accelerator pedal position Acc, brake pedal 85 depressing amount brake pedal position sensor 86 brake pedal position BP, vehicle speed sensor 88 vehicle speed V, etc. via the input port Have been entered.
  • the hybrid electronic control unit 70 is connected to the engine ECU 24, the motor ECU 40, the battery ECU 52, and the brake ECU 94 via the communication port, and the engine ECU 24, the motor ECU 40, the battery ECU 52, and the brake ECU 94.
  • Various control signals and data are exchanged.
  • the shift position SP the parking position (P position) for parking, the neutral-neutral position (N position), the drive position (D position) for forward travel, and the reverse for reverse travel There are positions (R position).
  • the hybrid vehicle 20 of the embodiment configured as described above is a request to be output to the ring gear shaft 32a as the drive shaft based on the accelerator opening Acc and the vehicle speed V corresponding to the depression amount of the accelerator pedal 83 by the driver.
  • Torque is calculated, and the engine 22, the motor MG1, and the motor MG2 are controlled so that the required power corresponding to the required torque is output to the ring gear shaft 32a.
  • Operation control of the engine 22 and motor MG1 and motor MG2 includes controlling the operation of the engine 22 so that the power corresponding to the required power is output from the engine 22, and all the power output from the engine 22 is a power distribution integrated mechanism.
  • 30 and motor MG1 and motor MG2 are converted to torque and output to ring gear shaft 32a.
  • the engine 22 is operated and controlled so that the engine 22 outputs the power that matches the sum of the torque conversion operation mode for driving and controlling the motor MG1 and the motor MG2, and the required power and the power required for charging and discharging the battery 50. All or part of the power output from the engine 22 with charging / discharging of the Notter 50 is output to the ring gear shaft 32a with torque conversion by the power distribution and integration mechanism 30, motor MG1, and motor MG2. Charge / discharge operation mode for controlling the motor MG1 and motor MG2 and motor operation mode for controlling the operation to stop the operation of the engine 22 and output the power corresponding to the required power from the motor MG2 to the ring gear shaft 32a. and so on.
  • FIG. 2 is a flowchart showing an example of an N-position control routine executed by the hybrid electronic control unit 70. This routine is executed after the shift lever 81 is operated to the N position.
  • the CPU 72 of the hybrid electronic control unit 70 first inputs data necessary for control, such as the input / output limit Win of the battery 50 and the vehicle speed V from the vehicle speed sensor 88. Processing is executed (step S100).
  • the input / output limit Win of the battery 50 is a value set based on the battery temperature Tb of the battery 50 detected by the temperature sensor 51 and the remaining capacity (SOC) of the battery 50 through communication from the battery ECU 52. It was supposed to be entered.
  • the input limit Win of the notch 50 sets the basic value Wintmp of the input limit Win based on the battery temperature Tb, sets the correction factor for the input limit based on the remaining capacity (SOC) of the battery 50, Set input limit Win Basic value Wintmp can be set by multiplying it by a correction factor.
  • Fig. 3 shows an example of the relationship between the battery temperature Tb and the input / output limits Win and Wout.
  • Fig. 4 shows an example of the relationship between the remaining capacity (SOC) of the battery 50 and the input and output limits Win and Wout correction factors. Show.
  • step S110 it is determined based on the brake pedal position BP from the brake pedal position sensor 86 whether or not the driver has a braking request for the vehicle (step S110).
  • the brake abnormality includes an abnormality caused by the brake actuator 92 not operating normally, a communication abnormality in which the communication between the brake ECU 94 and the hybrid electronic control unit 70 cannot be normally performed, and the like. .
  • the determination of the brake abnormality can be made, for example, by checking the value of the brake abnormality flag that is set when an abnormality is detected in the control of the brake actuator 92 by the brake ECU 94, This can be done by checking the value of the communication error flag that is set when a communication error with the control unit 70 occurs.
  • the abnormality of the brake actuator 92 include liquid leakage in hydraulic pipes 93a to 93d between the brake actuator 92 and the brake wheel cylinder 96a (see FIG. 1). In the present embodiment, a case will be described in which a liquid leak in the hydraulic pipe 93a is detected based on a signal from the hydraulic sensor 95a as a brake abnormality.
  • step S120 it is determined that there is no abnormality in the brake operated by the brake actuator 92, that is, it is determined that the brake is normal, or in step S110, there is no driver's braking request for the vehicle.
  • the inverters 41 and 42 of the motors MG1 and MG2 are gate-blocked so that unnecessary driving torque is not output from the motors MG1 and MG2 to the ring gear shaft 32a (step S130).
  • it is determined whether or not the shift position has been changed from the N position based on the shift position SP from the shift position sensor 82 step S 140
  • it is determined that the shift position has not been changed from the N position If it is determined that the shift position has been changed from the N position, the routine is terminated.
  • step S120 determines that an abnormality has occurred in the brake
  • This threshold value Vref is set to a vehicle speed (for example, 5 kmZh, lOkmZh, etc.) that can sufficiently stop the vehicle even with the braking force obtained by the brake in which an abnormality has occurred.
  • the inverters 41 and 42 of the motors MG1 and MG2 are gated in step S130, assuming that braking is possible with the current brake.
  • step S160 it is determined whether or not the absolute value of the input limit Win of the notch 50 is larger than the predetermined value Winref (step S160).
  • This predetermined value Winref is set to a predetermined ratio (for example, 20% or 30%) of the maximum value of the input limit Win.
  • the maximum value of the input restriction Win is a value obtained by multiplying the maximum value of the basic value Wintmp of the input restriction Win by the correction coefficient “1”.
  • Input restriction Since Win is the power that can be charged to the battery 50 in consideration of the temperature of the current battery 50, the determination in step S160 is whether the battery 50 can sufficiently charge the power generated by the motor MG2, etc. It is to determine whether or not.
  • step S 160 When it is determined in step S 160 that the input limit Win of battery 50 is greater than the predetermined value Winref, it is assumed that notch 50 is sufficiently charged, and the regenerative braking process is performed to output the regenerative brake by motor MG2. (Step S170).
  • the regenerative braking process by the motor MG2 will be described.
  • the regenerative brake is executed based on the input brake pedal position BP and the vehicle speed V! / And the drive shaft connected to the drive wheels 39a and 39b as the braking torque required for the vehicle.
  • the required braking torque Tr * to be output to the ring gear shaft 32a is set, and the required braking power Pr * is calculated by multiplying the required braking torque Tr * by the rotation speed Nr of the ring gear shaft 32a.
  • the regenerative braking power required for the motor MG2 is obtained from the difference between the braking power Pr * and the braking force that can be output in the current brake state, and the inverter is configured so that the obtained regenerative braking power is output from the motor MG2. It is set to perform 42 switching controls.
  • the required braking torque Tr * is stored in the ROM 74 as a required braking torque setting map by predetermining the relationship among the brake pedal position BP, the vehicle speed V, and the required torque Tr *.
  • FIG. 5 shows an example of a map for setting the required torque.
  • the rotational speed Nr of the ring gear shaft 32a can be obtained by multiplying the vehicle speed V by the conversion factor k, or by dividing the rotational speed Nm2 of the motor MG2 by the gear ratio Gr of the reduction gear 35. In this way, when the battery 50 is in a state where it can be stored, the braking force of the brake is supplemented by the regenerative braking power of the motor MG2.
  • step S160 when it is determined in step S160 that the input limit Win of the battery 50 is not greater than the predetermined value Winref, that is, the input limit Win is less than or equal to the predetermined value Winref, the battery 50 is not in a sufficiently chargeable state.
  • the engine brake process is executed to output the engine brake of the engine 22 (step S180).
  • the engine brake process will be described.
  • the engine braking process calculates the braking power required for engine braking from the difference between the required braking power Pr * calculated in the same manner as in step S 170 and the braking force that can be output in the current brake state.
  • FIG. 6 is a collinear diagram showing the dynamic relationship between the rotational speed and torque in the rotating elements of the power distribution and integration mechanism 30.
  • the left S-axis indicates the rotation speed of the sun gear 31 which is the rotation speed Nml of the motor MG1
  • the C-axis indicates the rotation speed of the carrier 34 which is the rotation speed Ne of the engine 22
  • the R-axis indicates the rotation speed of the motor MG2.
  • the rotation speed Nr of the ring gear 32 obtained by dividing the number Nm2 by the gear ratio Gr of the reduction gear 35 is shown.
  • “/ 0” shows the gear ratio of the power distribution and integration mechanism 30.
  • the torque of (1/1 / ⁇ ⁇ ⁇ 1) acts as a braking torque on the ring gear shaft 32a.
  • the motor MG1 consumes the power of the battery 50 to motor the engine 22 and output a so-called engine brake to the ring gear shaft 32a, thereby braking the brake. Is to compensate.
  • step S150 the processing after step S150 is executed. If it is determined in step S150 that the vehicle speed V is less than or equal to the threshold value Vref, the inverters 41 and 42 of the motors MG1 and MG2 are gated off in step S1 30, and the shift position is changed from the N position in step S140! When it is determined that there is no! /, The processing from step S100 described above is executed, and when it is determined that the shift position has been changed from the N position, this routine is terminated.
  • the inverters 41 and 42 are shut off at the normal time, and the shift position is the N position.
  • the inverter 42 is controlled to output the regenerative braking power to the ring gear shaft 32a by converting the power of the ring gear shaft 32a into electric power by the motor MG2.
  • the inverters 41 and 42 are shut off at normal times to prevent power from being output from the motors MG1 and MG2, and at abnormal times, the regenerative braking power by the motor MG2 is turned off without shutting down the inverters 41 and 42 at the gate Is output to the ring gear shaft 32a. Therefore, the braking force can be secured even when the shift position is the N position and the brake is abnormal.
  • the inverter 41 is controlled so that the braking power from the engine brake generated by motoring the engine 22 by the motor MG1 is output to the ring gear shaft 32a. Braking force can be secured. Furthermore, when the input limit Win of the battery 50 is larger than the predetermined value Winre; f (when the battery 50 can be sufficiently charged), the electric power generated by the output of the regenerative braking power of the motor MG2 is supplied to the battery 50.
  • the inverters 41 and 42 are gated even at the time of abnormality, so that power is not supplied from the inverters 41 and 42 and the motors MG1, M G2 Power can be prevented from being output from the vehicle, and the vehicle speed V is less than the threshold value Vre; f.
  • the inverters 41 and 42 are not shut off, and the regenerative braking power output by the motor MG2 or the braking power by the engine brake by the motoring of the motor MG1 is output to the ring gear shaft 32a.
  • the vehicle speed V is less than or equal to the threshold value Vref, braking can be performed by the brake in which an abnormality has occurred.
  • the braking power of the engine 22 due to the motoring of the motor MG1 is used, which uses the regenerative braking power of the motor MG2 and the braking power of the engine 22 due to the motoring of the motor MG1. It may be used. Even in this way, the braking force can be secured even when the shift position is the N position and an abnormality occurs in the brake.
  • the input limit Win is greater than the predetermined value Winre; f in step S160! /
  • the input limit Win is greater than the predetermined value Winre; f, in step S170, only the regenerative braking power by the motor MG2 is used.
  • the braking power of the engine 22 by motoring of the motor MG1 may be used. In this way, when the brake is abnormal and the battery 50 is in a chargeable state, the braking force can be further secured.
  • the force is assumed to use only the braking force of the engine 22 due to motoring of the motor MG1 in step S180.
  • the regenerative braking power by the motor MG2 corresponding to the power consumed by the motor MG1 may be used. In this way, when the brake is abnormal and the battery 50 is not sufficiently charged, the braking force can be further maintained.
  • step S160 the force that switches between the regenerative braking power by the motor MG2 and the braking power of the engine 22 by the motoring of the motor MG1 based on the input restriction Win. This process is omitted. May be.
  • the regenerative braking power by the motor MG2 may be used, or the braking power of the engine 22 by the motoring of the motor MG1 may be used, but the braking of the engine 22 by the motoring of the motor MG1 may be used. Equivalent to the power consumed by motor MG1 while using power From the viewpoint of protection of the battery 50, it is preferable to use the regenerative braking power by the motor MG2.
  • the regenerative braking power by the motor MG2 and the braking power of the engine 22 by motoring of the motor MG1 are switched based on the input restriction Win in step S160. This switching may be done based on the capacity SOC. Even in this case, the battery 50 can be protected because the braking state is switched depending on whether or not the battery 50 is sufficiently charged.
  • the regenerative braking power required for the motor MG2 is obtained from the difference between the required braking power Pr * and the braking force that can be output in the current brake state.
  • the maximum regenerative braking power that can be output may be calculated, and the difference between the calculated regenerative braking power and the required braking power Pr * may be output from the brake. In this way, the battery 50 can be charged with as much regenerative braking power as possible. The same applies to the braking power of engine 22 due to motoring of motor MG1.
  • the force that does not shut off the inverters 41 and 42 is detected in steps S170 and S180.
  • the inverters 41 and 42 may not be gated when it is estimated that the braking force is insufficient in the state, and the inverters 41 and 42 may be gated otherwise. In this way, it is possible to further prevent the drive torque from being output from the motors MG1, MG2 at the N position.
  • the hydraulic pressure leakage pipe is closed and the hydraulic pressure valve is closed, not shown, provided in the hydraulic pipe. This may be omitted.
  • the threshold value Vref for determining whether or not the gates of the inverters 41 and 42 can be shut off can be stopped even by a brake whose abnormality has occurred and the hydraulic pressure has decreased. It shall be determined by the vehicle speed.
  • the power that the power of the motor MG2 is shifted by the reduction gear 35 and is output to the ring gear shaft 32a As illustrated in the modified automobile 120 in FIG. 7, the motor MG2 May be connected to a different axle (axle connected to wheels 39e, 39f in FIG. 7) than the axle to which the ring gear shaft 32a is connected (the axle connected to the drive wheels 39a, 39b force S). .
  • the force for outputting the power of the engine 22 to the ring gear shaft 32a as the drive shaft connected to the drive wheels 39a and 39b via the power distribution and integration mechanism 30 is a modification of FIG.
  • the motor 22 includes a counter-rotor motor 230 that transmits a part of the power of the engine 22 to the drive shaft and converts the remaining power into electric power.
  • the power of the hybrid vehicle 20 including the engine 22 and the motors MG1, MG2 is used. As shown in the modification of Fig. 9, the power of the motor MG2 is output to the drive wheels 39a, 39b.
  • the electric vehicle 320 may be used.
  • the power of the series parallel or hybrid vehicle may be the series or hybrid vehicle, or the parallel hybrid vehicle! /.
  • the present invention is not limited to those applied to such vehicles, but may be applied to vehicles other than automobiles. Furthermore, it may be a form of such a vehicle control method.
  • the present invention is applicable to industries related to automobiles such as passenger cars, buses, and trucks, as well as industries related to transportation vehicles such as trains, ships, and aircraft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulating Braking Force (AREA)

Abstract

A hybrid vehicle (20) controls inverters (41, 42) as follows. When a shift lever (81) is at N position and a brake including a brake actuator (92) is in a normal state, the inverters (41, 42) are gate-shut out. When the shift lever (81) is at the N position and the brake is in an abnormal state, the inverters (41, 42) are not gate-shut out, so that a brake force obtained by a regenerative brake force by a motor (MG2) and engine brake obtained by motoring an engine (22) by using a motor (MG1) are outputted to a ring gear shaft (32a). Here switching between the output of the regenerative brake force and the brake force by the engine (22) is performed depending on whether a battery (50) cab be sufficiently charged. Thus, when the brake is in an abnormal state, the brake force of the motors (MG1, MG2) is utilized.

Description

明 細 書  Specification
車両及びその制御方法  Vehicle and control method thereof
技術分野  Technical field
[0001] 本発明は、車両及びその制御方法に関する。  [0001] The present invention relates to a vehicle and a control method thereof.
背景技術  Background art
[0002] 従来、車両としては、駆動軸を駆動する駆動モータと油圧により制動力を出力する ブレーキとを備え、例えば油圧ラインに液漏れが発生するなどブレーキに異常が発 生したときには、ブレーキペダルの踏み込み量と駆動モータの回転数とに基づ!/ヽて 駆動モータの回生制動力を設定し、運転者が要求する制動力を確保するものが提 案されている (例えば、特許文献 1参照)。  [0002] Conventionally, a vehicle includes a drive motor that drives a drive shaft and a brake that outputs a braking force by hydraulic pressure. For example, when an abnormality occurs in the brake such as a liquid leak in the hydraulic line, the brake pedal Based on the amount of stepping on and the number of revolutions of the drive motor, it has been proposed to set the regenerative braking force of the drive motor to ensure the braking force required by the driver (for example, Patent Document 1). reference).
特許文献 1:特開 2001— 268703号公報  Patent Document 1: JP 2001-268703 A
発明の開示  Disclosure of the invention
[0003] し力しながら、この特許文献 1に記載された車両では、シフトポジションが-ユートラ ルポジションである場合については考慮されておらず、この場合には、駆動モータか ら動力を出力しないように駆動モータを駆動させるインバータをゲート遮断するため、 駆動モータによる回生制動力が得られない問題があった。  [0003] However, in the vehicle described in Patent Document 1, the case where the shift position is the -neutral position is not considered, and in this case, no power is output from the drive motor. In this way, the inverter that drives the drive motor is gate-cut off, so there is a problem that the regenerative braking force by the drive motor cannot be obtained.
[0004] 本発明は、このような課題に鑑みなされたものであり、電動機を備えた車両におい てシフトポジションが-ユートラルポジションであり制動力付与手段に異常が生じたと きでも制動力を確保することができる車両及びその制御方法を提供することを目的と する。  [0004] The present invention has been made in view of such problems, and in a vehicle equipped with an electric motor, a braking position is ensured even when the shift position is a-neutral position and an abnormality occurs in the braking force applying means. It is an object of the present invention to provide a vehicle and a control method thereof.
[0005] 本発明は、上述の目的を達成するために以下の手段を採った。  [0005] The present invention employs the following means in order to achieve the above-described object.
[0006] 本発明の車両は、 [0006] The vehicle of the present invention
前記駆動軸が車軸に接続されて走行する車両であって、  A vehicle that travels with the drive shaft connected to an axle;
駆動軸に動力の入出力が可能な電動機と、  An electric motor capable of inputting and outputting power to the drive shaft;
前記電動機を駆動するための駆動回路と、  A drive circuit for driving the electric motor;
前記駆動回路を介して前記電動機と電力のやり取りが可能な蓄電手段と、 流体圧を利用して車両に制動力を出力可能な制動力付与手段と、 前記制動力付与手段の状態を検出する状態検出手段と、 Power storage means capable of exchanging electric power with the electric motor via the drive circuit, braking force applying means capable of outputting a braking force to the vehicle using fluid pressure, State detecting means for detecting the state of the braking force applying means;
シフトポジションが-ユートラルポジションであり前記状態検出手段によって前記制 動力付与手段が正常状態であると検出された正常時には前記駆動回路を作動停止 させ、シフトポジションが-ユートラルポジションであり前記状態検出手段によって前 記制動力付与手段が異常状態であると検出された異常時には前記電動機によって 前記駆動軸の動力を電力に変換することによる回生制動力を前記駆動軸に出力さ せるよう前記駆動回路を制御する制御手段と、  When the shift position is a -neutral position and the state detection means detects that the braking force applying means is in a normal state, the drive circuit is stopped when it is normal, and the shift position is -a neutral position and the state is detected. The drive circuit is configured to output a regenerative braking force to the drive shaft by converting the power of the drive shaft into electric power by the electric motor when an abnormality is detected by the means that the braking force applying means is in an abnormal state. Control means for controlling;
を備えたものである。  It is equipped with.
[0007] この車両では、シフトポジションがニュートラルポジションであり制動力付与手段が 正常状態である正常時には駆動回路を作動停止させ、シフトポジションが-ユートラ ルポジションであり制動力付与手段が異常状態である異常時には電動機によって駆 動軸の動力を電力に変換することにより回生制動力を駆動軸に出力させるよう駆動 回路を制御する。このように、正常時には駆動回路を作動停止させて電動機から動 力が出力するのを防止し、異常時には、駆動回路を作動停止せずに電動機による回 生制動力を駆動軸に出力させるのである。したがって、シフトポジションが-ユートラ ルポジションであり制動力付与手段に異常が生じたときでも制動力を確保することが できる。  [0007] In this vehicle, the drive circuit is deactivated when the shift position is the neutral position and the braking force applying means is normal, and the shift position is the-neutral position and the braking force applying means is abnormal. When an abnormality occurs, the drive circuit is controlled so that the regenerative braking force is output to the drive shaft by converting the power of the drive shaft into electric power by the electric motor. In this way, the drive circuit is deactivated during normal operation to prevent power from being output from the electric motor, and when abnormal, the regenerative braking force from the electric motor is output to the drive shaft without deactivating the drive circuit. . Therefore, the braking force can be secured even when the shift position is the -neutral position and the braking force applying means is abnormal.
[0008] 本発明の車両は、内燃機関と、前記内燃機関の出力軸と前記駆動軸とに接続され 、前記内燃機関をモータリング可能であり電力と動力との入出力を伴って該内燃機 関力 の動力の少なくとも一部を前記駆動軸に出力可能な電力動力入出力手段と、 を備え、前記駆動回路は、前記電力動力入出力手段をも駆動可能であり、前記蓄電 手段は、前記駆動回路を介して前記電力動力入出力手段と電力のやり取りが可能 であり、前記制御手段は、前記異常時には、前記電力動力入出力手段によって前記 内燃機関をモータリングすることにより該内燃機関による制動力を前記駆動軸に出力 させるよう前記駆動回路を制御するものとしてもよい。こうすれば、異常時において内 燃機関の制動力も合わせた制動力を確保することができる。このとき、前記制御手段 は、前記異常時には、前記蓄電手段の入力可能電力に基づいて前記電力動力入 出力手段による制動力を前記駆動軸に出力させるよう前記駆動回路を制御するもの としてもよい。このとき、前記制御手段は、前記異常時に前記蓄電手段の入力可能電 力に基づいて前記駆動回路を制御するに際して、前記蓄電手段の入力可能電力が 所定電力より大きいときには、前記電動機による回生制動力を前記駆動軸に出力さ せ、前記蓄電手段の入力可能電力が所定電力以下のときには、前記電動機による 回生制動力を前記駆動軸に出力させるのを制限すると共に前記電力動力入出力手 段によって前記内燃機関をモータリングすることにより該内燃機関による制動力を前 記駆動軸に出力させるよう前記駆動回路を制御するものとしてもよい。こうすれば、蓄 電手段に電力を蓄電可能なときには電動機の回生制動力の出力で生じる電力を蓄 電手段に蓄電すると共に回生制動力を駆動軸に出力させ、蓄電手段に電力を蓄電 可能でないときには電動機の回生制動力の出力で生じる電力の発生を制限すると共 に、電力動力入出力手段により電力を消費して内燃機関による制動力を出力させる ため、蓄電手段を保護すると共に車両の制動力を確保することができる。 [0008] A vehicle of the present invention is connected to an internal combustion engine, an output shaft of the internal combustion engine, and a drive shaft, and is capable of motoring the internal combustion engine and includes input / output of electric power and power. Power motive power input / output means capable of outputting at least part of the power of power to the drive shaft, the drive circuit can also drive the power motive power input / output means, and the power storage means is the drive The power can be exchanged with the power power input / output means via a circuit, and the control means motorizes the internal combustion engine with the power power input / output means when the abnormality occurs, so that the braking force by the internal combustion engine is controlled. The drive circuit may be controlled to output the signal to the drive shaft. In this way, it is possible to secure a braking force that combines the braking force of the internal combustion engine in the event of an abnormality. At this time, the control means controls the drive circuit so as to cause the drive shaft to output the braking force by the power power input / output means based on the electric power that can be input to the power storage means at the time of the abnormality. It is good. At this time, when the control means controls the drive circuit based on the input possible power of the power storage means at the time of the abnormality, the regenerative braking force by the electric motor is obtained when the input possible power of the power storage means is larger than a predetermined power. Is output to the drive shaft, and when the power that can be input to the power storage means is less than or equal to a predetermined power, the regenerative braking force by the motor is restricted from being output to the drive shaft and the power power input / output means The drive circuit may be controlled such that the braking force from the internal combustion engine is output to the drive shaft by motoring the internal combustion engine. In this way, when the power can be stored in the power storage means, the power generated by the output of the regenerative braking force of the motor is stored in the power storage means and the regenerative braking force is output to the drive shaft, and the power cannot be stored in the power storage means. Sometimes the generation of electric power generated by the output of the regenerative braking force of the electric motor is limited, and the electric power is consumed by the electric power power input / output means to output the braking force by the internal combustion engine. Can be secured.
[0009] 本発明の車両において、前記電力動力入出力手段は、前記駆動軸と前記内燃機 関の出力軸と回転可能な回転軸の 3軸に接続され該 3軸のうちのいずれか 2軸に入 出力される動力に基づ!、て残余の軸に動力を入出力する 3軸式動力入出力手段と、 前記内燃機関をモータリング可能であり前記回転軸に動力を入出力可能な発電機と 、を備える手段であるものとしてもよい。  [0009] In the vehicle of the present invention, the power drive input / output means is connected to three axes of the drive shaft, the output shaft of the internal combustion engine, and a rotatable rotary shaft, and is connected to any two of the three shafts. Based on the input / output power, the three-axis power input / output means for inputting / outputting power to the remaining shaft, and the generator capable of motoring the internal combustion engine and inputting / outputting power to the rotary shaft It is good also as a means provided with these.
[0010] 本発明の車両において、前記駆動回路は、インバータであり、前記制御手段は、前 記駆動回路の作動停止として前記インバータの遮断を行うものとしてもよい。  [0010] In the vehicle of the present invention, the drive circuit may be an inverter, and the control means may shut off the inverter as an operation stop of the drive circuit.
[0011] 本発明の車両は、車速を検出する車速検出手段、を備え、前記制御手段は、前記 異常時に、前記車速検出手段によって検出された車速が所定車速以下であるときに は前記異常時であっても前記駆動回路を作動停止させ、前記車速検出手段によつ て検出された車速が前記所定車速よりも高いときには前記駆動回路を作動停止させ ないものとしてもよい。こうすれば、車両が所定車速以下であるときには、ニュートラル ポジションであるときに駆動回路力も電力を出力してしまうのを抑制することができる。 ここで「所定車速」は、異常が生じた制動力付与手段によっても車両を停止可能な速 度の上限以下に定めるものとしてもょ 、。  [0011] The vehicle of the present invention includes vehicle speed detection means for detecting a vehicle speed, and the control means is configured to detect the abnormal time when the vehicle speed detected by the vehicle speed detection means is equal to or lower than a predetermined vehicle speed at the time of the abnormality. However, the drive circuit may be deactivated, and the drive circuit may not be deactivated when the vehicle speed detected by the vehicle speed detection means is higher than the predetermined vehicle speed. In this way, when the vehicle is at a predetermined vehicle speed or less, it is possible to prevent the drive circuit force from outputting power when the vehicle is in the neutral position. Here, the “predetermined vehicle speed” is set to be equal to or less than the upper limit of the speed at which the vehicle can be stopped even by the braking force applying means in which an abnormality has occurred.
[0012] あるいは、本発明の車両は、 駆動軸が車軸に接続されて走行する車両であって、 Alternatively, the vehicle of the present invention is A vehicle that travels with a drive shaft connected to an axle,
内燃機関と、  An internal combustion engine;
前記内燃機関の出力軸と前記駆動軸とに接続され、前記内燃機関をモータリング 可能であり電力と動力との入出力を伴って該内燃機関力もの動力の少なくとも一部を 前記駆動軸に出力可能な電力動力入出力手段と、  Connected to the output shaft of the internal combustion engine and the drive shaft, is capable of motoring the internal combustion engine, and outputs at least a part of the power of the internal combustion engine power to the drive shaft with input and output of electric power and power. Possible power power input / output means;
前記電力動力入出力手段を駆動するための駆動回路と、  A drive circuit for driving the power drive input / output means;
前記駆動回路を介して前記電力動力入出力手段と電力のやり取りが可能な蓄電 手段と、  Power storage means capable of exchanging power with the power drive input / output means via the drive circuit;
流体圧を利用して車両に制動力を出力可能な制動力付与手段と、  Braking force applying means capable of outputting a braking force to the vehicle using fluid pressure;
前記制動力付与手段の状態を検出する状態検出手段と、  State detecting means for detecting the state of the braking force applying means;
シフトポジションが-ユートラルポジションであり前記状態検出手段によって前記制 動力付与手段が正常状態であると検出された正常時には前記駆動回路を作動停止 させ、シフトポジションが-ユートラルポジションであり前記状態検出手段によって前 記制動力付与手段が異常状態であると検出された異常時には前記電力動力入出力 手段によって前記内燃機関をモータリングすることにより該内燃機関による制動力を 前記駆動軸に出力させるよう前記駆動回路を制御する制御手段と、  When the shift position is a -neutral position and the state detection means detects that the braking force applying means is in a normal state, the drive circuit is stopped when it is normal, and the shift position is -a neutral position and the state is detected. When the abnormality is detected by the means that the braking force applying means is in an abnormal state, the power driving input / output means motors the internal combustion engine to output the braking force from the internal combustion engine to the drive shaft. Control means for controlling the drive circuit;
を備えたものとしてもよい。  It is good also as a thing provided.
この車両では、シフトポジションがニュートラルポジションであり制動力付与手段が 正常状態である正常時には駆動回路を作動停止させ、シフトポジションが-ユートラ ルポジションであり制動力付与手段が異常状態である異常時には電力動力入出力 手段によって内燃機関をモータリングすることにより内燃機関の制動力を駆動軸に出 力させるよう駆動回路を制御する。このように、正常時には駆動回路を作動停止させ て電力動力入出力手段力 動力が出力するのを防止し、異常時には、駆動回路を 作動停止せずに電力動力入出力手段による内燃機関の制動力を駆動軸に出力さ せるのである。したがって、電力動力入出力手段を備えた車両においてシフトポジシ ヨンが-ユートラルポジションであり制動力付与手段に異常が生じたときでも制動力を 確保することができる。この車両において、上述したいずれかの車両の態様を採用し てもよい。 [0014] 本発明の車両の制御方法は、 In this vehicle, the drive circuit is deactivated when the shift position is the neutral position and the braking force applying means is in a normal state, and when the shift position is the-neutral position and the braking force applying means is in an abnormal state, the power is The drive circuit is controlled so that the braking force of the internal combustion engine is output to the drive shaft by motoring the internal combustion engine by the power input / output means. In this way, the drive circuit is stopped during normal operation to prevent power output from the power / power input / output means, and when abnormal, the braking power of the internal combustion engine by the power / power input / output means is stopped without stopping the drive circuit. Is output to the drive shaft. Accordingly, the braking force can be ensured even when the shift position is in the -neutral position and abnormality occurs in the braking force applying means in the vehicle having the electric power drive input / output means. In this vehicle, any of the vehicle modes described above may be employed. [0014] The vehicle control method of the present invention includes:
駆動軸が車軸に接続されて走行する、前記駆動軸に動力の入出力が可能な電動 機と、前記電動機を駆動するための駆動回路と、流体圧を利用して車両に制動力を 出力可能な制動力付与手段と、を備えた車両の制御方法であって、  A motor that travels with the drive shaft connected to the axle and that can input and output power to the drive shaft, a drive circuit for driving the motor, and a braking force that can be output to the vehicle using fluid pressure A braking force applying means, and a vehicle control method comprising:
シフトポジションが-ユートラルポジションであり前記制動力付与手段が正常状態で ある正常時には前記駆動回路を作動停止させ、シフトポジションが-ユートラルポジ シヨンであり前記制動力付与手段が異常状態である異常時には前記電動機によって 前記駆動軸の動力を電力に変換することによる回生制動力を前記駆動軸に出力さ せるよう前記駆動回路を制御することを含むものである。  When the shift position is -the neutral position and the braking force applying means is in a normal state, the drive circuit is stopped.When the shift position is -the neutral position and the braking force applying means is in an abnormal state, the drive circuit is stopped. It includes controlling the drive circuit so that a regenerative braking force generated by converting the power of the drive shaft into electric power by an electric motor is output to the drive shaft.
[0015] この車両の制御方法では、シフトポジションが-ユートラルポジションであり制動力 付与手段が正常状態である正常時には駆動回路を作動停止させ、シフトポジション カ ユートラルポジションであり制動力付与手段が異常状態である異常時には電動 機によって駆動軸の動力を電力に変換することにより回生制動力を駆動軸に出力さ せるよう駆動回路を制御する。このように、正常時には駆動回路を作動停止させて電 動機から動力が出力するのを防止し、異常時には、駆動回路を作動停止せずに電 動機による回生制動力を駆動軸に出力させるのである。したがって、シフトポジション カ ユートラルポジションであり制動力付与手段に異常が生じたときでも制動力を確 保することができる。なお、この車両の制御方法において、上述した車両の種々の態 様を採用してもよいし、また、上述した車両の各機能を実現するようなステップを追カロ してちよい。  [0015] In this vehicle control method, when the shift position is the-neutral position and the braking force applying means is normal, the drive circuit is deactivated, and the shift position is the neutral position and the braking force applying means is In an abnormal state, which is an abnormal state, the drive circuit is controlled so that the regenerative braking force is output to the drive shaft by converting the power of the drive shaft into electric power by the motor. In this way, the drive circuit is stopped during normal operation to prevent power from being output from the electric motor, and when abnormal, the regenerative braking force by the electric motor is output to the drive shaft without stopping the drive circuit operation. . Therefore, the braking force can be ensured even when the shift position is in the neutral position and the braking force applying means is abnormal. In this vehicle control method, various aspects of the vehicle described above may be adopted, and steps for realizing the functions of the vehicle described above may be added.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]本発明の一実施例であるハイブリッド自動車 20の構成の概略を示す構成図で ある。  FIG. 1 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 20 that is an embodiment of the present invention.
[図 2]実施例のハイブリッド用電子制御ユニット 70により実行される Nポジション時制 御ノレ一チンの一例を示すフローチャートである。  FIG. 2 is a flowchart showing an example of N-position control control executed by the hybrid electronic control unit 70 of the embodiment.
[図 3]バッテリ 50における電池温度 Tbと入出力制限 Win, Woutとの関係の一例を示 す説明図である。  FIG. 3 is an explanatory diagram showing an example of the relationship between the battery temperature Tb and the input / output restrictions Win, Wout in the battery 50.
[図 4]バッテリ 50の残容量(SOC)と入出力制限 Win, Woutの補正係数との関係の 一例を示す説明図である。 [Fig.4] Relationship between remaining capacity (SOC) of battery 50 and I / O limit Win and Wout correction factors It is explanatory drawing which shows an example.
[図 5]要求制動トルク設定用マップの一例を示す説明図である。  FIG. 5 is an explanatory diagram showing an example of a required braking torque setting map.
[図 6]動力分配統合機構 30の回転要素を力学的に説明するための共線図の一例を 示す説明図である。  FIG. 6 is an explanatory diagram showing an example of a collinear diagram for dynamically explaining the rotating elements of the power distribution and integration mechanism 30.
[図 7]変形例のハイブリッド自動車 120の構成の概略を示す構成図である。  FIG. 7 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 120 of a modified example.
[図 8]変形例のハイブリッド自動車 220の構成の概略を示す構成図である。  FIG. 8 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 220 of a modified example.
[図 9]変形例の電気自動車 320の構成の概略を示す構成図である。  FIG. 9 is a configuration diagram showing a schematic configuration of an electric vehicle 320 according to a modification.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 次に、本発明を実施するための最良の形態を実施例を用いて説明する。 Next, the best mode for carrying out the present invention will be described using examples.
実施例  Example
[0018] 図 1は、本発明の一実施例である動力出力装置を搭載したノ、イブリツド自動車 20の 構成の概略を示す構成図である。実施例のハイブリッド自動車 20は、図示するように 、エンジン 22と、エンジン 22の出力軸としてのクランクシャフト 26にダンバ 28を介して 接続された 3軸式の動力分配統合機構 30と、動力分配統合機構 30に接続された発 電可能なモータ MG1と、動力分配統合機構 30に接続された駆動軸としてのリングギ ャ軸 32aに取り付けられた減速ギヤ 35と、この減速ギヤ 35に接続されたモータ MG2 と、駆動輪 39a, 39bや従動輪 39c, 39dのブレーキを制御するためのブレーキァク チユエータ 92と、動力出力装置全体をコントロールするハイブリッド用電子制御ュ- ット 70とを備える。  FIG. 1 is a configuration diagram showing an outline of the configuration of a hybrid vehicle 20 equipped with a power output apparatus according to an embodiment of the present invention. As shown in the figure, the hybrid vehicle 20 of the embodiment includes an engine 22, a three-shaft power distribution and integration mechanism 30 connected to a crankshaft 26 as an output shaft of the engine 22 via a damper 28, and a power distribution and integration. A motor MG1 capable of generating electricity connected to the mechanism 30, a reduction gear 35 attached to the ring gear shaft 32a as a drive shaft connected to the power distribution and integration mechanism 30, and a motor MG2 connected to the reduction gear 35 And a brake actuator 92 for controlling the brakes of the drive wheels 39a, 39b and the driven wheels 39c, 39d, and a hybrid electronic control unit 70 for controlling the entire power output device.
[0019] エンジン 22は、ガソリンまたは軽油などの炭化水素系の燃料により動力を出力する 内燃機関であり、エンジン 22の運転状態を検出する各種センサ力 信号を入力する エンジン用電子制御ユニット(以下、エンジン ECUという) 24により燃料噴射制御や 点火制御,吸入空気量調節制御などの運転制御を受けている。エンジン ECU24は 、 ノ、イブリツド用電子制御ユニット 70と通信しており、ハイブリッド用電子制御ユニット 70からの制御信号によりエンジン 22を運転制御すると共に必要に応じてエンジン 22 の運転状態に関するデータをハイブリッド用電子制御ユニット 70に出力する。  [0019] The engine 22 is an internal combustion engine that outputs power using a hydrocarbon-based fuel such as gasoline or light oil, and inputs various sensor force signals that detect the operating state of the engine 22. The engine ECU) is under operation control such as fuel injection control, ignition control, and intake air amount adjustment control. The engine ECU 24 communicates with the electronic control unit 70 for the hybrid, and controls the operation of the engine 22 by a control signal from the electronic control unit 70 for the hybrid and uses the data regarding the operation state of the engine 22 for the hybrid as necessary. Output to electronic control unit 70.
[0020] 動力分配統合機構 30は、外歯歯車のサンギヤ 31と、このサンギヤ 31と同心円上 に配置された内歯歯車のリングギヤ 32と、サンギヤ 31に嚙合すると共にリングギヤ 3 2に嚙合する複数のピ-オンギヤ 33と、複数のピ-オンギヤ 33を自転かつ公転自在 に保持するキャリア 34とを備え、サンギヤ 31とリングギヤ 32とキャリア 34とを回転要 素として差動作用を行なう遊星歯車機構として構成されている。動力分配統合機構 3 0は、キャリア 34にはエンジン 22のクランクシャフト 26が、サンギヤ 31にはモータ MG 1が、リングギヤ 32にはリングギヤ軸 32aを介して減速ギヤ 35がそれぞれ連結されて おり、モータ MG1が発電機として機能するときにはキャリア 34から入力されるェンジ ン 22からの動力をサンギヤ 31側とリングギヤ 32側にそのギヤ比に応じて分配し、モ ータ MG1が電動機として機能するときにはキャリア 34から入力されるエンジン 22から の動力とサンギヤ 31から入力されるモータ MG1からの動力を統合してリングギヤ 32 側に出力する。リングギヤ 32に出力された動力は、リングギヤ軸 32aからギヤ機構 37 およびデフアレンシャルギヤ 38を介して、最終的には車両の駆動輪 39a, 39bに出 力される。 [0020] The power distribution and integration mechanism 30 includes a sun gear 31 as an external gear, a ring gear 32 as an internal gear arranged concentrically with the sun gear 31, a ring gear 3 and the sun gear 31. 2 and a carrier 34 that holds the plurality of pinion gears 33 so as to rotate and revolve freely, and the sun gear 31, the ring gear 32, and the carrier 34 are used as rotational elements to perform differential action. It is configured as a planetary gear mechanism to perform. In the power distribution and integration mechanism 30, the crankshaft 26 of the engine 22 is connected to the carrier 34, the motor MG 1 is connected to the sun gear 31, and the reduction gear 35 is connected to the ring gear 32 via the ring gear shaft 32 a. When MG1 functions as a generator, the power from engine 22 input from carrier 34 is distributed according to the gear ratio between sun gear 31 and ring gear 32, and when motor MG1 functions as a motor 34 The power from the engine 22 input from the engine and the power from the motor MG1 input from the sun gear 31 are combined and output to the ring gear 32 side. The power output to the ring gear 32 is finally output from the ring gear shaft 32a to the drive wheels 39a and 39b of the vehicle via the gear mechanism 37 and the differential gear 38.
モータ MG1およびモータ MG2は、いずれも発電機として駆動することができると共 に電動機として駆動できる周知の同期発電電動機として構成されており、インバータ 41, 42を介してノ ッテリ 50と電力のやりとりを行なう。インノ ータ 41, 42とノ ッテリ 50 とを接続する電力ライン 54は、各インバータ 41, 42が共用する正極母線および負極 母線として構成されており、モータ MG1, MG2のいずれかで発電される電力を他の モータで消費することができるようになつている。したがって、バッテリ 50は、モータ M Gl, MG2のいずれかから生じた電力や不足する電力により充放電されることになる 。なお、モータ MG1, MG2により電力収支のバランスをとるものとすれば、バッテリ 5 0は充放電されない。モータ MG1, MG2は、いずれもモータ用電子制御ユニット(以 下、モータ ECUという) 40により駆動制御されている。モータ ECU40には、モータ M Gl, MG2を駆動制御するために必要な信号、例えばモータ MG1, MG2の回転子 の回転位置を検出する回転位置検出センサ 43, 44からの信号や図示しない電流セ ンサにより検出されるモータ MG1, MG2に印加される相電流などが入力されており 、モータ ECU40からは、インバータ 41, 42へのスイッチング制御信号が出力されて いる。モータ ECU40は、ハイブリッド用電子制御ユニット 70と通信しており、ノヽイブリ ッド用電子制御ユニット 70からの制御信号によってモータ MG1, MG2を駆動制御 すると共に必要に応じてモータ MG 1 , MG2の運転状態に関するデータをノ、イブリッ ド用電子制御ユニット 70に出力する。 Both the motor MG1 and the motor MG2 are configured as well-known synchronous generator motors that can be driven as a generator as well as a generator, and exchange power with the battery 50 via inverters 41 and 42. Do. The power line 54 connecting the inverters 41 and 42 and the notch 50 is configured as a positive and negative bus shared by the inverters 41 and 42, and is generated by either the motor MG1 or MG2. Can be consumed by other motors. Therefore, the battery 50 is charged / discharged by electric power generated from one of the motors MG1 and MG2 or insufficient electric power. If the balance of electric power is balanced by motors MG1 and MG2, battery 50 is not charged / discharged. The motors MG1 and MG2 are both driven and controlled by a motor electronic control unit (hereinafter referred to as motor ECU) 40. The motor ECU 40 includes signals necessary for driving and controlling the motors M Gl and MG2, such as signals from rotational position detection sensors 43 and 44 that detect the rotational positions of the rotors of the motors MG1 and MG2, and current sensors (not shown). The phase current applied to the motors MG1 and MG2 detected by the above is input, and a switching control signal to the inverters 41 and 42 is output from the motor ECU 40. The motor ECU 40 communicates with the hybrid electronic control unit 70 and drives and controls the motors MG1 and MG2 by the control signal from the electronic control unit 70 for the hybrid. At the same time, data on the operating state of the motors MG 1 and MG 2 is output to the electronic control unit 70 for the hybrid as required.
[0022] ノ ッテリ 50は、ノ ッテリ用電子制御ユニット(以下、ノ ッテリ ECUという) 52によって 管理されている。ノ ッテリ ECU52には、ノ ッテリ 50を管理するのに必要な信号、例え ば、ノ ッテリ 50の端子間に設置された図示しない電圧センサからの端子間電圧,ノ ッテリ 50の出力端子に接続された電力ライン 54に取り付けられた図示しない電流セ ンサからの充放電電流,ノ ッテリ 50に取り付けられた温度センサ 51からの電池温度 Tbなどが入力されており、必要に応じてノ ッテリ 50の状態に関するデータを通信に よりハイブリッド用電子制御ユニット 70に出力する。なお、ノ ッテリ ECU52では、バッ テリ 50を管理するために電流センサにより検出された充放電電流の積算値に基づい て残容量 (SOC)も演算して 、る。  The battery 50 is managed by a battery electronic control unit (hereinafter referred to as a battery ECU) 52. The notch ECU 52 is connected to a signal necessary for managing the notch 50, for example, a voltage between terminals of a voltage sensor (not shown) installed between the notch 50 terminals, and an output terminal of the notch 50. The charging / discharging current from a current sensor (not shown) attached to the power line 54, the battery temperature Tb from the temperature sensor 51 attached to the battery 50, etc. are input, and the state of the battery 50 is Is output to the hybrid electronic control unit 70 by communication. The battery ECU 52 also calculates the remaining capacity (SOC) based on the integrated value of the charge / discharge current detected by the current sensor in order to manage the battery 50.
[0023] ブレーキアクチユエータ 92は、ブレーキペダル 85の踏み込みに応じて生じるブレ ーキマスターシリンダ 90の圧力(ブレーキ圧)と車速 Vとにより車両に作用させる制動 力におけるブレーキの分担分に応じた制動トルクが駆動輪 39a, 39bや従動輪 39c, 39dに作用するよう油圧パイプ 93a〜93dを介してブレーキホイールシリンダ 96a〜9 6dの油圧を調整したり、ブレーキペダル 85の踏み込みに無関係に、駆動輪 39a, 3 9bや従動輪 39c, 39dに制動トルクが作用するようブレーキホイールシリンダ 96a〜9 6dの油圧を調整したりすることができるように構成されて 、る。ブレーキアクチユエ一 タ 92は、ブレーキ用電子制御ユニット(以下、ブレーキ ECUという) 94により制御され ている。ブレーキ ECU94は、図示しない信号ラインにより、駆動輪 39a, 39bや従動 輪 39c, 39dに取り付けられた図示しな!ヽ車輪速センサからの車輪速や図示しな!ヽ 操舵角センサ力ゝらの操舵角などの信号を入力して、運転者がブレーキペダル 85を踏 み込んだときに駆動輪 39a, 39bや従動輪 39c, 39dのいずれかがロックによりスリツ プするのを防止するアンチロックブレーキシステム機能 (ABS)や運転者がアクセル ペダル 83を踏み込んだときに駆動輪 39a, 39bのいずれかが空転によりスリップする のを防止するトラクシヨンコントロール (TRC) ,車両が旋回走行しているときに姿勢を 保持する姿勢保持制御 (VSC)なども行なう。なお、ブレーキ ECU94には、油圧パイ プ 93a〜93dの各々に設けられた油圧を検出する油圧センサ 95a〜95dからの信号 も入力されている。ブレーキ ECU94は、ノ、イブリツド用電子制御ユニット 70と通信し ており、ハイブリッド用電子制御ユニット 70からの制御信号によってブレーキアクチュ エータ 92を駆動制御したり、必要に応じてブレーキアクチユエータ 92の状態に関す るデータをハイブリッド用電子制御ユニット 70に出力する。 [0023] The brake actuator 92 responds to the share of the brake in the braking force that is applied to the vehicle by the pressure (brake pressure) of the brake master cylinder 90 and the vehicle speed V generated when the brake pedal 85 is depressed. Regulates the hydraulic pressure of the brake wheel cylinders 96a to 96d via the hydraulic pipes 93a to 93d so that the braking torque acts on the drive wheels 39a and 39b and the driven wheels 39c and 39d The hydraulic pressures of the brake wheel cylinders 96a to 96d can be adjusted so that the braking torque acts on the wheels 39a, 39b and the driven wheels 39c, 39d. The brake actuator 92 is controlled by a brake electronic control unit (hereinafter referred to as a brake ECU) 94. The brake ECU 94 is not shown in the figure attached to the drive wheels 39a, 39b and the driven wheels 39c, 39d by a signal line (not shown). Anti-lock brake that prevents any of the driving wheels 39a, 39b and driven wheels 39c, 39d from slipping due to a lock when the driver depresses the brake pedal 85 by inputting a signal such as steering angle System function (ABS), traction control (TRC) to prevent one of the drive wheels 39a, 39b from slipping due to idling when the driver depresses the accelerator pedal 83, and when the vehicle is turning It also performs posture maintenance control (VSC) to maintain posture. The brake ECU 94 receives signals from hydraulic sensors 95a to 95d that detect the hydraulic pressure provided in each of the hydraulic pipes 93a to 93d. Is also entered. The brake ECU 94 communicates with the electronic control unit 70 for the hybrid, and controls the drive of the brake actuator 92 by the control signal from the hybrid electronic control unit 70, and the state of the brake actuator 92 as necessary. Data related to this is output to the hybrid electronic control unit 70.
[0024] ハイブリッド用電子制御ユニット 70は、 CPU72を中心とするマイクロプロセッサとし て構成されており、 CPU72の他に処理プログラムを記憶する ROM74と、データを 一時的に記憶する RAM76と、図示しない入出力ポートおよび通信ポートとを備える 。ハイブリッド用電子制御ユニット 70には、イダ-ッシヨンスィッチ 80からのイダ-ッシ ヨン信号,シフトレバー 81の操作位置を検出するシフトポジションセンサ 82からのシ フトポジション SP,アクセルペダル 83の踏み込み量を検出するアクセルペダルポジ シヨンセンサ 84からのアクセル開度 Acc,ブレーキペダル 85の踏み込み量を検出す るブレーキペダルポジションセンサ 86からのブレーキペダルポジション BP,車速セン サ 88からの車速 Vなどが入力ポートを介して入力されている。ハイブリッド用電子制 御ユニット 70は、前述したように、エンジン ECU24やモータ ECU40,バッテリ ECU 52,ブレーキ ECU94と通信ポートを介して接続されており、エンジン ECU 24やモー タ ECU40,バッテリ ECU52,ブレーキ ECU94と各種制御信号やデータのやりとり を行なっている。なお、実施例では、シフトポジション SPとして、駐車用の駐車ポジシ ヨン(Pポジション)、中立の-ユートラルポジション(Nポジション)、前進走行用のドラ イブポジション(Dポジション)、後進走行用のリーバースポジション (Rポジション)など がある。 [0024] The hybrid electronic control unit 70 is configured as a microprocessor centered on a CPU 72. In addition to the CPU 72, a ROM 74 that stores a processing program, a RAM 76 that temporarily stores data, and an input (not shown). An output port and a communication port are provided. The hybrid electronic control unit 70 detects the idling signal from the idling switch 80, the shift position sensor 82 that detects the operating position of the shift lever 81, and the depression amount of the accelerator pedal 83 from the shift position sensor 82. Accelerator pedal position sensor Acc, accelerator pedal position Acc, brake pedal 85 depressing amount brake pedal position sensor 86 brake pedal position BP, vehicle speed sensor 88 vehicle speed V, etc. via the input port Have been entered. As described above, the hybrid electronic control unit 70 is connected to the engine ECU 24, the motor ECU 40, the battery ECU 52, and the brake ECU 94 via the communication port, and the engine ECU 24, the motor ECU 40, the battery ECU 52, and the brake ECU 94. Various control signals and data are exchanged. In the embodiment, as the shift position SP, the parking position (P position) for parking, the neutral-neutral position (N position), the drive position (D position) for forward travel, and the reverse for reverse travel There are positions (R position).
[0025] こうして構成された実施例のハイブリッド自動車 20は、運転者によるアクセルペダル 83の踏み込み量に対応するアクセル開度 Accと車速 Vとに基づいて駆動軸としての リングギヤ軸 32aに出力すべき要求トルクを計算し、この要求トルクに対応する要求 動力がリングギヤ軸 32aに出力されるように、エンジン 22とモータ MG1とモータ MG2 とが運転制御される。エンジン 22とモータ MG1とモータ MG2の運転制御としては、 要求動力に見合う動力がエンジン 22から出力されるようにエンジン 22を運転制御す ると共にエンジン 22から出力される動力のすべてが動力分配統合機構 30とモータ MG1とモータ MG2とによってトルク変換されてリングギヤ軸 32aに出力されるようモ ータ MG1およびモータ MG2を駆動制御するトルク変換運転モードや要求動力とバ ッテリ 50の充放電に必要な電力との和に見合う動力がエンジン 22から出力されるよう にエンジン 22を運転制御すると共にノ ッテリ 50の充放電を伴ってエンジン 22から出 力される動力の全部またはその一部が動力分配統合機構 30とモータ MG1とモータ MG2とによるトルク変換を伴って要求動力がリングギヤ軸 32aに出力されるようモー タ MG1およびモータ MG2を駆動制御する充放電運転モード、エンジン 22の運転を 停止してモータ MG2からの要求動力に見合う動力をリングギヤ軸 32aに出力するよ う運転制御するモータ運転モードなどがある。 [0025] The hybrid vehicle 20 of the embodiment configured as described above is a request to be output to the ring gear shaft 32a as the drive shaft based on the accelerator opening Acc and the vehicle speed V corresponding to the depression amount of the accelerator pedal 83 by the driver. Torque is calculated, and the engine 22, the motor MG1, and the motor MG2 are controlled so that the required power corresponding to the required torque is output to the ring gear shaft 32a. Operation control of the engine 22 and motor MG1 and motor MG2 includes controlling the operation of the engine 22 so that the power corresponding to the required power is output from the engine 22, and all the power output from the engine 22 is a power distribution integrated mechanism. 30 and motor MG1 and motor MG2 are converted to torque and output to ring gear shaft 32a. The engine 22 is operated and controlled so that the engine 22 outputs the power that matches the sum of the torque conversion operation mode for driving and controlling the motor MG1 and the motor MG2, and the required power and the power required for charging and discharging the battery 50. All or part of the power output from the engine 22 with charging / discharging of the Notter 50 is output to the ring gear shaft 32a with torque conversion by the power distribution and integration mechanism 30, motor MG1, and motor MG2. Charge / discharge operation mode for controlling the motor MG1 and motor MG2 and motor operation mode for controlling the operation to stop the operation of the engine 22 and output the power corresponding to the required power from the motor MG2 to the ring gear shaft 32a. and so on.
[0026] 次に、こうして構成された実施例のノ、イブリツド自動車 20の動作、特にシフトポジシ ヨンが Nポジションに設定された際の動作について説明する。図 2は、ハイブリッド用 電子制御ユニット 70により実行される Nポジション時制御ルーチンの一例を示すフロ 一チャートである。このルーチンは、シフトレバー 81が Nポジションに操作されたあと 実行される。  [0026] Next, the operation of the hybrid vehicle 20 of the embodiment configured as described above, particularly the operation when the shift position is set to the N position will be described. FIG. 2 is a flowchart showing an example of an N-position control routine executed by the hybrid electronic control unit 70. This routine is executed after the shift lever 81 is operated to the N position.
[0027] Nポジション時制御ルーチンが実行されると、ハイブリッド用電子制御ユニット 70の CPU72は、まず、バッテリ 50の入出力制限 Winや車速センサ 88からの車速 Vなど 制御に必要なデータを入力する処理を実行する (ステップ S100)。ここで、バッテリ 5 0の入出力制限 Winは、温度センサ 51により検出されたバッテリ 50の電池温度 Tbと ノ ッテリ 50の残容量 (SOC)とに基づいて設定されたものをバッテリ ECU52から通信 により入力するものとした。なお、ノ ッテリ 50の入力制限 Winは、電池温度 Tbに基づ いて入力制限 Winの基本値 Wintmpを設定し、バッテリ 50の残容量(SOC)に基づ いて入力制限用補正係数を設定し、設定した入力制限 Winの基本値 Wintmpに補 正係数を乗じることにより設定することができる。図 3に電池温度 Tbと入出力制限 Wi n, Woutとの関係の一例を示し、図 4にバッテリ 50の残容量(SOC)と入出力制限 W in, Woutの補正係数との関係の一例を示す。  [0027] When the N-position control routine is executed, the CPU 72 of the hybrid electronic control unit 70 first inputs data necessary for control, such as the input / output limit Win of the battery 50 and the vehicle speed V from the vehicle speed sensor 88. Processing is executed (step S100). Here, the input / output limit Win of the battery 50 is a value set based on the battery temperature Tb of the battery 50 detected by the temperature sensor 51 and the remaining capacity (SOC) of the battery 50 through communication from the battery ECU 52. It was supposed to be entered. Note that the input limit Win of the notch 50 sets the basic value Wintmp of the input limit Win based on the battery temperature Tb, sets the correction factor for the input limit based on the remaining capacity (SOC) of the battery 50, Set input limit Win Basic value Wintmp can be set by multiplying it by a correction factor. Fig. 3 shows an example of the relationship between the battery temperature Tb and the input / output limits Win and Wout. Fig. 4 shows an example of the relationship between the remaining capacity (SOC) of the battery 50 and the input and output limits Win and Wout correction factors. Show.
[0028] こうしてデータを入力すると、車両に対する運転者の制動要求がある力否かをブレ ーキペダルポジションセンサ 86からのブレーキペダルポジション BPに基づいて判定 する (ステップ S110)。車両に対する運転者の制動要求があると判定されたときには 、ブレーキアクチユエータ 92により作動するブレーキに異常が生じている力否かを判 定する(ステップ S120)。ここで、ブレーキの異常としては、ブレーキアクチユエータ 9 2が正常に作動しないことによる異常やブレーキ ECU94とハイブリッド用電子制御ュ ニット 70との通信が正常に行なうことができない通信異常などが含まれる。また、こう したブレーキの異常の判定は、例えば、ブレーキ ECU94によるブレーキアクチユエ ータ 92の制御に異常が認められたときに設定されるブレーキ異常フラグの値を調べ たり、ブレーキ ECU94とハイブリッド用電子制御ユニット 70との通信異常が生じたと きに設定される通信異常フラグの値を調べたりすることにより、行なうことができる。な お、ブレーキアクチユエータ 92の異常としては、例えばブレーキアクチユエータ 92と ブレーキホイールシリンダ 96aとの間の油圧パイプ 93a〜93dでの液漏れなどが挙げ られる(図 1参照)。本実施例では、ブレーキ異常として、油圧パイプ 93aでの液漏れ を油圧センサ 95aの信号に基づいて検出した場合について説明する。ここでは、油 圧パイプ 93aで液漏れが検出されたときには、この液漏れが検出された油圧パイプ 9 3aに設けられた図示しな 、油圧バルブを閉じることにより、液漏れの生じて!/、な!/ヽ他 の油圧パイプ 93b〜93dの油圧を確保するものとした。このような状態では、ブレーキ ホイールシリンダ 96b〜96dは正常に作動する力 ブレーキホイールシリンダ 96aは 正常に作動しないため、全体として制動力が低い状態となることからブレーキ異常で あると判定される。 [0028] When the data is thus input, it is determined based on the brake pedal position BP from the brake pedal position sensor 86 whether or not the driver has a braking request for the vehicle (step S110). When it is determined that there is a driver's braking request for the vehicle, it is determined whether or not there is an abnormality in the brake operated by the brake actuator 92. (Step S120). Here, the brake abnormality includes an abnormality caused by the brake actuator 92 not operating normally, a communication abnormality in which the communication between the brake ECU 94 and the hybrid electronic control unit 70 cannot be normally performed, and the like. . In addition, the determination of the brake abnormality can be made, for example, by checking the value of the brake abnormality flag that is set when an abnormality is detected in the control of the brake actuator 92 by the brake ECU 94, This can be done by checking the value of the communication error flag that is set when a communication error with the control unit 70 occurs. Examples of the abnormality of the brake actuator 92 include liquid leakage in hydraulic pipes 93a to 93d between the brake actuator 92 and the brake wheel cylinder 96a (see FIG. 1). In the present embodiment, a case will be described in which a liquid leak in the hydraulic pipe 93a is detected based on a signal from the hydraulic sensor 95a as a brake abnormality. Here, when a liquid leak is detected in the hydraulic pipe 93a, a liquid leak occurs by closing the hydraulic valve (not shown) provided in the hydraulic pipe 93a in which this liquid leak is detected! Yeah! / ヽ Other hydraulic pipes 93b to 93d were secured. In such a state, the brake wheel cylinders 96b to 96d are normally operated. Since the brake wheel cylinder 96a does not operate normally, the braking force is low as a whole, so it is determined that the brake is abnormal.
[0029] ステップ S120でブレーキアクチユエータ 92により作動するブレーキに異常が生じ ていない、即ちブレーキが正常であると判定されたとき、又は、ステップ S110で車両 に対する運転者の制動要求がないと判定されたときには、モータ MG1, MG2からリ ングギヤ軸 32aに不要な駆動トルクが出力されないようにするため、モータ MG1, M G2のインバータ 41, 42をゲート遮断する(ステップ S 130)。続いて、シフトポジション が Nポジションから変更されたか否かをシフトポジションセンサ 82からのシフトポジショ ン SPに基づいて判定し (ステップ S 140)、シフトポジションが Nポジションから変更さ れていないと判定されたときには、上述のステップ S100以降の処理を実行し、シフト ポジションが Nポジションから変更されたと判定されたときには、このルーチンを終了 する。  [0029] In step S120, it is determined that there is no abnormality in the brake operated by the brake actuator 92, that is, it is determined that the brake is normal, or in step S110, there is no driver's braking request for the vehicle. When this happens, the inverters 41 and 42 of the motors MG1 and MG2 are gate-blocked so that unnecessary driving torque is not output from the motors MG1 and MG2 to the ring gear shaft 32a (step S130). Subsequently, it is determined whether or not the shift position has been changed from the N position based on the shift position SP from the shift position sensor 82 (step S 140), and it is determined that the shift position has not been changed from the N position. If it is determined that the shift position has been changed from the N position, the routine is terminated.
[0030] 一方、ステップ S120でブレーキに異常が生じていると判定されたときには、車速 V が閾値 Vre;fより高いか否かを判定する (ステップ S150)。この閾値 Vrefは、異常が 生じたブレーキにより得られる制動力によっても十分に車両を停止可能な車速 (例え ば 5kmZhや lOkmZhなど)に設定されている。車速 Vが閾値 Vre;fよりも高くない、 即ち閾値 Vref以下であると判定されたときには、現状のブレーキにより制動可能であ るものとして、ステップ S130でモータ MG1, MG2のインバータ 41, 42をゲート遮断 し、ステップ S 140以降の処理を実行する。一方、車速 Vが閾値 Vre;fより高いと判定 されたときには、異常が生じている現状のブレーキでは制動力が足りない可能性があ るものとして、インバータ 41, 42のゲート遮断を実行せずに、ノ ッテリ 50の入力制限 Winの絶対値が所定値 Winrefより大きいか否かを判定する(ステップ S 160)。この 所定値 Winrefは、入力制限 Winの最大値の所定割合 (例えば 20%や 30%など)に 定められている。なお、入力制限 Winの最大値は、入力制限 Winの基本値 Wintmp の最大値に補正係数「1」を乗算して得られる値である。入力制限 Winが現在のバッ テリ 50の温度を考慮したバッテリ 50へ充電可能な電力であることから、このステップ S 160の判定は、モータ MG2で発電した電力などをバッテリ 50が十分に充電可能か 否かを判定するものである。 [0030] On the other hand, if it is determined in step S120 that an abnormality has occurred in the brake, the vehicle speed V Is higher than the threshold value Vre; f (step S150). This threshold value Vref is set to a vehicle speed (for example, 5 kmZh, lOkmZh, etc.) that can sufficiently stop the vehicle even with the braking force obtained by the brake in which an abnormality has occurred. When it is determined that the vehicle speed V is not higher than the threshold value Vre; f, that is, is less than or equal to the threshold value Vref, the inverters 41 and 42 of the motors MG1 and MG2 are gated in step S130, assuming that braking is possible with the current brake. Shut off and execute the processing after step S140. On the other hand, when it is determined that the vehicle speed V is higher than the threshold value Vre; f, it is assumed that there is a possibility that the braking force is insufficient with the current brake in which an abnormality has occurred. Then, it is determined whether or not the absolute value of the input limit Win of the notch 50 is larger than the predetermined value Winref (step S160). This predetermined value Winref is set to a predetermined ratio (for example, 20% or 30%) of the maximum value of the input limit Win. The maximum value of the input restriction Win is a value obtained by multiplying the maximum value of the basic value Wintmp of the input restriction Win by the correction coefficient “1”. Input restriction Since Win is the power that can be charged to the battery 50 in consideration of the temperature of the current battery 50, the determination in step S160 is whether the battery 50 can sufficiently charge the power generated by the motor MG2, etc. It is to determine whether or not.
ステップ S 160でバッテリ 50の入力制限 Winが所定値 Winrefより大きいと判定され たときには、ノ ッテリ 50が十分に充電可能な状態であるものとみなし、モータ MG2に よる回生ブレーキを出力させる回生ブレーキ処理を実行する (ステップ S 170)。ここ で、モータ MG2による回生ブレーキ処理について説明する。本実施例では、回生ブ レーキの実行は、入力されたブレーキペダルポジション BPと車速 Vとに基づ!/、て車 両に要求される制動トルクとして駆動輪 39a, 39bに連結された駆動軸としてのリング ギヤ軸 32aに出力すべき要求制動トルク Tr *を設定し、要求制動トルク Tr*にリング ギヤ軸 32aの回転数 Nrを乗算して要求制動パワー Pr *を計算し、この計算した要求 制動パワー Pr *と現在のブレーキの状態で出力可能な制動力との差分よりモータ M G2に必要とされる回生制動パワーを求め、この求めた回生制動パワーがモータ MG 2から出力されるようインバータ 42のスイッチング制御を行うよう設定されている。要求 制動トルク Tr *は、実施例では、ブレーキペダルポジション BPと車速 Vと要求トルク Tr *との関係を予め定めて要求制動トルク設定用マップとして ROM74に記憶して おき、ブレーキペダルポジション BPと車速 Vとが与えられると記憶したマップから対応 する要求制動トルク Tr *を導出して設定するものとした。図 5に要求トルク設定用マツ プの一例を示す。なお、リングギヤ軸 32aの回転数 Nrは、車速 Vに換算係数 kを乗じ ることによって求めたり、モータ MG2の回転数 Nm2を減速ギヤ 35のギヤ比 Grで割 ることによって求めることができる。このように、ノ ッテリ 50が蓄電可能な状態であると きには、モータ MG2の回生制動パワーによってブレーキの制動力を補うのである。 When it is determined in step S 160 that the input limit Win of battery 50 is greater than the predetermined value Winref, it is assumed that notch 50 is sufficiently charged, and the regenerative braking process is performed to output the regenerative brake by motor MG2. (Step S170). Here, the regenerative braking process by the motor MG2 will be described. In this embodiment, the regenerative brake is executed based on the input brake pedal position BP and the vehicle speed V! / And the drive shaft connected to the drive wheels 39a and 39b as the braking torque required for the vehicle. The required braking torque Tr * to be output to the ring gear shaft 32a is set, and the required braking power Pr * is calculated by multiplying the required braking torque Tr * by the rotation speed Nr of the ring gear shaft 32a. The regenerative braking power required for the motor MG2 is obtained from the difference between the braking power Pr * and the braking force that can be output in the current brake state, and the inverter is configured so that the obtained regenerative braking power is output from the motor MG2. It is set to perform 42 switching controls. In the embodiment, the required braking torque Tr * is stored in the ROM 74 as a required braking torque setting map by predetermining the relationship among the brake pedal position BP, the vehicle speed V, and the required torque Tr *. When the brake pedal position BP and the vehicle speed V are given, the corresponding required braking torque Tr * is derived and set from the stored map. Figure 5 shows an example of a map for setting the required torque. The rotational speed Nr of the ring gear shaft 32a can be obtained by multiplying the vehicle speed V by the conversion factor k, or by dividing the rotational speed Nm2 of the motor MG2 by the gear ratio Gr of the reduction gear 35. In this way, when the battery 50 is in a state where it can be stored, the braking force of the brake is supplemented by the regenerative braking power of the motor MG2.
[0032] 一方、ステップ S160でバッテリ 50の入力制限 Winが所定値 Winrefより大きくない 、即ち入力制限 Winが所定値 Winref以下であると判定されたときには、ノ ッテリ 50 が十分に充電可能な状態でないものとみなし、エンジン 22のエンジンブレーキを出 力させるエンジンブレーキ処理を実行する(ステップ S180)。ここで、エンジンブレー キ処理について説明する。本実施例では、エンジンブレーキ処理は、ステップ S 170 と同様に算出した要求制動パワー Pr *と現在のブレーキの状態で出力可能な制動 力との差分よりエンジンブレーキで必要な制動パワーを求め、この求めた制動パワー 力 Sリングギヤ軸 32aに出力されるエンジン回転数 Ne *となるようモータ MG1のインバ ータ 41のスイッチング制御を行うよう設定されている。このエンジンブレーキ処理は、 モータ MG1により強制的にエンジン 22をモータリングし、このモータリングにより生じ る反力トルクをリングギヤ軸 32aに出力させる処理である。ここで、動力分配統合機構 30の回転要素における回転数とトルクとの力学的な関係を示す共線図を図 6に示す 。図中、左の S軸はモータ MG1の回転数 Nmlであるサンギヤ 31の回転数を示し、 C 軸はエンジン 22の回転数 Neであるキャリア 34の回転数を示し、 R軸はモータ MG2 の回転数 Nm2を減速ギヤ 35のギヤ比 Grで除したリングギヤ 32の回転数 Nrを示し、 「 /0」は、動力分配統合機構 30のギヤ比を示す。図 6に示すように、モータ MG1が回 転数 Nml,トルク Tmlで駆動するとリングギヤ軸 32aには(一1/ ρ ·Τπι1)のトルク が制動トルクとして作用する。このように、ノ ッテリ 50が蓄電可能な状態でないときに は、モータ MG1によりバッテリ 50の電力を消費しエンジン 22をモータリングし、いわ ゆるエンジンブレーキをリングギヤ軸 32aに出力させてブレーキの制動力を補うので ある。 [0032] On the other hand, when it is determined in step S160 that the input limit Win of the battery 50 is not greater than the predetermined value Winref, that is, the input limit Win is less than or equal to the predetermined value Winref, the battery 50 is not in a sufficiently chargeable state. The engine brake process is executed to output the engine brake of the engine 22 (step S180). Here, the engine brake process will be described. In this embodiment, the engine braking process calculates the braking power required for engine braking from the difference between the required braking power Pr * calculated in the same manner as in step S 170 and the braking force that can be output in the current brake state. The switching power of the inverter 41 of the motor MG1 is set to be controlled so that the obtained braking power force becomes the engine speed Ne * output to the S ring gear shaft 32a. The engine braking process is a process for forcibly motoring the engine 22 by the motor MG1 and outputting the reaction torque generated by the motoring to the ring gear shaft 32a. Here, FIG. 6 is a collinear diagram showing the dynamic relationship between the rotational speed and torque in the rotating elements of the power distribution and integration mechanism 30. FIG. In the figure, the left S-axis indicates the rotation speed of the sun gear 31 which is the rotation speed Nml of the motor MG1, the C-axis indicates the rotation speed of the carrier 34 which is the rotation speed Ne of the engine 22, and the R-axis indicates the rotation speed of the motor MG2. The rotation speed Nr of the ring gear 32 obtained by dividing the number Nm2 by the gear ratio Gr of the reduction gear 35 is shown. “/ 0” shows the gear ratio of the power distribution and integration mechanism 30. As shown in FIG. 6, when the motor MG1 is driven at the rotation speed Nml and the torque Tml, the torque of (1/1 / ρ · Τπι1) acts as a braking torque on the ring gear shaft 32a. In this way, when the battery 50 is not in a state where it can be stored, the motor MG1 consumes the power of the battery 50 to motor the engine 22 and output a so-called engine brake to the ring gear shaft 32a, thereby braking the brake. Is to compensate.
[0033] そして、ステップ S170又はステップ S180のあと、ステップ S 150以降の処理を実行 し、ステップ S150で車速 Vが閾値 Vref以下であると判定されたときには、ステップ S1 30でモータ MG1, MG2のインバータ 41, 42をゲート遮断し、ステップ S140でシフト ポジションが Nポジションから変更されて!、な!/、と判定されたときには、上述のステツ プ S 100以降の処理を実行し、シフトポジションが Nポジションから変更されたと判定 されたときには、このルーチンを終了する。 [0033] Then, after step S170 or step S180, the processing after step S150 is executed. If it is determined in step S150 that the vehicle speed V is less than or equal to the threshold value Vref, the inverters 41 and 42 of the motors MG1 and MG2 are gated off in step S1 30, and the shift position is changed from the N position in step S140! When it is determined that there is no! /, The processing from step S100 described above is executed, and when it is determined that the shift position has been changed from the N position, this routine is terminated.
[0034] 以上詳述した本実施例のハイブリッド自動車 20によれば、シフトポジションが Nポジ シヨンでありブレーキが正常状態である正常時にはインバータ 41, 42をゲート遮断し 、シフトポジションが Nポジションでありブレーキが異常状態である異常時にはモータ MG2によってリングギヤ軸 32aの動力を電力に変換することによる回生制動パワー をリングギヤ軸 32aに出力するようインバータ 42を制御する。このように、正常時には インバータ 41, 42をゲート遮断してモータ MG1, MG2から動力が出力するのを防 止し、異常時には、インバータ 41, 42をゲート遮断せずにモータ MG2による回生制 動パワーをリングギヤ軸 32aに出力するのである。したがって、シフトポジションが Nポ ジシヨンでありブレーキに異常が生じたときでも制動力を確保することができる。  [0034] According to the hybrid vehicle 20 of the present embodiment described in detail above, when the shift position is N position and the brake is in a normal state, the inverters 41 and 42 are shut off at the normal time, and the shift position is the N position. When the brake is in an abnormal state, the inverter 42 is controlled to output the regenerative braking power to the ring gear shaft 32a by converting the power of the ring gear shaft 32a into electric power by the motor MG2. In this way, the inverters 41 and 42 are shut off at normal times to prevent power from being output from the motors MG1 and MG2, and at abnormal times, the regenerative braking power by the motor MG2 is turned off without shutting down the inverters 41 and 42 at the gate Is output to the ring gear shaft 32a. Therefore, the braking force can be secured even when the shift position is the N position and the brake is abnormal.
[0035] また、異常時には、モータ MG1によってエンジン 22をモータリングすることによるェ ンジンブレーキによる制動パワーをリングギヤ軸 32aに出力させるようインバータ 41を 制御するため、異常時においてエンジン 22の制動パワーも合わせた制動力を確保 することができる。更に、ノ ッテリ 50の入力制限 Winが所定値 Winre;fより大きいとき( ノ ッテリ 50に電力を十分に充電可能なとき)にはモータ MG2の回生制動パワーの出 力で生じる電力をバッテリ 50に蓄電すると共に回生制動力をリングギヤ軸 32aに出 力し、バッテリ 50の入力制限 Winが所定値 Winref以下のとき(バッテリ 50に電力を 十分に充電可能でないとき)には、モータ MG2による回生制動力をリングギヤ軸 32a に出力させるのを制限すると共にモータ MG1によってエンジン 22をモータリングする ことによるエンジンブレーキの制動パワーをリングギヤ軸 32aに出力するため、バッテ リ 50を保護すると共に車両の制動力を確保することができる。更にまた、異常時に、 車速 Vが閾値 Vref以下であるときには異常時であってもインバータ 41, 42をゲート 遮断するため、インバータ 41, 42から電力が供給されるのを防止しモータ MG1, M G2から動力が出力されてしまうのを防止することができるし、車速 Vが閾値 Vre;fよりも 高いときにはインバータ 41, 42をゲート遮断せずモータ MG2による回生制動パワー の出力又はモータ MG1のモータリングによるエンジンブレーキによる制動パワーをリ ングギヤ軸 32aに出力するため、制動力を確保できる。なお、車速 Vが閾値 Vref以 下であるときには、異常が生じたブレーキによって制動可能である。 [0035] Further, in the event of an abnormality, the inverter 41 is controlled so that the braking power from the engine brake generated by motoring the engine 22 by the motor MG1 is output to the ring gear shaft 32a. Braking force can be secured. Furthermore, when the input limit Win of the battery 50 is larger than the predetermined value Winre; f (when the battery 50 can be sufficiently charged), the electric power generated by the output of the regenerative braking power of the motor MG2 is supplied to the battery 50. When accumulating power and regenerative braking force is output to the ring gear shaft 32a and the input limit Win of the battery 50 is less than the predetermined value Winref (when the battery 50 cannot be fully charged), the regenerative braking force by the motor MG2 Is output to the ring gear shaft 32a, and the engine brake braking power generated by motoring the engine 22 by the motor MG1 is output to the ring gear shaft 32a, thus protecting the battery 50 and securing the braking force of the vehicle. can do. Furthermore, when the vehicle speed V is below the threshold value Vref at the time of abnormality, the inverters 41 and 42 are gated even at the time of abnormality, so that power is not supplied from the inverters 41 and 42 and the motors MG1, M G2 Power can be prevented from being output from the vehicle, and the vehicle speed V is less than the threshold value Vre; f. When it is high, the inverters 41 and 42 are not shut off, and the regenerative braking power output by the motor MG2 or the braking power by the engine brake by the motoring of the motor MG1 is output to the ring gear shaft 32a. When the vehicle speed V is less than or equal to the threshold value Vref, braking can be performed by the brake in which an abnormality has occurred.
[0036] なお、本発明は上述した実施例に何ら限定されることはなぐ本発明の技術的範囲 に属する限り種々の態様で実施し得ることは 、うまでもな!/、。  [0036] It should be noted that the present invention is not limited to the above-described embodiments, and can be carried out in various modes as long as it belongs to the technical scope of the present invention.
[0037] 例えば、上述した実施例では、モータ MG2による回生制動パワーとモータ MG1の モータリングによるエンジン 22の制動パワーとを利用するものとした力 モータ MG1 のモータリングによるエンジン 22の制動パワーのみを利用するものとしてもよい。こう しても、シフトポジションが Nポジションでありブレーキに異常が生じたときでも制動力 を確保することができる。  [0037] For example, in the above-described embodiment, only the braking power of the engine 22 due to the motoring of the motor MG1 is used, which uses the regenerative braking power of the motor MG2 and the braking power of the engine 22 due to the motoring of the motor MG1. It may be used. Even in this way, the braking force can be secured even when the shift position is the N position and an abnormality occurs in the brake.
[0038] 上述した実施例では、ステップ S160で入力制限 Winが所定値 Winre;fより大き!/、と きには、ステップ S170でモータ MG2による回生制動パワーのみを利用するものとし た力 これに加えてモータ MG1のモータリングによるエンジン 22の制動パワーを利 用するものとしてもよい。こうすれば、ブレーキに異常が生じ、バッテリ 50が充電可能 な状態であるときに、より一層制動力を確保することができる。  [0038] In the embodiment described above, the input limit Win is greater than the predetermined value Winre; f in step S160! / When the input limit Win is greater than the predetermined value Winre; f, in step S170, only the regenerative braking power by the motor MG2 is used. In addition, the braking power of the engine 22 by motoring of the motor MG1 may be used. In this way, when the brake is abnormal and the battery 50 is in a chargeable state, the braking force can be further secured.
[0039] 上述した実施例では、ステップ S160で入力制限 Winが所定値 Winref以下である ときには、ステップ S 180でモータ MG1のモータリングによるエンジン 22の制動力の みを利用するものとした力 これに加えてモータ MG1で消費する電力に相当するモ ータ MG2による回生制動パワーをも利用するものとしてもよい。こうすれば、ブレーキ に異常が生じ、バッテリ 50が十分に充電可能な状態でないときに、より一層制動力を ½保することができる。  [0039] In the above-described embodiment, when the input limit Win is less than or equal to the predetermined value Winref in step S160, the force is assumed to use only the braking force of the engine 22 due to motoring of the motor MG1 in step S180. In addition, the regenerative braking power by the motor MG2 corresponding to the power consumed by the motor MG1 may be used. In this way, when the brake is abnormal and the battery 50 is not sufficiently charged, the braking force can be further maintained.
[0040] 上述した実施例では、ステップ S160で入力制限 Winに基づいてモータ MG2によ る回生制動パワーとモータ MG1のモータリングによるエンジン 22の制動パワーとを 切り替えるものとした力 この処理を省略してもよい。このとき、モータ MG2による回 生制動パワーを利用するものとしてもよいし、モータ MG1のモータリングによるェンジ ン 22の制動パワーを利用するものとしてもよいが、モータ MG1のモータリングによる エンジン 22の制動パワーを利用すると共にモータ MG1で消費する電力に相当する モータ MG2による回生制動パワーを利用するものとすることがバッテリ 50の保護の 観点からは好ましい。 [0040] In the embodiment described above, in step S160, the force that switches between the regenerative braking power by the motor MG2 and the braking power of the engine 22 by the motoring of the motor MG1 based on the input restriction Win. This process is omitted. May be. At this time, the regenerative braking power by the motor MG2 may be used, or the braking power of the engine 22 by the motoring of the motor MG1 may be used, but the braking of the engine 22 by the motoring of the motor MG1 may be used. Equivalent to the power consumed by motor MG1 while using power From the viewpoint of protection of the battery 50, it is preferable to use the regenerative braking power by the motor MG2.
[0041] 上述した実施例では、ステップ S160で入力制限 Winに基づいてモータ MG2によ る回生制動パワーとモータ MG1のモータリングによるエンジン 22の制動パワーとを 切り替えるものとしたが、バッテリ 50の残容量 SOCに基づいてこの切り替えを行って もよい。こうしても、ノ ッテリ 50が十分に充電可能か否かによりブレーキの異常時の制 動状態を切り替えるため、バッテリ 50の保護することはできる。  In the embodiment described above, the regenerative braking power by the motor MG2 and the braking power of the engine 22 by motoring of the motor MG1 are switched based on the input restriction Win in step S160. This switching may be done based on the capacity SOC. Even in this case, the battery 50 can be protected because the braking state is switched depending on whether or not the battery 50 is sufficiently charged.
[0042] 上述した実施例では、ステップ S150で車速 Vに基づいてインバータ 41, 42のゲー ト遮断する力否かを判定するものとした力 この処理を省略し、ステップ S 140でブレ ーキに異常があると判定されたときには常にインバータ 41, 42のゲート遮断を行わな いものとしてもよい。  [0042] In the above-described embodiment, the force that determines whether or not the gates of the inverters 41 and 42 are shut off based on the vehicle speed V in step S150. This process is omitted, and the brake is applied in step S140. When it is determined that there is an abnormality, the inverters 41 and 42 may not be shut off at all times.
[0043] 上述した実施例では、要求制動パワー Pr*と現在のブレーキの状態で出力可能な 制動力との差分よりモータ MG2に必要とされる回生制動パワーを求めるものとしたが 、モータ MG2から出力可能な最大の回生制動パワーを算出し、算出した回生制動 パワーと要求制動パワー Pr*との差分をブレーキから出力させるものとしてもよい。こ うすれば、できる限り大きい回生制動パワーをバッテリ 50に充電することができる。な お、モータ MG1のモータリングによるエンジン 22の制動パワーについても同様であ る。  In the above-described embodiment, the regenerative braking power required for the motor MG2 is obtained from the difference between the required braking power Pr * and the braking force that can be output in the current brake state. The maximum regenerative braking power that can be output may be calculated, and the difference between the calculated regenerative braking power and the required braking power Pr * may be output from the brake. In this way, the battery 50 can be charged with as much regenerative braking power as possible. The same applies to the braking power of engine 22 due to motoring of motor MG1.
[0044] 上述した実施例では、ブレーキに異常が検出され車速 Vが閾値 Vref以上であると きにインバータ 41, 42をゲート遮断しないものとした力 ステップ S 170やステップ S1 80で現在のブレーキの状態で制動力が足りないものと推定されたときにインバータ 4 1, 42をゲート遮断しないものとし、それ以外ではインバータ 41, 42をゲート遮断する ものとしてもよい。こうすれば、 Nポジション時にモータ MG1, MG2から駆動トルクが 出力されるのを一層防止することができる。  [0044] In the above-described embodiment, when the abnormality is detected in the brake and the vehicle speed V is equal to or higher than the threshold value Vref, the force that does not shut off the inverters 41 and 42 is detected in steps S170 and S180. The inverters 41 and 42 may not be gated when it is estimated that the braking force is insufficient in the state, and the inverters 41 and 42 may be gated otherwise. In this way, it is possible to further prevent the drive torque from being output from the motors MG1, MG2 at the N position.
[0045] 上述した実施例では、油圧ノイブ 93a〜93dからの液漏れが検出されたときには、 液漏れして 、る油圧パイプに設けられた図示しな 、油圧ノ レブを閉じるものとしたが 、これを省略してもよい。このとき、インバータ 41, 42のゲート遮断の可否を判定する 閾値 Vrefは、このように異常が生じ油圧が低下したブレーキによっても停車可能な 車速に定めるものとする。 In the above-described embodiment, when liquid leakage from the hydraulic pressure nozzles 93a to 93d is detected, the hydraulic pressure leakage pipe is closed and the hydraulic pressure valve is closed, not shown, provided in the hydraulic pipe. This may be omitted. At this time, the threshold value Vref for determining whether or not the gates of the inverters 41 and 42 can be shut off can be stopped even by a brake whose abnormality has occurred and the hydraulic pressure has decreased. It shall be determined by the vehicle speed.
[0046] 上述した実施例では、モータ MG2の動力を減速ギヤ 35により変速してリングギヤ 軸 32aに出力するものとした力 図 7の変形例のノ、イブリツド自動車 120に例示するよ うに、モータ MG2の動力をリングギヤ軸 32aが接続された車軸(駆動輪 39a, 39b力 S 接続された車軸)とは異なる車軸(図 7における車輪 39e, 39fに接続された車軸)に 接続するものとしてもよ 、。  In the above-described embodiment, the power that the power of the motor MG2 is shifted by the reduction gear 35 and is output to the ring gear shaft 32a. As illustrated in the modified automobile 120 in FIG. 7, the motor MG2 May be connected to a different axle (axle connected to wheels 39e, 39f in FIG. 7) than the axle to which the ring gear shaft 32a is connected (the axle connected to the drive wheels 39a, 39b force S). .
[0047] 上述した実施例では、エンジン 22の動力を動力分配統合機構 30を介して駆動輪 3 9a, 39bに接続された駆動軸としてのリングギヤ軸 32aに出力するものとした力 図 8 の変形例のハイブリッド自動車 220に例示するように、エンジン 22のクランクシャフト 2 6に接続されたインナーロータ 232と駆動輪 39a, 39bに動力を出力する駆動軸に接 続されたアウターロータ 234とを有し、エンジン 22の動力の一部を駆動軸に伝達する と共に残余の動力を電力に変換する対ロータ電動機 230を備えるものとしてもょ 、。  [0047] In the embodiment described above, the force for outputting the power of the engine 22 to the ring gear shaft 32a as the drive shaft connected to the drive wheels 39a and 39b via the power distribution and integration mechanism 30 is a modification of FIG. As exemplified in the hybrid vehicle 220 of the example, it has an inner rotor 232 connected to the crankshaft 26 of the engine 22 and an outer rotor 234 connected to a drive shaft that outputs power to the drive wheels 39a and 39b. It is also assumed that the motor 22 includes a counter-rotor motor 230 that transmits a part of the power of the engine 22 to the drive shaft and converts the remaining power into electric power.
[0048] 上述した実施例では、エンジン 22とモータ MG1, MG2とを備えたハイブリッド自動 車 20とした力 図 9の変形例に示すように、モータ MG2の動力を駆動輪 39a, 39bに 出力する電気自動車 320としてもよい。あるいは、上述した実施例では、シリーズ パラレルノ、イブリツド自動車とした力 シリーズノ、イブリツド自動車としてもよいし、パラ レルハイブリッド自動車としてもよ!/、。  [0048] In the above-described embodiment, the power of the hybrid vehicle 20 including the engine 22 and the motors MG1, MG2 is used. As shown in the modification of Fig. 9, the power of the motor MG2 is output to the drive wheels 39a, 39b. The electric vehicle 320 may be used. Alternatively, in the above-described embodiment, the power of the series parallel or hybrid vehicle may be the series or hybrid vehicle, or the parallel hybrid vehicle! /.
[0049] また、こうしたノ、イブリツド自動車に適用するものに限定されるものではなぐ自動車 以外の車両などに適用してもよい。さらに、こうした車両の制御方法の形態としてもよ い。  [0049] Further, the present invention is not limited to those applied to such vehicles, but may be applied to vehicles other than automobiles. Furthermore, it may be a form of such a vehicle control method.
[0050] 本出願は、 2006年 4月 20日に出願された日本国特許出願第 2006— 116539号 を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。 産業上の利用可能性  [0050] This application is based on Japanese Patent Application No. 2006-116539 filed on Apr. 20, 2006, the entire contents of which are incorporated herein by reference. Industrial applicability
[0051] 本発明は、乗用車やバス、トラックなどの自動車に関連する産業のほか、列車や船 舶、航空機などの輸送車両に関連する産業に利用可能である。 [0051] The present invention is applicable to industries related to automobiles such as passenger cars, buses, and trucks, as well as industries related to transportation vehicles such as trains, ships, and aircraft.

Claims

請求の範囲 The scope of the claims
[1] 駆動軸が車軸に接続されて走行する車両であって、  [1] A vehicle that travels with a drive shaft connected to an axle,
前記駆動軸に動力の入出力が可能な電動機と、  An electric motor capable of inputting and outputting power to the drive shaft;
前記電動機を駆動するための駆動回路と、  A drive circuit for driving the electric motor;
前記駆動回路を介して前記電動機と電力のやり取りが可能な蓄電手段と、 流体圧を利用して車両に制動力を出力可能な制動力付与手段と、  Power storage means capable of exchanging electric power with the electric motor via the drive circuit, braking force applying means capable of outputting a braking force to the vehicle using fluid pressure,
前記制動力付与手段の状態を検出する状態検出手段と、  State detecting means for detecting the state of the braking force applying means;
シフトポジションが-ユートラルポジションであり前記状態検出手段によって前記制 動力付与手段が正常状態であると検出された正常時には前記駆動回路を作動停止 させ、シフトポジションが-ユートラルポジションであり前記状態検出手段によって前 記制動力付与手段が異常状態であると検出された異常時には前記電動機によって 前記駆動軸の動力を電力に変換することによる回生制動力を前記駆動軸に出力さ せるよう前記駆動回路を制御する制御手段と、  When the shift position is a -neutral position and the state detection means detects that the braking force applying means is in a normal state, the drive circuit is stopped when it is normal, and the shift position is -a neutral position and the state is detected. The drive circuit is configured to output a regenerative braking force to the drive shaft by converting the power of the drive shaft into electric power by the electric motor when an abnormality is detected by the means that the braking force applying means is in an abnormal state. Control means for controlling;
を備えた車両。  Vehicle equipped with.
[2] 請求項 1に記載の車両であって、  [2] The vehicle according to claim 1,
内燃機関と、  An internal combustion engine;
前記内燃機関の出力軸と前記駆動軸とに接続され、前記内燃機関をモータリング 可能であり電力と動力との入出力を伴って該内燃機関力もの動力の少なくとも一部を 前記駆動軸に出力可能な電力動力入出力手段と、  Connected to the output shaft of the internal combustion engine and the drive shaft, is capable of motoring the internal combustion engine, and outputs at least a part of the power of the internal combustion engine power to the drive shaft with input and output of electric power and power. Possible power power input / output means;
を備え、  With
前記駆動回路は、前記電力動力入出力手段をも駆動可能であり、  The drive circuit can also drive the power power input / output means,
前記蓄電手段は、前記駆動回路を介して前記電力動力入出力手段と電力のやり 取りが可能であり、  The power storage means can exchange power with the power drive input / output means via the drive circuit,
前記制御手段は、前記異常時には、前記電力動力入出力手段によって前記内燃 機関をモータリングすることにより該内燃機関による制動力をも前記駆動軸に出力さ せるよう前記駆動回路を制御する、  The control means controls the drive circuit so that the braking force by the internal combustion engine is also output to the drive shaft by motoring the internal combustion engine by the power power input / output means at the time of the abnormality.
单両。  South and South.
[3] 前記制御手段は、前記異常時には、前記蓄電手段の入力可能電力に基づいて前 記電力動力入出力手段による制動力を前記駆動軸に出力させるよう前記駆動回路 を制御する、 [3] When the abnormality occurs, the control means performs a previous operation based on electric power that can be input to the power storage means. Controlling the drive circuit to output a braking force by the power input / output means to the drive shaft;
請求項 2に記載の車両。  The vehicle according to claim 2.
[4] 前記制御手段は、前記異常時に前記蓄電手段の入力可能電力に基づいて前記 駆動回路を制御するに際して、前記蓄電手段の入力可能電力が所定電力より大き いときには、前記電動機による回生制動力を前記駆動軸に出力させ、前記蓄電手段 の入力可能電力が所定電力以下のときには、前記電動機による回生制動力を前記 駆動軸に出力させるのを制限すると共に前記電力動力入出力手段によって前記内 燃機関をモータリングすることにより該内燃機関による制動力を前記駆動軸に出力さ せるよう前記駆動回路を制御する、 [4] When the control means controls the drive circuit based on the power that can be input to the power storage means at the time of the abnormality, the regenerative braking force by the motor when the power that can be input to the power storage means is greater than a predetermined power. Is output to the drive shaft, and when the power that can be input to the power storage means is less than or equal to a predetermined power, the regenerative braking force by the motor is restricted from being output to the drive shaft, and the internal power is input by the power power input / output means. Controlling the drive circuit to output a braking force from the internal combustion engine to the drive shaft by motoring the engine;
請求項 3に記載の車両。  The vehicle according to claim 3.
[5] 前記電力動力入出力手段は、前記駆動軸と前記内燃機関の出力軸と回転可能な 回転軸の 3軸に接続され該 3軸のうちの 、ずれか 2軸に入出力される動力に基づ 、 て残余の軸に動力を入出力する 3軸式動力入出力手段と、前記内燃機関をモータリ ング可能であり前記回転軸に動力を入出力可能な発電機と、を備える手段である、 請求項 2〜4の!、ずれかに記載の車両。 [5] The power power input / output means is connected to three axes of the drive shaft, the output shaft of the internal combustion engine, and a rotatable rotary shaft, and power that is input / output to or from two of the three shafts. A means for inputting / outputting power to / from the remaining shaft, and a generator capable of motoring the internal combustion engine and inputting / outputting power to / from the rotating shaft. The vehicle according to any one of claims 2 to 4!
[6] 前記駆動回路は、インバータであり、 [6] The drive circuit is an inverter;
前記制御手段は、前記駆動回路の作動停止として前記インバータの遮断を行う、 請求項 1〜5のいずれかに記載の車両。  The vehicle according to any one of claims 1 to 5, wherein the control means shuts off the inverter as an operation stop of the drive circuit.
[7] 請求項 1〜6のいずれかに記載の車両であって、 [7] The vehicle according to any one of claims 1 to 6,
車速を検出する車速検出手段、を備え、  Vehicle speed detecting means for detecting the vehicle speed,
前記制御手段は、前記異常時に、前記車速検出手段によって検出された車速が 所定車速以下であるときには前記異常時であっても前記駆動回路を作動停止させ、 前記車速検出手段によって検出された車速が前記所定車速よりも高いときには前記 駆動回路を作動停止させない、  When the vehicle speed detected by the vehicle speed detection means is less than or equal to a predetermined vehicle speed at the time of the abnormality, the control means stops the operation of the drive circuit even at the time of the abnormality, and the vehicle speed detected by the vehicle speed detection means When the vehicle speed is higher than the predetermined vehicle speed, the driving circuit is not stopped.
单両。  South and South.
[8] 駆動軸が車軸に接続されて走行する車両であって、  [8] A vehicle that travels with a drive shaft connected to an axle,
内燃機関と、 前記内燃機関の出力軸と前記駆動軸とに接続され、前記内燃機関をモータリング 可能であり電力と動力との入出力を伴って該内燃機関力もの動力の少なくとも一部を 前記駆動軸に出力可能な電力動力入出力手段と、 An internal combustion engine; Connected to the output shaft of the internal combustion engine and the drive shaft, is capable of motoring the internal combustion engine, and outputs at least a part of the power of the internal combustion engine power to the drive shaft with input and output of electric power and power. Possible power power input / output means;
前記電力動力入出力手段を駆動するための駆動回路と、  A drive circuit for driving the power drive input / output means;
前記駆動回路を介して前記電力動力入出力手段と電力のやり取りが可能な蓄電 手段と、  Power storage means capable of exchanging power with the power drive input / output means via the drive circuit;
流体圧を利用して車両に制動力を出力可能な制動力付与手段と、  Braking force applying means capable of outputting a braking force to the vehicle using fluid pressure;
前記制動力付与手段の状態を検出する状態検出手段と、  State detecting means for detecting the state of the braking force applying means;
シフトポジションが-ユートラルポジションであり前記状態検出手段によって前記制 動力付与手段が正常状態であると検出された正常時には前記駆動回路を作動停止 させ、シフトポジションが-ユートラルポジションであり前記状態検出手段によって前 記制動力付与手段が異常状態であると検出された異常時には前記電力動力入出力 手段によって前記内燃機関をモータリングすることにより該内燃機関による制動力を 前記駆動軸に出力させるよう前記駆動回路を制御する制御手段と、  When the shift position is a -neutral position and the state detection means detects that the braking force applying means is in a normal state, the drive circuit is stopped when it is normal, and the shift position is -a neutral position and the state is detected. When the abnormality is detected by the means that the braking force applying means is in an abnormal state, the power driving input / output means motors the internal combustion engine to output the braking force from the internal combustion engine to the drive shaft. Control means for controlling the drive circuit;
を備えた車両。  Vehicle equipped with.
駆動軸が車軸に接続されて走行する、前記駆動軸に動力の入出力が可能な電動 機と、前記電動機を駆動するための駆動回路と、流体圧を利用して車両に制動力を 出力可能な制動力付与手段と、を備えた車両の制御方法であって、  A motor that travels with the drive shaft connected to the axle and that can input and output power to the drive shaft, a drive circuit for driving the motor, and a braking force that can be output to the vehicle using fluid pressure A braking force applying means, and a vehicle control method comprising:
シフトポジションが-ユートラルポジションであり前記制動力付与手段が正常状態で ある正常時には前記駆動回路を作動停止させ、シフトポジションが-ユートラルポジ シヨンであり前記制動力付与手段が異常状態である異常時には前記電動機によって 前記駆動軸の動力を電力に変換することによる回生制動力を前記駆動軸に出力さ せるよう前記駆動回路を制御する、  When the shift position is -the neutral position and the braking force applying means is in a normal state, the drive circuit is stopped.When the shift position is -the neutral position and the braking force applying means is in an abnormal state, the drive circuit is stopped. Controlling the drive circuit so that a regenerative braking force generated by converting power of the drive shaft into electric power by an electric motor is output to the drive shaft;
車両の制御方法。  Vehicle control method.
PCT/JP2007/057980 2006-04-20 2007-04-11 Vehicle and its control method WO2007123036A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-116539 2006-04-20
JP2006116539A JP2007284005A (en) 2006-04-20 2006-04-20 Vehicle and control method

Publications (1)

Publication Number Publication Date
WO2007123036A1 true WO2007123036A1 (en) 2007-11-01

Family

ID=38624941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057980 WO2007123036A1 (en) 2006-04-20 2007-04-11 Vehicle and its control method

Country Status (2)

Country Link
JP (1) JP2007284005A (en)
WO (1) WO2007123036A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011069724A1 (en) * 2009-12-08 2011-06-16 Robert Bosch Gmbh Method for braking a vehicle comprising an electric drive motor
CN109968985A (en) * 2017-12-26 2019-07-05 丰田自动车株式会社 Electric vehicle
CN115817187A (en) * 2022-12-19 2023-03-21 潍柴动力股份有限公司 Energy recovery method for hybrid vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8583309B2 (en) 2009-11-13 2013-11-12 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method of hybrid vehicle
JP5678949B2 (en) * 2012-12-14 2015-03-04 株式会社豊田自動織機 Speed control device
JP6269589B2 (en) 2015-06-16 2018-01-31 トヨタ自動車株式会社 Electric vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0879914A (en) * 1994-07-01 1996-03-22 Nippondenso Co Ltd Controller for hybrid automobile
JPH08182109A (en) * 1994-12-27 1996-07-12 Toyota Motor Corp Running controller for electric vehicle
JPH09222064A (en) * 1995-12-12 1997-08-26 Toyota Motor Corp Device and method for controlling starting of internal combustion engine
JPH11332018A (en) * 1998-05-07 1999-11-30 Toyota Motor Corp Power output unit and control method therefor
JP2000102111A (en) * 1998-09-18 2000-04-07 Honda Motor Co Ltd Regeneration controlling unit for hybrid vehicle
JP2001292503A (en) * 2000-04-04 2001-10-19 Suzuki Motor Corp Control apparatus for hybrid vehicle
JP2003065107A (en) * 2001-08-28 2003-03-05 Nissan Motor Co Ltd Controller for vehicle
JP2005297749A (en) * 2004-04-12 2005-10-27 Shin Kobe Electric Mach Co Ltd Brake control system for battery type riding golf cart

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0879914A (en) * 1994-07-01 1996-03-22 Nippondenso Co Ltd Controller for hybrid automobile
JPH08182109A (en) * 1994-12-27 1996-07-12 Toyota Motor Corp Running controller for electric vehicle
JPH09222064A (en) * 1995-12-12 1997-08-26 Toyota Motor Corp Device and method for controlling starting of internal combustion engine
JPH11332018A (en) * 1998-05-07 1999-11-30 Toyota Motor Corp Power output unit and control method therefor
JP2000102111A (en) * 1998-09-18 2000-04-07 Honda Motor Co Ltd Regeneration controlling unit for hybrid vehicle
JP2001292503A (en) * 2000-04-04 2001-10-19 Suzuki Motor Corp Control apparatus for hybrid vehicle
JP2003065107A (en) * 2001-08-28 2003-03-05 Nissan Motor Co Ltd Controller for vehicle
JP2005297749A (en) * 2004-04-12 2005-10-27 Shin Kobe Electric Mach Co Ltd Brake control system for battery type riding golf cart

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011069724A1 (en) * 2009-12-08 2011-06-16 Robert Bosch Gmbh Method for braking a vehicle comprising an electric drive motor
CN109968985A (en) * 2017-12-26 2019-07-05 丰田自动车株式会社 Electric vehicle
CN109968985B (en) * 2017-12-26 2022-05-17 株式会社电装 Electric vehicle
CN115817187A (en) * 2022-12-19 2023-03-21 潍柴动力股份有限公司 Energy recovery method for hybrid vehicle

Also Published As

Publication number Publication date
JP2007284005A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP5086973B2 (en) Hybrid vehicle and control method thereof
WO2008044392A1 (en) Vehicle and its control method
WO2007102420A1 (en) Vehicle, drive system, and their control method
JP2008168720A (en) Automobile and control method therefor
JP5282708B2 (en) Hybrid vehicle and control method thereof
WO2007123036A1 (en) Vehicle and its control method
JP3999786B2 (en) DRIVE DEVICE, VEHICLE MOUNTING THE SAME, POWER OUTPUT DEVICE, AND DRIVE DEVICE CONTROL METHOD
JP2009184559A (en) Vehicle, drive unit, and control method for vehicle
JP2008049775A (en) Vehicle and method for controlling the same
JP2011097666A (en) Vehicle and control method therefor
JP2009196474A (en) Hybrid car, control method thereof, and driving device
WO2008068930A1 (en) Power output device and its control method and vehicle
JP4285483B2 (en) Vehicle and control method thereof
JP4692207B2 (en) DRIVE DEVICE, VEHICLE MOUNTING THE SAME, AND DRIVE DEVICE CONTROL METHOD
JP4976990B2 (en) HYBRID VEHICLE, ITS CONTROL METHOD, AND DRIVE DEVICE
JP4248553B2 (en) Vehicle and control method thereof
JP2007112291A (en) Power output device, vehicle loading it and control method for power output device
JP2008279886A (en) Vehicle and its control method
JP5036505B2 (en) HYBRID VEHICLE, ITS CONTROL METHOD, AND DRIVE DEVICE
JP2007296933A (en) Vehicle and its control method
JP2007203998A (en) Vehicle and its control method
JP2004346782A (en) Hybrid automobile and control method thereof
JP3984229B2 (en) Power output apparatus, automobile equipped with the same, and control method therefor
JP4166237B2 (en) VEHICLE, ITS CONTROL METHOD AND DRIVE DEVICE
JP2009262866A (en) Hybrid car and control method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741416

Country of ref document: EP

Kind code of ref document: A1