WO2007119670A1 - Highly heat-resistant polyester fiber material, tire cord, dipped cord, and method for producing highly heat-resistant polyester fiber material - Google Patents

Highly heat-resistant polyester fiber material, tire cord, dipped cord, and method for producing highly heat-resistant polyester fiber material Download PDF

Info

Publication number
WO2007119670A1
WO2007119670A1 PCT/JP2007/057541 JP2007057541W WO2007119670A1 WO 2007119670 A1 WO2007119670 A1 WO 2007119670A1 JP 2007057541 W JP2007057541 W JP 2007057541W WO 2007119670 A1 WO2007119670 A1 WO 2007119670A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester fiber
fiber material
cord
polyester
resistant polyester
Prior art date
Application number
PCT/JP2007/057541
Other languages
French (fr)
Japanese (ja)
Inventor
Masanao Kohashi
Kenji Yoshino
Shigenori Nagahara
Yasushi Aikawa
Hirokazu Nishimura
Morihito Tozuka
Norio Iizuka
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Publication of WO2007119670A1 publication Critical patent/WO2007119670A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0042Reinforcements made of synthetic materials
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/48Tyre cords

Definitions

  • High heat resistant polyester fiber material tire cord, dip cord, and method for producing high heat resistant polyester fiber material
  • the present invention relates to a rubber fiber-reinforced polyester fiber material applied to industrial materials such as tire cords, V-belts, conveyor belts, hoses, and the like. More specifically, the present invention relates to a melting point of ordinary polyester at high temperatures. The present invention relates to a polyester fiber material for rubber reinforcement excellent in high heat resistance and capable of maintaining mechanical properties.
  • polyester, nylon, and rayon are well known as organic fibers
  • inorganic fibers include Typical examples are steel and glass fiber. These materials are used in place due to their inherent properties.
  • run-flat tires have been developed that can travel at a predetermined speed over a certain distance even when the tire pressure is punctured and the tire internal pressure becomes OkPa.
  • the bead part of the tire side wall is also reinforced by placing a relatively hard rubber layer with a crescent-shaped cross section on the inner surface of the carcass over the shoulder area, and in the tire air chamber.
  • a core type with a metal or synthetic resin ring core attached to the rim is known.
  • the side-reinforcement type supports the load by the inherent rigidity of the sidewall strengthened by the reinforcement rubber layer when the tire punctures and the air escapes during driving, and the predetermined distance is set to a predetermined speed. It is possible to run on. However, if run-flat running is continued, the reinforcing rubber layer generates heat due to repeated compression and expansion, and the tire internal temperature is 200 ° C. It may become extremely hot at or above ° C and even more locally. For this reason, rayon fiber, garamide fiber, steel, etc., which are excellent in heat-melting resistance, are preferred as carcass ply cords for run flat tires!
  • tire cords made of polyester fiber or nylon fiber begin to break the adhesion interface with tire rubber at high temperatures of 150 to 200 ° C, and the strength and elastic modulus rapidly decrease, and further exceed the melting point. At higher temperatures, the fiber shape could not be maintained and melt fracture occurred, making it unsuitable as a cord material for run-flat tires.
  • tire cords made of polyester fibers or nylon fibers are required. It is desired to use it.
  • Patent Document 1 Japanese Patent Laid-Open No. 61-252332
  • Patent Document 2 JP-A-7-166420
  • Patent Document 3 Japanese Patent Laid-Open No. 55-166235
  • Patent Document 4 Japanese Patent Laid-Open No. 6-264307
  • Patent Document 5 JP-A-8-74126
  • the present invention has been made in view of the above-mentioned problems, and its purpose is usually at high temperatures.
  • the present invention provides a high heat resistant polyester fiber material, a tire cord, a dip cord, and a method for producing a high heat resistant polyester fiber material that can maintain mechanical properties even at a melting point or higher of the polyester.
  • the present invention is as follows.
  • a polyester dip cord wherein the high heat-resistant polyester fiber material according to 1 or 2 is subjected to a dip treatment with a treatment liquid containing at least a resorcin-formaldehyde latex (RFL) mixed solution. .
  • RTL resorcin-formaldehyde latex
  • Unstretched material obtained by blending 0.2 to 3.0% by weight of the following compound 1 in a polyester having ethylene terephthalate units as the main repeating unit, and melt spinning at a spinning speed of 2000 mZ or more. It is characterized by irradiating ionizing radiation to a drawn yarn, a drawn yarn obtained by thermally drawing the undrawn yarn, a twisted cord obtained by twisting one or more drawn yarns, or a woven fabric woven with the twisted cord. Manufacturing method of high heat-resistant polyester fiber material.
  • the present invention is used as a carcass ply cord for a run-flat tire that punctures and lowers the internal pressure, causing the tire internal temperature to be 200 ° C or higher, and locally extremely high temperatures that exceed the melting point of polyester.
  • a high-heat-resistant polyester fiber material with improved heat resistance that can maintain the specified strength and elastic modulus at high temperatures, especially at temperatures above the melting point of ordinary polyester that does not have a crosslinked structure. It is to provide.
  • the polyester in the present invention includes terephthalic acid as a main acid component, and at least one glycol, preferably ethylene glycol, trimethylene glycol, tetramethylene glycol power, and at least one selected alkylene glycol as a main glycol component.
  • the target is polyester.
  • it may be a polyester in which a part of terephthalic acid is replaced with another bifunctional carboxylic acid component, and / or a polyester in which a part of the glycol component is replaced with the above-mentioned Daricol or other diol component other than the main component. Even if it is Le.
  • bifunctional carboxylic acid other than terephthalic acid examples include isophthalic acid, naphthalene dicarboxylic acid, diphenol carboxylic acid, diphenoxyethane dicarboxylic acid, ⁇ -hydroxyethoxybenzoic acid, ⁇ -oxybenzoic acid, and azide.
  • Aromatic, aliphatic and alicyclic bifunctional carboxylic acids such as pinic acid, sebacic acid and 1,4-cyclohexanedicarboxylic acid can be mentioned.
  • diol component other than the above-mentioned dallicol examples include aliphatic, alicyclic and aromatic diol compounds such as cyclohexane-1,4-dimethanol, neopentylglycol bisphenol, bisphenol S, and polyoxyalkylene.
  • a glycol etc. can be mentioned.
  • the polyester is substantially linear.
  • Carboxylic acids such as trimellitic acid and pyromellitic acid
  • polyols such as glycerin, trimethylolpropan, pentaerythritol, tri- or higher functional ester such as 5-hydroxyisophthalic acid and 3,5-dihydroxybenzoic acid Monomers having groups can be used.
  • a small amount of any other polymer, acid-fastening agent, radical scavenger, antistatic agent, dyeing improver, dye, pigment, matting agent, fluorescent brightener, Active fine particles may contain other additives.
  • the polycarboxylic acid component and the reaction product of ⁇ or an ester-forming derivative thereof and a glycol component are polycondensed into the polyester.
  • the polymerization apparatus may be a batch type or a continuous type.
  • the polyester obtained in the liquid phase polycondensation step is granulated and pre-crystallized, it can be subjected to solid phase polymerization at a temperature below the melting point in an inert gas atmosphere or in a vacuum.
  • the polymerization catalyst is not particularly limited as long as it has a desired catalytic activity, but an antimony compound, a titanium compound, a germanium compound, and an aluminum compound are preferably used. These catalysts can be used alone or in combination of two or more.
  • the dosage is preferably 0.002 to 0.1 mol% with respect to the carboxylic acid component constituting the polyester.
  • the intrinsic viscosity (IV) of the polyester in the present invention is preferably 0.6 dlZg or more, more preferably 0.8 dlZg or more. If the IV is less than 0.6 dlZg, the decrease in strength and elastic modulus due to thermal degradation of the yarn becomes large, which is not preferable.
  • the amount of carboxyl end groups of the polyester is preferably 50 eqZton or less, more preferably 30 eqZ ton or less. If it exceeds 50eqZton, the heat resistance in the rubber becomes insufficient, and the durability as a tire cord is likely to be insufficient.
  • the polyester fiber material of the present invention refers to, for example, a drawn yarn obtained by hot-drawing an undrawn yarn obtained by melt spinning the above polyester, a twisted yarn cord obtained by twisting several strands, or a cocoon made by weaving it. It is a woven fabric. There is no particular upper limit to the number of twisted drawn yarns, but it is usually 10 or less.
  • the polyester fiber material of the present invention retains mechanical properties at a temperature equal to or higher than the melting point of ordinary polyester, and has a storage elastic modulus (hereinafter referred to as E ') at 275 ° C in dynamic viscoelasticity measurement.
  • E ' storage elastic modulus
  • 0. IMPa or more is preferable, 0.5 MPa or more is more preferable, and 1. OMPa or more is more preferable. If E 'at 275 ° C is less than 0. IMPa or less than 275 ° C, it will break in the reinforced rubber.
  • E ' is measured using, for example, DMA-Q800 manufactured by TI'A Instruments Co., Ltd., and the sample is aligned so that the thread length is lcm and 12 OOOdtex, and the initial load is 0.01 N, Minimum Dynamic ForceO. 00001N, ForceTrack 25%, amplitude 10 ⁇ , frequency 11Hz, temperature range of 200 ° C to 370 ° C can be measured at a rate of temperature increase of 2 ° CZ. Further, when the sample was melt fractured during the measurement, the temperature was taken as the melt fracture temperature. However, there is no particular upper limit for E ′ at 275 ° C., but it is usually lOOOMPa or less and often lOMPa or less.
  • the polyester fiber material of the present invention has a cross-linked structure at least partly between the polyester molecular chains !, and the cross-linked structure is represented by the following chemical formula (1) introduced at the end of the polyester molecule. Formed by reacting the aliphatic unsaturated group of the compound It is preferable.
  • the ionizing radiation is preferably an electron beam or ⁇ -ray having a large irradiation transmission power, but is not limited to these.
  • the heat flow initiation temperature of the polyester fiber material in the present invention is not less than the melting point of the polyester resin before forming the crosslinked structure, preferably 265 ° C or more, more preferably 280 ° C or more, and further preferably 300 ° C. That's it. If it melts and flows at a temperature lower than the melting point, the shape cannot be maintained in the reinforced rubber and breaks, which is not preferable.
  • the heat flow starting temperature can be measured by placing the sample on a hot plate that can be set to a constant temperature for 1 minute, and then determining whether it is hot-melting and flowing or visually.
  • the gel fraction indicating the ratio of the insoluble residue to the predetermined solvent is preferably 10% by weight or more, more preferably 20% by weight or more, and still more preferably 30% by weight or more. If the gel fraction is lower than 10% by weight, the degree of cross-linking is too low and the dimensional stability and strength of the tire cord at high temperatures are insufficient, which is preferable! /.
  • the solvent for measuring the gel fraction is not particularly limited as long as it is an organic solvent that completely dissolves the aromatic polyester before forming the crosslinked structure at a predetermined temperature and for a predetermined time.
  • phenol, o chlorophenol, m Black-mouthed phenol, p Black-mouthed phenol, 2,3-Dichlorophenol, 2,4-Dichlorophenol, 2,5-Dichlorophenol, 2,6-Dichlorophenol, 3,4-Dichlorophenol, 3, 5—Dichroic mouth phenol, 2, 3, 4 Triclo mouth phenol, 2, 3, 5 Triclo mouth phenol, 2, 3, 6 Triclo mouth phenol, 2, 4, 5 Triclo mouth phenol, 2, 4, 6 Trichrome mouth phenol, 3, 4, 5 Triclo mouth phenol, 1, 1, 1, 2, 2-tetrachloro mouth ethane, 1, 1, 2, 2-tetrachloroethane, chlorohonolem, dichloromethane, carbon tetrachloride, dichloroacetic acid, helium Xafluoroisopropanol and the like can be exemplified, and these can be used alone or in combination of two or more.
  • the temperature of the solvent at the time of dissolution is not particularly limited, but is, for example, 20 ° C to 200 ° C.
  • the dissolution time is not particularly limited, but may be 10 minutes to 5 hours as long as it takes time for dissolution to reach a saturated state.
  • the polyester fiber material of the present invention preferably has a main dispersion peak temperature (hereinafter referred to as Ta) force of tan ⁇ of 148 ° C or less in the dynamic viscoelasticity measurement of a drawn yarn at 110 Hz. More preferably, it is 147 ° C or lower.
  • Ta main dispersion peak temperature
  • is an index indicating the degree of microstructural amorphous chain restraint
  • a low ⁇ means that amorphous chain restraint is weak, and as a result, excellent thermal dimensions. Stability is developed.
  • the drawn yarn with a To of 148 ° C or lower of the present application is, for example, a highly oriented undrawn yarn (so-called POY) taken at a relatively high spinning speed of 2000 mZ or more, which will be described later, 1.5 to 3.0 times.
  • POY highly oriented undrawn yarn
  • the polyester fiber material in the present invention is, for example, added to the polyester mainly composed of ethylene terephthalate units with the compound represented by the chemical formula (1) at an arbitrary position in the ethanol feed port or the melt extrusion process. Then, the force obtained by melt spinning may be preliminarily melt-kneaded and pelletized by a known method and used for melt spinning. Further, this kneaded resin can be used as a master batch by blending with polyester resin.
  • the temperature at the time of melt-kneading is not particularly limited as long as it is substantially equal to or higher than the melting point of the polyester. However, if the temperature is excessively high, the polymer chain is broken due to thermal degradation, which is not preferable.
  • the melting point is preferably in the range of (melting point + 70 ° C). Also, the time for melt kneading is not particularly limited, but is 1 minute to 40 minutes, preferably 2 minutes to 20 minutes.
  • the compounding amount of the compound represented by the chemical formula (1) with respect to the polyester is preferably 0.2 to 3.0% by weight. More preferably, it is 0.4 to 2.5% by weight. Arrangement If the total amount is less than 0.2% by weight, it is difficult to maintain the mechanical properties above the melting point where the cross-linked structure developed after irradiation with ionizing radiation is not sufficient, which is not preferable. Since this property is basically proportional to the content of the compound represented by the chemical formula (1), sufficient thermodynamic properties can be imparted by increasing the blending amount. However, if the blending amount exceeds 3.0% by weight, the spinnability is lowered, and it is difficult to obtain a spinning speed for realizing high elastic modulus and low shrinkage.
  • the content can be determined by, for example, H-NMR measurement and IR measurement before being irradiated with ionizing radiation. However, it is not limited to these measurements as long as the content of the compound represented by the chemical formula (1) can be determined.
  • the compound represented by the chemical formula (1) reacts with the epoxy group and the carboxyl group terminal of the polyester by melt-kneading with the polyester, and a catalyst for promoting this reaction may be added simultaneously.
  • the catalyst that are not particularly limited include alkali metal compounds represented by sodium acetate, potassium acetate, lithium acetate, sodium stearate, potassium stearate, lithium stearate, barium acetate, magnesium acetate, Alkaline earth metal compounds represented by strontium acetate, barium stearate, magnesium stearate, strontium stearate, etc., triethylamine, tributylamine, trihexylamine, triethanolamine, triethylenediamine, dimethylbenzyl Tertiary amines such as amine, pyridine and picoline, imidazole compounds such as 2-methylimidazole, 2-ethylimidazole and 2-isopropylimidazole, tetramethylammonium chloride, Qu
  • an alkali metal compound an alkaline earth metal compound, a phosphine compound, or an ester phosphate compound.
  • the addition amount of the catalyst is not particularly limited, but 0.001 to 1 part by weight is preferable with respect to 100 parts by weight of the polyester, and further 0.01 to 0.5 part by weight.
  • a crosslinking group is introduced by the reaction of the compound represented by the chemical formula (1) with the carboxyl group terminal of the polyester.
  • This also contributes to improved heat resistance. That is, the carboxyl group terminal of the polyester fiber material is considered to cause the degradation reaction of the polyester by autocatalysis in the rubber. This degradation reaction is also caused by blocking the carboxyl group terminal by the reaction of the above compound. It can be suppressed.
  • This yarn is referred to as an undrawn yarn.
  • a spinning speed of 2000 mZ or less is not preferable because sufficient spinning stress cannot be applied to promote orientation crystallization during spinning.
  • the birefringence of the obtained undrawn yarn is desirably 0.04 or more, preferably 0.05 or more, and more preferably 0.06 or more.
  • a birefringence of less than 0.04 is not preferable because the high elastic modulus and low shrinkage required for tire cords, especially carcass ply cords, are insufficient.
  • the birefringence of the undrawn yarn becomes too large, it becomes difficult to draw and high strength can be obtained. It is preferable to keep it as below! /.
  • the density of the undrawn yarn is preferably 1.340 g / cm 2 or more. More preferably, it is 1.345 gZcm 2 or more, more preferably 1.350 gZcm 2 or more. When the density is less than 1.340 gZcm 2 , the high elastic modulus and low shrinkage are not sufficiently exhibited. However, if the density of the undrawn yarn becomes too high, it becomes difficult to draw and it becomes difficult to obtain high strength.
  • the temperature of the cooling air is not particularly limited as long as it satisfies the desired birefringence and density, but is preferably 20 to 80 ° C, more preferably 40 to 70. C.
  • a drawn yarn can be obtained by drawing the undrawn yarn that has been taken up by heat drawing by the force of scooping once or by the spin draw method of drawing continuously after spinning.
  • Hot stretching is performed by high-strength one-stage stretching or two-stage or more multi-stage stretching.
  • the heating method includes a method using a heating roller, superheated steam, a heat plate, a heat box, etc., and is not particularly limited.
  • the draw ratio can be drawn at any value depending on the desired physical properties, but is preferably 1.5 to 3.0 times.
  • the drawn yarn obtained in this manner is 10 to 10 cm per 10 cm in accordance with a conventional method: After applying LOO twists (bottom twist), a plurality of yarns are combined and 10 to 10 cm per 10 cm in the opposite direction: Use LOO twists (upper twist) to make twisted cords (raw cords). Furthermore, a woven fabric (raw fabric) can be obtained from this twisted cord according to a conventional method. Although the total number of twisted yarns is not particularly limited, it can be said that it is usually 10 or less.
  • the cross-linked structure of the polyester fiber material in the present invention is, for example, a structure resulting from the aliphatic unsaturated group of the compound represented by the chemical formula (1) introduced into the terminal end of the polyester molecule. Is preferably formed by irradiation with ionizing radiation. As ionizing radiation,
  • Electron beams and ⁇ -rays having high radiation transmission power are preferable, but not limited thereto.
  • This ionizing radiation can be applied in any process from the spinning process of the polyester fiber to the manufacturing process of the dip counter. However, in terms of irradiation efficiency and quality stability, undrawn yarn or LV, preferably irradiated in the state of drawn yarn or twisted cord or woven fabric.
  • the dose of ionizing radiation is not particularly limited as long as it satisfies the desired physical properties. Although not, it is 20 to 3000 kGy, preferably 50 to 1500 kGy.
  • the irradiation process is generally performed at room temperature, but can be performed in any temperature environment of 0 to 200 ° C.
  • the atmosphere gas may be air or an inert gas, but is preferably irradiated in an inert gas since oxygen may inhibit the crosslinking reaction.
  • the strength of the polyester fiber material in the present invention is preferably 4. OcNZdtex or more. More preferably 5 cNZdtex, and still more preferably 6. OcNZdtex or more. If the strength is lower than 4. OcNZdtex, not only the physical properties of the final product but also the processability in the production process is lowered, which is not preferable. A force that can be said to be better as the strength is higher. Usually less than lOcNZ dtex.
  • the polyester fiber material in the present invention can be subjected to a dip treatment for imparting adhesiveness to rubber to obtain a dip cord or a dip anti-dip.
  • a dip treatment liquid a treatment liquid containing at least a resorcinol formaldehyde latex (RFL) mixed liquid is preferably used.
  • RTL resorcinol formaldehyde latex
  • a sample aligned to a yarn length of 1cm and 12000dtex was loaded with an initial load of O. 01N, Minimum Dynamic ForceO. 0 0001N, ForceTrackl 25%, amplitude 10 200 under the conditions of / ⁇ ⁇ and frequency 11Hz.
  • the temperature range from C to 370 ° C was measured at a rate of temperature increase of 2 ° CZ, and the storage elastic modulus ( ⁇ ') was determined. If the sample melts and breaks during measurement,
  • the temperature was defined as the melt fracture temperature (° C).
  • the measurement sample shall use untwisted drawn yarn, In such a case, each sample is untwisted, etc., and returned to the state of an untwisted drawn yarn to be used as a sample.
  • a sample aligned to a thread length of 2 cm and 1500 dtex was prepared using an initial load of 0.049 N, Minimum Dynamic ForceO. 0 0001 N, Force Track 250%, and amplitude. 30 under conditions of 10 ⁇ m and a frequency of 110 Hz.
  • the temperature range of C to 200 ° C was measured at a rate of temperature increase of 2 ° CZ, and the main dispersion peak temperature of the loss tangent (tan ⁇ ) was determined.
  • the measurement sample shall be untwisted drawn yarn, and in the case of twisted cords or woven fabrics, each shall be untwisted and returned to the state of untwisted drawn yarn.
  • the residue obtained by suction filtration with a glass filter was dried under reduced pressure, and the weight percent of the insoluble matter was defined as the gel fraction (%).
  • the measurement sample shall be untwisted drawn yarn, and in the case of twisted cords or woven fabrics, each shall be untwisted and returned to the state of untwisted drawn yarn.
  • Measurement was performed at 30 ° C. by a density gradient tube method using an aqueous calcium nitrate solution.
  • Elongation under load of OcNZdtex (hereinafter referred to as intermediate elongation) The cutting elongation was measured.
  • the cord strength is a value obtained by dividing the cord strength by the reference fineness in the cord configuration. For example, if two yarns of 1440dtex are twisted, the standard fineness is 2880dtex, and the intermediate elongation is 57.6N.
  • V ⁇ means that dimensional stability is excellent.
  • diaryl monoglycidyl isocyanurate fed to the melt extruder and heated to 50-60 ° C. at the same time from the etastruder inlet to the polymer is 0.5 in Example 1. It was added at a constant flow rate so that it was 1.5% by weight in Example 2, 1.3% by weight in Example 2, and 2.5% by weight in Example 3.
  • the kneaded polymer was ejected from a spinneret at 310 ° C with 336 orifices with a hole diameter of 0.5 mm, cooled and solidified with a cooling air of 70 ° C, 1. OmZsec, and after spinning, the spinning speed was 3000 mZ.
  • the cord is immersed in a mixed solution of a blocked isocyanate solution and chlorophenol'resorcin formaldehyde (RF) as a first treatment liquid. Then, it was dried in an oven at 120 ° C for 56 seconds, and then heat-treated in an oven at 235 ° C for 45 seconds while applying a tension of 0.5 cNZdtex. Subsequently, the cord was dipped in a mixed solution of resorcinol-formaldehyde-latex (RFL), aqueous solution of blocked isocyanate, and aqueous dispersion of epoxy compound as the second treatment liquid, and then dried in an oven at 120 ° C for 56 seconds. Then, heat treatment was performed in an oven at 235 ° C. for 45 seconds while applying a tension of 0.5 cNZdtex to obtain a dip cord.
  • RF chlorophenol'resorcin formaldehyde
  • a drawn yarn, a drawn yarn after electron beam irradiation, and a dip cord were obtained in the same manner as in Example 1 except that the spinning speed was 2200 mZ, the one-stage draw ratio was 1.50 times, and the two-stage draw ratio was 1.33 times. It was. Table 1 shows the results. There is no significant difference in E 'at 275 ° C, but D It was found that the dimensional stability of was slightly deteriorated.
  • Table 1 shows the results of Example 1 where the electron beam dose was lOOOkGy. Compared to Example 1, the strength was slightly decreased, but it was found that E ′ at 275 ° C. was increased.
  • a drawn yarn, a drawn yarn after electron beam irradiation, and a dip cord were obtained in the same manner as in Example 1 except that diaryl monoglycidyl isocyanurate was not added.
  • the results are shown in Table 1. It was found that melt fracture occurred at 268 ° C, and that E 'at 275 ° C could not be maintained even when ordinary polyethylene terephthalate fiber was irradiated with an electron beam of lOOOkGy.
  • Example 1 the result of not irradiating the electron beam is shown in Table 1. It was found that melt fracture occurred at 268 ° C, and E 'at 275 ° C could not be maintained.
  • a drawn yarn, a drawn yarn after electron beam irradiation, and a dip cord were obtained in the same manner as in Example 1 except that the spinning speed was 500 mZ, the one-stage draw ratio was 3.5 times, and the two-stage draw ratio was 1.23 times. .
  • Table 1 shows the results. There is no significant difference in E 'at 275 ° C, but ⁇ rises to 150 ° C and
  • the dimensional stability of the zip cord was greatly reduced.
  • Diaryl monoglycidyl isocyanurate was adjusted to 3.5% by weight with respect to the polymer, and melt extrusion was performed. However, smoke and thread breakage occurred frequently, and stable winding was impossible.
  • the high heat-resistant polyester fiber material of the present invention is characterized in that it has a cross-linked structure in at least a part between polyester molecular chains, and has mechanical properties that do not melt even at high temperatures above the melting point of polyester. Therefore, it is suitable for rubber reinforcement applications exposed to high temperatures, particularly for tire cords for run-flat tires.

Abstract

Disclosed is a highly heat-resistant polyester fiber material which is capable of maintaining mechanical characteristics at high temperatures, particularly at a temperature not less than the melting point of the polyester. Also disclosed are a tire cord, a dipped cord and a method for producing a highly heat-resistant polyester fiber material. Specifically disclosed is a highly heat-resistant polyester fiber material which is composed of a polyester fiber containing an ethylene terephthalate unit as a main repeating unit and satisfies the conditions (a) and (b) below at the same time in a dynamic viscoelasticity measurement. (a) Storage modulus at 275˚C (E') ≥ 0.1 MPa (b) Main dispersion peak temperature of loss tangent (tan δ) ≤ 148˚C

Description

明 細 書  Specification
高耐熱ポリエステル繊維材料、タイヤコード、ディップコード、および高耐 熱ポリエステル繊維材料の製造方法  High heat resistant polyester fiber material, tire cord, dip cord, and method for producing high heat resistant polyester fiber material
技術分野  Technical field
[0001] 本発明はタイヤコード、 Vベルト、コンベアベルト、ホース等の産業用資材に適用さ れるゴム補強用ポリエステル繊維材料に関するものであり、更に詳しくは、高温時、特 に通常のポリエステルの融点以上において力学特性を保持することが可能な高耐熱 性に優れたゴム補強用ポリエステル繊維材料に関するものである。  [0001] The present invention relates to a rubber fiber-reinforced polyester fiber material applied to industrial materials such as tire cords, V-belts, conveyor belts, hoses, and the like. More specifically, the present invention relates to a melting point of ordinary polyester at high temperatures. The present invention relates to a polyester fiber material for rubber reinforcement excellent in high heat resistance and capable of maintaining mechanical properties.
背景技術  Background art
[0002] 一般にゴム補強材として、特にタイヤ用ゴム補強材として使用されている繊維の代 表的な例としては、有機繊維としてポリエステル、ナイロン、レーヨンが良く知られてお り、無機繊維としてはスチール、ガラス繊維が代表的なものである。これら素材はその 固有物性により適所に使用されている。  [0002] As typical examples of fibers that are generally used as rubber reinforcing materials, particularly as rubber reinforcing materials for tires, polyester, nylon, and rayon are well known as organic fibers, and inorganic fibers include Typical examples are steel and glass fiber. These materials are used in place due to their inherent properties.
[0003] 近年、タイヤ構造のラジアルイ匕が進み、カーカス材に用いる繊維素材には、高弾性 率、低収縮、耐疲労性、さらには低価格ィ匕などの要求が高まった。その結果、物性面 、コスト面でのバランスに優れた有機繊維である、ポリエステル繊維力 レーヨンゃナ ィロンの代替として、広く使用されている。  [0003] In recent years, with the progress of the tire structure of Radial Ivy, the demand for high elastic modulus, low shrinkage, fatigue resistance, and low cost has increased for fiber materials used in carcass materials. As a result, polyester fiber rayon is widely used as an alternative to nylon, which is an organic fiber with a good balance in physical properties and cost.
[0004] さらに近年では、パンクしてタイヤ内圧が OkPaになっても、ある程度の距離を所定 のスピードで走行が可能な、ランフラットタイヤが開発されている。このランフラットタイ ャにはタイヤサイドウォールのビード部カもショルダー区域にかけてカーカスの内面 に断面が三日月状の比較的硬質なゴム層を配置して補強したサイド補強タイプと、タ ィャ空気室におけるリムの部分に、金属、合成樹脂製の環状中子を取り付けた中子 タイプとが知られている。  [0004] Further, in recent years, run-flat tires have been developed that can travel at a predetermined speed over a certain distance even when the tire pressure is punctured and the tire internal pressure becomes OkPa. In this run-flat tire, the bead part of the tire side wall is also reinforced by placing a relatively hard rubber layer with a crescent-shaped cross section on the inner surface of the carcass over the shoulder area, and in the tire air chamber. A core type with a metal or synthetic resin ring core attached to the rim is known.
[0005] このうちサイド補強型は走行中にタイヤがパンクして空気が抜けてしまうと、補強ゴ ム層で強化したサイドウォール固有の剛性によって荷重を支持し、所定の距離を所 定のスピードで走行することが可能である。しかしながら、ランフラット走行を継続する と、補強ゴム層には圧縮と伸長の繰り返しによる発熱が起こり、タイヤ内部温度が 200 °c以上、さらに局所的にはそれ以上の極めて高温状態になることがある。そのため、 ランフラットタイヤのカーカスプライコードとしては耐熱溶融性に優れるレーヨン繊維 ゃァラミド繊維、スチールなどが好まし!/ヽコード材料として提案され使用されて ヽる。 [0005] Of these, the side-reinforcement type supports the load by the inherent rigidity of the sidewall strengthened by the reinforcement rubber layer when the tire punctures and the air escapes during driving, and the predetermined distance is set to a predetermined speed. It is possible to run on. However, if run-flat running is continued, the reinforcing rubber layer generates heat due to repeated compression and expansion, and the tire internal temperature is 200 ° C. It may become extremely hot at or above ° C and even more locally. For this reason, rayon fiber, garamide fiber, steel, etc., which are excellent in heat-melting resistance, are preferred as carcass ply cords for run flat tires!
[0006] 一方、ポリエステル繊維やナイロン繊維からなるタイヤコードは、 150〜200°Cの高 温下においてタイヤゴムとの接着界面が破壊され始め、また強度、弾性率が急激に 低下し、さらに融点以上の高温になると繊維としての形状を保持できずに溶融破断 に至るという問題があることからランフラットタイヤ用のコード材料としては不適とされ ていた。ところが、これら繊維は供給量が非常に豊富であり、価格も安ぐ軽量である という特徴があることから、ランフラットタイヤがより広く普及するにはこれらポリエステ ル繊維やナイロン繊維力 なるタイヤコードを用いることが望まれている。  [0006] On the other hand, tire cords made of polyester fiber or nylon fiber begin to break the adhesion interface with tire rubber at high temperatures of 150 to 200 ° C, and the strength and elastic modulus rapidly decrease, and further exceed the melting point. At higher temperatures, the fiber shape could not be maintained and melt fracture occurred, making it unsuitable as a cord material for run-flat tires. However, since these fibers are characterized by their abundant supply, low price and light weight, in order for runflat tires to become more widespread, tire cords made of polyester fibers or nylon fibers are required. It is desired to use it.
[0007] これまでに、タイヤゴム中でのポリエステルタイヤコードの耐熱性を向上させる方法 が種々提案されている。例えば、ポリエステル繊維のカルボキル基末端量の低減ィ匕 をは力ることによってゴム中での加水分解を抑制する方法 (例えば、特許文献 1、特 許文献 2参照)、アクリル酸および Zまたはメタクリル酸力 なる重合体を付与する方 法 (例えば、特許文献 3参照)、フッ素系重合体を含有させる方法 (例えば、特許文献 4参照)、環状ォレフィン重合体を含有させる方法 (例えば、特許文献 5参照)などが 挙げられる。しかし  [0007] Various methods for improving the heat resistance of polyester tire cords in tire rubber have been proposed so far. For example, a method for suppressing hydrolysis in rubber by applying a reduction in the amount of carboxylic group ends of polyester fiber (see, for example, Patent Document 1 and Patent Document 2), acrylic acid and Z or methacrylic acid. A method for imparting a strong polymer (for example, see Patent Document 3), a method for containing a fluoropolymer (for example, see Patent Document 4), a method for containing a cyclic olefin polymer (for example, see Patent Document 5) ). However
ながら、これらはいずれも 150〜160°Cでの耐熱性に関する強度物性の改良であつ て、ポリエステルの融点以上において形状を保持し、所定の強度、弾性率を保持で きるというものではなかった。  However, these are all improvements in strength properties related to heat resistance at 150 to 160 ° C., and did not hold the shape above the melting point of the polyester and can maintain the predetermined strength and elastic modulus.
[0008] 特許文献 1:特開昭 61— 252332号公報 [0008] Patent Document 1: Japanese Patent Laid-Open No. 61-252332
特許文献 2:特開平 7 - 166420号公報  Patent Document 2: JP-A-7-166420
特許文献 3:特開昭 55— 166235号公報  Patent Document 3: Japanese Patent Laid-Open No. 55-166235
特許文献 4:特開平 6 - 264307号公報  Patent Document 4: Japanese Patent Laid-Open No. 6-264307
特許文献 5:特開平 8 - 74126号公報  Patent Document 5: JP-A-8-74126
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は前記問題点に鑑みてなされたものであり、その目的は高温時、特に通常 のポリエステルの融点以上においても力学特性を保持することが可能な高耐熱性ポ リエステル繊維材料、タイヤコード、ディップコード、および高耐熱性ポリエステル繊 維材料の製造方法を提供するものである。 [0009] The present invention has been made in view of the above-mentioned problems, and its purpose is usually at high temperatures. The present invention provides a high heat resistant polyester fiber material, a tire cord, a dip cord, and a method for producing a high heat resistant polyester fiber material that can maintain mechanical properties even at a melting point or higher of the polyester.
課題を解決するための手段  Means for solving the problem
[0010] 前記課題を解決するために本発明者らは鋭意研究を重ねた結果、ポリエステル分 子鎖末端に、特定の構造を持つ化合物を反応させ、溶融紡糸後に電子線照射を施 すことで、繊維の少なくとも一部に架橋構造を形成せしめることにより本課題を解決 することを見出し、本発明を完成するに至った。  [0010] As a result of intensive studies conducted by the present inventors to solve the above-mentioned problems, a compound having a specific structure is reacted at the end of the polyester molecular chain, and electron beam irradiation is performed after melt spinning. The present inventors have found that this problem can be solved by forming a crosslinked structure in at least a part of the fiber, and have completed the present invention.
[0011] すなわち、本発明は以下の通りである。  [0011] That is, the present invention is as follows.
[0012] 1. エチレンテレフタレート単位を主たる繰り返し単位とするポリエステル繊維であつ て、動的粘弾性測定における下記 (a)および (b)の特性を同時に満足することを特 徴とする高耐熱ポリエステル繊維材料。  [0012] 1. A polyester fiber having an ethylene terephthalate unit as a main repeating unit, which simultaneously satisfies the following characteristics (a) and (b) in dynamic viscoelasticity measurement: material.
(a) 275°Cにおける貯蔵弾性率 (E,)≥0. IMPa  (a) Storage elastic modulus at 275 ° C (E,) ≥0. IMPa
(b)損失正接 (tan δ )の主分散ピーク温度≤ 148°C  (b) Main dispersion peak temperature of loss tangent (tan δ) ≤ 148 ° C
[0013] 2.強度が 4. OcNZdtex以上であることを特徴とする上記 1に記載の高耐熱ポリエス テル繊維材料。  [0013] 2. The high heat-resistant polyester fiber material as described in 1 above, wherein the strength is 4. OcNZdtex or more.
[0014] 3.上記 1または 2に記載の高耐熱ポリエステル繊維材料を用いたポリエステルタイヤ コード。  [0014] 3. A polyester tire cord using the high heat-resistant polyester fiber material described in 1 or 2 above.
[0015] 4.上記 1または 2に記載の高耐熱ポリエステル繊維材料を用いたランフラットタイヤ 用ポリエステルタイヤコード。  [0015] 4. A polyester tire cord for a run-flat tire using the high heat-resistant polyester fiber material described in 1 or 2 above.
[0016] 5.上記 1または 2に記載の高耐熱ポリエステル繊維材料に、少なくともレゾルシン— ホルムアルデヒド ラテックス (RFL)混合液を含有する処理液でディップ処理が施さ れてなることを特徴とするポリエステルディップコード。  [0016] 5. A polyester dip cord, wherein the high heat-resistant polyester fiber material according to 1 or 2 is subjected to a dip treatment with a treatment liquid containing at least a resorcin-formaldehyde latex (RFL) mixed solution. .
[0017] 6.タイヤコードを用途とする上記 5に記載のポリエステルディップコード。 [0017] 6. The polyester dip cord according to 5 above, which uses a tire cord.
[0018] 7.ランフラットタイヤ用タイヤコードを用途とする上記 5に記載のポリエステルディップ コード。 [0018] 7. The polyester dip cord according to 5 above, wherein the tire cord for a run-flat tire is used.
[0019] 8.エチレンテレフタレート単位を主たる繰り返し単位とするポリエステルに、下記の化 合物 1を 0. 2〜3. 0重量%配合し、紡糸速度 2000mZ分以上で溶融紡糸した未延 伸糸、該未延伸糸を熱延伸した延伸糸、該延伸糸を 1本以上撚り合わせた撚糸コー ド、または該撚糸コードを製織した簾織物に、電離放射線を照射することを特徴とす る高耐熱ポリエステル繊維材料の製造方法。 [0019] 8. Unstretched material obtained by blending 0.2 to 3.0% by weight of the following compound 1 in a polyester having ethylene terephthalate units as the main repeating unit, and melt spinning at a spinning speed of 2000 mZ or more. It is characterized by irradiating ionizing radiation to a drawn yarn, a drawn yarn obtained by thermally drawing the undrawn yarn, a twisted cord obtained by twisting one or more drawn yarns, or a woven fabric woven with the twisted cord. Manufacturing method of high heat-resistant polyester fiber material.
[0020] [化 1]  [0020] [Chemical 1]
Figure imgf000005_0001
Figure imgf000005_0001
[0021] 9.未延伸糸の複屈折率が 0. 04以上であることを特徴とする上記 8に記載の高耐熱 ポリエステル繊維材料の製造方法。 [0021] 9. The method for producing a high heat-resistant polyester fiber material as described in 8 above, wherein the birefringence of the undrawn yarn is 0.04 or more.
[0022] 10.未延伸糸の密度が 1. 340gZcm2以上であることを特徴とする上記 8または 9に記載の高耐熱ポリエステル繊維材料の製造方法。 [0022] 10. The method for producing a high heat-resistant polyester fiber material as described in 8 or 9 above, wherein the density of the undrawn yarn is 1. 340 gZcm 2 or more.
発明の効果  The invention's effect
[0023] 本発明によれば、高温時、特にポリエステルの融点以上においても力学特性を保 持することが可能な高耐熱性のゴム補強用ポリエステル繊維材料およびその製造方 法を提供できる。  [0023] According to the present invention, it is possible to provide a highly heat-resistant polyester fiber material for rubber reinforcement capable of retaining mechanical properties at a high temperature, particularly above the melting point of polyester, and a method for producing the same.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、本発明について詳細に説明する。上述のとおり本発明は、パンクして内圧が 低下しタイヤ内部温度が 200°C以上、さらに局所的にはポリエステルの融点以上の 極めて高温になることがあるランフラットタイヤのカーカスプライコードとしても使用可 能な、高温時、特に架橋構造を有しない通常のポリエステルの融点以上において形 態を保持し、所定の強度、弾性率を保持できる高度に耐熱性が改善されたゴム補強 用ポリエステル繊維材料を提供するものである。 Hereinafter, the present invention will be described in detail. As described above, the present invention is used as a carcass ply cord for a run-flat tire that punctures and lowers the internal pressure, causing the tire internal temperature to be 200 ° C or higher, and locally extremely high temperatures that exceed the melting point of polyester. A high-heat-resistant polyester fiber material with improved heat resistance that can maintain the specified strength and elastic modulus at high temperatures, especially at temperatures above the melting point of ordinary polyester that does not have a crosslinked structure. It is to provide.
[0025] 本発明におけるポリエステルとは、テレフタル酸を主たる酸成分とし、少なくとも一種 のグリコール、好ましくはエチレングリコール、トリメチレングリコール、テトラメチレング リコール力 選ばれた少なくとも一種のアルキレングリコールを主たるグリコール成分 とするポリエステルを対象とする。また、テレフタル酸の一部を他の二官能性カルボン 酸成分で置き換えたポリエステルであってもよく、および/またはグリコール成分の一 部を主成分以外の上記ダリコールもしくは他のジオール成分で置き換えたポリエステ ルであってもよ 、。ここで使用されるテレフタル酸以外の二官能性カルボン酸として は、例えばイソフタル酸、ナフタレンジカルボン酸、ジフエ-ルカルボン酸、ジフエノキ シエタンジカルボン酸、 βーヒドロキシエトキシ安息香酸、 ρ—ォキシ安息香酸、アジ ピン酸、セバシン酸、 1, 4ーシクロへキサンジカルボン酸の如き芳香族、脂肪族、脂 環族の二官能性カルボン酸を挙げることができる。また上記ダリコール以外のジォー ル成分としては、例えばシクロへキサン一 1, 4ージメタノール、ネオペンチルグリコー ルビスフヱノール Α、ビスフ ノール Sの如き脂肪族、脂環族、芳香族のジオールィ匕 合物およびポリオキシアルキレングリコール等を挙げることができる。さらに、ポリエス テルが実質的に線状であ The polyester in the present invention includes terephthalic acid as a main acid component, and at least one glycol, preferably ethylene glycol, trimethylene glycol, tetramethylene glycol power, and at least one selected alkylene glycol as a main glycol component. The target is polyester. In addition, it may be a polyester in which a part of terephthalic acid is replaced with another bifunctional carboxylic acid component, and / or a polyester in which a part of the glycol component is replaced with the above-mentioned Daricol or other diol component other than the main component. Even if it is Le. Examples of the bifunctional carboxylic acid other than terephthalic acid used here include isophthalic acid, naphthalene dicarboxylic acid, diphenol carboxylic acid, diphenoxyethane dicarboxylic acid, β-hydroxyethoxybenzoic acid, ρ-oxybenzoic acid, and azide. Aromatic, aliphatic and alicyclic bifunctional carboxylic acids such as pinic acid, sebacic acid and 1,4-cyclohexanedicarboxylic acid can be mentioned. Examples of the diol component other than the above-mentioned dallicol include aliphatic, alicyclic and aromatic diol compounds such as cyclohexane-1,4-dimethanol, neopentylglycol bisphenol, bisphenol S, and polyoxyalkylene. A glycol etc. can be mentioned. In addition, the polyester is substantially linear.
る範囲でトリメリット酸、ピロメリット酸の如きカルボン酸、グリセリン、トリメチロールプロ パン、ペンタエリスリトールの如きポリオール、 5—ヒドロキシイソフタル酸、 3, 5—ジヒ ドロキシ安息香酸の如き三官能以上のエステル形成基を有するモノマーを使用する ことができる。  Carboxylic acids such as trimellitic acid and pyromellitic acid, polyols such as glycerin, trimethylolpropan, pentaerythritol, tri- or higher functional ester such as 5-hydroxyisophthalic acid and 3,5-dihydroxybenzoic acid Monomers having groups can be used.
[0026] さらに前記ポリエステル中には少量の他の任意の重合体や酸ィ匕防止剤、ラジカル 捕捉剤、制電剤、染色改良剤、染料、顔料、艷消し剤、蛍光増白剤、不活性微粒子 その他の添加剤が含有されてもょ 、。  [0026] Further, in the polyester, a small amount of any other polymer, acid-fastening agent, radical scavenger, antistatic agent, dyeing improver, dye, pigment, matting agent, fluorescent brightener, Active fine particles may contain other additives.
[0027] 力かるポリエステルを得る方法としては、特別な重合条件を採用する必要はなぐジ カルボン酸成分および Ζまたはそのエステル形成性誘導体とグリコール成分との反 応生成物を重縮合してポリエステルにする際に採用される任意の方法で合成するこ とができる。重合の装置は回分式であっても連続式であってもよい。さらに前記液相 重縮合工程で得られたポリエステルを粒状化し予備結晶化させた後に不活性ガス雰 囲気下あるいは減圧真空下、融点以下の温度で固相重合することもできる。  [0027] As a method for obtaining a strong polyester, it is not necessary to adopt special polymerization conditions. The polycarboxylic acid component and the reaction product of 成分 or an ester-forming derivative thereof and a glycol component are polycondensed into the polyester. Can be synthesized by any method employed in the process. The polymerization apparatus may be a batch type or a continuous type. Furthermore, after the polyester obtained in the liquid phase polycondensation step is granulated and pre-crystallized, it can be subjected to solid phase polymerization at a temperature below the melting point in an inert gas atmosphere or in a vacuum.
[0028] 重合触媒は所望の触媒活性を有するものであれば特に限定はしないが、アンチモ ン化合物、チタンィ匕合物、ゲルマニウム化合物、アルミニウム化合物が好ましく用いら れる。これらの触媒を使用する際には単独でも、また 2種類以上を併用してもよぐ使 用量としてはポリエステルを構成するカルボン酸成分に対して 0. 002-0. 1モル% が好ましい。 [0028] The polymerization catalyst is not particularly limited as long as it has a desired catalytic activity, but an antimony compound, a titanium compound, a germanium compound, and an aluminum compound are preferably used. These catalysts can be used alone or in combination of two or more. The dosage is preferably 0.002 to 0.1 mol% with respect to the carboxylic acid component constituting the polyester.
[0029] また本発明におけるポリエステルの極限粘度 (IV)は 0. 6dlZg以上であることが好 ましぐさらに好ましくは 0. 8dlZg以上である。 IVが 0. 6dlZg未満であると糸条の熱 劣化による強度 ·弾性率の低下が大きくなり好ましくない。また、ポリエステルのカル ボキシル末端基量は 50eqZton以下であることが好ましぐさらに好ましくは 30eqZ ton以下である。 50eqZtonを超えるとゴム中の耐熱性が不十分となり易ぐタイヤコ ードとしての耐久性が不十分になり易 、ので好ましくな!/、。  [0029] In addition, the intrinsic viscosity (IV) of the polyester in the present invention is preferably 0.6 dlZg or more, more preferably 0.8 dlZg or more. If the IV is less than 0.6 dlZg, the decrease in strength and elastic modulus due to thermal degradation of the yarn becomes large, which is not preferable. Further, the amount of carboxyl end groups of the polyester is preferably 50 eqZton or less, more preferably 30 eqZ ton or less. If it exceeds 50eqZton, the heat resistance in the rubber becomes insufficient, and the durability as a tire cord is likely to be insufficient.
[0030] 本発明のポリエステル繊維材料とは、例えば、上記ポリエステルを溶融紡糸して得 られる未延伸糸を熱延伸した延伸糸、それを数本撚り合わせた撚糸コード、またはそ れを製織した簾織物である。延伸糸の撚り合わせ本数に特に上限はないが、通常 10 本以下である。  [0030] The polyester fiber material of the present invention refers to, for example, a drawn yarn obtained by hot-drawing an undrawn yarn obtained by melt spinning the above polyester, a twisted yarn cord obtained by twisting several strands, or a cocoon made by weaving it. It is a woven fabric. There is no particular upper limit to the number of twisted drawn yarns, but it is usually 10 or less.
[0031] 本発明のポリエステル繊維材料は、通常のポリエステルの融点以上の温度におい て力学特性を保持しており、動的粘弾性測定における 275°Cで貯蔵弾性率 (以下 E' と称する)が 0. IMPa以上であることが好ましぐより好ましくは 0. 5MPa以上、更に 好ましくは 1. OMPa以上である。 275°Cの E'が 0. IMPa未満もしくは、 275°C未満 の温度で溶融すると、補強ゴム中で破断してしまうため好ましくない。 E'の測定 は、例えばティ一'エイ'インスツルメント社製 DMA— Q800を用いて、糸長 lcm、 12 OOOdtexとなるように引き揃えた試料を、初荷重 0. 01N、 Minimum Dynamic F orceO. 00001N、 ForceTrackl25%、振幅 10 πι、周波数 11Hzの条件で、 200 °C〜370°Cの温度範囲について、 2°CZ分の昇温速度で測定し、求めることができる 。また、測定中に試料が溶融破断する場合は、その温度を溶融破断温度とした。但し 、 275°Cの E'には特に上限はないが、通常 lOOOMPa以下であり、 lOMPa以下で あることが多い。  [0031] The polyester fiber material of the present invention retains mechanical properties at a temperature equal to or higher than the melting point of ordinary polyester, and has a storage elastic modulus (hereinafter referred to as E ') at 275 ° C in dynamic viscoelasticity measurement. 0. IMPa or more is preferable, 0.5 MPa or more is more preferable, and 1. OMPa or more is more preferable. If E 'at 275 ° C is less than 0. IMPa or less than 275 ° C, it will break in the reinforced rubber. E 'is measured using, for example, DMA-Q800 manufactured by TI'A Instruments Co., Ltd., and the sample is aligned so that the thread length is lcm and 12 OOOdtex, and the initial load is 0.01 N, Minimum Dynamic ForceO. 00001N, ForceTrack 25%, amplitude 10πι, frequency 11Hz, temperature range of 200 ° C to 370 ° C can be measured at a rate of temperature increase of 2 ° CZ. Further, when the sample was melt fractured during the measurement, the temperature was taken as the melt fracture temperature. However, there is no particular upper limit for E ′ at 275 ° C., but it is usually lOOOMPa or less and often lOMPa or less.
[0032] 本発明のポリエステル繊維材料は、ポリエステル分子鎖間の少なくとも一部に架橋 構造を有して!/ヽるが、該架橋構造はポリエステル分子末端に導入された下記化学式 (1)で表される化合物の脂肪族不飽和基が電離放射線の照射により反応することに より形成される ことが好ましい。電離放射線としては、照射透過力が大きい電子線や γ線が好ましい 力 これらに限定されるものではない。 [0032] The polyester fiber material of the present invention has a cross-linked structure at least partly between the polyester molecular chains !, and the cross-linked structure is represented by the following chemical formula (1) introduced at the end of the polyester molecule. Formed by reacting the aliphatic unsaturated group of the compound It is preferable. The ionizing radiation is preferably an electron beam or γ-ray having a large irradiation transmission power, but is not limited to these.
[0033] [化 2]  [0033] [Chemical 2]
Figure imgf000008_0001
Figure imgf000008_0001
[0034] また一般に高分子に架橋構造を形成させることによって耐熱溶融性が向上したり、 あるいは溶媒に対する溶解性が低下することは良く知られており、これらは架橋の程 度 (架橋度)を示す指標となり得る。本発明におけるポリエステル繊維材料の熱流動 開始温度は、架橋構造を形成させる前のポリエステル榭脂の融点以上、好ましくは 2 65°C以上、よりに好ましくは 280°C以上、更に好ましくは 300°C以上である。融点未 満の温度で熱溶融流動すると、補強ゴム中で形態を保持することはできず破断して しまうため好ましくない。熱流動開始温度の測定は、一定温度に設定可能なホットプ レートにサンプルを 1分間置 、た後、熱溶融流動して 、るか目視あるいは顕微鏡にて 判断できる。 [0034] In addition, it is well known that heat-resistant melting properties are generally improved by forming a cross-linked structure in a polymer, or solubility in a solvent is lowered, and these increase the degree of cross-linking (cross-linking degree). It can be an indicator to show. The heat flow initiation temperature of the polyester fiber material in the present invention is not less than the melting point of the polyester resin before forming the crosslinked structure, preferably 265 ° C or more, more preferably 280 ° C or more, and further preferably 300 ° C. That's it. If it melts and flows at a temperature lower than the melting point, the shape cannot be maintained in the reinforced rubber and breaks, which is not preferable. The heat flow starting temperature can be measured by placing the sample on a hot plate that can be set to a constant temperature for 1 minute, and then determining whether it is hot-melting and flowing or visually.
[0035] また所定溶媒に対する不溶解残物の割合を示すゲル分率が 10重量%以上である ことが好ましぐより好ましくは 20重量%以上、更に好ましくは 30重量%以上である。 ゲル分率が 10重量%より低いと架橋度が低すぎて高温におけるタイヤコードの寸法 安定性や強度が不十分となり好ましくな!/、。ゲル分率を測定する際の溶媒は架橋構 造を形成させる前の芳香族ポリエステルを所定の温度、所定時間で完全に溶解する 有機溶媒であれば特に限定はしないが、例えばフエノール、 o クロロフヱノール、 m —クロ口フエノーノレ、 p クロ口フエノーノレ、 2, 3—ジクロロフエノーノレ、 2, 4ージクロ口 フエノール、 2, 5—ジクロ口フエノール、 2, 6—ジクロ口フエノール、 3, 4—ジクロロフ ェノール、 3, 5—ジクロ口フエノール、 2, 3, 4 トリクロ口フエノール、 2, 3, 5 トリクロ 口フエノール、 2, 3, 6 トリクロ口フエノール、 2, 4, 5 トリクロ口フエノール、 2, 4, 6 トリクロ口フエノール、 3, 4, 5 トリクロ口フエノール、 1 , 1 , 1 , 2—テトラクロ口エタン 、 1 , 1 , 2, 2—テトラクロロェタン、クロロホノレム、ジクロロメタン、四塩化炭素、ジクロロ 酢酸、へキサフルォロイソプロパノールなどを例示でき、これらは 1種類でもあるいは 2種類以上を併用して使用することができる。溶解時の溶媒の温度は特に限定はし ないが、例えば 20°C〜200°Cである。溶解時間も特に限定はしないが溶解が飽和状 態にまでに要する時間であれば良ぐ例えば 10分〜 5時間である。 [0035] The gel fraction indicating the ratio of the insoluble residue to the predetermined solvent is preferably 10% by weight or more, more preferably 20% by weight or more, and still more preferably 30% by weight or more. If the gel fraction is lower than 10% by weight, the degree of cross-linking is too low and the dimensional stability and strength of the tire cord at high temperatures are insufficient, which is preferable! /. The solvent for measuring the gel fraction is not particularly limited as long as it is an organic solvent that completely dissolves the aromatic polyester before forming the crosslinked structure at a predetermined temperature and for a predetermined time. For example, phenol, o chlorophenol, m—Black-mouthed phenol, p Black-mouthed phenol, 2,3-Dichlorophenol, 2,4-Dichlorophenol, 2,5-Dichlorophenol, 2,6-Dichlorophenol, 3,4-Dichlorophenol, 3, 5—Dichroic mouth phenol, 2, 3, 4 Triclo mouth phenol, 2, 3, 5 Triclo mouth phenol, 2, 3, 6 Triclo mouth phenol, 2, 4, 5 Triclo mouth phenol, 2, 4, 6 Trichrome mouth phenol, 3, 4, 5 Triclo mouth phenol, 1, 1, 1, 2, 2-tetrachloro mouth ethane, 1, 1, 2, 2-tetrachloroethane, chlorohonolem, dichloromethane, carbon tetrachloride, dichloroacetic acid, helium Xafluoroisopropanol and the like can be exemplified, and these can be used alone or in combination of two or more. The temperature of the solvent at the time of dissolution is not particularly limited, but is, for example, 20 ° C to 200 ° C. The dissolution time is not particularly limited, but may be 10 minutes to 5 hours as long as it takes time for dissolution to reach a saturated state.
[0036] 更に、本発明のポリエステル繊維材料は、延伸糸の 110Hzの動的粘弾性測定に おける tan δの主分散ピーク温度(以下 T aと称する)力 148°C以下であることが好 ましぐより好ましくは 147°C以下である。 T o;が 148°Cより高いと、タイヤコードとりわ けカーカスプライコードで要求される高弾性率、低収縮性の発現が充分でない。ここ で Τ αは微細構造的な非晶鎖の拘束性の程度を示す指標であり、 Τ αが低いという ことは非晶鎖の拘束性が弱いことを意味し、その結果、優れた熱寸法安定性が発現 する。本願の T o;が 148°C以下の延伸糸は、例えば、後述する 2000mZ分以上の 比較的高い紡糸速度で引き取った高配向未延伸糸(いわゆる POY)を、 1. 5〜3. 0 倍程度の低い延 [0036] Furthermore, the polyester fiber material of the present invention preferably has a main dispersion peak temperature (hereinafter referred to as Ta) force of tan δ of 148 ° C or less in the dynamic viscoelasticity measurement of a drawn yarn at 110 Hz. More preferably, it is 147 ° C or lower. When To is higher than 148 ° C, the high elastic modulus and low shrinkage required for the tire cord, especially the carcass ply cord, are not sufficient. Here, Τα is an index indicating the degree of microstructural amorphous chain restraint, and a low α means that amorphous chain restraint is weak, and as a result, excellent thermal dimensions. Stability is developed. The drawn yarn with a To of 148 ° C or lower of the present application is, for example, a highly oriented undrawn yarn (so-called POY) taken at a relatively high spinning speed of 2000 mZ or more, which will be described later, 1.5 to 3.0 times. Low grade
伸倍率で熱延伸することにより得られる。  It can be obtained by hot drawing at a draw ratio.
[0037] 本発明におけるポリエステル繊維材料は、例えば、エチレンテレフタレート単位を主 たる繰り返し単位とするポリエステルに、化学式(1)で表される化合物をエタストルー ダー供給口または溶融押出し工程の任意の位置で添加し溶融紡糸することによって 得られる力 予め公知の方法により該化合物とポリエステルとを溶融混練りしてペレツ ト化しておき、これを溶融紡糸に用いても構わない。またこの混練り榭脂をマスターバ ツチとしてポリエステル榭脂とブレンドして使用することもできる。溶融混練りする際の 温度は、実質的にポリエステルの融点以上であれば特に限定はしないが、過剰に温 度が高すぎると熱劣化によってポリマー鎖が切断されるので好ましくない。融点〜 (融 点 + 70°C)の範囲であることが好ましい。また溶融混練りする時間についても特に限 定されるものではないが、 1分〜 40分、好ましくは 2分〜 20分である。  [0037] The polyester fiber material in the present invention is, for example, added to the polyester mainly composed of ethylene terephthalate units with the compound represented by the chemical formula (1) at an arbitrary position in the ethanol feed port or the melt extrusion process. Then, the force obtained by melt spinning may be preliminarily melt-kneaded and pelletized by a known method and used for melt spinning. Further, this kneaded resin can be used as a master batch by blending with polyester resin. The temperature at the time of melt-kneading is not particularly limited as long as it is substantially equal to or higher than the melting point of the polyester. However, if the temperature is excessively high, the polymer chain is broken due to thermal degradation, which is not preferable. The melting point is preferably in the range of (melting point + 70 ° C). Also, the time for melt kneading is not particularly limited, but is 1 minute to 40 minutes, preferably 2 minutes to 20 minutes.
[0038] 本発明における、ポリエステルに対する化学式(1)で表される化合物の配合量は 0 . 2〜3. 0重量%であることが好ましい。より好ましくは 0. 4〜2. 5重量%である。配 合量が 0. 2重量%を下回ると、電離放射線照射後に発現する架橋構造が十分でな ぐ融点以上での力学特性を保持しづらくなり、あまり好ましくない。この特性は、基本 的に化学式(1)で表される化合物の含有量に比例するため、配合量を増やせば十 分な耐熱力学特性を付与することができる。しカゝしながら、 3. 0重量%を超える配合 量においては、紡糸性が低下し、高弾性率、低収縮性を発現させるための紡糸速度 を得ることが出来にくいので好ましくない。さらに、高延伸倍率が困難であり、高強度 を得ることも困難となる。これは、過剰な化学式(1)で表される化合物が紡糸時の熱 により架橋してしまい、ゲル化物形成することによる。ゲル化物が発生すると、工業的 に安定した生産をすることは困難となる。なお含有量の測定は、電離放射線を照射 する前であれば所定の溶媒に可溶であるため、例えば H— NMR測定および IR測定 によって求めることができ、電離放射線を照射した後であれば溶媒に不溶となるため 、 IR測定によって求めることができるが、化学式(1)で表される化合物の含有量を求 めることができればこれらの測定に限定されるものではない。 In the present invention, the compounding amount of the compound represented by the chemical formula (1) with respect to the polyester is preferably 0.2 to 3.0% by weight. More preferably, it is 0.4 to 2.5% by weight. Arrangement If the total amount is less than 0.2% by weight, it is difficult to maintain the mechanical properties above the melting point where the cross-linked structure developed after irradiation with ionizing radiation is not sufficient, which is not preferable. Since this property is basically proportional to the content of the compound represented by the chemical formula (1), sufficient thermodynamic properties can be imparted by increasing the blending amount. However, if the blending amount exceeds 3.0% by weight, the spinnability is lowered, and it is difficult to obtain a spinning speed for realizing high elastic modulus and low shrinkage. Furthermore, it is difficult to obtain a high draw ratio and to obtain high strength. This is because an excess of the compound represented by the chemical formula (1) is crosslinked by heat during spinning to form a gelled product. When gelled products are generated, it becomes difficult to produce industrially stable production. Note that the content can be determined by, for example, H-NMR measurement and IR measurement before being irradiated with ionizing radiation. However, it is not limited to these measurements as long as the content of the compound represented by the chemical formula (1) can be determined.
化学式(1)で表される化合物はポリエステルとの溶融混練りによって、該ェポキシ 基とポリエステルのカルボキシル基末端とが反応するが、この反応を促進する触媒を 同時に添加しても構わない。該触媒は特に限定されて用いられるものではなぐ例え ば、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、ステアリン酸ナトリウム、ステアリン酸 カリウム、ステアリン酸リチウムなどに代表されるアルカリ金属化合物、酢酸バリウム、 酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸バリウム、ステアリン酸マグネシゥ ム、ステアリン酸ストロンチウムなどに代表されるアルカリ土類金属化合物、トリェチル ァミン、トリブチルァミン、トリへキシルァミン、トリエタノールァミン、トリエチレンジァミン 、ジメチルベンジルァミン、ピリジン、ピコリンなどの 3級ァミン、 2—メチルイミダゾール 、 2—ェチルイミダゾール、 2—イソプロピルイミダゾールなどのイミダゾール化合物、 テトラメチルアンモ -ゥムクロライド、テトラエチルアンモ -ゥムクロライド、トリメチルベ ンジルアンモ -ゥムクロライド、トリェチルベンジルアンモ -ゥムクロライドなどの第 4級 アンモニゥム塩、トリメチルホスフィン、トリェチルホスフィン、トリブチルホスフィン、トリ ォクチルホスフィン、トリフエ-ルホスフィンなどのホスフィン化合物、テトラメチルホス ホニゥムブロマイド、テトラブチノレホスホニゥムブロマイド、テトラフエ二ノレホスホニゥム ブロマイド、トリフエ-ルペンジルホスホ-ゥムブロマイドなどのホスホ-ゥム塩、トリメチ ノレホスフェート、トリェチノレホスフェート、トリブチノレホスフェート、トリフエ二ノレホスフエ ートなどのリン酸エステル、シユウ酸、 p—トルエンスルホン酸、ジノ-ルナフタレンジス ルホン酸、ドデシルベンゼンスルホン酸などの有機酸、三フッ化ホウ素、四塩化アルミ ユウム、四塩化チタン、四塩化スズなどのルイス酸などが例示できる。これらは 1種類 または 2種類以上を併用して使用することができる。中 The compound represented by the chemical formula (1) reacts with the epoxy group and the carboxyl group terminal of the polyester by melt-kneading with the polyester, and a catalyst for promoting this reaction may be added simultaneously. Examples of the catalyst that are not particularly limited include alkali metal compounds represented by sodium acetate, potassium acetate, lithium acetate, sodium stearate, potassium stearate, lithium stearate, barium acetate, magnesium acetate, Alkaline earth metal compounds represented by strontium acetate, barium stearate, magnesium stearate, strontium stearate, etc., triethylamine, tributylamine, trihexylamine, triethanolamine, triethylenediamine, dimethylbenzyl Tertiary amines such as amine, pyridine and picoline, imidazole compounds such as 2-methylimidazole, 2-ethylimidazole and 2-isopropylimidazole, tetramethylammonium chloride, Quaternary ammonium salts such as laethylammonium chloride, trimethylbenzylammonium chloride, triethylbenzylammonium chloride, phosphine compounds such as trimethylphosphine, triethylphosphine, tributylphosphine, trioctylphosphine, triphenylphosphine, tetramethylphosphine Honium bromide, tetrabutinorephosphonium bromide, tetraphenolinophosphonium Phosphorus salts such as bromide, triphenyl-pentyl phosphomubromide, phosphate esters such as trimethinophosphate, triethinorephosphate, tribubutinorephosphate, triphenylenophosphate, oxalic acid, p-toluenesulfonic acid, dino -Organic acids such as lunaphthalene disulfonic acid and dodecylbenzene sulfonic acid, and Lewis acids such as boron trifluoride, aluminum tetrachloride, titanium tetrachloride and tin tetrachloride. These can be used alone or in combination of two or more. During ~
でもアルカリ金属化合物、アルカリ土類金属化合物、ホスフィン化合物、リン酸エステ ルイ匕合物を使用するのが好ましい。触媒の添加量は特に限定されるものではないが 、ポリエステル 100重量部に対して 0. 001〜1重量部が好ましぐさらには 0. 01〜0 . 5重量部である。  However, it is preferable to use an alkali metal compound, an alkaline earth metal compound, a phosphine compound, or an ester phosphate compound. The addition amount of the catalyst is not particularly limited, but 0.001 to 1 part by weight is preferable with respect to 100 parts by weight of the polyester, and further 0.01 to 0.5 part by weight.
[0040] 本発明にお 、ては、化学式(1)で表される化合物とポリエステルのカルボキシル基 末端とが反応することにより架橋基が導入されることが好ましいが、ポリエステルの力 ルポキシル基末端量が減少することでも耐熱性向上に寄与している。すなわち、ポリ エステル繊維材料のカルボキシル基末端はゴム中で自己触媒作用によってポリエス テルの劣化反応を引き起こすと考えられている力 上記化合物の反応によってカル ボキシル基末端が封鎖されることによりこの劣化反応も抑えられる。  [0040] In the present invention, it is preferred that a crosslinking group is introduced by the reaction of the compound represented by the chemical formula (1) with the carboxyl group terminal of the polyester. This also contributes to improved heat resistance. That is, the carboxyl group terminal of the polyester fiber material is considered to cause the degradation reaction of the polyester by autocatalysis in the rubber. This degradation reaction is also caused by blocking the carboxyl group terminal by the reaction of the above compound. It can be suppressed.
[0041] 例えば、エタストルーダーで溶融混練りされた化学式(1)で表される化合物を含有 するポリエステルは、紡糸口金より溶融吐出された後、紡糸筒で冷却風によって冷却 固化され、紡糸速度 2000mZ分以上、好ましくは 2500mZ分以上で引き取られる。 この糸を未延伸糸と称する。 2000mZ分以下の紡糸速度では紡糸時の配向結晶化 を進行せしめるのに十分な紡糸応力を与えることができないので好ましくない。但し、 あまりに紡糸速度が速くなると未延伸しの複屈折率や密度が過度に大きくなるため、 延伸しづらくなり高強度を得づらくなるので 6000mZ分以下としておくことが好ましく 、更に好ましくは 4500mZ分以下である。また、得られた未延伸糸の複屈折率は 0. 04以上、好ましくは 0. 05以上、更に好ましくは 0. 06以上であることが望ましい。複 屈折率が 0. 04未満では、タイヤコードとりわけカーカスプライコードで要求される高 弾性率、低収縮性の発現が充分でないので好ましくない。但し、あまりにも未延伸糸 の複屈折率が大きくなりすぎると延伸しづらくなり、高強度が得に《なるため、 0. 10 以下としておくことが好まし!/、。 [0041] For example, a polyester containing a compound represented by the chemical formula (1) melt-kneaded by an etastruder is melted and discharged from a spinneret, and then cooled and solidified by cooling air in a spinning cylinder, and the spinning speed It is taken over at 2000 mZ or more, preferably 2500 mZ or more. This yarn is referred to as an undrawn yarn. A spinning speed of 2000 mZ or less is not preferable because sufficient spinning stress cannot be applied to promote orientation crystallization during spinning. However, if the spinning speed becomes too high, the unstretched birefringence and density become excessively large, so it is difficult to stretch and it is difficult to obtain high strength, so it is preferable to keep it at 6000 mZ or less, more preferably 4500 mZ or less. It is. Further, the birefringence of the obtained undrawn yarn is desirably 0.04 or more, preferably 0.05 or more, and more preferably 0.06 or more. A birefringence of less than 0.04 is not preferable because the high elastic modulus and low shrinkage required for tire cords, especially carcass ply cords, are insufficient. However, if the birefringence of the undrawn yarn becomes too large, it becomes difficult to draw and high strength can be obtained. It is preferable to keep it as below! /.
[0042] また、未延伸糸の密度は 1. 340g/cm2以上であることが好ましい。より好まし くは 1. 345gZcm2以上、更に好ましくは 1. 350gZcm2以上である。密度が 1. 340 gZcm2未満では、高弾性率、低収縮性の発現が充分でない。但し、あまり にも未延伸糸の密度が大きくなり過ぎると延伸しづらくなり高強度を得ることが困難に なるので 1. 380以下としておくことが好ましい。冷却風の温度は所望の複屈折率、密 度を満足するものであれば特に限定しないが、好ましくは 20〜80°C、更に好ましくは 40〜70。Cである。 [0042] The density of the undrawn yarn is preferably 1.340 g / cm 2 or more. More preferably, it is 1.345 gZcm 2 or more, more preferably 1.350 gZcm 2 or more. When the density is less than 1.340 gZcm 2 , the high elastic modulus and low shrinkage are not sufficiently exhibited. However, if the density of the undrawn yarn becomes too high, it becomes difficult to draw and it becomes difficult to obtain high strength. The temperature of the cooling air is not particularly limited as long as it satisfies the desired birefringence and density, but is preferably 20 to 80 ° C, more preferably 40 to 70. C.
[0043] 引き取られた未延伸糸は一且卷き取る力、あるいは紡糸に連続して延伸するスピン ドロー法により熱延伸することで延伸糸を得ることが出来る。熱延伸は高倍率の一段 延伸もしくは二段以上の多段延伸で行われる。また、加熱方法としては、加熱ローラ や過熱蒸気、ヒートプレート、ヒートボックス等による方法があり、特に限定されるもの ではない。延伸倍率も所望の物性に応じて任意の値で延伸することができるが、好ま しくは 1. 5〜3. 0倍である。  [0043] A drawn yarn can be obtained by drawing the undrawn yarn that has been taken up by heat drawing by the force of scooping once or by the spin draw method of drawing continuously after spinning. Hot stretching is performed by high-strength one-stage stretching or two-stage or more multi-stage stretching. The heating method includes a method using a heating roller, superheated steam, a heat plate, a heat box, etc., and is not particularly limited. The draw ratio can be drawn at any value depending on the desired physical properties, but is preferably 1.5 to 3.0 times.
[0044] このようにして得られた延伸糸は、常法に従い 10cmあたり 10〜: LOO回の撚り(下撚 り)をかけた後、複数本合糸し、反対方向に 10cmあたり 10〜: LOO回の撚り(上撚り) を力けて撚糸コード (生コード)とする。更にこの撚糸コードを常法に従い簾織物 (生 反)を得ることが出来る。延伸糸のトータルの撚り合わせ本数は特に限定されないが 、通常 10本以下と言える。  [0044] The drawn yarn obtained in this manner is 10 to 10 cm per 10 cm in accordance with a conventional method: After applying LOO twists (bottom twist), a plurality of yarns are combined and 10 to 10 cm per 10 cm in the opposite direction: Use LOO twists (upper twist) to make twisted cords (raw cords). Furthermore, a woven fabric (raw fabric) can be obtained from this twisted cord according to a conventional method. Although the total number of twisted yarns is not particularly limited, it can be said that it is usually 10 or less.
[0045] 本発明におけるポリエステル繊維材料の架橋構造は、例えば、ポリエステル分子末 端に導入された化学式(1)で表される化合物の脂肪族系不飽和基に起因する構造 であり、該架橋構造は電離放射線の照射により形成されることが好ましい。電離放射 線としては、照  [0045] The cross-linked structure of the polyester fiber material in the present invention is, for example, a structure resulting from the aliphatic unsaturated group of the compound represented by the chemical formula (1) introduced into the terminal end of the polyester molecule. Is preferably formed by irradiation with ionizing radiation. As ionizing radiation,
射透過力が大きい電子線や γ線が好ましいが、これらに限定されるものではない。こ の電離放射線の照射は、ポリエステル繊維の紡糸工程から、ディップ反の製造工程 までの任意の工程で施すことが可能であるが、照射効率や品質安定の点にぉ 、て、 未延伸糸または延伸糸または撚糸コードまたは簾織物の状態で照射することが好ま LV、。電離放射線の照射線量は所望の物性を満足するものであれば特に限定はし ないが、 20〜3000kGy、好ましくは 50〜1500kGyである。照射線量が低すぎると 架橋度が不十分となりやすぐまた高すぎる場合にはポリエステルが分解してしまい、 強度物性が低下してしまうので好ましくな、。照射プロセスは一般的に常温で行われ るプロセスであるが、 0〜200°Cの任意の温度環境下において照射することができる 。雰囲気ガスは空気中でも不活性ガス中でも良いが、酸素が架橋反応を阻害する可 能性があるので不活性ガス中で照射することが好ましい。 Electron beams and γ-rays having high radiation transmission power are preferable, but not limited thereto. This ionizing radiation can be applied in any process from the spinning process of the polyester fiber to the manufacturing process of the dip counter. However, in terms of irradiation efficiency and quality stability, undrawn yarn or LV, preferably irradiated in the state of drawn yarn or twisted cord or woven fabric. The dose of ionizing radiation is not particularly limited as long as it satisfies the desired physical properties. Although not, it is 20 to 3000 kGy, preferably 50 to 1500 kGy. If the irradiation dose is too low, the degree of cross-linking becomes insufficient, and if it is too high, the polyester is decomposed and the strength properties are reduced, which is preferable. The irradiation process is generally performed at room temperature, but can be performed in any temperature environment of 0 to 200 ° C. The atmosphere gas may be air or an inert gas, but is preferably irradiated in an inert gas since oxygen may inhibit the crosslinking reaction.
[0046] 本発明におけるポリエステル繊維材料の強度は 4. OcNZdtex以上であることが好 ましい。より好ましくは 5cNZdtex、更に好ましくは 6. OcNZdtex以上である。強度 が 4. OcNZdtexを下回ると、最終製品の物性はもとより、生産工程における工程通 過性を低下させるため好ましくない。強度は大きいほどよいと言える力 通常 lOcNZ dtex以下である。 [0046] The strength of the polyester fiber material in the present invention is preferably 4. OcNZdtex or more. More preferably 5 cNZdtex, and still more preferably 6. OcNZdtex or more. If the strength is lower than 4. OcNZdtex, not only the physical properties of the final product but also the processability in the production process is lowered, which is not preferable. A force that can be said to be better as the strength is higher. Usually less than lOcNZ dtex.
[0047] 更に本発明におけるポリエステル繊維材料に対して、ゴムとの接着性を付与するデ イッブ処理を施し、ディップコードまたはディップ反を得ることが出来る。ディップ処理 液は、少なくともレゾルシン ホルムアルデヒド ラテックス (RFL)混合液を含有する 処理液が使用されることが好ましい。ディップ処理の詳細は特開 2006— 2327号公 報に記載されたものが好適である。  [0047] Further, the polyester fiber material in the present invention can be subjected to a dip treatment for imparting adhesiveness to rubber to obtain a dip cord or a dip anti-dip. As the dip treatment liquid, a treatment liquid containing at least a resorcinol formaldehyde latex (RFL) mixed liquid is preferably used. The details of the dip treatment are those described in JP-A 2006-2327.
実施例  Example
[0048] 以下、実施例で本発明をさらに具体的に説明する力 本発明はこれらの実施例に より限定されるものではない。なお、各種特性の評価方法は下記に従った。  [0048] Hereinafter, the ability to more specifically describe the present invention by way of examples. The present invention is not limited to these examples. In addition, the evaluation method of various characteristics followed the following.
[0049] (1)動的粘弾性  [0049] (1) Dynamic viscoelasticity
a.貯蔵弾性率 (Ε')  a.Storage modulus (Ε ')
ティ一.エイ'インスツルメント社製 DMA— Q800を用いて、糸長 lcm、 12000dtex となるように引き揃えた試料を、初荷重 O. 01N、 Minimum Dynamic ForceO. 0 0001N、 ForceTrackl25%、振幅 10 /ζ πι、周波数 11Hzの条件で、 200。C〜370 °Cの温度範囲について、 2°CZ分の昇温速度で測定し、貯蔵弾性率 (Ε')を求めた。 また、測定中に試料が溶融破断する場合は、  Using a DMA-Q800 manufactured by A'Instrument Co., Ltd., a sample aligned to a yarn length of 1cm and 12000dtex was loaded with an initial load of O. 01N, Minimum Dynamic ForceO. 0 0001N, ForceTrackl 25%, amplitude 10 200 under the conditions of / ζ πι and frequency 11Hz. The temperature range from C to 370 ° C was measured at a rate of temperature increase of 2 ° CZ, and the storage elastic modulus (Ε ') was determined. If the sample melts and breaks during measurement,
その温度を溶融破断温度 (°C)とした。  The temperature was defined as the melt fracture temperature (° C).
なお、測定試料は無撚りの延伸糸を使用することとし、撚糸コードあるいは簾織物の 場合は、それぞれを解撚等して無撚りの延伸糸の状態に戻し試料とするものとする。 b.損失正接 (tan δ )の主分散ピーク温度 In addition, the measurement sample shall use untwisted drawn yarn, In such a case, each sample is untwisted, etc., and returned to the state of an untwisted drawn yarn to be used as a sample. b. Main dispersion peak temperature of loss tangent (tan δ)
ティ一.エイ'インスツルメント社製 DMA— Q800を用いて、糸長 2cm、 1500dtexと なるように引き揃えた試料を、初荷重 0. 049N、 Minimum Dynamic ForceO. 0 0001N、 Force Track250%、振幅 10 μ m、周波数 110Hzの条件で、 30。C〜20 0°Cの温度範囲について、 2°CZ分の昇温速度で測定し、損失正接 (tan δ )の主分 散ピーク温度を求めた。  Using a DMA-Q800 manufactured by A'Instrument Co., Ltd., a sample aligned to a thread length of 2 cm and 1500 dtex was prepared using an initial load of 0.049 N, Minimum Dynamic ForceO. 0 0001 N, Force Track 250%, and amplitude. 30 under conditions of 10 μm and a frequency of 110 Hz. The temperature range of C to 200 ° C was measured at a rate of temperature increase of 2 ° CZ, and the main dispersion peak temperature of the loss tangent (tan δ) was determined.
なお、測定試料は無撚りの延伸糸を使用することとし、撚糸コードあるいは簾織物の 場合は、それぞれを解撚等して無撚りの延伸糸の状態に戻し試料とするものとする。  The measurement sample shall be untwisted drawn yarn, and in the case of twisted cords or woven fabrics, each shall be untwisted and returned to the state of untwisted drawn yarn.
[0050] (2)ゲル分率  [0050] (2) Gel fraction
試料 0. lg (秤量)に 25mlのパラクロロフエノール Zl, 1, 2, 2—テトラクロ口エタン = 3Z1の混合溶媒を加え 90°Cで 100分間浸漬した後、 30°Cで 30分間  Add 25ml of parachlorophenol Zl, 1, 2, 2-tetrachlorophethane ethane = 3Z1 mixed solvent to sample 0. lg (weighed), soak for 100 minutes at 90 ° C, then 30 minutes at 30 ° C
おき、ガラスフィルターで吸引ろ過した残渣を減圧乾燥し、不溶解物の重量%をゲル 分率 (%)とした。  The residue obtained by suction filtration with a glass filter was dried under reduced pressure, and the weight percent of the insoluble matter was defined as the gel fraction (%).
[0051] (3)強度  [0051] (3) Strength
オリエンテイツク社製「テンシロン」を用い、試料長 20mm (チャック間長さ)、伸長速 度 100%Z分の条件で、応力 歪曲線を雰囲気温度 20°C、相対湿度 65%条件下 で測定し、破断点での応力を繊度で割り返した値を強度 (cNZdtex)として求めた。 各値は 5回の測定の平均値を使用した。  Measure the stress-strain curve under the conditions of 20 ° C ambient temperature and 65% relative humidity under the conditions of a specimen length of 20mm (length between chucks), elongation speed of 100% Z using “Tensilon” manufactured by Orientix. The value obtained by dividing the stress at the breaking point by the fineness was obtained as the strength (cNZdtex). Each value was the average of 5 measurements.
なお、測定試料は無撚りの延伸糸を使用することとし、撚糸コードあるいは簾織物の 場合は、それぞれを解撚等して無撚りの延伸糸の状態に戻し試料とするものとする。  The measurement sample shall be untwisted drawn yarn, and in the case of twisted cords or woven fabrics, each shall be untwisted and returned to the state of untwisted drawn yarn.
[0052] (4)固有粘度〔IV〕  [0052] (4) Intrinsic viscosity [IV]
ポリマーを 0. 4gZdlの濃度でパラクロロフエノール Zl, 1, 2, 2—テトラクロ口エタ ン = 3/ 1の混合溶媒に溶解し 30°Cにお 、て測定した (dlZg)。  The polymer was dissolved in a mixed solvent of parachlorophenol Zl, 1, 2, 2-tetrachlorophthane = 3/1 at a concentration of 0.4 gZdl and measured at 30 ° C (dlZg).
[0053] (5)融点  [0053] (5) Melting point
試料 10mgを、窒素気流中、示差走査型熱量計 Mac Science社製 DSC 3100 Sを用いて 20°CZ分の昇温速度で発熱 ·吸熱曲線 (DSC曲線)を測定したときの、融 解に伴う吸熱ピークの頂点温度を融点 Tm (°C)とした。 [0054] (6)複屈折率 Accompanying the melting of a 10 mg sample in a nitrogen stream using a differential scanning calorimeter Mac Science DSC 3100 S with an exothermic / endothermic curve (DSC curve) measured at a rate of 20 ° CZ. The peak temperature of the endothermic peak was defined as the melting point Tm (° C). [0054] (6) Birefringence
偏向顕微鏡を用い、ベレックコンペンセーター法により測定した。  Using a deflection microscope, the measurement was performed by the Belek Compensator method.
[0055] (7)密度 [0055] (7) Density
硝酸カルシウム水溶液を用い、密度勾配管法により 30°Cで測定した。  Measurement was performed at 30 ° C. by a density gradient tube method using an aqueous calcium nitrate solution.
[0056] (8)紡糸状況 [0056] (8) Spinning status
紡糸時の状況を、糸切れを基準に評価した。 1時間以上糸切れが無ぐ安定した卷 取りが可能である場合を〇、サンプリングは可能である力 1時間未満で糸切れが発 生する場合を△、糸切れが多発し安定した卷取りが不可能である場合を Xとした。  The spinning situation was evaluated on the basis of yarn breakage. Yes, when stable take-up is possible without thread breakage for more than 1 hour. Sampling is possible. △: Case where thread breakage occurs in less than 1 hour. When it was impossible, X was assigned.
[0057] (9)ディップコード強伸度 [0057] (9) Dip code strength
JIS— L1017に準拠し、 20°C、 65%RHの温湿度管理された恒温室で 24時間以 上放置後、引張試験機により、強力、 2. OcNZdtex荷重時の伸度 (以下、中間伸度 と称する)、切断伸度を測定した。ここで、コード強度はコード強力をコード構成上の 基準繊度で割り返した値とする。例えば 1440dtexの原糸を 2本撚り合わせたものな ら基準繊度は 2880dtex、中間伸度の荷重は 57. 6Nとなる。  JIS—L1017 compliant, temperature-humidity controlled at 20 ° C and 65% RH for 24 hours or longer, and then strong with a tensile tester. 2. Elongation under load of OcNZdtex (hereinafter referred to as intermediate elongation) The cutting elongation was measured. Here, the cord strength is a value obtained by dividing the cord strength by the reference fineness in the cord configuration. For example, if two yarns of 1440dtex are twisted, the standard fineness is 2880dtex, and the intermediate elongation is 57.6N.
[0058] (10)ディップコード収縮率 [0058] (10) Dip code shrinkage
JIS— L1017に準拠し、 20°C、 65%RHの温湿度管理された恒温室で 24時間以 上放置後、乾燥機内において無荷重状態で 150°C、 30分熱処理を施し、この熱処 理の前後の試長差より求めた。  In accordance with JIS-L1017, after standing for 24 hours or more in a temperature-controlled room at 20 ° C and 65% RH, heat treatment is performed at 150 ° C for 30 minutes without load in the dryer. It was calculated from the difference in test length before and after the reason.
[0059] (11)ディップコード寸法安定性指標 [0059] (11) Dip code dimensional stability index
ディップコードの中間伸度と収縮率の和を寸法安定性の指標とした。この値が小さ The sum of the intermediate elongation and shrinkage of the dip cord was used as an index of dimensional stability. This value is small
Vヽ方が寸法安定性に優れることを意味する。 V ヽ means that dimensional stability is excellent.
[0060] (実施例 1〜3) [0060] (Examples 1 to 3)
反応器にテレフタル酸 100モル部、エチレングリコール 200モル部、三酸化アンチ モン 0. 025モノレ咅、安定剤として卜リエチノレアミン 0. 3モノレ咅をとり、 250°C、 内圧 2. 5kgZcm2で 150分間脱水反応を行った。その後、徐々に昇温および減圧 し 275°C、 0. ImmHgにて所定トルクまで重縮合反応を行った。反応終了後ポリマ 一を常法に従ってチップィ匕し、さらに 230°C、 0. OlmmHgの真空下で固相重合を 実施し、固有粘度 1. 05のポリエチレンテレフタレートチップを得た。このチップを常 法に従って乾燥させた後、溶融押出機に供給し、同時にエタストルーダー入口から 5 0〜60°Cに加温したジァリルモノグリシジルイソシァヌレートをポリマーに対して実施 例 1では 0. 5重量%、実施例 2では 1. 3重量%、実施例 3では 2. 5重量%になるよう 一定流量でそれぞれ添加した。混練りポリマーは孔径 0. 5mmのオリフィスを 336個 有する 310°Cの紡糸口金から吐出させ、 70°C、 1. OmZsecの冷却風にて冷却固化 せしめた糸条を、オイリング後、紡糸速度 3000mZ分で引き取り、巻き取ることなぐ 一段延伸温度 70°Cで 1. 30倍、更に二段延伸温度 90°Cで 1. 31倍延伸し、 210°C で熱処理、次いで 130°Cで 4. 0%弛緩処理させ、 1440dtex、 336フィラメントの延 伸糸を得た。この延伸糸を一定張力下、窒素雰囲気中で加速電圧 300keVの電子 線を 500kGy照射した。結果を表 1に示すが、動的粘弾性測定において 275°C以上 の温度でも溶融破断することなぐ E'が 0. IMPa以上を保持していること Take 100 mol parts of terephthalic acid, 200 mol parts of ethylene glycol, 0.025 monolayer of antimony trioxide and 0.3 monolayer of stabilizer as stabilizer, and dehydrate for 150 minutes at 250 ° C, internal pressure of 2.5 kgZcm2. Reaction was performed. Thereafter, the temperature was gradually increased and the pressure was reduced, and a polycondensation reaction was performed at 275 ° C. and 0.1 mmHg to a predetermined torque. After completion of the reaction, the polymer was chipped according to a conventional method, and further solid phase polymerization was performed under a vacuum of 230 ° C and 0. OlmmHg to obtain a polyethylene terephthalate chip having an intrinsic viscosity of 1.05. Always use this tip After drying according to the method, diaryl monoglycidyl isocyanurate fed to the melt extruder and heated to 50-60 ° C. at the same time from the etastruder inlet to the polymer is 0.5 in Example 1. It was added at a constant flow rate so that it was 1.5% by weight in Example 2, 1.3% by weight in Example 2, and 2.5% by weight in Example 3. The kneaded polymer was ejected from a spinneret at 310 ° C with 336 orifices with a hole diameter of 0.5 mm, cooled and solidified with a cooling air of 70 ° C, 1. OmZsec, and after spinning, the spinning speed was 3000 mZ. Takes in minutes and does not wind up 1.30 times at 70 ° C, 1st drawing temperature, 1.31 times at 90 ° C, 2nd drawing temperature, heat treatment at 210 ° C, then 4.0 at 130 ° C 4.0 % Relaxation treatment was performed to obtain a 1440 dtex, 336 filament drawn yarn. The drawn yarn was irradiated with an electron beam with an acceleration voltage of 300 keV under a constant tension in a nitrogen atmosphere at 500 kGy. The results are shown in Table 1. In the dynamic viscoelasticity measurement, E 'is kept at 0. IMPa or higher without melting and breaking even at a temperature of 275 ° C or higher.
が分力つた。更に、実施例 1、 2、 3の比較より、ジァリルモノグリシジルイソシァヌレー トの配合量を増やすことで、 275°Cの E'が高くなること、溶融破断温度が高くなる ことが分力つた。  However, it was divided. Furthermore, from the comparison of Examples 1, 2, and 3, by increasing the blending amount of diallyl monoglycidyl isocyanurate, E 'at 275 ° C can be increased and the melt fracture temperature can be increased. I was divided.
[0061] 次 、で、前記電子線照射後の延伸糸を 2本撚り合わせ、 1440dtexZ2、撚数 43  [0061] Next, two drawn yarns after the electron beam irradiation were twisted together to obtain 1440dtexZ2, twist number 43
X 43 (t/10cm)の生コードを得た。  A raw code of X 43 (t / 10cm) was obtained.
更に、前記生コードに対してゴムとの接着性を付与するため、第 1処理液としてプロ ックドイソシァネート水溶液、クロルフエノール'レゾルシン ホルムアルデヒド(RF)縮 合物の混合液中にコードを浸漬させた後、 120°Cのオーブンで 56秒間乾燥、次いで 0. 5cNZdtexの張力を与えながら 235°Cのオーブンで 45秒間熱処理を施した。引 き続き、第 2処理液としてレゾルシン一ホルムアルデヒド一ラテックス (RFL)、ブロック ドイソシァネート水溶液、エポキシィ匕合物の水分散液の混合液中にコードを浸漬させ た後、 120°Cオーブンで 56秒間乾燥、次いで 0. 5cNZdtexの張力を与えながら 23 5°Cのオーブンで 45秒間熱処理を施し、ディップコードを得た。  Furthermore, in order to give the green cord adhesion to rubber, the cord is immersed in a mixed solution of a blocked isocyanate solution and chlorophenol'resorcin formaldehyde (RF) as a first treatment liquid. Then, it was dried in an oven at 120 ° C for 56 seconds, and then heat-treated in an oven at 235 ° C for 45 seconds while applying a tension of 0.5 cNZdtex. Subsequently, the cord was dipped in a mixed solution of resorcinol-formaldehyde-latex (RFL), aqueous solution of blocked isocyanate, and aqueous dispersion of epoxy compound as the second treatment liquid, and then dried in an oven at 120 ° C for 56 seconds. Then, heat treatment was performed in an oven at 235 ° C. for 45 seconds while applying a tension of 0.5 cNZdtex to obtain a dip cord.
[0062] (実施例 4)  [Example 4]
紡糸速度を 2200mZ分、一段延伸倍率 1. 50倍、二段延伸倍率 1. 33倍とする以 外は実施例 1と同様の方法で延伸糸、電子線照射後の延伸糸、ディップコードを得 た。表 1に結果を示す。 275°Cの E'に大きな相違はないが、 T o;が高ぐディップコー の寸法安定性がやや悪化することが分かった。 A drawn yarn, a drawn yarn after electron beam irradiation, and a dip cord were obtained in the same manner as in Example 1 except that the spinning speed was 2200 mZ, the one-stage draw ratio was 1.50 times, and the two-stage draw ratio was 1.33 times. It was. Table 1 shows the results. There is no significant difference in E 'at 275 ° C, but D It was found that the dimensional stability of was slightly deteriorated.
[0063] (実施例 5) [0063] (Example 5)
実施例 1で、電子線の照射量を lOOOkGyとした結果を表 1に示す。実施例 1と比べ、 強度は若干低下するが、 275°Cの E'は高くなることが分力つた。  Table 1 shows the results of Example 1 where the electron beam dose was lOOOkGy. Compared to Example 1, the strength was slightly decreased, but it was found that E ′ at 275 ° C. was increased.
[0064] (比較例 1) [0064] (Comparative Example 1)
ジァリルモノグリシジルイソシァヌレートを添加しないこと以外は実施例 1と同様の方 法で延伸糸、電子線照射後の延伸糸、ディップコードを得た。表 1に結果を示すが、 268°Cで溶融破断が起こり、通常のポリエチレンテレフタレート繊維に lOOOkGyの 電子線を照射しても、 275°Cでの E'は保持出来ないことが分力つた。  A drawn yarn, a drawn yarn after electron beam irradiation, and a dip cord were obtained in the same manner as in Example 1 except that diaryl monoglycidyl isocyanurate was not added. The results are shown in Table 1. It was found that melt fracture occurred at 268 ° C, and that E 'at 275 ° C could not be maintained even when ordinary polyethylene terephthalate fiber was irradiated with an electron beam of lOOOkGy.
[0065] (比較例 2) [0065] (Comparative Example 2)
実施例 1で、電子線を照射しない結果を表 1に示すが、 268°Cで溶融破断が起こり 、 275°Cでの E'は保持出来ないことが分かった。  In Example 1, the result of not irradiating the electron beam is shown in Table 1. It was found that melt fracture occurred at 268 ° C, and E 'at 275 ° C could not be maintained.
[0066] (比較例 3) [0066] (Comparative Example 3)
紡糸速度を 500mZ分、一段延伸倍率 3. 5倍、二段延伸倍率 1. 23倍とする以外 は実施例 1と同様の方法で延伸糸、電子線照射後の延伸糸、ディップコードを得た。 表 1に結果を示す。 275°Cの E'に大きな相違はないが、 Τ αが 150°Cまで上昇し、デ ィ  A drawn yarn, a drawn yarn after electron beam irradiation, and a dip cord were obtained in the same manner as in Example 1 except that the spinning speed was 500 mZ, the one-stage draw ratio was 3.5 times, and the two-stage draw ratio was 1.23 times. . Table 1 shows the results. There is no significant difference in E 'at 275 ° C, but Τα rises to 150 ° C and
ップコードの寸法安定性が大きく悪ィ匕することが分力つた。  The dimensional stability of the zip cord was greatly reduced.
[0067] (比較例 4) [0067] (Comparative Example 4)
ジァリルモノグリシジルイソシァヌレートをポリマーに対して 3. 5重量%とし、溶融押 出を行なったが、発煙および糸切れが多発し、安定した巻き取りは不可能であった。  Diaryl monoglycidyl isocyanurate was adjusted to 3.5% by weight with respect to the polymer, and melt extrusion was performed. However, smoke and thread breakage occurred frequently, and stable winding was impossible.
[0068] [表 1]
Figure imgf000018_0001
産業上の利用可能性
[0068] [Table 1]
Figure imgf000018_0001
Industrial applicability
本発明の高耐熱ポリエステル繊維材料はポリエステル分子鎖間の少なくとも一部に 架橋構造を有して 、ることを特徴とし、ポリエステルの融点以上の高温にぉ 、ても熱 溶融することがなぐ力学特性の保持が可能であるので、高温下にさらされるゴム補 強用途、取り分け、ランフラットタイヤ用のタイヤコードに好適である。  The high heat-resistant polyester fiber material of the present invention is characterized in that it has a cross-linked structure in at least a part between polyester molecular chains, and has mechanical properties that do not melt even at high temperatures above the melting point of polyester. Therefore, it is suitable for rubber reinforcement applications exposed to high temperatures, particularly for tire cords for run-flat tires.

Claims

請求の範囲 The scope of the claims
[1] エチレンテレフタレート単位を主たる繰り返し単位とするポリエステル繊維であって、 動的粘弾性測定における下記 (a)および (b)の特性を同時に満足することを特徴と する高耐熱ポリエステル繊維材料。  [1] A high-heat-resistant polyester fiber material, which is a polyester fiber having ethylene terephthalate units as main repeating units and simultaneously satisfies the following characteristics (a) and (b) in dynamic viscoelasticity measurement.
(a) 275°Cの貯蔵弾性率 (E,)≥0. IMPa  (a) Storage elastic modulus at 275 ° C (E,) ≥0. IMPa
(b)損失正接 (tan δ )の主分散ピーク温度≤ 148°C  (b) Loss tangent (tan δ) main dispersion peak temperature ≤ 148 ° C
[2] 強度が 4. OcNZdtex以上であることを特徴とする請求項 1に記載の高耐熱ポリエ ステル繊維材料。  [2] The heat-resistant polyester fiber material according to claim 1, having a strength of 4. OcNZdtex or more.
[3] 請求項 1または 2に記載の高耐熱ポリエステル繊維材料を用いたポリエステルタイ ャコード。  [3] A polyester tire cord using the high heat-resistant polyester fiber material according to claim 1 or 2.
[4] 請求項 1または 2に記載の高耐熱ポリエステル繊維材料を用いたランフラットタイヤ 用ポリエステルタイヤコード。  [4] A polyester tire cord for a run-flat tire using the high heat-resistant polyester fiber material according to claim 1 or 2.
[5] 請求項 1または 2に記載の高耐熱ポリエステル繊維材料に、少なくともレゾルシン— ホルムアルデヒド ラテックス (RFL)混合液を含有する処理液でディップ処理が施さ れてなることを特徴とするポリエステルディップコード。  [5] A polyester dip cord, wherein the highly heat-resistant polyester fiber material according to claim 1 or 2 is subjected to a dip treatment with a treatment liquid containing at least a resorcin-formaldehyde latex (RFL) mixed liquid.
[6] タイヤコードを用途とする請求項 5に記載のポリエステルディップコード。 [6] The polyester dip cord according to claim 5, which is used for a tire cord.
[7] ランフラットタイヤ用タイヤコードを用途とする請求項 5に記載のポリエステルデイツ プコード。 [7] The polyester date cord according to claim 5, which is used for a tire cord for a run-flat tire.
[8] エチレンテレフタレート単位を主たる繰り返し単位とするポリエステルに、下記化合 物 1を 0. 2〜3. 0重量%配合し、紡糸速度 2000mZ分以上で溶融紡糸した未延伸 糸、該未延伸糸を熱延伸した延伸糸、該延伸糸を 1本以上撚り合わせた撚糸コード 、または該撚糸コードを製織した簾織物に、電離放射線を照射することを特徴とする 高耐熱ポリエステル繊維材料の製造方法。  [8] An undrawn yarn obtained by blending 0.2 to 3.0% by weight of the following compound 1 with a polyester having ethylene terephthalate units as a main repeating unit and melt-spun at a spinning speed of 2000 mZ or more, and the undrawn yarn A method for producing a highly heat-resistant polyester fiber material, characterized by irradiating ionizing radiation to a hot-drawn drawn yarn, a twisted cord obtained by twisting one or more of the drawn yarns, or a woven fabric woven with the twisted cord.
[化 1] o丫 N丫。 [Chemical 1] o 丫 N 丫.
o 未延伸糸の複屈折率が 0. 04以上であることを特徴とする請求項 8に記載の高耐 熱ポリエステル繊維材料の製造方法。 9. The method for producing a high heat resistance polyester fiber material according to claim 8, wherein the birefringence of the undrawn yarn is 0.04 or more.
未延伸糸の密度が 1. 340gZcm2以上であることを特徴とする請求項 8または 9 に記載の高耐熱ポリエステル繊維材料の製造方法。 10. The method for producing a high heat-resistant polyester fiber material according to claim 8, wherein the density of the undrawn yarn is 1.340 gZcm 2 or more.
PCT/JP2007/057541 2006-04-13 2007-04-04 Highly heat-resistant polyester fiber material, tire cord, dipped cord, and method for producing highly heat-resistant polyester fiber material WO2007119670A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-110401 2006-04-13
JP2006110401 2006-04-13
JP2006-215440 2006-08-08
JP2006215440A JP2007303056A (en) 2006-04-13 2006-08-08 Polyester fiber material having high heat-resistance, tire cord, dip cord and method for producing polyester fiber material having high heat-resistance

Publications (1)

Publication Number Publication Date
WO2007119670A1 true WO2007119670A1 (en) 2007-10-25

Family

ID=38609429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057541 WO2007119670A1 (en) 2006-04-13 2007-04-04 Highly heat-resistant polyester fiber material, tire cord, dipped cord, and method for producing highly heat-resistant polyester fiber material

Country Status (2)

Country Link
JP (1) JP2007303056A (en)
WO (1) WO2007119670A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107949667A (en) * 2015-09-08 2018-04-20 株式会社普利司通 Tire fiber, rubber/fiber composite and tire
CN113727866A (en) * 2019-05-28 2021-11-30 横滨橡胶株式会社 Tyre for vehicle wheels

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101031550B1 (en) 2008-12-19 2011-04-27 주식회사 효성 High performance radial tire
JP7087477B2 (en) * 2018-03-09 2022-06-21 横浜ゴム株式会社 Pneumatic tires
JP7087474B2 (en) * 2018-03-09 2022-06-21 横浜ゴム株式会社 Pneumatic tires
JP7028225B2 (en) * 2019-08-29 2022-03-02 横浜ゴム株式会社 Pneumatic tires

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133546A (en) * 1978-04-10 1979-10-17 Teijin Ltd Manufacturing of crosslinked polyester molded article
US4751143A (en) * 1984-09-20 1988-06-14 Celanese Corporation Process for treating chemically stabilized, adhesive activated polyester material, polyester material treated by the process and an improved finish composition
WO2002002356A1 (en) * 2000-07-03 2002-01-10 Bridgestone Corporation Pneumatic tire
JP2002105751A (en) * 2000-07-28 2002-04-10 Toyobo Co Ltd Polyester yarn for reinforcing rubber and dipped cord
WO2005111297A1 (en) * 2004-05-18 2005-11-24 Toyo Boseki Kabushiki Kaisha Reinforcement polyester cords for rubbers and process for production thereof
JP2006265745A (en) * 2005-03-22 2006-10-05 Toyobo Co Ltd Polyester fiber material for tire cord
WO2006118143A1 (en) * 2005-04-28 2006-11-09 Toyo Boseki Kabushiki Kaisha Heat-resistant crosslinked polyester fiber and fiber cord

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133546A (en) * 1978-04-10 1979-10-17 Teijin Ltd Manufacturing of crosslinked polyester molded article
US4751143A (en) * 1984-09-20 1988-06-14 Celanese Corporation Process for treating chemically stabilized, adhesive activated polyester material, polyester material treated by the process and an improved finish composition
WO2002002356A1 (en) * 2000-07-03 2002-01-10 Bridgestone Corporation Pneumatic tire
JP2002105751A (en) * 2000-07-28 2002-04-10 Toyobo Co Ltd Polyester yarn for reinforcing rubber and dipped cord
WO2005111297A1 (en) * 2004-05-18 2005-11-24 Toyo Boseki Kabushiki Kaisha Reinforcement polyester cords for rubbers and process for production thereof
JP2006265745A (en) * 2005-03-22 2006-10-05 Toyobo Co Ltd Polyester fiber material for tire cord
WO2006118143A1 (en) * 2005-04-28 2006-11-09 Toyo Boseki Kabushiki Kaisha Heat-resistant crosslinked polyester fiber and fiber cord

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107949667A (en) * 2015-09-08 2018-04-20 株式会社普利司通 Tire fiber, rubber/fiber composite and tire
EP3348680A4 (en) * 2015-09-08 2018-07-18 Bridgestone Corporation Fiber for tire, rubber/fiber complex, and tire
CN113727866A (en) * 2019-05-28 2021-11-30 横滨橡胶株式会社 Tyre for vehicle wheels
CN113727866B (en) * 2019-05-28 2023-08-01 横滨橡胶株式会社 Tire with a tire body

Also Published As

Publication number Publication date
JP2007303056A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
JP2008038295A (en) High heat-resistant polyester dipped cord and method for producing the same
WO2007119670A1 (en) Highly heat-resistant polyester fiber material, tire cord, dipped cord, and method for producing highly heat-resistant polyester fiber material
TWI453311B (en) Polyethylene naphthalate fiber and its manufacturing method
JP4342056B2 (en) Polyketone fiber and production method thereof
KR101917900B1 (en) Polyester fiber for rubber reinforcement and process for producing same
KR20120072860A (en) Process for preparing high modulus polyester tire cord having an excellent dimensional satability
EP3348681B1 (en) Fiber for tire, rubber/fiber complex, and tire
JP2002339159A (en) Polyester multifilament yarn
JP4617945B2 (en) Polyester fiber material for tire cord
EP1904552A1 (en) Polycondensate fibers
KR101734892B1 (en) Process for preparing polyethylene terephthalate filament having excellent dimensional stability
US20180244109A1 (en) Method for producing pef raw yarn, pef raw yarn, and tire
KR20050003123A (en) High tenacity polyethylene-2,6-naphthalate fibers having excellent processability, and process for preparing the same
JP3141862B2 (en) Tire cords and tires
JP4992610B2 (en) fiber
KR101551425B1 (en) High tenacity polyester filament and process for preparing polyester tire cord
JP5542085B2 (en) Method for producing pretreated polyester fiber
KR102400110B1 (en) Yarn for tire cord and tire cord
JP6659006B2 (en) Method for producing PEF raw yarn
JP5542084B2 (en) Polyester fiber for rubber reinforcement
JP2008285767A (en) Highly heat-resistant fiber material for reinforcing rubber and method for producing the same
KR101551421B1 (en) Process for preparing polyester multifilament for tire cord
KR102001061B1 (en) Polyethyleneterephthalate tire cord having good creep resistance
JP2022540380A (en) Raw yarn for tire cords and tire cords
JP2003342356A (en) Polytrimethylene terephthalate composition particle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07740977

Country of ref document: EP

Kind code of ref document: A1