WO2007122823A1 - Tumor target cell capable of producing vector - Google Patents

Tumor target cell capable of producing vector Download PDF

Info

Publication number
WO2007122823A1
WO2007122823A1 PCT/JP2007/050013 JP2007050013W WO2007122823A1 WO 2007122823 A1 WO2007122823 A1 WO 2007122823A1 JP 2007050013 W JP2007050013 W JP 2007050013W WO 2007122823 A1 WO2007122823 A1 WO 2007122823A1
Authority
WO
WIPO (PCT)
Prior art keywords
vector
gene
tumor
cell
virus
Prior art date
Application number
PCT/JP2007/050013
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Okada
Keiya Ozawa
Original Assignee
Jichi Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jichi Medical University filed Critical Jichi Medical University
Priority to JP2008511973A priority Critical patent/JP5283219B2/en
Publication of WO2007122823A1 publication Critical patent/WO2007122823A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15032Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15051Methods of production or purification of viral material

Definitions

  • the present invention relates to a tumor target cell having the ability to produce a viral vector.
  • the present invention also provides
  • the present invention also relates to a method for preparing tumor target cells having the ability to produce viral vectors.
  • the tumor target cells of the present invention can be used for the treatment of neoplastic diseases, inflammatory diseases or related diseases. Therefore, the present invention relates to a pharmaceutical composition comprising the tumor target cell of the present invention.
  • the tumor target cells of the present invention can be used for detection of tumor lesions or inflammatory lesions. Therefore, the present invention relates to a diagnostic composition for detecting a tumor lesion or inflammatory lesion comprising the tumor target cell of the present invention.
  • the internal body method is a method in which a vector containing a therapeutic gene is directly injected into the body.
  • the extracorporeal method is a method of introducing a gene into a target cell collected from a patient, selecting and amplifying the gene-introduced cell, and then returning the gene-introduced cell to the body again by transplantation, injection, or the like.
  • introducing a therapeutic gene into a tumor cell it is possible to expect a long-term and stable expression of the therapeutic protein and the effect of expression in the cell.
  • the metabolite produced by the therapeutic protein which is an expression product of the introduced therapeutic gene, is also transmitted to adjacent cells. Expect to have an effect.
  • HSV-tkZGCV therapy (Ram, Z. et al., Nat. Med., (1997) 3: 1354-1361).
  • HSV— tk / GCV therapy (This is a combination of introduction of the herpesvirus-derived thymidine kinase (HSV—tk) gene into cells and administration of ganciclovir (GCV). —Tk gene introduced It is a treatment that leads the cells to apoptosis. HSV—tk does not lead to cell death by expressing itself in the cell.
  • GCV ganciclovir
  • the GLI328 International Study Group has engineered patient glioma cells to produce viral vectors containing the HSV-tk gene, and transplanted the cells into tumors before GCV (See, for example, Rainov NG on behalf of the GLI328 International Study Group, Hum. Gene Ther., Vol. 11, p. 2389—2401, 2000) ).
  • this method has a limited ability to spread the vector in the tumor tissue, and the vector transfer efficiency of the vector is extremely low, 0.002 to 2.6%.
  • our research group has previously created a hybrid vector that encapsulates a plasmid designed to produce a retrovirus vector containing the HSV-tk gene in an adenovirus vector. . Then, the adenoviral vector was injected into the tumor tissue to introduce the gene into the tumor cell, the tumor cell was modified to produce the retroviral vector, and gene therapy was attempted in vivo (Okada, T. et al., J. Gene. Med., Vol. 6, p. 288-299, 2004). This method showed improved gene transfer efficiency and spread of the vector in the tumor tissue.
  • MSCs Mesenchymal stem cells
  • Inherited MSCs to express therapeutic proteins such as cytoforce-in Attempts have been made to use MSCs as carriers to deliver the therapeutic protein to target cells by modification of the molecule (Studeny, M. et al., Journal of the National Cancer Institute, Vol. 96, p. 1593— 1603, 2004; H. Hamada et al., Cancer Sci., Vol. 96, p.
  • Non-patent literature l Ram, Z. et al., Nat. Med., Vol. 3, p. 1354-1361, 1997
  • Non-patent literature 2 Rainov NG on behalf of the GLI328 International Study Group, Hum. Gene Ther., Vol. 11, p. 2389— 2401, 2000
  • Non-Patent Document 3 Okada, T. et al., Gene. Med., Vol. 6, p. 288-299, 2004
  • Patent Document 4 Studeny, M. et al., Journal of the National Cancer Institute
  • Non-patent literature 5 Hamada, H. et al., Cancer Sci., Vol. 96, p. 149-156, 2005
  • Non-patent literature 6 Nakamizo, A. et al., Cancer Res., Vol. 65, p. 3307-3318 , 20 05
  • An object of the present invention is to provide tumor target cells having the ability to produce viral vectors. Another object of the present invention is to provide a method for preparing tumor target cells having the ability to produce viral vectors. The present invention further aims to provide a pharmaceutical composition comprising the tumor target cell of the present invention. Another object of the present invention is to provide a diagnostic composition for detecting a tumor lesion or an inflammatory lesion comprising the tumor target cell of the present invention.
  • the present inventor created MSCs having the ability to produce viral vectors by genetically engineering mesenchymal stem cells (MSCs) that have the ability to accumulate in tumor tissues and inflammatory tissues.
  • MSCs mesenchymal stem cells
  • the MSCs were administered to a cancer-bearing animal model, the MSCs They found that high-efficiency gene transfer and gene expression occurred in cancerous lesions as a result of accumulation in the nest and production of viral vectors there.
  • the present inventors have found that tumor target cells having the ability to produce viral vectors produced by genetically engineering tumor target cells having the ability to accumulate in tumor tissues, inflammatory tissues, etc.
  • the present invention has been completed by conceiving the technical idea that it is useful for gene transfer or gene therapy for lesion tissues such as inflammatory diseases.
  • the present invention provides tumor target cells having the ability to produce viral vectors.
  • the present invention also provides tumor target cells having the ability to produce viral vectors for use in gene transfer or gene therapy for animals or animal cells.
  • the tumor target cell having the ability to produce the viral vector of the present invention is used for tumorous diseases, inflammatory diseases, or lesion tissues of related diseases. It can be used for gene transfer or gene therapy. Therefore, the present invention provides a tumor target cell having the ability to produce a viral vector for use in gene transfer or gene therapy for neoplastic diseases, inflammatory diseases, or lesion tissues of closely related diseases.
  • the tumor target cell having the ability to produce the viral vector of the present invention can be used for detection of a tumor lesion or an inflammatory lesion. it can. Therefore, in one aspect, the present invention is a marker gene that can detect a transgene contained in a virus vector, and is used for detecting a tumor lesion or an inflammatory lesion by detecting the expression of the marker gene. Tumor target cells having the ability to produce viral vectors are provided.
  • the present invention provides a method for preparing tumor target cells having the ability to produce the viral vector of the present invention.
  • the present invention provides a pharmaceutical composition comprising the tumor target cell of the present invention.
  • the present invention also provides a diagnostic composition for detecting a tumor lesion or an inflammatory lesion comprising the tumor target cell of the present invention.
  • Virus vector i3 ⁇ 4 cattle The present invention provides tumor target cells having the ability to produce viral vectors.
  • a tumor target cell is a cell having a property of accumulating in a tumor tissue or an inflammatory tissue in a living body.
  • tumor target cells include, but are not limited to, mesenchymal stem cells (MSCs), tissue stem cells including vascular endothelial progenitor cells, neural stem cells, and tumor cells.
  • MSCs are the preferred tumor target cells. MSCs are preferred because of their ability to accumulate in tumor tissue and inflamed tissue, as well as for patients who have a low probability of rejection at the time of transplantation, and can be used for a large number of patients as well as relatives. This is because.
  • the tumor target cells of the present invention are not particularly limited as long as they are derived from animals, but are preferably derived from mammals.
  • a viral vector refers to a vector for introducing a foreign gene into a cell by applying a mechanism in which a virus originally infects and maintains the cell.
  • the term “vector” means a medium that enables introduction of a desired gene or DNA sequence into a host cell.
  • the viral vector produced by the tumor target cell of the present invention is not particularly limited as long as it is a viral vector.
  • a retroviral vector an adeno-associated virus (AAV) vector, an adenoviral vector, a lentiviral vector, a foamy viral vector.
  • Influenza zenores vector sendai winores betater, simple henope suenoles vector, hepatitis virus vector, papilloma virus vector, baculovirus vector, rabies virus vector, and their hybrid vectors This is the virus vector.
  • Preferred viral vectors are viral vectors selected from the group consisting of adeno-associated viral vectors, adenoviral vectors, retroviral vectors, lentiviral vectors, and their hybrid vector capabilities.
  • a particularly preferred viral vector is a retroviral vector. Retroviral vectors are easily inactivated by complement in the blood, but it is possible to produce retroviral vectors in target tissues by using tumor target cells that produce the viral vectors of the present invention. Stable gene expression can be expected.
  • the tumor target cell of the present invention is genetically engineered to produce a viral vector. It is. Specifically, the tumor target cells of the present invention are transfected with (1) a plasmid containing the desired transgene; and (2) one or more plasmids containing a gene encoding a viral protein. .
  • the above plasmids (1) and (2) are included in the plasmid (2) although proteins necessary for the production of virus particles are expressed by the plasmid (2) in the cells into which they have been introduced.
  • the gene that codes for the virus-derived protein is not packaged in the virus particle, and the transgene of the plasmid in (1) is designed to be packaged in the virus particle.
  • the viral vector produced by the tumor target cell of the present invention is a viral vector in which a desired transgene is packaged in a viral particle.
  • the viral vector contains the desired transgene, but does not contain the gene that encodes the virus-derived protein! /, So the transgene can be introduced into the infected cell by infecting the cell, and The virus never replicates to the cells! /
  • the tumor target cell of the present invention includes (l) 5, LTR (long terminal repeat), packaging signal ( ⁇ ), desired transgene, and 3, plasmid containing LTR And (2) a plasmid containing a gagZpol gene and an env gene, or a plasmid containing a gag / pol gene and a plasmid containing an env gene.
  • the gag gene encodes a virus particle constituent protein
  • the pol gene encodes a reverse transcriptase
  • the env gene encodes a virus envelope protein, both of which are genes derived from retroviruses.
  • the virus envelope protein is not particularly limited as long as it is a protein that can be an envelope of a retrovirus.
  • VSV-G G protein of vesicular stomatitis virus
  • envelope protein of amphotropic retrovirus envelope protein of amphotropic retrovirus
  • echotropic retro Virus envelope protein gibbon ape envelope protein
  • feline RD1 14 envelope protein etc.
  • the binding of the retroviral envelope to the target cell receptor is the first step in infection, so the type of envelope defines the cell type into which gene transfer is possible. That is, the homotrophic echotropic virus (ecotropic) that infects only rodents and the amphibian amphotropivirus (amphotropi) that also infects various types of cells including humans in addition to rodents.
  • a packaging cell line for the production of each retroviral vector is created.
  • Retroviruses When preparing a vector for gene transfer into human cells, use an unphoto-pick type. Retroviruses have the property of packaging a gene with a packaging signal on the 5th, 3rd, 1 ⁇ [3 ⁇ 4, and a packaging signal on the 5th side.
  • the tumor target cell of the present invention into which the plasmids of (1) and (2) above have been introduced expresses a protein required for virus particle production by the plasmid of (2), and the introduction of the plasmid of (1) Genes are knocked into virus particles.
  • the retroviral vector produced by the tumor target cell of the present invention is a retroviral vector containing a desired transgene in a viral particle.
  • the tumor target cell of the present invention includes (1) 5, ITR (inverted terminal repeat), packaging signal, promoter and poly A , 3, AAV vector plasmid containing ITR, (2) AAV V helper plasmid capped crep gene except ITR of AAV genome, (3) E2A, E4, VA-RNA of type 2 or type 5 adenovirus An adenovirus helper plasmid cloned with the gene is introduced.
  • the rep gene codes for an enzyme protein
  • the cap gene codes for a capsid protein, both of which are AAV-derived genes.
  • cap gene those containing AAV cap genes derived from various serotypes or cap genes of multiple serotypes can be used.
  • rep and cap genes are expressed in the presence of a helper virus such as adenovirus and herpes virus, and AAV proliferates.
  • helper virus such as adenovirus and herpes virus and their genome instead of the adenovirus helper plasmid.
  • AAV has the property of packaging a gene inserted between ITRs at both ends together with a packaging signal into a viral capsid.
  • the AAV vector produced by the tumor target cell of the present invention is an AAV vector containing a desired transgene in a viral particle.
  • the tumor target cells of the present invention include (1) 5, an ITR (inverted terminal repeat), a packaging signal, the gene expression cassette containing a promoter and poly A, the E1 gene ( Or, in addition to this, E
  • a viral vector is used as (2), the viral vector is not necessarily limited to the force derived from retrovirus or AAV.
  • the El, E2, E3, and E4 genes of the human adenovirus early genes are mainly virus DN
  • the late gene encodes a capsid protein.
  • the adenoviral vector usually used as a gene therapy vector replaces the E1 region consisting of E1A and E1B, which activates the adenoviral promoter, with a foreign gene expression cassette containing the promoter and poly A, and El protein. Only cells that can be supplied separately can grow. Therefore, adenoviral vectors lacking the E1 region are
  • Adenovirus has the property of packaging a gene inserted between ITRs at both ends together with a DNA / caging signal into a viral capsid.
  • a protein necessary for production of virus particles is expressed by the plasmid or virus vector of (2), and The plasmid or virus vector transgene of (1) is packaged into a virus particle.
  • adenovirus-derived ITR sequences and packages are included in the plasmid or virus vector in (2). No packaging signal is present, so it is not packaged into the viral vector produced. Therefore, the adenoviral vector produced by the tumor target cell of the present invention is an adenoviral vector containing the desired transgene in the viral particle.
  • gene introduction refers to introduction of a gene into a cell.
  • the electopore position method or its improved method the Nucleofector method (using Nucleofector (registered trademark) technology; am axa), lipofuxion method, calcium phosphate method, Or a method known to those skilled in the art such as DEAE dextran method.
  • Nucleofector method using Nucleofector (registered trademark) technology; am axa
  • lipofuxion method lipofuxion method
  • calcium phosphate method or a method known to those skilled in the art such as DEAE dextran method.
  • viral vectors are introduced into cells by methods such as the electopore position method or its improved methods such as the nucleo-off-exclusion method, lipofuxion method, calcium phosphate method, and DEAE-dextran method. It may be introduced.
  • the structural protein of the viral vector is involved in gene expression after viral vector uptake into the cell, it is difficult to infect the viral vector because of the idea that the viral vector is incorporated into the cell. Sometimes used to introduce well.
  • the transgene is a gene intended to be introduced into a cell by gene introduction or introduced into a cell.
  • the transgene contained in the viral vector produced by the tumor target cell of the present invention is not particularly limited, but is preferably a therapeutic gene or a detectable marker gene.
  • Preferred therapeutic genes include simple herpesvirus thymidine kinase (HS V—tk): Bim, FADD, p53, GM—CSF, interleukin (IL) -2, IL-10, IL-12, IL24 (mda-7), B7ZB70, angiostatin, endostatin, sFlt-1 (free VEGF receptor), NK4, cytosine deaminase (CD), mdr-1, VZV-tk, Including, but not limited to, X GPRT, or a combination of two or more thereof. More preferred therapeutic genes are HSV-tk, CD, VZV-tk, XGPRT, etc. These genes are genes that lead to cell death when expressed in the introduced cell. A child. These genes are preferred because these genes can be used as transduction factors. (I) When infected normal cells become malignant, the cells can be killed.
  • IL interleukin
  • IL-12 interleukin-12
  • the cell when the tumor target cell producing the viral vector of the present invention itself is malignant, the cell can be killed; and (iii) the tumor target cell producing the viral vector of the present invention is a tumor cell.
  • the malignancy is promoted, such as by increasing the expression of a protein that adversely affects the proliferative ability / metastasis ability of itself or surrounding normal cells, the tumor target cells and tumor cells can be killed. This is because safety is high when the cells of the present invention are used for treatment.
  • HSV-tk does not lead to cell death by expressing itself in the cell, but leads to cell death when used in combination with ganciclovir (GCV) administration. Specifically, when GCV is taken up by a cell into which H SV-tk has been introduced, HSV-tk phosphorylates GCV to GCV-MP (-phosphate). GCV—MP is then converted into GCV—DP (diphosphate) and GCV—TP (triphosphate) by intracellular enzymes, and this GCV—TP inhibits cell DNA synthesis, leading to cell death. (Z. Ram et al., Nat. Med., Vol. 3, p. 1354–1361, 1997).
  • CD, VZV-tk, and ZGPRT are also suicide genes, and in combination with administration of 5-FC, AraM, and 6-TX, respectively, leads to cell death in cells expressing the suicide gene.
  • a particularly preferred therapeutic gene is HSV-tk.
  • detectable marker genes include, but are not limited to, green fluorescent protein (GFP), red fluorescent protein (RFP), luciferase, and the like.
  • the tumor target cells having the ability to produce the viral vector of the present invention can be used for gene transfer or gene therapy for animals or animal cells.
  • the animal or animal cell is preferably a mammal or a mammalian cell, respectively.
  • the tumor target cell having the ability to produce the viral vector of the present invention can be used for tumorous diseases, inflammatory diseases, or lesion tissues of related diseases. It can be used for gene transfer or gene therapy.
  • the neoplastic disease is not particularly limited as long as it is a disease accompanied by abnormal cell proliferation.
  • benign epithelial tumor papilloma, adenoma, cyst, etc.
  • malignant epithelium Tumors undifferentiated cancer, squamous cell carcinoma, adenocarcinoma, hepatocellular carcinoma, renal cancer, etc.
  • non-epithelial tumors lipoma, osteoma, myoma, hemangioma, etc.
  • special organ tumors hematopoietic tumor, Mesothelioma, neural tissue tumor, melanoma, etc.
  • brain tumor thyroid cancer, pharyngeal 'laryngeal cancer, ovarian cancer, bone tumor, ganglion tumor, sarcoma, liver cancer, skin cancer, breast cancer, lung cancer, digestive organ cancer, prostate cancer, uterine cancer, bladder cancer , Lymphoma, leukemia, and the like.
  • the inflammatory disease is not particularly limited as long as it is a disease accompanied by a local reaction to a disorder of living tissue, but it is degenerative inflammation (herpes virus or hepatitis virus infection, Jacob disease), serous fluid.
  • Pneumonia infection of anthrax, burns and frostbite, allergic reaction
  • lethargic inflammation inusitis, bronchitis, gastritis, enteritis
  • purulent inflammation infection of staphylococci and Pseudomonas aeruginosa
  • Fibrinitis diphtheria, dysentery, typhoid infection
  • hemorrhagic inflammation pulmonary plague, influenza pneumonia, epidemic hemorrhagic fever
  • gangrenitis anaerobic infection
  • proliferative inflammation tuberculosis, syphilis, fungus
  • Disease cirrhosis, nephritis, pulmonary fibrosis, idiopathic cardiomyopathy
  • granulomatous diseases other than infectious diseases asbestosis, sarcoidosis, silicosis, Hodgkin's disease
  • immune-related inflammatory diseases such as rheumatoid arthritis, multiple sclerosis, Crohn's disease, pelvic inflammatory disease, ovitis, fallopian tubeitis, fallopian tube ovitis, fallopian tube peritonitis, etc. .
  • neoplastic diseases or closely related diseases of inflammatory diseases refer to diseases known to those skilled in the art that inflammation control therapy is effective for the treatment. Examples include, but are not limited to, neurodegenerative diseases, arteriosclerosis (eg, atherosclerosis, stroke, ischemic heart disease), and hypertension.
  • arteriosclerosis eg, atherosclerosis, stroke, ischemic heart disease
  • hypertension e.g., hypertension
  • the transgene contained in the viral vector is a detectable marker gene
  • the tumor target cells having the ability to produce the viral vector of the present invention accumulate in the tumor lesion or inflammatory lesion. By detecting this, tumor lesions or inflammatory lesions can be detected.
  • the present invention provides a method for preparing tumor target cells having the ability to produce viral vectors.
  • the present invention relates to a method for preparing a tumor target cell having the ability to produce a viral vector, comprising (1) a plasmid containing a desired transgene in the tumor target cell; and (2) a gene encoding a viral protein.
  • the plasmid of (1) and (2) above is a virus particle in the tumor target cell into which they have been introduced by the plasmid of (2).
  • the gene encoding the virus-derived protein contained in the plasmid in (2) is not packaged in the virus particle, but the transgene in the plasmid in (1) is packaged in the virus particle.
  • the plasmids (1) and (2) are usually introduced at the same time, but the plasmid (1) may be introduced first, or the plasmid (2) may be introduced first. It may be introduced.
  • tumor target cells for the method of the present invention, tumor target cells, virus vectors, transgenes, as defined above.
  • the tumor target cells are mesenchymal stem cells (MSCs) and the viral vector produced is a retroviral vector. Therefore, the present invention provides a method for preparing mesenchymal stem cells having the ability to produce retroviral vectors, and comprises (1) 5, LTR, knocking signal ( ⁇ ), transgene, and 3 And (2) a plasmid containing an LTR; and (2) a plasmid containing a gagZpol gene and an env gene, or a plasmid containing a gagZpol gene and a plasmid containing an env gene; In the method of the present invention, usually the plasmids (1) and (2) can be introduced at the same time. The plasmid of (1) may be introduced first, or the plasmid of (2) may be introduced first. You can introduce it!
  • gene transfer of a plasmid into a tumor target cell is performed by using the electopore position method or the modified method, Nucleofector (registered trademark) technology; amaxa ), A ribofusion method, a calcium phosphate method, a DEAE-dextran method, and the like.
  • a preferred gene transfer method is a nucleo-off excision method or a lipofussion method.
  • the present invention provides a pharmaceutical group comprising a tumor target cell having the ability to produce the viral vector of the present invention.
  • the tumor target cells having the ability to produce a viral vector contained in the pharmaceutical composition of the present invention are as described above except that the transgene contained in the produced viral vector is a therapeutic gene.
  • the present invention also provides a diagnostic composition for detecting a tumor lesion or an inflammatory lesion, comprising a tumor target cell having the ability to produce the virus vector of the present invention.
  • the tumor target cell having the ability to produce a viral vector contained in the diagnostic composition of the present invention is as described above except that it is a marker gene capable of detecting the transgene force contained in the produced viral vector.
  • the pharmaceutical composition of the present invention and the diagnostic composition of the present invention are sometimes collectively referred to as the composition of the present invention.
  • the only difference between the pharmaceutical composition and the diagnostic composition of the present invention is whether the transgene is a therapeutic gene or a detectable marker gene. The essential nature of things is the same.
  • the composition of the present invention may contain a pharmaceutically acceptable carrier or diluent in addition to the tumor target cells having the virus vector producing ability of the present invention.
  • a pharmaceutically acceptable carrier or diluent or the like is an essentially chemically inert and harmless composition that does not affect the biological activity of the composition of the present invention at all. Examples of such carriers or diluents include, but are not limited to, salt solutions, sugar solutions, glycerol solutions, ethanol.
  • the composition of the present invention may further contain an appropriate amount of any pharmaceutically acceptable additive such as an emulsification aid, a stabilizer, an isotonic agent, and a pH adjusting agent.
  • fatty acids having 6 to 22 carbon atoms for example, strong prillic acid, strong puric acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, arachidonic acid, docosahexaenoic acid
  • pharmaceutically acceptable salts thereof eg, sodium salt, potassium salt, calcium salt
  • glycerin emulsification aids such as albumin and dextran
  • stabilizers such as cholesterol and phosphatidic acid
  • pH adjusters such as hydrochloric acid, nitric acid, phosphoric acid, acetic acid, sodium hydroxide, potassium hydroxide, triethanolamine, and the like.
  • the composition of the present invention includes a tumor target cell having the ability to produce the viral vector of the present invention effective for treatment or diagnosis, and is provided in a form that can be appropriately administered to a patient.
  • the composition of the present invention may be prepared in the form of a liquid such as an injection or an infusion.
  • the composition of the present invention is administered to animals including humans in the left ventricular cavity, intravenous administration, intraarterial administration, tissue administration, tumor nutrition intravascular administration, or intrathecal administration to the ventricle. It can be administered by an appropriate route according to the patient's condition. In particular, administration in the left ventricular cavity or intratumoral administration of blood vessels by force tail manipulation is preferable.
  • the pharmaceutical composition of the present invention is administered in a dosage form suitable for these administration methods.
  • the dose of the composition of the present invention is preferably determined in consideration of the drug, dosage form, patient condition such as age and weight, administration route, nature and degree of illness and the like.
  • a preferred dose range is one in which the cells of the invention are present in the range of lxlO 6 to 1 ⁇ 10 ⁇ Zkg body weight. More preferred dose range, to the cells of the present invention is LxlO 6 no LxlO 9 amino Zkg weight, 1x1 0 6 to LxlO 8 pieces Zkg weight, LxlO 6 to LxlO 7 amino Zkg weight or LxlO 6 to 3 XLO 6 pieces Zkg weight, It exists in the range of. In some cases, this may be sufficient, or vice versa.
  • Administration may be performed once or multiple times. When administered multiple times, it may be administered once to several times a day, once to several days, once to several weeks, or once to several months. The invention's effect
  • Tumor target cells having the ability to produce the viral vector of the present invention accumulate in tumors and inflamed tissues in the living body when injected into the living body. Therefore, by injecting the tumor target cells of the present invention into a living body, it is possible to produce a viral vector in the target tissue and to maintain the infection in the target tissue. As a result, gene transfer can be performed with high efficiency. It can be done.
  • FIG. 1 is a graph showing the retroviral secretion ability of vector-produced MSCs and the degree of infection of mouse 9L cells by the secreted retrovirus.
  • NC on the horizontal axis indicates a control (negative control), and the number of days indicates the number of days of culture after plasmid introduction.
  • the right vertical axis shows the titer of virus secreted by MSCs.
  • the left vertical axis indicates the amount of luciferase produced by mouse 9L cells infected with the secreted virus, which evaluates the biological titer due to the infectivity and gene transfer capacity of the virus.
  • Fig. 2-1 shows gene expression in a tumor-bearing animal model of viral vector-producing MSCs (VS V—G group: producing viral vectors using VSV-G as an envelope) It is a graph (a) and a biological imaging image (b).
  • the horizontal axis shows the number of days after MS Cs administration;
  • the left vertical axis shows the total luminous flux of luciferase fluorescence, circled plots (luciferase fluorescence in tumors) and squared plots (background: BG)
  • the right vertical axis represents the tumor volume and is the vertical axis for the plots shown as diamonds.
  • Fig. 2-2 is a graph showing gene expression in a cancer-bearing animal model of viral vector-producing MSCs (env group: producing a viral vector having an amphotropic retroviral envelope) ( a) and biological imaging image (b).
  • the horizontal axis indicates the number of days after administration of MSCs;
  • the left vertical axis indicates the total luminous flux of luciferase fluorescence, a circle plot (luciferase fluorescence in the tumor) and a square plot (background: BG) is the vertical axis;
  • the right vertical axis represents the tumor volume and is the vertical axis for the plots shown as diamonds.
  • FIGS. 2-3 are graphs (a) and biological imaging images (b) showing gene expression in MSCs (NC group) tumor-bearing animal models that do not produce viral vectors. These are the results of a control experiment against the experiments in Figure 2-1 and Figure 2-2.
  • the horizontal axis shows the number of days after administration of MSCs; the left vertical axis shows the total luminous flux of luciferase fluorescence, circled plots (luciferase fluorescence in tumors) and squared plots (background: BG)
  • the vertical axis is the vertical axis; the right vertical axis is the volume of the tumor and plots the diamonds.
  • FIG. 3 is a graph showing the gene amplification effect by administration of vector-producing mesenchymal stem cells in a tumor-bearing animal model.
  • Horizontal axis: 9LZLNCN is an animal model of cancer that has not been administered MSCs; MSC has been gene-transfected!
  • TK is a thymidine kinase-expressing retroviral vector Plasmid (LTR-TK) Tumor-bearing animal model administered with introduced MSCs
  • TK VSV-G is a tumor-bearing animal model administered with MSCs introduced with LTR-TK and V SV-G expression plasmids
  • TK V SV-G gag-pol is , LTR-TK, VSV-G expression plasmid, and gag-pol expression plasmid, a tumor-bearing animal model administered with MSCs.
  • the vertical axis represents the amount of thymidine kinase gene when the amount of thymidine kinase gene in a subcutaneous tumor of a tumor-bearing animal model administered with MSCs into which LTR-TK has been introduced is 1.
  • Fig. 41 is a schematic diagram showing the experimental procedure of therapeutic gene transfer and therapeutic effect by GCV in a cancer-bearing animal model.
  • Fig. 42 shows (a) graphs and (b) biological imaging photographs showing the experimental results of therapeutic gene transfer and therapeutic effects by GCV in cancer-bearing animal models.
  • “9LZLNCL” oral) is an untreated group
  • MSC
  • tk
  • tk introduction MSC administration group
  • TkZVSV—G
  • tkZgag—pol / VSV-GJ ⁇ indicates pLTR—HSV—tk, pGag—pol and p VSV—G-introduced MSC group
  • tkZgag—pol / VSV-GJ indicates pLTR—HSV—tk, pGag—pol and p VSV—G-introduced MSC group, respectively
  • Example 1 Selection of gene transfer method for mesenchymal cocoon cells (MSCs)
  • Green fluorescent protein (GFP) expression plasmid was introduced into mesenchymal stem cells (MSCs) derived from Sprague-Dawley (SD) rat bone marrow.
  • MSCs mesenchymal stem cells
  • SD Sprague-Dawley
  • a nucleo-off-excitation method a calcium phosphate method, or a lipofusion method was used.
  • MSCs into which no GFP expression plasmid was introduced were used as a control.
  • the Nucleof-Exclusion method was performed using the Nucleofector (registered trademark) technology of the company, using the gene introduction system Nucleofector (registered trademark) of amaxa.
  • the nucleo-exclusion method is an improved version of the electopore position method, which introduces genes directly into the cell nucleus. Technology. Gene transfer according to amaxa product manual
  • % FBS-supplemented D Mated uniformly with 2 ml of MEMZF12 culture solution. This was replaced with the supernatant of the cells that had been cultured in the 6-well plate and cultured. After 6 hours, the culture solution was removed, and 2 ml of 2% FBS-supplemented D-MEM / F12 culture solution heated at 37 ° C was added and cultured for 24 hours.
  • lipofucamine 2000 (Invitrogen) was used as a ribosome, lxlO 6 cells per well were seeded in a 6-well plate, and cultured in DMEMZF 12 culture medium with 10% FBS for 24 hours.
  • DMEMZF 12 culture medium with 10% FBS for 24 hours.
  • Opti-MEM registered trademark
  • the plasmid (4 / zg) was transfected under the recommended conditions according to the product manual using Lipofectamine 2000 (15 ⁇ 1, Invitrogen).
  • the medium was changed to D-MEMZF12 medium supplemented with 10% FBS, and cultured for 24 hours.
  • the cells were cultured at 37 ° C for 24 hours in D-MEMZF-12 medium (Invitrogen ⁇ 11320-033) containing 10% final concentration of fetal bovine serum (Sigma, F-2442).
  • the rate of gene transfer into mesenchymal stem cells was evaluated by flow cytometry for the fluorescence of GFP expressed in the cells. Gene transfer was observed in 60.11% of the nucleophilic method, 3.13% of the calcium phosphate method, and 12.26% of the lipofusicion method. In the control cells, fluorescence was observed in 0.01% of cells. It is a knock ground. Therefore, it was revealed that the nucleophilic or ribofunctional method is preferable for gene introduction into mesenchymal stem cells.
  • luciferase expression plasmid 4 g was introduced into 2xl0 6 SD rat bone marrow-derived MSCs by nucleolysis. After the introduction, the cells were cultured in D-MEM / F-12 medium containing 10% ushi fetal serum at 37 ° C for 24 hours, and 5xl0 5 MSCs were used for administration to mice.
  • mice On the back of nude mice, 3xl0 6 mouse glioma 9L cells were injected subcutaneously to create a tumor-bearing animal model. For comparison, 3xl0 6 mouse neuroblasts Rat-1 were also subcutaneously injected into the back of a mouse.
  • MSCs (M SCZpLuc) into which 5xl0 5 luciferase expression plasmids were introduced were administered into the left ventricular cavity in a cancer-bearing animal model (group 9L).
  • PC positive control
  • NC negative control
  • 5xl0 5 MSCZpLuc were administered into the left ventricular cavity of nude mice without subcutaneous injection of tumor cells.
  • 5xl0 5 MSC / pLuc were administered into the left ventricular cavity of a nude mouse injected with Rat-1 cells subcutaneously on the back (Rat-1 group).
  • luciferase 24 hours after administration of MSCZpLuc, the expression site of luciferase was evaluated using an in vivo imaging apparatus (IVIS Imaging System; Xenogen).
  • IVIS Imaging System Xenogen
  • 9L group a tumor-bearing animal model
  • luciferase was strongly expressed on the back subcutaneously injected with 9L cells. This indicates that MSCZpLuc accumulated in the tumor cells and the luciferase gene was expressed there.
  • luciferase was weakly expressed mainly in the head, and in animals that did not have cancer, luciferase was expressed nonspecifically along the bloodstream.
  • luciferase was observed in the dorsal skin injected with MSCZpLuc.
  • luciferase was weakly expressed mainly in the head, and site-specific expression along the bloodstream was observed.
  • Example 3 Virus vector cattle.
  • Luciferase-expressing retroviral vector plasmid 4 g, gag-pol expression plasmid 0.5 g, and VSG-G (vesicular stomatitis virus G protein) expression plasmid 0.5 / zg was introduced into 2xl0 6 SD rat bone marrow-derived mesenchymal stem cells (MSCs) by the nucleo-exclusion method. A mesenchymal stem cell into which the above plasmid was not introduced was used as a control. After introduction, cultured in D-MEMZF-12 medium with final concentration of 10% urchin fetal serum at 37 ° C.
  • the culture supernatant was collected.
  • virus titer in the culture supernatant was analyzed by RNA dot plotting, virus expression was confirmed 24 hours after gene transfer (Fig. 1).
  • the cells were cultured in MEMZF 12 culture solution for 24 hours. To this culture supernatant, 1001 of a culture solution containing virus produced by MSC and collected over time was added, and gene transfer was performed. After culturing for 3 days, luciferase assay was performed to evaluate the amount of gene expression in infected 9L cells (Fig. 1).
  • Luciferase-expressing retroviral vector plasmid 4 g, gag-pol expression plasmid 0. and VSG-G expression plasmid 0. were introduced into 2xl0 6 SD rat bone marrow-derived mesenchymal stem cells (MSCs) (VSG- G group).
  • MSCs bone marrow-derived mesenchymal stem cells
  • a group (env group) into which 0.5 ⁇ g of an amphotropic retrovirus envelope protein expression plasmid was introduced instead of the VSV-G expression plasmid was prepared.
  • 4 ⁇ g of luciferase-expressing retrovirus vector plasmid and 1 g of LacZ expression plasmid were introduced to prepare a group that did not produce virus (NC group). The gene transfer was performed by the Nucleo-off-exclusion method.
  • the nude mice are a tumor-bearing animal model in which mouse glioma 9L cells (hereinafter also simply referred to as 9L cells) are injected subcutaneously on their backs immediately before administration of MSCs.
  • the expression of luciferase in the tumor was evaluated over time using an in vivo imaging system (IVIS Imaging System; Xenogen) (Fig. 2-1, Fig. 2-2, and Fig. 2-3).
  • Example 5 'Treatment transfer in animal model
  • Simple herpesvirus-derived thymidine kinase expression retroviral vector plasmid 4 g, gag-pol expression plasmid 0.5 g, and VSG-G expression plasmid 0.5 g 2xl0 6 mesenchymal lines derived from SD rat bone marrow Stem cells (MSCs) were introduced by the nucleo-off-exclusion method.
  • nude mice After introduction, culture with D-MEMZF-12 medium at a final concentration of 10% urchin fetal serum, cultured at 37 ° C in 12 medium, and after 24 hours of culture, cells were collected and 5xl0 5 gene-introduced MSCs were placed in the left ventricular cavity of nude mice Systemic administration was performed by injection.
  • the nude mice are a tumor-bearing animal model in which mouse 9L cells were injected subcutaneously on their back immediately before administration of MSCs. 24 days after administration, subcutaneous tumors were collected, and DNA extraction was performed using an animal tissue DNA extraction kit DNeasy Tissue Kit (QIAGE N). According to the standard procedure of the kit, DNA was concentrated and extracted by adsorption onto the silica gel membrane.
  • Primer set corresponding to thymidine kinase gene (5'—TTCTGGCTCCTCATGTCGG-3, (SEQ ID NO: 1) and 5'-ATTGGC AAGC AGCCCGTAA-3 '(SEQ ID NO: 2)) as extracted DNA and rat GAPDH gene as control Primer sets (5′-CAGCAATGCATC CTGCAC 3 ′ (SEQ ID NO: 3) and 5 ′ one GAGTTGCTGTTGAAGTCACAGG 3 ′ (SEQ ID NO: 4)) were applied, and the amount of thymidine kinase gene was measured by quantitative PCR.
  • Animals treated with MSCs introduced with all three of the above plasmids include animals administered MSCs with only the thymidine kinase-expressing retroviral vector plasmid, and thymidine kinase-expressing retroviral vector plasmid and VSG-G expression plasmid.
  • the gene amplification effect was approximately 122 times that of animals administered with MSCs into which L was introduced (Fig. 3).
  • the thymidine kinase gene was not detected in cancer-bearing animal models that were not administered MSCs and in cancer-bearing animal models that were administered gene transduction!
  • Example 6 'Therapeutic effect male and female with' Guide to treatment 'and GCV' in male model
  • rat-derived mesenchymal stem cells MSC 1xl0 6 SD rat-derived mesenchymal stem cells MSC, (1) simple herpesvirus-derived Midine kinase (HS V-tk) expression retroviral vector plasmid pLTR-HSV-tk, (2) pLTR—HSV—tk and VSV—G expression plasmid pVSV—G, or (3) pLT R-HSV-tk, Gag—
  • the pol expression plasmids pGag—pol and pVSV—G were introduced by the nucleation method (AMAXA, Human MSC Nucleofection Kit, pulse program U-23).
  • each cell was collected, suspended in PBS, and adjusted to a final concentration of 5xl0 5 cells ZlOO / z1.
  • the target tumor cell 9LZLNCL constitutively expressing luciferase was suspended in PBS containing 25% matrigel (BD Biosciences, Two Oak Park, Bedford, MA, USA) at a concentration of 3xl0 6 cells ZlOO / z1.
  • 9LZLNCL cells were subcutaneously injected into the left and right backs of BalbZc nude mice (Clea Japan, Inc.) one by one, and immediately after that, the intraventricular force in the left ventricle was also administered systemically with MSC suspension 100 1 . Thereafter, 100 ⁇ l of 15 mgZml luciferin solution (Ieda Trading Cor P., Tokyo, Japan) was administered intraperitoneally over time, and an in vivo imaging device (IVIS; Xenogen
  • the MSC was administered only by subcutaneous injection of tumor cells.
  • the untreated group was the “9LZLNCL” group;
  • the non-transgenic MSC-administered group was the “MSC” group;
  • the pLTR-HSV-tk-introduced MSC-administered group was “tk” PLTR-HSV-tk and pVS V—G-introduced MSC administered group is “tkZVS V-G” group;
  • pLTR—HSV—tk, pGag-pol and pVSV—G-introduced MSC administered group is rtk / gag -pol / VSV—G ”group;
  • the tumor target cells having the ability to produce the viral vector of the present invention accumulate in a tumor or an inflamed tissue in the living body when injected into the living body, the viral vector is produced in the target tissue, and then to the target tissue. Infection persists. Therefore, the tumor target cell having the ability to produce the virus vector of the present invention can be used for highly efficient gene transfer.
  • mesenchymal stem cells as tumor target cells having the ability to produce the virus vector of the present invention
  • MSCs can be used universally for many patients as well as for patients and relatives who have a low chance of rejection at the time of transplantation. Therefore, there are fewer ethical problems than regenerative medicine using dead fetal cells or fertilized eggs.
  • the use of MSCs as therapeutic viral vector-producing cells in the treatment of neoplastic diseases or inflammatory diseases is likely to be put into practical use.

Abstract

It is intended to provide a tumor target cell having an ability to produce a virus vector. It is also intended to provide a method of preparing a tumor target cell having an ability to produce a virus vector. The tumor target cell as described above is usable in treating a tumorous disease, an inflammatory disease or a disease related thereto or in detecting a tumor lesion or an inflammatory lesion. Thus, it is furthermore intended to provide a kit for treating a tumorous disease, an inflammatory disease or a disease related thereto or a kit for detecting a tumor lesion or an inflammatory lesion each containing the tumor target cell as described above.

Description

明 細 書  Specification
ベクター産生型腫瘍標的細胞  Vector-produced tumor target cells
技術分野  Technical field
[0001] 本発明は、ウィルスベクター産生能を有する腫瘍標的細胞に関する。本発明はまた [0001] The present invention relates to a tumor target cell having the ability to produce a viral vector. The present invention also provides
、ウィルスベクター産生能を有する腫瘍標的細胞の調製方法に関する。また、本発 明の腫瘍標的細胞は、腫瘍性疾患、炎症性疾患もしくはそれらの近縁疾患の治療に 用いることができる。よって本発明は、本発明の腫瘍標的細胞を含む医薬組成物に 関する。さらに、本発明の腫瘍標的細胞は、腫瘍病巣または炎症病巣の検出に用い ることができる。よって本発明は、本発明の腫瘍標的細胞を含む、腫瘍病巣または炎 症病巣を検出するための診断用組成物に関する。 The present invention also relates to a method for preparing tumor target cells having the ability to produce viral vectors. In addition, the tumor target cells of the present invention can be used for the treatment of neoplastic diseases, inflammatory diseases or related diseases. Therefore, the present invention relates to a pharmaceutical composition comprising the tumor target cell of the present invention. Furthermore, the tumor target cells of the present invention can be used for detection of tumor lesions or inflammatory lesions. Therefore, the present invention relates to a diagnostic composition for detecting a tumor lesion or inflammatory lesion comprising the tumor target cell of the present invention.
背景技術  Background art
[0002] 動物における遺伝子治療では、様々な遺伝子導入法が開発されてきており、大きく 分けて体内法 (In vivo法)と体外法 (Ex vivo法)に分けられる。体内法は、治療遺 伝子を含有するベクターを直接体内に注入する方法である。体外法は、患者から採 取した標的の細胞に対して遺伝子導入し、遺伝子導入細胞の選択と増幅を行った 後、遺伝子導入細胞を移植,注射等により再び体内に戻す方法である。  [0002] Various gene transfer methods have been developed for gene therapy in animals, and can be broadly divided into in vivo methods (in vivo methods) and in vitro methods (ex vivo methods). The internal body method is a method in which a vector containing a therapeutic gene is directly injected into the body. The extracorporeal method is a method of introducing a gene into a target cell collected from a patient, selecting and amplifying the gene-introduced cell, and then returning the gene-introduced cell to the body again by transplantation, injection, or the like.
[0003] 癌を含む腫瘍の遺伝子治療における主要な戦略の 1つとして、腫瘍細胞に治療遺 伝子を導入することにより、正常細胞と腫瘍細胞との薬剤感受性の差を拡大させる戦 略がある。腫瘍細胞に治療遺伝子を導入することにより、細胞内での発現による作用 や、治療タンパク質の長期にわたる安定な発現が期待できる。また、細胞間のギヤッ プジャンクションの存在により、導入された治療遺伝子の発現産物である治療タンパ ク質による代謝物が隣接する細胞にも伝播するバイスタンダー効果により、薬剤が到 達できない細胞にも効果を及ぼすことが期待できる。  [0003] One of the major strategies in gene therapy for tumors, including cancer, is a strategy to expand the difference in drug sensitivity between normal cells and tumor cells by introducing therapeutic genes into tumor cells. . By introducing a therapeutic gene into a tumor cell, it is possible to expect a long-term and stable expression of the therapeutic protein and the effect of expression in the cell. In addition, due to the presence of a gap junction between cells, the metabolite produced by the therapeutic protein, which is an expression product of the introduced therapeutic gene, is also transmitted to adjacent cells. Expect to have an effect.
[0004] 上記の戦略による療法の 1つとして、 HSV— tkZGCV療法がある(Ram, Z.ら、 N at. Med. , (1997) 3: 1354— 1361)。 HSV— tk/GCV療法【こお!ヽて ίま、単純へ ルぺスウィルス由来チミジンキナーゼ(HSV— tk)遺伝子の細胞への導入、およびガ ンシクロビル (GCV)の投与を組み合わせることにより、 HSV—tk遺伝子が導入され た細胞をアポトーシスに導く治療法である。 HSV— tkは、それ自体が細胞内で発現 することにより細胞を細胞死に導くことはない。しかし、ガンシクロビル (GCV)が投与 され細胞に取り込まれると、 HSV—tkが GCVをリン酸化して GCV— MP (—リン酸) に変換し、その後細胞内代謝により最終的に細胞の DNA合成を阻害する GCV— T P (三リン酸)へと変換される。この GCV—TPの作用により細胞をアポトーシスへと導[0004] One therapy based on the above strategy is HSV-tkZGCV therapy (Ram, Z. et al., Nat. Med., (1997) 3: 1354-1361). HSV— tk / GCV therapy [This is a combination of introduction of the herpesvirus-derived thymidine kinase (HSV—tk) gene into cells and administration of ganciclovir (GCV). —Tk gene introduced It is a treatment that leads the cells to apoptosis. HSV—tk does not lead to cell death by expressing itself in the cell. However, when ganciclovir (GCV) is administered and taken up by cells, HSV—tk phosphorylates GCV and converts it into GCV—MP (—phosphate), which then ultimately results in cellular DNA synthesis through intracellular metabolism. Inhibiting GCV— converted to TP (triphosphate). This action of GCV-TP leads cells to apoptosis.
<o <o
[0005] GLI328 International Study Groupは、患者の神経膠腫細胞を、 HSV—tk 遺伝子を含有するウィルスベクターを産生するよう遺伝子工学的に操作し、そして当 該細胞を腫瘍内に移植し、その後 GCVを投与することによる体外法での遺伝子治 療を試みた(例えば、 Rainov NG on behalf of the GLI328 International Study Group, Hum. Gene Ther. , Vol. 11, p. 2389— 2401, 2000、を参 照)。し力しながら、この方法は、腫瘍組織内でのベクターの拡散能に制限があり、ベ クタ一の遺伝子導入効率が 0. 002- 2. 6%と極めて低力つた。  [0005] The GLI328 International Study Group has engineered patient glioma cells to produce viral vectors containing the HSV-tk gene, and transplanted the cells into tumors before GCV (See, for example, Rainov NG on behalf of the GLI328 International Study Group, Hum. Gene Ther., Vol. 11, p. 2389—2401, 2000) ). However, this method has a limited ability to spread the vector in the tumor tissue, and the vector transfer efficiency of the vector is extremely low, 0.002 to 2.6%.
[0006] また、本発明者らの研究グループは以前に、 HSV—tk遺伝子を含有するレトロウイ ルスベクターを産生させるよう設計されたプラスミドを、アデノウイルスベクターに封入 したノ、イブリツドベクターを作成した。そして当該アデノウイルスベクターを腫瘍組織 に注入することにより腫瘍細胞に遺伝子導入して、腫瘍細胞を当該レトロウイルスべ クタ一を産生するように修飾し、体内法での遺伝子治療を試みた (Okada, T.ら, J. Gene. Med. , Vol. 6, p. 288— 299, 2004)。この方法では、向上した遺伝子導 入効率および腫瘍組織内でのベクターの拡散が認められた。  [0006] In addition, our research group has previously created a hybrid vector that encapsulates a plasmid designed to produce a retrovirus vector containing the HSV-tk gene in an adenovirus vector. . Then, the adenoviral vector was injected into the tumor tissue to introduce the gene into the tumor cell, the tumor cell was modified to produce the retroviral vector, and gene therapy was attempted in vivo (Okada, T. et al., J. Gene. Med., Vol. 6, p. 288-299, 2004). This method showed improved gene transfer efficiency and spread of the vector in the tumor tissue.
[0007] より高い臨床的有効性を得るためには、局所で十分な量の治療タンパク質の供給 を維持し、生体内で効率の高い遺伝子導入を行う技術が依然として求められている。 また、通常の腫瘍の検出方法では検出できな 、微小な転移病巣の治療にも対応可 能な技術も求められている。  [0007] In order to obtain higher clinical efficacy, there is still a need for a technique that maintains a supply of a sufficient amount of therapeutic protein locally and performs efficient gene transfer in vivo. In addition, there is a need for a technique that can also be used to treat minute metastatic lesions that cannot be detected by ordinary tumor detection methods.
[0008] 間葉系幹細胞(Mesenchymal Stem Cells : MSCs)は、骨髄の土台となる細胞 であり、腫瘍や炎症組織への集積性、多分化能や幹細胞分化生着促進効果を有す る。このことから、 MSCsは治療タンパク質を産生する担体として、細胞治療への応用 が期待されている。サイト力インなどの治療タンパク質を発現するように MSCsに遺伝 子修飾を施すことにより、当該治療タンパク質を標的細胞に送達するための担体とし て MSCsを用いる試みが報告されている(Studeny, M.ら, Journal of the Nat ional Cancer Institute, Vol. 96, p. 1593— 1603, 2004 ;H. Hamadaら, C ancer Sci. , Vol. 96, p. 149— 156, 2005 ;および、 Nakamizo, A.ら, Cance r Res. , Vol. 65, p. 3307— 3318, 2005を参照)。し力しな力ら、移植した遺伝 子修飾 MSCsから産生される治療タンパク質の量は集積した MSCsの状態に依存す るため、長期間の発現は困難である。 [0008] Mesenchymal stem cells (MSCs) are cells that serve as the foundation of bone marrow, and have an ability to accumulate in tumors and inflamed tissues, have multipotency, and promote stem cell differentiation and engraftment. Therefore, MSCs are expected to be applied to cell therapy as carriers for producing therapeutic proteins. Inherited MSCs to express therapeutic proteins such as cytoforce-in Attempts have been made to use MSCs as carriers to deliver the therapeutic protein to target cells by modification of the molecule (Studeny, M. et al., Journal of the National Cancer Institute, Vol. 96, p. 1593— 1603, 2004; H. Hamada et al., Cancer Sci., Vol. 96, p. 149—156, 2005; and Nakamizo, A. et al., Cancer Res., Vol. 65, p. 3307— 3318, 2005). However, long-term expression is difficult because the amount of therapeutic protein produced from the transplanted gene-modified MSCs depends on the state of the accumulated MSCs.
非特許文献 l :Ram, Z.ら、 Nat. Med. , Vol. 3, p. 1354- 1361, 1997 非特許文献 2 :Rainov NG on behalf of the GLI328 International Stu dy Group, Hum. Gene Ther. , Vol. 11, p. 2389— 2401, 2000  Non-patent literature l: Ram, Z. et al., Nat. Med., Vol. 3, p. 1354-1361, 1997 Non-patent literature 2: Rainov NG on behalf of the GLI328 International Study Group, Hum. Gene Ther., Vol. 11, p. 2389— 2401, 2000
非特許文献 3 : Okada, T.ら, Gene. Med. , Vol. 6, p. 288- 299, 2004 特許文献 4: Studeny, M.ら, Journal of the National Cancer Institute Non-Patent Document 3: Okada, T. et al., Gene. Med., Vol. 6, p. 288-299, 2004 Patent Document 4: Studeny, M. et al., Journal of the National Cancer Institute
, Vol. 96, p. 1593- 1603, 2004 , Vol. 96, p. 1593-1603, 2004
非特許文献 5 : Hamada, H.ら, Cancer Sci. , Vol. 96, p. 149- 156, 2005 非特許文献 6 :Nakamizo, A.ら, Cancer Res. , Vol. 65, p. 3307- 3318, 20 05  Non-patent literature 5: Hamada, H. et al., Cancer Sci., Vol. 96, p. 149-156, 2005 Non-patent literature 6: Nakamizo, A. et al., Cancer Res., Vol. 65, p. 3307-3318 , 20 05
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明の目的は、ウィルスベクター産生能を有する腫瘍標的細胞を提供することに ある。本発明はまた、ウィルスベクター産生能を有する腫瘍標的細胞の調製方法を 提供することを目的とする。本発明はさらに、本発明の腫瘍標的細胞を含む医薬組 成物を提供することを目的とする。また、本発明は、本発明の腫瘍標的細胞を含む、 腫瘍病巣または炎症病巣を検出するための診断用組成物を提供することを目的とす る。 [0009] An object of the present invention is to provide tumor target cells having the ability to produce viral vectors. Another object of the present invention is to provide a method for preparing tumor target cells having the ability to produce viral vectors. The present invention further aims to provide a pharmaceutical composition comprising the tumor target cell of the present invention. Another object of the present invention is to provide a diagnostic composition for detecting a tumor lesion or an inflammatory lesion comprising the tumor target cell of the present invention.
課題を解決するための手段  Means for solving the problem
[0010] 本発明者は鋭意研究の結果、腫瘍組織および炎症組織等への集積性を有する間 葉系幹細胞 (MSCs)を遺伝子工学的に操作してウィルスベクター産生能を有する M SCsを作成し、当該 MSCsを担癌動物モデルに投与したところ、当該 MSCsは癌病 巣に集積し、そこでウィルスベクターが産生された結果、癌病巣において高効率の遺 伝子導入および遺伝子発現が起こることを見 、だした。このことから本発明者らは、 腫瘍組織および炎症組織等への集積性を有する腫瘍標的細胞を遺伝子工学的に 操作することにより作成したウィルスベクター産生能を有する腫瘍標的細胞は、腫瘍 性疾患や炎症性疾患等の病巣組織に対する遺伝子導入または遺伝子治療に有用 であると!/ヽぅ技術的思想に想到し、本発明を完成させた。 [0010] As a result of intensive research, the present inventor created MSCs having the ability to produce viral vectors by genetically engineering mesenchymal stem cells (MSCs) that have the ability to accumulate in tumor tissues and inflammatory tissues. When the MSCs were administered to a cancer-bearing animal model, the MSCs They found that high-efficiency gene transfer and gene expression occurred in cancerous lesions as a result of accumulation in the nest and production of viral vectors there. Based on this, the present inventors have found that tumor target cells having the ability to produce viral vectors produced by genetically engineering tumor target cells having the ability to accumulate in tumor tissues, inflammatory tissues, etc. The present invention has been completed by conceiving the technical idea that it is useful for gene transfer or gene therapy for lesion tissues such as inflammatory diseases.
[0011] したがって、本発明はウィルスベクター産生能を有する腫瘍標的細胞を提供する。  [0011] Therefore, the present invention provides tumor target cells having the ability to produce viral vectors.
[0012] 本発明はまた、動物または動物細胞に対する遺伝子導入または遺伝子治療に使 用するためのウィルスベクター産生能を有する腫瘍標的細胞を提供する。  [0012] The present invention also provides tumor target cells having the ability to produce viral vectors for use in gene transfer or gene therapy for animals or animal cells.
[0013] また、ウィルスベクターが含有する導入遺伝子が治療遺伝子である場合、本発明の ウィルスベクター産生能を有する腫瘍標的細胞は、腫瘍性疾患、炎症性疾患または それらの近縁疾患の病巣組織に対する遺伝子導入または遺伝子治療のために使用 することができる。従って本発明は、腫瘍性疾患、炎症性疾患またはそれらの近縁疾 患の病巣組織に対する遺伝子導入または遺伝子治療に使用するためのウィルスべ クタ一産生能を有する腫瘍標的細胞を提供する。  [0013] In addition, when the transgene contained in the viral vector is a therapeutic gene, the tumor target cell having the ability to produce the viral vector of the present invention is used for tumorous diseases, inflammatory diseases, or lesion tissues of related diseases. It can be used for gene transfer or gene therapy. Therefore, the present invention provides a tumor target cell having the ability to produce a viral vector for use in gene transfer or gene therapy for neoplastic diseases, inflammatory diseases, or lesion tissues of closely related diseases.
[0014] また、ウィルスベクターが含有する導入遺伝子が検出可能なマーカー遺伝子であ る場合、本発明のウィルスベクター産生能を有する腫瘍標的細胞は、腫瘍病巣また は炎症病巣の検出に使用することができる。よって、一態様において本発明は、ウイ ルスベクターが含有する導入遺伝子が検出可能なマーカー遺伝子であり、そして、 マーカー遺伝子の発現を検出することにより腫瘍病巣または炎症病巣の検出に使用 するための、ウィルスベクター産生能を有する腫瘍標的細胞を提供する。  [0014] In addition, when the transgene contained in the viral vector is a detectable marker gene, the tumor target cell having the ability to produce the viral vector of the present invention can be used for detection of a tumor lesion or an inflammatory lesion. it can. Therefore, in one aspect, the present invention is a marker gene that can detect a transgene contained in a virus vector, and is used for detecting a tumor lesion or an inflammatory lesion by detecting the expression of the marker gene. Tumor target cells having the ability to produce viral vectors are provided.
[0015] 別の態様において、本発明は、本発明のウィルスベクター産生能を有する腫瘍標 的細胞を調製する方法を提供する。  [0015] In another embodiment, the present invention provides a method for preparing tumor target cells having the ability to produce the viral vector of the present invention.
[0016] また別の態様において、本発明は、本発明の腫瘍標的細胞を含む医薬組成物を 提供する。本発明はまた、本発明の腫瘍標的細胞を含む、腫瘍病巣または炎症病 巣を検出するための診断用組成物を提供する。  [0016] In another aspect, the present invention provides a pharmaceutical composition comprising the tumor target cell of the present invention. The present invention also provides a diagnostic composition for detecting a tumor lesion or an inflammatory lesion comprising the tumor target cell of the present invention.
[0017] 以下、本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
ウィルスベクター i¾牛. を する 11重瘍標 糸田 本発明は、ウィルスベクター産生能を有する腫瘍標的細胞を提供する。 Virus vector i¾ cattle. The present invention provides tumor target cells having the ability to produce viral vectors.
[0018] 本明細書において、腫瘍標的細胞とは、生体内において腫瘍組織または炎症組 織に集積する性質を有する細胞である。腫瘍標的細胞の具体的なものには、間葉系 幹細胞 (MSCs)、血管内皮前駆細胞、神経幹細胞などを含む組織幹細胞、腫瘍細 胞などがあるがこれらに限定されな 、。腫瘍標的細胞として好ま ヽのは MSCsであ る。 MSCsが好ましいのは、腫瘍組織や炎症組織への集積性を有することに加え、 移植時の拒絶反応の可能性が低ぐ患者本人や親族の他にも多数の患者にュニバ 一サルに使用可能であるためである。  [0018] In the present specification, a tumor target cell is a cell having a property of accumulating in a tumor tissue or an inflammatory tissue in a living body. Specific examples of tumor target cells include, but are not limited to, mesenchymal stem cells (MSCs), tissue stem cells including vascular endothelial progenitor cells, neural stem cells, and tumor cells. MSCs are the preferred tumor target cells. MSCs are preferred because of their ability to accumulate in tumor tissue and inflamed tissue, as well as for patients who have a low probability of rejection at the time of transplantation, and can be used for a large number of patients as well as relatives. This is because.
[0019] また、本発明の腫瘍標的細胞は、動物由来であれば特に限定されないが、好ましく は哺乳動物由来である。  [0019] The tumor target cells of the present invention are not particularly limited as long as they are derived from animals, but are preferably derived from mammals.
[0020] 本明細書において、ウィルスベクターとは、ウィルスが本来細胞へ感染 '維持される 仕組みを応用した細胞への外来遺伝子の導入のためのベクターをいう。また、本明 細書にぉ 、てベクターとは、所望の遺伝子または DNA配列の宿主細胞への導入を 可能にする媒介物を意味する。  [0020] In the present specification, a viral vector refers to a vector for introducing a foreign gene into a cell by applying a mechanism in which a virus originally infects and maintains the cell. Further, in the present specification, the term “vector” means a medium that enables introduction of a desired gene or DNA sequence into a host cell.
[0021] 本発明の腫瘍標的細胞が産生するウィルスベクターは、ウィルスベクターであれば 特に限定されないが、レトロウイルスベクター、アデノ随伴ウィルス (AAV)ベクター、 アデノウイルスベクター、レンチウィルスベクター、泡沫状ウィルスベクター、インフル ェンザゥイノレスベクター、センダイウイノレスベタター、単純へノレぺスゥイノレスベクター、 肝炎ウィルスベクター、パピローマウィルスベクター、バキュロウィルスベクター、狂犬 病ウィルスベクター、およびそれらのハイブリッドベクター力 なる群より選択されるゥ ィルスべクタ一である。好ましいウィルスベクターは、アデノ随伴ウィルスベクター、ァ デノウィルスベクター、レトロウイルスベクター、レンチウィルスベクター、およびそれら のハイブリッドベクター力もなる群より選択されるウィルスベクターである。特に好まし いウィルスベクターはレトロウイルスベクターである。レトロウイルスベクターは血液中 で補体によって失活しやすいが、本発明のウィルスベクターを産生する腫瘍標的細 胞を用いることにより標的組織内でレトロウイルスベクターを産生させることが可能とな るため、安定な遺伝子発現が期待できる。  [0021] The viral vector produced by the tumor target cell of the present invention is not particularly limited as long as it is a viral vector. However, a retroviral vector, an adeno-associated virus (AAV) vector, an adenoviral vector, a lentiviral vector, a foamy viral vector. , Influenza zenores vector, sendai winores betater, simple henope suenoles vector, hepatitis virus vector, papilloma virus vector, baculovirus vector, rabies virus vector, and their hybrid vectors This is the virus vector. Preferred viral vectors are viral vectors selected from the group consisting of adeno-associated viral vectors, adenoviral vectors, retroviral vectors, lentiviral vectors, and their hybrid vector capabilities. A particularly preferred viral vector is a retroviral vector. Retroviral vectors are easily inactivated by complement in the blood, but it is possible to produce retroviral vectors in target tissues by using tumor target cells that produce the viral vectors of the present invention. Stable gene expression can be expected.
[0022] 本発明の腫瘍標的細胞は、ウィルスベクターを産生するよう遺伝子工学的に操作さ れている。具体的には、本発明の腫瘍標的細胞には、(1)所望の導入遺伝子を含有 するプラスミド;および(2)ウィルスタンパク質をコードする遺伝子を含む 1以上のブラ スミド;が遺伝子導入されている。ここで、上記(1)および(2)のプラスミドは、それらが 遺伝子導入された細胞において、(2)のプラスミドによりウィルス粒子の産生に必要 なタンパク質が発現するが(2)のプラスミドに含まれるウィルス由来のタンパク質をコ ードする遺伝子はウィルス粒子にパッケージングされず、 (1)のプラスミドの導入遺伝 子がウィルス粒子にパッケージングされるように設計されている。したがって、本発明 の腫瘍標的細胞が産生するウィルスベクターは、所望の導入遺伝子がウィルス粒子 内にパッケージングされたウィルスベクターである。当該ウィルスベクターは所望の導 入遺伝子を含むが、ウィルス由来のタンパク質をコードする遺伝子を含まな!/、ため、 細胞に感染することにより導入遺伝子を感染した細胞に導入することはでき、そして 感染した細胞にお!、てウィルスが複製することはな!/、。 [0022] The tumor target cell of the present invention is genetically engineered to produce a viral vector. It is. Specifically, the tumor target cells of the present invention are transfected with (1) a plasmid containing the desired transgene; and (2) one or more plasmids containing a gene encoding a viral protein. . Here, the above plasmids (1) and (2) are included in the plasmid (2) although proteins necessary for the production of virus particles are expressed by the plasmid (2) in the cells into which they have been introduced. The gene that codes for the virus-derived protein is not packaged in the virus particle, and the transgene of the plasmid in (1) is designed to be packaged in the virus particle. Therefore, the viral vector produced by the tumor target cell of the present invention is a viral vector in which a desired transgene is packaged in a viral particle. The viral vector contains the desired transgene, but does not contain the gene that encodes the virus-derived protein! /, So the transgene can be introduced into the infected cell by infecting the cell, and The virus never replicates to the cells! /
ウィルスベクター力 レトロウイルスベクターである場合、本発明の腫瘍標的細胞に は、(l) 5,LTR(long terminal repeat)、パッケージングシグナル(Ψ)、所望の 導入遺伝子、および 3, LTRを含むプラスミド;ならびに(2) gagZpol遺伝子および e nv遺伝子を含むプラスミド、または、 gag/pol遺伝子を含むプラスミドおよび env遺 伝子を含むプラスミド、が遺伝子導入されている。ここで、 gag遺伝子はウィルス粒子 構成タンパク質を、 pol遺伝子は逆転写酵素を、そして env遺伝子はウィルスェンべ ロープタンパク質をコードし、いずれもレトロウイルス由来の遺伝子である。ここで、ゥ ィルスエンベロープタンパク質は、レトロウイルスのエンベロープとなり得るタンパク質 であれば特に限定されず、例えば、 VSV— G (水疱性口内炎ウィルスの Gタンパク質 )、アンホトロピックレトロウイルスのエンベロープタンパク質、エコートロピックレトロウイ ルスのエンベロープタンパク質、 gibbon apeエンベロープタンパク質、 feline RD1 14エンベロープタンパク質などを用いてよい。レトロウイルスのエンベロープが標的 細胞のレセプターに結合することが感染の最初のステップとなるため、エンベロープ の種類により遺伝子導入可能な細胞種が規定される。すなわち、齧歯類のみに感染 する同種指向性のエコートロピックウィルス(ecotropic)と齧歯類以外にヒトを含めた 様々な種の細胞にも感染する両種指向性のアンフォト口ピックウィルス (amphotropi c)があり、それぞれのレトロウイルスベクター作製用のパッケージング細胞株が作ら れて ヽる。ヒトの細胞へ遺伝子導入するベクターを作製する時はアンフォト口ピックタ イブのものを用いる。レトロウイルスは、 5,ぉょび3,1^[¾に挟まれ、かつ、 5,側にパッ ケージングシグナルを有する遺伝子をウィルスキヤプシド内にパッケージングする性 質がある。上記(1)および (2)のプラスミドが遺伝子導入された本発明の腫瘍標的細 胞は、(2)のプラスミドによりウィルス粒子の産生に必要なタンパク質が発現し、そして (1)のプラスミドの導入遺伝子がウィルス粒子にノ ッケージングされる。ここで、(2)の プラスミドには LTR配列およびパッケージングシグナルが存在しな 、ため、産生され るウィルスベクターにはパッケージングされない。したがって、本発明の腫瘍標的細 胞が産生するレトロウイルスベクターは、所望の導入遺伝子をウィルス粒子内に含む レトロウイルスベクターである。 In the case of a retroviral vector, the tumor target cell of the present invention includes (l) 5, LTR (long terminal repeat), packaging signal (Ψ), desired transgene, and 3, plasmid containing LTR And (2) a plasmid containing a gagZpol gene and an env gene, or a plasmid containing a gag / pol gene and a plasmid containing an env gene. Here, the gag gene encodes a virus particle constituent protein, the pol gene encodes a reverse transcriptase, and the env gene encodes a virus envelope protein, both of which are genes derived from retroviruses. Here, the virus envelope protein is not particularly limited as long as it is a protein that can be an envelope of a retrovirus. For example, VSV-G (G protein of vesicular stomatitis virus), envelope protein of amphotropic retrovirus, echotropic retro Virus envelope protein, gibbon ape envelope protein, feline RD1 14 envelope protein, etc. may be used. The binding of the retroviral envelope to the target cell receptor is the first step in infection, so the type of envelope defines the cell type into which gene transfer is possible. That is, the homotrophic echotropic virus (ecotropic) that infects only rodents and the amphibian amphotropivirus (amphotropi) that also infects various types of cells including humans in addition to rodents. c), a packaging cell line for the production of each retroviral vector is created. When preparing a vector for gene transfer into human cells, use an unphoto-pick type. Retroviruses have the property of packaging a gene with a packaging signal on the 5th, 3rd, 1 ^ [¾, and a packaging signal on the 5th side. The tumor target cell of the present invention into which the plasmids of (1) and (2) above have been introduced expresses a protein required for virus particle production by the plasmid of (2), and the introduction of the plasmid of (1) Genes are knocked into virus particles. Here, since the LTR sequence and the packaging signal are not present in the plasmid (2), it is not packaged in the produced viral vector. Therefore, the retroviral vector produced by the tumor target cell of the present invention is a retroviral vector containing a desired transgene in a viral particle.
ウィルスベクターがアデノ随伴ウィルスベクター (AAV)である場合、本発明の腫瘍 標的細胞には、(1) 5,ITR (inverted terminal repeat)、パッケージングシグナ ル、プロモーターと poly Aを含む当該遺伝子発現カセット、 3,ITRを含む AAVベタ タープラスミド、(2)AAVゲノムの ITRを除き rep、 cap遺伝子をクローユングした AA Vヘルパープラスミド、(3) 2型あるいは 5型アデノウイルスの E2A、 E4、 VA—RNA 遺伝子をクローユングしたアデノウイルスへルパープラスミド、が遺伝子導入されて ヽ る。ここで、 rep遺伝子は酵素タンパク質を、 cap遺伝子はキヤプシドタンパク質をコー ドし、いずれも AAV由来の遺伝子である。 cap遺伝子は、様々な血清型に由来する AAVの cap遺伝子、あるいは複数種類の血清型の cap遺伝子を含むものが使用可 能である。ここで、野生型の AAVの場合は、アデノウイルスやへルぺスウィルスなど のヘルパーウィルスの存在下で rep、 cap遺伝子が発現して AAVが増殖する。この ため、アデノウイルスへルパープラスミドの代わりに、アデノウイルス、ヘルぺスウィル スなどのヘルパーウィルスやそれらのゲノムを使用することも可能である。 AAVは、 パッケージングシグナルとともに両端の ITRに挟まれた遺伝子をウィルスキヤプシド 内にパッケージングする性質がある。上記(1)、 (2)および(3)のプラスミド (あるいは ヘルパーウィルス)が遺伝子導入された本発明の腫瘍標的細胞は、 (2)のプラスミド によりウィルス粒子の産生に必要なタンパク質が発現し、そして(1)のプラスミドの導 入遺伝子がウィルス粒子にパッケージングされる。ここで、(2)のプラスミドには ITR配 列およびパッケージングシグナルが存在しな 、ため、産生されるウィルスベクターに はパッケージングされない。したがって、本発明の腫瘍標的細胞が産生する AAVベ クタ一は、所望の導入遺伝子をウィルス粒子内に含む AAVベクターである。 When the viral vector is an adeno-associated viral vector (AAV), the tumor target cell of the present invention includes (1) 5, ITR (inverted terminal repeat), packaging signal, promoter and poly A , 3, AAV vector plasmid containing ITR, (2) AAV V helper plasmid capped crep gene except ITR of AAV genome, (3) E2A, E4, VA-RNA of type 2 or type 5 adenovirus An adenovirus helper plasmid cloned with the gene is introduced. Here, the rep gene codes for an enzyme protein and the cap gene codes for a capsid protein, both of which are AAV-derived genes. As the cap gene, those containing AAV cap genes derived from various serotypes or cap genes of multiple serotypes can be used. Here, in the case of wild type AAV, rep and cap genes are expressed in the presence of a helper virus such as adenovirus and herpes virus, and AAV proliferates. For this reason, it is also possible to use a helper virus such as adenovirus and herpes virus and their genome instead of the adenovirus helper plasmid. AAV has the property of packaging a gene inserted between ITRs at both ends together with a packaging signal into a viral capsid. In the tumor target cell of the present invention into which the plasmid (or helper virus) of (1), (2) and (3) above has been introduced, a protein necessary for the production of virus particles is expressed by the plasmid of (2), And the introduction of the plasmid of (1) The transferred gene is packaged into a viral particle. Here, since the ITR sequence and the packaging signal do not exist in the plasmid (2), it is not packaged in the produced viral vector. Therefore, the AAV vector produced by the tumor target cell of the present invention is an AAV vector containing a desired transgene in a viral particle.
ウィルスベクターがアデノウイルスベクターである場合、本発明の腫瘍標的細胞に は、(1) 5, ITR (inverted terminal repeat)、パッケージングシグナル、プロモー ターと poly Aを含む当該遺伝子発現カセット、 E1遺伝子 (あるいは、これに加えて E When the viral vector is an adenoviral vector, the tumor target cells of the present invention include (1) 5, an ITR (inverted terminal repeat), a packaging signal, the gene expression cassette containing a promoter and poly A, the E1 gene ( Or, in addition to this, E
2、 E3、 E4遺伝子)以外の 2型あるいは 5型アデノウイルスの遺伝子、 3' ITRを含む アデノウイルスベクタープラスミドある 、はウィルスベクター、(2) 2型あるいは 5型アデ ノウィルスの E1遺伝子(あるいは、これに加えて E2、 E3、 E4遺伝子)をクロー-ング したアデノウイルスへルパープラスミドあるいはウィルスベクター、が遺伝子導入され ている。ここで、(2)としてウィルスベクターを用いる場合、そのウィルスベクターはレト ロウィルスや AAVなどに由来する力 必ずしもこれらに限定されない。ここで、ヒトァ デノウィルス初期遺伝子の El、 E2、 E3、 E4遺伝子は、それぞれ、主にウィルス DNType 2 or type 5 adenovirus gene other than (2, E3, E4 gene), adenoviral vector plasmid containing 3 'ITR, viral vector, (2) type 1 or type 5 adenovirus E1 gene (or In addition, adenovirus helper plasmids or viral vectors cloned with E2, E3, and E4 genes) have been introduced. Here, when a viral vector is used as (2), the viral vector is not necessarily limited to the force derived from retrovirus or AAV. Here, the El, E2, E3, and E4 genes of the human adenovirus early genes are mainly virus DN
Aの複製に関与する。後期遺伝子はキヤプシドタンパク質をコードする。通常、遺伝 子治療のベクターとして用いられているアデノウイルスベクターは,アデノウイルスの プロモーターを活性化させる E1Aと E1Bからなる E1領域を、プロモーターと poly A を含む外来遺伝子発現カセットに置き換え、 Elタンパク質を別個に供給できる細胞 でのみ増殖が可能となる。したがって、 E1領域を欠損したアデノウイルスベクターは、Involved in the replication of A. The late gene encodes a capsid protein. The adenoviral vector usually used as a gene therapy vector replaces the E1 region consisting of E1A and E1B, which activates the adenoviral promoter, with a foreign gene expression cassette containing the promoter and poly A, and El protein. Only cells that can be supplied separately can grow. Therefore, adenoviral vectors lacking the E1 region are
E1遺伝子産物を発現して 、な 、通常の細胞では増殖できず、増殖不能ウィルスとな る。また、 E3領域はウィルスの増殖には必須ではないため、外来遺伝子の挿入サイ ズの上昇を目的に除かれることが多い。アデノウイルスは、ノ¾ /ケージングシグナルと ともに両端の ITRに挟まれた遺伝子をウィルスキヤプシド内にパッケージングする性 質がある。上記(1)および(2)のプラスミドあるいはウィルスベクターが遺伝子導入さ れた本発明の腫瘍標的細胞は、(2)のプラスミドあるいはウィルスベクターによりウイ ルス粒子の産生に必要なタンパク質が発現し、そして(1)のプラスミドあるいはウィル スベクターの導入遺伝子がウィルス粒子にパッケージングされる。ここで、(2)のプラ スミドあるいはウィルスベクターにはアデノウイルス由来の ITR配列およびパッケージ ングシグナルが存在しな 、ため、産生されるウィルスベクターにはパッケージングされ ない。したがって、本発明の腫瘍標的細胞が産生するアデノウイルスベクターは、所 望の導入遺伝子をウィルス粒子内に含むアデノウイルスベクターである。 If the E1 gene product is expressed, it cannot grow in normal cells and becomes a virus that cannot grow. Also, since the E3 region is not essential for virus growth, it is often removed for the purpose of increasing the insertion size of foreign genes. Adenovirus has the property of packaging a gene inserted between ITRs at both ends together with a DNA / caging signal into a viral capsid. In the tumor target cell of the present invention into which the plasmid or virus vector of (1) and (2) is introduced, a protein necessary for production of virus particles is expressed by the plasmid or virus vector of (2), and The plasmid or virus vector transgene of (1) is packaged into a virus particle. Here, adenovirus-derived ITR sequences and packages are included in the plasmid or virus vector in (2). No packaging signal is present, so it is not packaged into the viral vector produced. Therefore, the adenoviral vector produced by the tumor target cell of the present invention is an adenoviral vector containing the desired transgene in the viral particle.
[0026] 本明細書において、遺伝子導入とは遺伝子を細胞内に導入することをいう。プラス ミドを用いて遺伝子を細胞内に導入する場合は、エレクト口ポレーシヨン法もしくはそ の改良法であるヌクレオフエクシヨン法 (Nucleofector (登録商標)技術を用いる; am axa社)、リポフエクシヨン法、リン酸カルシウム法、 DEAE デキストラン法など当業 者に公知の方法により行うことができる。ウィルスベクターを用いて遺伝子を細胞内に 導入する場合は、ウィルスが本来細胞へ感染 ·維持される仕組みを利用しているので 、ウィルスベクターを細胞に感染させることにより、遺伝子が細胞内に導入される。ま た、ウィルスベクターを、プラスミドと同様に、エレクト口ポレーシヨン法もしくはその改 良法であるヌクレオフエクシヨン法、リポフエクシヨン法、リン酸カルシウム法、 DEAE— デキストラン法などの方法により細胞内に導入することにより遺伝子導入を行ってもよ い。このような方法は、ウィルスベクターの構造タンパク質が細胞内へのウィルスべク ター取り込み後の遺伝子発現に関与すると 、う考え方から、ウィルスベクターの感染 が難 、細胞にぉ 、て、遺伝子をより効率よく導入するために用いられることがある。  [0026] In the present specification, gene introduction refers to introduction of a gene into a cell. When a gene is introduced into a cell using a plasmid, the electopore position method or its improved method, the Nucleofector method (using Nucleofector (registered trademark) technology; am axa), lipofuxion method, calcium phosphate method, Or a method known to those skilled in the art such as DEAE dextran method. When a gene is introduced into a cell using a viral vector, since the virus originally uses a mechanism that infects and maintains the cell, the gene is introduced into the cell by infecting the cell with the viral vector. The In addition, similar to plasmids, viral vectors are introduced into cells by methods such as the electopore position method or its improved methods such as the nucleo-off-exclusion method, lipofuxion method, calcium phosphate method, and DEAE-dextran method. It may be introduced. In such a method, if the structural protein of the viral vector is involved in gene expression after viral vector uptake into the cell, it is difficult to infect the viral vector because of the idea that the viral vector is incorporated into the cell. Sometimes used to introduce well.
[0027] 本明細書において、導入遺伝子とは、遺伝子導入により細胞内に導入されることが 意図されるまたは細胞内に導入された遺伝子である。  [0027] In the present specification, the transgene is a gene intended to be introduced into a cell by gene introduction or introduced into a cell.
[0028] 本発明の腫瘍標的細胞が産生するウィルスベクター内に含まれる導入遺伝子は特 に限定されないが、好ましくは、治療遺伝子または検出可能なマーカー遺伝子であ る。  [0028] The transgene contained in the viral vector produced by the tumor target cell of the present invention is not particularly limited, but is preferably a therapeutic gene or a detectable marker gene.
[0029] 治療遺伝子として好ま 、ものには、単純へルぺスウィルスチミジンキナーゼ (HS V— tk)、: Bim、 FADD、 p53、 GM— CSF、インターロイキン(IL)—2、 IL— 10、 IL — 12、 IL 24 (mda— 7)、 B7ZB70、アンジォスタチン、エンドスタチン、 sFlt— 1 ( 遊離型 VEGF受容体)、 NK4、シトシンデァミナーゼ(CD)、 mdr— 1、 VZV— tk、 X GPRT、または 2以上のそれらの併用、などが含まれるが、これらに限定されない。治 療遺伝子としてより好ましいのは、 HSV— tk、 CD、 VZV-tk, XGPRTなどであり、 これらの遺伝子は導入された細胞内で発現したときに当該細胞を細胞死に導く遺伝 子である。これらの遺伝子が好ましいのは、これらの遺伝子を導入因子として使用す ること〖こより、 (i)感染した正常細胞が悪性化した場合に当該細胞を殺すことができ、[0029] Preferred therapeutic genes include simple herpesvirus thymidine kinase (HS V—tk): Bim, FADD, p53, GM—CSF, interleukin (IL) -2, IL-10, IL-12, IL24 (mda-7), B7ZB70, angiostatin, endostatin, sFlt-1 (free VEGF receptor), NK4, cytosine deaminase (CD), mdr-1, VZV-tk, Including, but not limited to, X GPRT, or a combination of two or more thereof. More preferred therapeutic genes are HSV-tk, CD, VZV-tk, XGPRT, etc. These genes are genes that lead to cell death when expressed in the introduced cell. A child. These genes are preferred because these genes can be used as transduction factors. (I) When infected normal cells become malignant, the cells can be killed.
(ii)本発明のウィルスベクターを産生する腫瘍標的細胞自身が悪性ィ匕した場合に当 該細胞を殺すことができ、そして (iii)本発明のウィルスベクターを産生する腫瘍標的 細胞が、腫瘍細胞の増殖能 ·転移能や、それ自身もしくは周囲の正常細胞に悪影響 をもたらすタンパク質の発現が増加するなど、悪性度を促進した場合に、当該腫瘍標 的細胞および腫瘍細胞を殺すことができるため、本発明の細胞を治療に用いる場合 に安全性が高いからである。 (ii) when the tumor target cell producing the viral vector of the present invention itself is malignant, the cell can be killed; and (iii) the tumor target cell producing the viral vector of the present invention is a tumor cell. When the malignancy is promoted, such as by increasing the expression of a protein that adversely affects the proliferative ability / metastasis ability of itself or surrounding normal cells, the tumor target cells and tumor cells can be killed. This is because safety is high when the cells of the present invention are used for treatment.
[0030] HSV— tkは、それ自体が細胞内で発現することにより細胞を細胞死に導くことはな いが、ガンシクロビル (GCV)の投与と併用することにより細胞死に導く。詳細には、 H SV— tkが導入された細胞に GCVが取り込まれると、 HSV— tkが GCVをリン酸化し て GCV— MP (—リン酸)となる。 GCV— MPはその後、細胞内の酵素により GCV— DP (二リン酸)、 GCV— TP (三リン酸)へと変換され、この GCV—TPが細胞の DNA 合成を阻害し、細胞死へと導く(Z. Ramら、 Nat. Med. , Vol. 3, p. 1354—1361 , 1997)。 CD、 VZV-tk,および ZGPRTもまた自殺遺伝子であり、それぞれ 5—F C、 AraM、および 6— TXの投与と併用することにより、当該自殺遺伝子が発現する 細胞を細胞死へと導く。本発明において、特に好ましい治療遺伝子は、 HSV— tkで ある。 [0030] HSV-tk does not lead to cell death by expressing itself in the cell, but leads to cell death when used in combination with ganciclovir (GCV) administration. Specifically, when GCV is taken up by a cell into which H SV-tk has been introduced, HSV-tk phosphorylates GCV to GCV-MP (-phosphate). GCV—MP is then converted into GCV—DP (diphosphate) and GCV—TP (triphosphate) by intracellular enzymes, and this GCV—TP inhibits cell DNA synthesis, leading to cell death. (Z. Ram et al., Nat. Med., Vol. 3, p. 1354–1361, 1997). CD, VZV-tk, and ZGPRT are also suicide genes, and in combination with administration of 5-FC, AraM, and 6-TX, respectively, leads to cell death in cells expressing the suicide gene. In the present invention, a particularly preferred therapeutic gene is HSV-tk.
[0031] 検出可能なマーカー遺伝子として好ましいものには、緑色蛍光タンパク質 (GFP)、 赤色蛍光タンパク質 (RFP)、ルシフ ラーゼ、などが挙げられるがこれらに限定され ない。  [0031] Preferred examples of detectable marker genes include, but are not limited to, green fluorescent protein (GFP), red fluorescent protein (RFP), luciferase, and the like.
[0032] 本発明のウィルスベクター産生能を有する腫瘍標的細胞は、動物または動物細胞 に対する遺伝子導入または遺伝子治療に使用することができる。動物または動物細 胞は、好ましくはそれぞれ、哺乳動物または哺乳動物細胞である。  [0032] The tumor target cells having the ability to produce the viral vector of the present invention can be used for gene transfer or gene therapy for animals or animal cells. The animal or animal cell is preferably a mammal or a mammalian cell, respectively.
[0033] ウィルスベクターが含有する導入遺伝子が治療遺伝子である場合、本発明のウイ ルスベクター産生能を有する腫瘍標的細胞は、腫瘍性疾患、炎症性疾患またはそれ らの近縁疾患の病巣組織に対する遺伝子導入または遺伝子治療のために使用する ことができる。 [0034] 本明細書にぉ 、て、腫瘍性疾患は、細胞の異常増殖を伴う疾患であれば特に限定 はないが、例えば、良性上皮性腫瘍 (乳頭腫、腺腫、嚢胞など)、悪性上皮性腫瘍( 未分化癌、扁平上皮癌、腺癌、肝細胞癌、腎癌など)、非上皮性腫瘍 (脂肪腫、骨腫 、筋腫、血管腫など)、特別臓器の腫瘍 (造血器腫瘍、中皮腫、神経組織の腫瘍、黒 色腫など)等が挙げられる。より具体的には、脳腫瘍、甲状腺癌、咽頭'喉頭癌、卵巣 癌、骨腫瘍、神経節腫瘍、肉腫、肝臓癌、皮膚癌、乳癌、肺癌、消化器癌、前立腺 癌、子宮癌、膀胱癌、リンパ腫、白血病、などが挙げられる。 [0033] When the transgene contained in the viral vector is a therapeutic gene, the tumor target cell having the ability to produce the viral vector of the present invention can be used for tumorous diseases, inflammatory diseases, or lesion tissues of related diseases. It can be used for gene transfer or gene therapy. In the present specification, the neoplastic disease is not particularly limited as long as it is a disease accompanied by abnormal cell proliferation. For example, benign epithelial tumor (papilloma, adenoma, cyst, etc.), malignant epithelium Tumors (undifferentiated cancer, squamous cell carcinoma, adenocarcinoma, hepatocellular carcinoma, renal cancer, etc.), non-epithelial tumors (lipoma, osteoma, myoma, hemangioma, etc.), special organ tumors (hematopoietic tumor, Mesothelioma, neural tissue tumor, melanoma, etc.). More specifically, brain tumor, thyroid cancer, pharyngeal 'laryngeal cancer, ovarian cancer, bone tumor, ganglion tumor, sarcoma, liver cancer, skin cancer, breast cancer, lung cancer, digestive organ cancer, prostate cancer, uterine cancer, bladder cancer , Lymphoma, leukemia, and the like.
[0035] 本明細書において、炎症性疾患は、生体組織の障害に対する局所反応を伴う疾患 であれば特に限定されないが、変質性炎(ヘルぺスウィルスや肝炎ウィルスの感染、 ヤコブ病)、漿液性炎 (炭疽菌ゃ溶連菌の感染、火傷や凍傷、アレルギー反応)、力 タル性炎 (副鼻腔炎、気管支炎、胃炎、腸炎)、化膿性炎 (ブドウ球菌や緑膿菌の感 染)、線維素性炎 (ジフテリア、赤痢、腸チフスの感染)、出血性炎 (肺ペスト、インフル ェンザ肺炎、流行性出血熱)、壊疽性炎 (嫌気性菌の感染)、増殖性炎 (結核、梅毒 、真菌症、肝硬変、腎炎、肺線維症、特発性心筋症)、感染症以外の肉芽腫性疾患( 石綿症、サルコイドーシス、珪肺、ホジキン病)、などが挙げられる。より具体的には、 リウマチ性関節炎、多発性硬化症、クローン病などの免疫関与炎症性疾患、骨盤内 炎症性疾患、卵巣炎、卵管炎、卵管 卵巣炎、卵管 腹膜炎などが含まれる。  [0035] In the present specification, the inflammatory disease is not particularly limited as long as it is a disease accompanied by a local reaction to a disorder of living tissue, but it is degenerative inflammation (herpes virus or hepatitis virus infection, Jacob disease), serous fluid. Pneumonia (infection of anthrax, burns and frostbite, allergic reaction), lethargic inflammation (sinusitis, bronchitis, gastritis, enteritis), purulent inflammation (infection of staphylococci and Pseudomonas aeruginosa), Fibrinitis (diphtheria, dysentery, typhoid infection), hemorrhagic inflammation (pulmonary plague, influenza pneumonia, epidemic hemorrhagic fever), gangrenitis (anaerobic infection), proliferative inflammation (tuberculosis, syphilis, fungus) Disease, cirrhosis, nephritis, pulmonary fibrosis, idiopathic cardiomyopathy), granulomatous diseases other than infectious diseases (asbestosis, sarcoidosis, silicosis, Hodgkin's disease), and the like. More specifically, it includes immune-related inflammatory diseases such as rheumatoid arthritis, multiple sclerosis, Crohn's disease, pelvic inflammatory disease, ovitis, fallopian tubeitis, fallopian tube ovitis, fallopian tube peritonitis, etc. .
[0036] 本明細書において、腫瘍性疾患または炎症性疾患の近縁疾患とは、その治療に炎 症制御療法が有効であることが当業者に知られる疾患をいう。例えば、神経変性疾 患、動脈硬化症 (粥状硬化症、脳卒中、虚血性心疾患など)、高血圧症、などが含ま れるがこれらに限定されない。  [0036] In this specification, neoplastic diseases or closely related diseases of inflammatory diseases refer to diseases known to those skilled in the art that inflammation control therapy is effective for the treatment. Examples include, but are not limited to, neurodegenerative diseases, arteriosclerosis (eg, atherosclerosis, stroke, ischemic heart disease), and hypertension.
[0037] また、ウィルスベクターが含有する導入遺伝子が検出可能なマーカー遺伝子であ る場合、本発明のウィルスベクター産生能を有する腫瘍標的細胞は腫瘍病巣または 炎症病巣に集積するため、マーカー遺伝子の発現を検出することにより腫瘍病巣ま たは炎症病巣を検出することができる。  [0037] In addition, when the transgene contained in the viral vector is a detectable marker gene, the tumor target cells having the ability to produce the viral vector of the present invention accumulate in the tumor lesion or inflammatory lesion. By detecting this, tumor lesions or inflammatory lesions can be detected.
[0038] ウィルスベクター 牛.能を有する II重瘍標的細胞の調製方法  [0038] Viral vector cattle. Preparation method of II heavy tumor target cells
本発明は、ウィルスベクター産生能を有する腫瘍標的細胞の調製方法を提供する [0039] 本発明は、ウィルスベクター産生能を有する腫瘍標的細胞を調製する方法であつ て、腫瘍標的細胞に(1)所望の導入遺伝子を含有するプラスミド;および (2)ウィルス タンパク質をコードする遺伝子を含む 1以上のプラスミド;を遺伝子導入する工程を含 む、ここで、上記(1)および (2)のプラスミドは、それらが遺伝子導入された腫瘍標的 細胞において、(2)のプラスミドによりウィルス粒子の産生に必要なタンパク質が発現 するが(2)のプラスミドに含まれるウィルス由来のタンパク質をコードする遺伝子はゥ ィルス粒子にパッケージングされず、 (1)のプラスミドの導入遺伝子がウィルス粒子に パッケージングされるように設計されている、前記方法を提供する。本発明の方法に おいては、通常は(1)と(2)のプラスミドは同時に導入するが(1)のプラスミドを先に 遺伝子導入してもよぐあるいは(2)のプラスミドを先に遺伝子導入してもよい。 The present invention provides a method for preparing tumor target cells having the ability to produce viral vectors. [0039] The present invention relates to a method for preparing a tumor target cell having the ability to produce a viral vector, comprising (1) a plasmid containing a desired transgene in the tumor target cell; and (2) a gene encoding a viral protein. Wherein the plasmid of (1) and (2) above is a virus particle in the tumor target cell into which they have been introduced by the plasmid of (2). The gene encoding the virus-derived protein contained in the plasmid in (2) is not packaged in the virus particle, but the transgene in the plasmid in (1) is packaged in the virus particle. Provided is the method, which is designed to be In the method of the present invention, the plasmids (1) and (2) are usually introduced at the same time, but the plasmid (1) may be introduced first, or the plasmid (2) may be introduced first. It may be introduced.
[0040] 本発明の方法にぉ ヽて、腫瘍標的細胞、ウィルスベクター、導入遺伝子、上記に定 義したとおりである。  [0040] For the method of the present invention, tumor target cells, virus vectors, transgenes, as defined above.
[0041] 本発明の方法の好ましい態様において、腫瘍標的細胞は間葉系幹細胞 (MSCs) であり、そして産生されるウィルスベクターはレトロウイルスベクターである。したがって 、本発明は、レトロウイルスベクター産生能を有する間葉系幹細胞を調製する方法で あって、間葉系幹細胞に(1) 5,LTR、ノ ッケージングシグナル(Ψ)、導入遺伝子、 および 3 ' LTRを含むプラスミド;および(2) gagZpol遺伝子および env遺伝子を含 むプラスミド、または、 gagZpol遺伝子を含むプラスミドおよび env遺伝子を含むブラ スミド;を遺伝子導入する工程を含む、前記方法を提供する。本発明の方法において は、通常は(1)と(2)のプラスミドは同時に導入する力 (1)のプラスミドを先に遺伝子 導入してもよぐある 、は(2)のプラスミドを先に遺伝子導入してもよ!/、。  [0041] In a preferred embodiment of the method of the present invention, the tumor target cells are mesenchymal stem cells (MSCs) and the viral vector produced is a retroviral vector. Therefore, the present invention provides a method for preparing mesenchymal stem cells having the ability to produce retroviral vectors, and comprises (1) 5, LTR, knocking signal (Ψ), transgene, and 3 And (2) a plasmid containing an LTR; and (2) a plasmid containing a gagZpol gene and an env gene, or a plasmid containing a gagZpol gene and a plasmid containing an env gene; In the method of the present invention, usually the plasmids (1) and (2) can be introduced at the same time. The plasmid of (1) may be introduced first, or the plasmid of (2) may be introduced first. You can introduce it!
[0042] 本発明の方法にぉ ヽて、プラスミドの腫瘍標的細胞への遺伝子導入は、エレクト口 ポレーシヨン法もしくはその改良法であるヌクレオフエクシヨン法(Nucleofector (登 録商標)技術を用いる; amaxa社)、リボフヱクシヨン法、リン酸カルシウム法、 DEAE —デキストラン法など当業者に公知の方法により行ってよい。好ましい遺伝子導入法 は、ヌクレオフエクシヨン法またはリポフエクシヨン法である。  [0042] According to the method of the present invention, gene transfer of a plasmid into a tumor target cell is performed by using the electopore position method or the modified method, Nucleofector (registered trademark) technology; amaxa ), A ribofusion method, a calcium phosphate method, a DEAE-dextran method, and the like. A preferred gene transfer method is a nucleo-off excision method or a lipofussion method.
[0043] rnm /  [0043] rnm /
本発明は、本発明のウィルスベクター産生能を有する腫瘍標的細胞を含む医薬組 成物を提供する。本発明の医薬組成物に含まれるウィルスベクター産生能を有する 腫瘍標的細胞は、産生されるウィルスベクターが含む導入遺伝子が治療遺伝子であ る他は上記したとおりである。 The present invention provides a pharmaceutical group comprising a tumor target cell having the ability to produce the viral vector of the present invention. Provide composition. The tumor target cells having the ability to produce a viral vector contained in the pharmaceutical composition of the present invention are as described above except that the transgene contained in the produced viral vector is a therapeutic gene.
[0044] 本発明はまた、本発明のウィルスベクター産生能を有する腫瘍標的細胞を含む、 腫瘍病巣または炎症病巣の検出のための診断用組成物を提供する。本発明の診断 用組成物に含まれるウィルスベクター産生能を有する腫瘍標的細胞は、産生される ウィルスベクターが含む導入遺伝子力 検出可能なマーカー遺伝子である他は上記 したとおりである。  [0044] The present invention also provides a diagnostic composition for detecting a tumor lesion or an inflammatory lesion, comprising a tumor target cell having the ability to produce the virus vector of the present invention. The tumor target cell having the ability to produce a viral vector contained in the diagnostic composition of the present invention is as described above except that it is a marker gene capable of detecting the transgene force contained in the produced viral vector.
[0045] 本明細書において、本発明の医薬組成物および本発明の診断用組成物を総称し て本発明の組成物ということがある。本発明の医薬組成物および診断用組成物の違 いは、導入遺伝子が治療遺伝子であるか、検出可能なマーカー遺伝子であるかの 違いがあるのみであり、その結果、生体に対する作用が異なる力 物としての本質的 な'性質は同じである。  In the present specification, the pharmaceutical composition of the present invention and the diagnostic composition of the present invention are sometimes collectively referred to as the composition of the present invention. The only difference between the pharmaceutical composition and the diagnostic composition of the present invention is whether the transgene is a therapeutic gene or a detectable marker gene. The essential nature of things is the same.
[0046] 本発明の組成物は、本発明のウィルスベクター産生能を有する腫瘍標的細胞の他 、医薬的に許容可能なキャリアまたは希釈剤などを含んでいて良い。医薬的に許容 可能なキャリアまたは希釈剤などは、本質的に化学的に不活性および無害な組成物 であり、本発明の組成物の生物学的活性に全く影響を与えないものである。そのよう なキャリアまたは希釈剤の例は、塩溶液、糖溶液、グリセロール溶液、エタノーノレなど があるが、これらに限定されない。本発明の組成物はさらに、医薬的に許容される任 意の添加剤、例えば、乳化補助剤、安定化剤、等張化剤、 pH調製剤を適当量含有 していてもよい。具体的には、炭素数 6〜22の脂肪酸 (例えば、力プリル酸、力プリン 酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ォレイン酸、リノール酸、ァ ラキドン酸、ドコサへキサェン酸)やその医薬的に許容される塩 (例えば、ナトリウム塩 、カリウム塩、カルシウム塩);グリセリン;アルブミン、デキストランなどの乳化補助剤; コレステロール、ホスファチジン酸などの安定化剤;塩化ナトリウム、グルコース、マル トース、ラタトース、スクロース、トレハロースなどの等張化剤;塩酸、硝酸、リン酸、酢 酸、水酸化ナトリウム、水酸ィ匕カリウム、トリエタノールァミンなどの pH調製剤;などを 挙げることができる。 [0047] 本発明の組成物は、治療または診断に有効量の本発明のウィルスベクター産生能 を有する腫瘍標的細胞を含み、かつ、患者に適切に投与できるような形態で提供さ れる。本発明の組成物は、例えば注射剤、点滴剤など液剤の形態に調製してもよい [0046] The composition of the present invention may contain a pharmaceutically acceptable carrier or diluent in addition to the tumor target cells having the virus vector producing ability of the present invention. A pharmaceutically acceptable carrier or diluent or the like is an essentially chemically inert and harmless composition that does not affect the biological activity of the composition of the present invention at all. Examples of such carriers or diluents include, but are not limited to, salt solutions, sugar solutions, glycerol solutions, ethanol. The composition of the present invention may further contain an appropriate amount of any pharmaceutically acceptable additive such as an emulsification aid, a stabilizer, an isotonic agent, and a pH adjusting agent. Specifically, fatty acids having 6 to 22 carbon atoms (for example, strong prillic acid, strong puric acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, arachidonic acid, docosahexaenoic acid) And pharmaceutically acceptable salts thereof (eg, sodium salt, potassium salt, calcium salt); glycerin; emulsification aids such as albumin and dextran; stabilizers such as cholesterol and phosphatidic acid; sodium chloride, glucose and maltose , Latatoses, sucrose, trehalose and the like; pH adjusters such as hydrochloric acid, nitric acid, phosphoric acid, acetic acid, sodium hydroxide, potassium hydroxide, triethanolamine, and the like. [0047] The composition of the present invention includes a tumor target cell having the ability to produce the viral vector of the present invention effective for treatment or diagnosis, and is provided in a form that can be appropriately administered to a patient. The composition of the present invention may be prepared in the form of a liquid such as an injection or an infusion.
[0048] 本発明の組成物は、ヒトを含む動物に対し、左心室腔内投与、静脈内投与、動脈 内投与、組織内投与、腫瘍栄養血管内投与または脳室などへの髄腔内投与するこ とができ、患者の症状に合わせた適切な投与経路により投与してよい。特に力テーテ ル操作による左心室腔内投与あるいは腫瘍栄養血管内投与が好ましい。本発明の 医薬組成物は、これらの投与方法に適した剤型で投与される。 [0048] The composition of the present invention is administered to animals including humans in the left ventricular cavity, intravenous administration, intraarterial administration, tissue administration, tumor nutrition intravascular administration, or intrathecal administration to the ventricle. It can be administered by an appropriate route according to the patient's condition. In particular, administration in the left ventricular cavity or intratumoral administration of blood vessels by force tail manipulation is preferable. The pharmaceutical composition of the present invention is administered in a dosage form suitable for these administration methods.
[0049] 本発明の組成物の用量は、薬物、剤型、年齢や体重などの患者の状態、投与経路 、病気の性質と程度などを考慮した上で決定することが望ましい。好ましい用量範囲 は、本発明の細胞が lxlO6ないし 1χ10ω個 Zkg体重の範囲で存在しているものであ る。より好ましい用量範囲は、本発明の細胞が lxlO6ないし lxlO9個 Zkg体重、 1x1 06ないし lxlO8個 Zkg体重、 lxlO6ないし lxlO7個 Zkg体重、または lxlO6ないし 3 xlO6個 Zkg体重、の範囲で存在しているものである。場合によっては、これ以下でも 十分であるし、また逆にこれ以上の用量を必要とすることもある。投与は 1回のみ行つ てもよく、または複数回行ってもよい。複数回投与を行う場合は、 1日 1〜数回、 1〜 数日に 1回、 1から数週間に 1回、または 1〜数ケ月に 1回の間隔で投与してもよい。 発明の効果 [0049] The dose of the composition of the present invention is preferably determined in consideration of the drug, dosage form, patient condition such as age and weight, administration route, nature and degree of illness and the like. A preferred dose range is one in which the cells of the invention are present in the range of lxlO 6 to 1χ10 ω Zkg body weight. More preferred dose range, to the cells of the present invention is LxlO 6 no LxlO 9 amino Zkg weight, 1x1 0 6 to LxlO 8 pieces Zkg weight, LxlO 6 to LxlO 7 amino Zkg weight or LxlO 6 to 3 XLO 6 pieces Zkg weight, It exists in the range of. In some cases, this may be sufficient, or vice versa. Administration may be performed once or multiple times. When administered multiple times, it may be administered once to several times a day, once to several days, once to several weeks, or once to several months. The invention's effect
[0050] 本発明のウィルスベクター産生能を有する腫瘍標的細胞は、生体内に注入したとき に生体内の腫瘍や炎症組織に集積する。そのため、本発明の腫瘍標的細胞を生体 内に注入することにより、標的組織内でウィルスベクターを産生させ、そして標的組織 への感染を持続させることが可能であり、その結果高い効率で遺伝子導入を行うこと が可能である。  [0050] Tumor target cells having the ability to produce the viral vector of the present invention accumulate in tumors and inflamed tissues in the living body when injected into the living body. Therefore, by injecting the tumor target cells of the present invention into a living body, it is possible to produce a viral vector in the target tissue and to maintain the infection in the target tissue. As a result, gene transfer can be performed with high efficiency. It can be done.
図面の簡単な説明  Brief Description of Drawings
[0051] [図 1]図 1は、ベクター産生型の MSCsのレトロウイルス分泌能、および、分泌したレト ロウィルスによるマウス 9L細胞への感染の度合いを示すグラフである。横軸の、 NC は対照 (ネガティブコントロール)を示し、日数は、プラスミド導入後の培養日数を示す 。右側の縦軸は MSCsが分泌したウィルスの力価を示す。左側の縦軸は、分泌され たウィルスを感染させたマウス 9L細胞が産生するルシフェラーゼの量を示し、これは 、ウィルスの感染能および遺伝子導入能による生物学的力価を評価するものである。 [0051] FIG. 1 is a graph showing the retroviral secretion ability of vector-produced MSCs and the degree of infection of mouse 9L cells by the secreted retrovirus. NC on the horizontal axis indicates a control (negative control), and the number of days indicates the number of days of culture after plasmid introduction. . The right vertical axis shows the titer of virus secreted by MSCs. The left vertical axis indicates the amount of luciferase produced by mouse 9L cells infected with the secreted virus, which evaluates the biological titer due to the infectivity and gene transfer capacity of the virus.
[図 2-1]図 2— 1は、ウィルスベクター産生型 MSCs (VS V— G群: VSV— Gをェンべ ロープとするウィルスベクターを産生する)の担癌動物モデルにおける遺伝子発現を 示すグラフ(a)および生体イメージング画像 (b)である。グラフにおいて、横軸は MS Cs投与後の日数を示す;左縦軸はルシフェラーゼの蛍光の全光束を示し、丸で示す プロット (腫瘍におけるルシフェラーゼ蛍光)および四角で示すプロット (バックグラウ ンド: BG)についての縦軸である;右縦軸は、腫瘍体積を示し、ひし形で示すプロット についての縦軸である。 [Fig. 2-1] Fig. 2-1 shows gene expression in a tumor-bearing animal model of viral vector-producing MSCs (VS V—G group: producing viral vectors using VSV-G as an envelope) It is a graph (a) and a biological imaging image (b). In the graph, the horizontal axis shows the number of days after MS Cs administration; the left vertical axis shows the total luminous flux of luciferase fluorescence, circled plots (luciferase fluorescence in tumors) and squared plots (background: BG) The right vertical axis represents the tumor volume and is the vertical axis for the plots shown as diamonds.
[図 2- 2]図 2— 2は、ウィルスベクター産生型 MSCs (env群:アンホトロピックレトロウイ ルスのエンベロープを有するウィルスベクターを産生する)の担癌動物モデルにおけ る遺伝子発現を示すグラフ(a)および生体イメージング画像 (b)である。グラフにお ヽ て、横軸は MSCs投与後の日数を示す;左縦軸はルシフェラーゼの蛍光の全光束を 示し、丸で示すプロット (腫瘍におけるルシフェラーゼ蛍光)および四角で示すプロッ ト (バックグラウンド: BG)につ 、ての縦軸である;右縦軸は、腫瘍体積を示し、ひし形 で示すプロットについての縦軸である。  [Fig. 2-2] Fig. 2-2 is a graph showing gene expression in a cancer-bearing animal model of viral vector-producing MSCs (env group: producing a viral vector having an amphotropic retroviral envelope) ( a) and biological imaging image (b). In the graph, the horizontal axis indicates the number of days after administration of MSCs; the left vertical axis indicates the total luminous flux of luciferase fluorescence, a circle plot (luciferase fluorescence in the tumor) and a square plot (background: BG) is the vertical axis; the right vertical axis represents the tumor volume and is the vertical axis for the plots shown as diamonds.
[図 2-3]図 2— 3は、ウィルスベクターを産生しない MSCs (NC群)の担癌動物モデル における遺伝子発現を示すグラフ(a)および生体イメージング画像 (b)である。これら は、図 2—1および図 2— 2の実験に対する対照実験の結果である。グラフにおいて、 横軸は MSCs投与後の日数を示す;左縦軸はルシフェラーゼの蛍光の全光束を示し 、丸で示すプロット (腫瘍におけるルシフェラーゼ蛍光)および四角で示すプロット(バ ックグラウンド: BG)についての縦軸である;右縦軸は、腫瘍体積を示し、ひし形で示 すプロットについての縦軸である。  [FIGS. 2-3] FIGS. 2-3 are graphs (a) and biological imaging images (b) showing gene expression in MSCs (NC group) tumor-bearing animal models that do not produce viral vectors. These are the results of a control experiment against the experiments in Figure 2-1 and Figure 2-2. In the graph, the horizontal axis shows the number of days after administration of MSCs; the left vertical axis shows the total luminous flux of luciferase fluorescence, circled plots (luciferase fluorescence in tumors) and squared plots (background: BG) The vertical axis is the vertical axis; the right vertical axis is the volume of the tumor and plots the diamonds.
[図 3]図 3は、担癌動物モデルにおけるベクター産生型間葉系幹細胞の投与による 遺伝子増幅効果を示すグラフである。横軸: 9LZLNCNは、 MSCsを投与していな Vヽ担癌動物モデル; MSCは、遺伝子導入して!/、な 、MSCsを投与した担癌動物モ デル; TKは、チミジンキナーゼ発現レトロウイルスベクタープラスミド(LTR—TK)を 導入した MSCsを投与した担癌動物モデル; TK VSV—Gは、 LTR—TKおよび V SV—G発現プラスミドを導入した MSCsを投与した担癌動物モデル;そして、 TK V SV-G gag— polは、 LTR— TK、 VSV—G発現プラスミド、および gag— pol発現 プラスミドを導入した MSCsを投与した担癌動物モデル;をそれぞれ意味する。縦軸 は、 LTR—TKを導入した MSCsを投与した担癌動物モデルの皮下腫瘍におけるチ ミジンキナーゼ遺伝子の量を 1とした場合のチミジンキナーゼの遺伝子の量である。 FIG. 3 is a graph showing the gene amplification effect by administration of vector-producing mesenchymal stem cells in a tumor-bearing animal model. Horizontal axis: 9LZLNCN is an animal model of cancer that has not been administered MSCs; MSC has been gene-transfected! /, A model of tumor-bearing animal that has been administered MSCs; TK is a thymidine kinase-expressing retroviral vector Plasmid (LTR-TK) Tumor-bearing animal model administered with introduced MSCs; TK VSV-G is a tumor-bearing animal model administered with MSCs introduced with LTR-TK and V SV-G expression plasmids; and TK V SV-G gag-pol is , LTR-TK, VSV-G expression plasmid, and gag-pol expression plasmid, a tumor-bearing animal model administered with MSCs. The vertical axis represents the amount of thymidine kinase gene when the amount of thymidine kinase gene in a subcutaneous tumor of a tumor-bearing animal model administered with MSCs into which LTR-TK has been introduced is 1.
[図 4-1]図 4 1は、担癌動物モデルにおける治療遺伝子導入および GCVによる治 療効果の実験手順を示す模式図である。  [Fig. 4-1] Fig. 41 is a schematic diagram showing the experimental procedure of therapeutic gene transfer and therapeutic effect by GCV in a cancer-bearing animal model.
[図 4-2]図 4 2は、担癌動物モデルにおける治療遺伝子導入および GCVによる治 療効果の実験結果を示す (a)グラフ、および (b)生体イメージング写真である。(a)の グラフにおいて、「9LZLNCL」(口)は未処置群;「MSC」(◊)は遺伝子非導入 MS C投与群;「tk」(〇)は pLTR— HSV— tk導入 MSC投与群;「tkZVSV— G」(△) は pLTR -HSV- tkおよび p VS V - G導入 MSC投与群;そして、「tkZgag— pol /VSV-GJ (〇)は pLTR— HSV— tk、 pGag— polおよび p VSV—G導入 MSC投 与群;をそれぞれ意味する。「tk」と「tkZgag— polZVSV— G」の両群間での腫瘍 部発光量は n=4で、危険率 5%未満、有意差あり、であった。  [Fig. 4-2] Fig. 42 shows (a) graphs and (b) biological imaging photographs showing the experimental results of therapeutic gene transfer and therapeutic effects by GCV in cancer-bearing animal models. In the graph of (a), “9LZLNCL” (oral) is an untreated group; “MSC” (◊) is a non-transgenic MS C administration group; “tk” (◯) is a pLTR-HSV—tk introduction MSC administration group; “TkZVSV—G” (△) indicates pLTR-HSV-tk and pVSV-G-introduced MSC administration group; and “tkZgag—pol / VSV-GJ (〇) indicates pLTR—HSV—tk, pGag—pol and p VSV—G-introduced MSC group, respectively, The amount of tumor luminescence between the “tk” and “tkZgag—polZVSV—G” groups was n = 4, and the risk rate was less than 5%, with a significant difference. ,Met.
実施例  Example
[0052] 以下、実施例により本発明をさらに具体的に説明するが、これらは本発明の技術的 範囲を限定するためのものではな 、。当業者は本明細書の記載に基づ 、て容易に 本発明に修飾 ·変更を加えることができ、それらは本発明の技術的範囲に含まれる。  [0052] Hereinafter, the present invention will be described more specifically with reference to examples, but these are not intended to limit the technical scope of the present invention. Those skilled in the art can easily modify or change the present invention based on the description in the present specification, and these are included in the technical scope of the present invention.
実施例 1:間葉系榦細朐 (MSCs)への遺伝子導人法の選択  Example 1: Selection of gene transfer method for mesenchymal cocoon cells (MSCs)
緑色蛍光タンパク質 (GFP)発現プラスミドを、 Sprague - Dawley (SD)ラット骨髄 由来の間葉系幹細胞 (MSCs)に導入した。遺伝子導入には、ヌクレオフエクシヨン法 、リン酸カルシウム法、または、リポフエクシヨン法を用いた。対照として、 GFP発現プ ラスミドを導入しなかった MSCsを用いた。  Green fluorescent protein (GFP) expression plasmid was introduced into mesenchymal stem cells (MSCs) derived from Sprague-Dawley (SD) rat bone marrow. For the gene transfer, a nucleo-off-excitation method, a calcium phosphate method, or a lipofusion method was used. As a control, MSCs into which no GFP expression plasmid was introduced were used.
[0053] ヌクレオフエクシヨン法は、 amaxa社の遺伝子導入システム Nucleofector (登録商 標)を用いて、同社の Nucleofector (登録商標)技術を用いて行った。ヌクレオフエク シヨン法は、エレクト口ポレーシヨン法の改良型で、細胞の核へ直接遺伝子を導入す る技術である。遺伝子導入は amaxa社の製品マニュアルに従って [0053] The Nucleof-Exclusion method was performed using the Nucleofector (registered trademark) technology of the company, using the gene introduction system Nucleofector (registered trademark) of amaxa. The nucleo-exclusion method is an improved version of the electopore position method, which introduces genes directly into the cell nucleus. Technology. Gene transfer according to amaxa product manual
1穴あたり lxlO6個の細胞を 6穴プレートに撒き、 10%FBS添カ卩 D— MEMZF12培 養液で 24時間培養した。 Nucleofector Solutionにて再懸濁した細胞および eGF P発現プラスミド 4 μ gに、総量が 100 μ 1となる様に、 MSC用の Nucleofector Solu tionを適当量加えた。これを電極付きの専用キュベットに移し、専用の遺伝子導入装 置 Nucleofector (Amaxa社)を用いて製品マニュアルに従 、遺伝子導入を行った 。あらかじめ加温してぉ 、た 500 μ 1の培地をキュベットに加え、加温済み培地が入 つた 6穴プレートに移し、 24時間、培養を行った。 Six lxlO cells per well were seeded in a 6-well plate and cultured in a D-MEMZF12 medium containing 10% FBS for 24 hours. An appropriate amount of Nucleofector Solution for MSC was added to 4 μg of cells resuspended in Nucleofector Solution and 4 μg of eGFP expression plasmid so that the total amount was 100 μ1. This was transferred to a dedicated cuvette with electrodes, and gene transfer was performed using a dedicated gene transfer device Nucleofector (Amaxa) according to the product manual. After pre-warming, 500 μl of the medium was added to the cuvette, transferred to a 6-well plate containing the warmed medium, and cultured for 24 hours.
[0054] リン酸カルシウム法による遺伝子導入は、 1穴あたり lxlO6個の細胞を 6穴プレート に撒き、 10%FBS添加 D MEMZF12培養液で 24時間培養した。 4 gのプラス ミドを 100 1の 300mM CaClにカロえ、さらに、 100 1の 2xHBS (280mM Na [0054] For gene transfer by the calcium phosphate method, 6 lxlO cells per well were seeded in a 6-well plate and cultured in DMEMZF12 medium supplemented with 10% FBS for 24 hours. Add 4 g of plasmid to 100 1 of 300 mM CaCl, then add 100 1 of 2xHBS (280 mM NaCl
2  2
Cl、 1. 5mM Na HPO、 50mM HEPES、 pH7. 0)をカ卩えて混合し、直ちに 10  Cl, 1.5 mM Na HPO, 50 mM HEPES, pH 7.0) and mix immediately.
2 4  twenty four
%FBS添カ卩 D— MEMZF12培養液 2mlに混和して均一にした。これを、 6穴プレー トにて培養していた細胞の上清と置換し、培養を行った。 6時間後、培養液を除去し、 37°Cにて加温済みの 2%FBS添カ卩 D - MEM/F12培養液を 2ml加え、 24時間、 培養を行った。  % FBS-supplemented D—Mixed uniformly with 2 ml of MEMZF12 culture solution. This was replaced with the supernatant of the cells that had been cultured in the 6-well plate and cultured. After 6 hours, the culture solution was removed, and 2 ml of 2% FBS-supplemented D-MEM / F12 culture solution heated at 37 ° C was added and cultured for 24 hours.
[0055] リポフエクシヨン法による遺伝子導入は、リボソームとしてリポフエクタミン 2000 (Invi trogen)を用い、 1穴あたり lxlO6個の細胞を 6穴プレートに撒き、 10%FBS添加 D MEMZF 12培養液で 24時間培養した。 Opti— MEM (登録商標)に培地交換し た後、リポフエクトァミン 2000 (15 μ 1、 Invitrogen社)を用いて、製品マニュアルに従 い推奨条件にてプラスミド (4 /z g)を遺伝子導入した。 6時間後、 10%FBS添加 D— MEMZF12培養液へ培地交換を行い、 24時間、培養を行った。 [0055] For the gene transfer by the lipofussion method, lipofucamine 2000 (Invitrogen) was used as a ribosome, lxlO 6 cells per well were seeded in a 6-well plate, and cultured in DMEMZF 12 culture medium with 10% FBS for 24 hours. . After exchanging the medium with Opti-MEM (registered trademark), the plasmid (4 / zg) was transfected under the recommended conditions according to the product manual using Lipofectamine 2000 (15 μ1, Invitrogen). . After 6 hours, the medium was changed to D-MEMZF12 medium supplemented with 10% FBS, and cultured for 24 hours.
[0056] 遺伝子導入した後、細胞を終濃度 10%ゥシ胎仔血清(Sigma、 F— 2442)入り D — MEMZF— 12培地(Invitrogenゝ 11320— 033)中、 37°C、 24時間培養した。  [0056] After the gene transfer, the cells were cultured at 37 ° C for 24 hours in D-MEMZF-12 medium (Invitrogen ゝ 11320-033) containing 10% final concentration of fetal bovine serum (Sigma, F-2442).
[0057] 間葉系幹細胞への遺伝子導入の割合を、細胞内で発現した GFPの蛍光について フローサイトメトリー法で評価した。ヌクレオフエクシヨン法では 60. 11%、リン酸カル シゥム法では 3. 13%、リポフエクシヨン法では 12. 26%の細胞で遺伝子導入が認め られた。なお、対照の細胞では、 0. 01%の細胞について蛍光が認められ、この値が ノ ックグラウンドである。したがって、間葉系幹細胞への遺伝子導入には、ヌクレオフ ヱクシヨン法またはリボフヱクシヨン法が好ましいことが明らかになった。 [0057] The rate of gene transfer into mesenchymal stem cells was evaluated by flow cytometry for the fluorescence of GFP expressed in the cells. Gene transfer was observed in 60.11% of the nucleophilic method, 3.13% of the calcium phosphate method, and 12.26% of the lipofusicion method. In the control cells, fluorescence was observed in 0.01% of cells. It is a knock ground. Therefore, it was revealed that the nucleophilic or ribofunctional method is preferable for gene introduction into mesenchymal stem cells.
実施例 2:間 榦細胞の II重瘍親,禾ロ件  Example 2: Intermittent cells II severe ulcer parents
ルシフェラーゼ発現プラスミド 4 gを、 2xl06個の SDラット骨髄由来の MSCsに、 ヌクレオフエクシヨンにより導入した。導入後終濃度 10%ゥシ胎仔血清入り D— MEM /F— 12培地中、 37°C、 24時間培養し、 5xl05個の MSCsをマウスに投与するのに 用いた。 4 g of the luciferase expression plasmid was introduced into 2xl0 6 SD rat bone marrow-derived MSCs by nucleolysis. After the introduction, the cells were cultured in D-MEM / F-12 medium containing 10% ushi fetal serum at 37 ° C for 24 hours, and 5xl0 5 MSCs were used for administration to mice.
[0058] ヌードマウスの背中に、 3xl06個のマウス神経膠腫 9L細胞を皮下注射し、担癌動 物モデルを作成した。また、比較のために 3xl06個のマウス神経芽細胞 Rat— 1をヌ 一ドマウスの背中に皮下注射したものも作成した。 [0058] On the back of nude mice, 3xl0 6 mouse glioma 9L cells were injected subcutaneously to create a tumor-bearing animal model. For comparison, 3xl0 6 mouse neuroblasts Rat-1 were also subcutaneously injected into the back of a mouse.
[0059] 担癌動物モデルに、 5xl05個のルシフェラーゼ発現プラスミドを導入した MSCs (M SCZpLuc)を左心室腔内に投与した (9L群)。陽性対照 (PC)として、腫瘍細胞の かわりに、ヌードマウスの背中に 5xl05個の MSCZpLucを皮下注射した。陰性対照 (NC)として、腫瘍細胞を皮下注射せずに、ヌードマウスの左心室腔内に 5xl05個の MSCZpLucを投与した。また、比較のために Rat— 1細胞を背中に皮下注射したヌ 一ドマウスの左心室腔内に、 5xl05個の MSC/pLucを投与した (Rat— 1群)。 [0059] MSCs (M SCZpLuc) into which 5xl0 5 luciferase expression plasmids were introduced were administered into the left ventricular cavity in a cancer-bearing animal model (group 9L). As a positive control (PC), 5xl0 5 MSCZpLuc were subcutaneously injected into the back of nude mice instead of tumor cells. As a negative control (NC), 5xl0 5 MSCZpLuc were administered into the left ventricular cavity of nude mice without subcutaneous injection of tumor cells. For comparison, 5xl0 5 MSC / pLuc were administered into the left ventricular cavity of a nude mouse injected with Rat-1 cells subcutaneously on the back (Rat-1 group).
[0060] MSCZpLucの投与 24時間後に、生体イメージング装置(IVIS Imaging Syste m;Xenogen)を用いてルシフェラーゼの発現部位を評価した。担癌動物モデルであ る 9L群では、ルシフヱラーゼは、 9L細胞を皮下注射した背中で強く発現していた。こ のことは、 MSCZpLucが腫瘍細胞に集積し、そこでルシフェラーゼ遺伝子が発現し たことを示すものである。一方、 Rat— 1群では、ルシフェラーゼは頭部を中心に弱く 発現し、癌を有していない動物においては、血流に沿って部位非特異的にルシフエ ラーゼが発現したことを示す。なお、陽性対照では、 MSCZpLucを皮下注射した背 中で強いルシフェラーゼの発現が観察された。陰性対照では、ルシフェラーゼは頭 部を中心に弱く発現しており、血流に沿った部位非特異的な発現が観察された。  [0060] 24 hours after administration of MSCZpLuc, the expression site of luciferase was evaluated using an in vivo imaging apparatus (IVIS Imaging System; Xenogen). In the 9L group, a tumor-bearing animal model, luciferase was strongly expressed on the back subcutaneously injected with 9L cells. This indicates that MSCZpLuc accumulated in the tumor cells and the luciferase gene was expressed there. On the other hand, in the Rat-1 group, luciferase was weakly expressed mainly in the head, and in animals that did not have cancer, luciferase was expressed nonspecifically along the bloodstream. In the positive control, strong luciferase expression was observed in the dorsal skin injected with MSCZpLuc. In the negative control, luciferase was weakly expressed mainly in the head, and site-specific expression along the bloodstream was observed.
実施例 3:ウィルスベクター産牛.能の評価  Example 3: Virus vector cattle.
ルシフェラーゼ発現レトロウイルスベクタープラスミド 4 g、 gag— pol発現プラスミ ド 0. 5 g、および VSG— G (水疱性口内炎ウィルスの Gタンパク質)発現プラスミド 0. 5 /z gを 2xl06個の SDラット骨髄由来の間葉系幹細胞(MSCs)にヌクレオフエク シヨン法により導入した。上記のプラスミドを導入しない間葉系幹細胞を対照とした。 導入後、終濃度 10%ゥシ胎仔血清入り D— MEMZF— 12培地中、 37°Cで培養し 、経時的に、具体的には、 1日目 (24時間後)、 2日目 (48時間後)、 3日目(72時間 後)および 4日目(96時間後)に、培養上清を回収した。この培養上清中のウィルスの 力価を RNAドットプロット法にて解析したところ、遺伝子導入 24時間後からウィルス の発現が確認された(図 1)。 Luciferase-expressing retroviral vector plasmid 4 g, gag-pol expression plasmid 0.5 g, and VSG-G (vesicular stomatitis virus G protein) expression plasmid 0.5 / zg was introduced into 2xl0 6 SD rat bone marrow-derived mesenchymal stem cells (MSCs) by the nucleo-exclusion method. A mesenchymal stem cell into which the above plasmid was not introduced was used as a control. After introduction, cultured in D-MEMZF-12 medium with final concentration of 10% urchin fetal serum at 37 ° C. Over time, specifically, the first day (24 hours later), the second day (48 After 3 hours (after 72 hours) and 4 days (after 96 hours), the culture supernatant was collected. When the virus titer in the culture supernatant was analyzed by RNA dot plotting, virus expression was confirmed 24 hours after gene transfer (Fig. 1).
[0061] また、 1穴あたり 5xl04個のラット 9L細胞を 96穴プレートに撒き、 10%FBS添加 D [0061] In addition, 5xl0 4 rat 9L cells per well were seeded in a 96-well plate and supplemented with 10% FBS D
MEMZF 12培養液で 24時間培養した。この培養上清に、 MSCにて産生し経時 的に回収したウィルスを含む培養液を 100 1添加し、遺伝子導入を行った。 3日間 培養を行い、ルシフェラーゼアツセィを行って、感染を受けた 9L細胞での遺伝子発 現量を評価した (図 1)。  The cells were cultured in MEMZF 12 culture solution for 24 hours. To this culture supernatant, 1001 of a culture solution containing virus produced by MSC and collected over time was added, and gene transfer was performed. After culturing for 3 days, luciferase assay was performed to evaluate the amount of gene expression in infected 9L cells (Fig. 1).
¾施例 4:牛体内に: ける遣伝早 効  ¾ Example 4: In cow body:
ルシフェラーゼ発現レトロウイルスベクタープラスミド 4 g、 gag— pol発現プラスミ ド 0. 、および VSG— G発現プラスミド 0. を 2xl06個の SDラット骨髄由 来の間葉系幹細胞 (MSCs)に導入した (VSG— G群)。また、 VSV—G発現プラスミ ドの代わりにアンホトロピックレトロウイルスのエンベロープタンパク質発現プラスミド 0. 5 μ gを導入した群 (env群)を調製した。ウィルス産生を行わな 、対照として、ルシ フェラーゼ発現レトロウイルスベクタープラスミド 4 μ gおよび LacZ発現プラスミド 1 gを導入して、ウィルス産生を行わない群 (NC群)を調製した。遺伝子導入はいず れもヌクレオフエクシヨン法により行った。 Luciferase-expressing retroviral vector plasmid 4 g, gag-pol expression plasmid 0. and VSG-G expression plasmid 0. were introduced into 2xl0 6 SD rat bone marrow-derived mesenchymal stem cells (MSCs) (VSG- G group). In addition, a group (env group) into which 0.5 μg of an amphotropic retrovirus envelope protein expression plasmid was introduced instead of the VSV-G expression plasmid was prepared. As a control without virus production, 4 μg of luciferase-expressing retrovirus vector plasmid and 1 g of LacZ expression plasmid were introduced to prepare a group that did not produce virus (NC group). The gene transfer was performed by the Nucleo-off-exclusion method.
[0062] 導入後、終濃度 10%ゥシ胎仔血清入り D— MEMZF— 12培地中、 37°Cで培養 し、培養 24時間後に細胞を回収し、 6xl05個の遺伝子導入 MSCsをヌードマウス左 心室腔内に注入して全身投与を行った。当該ヌードマウスは、 MSCs投与直前にそ れらの背中にマウス神経膠腫 9L細胞(以下、単に 9L細胞ともいう)を皮下注射した 担癌動物モデルである。生体イメージング装置(IVIS Imaging System ;Xenoge n)を用 、て経時的に腫瘍内のルシフェラーゼの発現を評価した(図 2— 1、図 2— 2、 および図 2— 3)。投与 21日後における遺伝子発現はウィルス産生を行わない NC群 と比べ、 VSV—G群では 9. 8倍、 env群では 2. 5倍増強された。 [0062] After introduction, the cells were cultured in D-MEMZF-12 medium with a final concentration of 10% urchin fetal serum at 37 ° C. After 24 hours of culture, the cells were collected, and 6xl0 5 gene-transferred MSCs were transferred to the left of the nude mouse. Systemic administration was performed by injection into the ventricular cavity. The nude mice are a tumor-bearing animal model in which mouse glioma 9L cells (hereinafter also simply referred to as 9L cells) are injected subcutaneously on their backs immediately before administration of MSCs. The expression of luciferase in the tumor was evaluated over time using an in vivo imaging system (IVIS Imaging System; Xenogen) (Fig. 2-1, Fig. 2-2, and Fig. 2-3). Gene expression at 21 days after administration does not produce virus NC group Compared with the VSV-G group, it was enhanced by 9.8 times and in the env group by 2.5 times.
実施例 5: 動物モデルにおける '治療遣伝 增幅効  Example 5: 'Treatment transfer in animal model
単純へルぺスウィルス由来チミジンキナーゼ発現レトロウイルスベクタープラスミド 4 g、 gag— pol発現プラスミド 0. 5 g、および VSG— G発現プラスミド 0. 5 g を 2xl06個の SDラット骨髄由来の間葉系幹細胞(MSCs)に、ヌクレオフエクシヨン法 により導人した。 Simple herpesvirus-derived thymidine kinase expression retroviral vector plasmid 4 g, gag-pol expression plasmid 0.5 g, and VSG-G expression plasmid 0.5 g 2xl0 6 mesenchymal lines derived from SD rat bone marrow Stem cells (MSCs) were introduced by the nucleo-off-exclusion method.
導入後、終濃度 10%ゥシ胎仔血清入り D— MEMZF— 12培地中、 37°Cで培養 し、培養 24時間後に細胞を回収し、 5xl05個の遺伝子導入 MSCsをヌードマウス左 心室腔内に注入して全身投与を行った。当該ヌードマウスは、 MSCs投与直前にそ れらの背中にマウス 9L細胞を皮下注射した担癌動物モデルである。投与 24日後に 、皮下腫瘍を採取し、動物組織 DNA抽出用キット DNeasy Tissue Kit (QIAGE N社)を用いて DN A抽出を行った。キット標準の手順に従い,シリカゲノレメンブレン への吸着'溶出により DNAを濃縮抽出した。抽出 DNAにチミジンキナーゼ遺伝子 に該当するプライマーセット(5 '—TTCTGGCTCCTCATGTCGG— 3,(配列番 号 1)および 5 ' - ATTGGC AAGC AGCCCGTAA - 3 ' (配列番号 2) )および対照 としてラット GAPDH遺伝子に該当するプライマーセット(5 ' - CAGCAATGCATC CTGCAC 3 ' (配列番号 3)および 5 '一 GAGTTGCTGTTGAAGTCACAGG 3' (配列番号 4) )を適用して、チミジンキナーゼ遺伝子の量を定量的 PCRにより測 定した。上記 3つすベてのプラスミドを導入した MSCsを投与した動物は、チミジンキ ナーゼ発現レトロウイルスベクタープラスミドのみを導入した MSCsを投与した動物や 、チミジンキナーゼ発現レトロウイルスベクタープラスミドおよび VSG— G発現プラスミ ドを導入した MSCsを投与した動物と比較して、約 122倍の遺伝子増幅効果を示し た(図 3)。なお、 MSCsを投与していない担癌動物モデル、および遺伝子導入を行 つて!/ヽな ヽ MSCsを投与した担癌動物モデルにお!、ては、チミジンキナーゼ遺伝子 は検出されなかった。 After introduction, culture with D-MEMZF-12 medium at a final concentration of 10% urchin fetal serum, cultured at 37 ° C in 12 medium, and after 24 hours of culture, cells were collected and 5xl0 5 gene-introduced MSCs were placed in the left ventricular cavity of nude mice Systemic administration was performed by injection. The nude mice are a tumor-bearing animal model in which mouse 9L cells were injected subcutaneously on their back immediately before administration of MSCs. 24 days after administration, subcutaneous tumors were collected, and DNA extraction was performed using an animal tissue DNA extraction kit DNeasy Tissue Kit (QIAGE N). According to the standard procedure of the kit, DNA was concentrated and extracted by adsorption onto the silica gel membrane. Primer set corresponding to thymidine kinase gene (5'—TTCTGGCTCCTCATGTCGG-3, (SEQ ID NO: 1) and 5'-ATTGGC AAGC AGCCCGTAA-3 '(SEQ ID NO: 2)) as extracted DNA and rat GAPDH gene as control Primer sets (5′-CAGCAATGCATC CTGCAC 3 ′ (SEQ ID NO: 3) and 5 ′ one GAGTTGCTGTTGAAGTCACAGG 3 ′ (SEQ ID NO: 4)) were applied, and the amount of thymidine kinase gene was measured by quantitative PCR. Animals treated with MSCs introduced with all three of the above plasmids include animals administered MSCs with only the thymidine kinase-expressing retroviral vector plasmid, and thymidine kinase-expressing retroviral vector plasmid and VSG-G expression plasmid. The gene amplification effect was approximately 122 times that of animals administered with MSCs into which L was introduced (Fig. 3). In addition, the thymidine kinase gene was not detected in cancer-bearing animal models that were not administered MSCs and in cancer-bearing animal models that were administered gene transduction!
実施例 6: 動物モデルにおける '治療遣伝早導人および GCVによる '治療効 雄  Example 6: 'Therapeutic effect male and female with' Guide to treatment 'and GCV' in male model
2xl06個の SDラット由来間葉系幹細胞 MSCに、 (1)単純へルぺスウィルス由来チ ミジンキナーゼ(HS V - tk)発現レトロウイルスベクタープラスミド pLTR -HSV-tk 、(2) pLTR— HSV— tkおよび VSV— G発現プラスミド pVSV— G、または(3) pLT R- HSV-tk, Gag— pol発現プラスミド pGag— polおよび pVSV— Gを、ヌクレオフ ェクシヨン法(AMAXA社、 Human MSC Nucleofection Kit、パルスプログラ ム U— 23)により導入した。 24時間後に各細胞を回収して PBSに懸濁し、 5xl05細 胞 ZlOO /z 1の最終濃度に調製した。同時に、ルシフェラーゼを恒常的に発現する標 的腫瘍細胞 9LZLNCLを 3xl06細胞 ZlOO /z 1の濃度で、 25%マトリゲル含有 PBS (BD Biosciences, Two Oak Park, Bedford, MA, USA)に懸濁した。 2xl0 6 SD rat-derived mesenchymal stem cells MSC, (1) simple herpesvirus-derived Midine kinase (HS V-tk) expression retroviral vector plasmid pLTR-HSV-tk, (2) pLTR—HSV—tk and VSV—G expression plasmid pVSV—G, or (3) pLT R-HSV-tk, Gag— The pol expression plasmids pGag—pol and pVSV—G were introduced by the nucleation method (AMAXA, Human MSC Nucleofection Kit, pulse program U-23). After 24 hours, each cell was collected, suspended in PBS, and adjusted to a final concentration of 5xl0 5 cells ZlOO / z1. At the same time, the target tumor cell 9LZLNCL constitutively expressing luciferase was suspended in PBS containing 25% matrigel (BD Biosciences, Two Oak Park, Bedford, MA, USA) at a concentration of 3xl0 6 cells ZlOO / z1.
[0064] BalbZcヌードマウス(Clea Japan, Inc. )の左右の背中に 9LZLNCL細胞を 10 0 1ずつ皮下注し、直後に左心室腔内力も遺伝子導入 MSC懸濁液 100 1を全身 的に投与した。その後、経時的に 15mgZmlルシフェリン溶液 (Ieda Trading Cor P. , 日本、東京)を腹腔内に 100 μ 1投与し、生体イメージング装置 (IVIS ;Xenogen[0064] 9LZLNCL cells were subcutaneously injected into the left and right backs of BalbZc nude mice (Clea Japan, Inc.) one by one, and immediately after that, the intraventricular force in the left ventricle was also administered systemically with MSC suspension 100 1 . Thereafter, 100 μl of 15 mgZml luciferin solution (Ieda Trading Cor P., Tokyo, Japan) was administered intraperitoneally over time, and an in vivo imaging device (IVIS; Xenogen
Corp. , Alamada, CA, USA)を用いて腫瘍部位の発光量 (Total Flux)を測 定し、腫瘍細胞の生存能力を検討した。さらに、 MSC投与 10日後に、 lOOmgZkg /dayとなるようにガンシクロビル(GCV) (Denosin;F. Hoffmann- La Roche L td. , Basel, Switzerland)を注入した浸透圧ポンプ(MICRO— OSMOTIC PU MP MODEL 1002 ;DURECT Corp. , Cupertino, CA, USA)をマウス腹腔 内に設置した。 Corp., Alamada, CA, USA) was used to measure the amount of luminescence at the tumor site (Total Flux) to examine the viability of the tumor cells. Furthermore, 10 days after the administration of MSC, an osmotic pump (MICRO—OSMOTIC PU MP MODEL 1002) into which ganciclovir (GCV) (Denosin; F. Hoffmann-La Roche L td., Basel, Switzerland) was injected so that lOOmgZkg / day was obtained. ; DURECT Corp., Cupertino, CA, USA) was placed in the mouse abdominal cavity.
[0065]  [0065]
腫瘍細胞をを皮下注したのみで MSCを投与して ヽな 、未処置群を「9LZLNCL」 群;遺伝子非導入 MSC投与群を「MSC」群; pLTR -HSV- tk導入 MSC投与群 を「tk」群; pLTR -HSV- tkおよび p VS V— G導入 MSC投与群を「tkZVS V— G 」群;そして、 pLTR— HSV— tk、 pGag— polおよび pVSV— G導入 MSC投与群を rtk/gag - pol/VSV— G」群;とそれぞれ称する。  The MSC was administered only by subcutaneous injection of tumor cells. The untreated group was the “9LZLNCL” group; the non-transgenic MSC-administered group was the “MSC” group; the pLTR-HSV-tk-introduced MSC-administered group was “tk” PLTR-HSV-tk and pVS V—G-introduced MSC administered group is “tkZVS V-G” group; and pLTR—HSV—tk, pGag-pol and pVSV—G-introduced MSC administered group is rtk / gag -pol / VSV—G ”group;
[0066] 「tk」群、「tkZpVSV— G」群は、 GCV投与による抗腫瘍効果はほとんど認められ なかったが、「tkZgag— polZVSV— G」群では、腫瘍細胞の生存能が低下した( 図 4 2)。 [0066] In the “tk” and “tkZpVSV-G” groups, there was almost no antitumor effect due to GCV administration, but in the “tkZgag-polZVSV-G” group, the viability of tumor cells decreased (Fig. 4 2).
[0067] この結果は HSV— tk遺伝子を含有するレトロウイルスベクターを産生するようにプ ラスミドを導入した MSCを投与した場合、 HSV— tk遺伝子が MSCの腫瘍親和性に より腫瘍細胞へと運ばれた結果、腫瘍細胞における HSV— tkと GCVの組合せによ り腫瘍細胞がアポトーシスへと導かれ、他の処置群と比較して腫瘍生存能が有意に 低下したことを示している。 [0067] This result indicates that a retroviral vector containing the HSV-tk gene was produced. When MSC into which rasmid was introduced was administered, the HSV—tk gene was transferred to tumor cells by the tumor affinity of MSC. As a result, the combination of HSV—tk and GCV in tumor cells resulted in tumor cells becoming apoptotic. Led to a significant reduction in tumor viability compared to other treatment groups.
産業上の利用可能性  Industrial applicability
[0068] 本発明のウィルスベクター産生能を有する腫瘍標的細胞は、生体内に注入したとき に生体内の腫瘍や炎症組織に集積するため、標的組織内でウィルスベクターが産生 し、そして標的組織への感染が持続する。したがって、本発明のウィルスベクター産 生能を有する腫瘍標的細胞は、高効率の遺伝子導入に用いることができる。  [0068] Since the tumor target cells having the ability to produce the viral vector of the present invention accumulate in a tumor or an inflamed tissue in the living body when injected into the living body, the viral vector is produced in the target tissue, and then to the target tissue. Infection persists. Therefore, the tumor target cell having the ability to produce the virus vector of the present invention can be used for highly efficient gene transfer.
[0069] また、本発明のウィルスベクター産生能を有する腫瘍標的細胞として間葉系幹細胞  [0069] Further, mesenchymal stem cells as tumor target cells having the ability to produce the virus vector of the present invention
(MSCs)を用いることが望ましい。 MSCsは移植時の拒絶反応の可能性が低ぐ患 者本人や親族の他にも多数の患者にユニバーサルに使用可能である。このため、死 亡胎児の細胞や受精卵を用いる再生医療に比べて倫理面の問題も少ない。腫瘍性 疾患または炎症性疾患等の治療における治療用ウィルスベクター産生細胞としての MSCsの使用は、実用化される可能性が高い。  It is desirable to use (MSCs). MSCs can be used universally for many patients as well as for patients and relatives who have a low chance of rejection at the time of transplantation. Therefore, there are fewer ethical problems than regenerative medicine using dead fetal cells or fertilized eggs. The use of MSCs as therapeutic viral vector-producing cells in the treatment of neoplastic diseases or inflammatory diseases is likely to be put into practical use.

Claims

請求の範囲 The scope of the claims
[1] ウィルスベクター産生能を有する腫瘍標的細胞。  [1] A tumor target cell capable of producing a viral vector.
[2] 腫瘍標的細胞が、間葉系幹細胞、血管内皮前駆細胞、および、組織幹細胞力 な る群より選択される、請求項 1に記載の細胞。  [2] The cell according to claim 1, wherein the tumor target cell is selected from the group consisting of a mesenchymal stem cell, a vascular endothelial progenitor cell, and a tissue stem cell force.
[3] 哺乳動物由来である、請求項 1または 2に記載の細胞。 [3] The cell according to claim 1 or 2, which is derived from a mammal.
[4] ウィルスベクターが、レトロウイルスベクター、アデノ随伴ウィルス (AAV)ベクター、 アデノウイルスベクター、レンチウィルスベクター、泡沫状ウィルスベクター、インフル ェンザゥイノレスベクター、センダイウイノレスベタター、単純へノレぺスゥイノレスベクター、 肝炎ウィルスベクター、パピローマウィルスベクター、バキュロウィルスベクター、狂犬 病ウィルスベクター、およびそれらのハイブリッドベクター力 なる群より選択されるゥ ィルスべクタ一である、請求項 1ないし 3のいずれ力 1項に記載の細胞。  [4] The virus vector is a retrovirus vector, adeno-associated virus (AAV) vector, adenovirus vector, lentivirus vector, foamy virus vector, influenza virus vector, Sendai Winores vector, 4. A virus vector selected from the group consisting of Nores vector, hepatitis virus vector, papilloma virus vector, baculovirus vector, rabies virus vector, and hybrid vector force thereof. The cell according to item.
[5] 動物または動物細胞に対する遺伝子導入または遺伝子治療に使用するための、 請求項 1な!、し 4の!、ずれ力 1項に記載の細胞。  [5] The cell according to claim 1, which is used for gene transfer or gene therapy for an animal or animal cell, or 4!
[6] 腫瘍性疾患、炎症性疾患またはそれらの近縁疾患の病巣組織に対する遺伝子導 入または遺伝子治療に使用するための、請求項 1ないし 4のいずれか 1項に記載の 細胞。  [6] The cell according to any one of claims 1 to 4, for use in gene transfer or gene therapy for neoplastic disease, inflammatory disease, or a lesion tissue of a related disease.
[7] ウィルスベクターが含有する導入遺伝子が、検出可能なマーカー遺伝子であり、そ して、当該マーカー遺伝子の発現を検出することにより腫瘍病巣の検出に使用する ための、請求項 1な!、し 4の!、ずれ力 1項に記載の細胞。  [7] The transgene contained in the viral vector is a detectable marker gene, and is used for detection of a tumor lesion by detecting the expression of the marker gene. 4 !, The cell according to item 1 above.
[8] 哺乳動物由来の間葉系幹細胞であって、レトロウイルスベクター産生能を有し、当 該レトロウイルスベクターが含有する導入遺伝子が単純へルぺスウィルス由来のチミ ジンキナーゼであり、ガンシクロビルとの併用により腫瘍性疾患、炎症性疾患または それらの近縁疾患の治療に用いる、前記細胞。  [8] A mesenchymal stem cell derived from a mammal, having a retroviral vector-producing ability, and the transgene contained in the retroviral vector is simply a herpesvirus-derived thymidine kinase, and ganciclovir The cell, which is used for the treatment of neoplastic diseases, inflammatory diseases or related diseases thereof in combination with the above.
[9] ウィルスベクター産生能を有する腫瘍標的細胞を調製する方法であって、腫瘍標 的細胞に(1)所望の導入遺伝子を含有するプラスミド;および (2)ウィルスタンパク質 をコードする遺伝子を含む 1以上のプラスミド;を遺伝子導入する工程を含む、ここで 、上記(1)および (2)のプラスミドは、それらが遺伝子導入された腫瘍標的細胞にお いて、 (2)のプラスミドによりウィルス粒子の産生に必要なタンパク質が発現するが(2 )のプラスミドに含まれるウィルス由来のタンパク質をコードする遺伝子はウィルス粒 子にパッケージングされず、 (1)のプラスミドの導入遺伝子がウィルス粒子にパッケ一 ジングされるように設計されている、前記方法。 [9] A method for preparing tumor target cells having the ability to produce viral vectors, comprising (1) a plasmid containing a desired transgene in a tumor target cell; and (2) a gene encoding a viral protein 1 The plasmids of (1) and (2) above are produced in the tumor target cells into which they have been introduced by the plasmid (2). Protein required for The gene encoding the virus-derived protein contained in the plasmid of (1) is not packaged in the virus particle, and the transgene of the plasmid of (1) is designed to be packaged in the virus particle. .
[10] レトロウイルスベクター産生能を有する間葉系幹細胞を調製する方法であって、間 葉系幹細胞に(1) 5,LTR、ノ ッケージングシグナル(Ψ)、導入遺伝子、および 3,L TRを含むプラスミド;および(2) gagZpol遺伝子および env遺伝子を含むプラスミド 、または、 gag/pol遺伝子を含むプラスミドおよび env遺伝子を含むプラスミド;を遺 伝子導入する工程を含む、前記方法を提供する。  [10] A method for preparing mesenchymal stem cells having the ability to produce retroviral vectors, comprising: (1) 5, LTR, knocking signal (Ψ), transgene, and 3, L TR And (2) a plasmid containing a gagZpol gene and an env gene, or a plasmid containing a gag / pol gene and a plasmid containing an env gene.
[11] プラスミドの導入をヌクレオフエクシヨン法またはリポフエクシヨン法により行う、請求 項 9または 10に記載の方法。  [11] The method according to claim 9 or 10, wherein the introduction of the plasmid is carried out by a Nucleo-off-exclusion method or a lipofection method.
[12] 請求項 1ないし 6のいずれか 1項に記載の細胞を含む、医薬組成物。  [12] A pharmaceutical composition comprising the cell according to any one of claims 1 to 6.
[13] 腫瘍性疾患、炎症性疾患またはそれらの近縁疾患の治療のための、請求項 12に 記載の医薬組成物。  [13] The pharmaceutical composition according to claim 12, for the treatment of neoplastic diseases, inflammatory diseases or related diseases thereof.
[14] 請求項 7に記載の細胞を含む、腫瘍病巣または炎症病巣の検出のための、診断用 組成物。  [14] A diagnostic composition for detecting a tumor lesion or an inflammatory lesion, comprising the cell according to claim 7.
PCT/JP2007/050013 2006-04-20 2007-01-05 Tumor target cell capable of producing vector WO2007122823A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008511973A JP5283219B2 (en) 2006-04-20 2007-01-05 Vector-produced tumor target cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006116504 2006-04-20
JP2006-116504 2006-04-20

Publications (1)

Publication Number Publication Date
WO2007122823A1 true WO2007122823A1 (en) 2007-11-01

Family

ID=38624741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050013 WO2007122823A1 (en) 2006-04-20 2007-01-05 Tumor target cell capable of producing vector

Country Status (2)

Country Link
JP (2) JP5283219B2 (en)
WO (1) WO2007122823A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016516797A (en) * 2013-04-16 2016-06-09 オルブセン セラピューティクス リミテッド Medical use of Shindecan-2
US10124038B2 (en) 2015-03-20 2018-11-13 Orbsen Therapeutics Limited Modulators of syndecan-2 and uses thereof
US11142747B2 (en) 2012-02-10 2021-10-12 Orbsen Therapeutics Limited Stromal stem cells
US11268067B2 (en) 2017-07-14 2022-03-08 Orbsen Therapeutics Limited Methods of isolation and use of CD39 stromal stem cells
US11918687B2 (en) 2016-01-15 2024-03-05 Orbsen Therapeutics Limited SDC-2 exosome compositions and methods of isolation and use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003025167A2 (en) * 2001-09-20 2003-03-27 Centre For Translational Research In Cancer Cultured stromal cells and uses thereof
JP2005526015A (en) * 2001-12-27 2005-09-02 イッサム・リサーチ・ディベロップメント・カンパニー・オブ・ザ・ヘブルー・ユニバーシティ・オブ・エルサレム Method for inducing or promoting connective tissue repair
JP2005537007A (en) * 2002-08-30 2005-12-08 オンコセラピー・サイエンス株式会社 Method for diagnosing colon cancer and gastric cancer
JP2006509217A (en) * 2002-12-03 2006-03-16 セルテック アール アンド ディ リミテッド Assays to identify antibody producing cells

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001292770A (en) * 2000-04-07 2001-10-23 Eisai Co Ltd Virus-derived recombinant vector used for human gene therapy
EP1487463A2 (en) * 2002-03-02 2004-12-22 Board Of Regents The University Of Texas System Local production and/or delivery of anti-cancer agents by stromal cell precursors
JP2007516698A (en) * 2003-10-06 2007-06-28 セダーズ−シナイ メディカル センター Use of CXCR4 protein expression on stem cell surface as a marker for tumor-directed potential

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003025167A2 (en) * 2001-09-20 2003-03-27 Centre For Translational Research In Cancer Cultured stromal cells and uses thereof
JP2005526015A (en) * 2001-12-27 2005-09-02 イッサム・リサーチ・ディベロップメント・カンパニー・オブ・ザ・ヘブルー・ユニバーシティ・オブ・エルサレム Method for inducing or promoting connective tissue repair
JP2005537007A (en) * 2002-08-30 2005-12-08 オンコセラピー・サイエンス株式会社 Method for diagnosing colon cancer and gastric cancer
JP2006509217A (en) * 2002-12-03 2006-03-16 セルテック アール アンド ディ リミテッド Assays to identify antibody producing cells

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
CHESTER J. ET AL.: "Tumor antigen-specific induction of transcriptionally targeted retroviral vectors from chimeric immune receptor-modified T cells", NAT. BIOTECHNOL., vol. 20, no. 3, 2002, pages 256 - 263, XP003018193 *
CRITTENDEN M. ET AL.: "Pharmacologically regulated production of targeted retrovirus from T cells for systemic antitumor gene therapy", CANCER RES., vol. 63, no. 12, 2003, pages 3173 - 3180, XP003018194 *
FAREED M.U. ET AL.: "Suicide gene transduction sensitizes murine embryonic and human mesenchymal stem cells to ablation on demand-a fail-safe protection against cellular misbehavior", GENE THER., vol. 9, no. 14, 2002, pages 955 - 962, XP003018198 *
HAMADA H.: "Shuyo Tokuiteki na Hyotekika Vector no Kaihatsu", SURGERY FRONTIER, vol. 12, no. 1, 2005, pages 18 - 25, XP003018199 *
HARRINGTON K. ET AL.: "Cells as vehiclesfor cancer gene therapy: the missing link between targeted vectors and systemic delivery?", HUM. GENE THER., vol. 13, no. 11, 2002, pages 1263 - 1280, XP002242755 *
HUNG S.C. ET AL.: "Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging", CLIN. CANCER RES., vol. 11, no. 21, 1 November 2005 (2005-11-01), pages 7749 - 7756, XP003018196 *
JEVREMOVIC D. ET AL.: "Use of blood outgrowth endothelial cells as virus-producing vectors for gene delivery to tumors", AM. J. PHYSIOL. HEART CIRC. PHYSIOL., vol. 287, no. 2, 2004, pages H494 - H500, XP003018195 *
NAKAMURA K. ET AL.: "Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model", GENE THER., vol. 11, no. 14, 2004, pages 1155 - 1164, XP003018197 *
OZAWA K.: "Sentan Iryo to shiteno Idenshi Chiryo.Saibo Chiryo", THE JAPANESE SOCIETY OF PEDIATRIC HEMATOLOGY ZASSHI, vol. 19, no. 5, 2005, pages 263, XP003019102 *
PROCKOP D.J. ET AL.: "Marrow stromal cells as stem cells for nonhematopoietic tissues", SCIENCE, vol. 276, no. 5309, 1997, pages 71 - 74, XP002089725 *
SAIJOH Y.: "Kan'yokei Kansaibo o Mochiita Gan'idenshi Chiryo", RESPIRATORY MOLECULAR MEDICINE, vol. 8, no. 5, 2004, pages 394 - 398, XP003018200 *
SILVA F.H. ET AL.: "From leading role to the backstage: mesenchymal stem cells as packaging cell lines for in situ production of viral vectors", MED. HYPOTHESES, vol. 67, no. 4, August 2006 (2006-08-01), pages 922 - 925, XP005541709 *
STUDENY M. ET AL.: "Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors", CANCER RES., vol. 62, no. 13, 2002, pages 3603 - 3608, XP002996630 *
VAN DAMME A. ET AL.: "Bone marrow stromal cells as targets for gene therapy", CURR. GENE THER., vol. 2, no. 2, 2002, pages 195 - 209, XP001153435 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11142747B2 (en) 2012-02-10 2021-10-12 Orbsen Therapeutics Limited Stromal stem cells
US11434471B2 (en) 2012-02-10 2022-09-06 Orbsen Therapeutics Limited Stromal stem cells
US11926848B2 (en) 2012-02-10 2024-03-12 Orbsen Therapeutics Limited Stromal stem cells
JP2016516797A (en) * 2013-04-16 2016-06-09 オルブセン セラピューティクス リミテッド Medical use of Shindecan-2
US10251934B2 (en) 2013-04-16 2019-04-09 Orbsen Therapeutics Limited Syndecan-2 compositions and methods of use
US10124038B2 (en) 2015-03-20 2018-11-13 Orbsen Therapeutics Limited Modulators of syndecan-2 and uses thereof
US11918687B2 (en) 2016-01-15 2024-03-05 Orbsen Therapeutics Limited SDC-2 exosome compositions and methods of isolation and use
US11268067B2 (en) 2017-07-14 2022-03-08 Orbsen Therapeutics Limited Methods of isolation and use of CD39 stromal stem cells

Also Published As

Publication number Publication date
JPWO2007122823A1 (en) 2009-09-03
JP5283219B2 (en) 2013-09-04
JP5846650B2 (en) 2016-01-20
JP2013176374A (en) 2013-09-09

Similar Documents

Publication Publication Date Title
Mangraviti et al. Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo
ES2942210T3 (en) Non-integrative DNA vectors for genetic modification of cells
JP5727458B2 (en) Modified mesenchymal stem cells and methods of treating tumors using the same
US8658778B2 (en) hTMC promoter and vectors for the tumor-selective and high-efficient expression of cancer therapeutic genes
US11795477B2 (en) Single cycle replicating adenovirus vectors
Murphy et al. Current status of gene therapy for brain tumors
CN105765062B (en) Mitogen-activated protein kinase-dependent recombinant vaccinia virus (MD-RVV) and application thereof
JP6552471B2 (en) Vector expressing simultaneously 12-mer TRAIL and HSV-TK suicide gene, and anti-cancer stem cell therapeutic agent using the same
JP5846650B2 (en) Vector-produced tumor target cells
Alekseenko et al. Therapeutic properties of a vector carrying the HSV thymidine kinase and GM-CSF genes and delivered as a complex with a cationic copolymer
JP2020503390A (en) Fusogenic lipid nanoparticles, and methods for making and using the same, for target cell-specific production of therapeutic proteins and for treating diseases, conditions, or disorders associated with target cells
US8614305B2 (en) Nonviral gene delivery vector iopamidol, protamine, ethiodized oil reagent (VIPER)
US11850215B2 (en) Recombinant adenoviruses and stem cells comprising same
ES2276623B1 (en) NEW ADENOVIRUS RECOMBINANTS OF CONDITIONED REPLICATION (CRAD).
TW202317172A (en) Tnfsf-l fusion proteins and uses thereof
CN111867636A (en) Cell sheet for gene delivery
JP5550803B2 (en) Cancer treatment method and composition using novel adenovirus
Pan et al. Potential usefulness of baculovirus-mediated sodium-iodide symporter reporter gene as non-invasively gene therapy monitoring in liver cancer cells: an in vitro evaluation
Rojas Expósito Blood barriers for oncolytic adenovirus efficacy: study of binding to erythrocytes via CAR and albumin‐mediated evasion of neutralizing antibodies
JP2010041919A (en) Gene transfer adjuvant containing intracellular migration peptide as active ingredient and gene transfer method using the gene transfer adjuvant
CA2433867A1 (en) Retroviral vectors for transduction into quiescent cells and packaging systems for them

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07706360

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008511973

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07706360

Country of ref document: EP

Kind code of ref document: A1