WO2007119598A1 - 高速QoSハンドオーバ方法及びその方法で用いられる処理ノード - Google Patents

高速QoSハンドオーバ方法及びその方法で用いられる処理ノード Download PDF

Info

Publication number
WO2007119598A1
WO2007119598A1 PCT/JP2007/056998 JP2007056998W WO2007119598A1 WO 2007119598 A1 WO2007119598 A1 WO 2007119598A1 JP 2007056998 W JP2007056998 W JP 2007056998W WO 2007119598 A1 WO2007119598 A1 WO 2007119598A1
Authority
WO
WIPO (PCT)
Prior art keywords
qos
access point
handover
signaling
access
Prior art date
Application number
PCT/JP2007/056998
Other languages
English (en)
French (fr)
Inventor
Toyoki Ue
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US12/295,125 priority Critical patent/US20090180445A1/en
Priority to JP2008510892A priority patent/JPWO2007119598A1/ja
Publication of WO2007119598A1 publication Critical patent/WO2007119598A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • H04W40/36Modification of an existing route due to handover

Definitions

  • the present invention relates to a high-speed QoS handover method for a mobile terminal (mobile node) that performs wireless communication and a processing node used in the method, and in particular, a mobile Internet Protocol version 6 that is a next-generation Internet protocol.
  • the present invention relates to a high-speed QoS handover method in a mopile node that performs wireless communication using a protocol and a processing node used in the method.
  • NSIS Next Step In Signaling
  • NSI S Working group of the ETF
  • QoS Quality of Service
  • Recent Internet drafts describe the necessity and proposals for implementation of QoS signaling and mobility support in other NSIS in addition to general NSIS (see Non-Patent Documents 5 and 6 below) (see below). (See Non-Patent Documents 2 to 4).
  • Not all routers or terminals in the network are NSIS Entities (NE), but NEs have NSIS functionality. Not all NEs support QoS in mobility functions.
  • the NE with QoS function is called QNE (QoS NE).
  • QoS resources are reserved by each QNE along a path through which data is transferred.
  • a flow ID is used to identify a QoS packet guaranteed on the path. Since the flow ID includes the IP addresses of the data transmission side and the reception side (see Non-Patent Document 5 below), the flow ID changes when the IP address changes due to mobility movement such as handover.
  • session ID is used to identify a session between MN (Mobile Node) and CN (Correspondent Node). Therefore, the session ID remains the same even if the flow ID changes due to mobility movement.
  • a route (old path) 24 ′ and a route ( (New path) CRN (Crossover Node) 12 QNE located at the branch point with 34 ' has an important role to avoid double reservation in QoS handover.
  • CRN12 it is necessary to perform different processing for the overlapping path part (between CN6CT and CRN12 ') and the new path part (CRN12'-between 1 (between)).
  • Update and CRN12'—MN1 seed to reserve QoS state between T. Therefore, discovery of CRN12 'is one of the important issues in QoS handover. To avoid QoS interruption due to handover, Or, to minimize it, it must be processed quickly, but the CRN discovery takes time and the signaling load increases.
  • Non-Patent Document 7 proposes several techniques for solving such a problem.
  • the technology disclosed in Non-Patent Document 7 below suggests a proxy that realizes CRN discovery!
  • the MN sends a request including the old flow ID and session ID pair to the NAR (New Access Router) acting as a proxy.
  • the NAR sends a QU ERY message to the CN to find the upstream CRN.
  • Each QNE on the path gets a QUERY message, compares the old flow ID and session ID pair and checks whether it is a CRN.
  • the CN Upon receiving the QUERY message, the CN sends a QUERY message to the NAR to discover the downstream CRN that is not just the RE SPONSE message for the received QUERY message. It takes at least one RTT (Round Trip Time) to discover a CRN, and every time the MN performs a handover, the CRN must be discovered.
  • RTT Random Trip Time
  • a QNE In order to reduce the signaling load, one method is to specify a QNE as a CRN. A QNE on an old QoS path is specified as a CRN, and PAR (Previous Access Router) can be considered as the specified QNE. With this configuration, the signaling load can be reduced. Such techniques are disclosed in Patent Documents 1 and 2 below.
  • Non-Patent Document 1 NSIS WG (http://www.ietf.org/html.charters/nsis-charter.html)
  • Non-Patent Document 2 H. Shi haskar, Ed, "Requirements of a Quality of service (QoS) Solution for Mobile IP ", RFC3583, September 2003
  • Non-Patent Document 3 Sven Van den Bosch, Georgios Karagiannis and Andrew McDonald, "N SLP for Quality— of— Service signaling, draft-ietf-nsis-qos-nslp-06.txt, May 2005
  • Non-Patent Document 4 S.
  • Non-Patent Document 5 R. Hancock et al., “Next Steps in Signaling: Framework ", RFC4080, June 2005
  • Non-Patent Document 6 M. Brunner (Editor), Requirements for Signaling Protocols ", RFC372 6, April 2004
  • Patent Document 1 Japanese Patent No. 3441367 (Fig. 1)
  • Patent Document 2 Japanese Translation of Special Publication 2002-528976 (paragraphs 0024, 0032)
  • the present invention makes the QoS path reconfigured before handover as the optimum QoS path after handover as much as possible, and reduces the load of the re-route configuration of the QoS path performed after handover.
  • An object of the present invention is to provide a high-speed QoS handover method capable of minimizing the QoS interruption time and the processing node used in the method.
  • an access point in which a plurality of access routers, each constituting a subnet, are connected via a communication network to form a unique communicable area. And a plurality of access routers connected to each of the plurality of access routers, wherein the access router is connected to the access point through wireless communication with the access point within the communicable area.
  • a mobile terminal configured to perform communication of A high-speed QoS handover method by changing a QoS path when switching a connection from a first access point connected to one access router to a second access point connected to a second access router, the moving A step in which a terminal transmits first signaling for configuring a predetermined QoS path to a processing node that performs predetermined processing for reducing a load of processing for changing the QoS path after the handover; And the processing node receiving the first signaling generates a second signaling for setting a QoS of the predetermined QoS path based on the received first signaling, and is generated.
  • the QoS path reconfigured before handover becomes the optimal QoS path after handover as much as possible, and the load of re-route configuration of the QoS path performed after handover can be reduced.
  • the QoS path setting section performed immediately after handover is shortened, and the QoS interruption time can be minimized.
  • the second access router to which the second access point is connected from a terminal of a communication partner of the mobile terminal itself with the predetermined QoS path power And passing through the first access router to which the first access point is connected is a preferred aspect of the present invention.
  • the QoS path reconfigured before the handover can be the optimum QoS path after the handover as much as possible.
  • the first signaling includes information on the QoS path before the handover.
  • the QoS path can be reconfigured before handover.
  • the information of the QoS path before the handover is session identification information and flow identification information.
  • the QoS path can be reconfigured before handover.
  • the processing node after the predetermined QoS path is configured and the mobile terminal performs the handover, the processing node, the first arc
  • the difference between the first access router to which the access point is connected and the second access router to which the second access point is connected is the difference between the second QoS and the second QoS. It is a preferable aspect of the present invention to delete the QoS path between the second access router and the first access point to which the mobile terminal before the handover was connected. With this configuration, unnecessary QoS paths can be deleted, and wasted bandwidth consumption can be reduced.
  • a plurality of access routers each constituting a subnet are connected via a communication network, and an access point forming a unique communicable area is provided for each of the plurality of access routers.
  • the communication system is configured to communicate with the access router to which the access point is connected through wireless communication with the access point within the communicable area in the communication system connected to at least one of the access routers.
  • a processing node includes signaling generation means for generating the signaling of the first and second transmission means for transmitting the generated second signaling to a predetermined communication partner that performs the QoS setting of the predetermined QoS path. Is done.
  • the QoS path reconfigured before the handover becomes the optimal QoS path after the handover as much as possible, and the load on the reroute configuration of the QoS path performed after the handover can be reduced.
  • the QoS path setting section performed immediately after handover is shortened, and the QoS interruption time can be minimized.
  • the second access router and the second access point to which the second access point is connected from a terminal of a communication partner of the mobile terminal with the predetermined QoS path strength Passing through the first access router to which one access point is connected is a preferred aspect of the present invention.
  • the QoS path reconfigured before handover can be the optimal QoS path after handover as much as possible.
  • the first signaling includes information on the QoS path before the handover.
  • the QoS path can be reconfigured before handover.
  • the information of the QoS path before the handover is session identification information and flow identification information.
  • the QoS path can be reconfigured before the handover.
  • the predetermined QoS path is configured, and after the mobile terminal performs the handover, the second access point is connected in the predetermined QoS path.
  • the communication device further comprises path erasure means for erasing a QoS path between the second access router and the first access point to which the mobile terminal before the handover was connected. is there.
  • a plurality of access routers each constituting a subnet are connected via a communication network, and an access point forming a unique communicable area is provided for each of the plurality of access routers.
  • the communication system is configured to communicate with the access router to which the access point is connected through wireless communication with the access point within the communicable area in the communication system connected to at least one of the access routers.
  • a high-speed QoS handover method by changing a QoS path when switching a connection to an access point, which performs a predetermined process to reduce the load of the mobile terminal and the QoS path change process after the handover
  • the processing node that receives the first signaling and transmitting the first signaling for configuring a predetermined QoS path to the processing node.
  • the second signaling for setting the QoS of the predetermined QoS path is generated, and the generated second signaling is A high-speed QoS handover method including a step of transmitting to a predetermined communication partner that performs the QoS setting of a predetermined QoS path.
  • the predetermined access router to which the predetermined access point is connected from the terminal of the communication partner of the mobile terminal itself, the predetermined access path, the other If there is an access point connected during the movement from the access point to the predetermined access point, the connected access point is connected, the access router is connected, and the other access point is connected. It is a preferable aspect of the present invention to pass through the other access router and the access router to which the access point currently communicating is connected. With this configuration, the QoS path reconfigured before the handover can be the optimum QoS path after the handover as much as possible.
  • the first signaling includes information on the QoS path before the handover.
  • the QoS path can be reconfigured before handover.
  • the information of the QoS path before the handover is session identification information and flow identification information.
  • the QoS path can be reconfigured before handover.
  • the predetermined QoS path is configured, and after the mobile terminal performs the handover, the processing node and the mobile terminal are connected before the handover.
  • the access router is connected !, the access router connected after the handover of the mobile terminal is connected, and any one of the access routers is connected to the destination of the predetermined QoS path.
  • a plurality of access routers each constituting a subnet are connected via a communication network, and an access point forming a unique communicable area is provided for each of the plurality of access routers.
  • the communication system is configured to communicate with the access router to which the access point is connected through wireless communication with the access point within the communicable area in the communication system connected to at least one of the access routers.
  • a processing node is provided that includes transmission means for transmitting to a predetermined communication partner that performs the QoS setting of a predetermined QoS path.
  • the QoS path reconfigured before the handover becomes the optimal QoS node after the handover as much as possible, and the load of the reroute configuration of the QoS path performed after the handover can be reduced.
  • the QoS path setting section performed immediately after handover is shortened, and the QoS interruption time can be minimized.
  • the predetermined QoS path is connected to the predetermined access point from a terminal of a communication partner of the mobile terminal itself, the predetermined access router, the other
  • the connected access point is connected to the V, the access router, the other access point is connected, and the other is connected. Passing through the access router and the access router to which the currently communicating access point is connected is a preferred aspect of the present invention.
  • the first signaling includes information on the QoS path before the handover.
  • the QoS path can be reconfigured before handover.
  • the information of the QoS path before the handover is session identification information and flow identification information.
  • the QoS path can be reconfigured before the handover.
  • the destination access router in the predetermined QoS path It is a preferable aspect of the present invention to further include path erasure means for erasing the QoS path between the mobile terminal before the handover and the access point to which the mobile terminal was connected.
  • the high-speed QoS handover method of the present invention and the processing node used in the method have the above-described configuration, and the QoS path reconfigured before the handover becomes the optimum QoS path after the handover as much as possible.
  • the load on the re-route configuration of the QoS path to be performed can be reduced.
  • the QoS path setting section performed immediately after handover is shortened, and the QoS interruption time can be minimized.
  • FIG. 1 is a configuration diagram showing a configuration of a communication network in first and second embodiments of the present invention.
  • FIG. 2 is a sequence chart showing a signaling sequence in the fast QoS handover method according to the first embodiment of the present invention.
  • FIG. 3 is a configuration diagram showing a configuration of a processing node according to the first embodiment of the present invention.
  • FIG. 4 is a sequence chart showing a signaling sequence in the fast QoS handover method according to the second embodiment of the present invention.
  • FIG. 5 is a configuration diagram showing the configuration of a processing node according to the second embodiment of the present invention.
  • FIG. 6 is a configuration diagram showing a configuration of a communication network according to a third embodiment of the present invention.
  • FIG. 7 is a sequence chart showing a signaling sequence in the fast QoS handover method according to the third embodiment of the present invention.
  • FIG. 8 is a configuration diagram showing a configuration of a processing node according to the third embodiment of the present invention.
  • FIG. 9 is a sequence chart showing another signaling sequence in the fast QoS handover method according to the third embodiment of the present invention.
  • FIG. 11 Diagram showing QoS path immediately after handover of a mobile terminal in a conventional communication network
  • FIG. 1 is a configuration diagram showing a configuration of a communication network according to the first embodiment of the present invention.
  • FIG. 2 is a sequence chart showing a signaling sequence in the fast QoS handover method according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram showing the configuration of the processing node according to the first embodiment of the present invention.
  • the communication network is located between the MN (mobile terminal) 10, the communication partner CN 60 of MN10, and between MN10 and CN60, and relays signaling (also called signaling messages) and data packets between MN10 and CN60 QNE11, 12, 13, 14, AP (Access Point) 22, 23, 23, which is connected to PAR21 and NA R31, PAR21 and NAR31, which are access routers constituting each subnet 20, 30 and forms a unique communicable area It consists of 32 and 33.
  • the configuration of the communication network here is merely an example, and the present invention is not limited to this.
  • the MN 10 is currently in the subnet 20, is connected to the AP 22 wirelessly, and communicates with the CN 60 through a route (QoS path) 24.
  • the MN 10 communicates with the CN 60 through the AP 22, PAR 21, QNE 11, QNE 12, and QNE 13 on the QoS path 24.
  • the processing node that performs processing associated with the QoS path change according to the first embodiment of the present invention is set to the subnet.
  • the case where NAR31 belonging to G30 is specified will be described.
  • PAR21 belonging to subnet 20 is specified as a processing node will be described.
  • the processing node is not limited to NAR31 or PAR21, but may be another QNE (proxy).
  • the MN 10 moves from the subnet 20 to the subnet 30 (handover), the MN 10 makes a route (QoS path) via the PAR21 to which the NAR31 and the AP22 are connected from the CN60 to the NAR31 before the handover 64 (
  • signaling for configuring the route from CN60 to AP22 is transmitted.
  • This signaling includes QoS path information such as the session ID and flow ID of the current QoS path 24! /.
  • Y that is the session ID of QoS path 24
  • X that is the flow ID are included in the signaling.
  • the session ID of the new route (QoS path) 34 after handover of the MN 10 is Y and the flow ID is Z.
  • the session ID remains the same as the MN 10 moves.
  • the NAR 31 Upon receiving the signaling, the NAR 31 starts two processes.
  • the first process is a process for configuring a QoS path toward NAR3 1 force CN60.
  • the NAR 31 sends signaling for configuring the QoS path (setting the QoS state) to C N60 (corresponding to the predetermined communication partner described above).
  • QNE14, QNE12, and QNE13 located between NAR31 and CN60 a new QoS path state is set based on the transmitted signaling, and the QoS path (route 64) is set between CN60 and NAR31. Part of the QoS path).
  • the configured QoS path is the optimal path between NAR31 and CN60.
  • the second process is a process of configuring a temporary QoS path (QoS path to AP22) from NAR31 to PAR21.
  • the NAR 31 sends a signaling to the PAR21 (corresponding to the above-mentioned predetermined communication partner) for temporary QoS path configuration (QoS state setting).
  • temporary QoS path state setting is performed by the transmitted signaling, and a temporary QoS path (part of the route 64) is configured between the AP 22 and the NAR 31.
  • the configured temporary QoS path is deleted by NAR31 or PAR21 when the handover of MN10 is completed. This makes it unnecessary. It is possible to prevent unnecessary bandwidth consumption due to the QoS path.
  • the signaling sequence in the above process will be described below with reference to FIG.
  • a QoS path 24 (old QoS path) is already configured between the MN 10 and the CN 60. From this state, when the MN 10 decides to perform a handover, the MN 10 transmits signaling including a session ID and a flow ID to the NAR 31 (step S201). Note that the signaling to be transmitted may include information requesting to become a branch point between the re-routed QoS path 64 and the new QoS path 34 after the handover of the MN 10.
  • NAR31 Upon receiving the signaling from MN10, NAR31 sends signaling for temporary QoS path configuration (QoS state setting) from NAR31 to AP22 to PAR21 (step S202), and from NAR31 to CN60 Signaling for QoS path configuration (QoS state setting) is sent to CN 60 (step S 203).
  • the state setting of the re-routed QoS path 64 is performed by these signaling, and the QoS path 64 is configured between the CN 60 and the AP 22.
  • the temporary QoS path to the NAR3 1 AP22 is deleted, and a new QoS path 34 is formed between the CN60 and the AP32.
  • the QoS path after the handover of the MN 10 becomes an optimum QoS path as much as possible, and the load of the re-route configuration of the QoS path performed after the handover can be reduced.
  • the QoS path setting section performed immediately after handover is PAR2r—NAR3—AP32′—MN1CT as shown in FIG. 11, whereas in the first embodiment of the present invention, as shown in FIG. NAR31—AP32—MN10. Therefore, the time required for QoS path configuration is shortened, and the QoS interruption time can be shortened.
  • the generated QoS path passes through both PAR21 and NAR31, it is also useful in the so-called “ping-pong phenomenon” in which MN10 moves back and forth between PAR21 and NAR31.
  • the NAR 31 belonging to the subnet 30 after the handover of the MN 10 is taken as an example of the processing node.
  • the NAR 31 includes a receiving unit 301, a transmitting unit 302, a signaling generating unit 303, a path erasing unit 304, and a storage unit 305. It is configured.
  • the receiving unit 301 receives signaling for configuring the QoS path 64 from the MN 10 described above, packets exchanged between the CN 60 and the MN 10, and the like.
  • the transmission unit 302 transmits signaling for configuring the QoS path 64 generated by the signaling generation unit 303 described later, a packet exchanged between the CN 60 and the MN 10, and the like.
  • the signaling generation unit 303 Based on the signaling for configuring the QoS path 64 transmitted from the MN 10 received by the receiving unit 301, the signaling generation unit 303 performs the QoS path between the CN 60 and the NAR 31 and the NAR 31 and the AP 22 Signaling for creating a QoS path between them is generated.
  • the path erasure unit 304 erases a temporary QoS path from NAR 31 to AP 22 when the MN 10 completes the handover after the QoS path 64 is configured between the CN 60 and the AP 22. This temporary QoS path deletion may be performed by PAR21 or other devices.
  • the storage unit 305 stores information such as a control program for controlling the operation of the NAR 31 and data generated when the NAR 31 performs processing.
  • FIG. 4 is a sequence chart showing a signaling sequence in the fast QoS handover method according to the second embodiment of the present invention.
  • FIG. 5 is a configuration diagram showing a configuration of a processing node according to the second embodiment of the present invention.
  • a route (old QoS path) 24 is configured between the MN 10 and the CN 60 before handover.
  • the MN 10 determines to perform a handover, the MN 10 transmits signaling (including a session ID, a flow ID, etc.) to the PAR 21 (step S401). Then, PAR21 that received the signaling receives NAR31 (the above-mentioned predetermined communication partner). Signaling for QoS state setting is transmitted (step S402). The NAR 31 that has received the signaling similarly transmits signaling for setting the QoS state to the CN 60 (step S403).
  • signaling including a session ID, a flow ID, etc.
  • QNE14, QNE12, and QNE13 which are located between NAR31 and CN60, set a new QoS path state based on the transmitted signaling, and rerouted QoS path 64 becomes CN60 and AP60. Configured between 22.
  • the temporary QoS path from the NAR 31 to the AP 22 is deleted, and a new QoS path 34 is formed between the CN 60 and the AP 32.
  • the QoS path after the handover of the MN 10 becomes the optimum QoS path as much as possible, and the load of the re-route configuration of the QoS path performed after the handover can be reduced.
  • the QoS path setting interval performed immediately after handover is conventionally PAR21′-NAR31′AP32′— ⁇ 1 ( ⁇ as shown in FIG. 11, whereas in the second embodiment of the present invention, FIG.
  • NAR31—AP32—MN10 which means that the time required for QoS path configuration is shortened and the QoS interruption time can be shortened, and the generated QoS paths are both PAR21 and NAR31. Therefore, it is also useful in the so-called “ping-pong phenomenon” where MN10 moves back and forth between PAR21 and NAR31.
  • the PAR 21 includes a receiving unit 501, a transmitting unit 502, a signaling generating unit 503, a path erasing unit 504, and a storage unit 505.
  • the receiving unit 501 receives signaling for configuring the QoS path 64 from the MN 10 described above, packets exchanged between the CN 60 and the MN 10, and the like.
  • the transmitting unit 502 transmits signaling for configuring the QoS path 64 generated by the signaling generating unit 503 described later, a packet exchanged between the CN 60 and the MN 10, and the like.
  • the signaling generating unit 503 is configured between the CN 60 and the AP 22. Signaling for constructing the QoS path is generated. Then, the NAR 31 that receives the generated signaling generates signaling for configuring a QoS path between the CN 60 and the NAR 31 itself based on the received signaling, and transmits the generated signaling to the CN 60.
  • the node elimination means 504 creates a temporary QoS path from NAR31 to AP22 when MN1 0 starts and completes handover after QoS path 64 is configured between CN60 and AP22. It is to be erased. Note that this temporary QoS path deletion may be performed by the NAR 31 or another device.
  • the storage means 505 stores a control program for controlling the operation of the PAR 21 and information such as data generated when the PAR 21 performs processing.
  • FIG. 6 is a configuration diagram showing a configuration of a communication network according to the third embodiment of the present invention.
  • FIG. 7 is a sequence chart showing a signaling sequence in the fast QoS handover method according to the third embodiment of the present invention.
  • FIG. 8 is a block diagram showing the configuration of the processing node according to the third embodiment of the present invention.
  • FIG. 9 is a sequence chart showing another signaling sequence in the fast QoS handover method according to the third embodiment of the present invention.
  • the communication network is located between the MN (mobile terminal) 610, the communication partner CN660 of the MN610, and between the MN610 and CN660, and relays signaling (also called signaling messages) and data packets between the MN610 and CN660.
  • the MN 610 is currently in the subnet 620, wirelessly connected to the AP 622, and route (QoS path) 6 24 to communicate with CN660. That is, the MN 610 communicates with the CN 660 through the AP 622, PAR621, QNE611, QNE612, and QNE613 on the QoS path 624! /.
  • [NAR2] 641 belonging to subnet 640 is designated as a processing node that performs processing associated with QoS path change according to the third embodiment of the present invention.
  • the processing node is not limited to [NAR1] 631, [NAR2] 641, PAR621, but may be other QNEs (proxy)! /.
  • MN 610 When MN 610 moves from subnet 620 to subnet 630 (non-nono), MN 610 will respond to [NAR2] 641 with CN660 force [NAR2] 641, [NAR 1] 631, and so on before handover. 70 3 622 is connected! 3
  • This signaling includes QoS path information such as the session ID and flow ID of the current QoS path 624. Specifically, as shown in FIG. 6, for example, Y that is the session ID of QoS path 624 and X that is the flow ID are included in the signaling.
  • the session ID of the new route (QoS path) 634 after the handover of the MN 6 10 is Y, and the flow ID is Z. As described above, the session ID remains the same even when the MN 610 moves.
  • [NAR2] 641 Upon receiving the signaling, [NAR2] 641 starts two processes.
  • the first process is a process that configures the QoS path from [NAR2] 641 to CN660 (corresponding to the above-mentioned predetermined communication partner).
  • [NAR2] 641 transmits signaling for configuring the QoS path (QoS state setting) toward CN660.
  • QNE615, QNE612, and QNE613 located between NAR21641 and CN660 a new QoS path state is set based on the transmitted signaling, and the QoS path between CN660 and [NAR2] 641 ( A part of the QoS path of the route 664).
  • the configured QoS path is the optimal path between [NAR2] 641 and CN660.
  • the second process is to move a temporary QoS path (QoS path to AP622) via [NAR1] 631 toward [NAR2] 641 force et al. It is a process to configure. Specifically, [NAR2] 641 is routed via [NAR1] 631 to PAR62 Sending signaling to make a temporary QoS path configuration (QoS state setting). Then, the state of the temporary QoS path is set by the transmitted signaling, and a temporary QoS path (part of the route 664) is configured between the AP 622 and [NAR2] 641.
  • the path change processing can be omitted in the next [NAR1] 631. it can. Also, some of the configured QoS paths from [NAR1] 631 to AP6222 are deleted by [NAR1] 631 or PAR621 when the handover of the MN 610 is completed. This prevents unnecessary bandwidth consumption due to unnecessary QoS paths.
  • the signaling sequence in the above-described processing will be described with reference to FIG.
  • QoS path 624 (old QoS path) has already been configured between MN 610 and CN 660. From this state, when MN 610 decides to perform handover, MN 610 transmits signaling including a session ID and a flow ID to [NAR2] 641 (step S 701).
  • [NAR2] 641 that has received the signaling from MN610 sends [NAR2] 641 signaling to [NAR1] 631 to configure the QoS path (QoS state setting) to AP622.
  • [NAR1] 631 that has received the signaling transmits the received signaling to PAR621 (step S703).
  • [NAR2] 641 also sends signaling for configuration of the QoS path (QoS state setting) from [NAR2] 641 to CN 660 to CN 660 (step S704).
  • the state of the re-routed QoS path 664 is set by these signaling, and the QoS node 664 is configured between the CN 660 and the AP 622.
  • the QoS path from [NAR1] 631 to AP622 is deleted, and a new QoS node 634 (new QoS path a) is configured between CN660 and AP632. Is done.
  • the QoS path between [NAR2] 641 and AP632 is deleted, and a new QoS path (route) between CN660 and AP642 644 ( A new QoS path b) is configured.
  • the QoS path after handover of MN610 becomes the best possible QoS path, and the load on the re-route configuration of the QoS path performed after handover is reduced. Can be made.
  • the QoS path setting section performed immediately after handover is PAR621-NAR631-AP632-MN610 in the past, whereas in the third embodiment of the present invention, as shown in FIG. 6, [NAR1] 631-AP632 — Shortened with MN610. For this reason, the time required for QoS path configuration is shortened, and the QoS interruption time can be shortened.
  • the [NAR2] 641 belonging to subnet 640 is taken as an example of a processing node.
  • the [NAR2] 641 includes a receiving unit 801, a transmitting unit 802, a cylindering generating unit 803, a path erasing unit 804, and a storage unit 805.
  • the receiving unit 801 receives signaling for configuring the QoS path 664 from the MN 610 described above, a packet exchanged between the CN 660 and the MN 610, and the like.
  • the transmission means 802 transmits signaling for configuring the QoS path 664 generated by the signaling generation means 803 described later, a bucket exchanged between the CN 660 and the MN 610, and the like.
  • the signaling generation unit 803 receives the QoS path between the CN 660 and the [NAR2] 641 and [NAR2] 641 based on the signaling for configuring the QoS path 664 transmitted from the MN 610 received by the reception unit 801.
  • NAR2] Generates signaling for configuring the QoS path between 641 and AP 622, respectively. For example, when the MN 610 repeats the handover after the QoS path 664 is configured between the CN 660 and the AP 622, and the handover from the AP 632 in the subnet 630 to the AP 642 in the subnet 640 is completed, The temporary QoS path from [NAR2] 641 to [NAR1] 631 is deleted. This temporary QoS path deletion may be performed by [NAR1] 631 or other devices.
  • the storage means 805 stores information such as a control program for controlling the operation of [NAR2] 641 and data generated when [NAR2] 641 performs processing.
  • the PAR621 Upon receiving the signaling from the MN 610, the PAR621 sends the signaling for the QoS path configuration (QoS state setting) up to CN660 to the CN660 (corresponding to the above-mentioned predetermined communication partner).
  • the QoS path configuration QoS state setting
  • [NAR1] 631 that has received the signaling transmits the received signaling to [NAR2] 641 (step S903)
  • [NAR2] 641 that has received the signaling transmits the received signaling to CN66 0 (step S904).
  • the state of the rerouted QoS path 664 is set by these signaling, and the QoS node 664 is configured between the CN 660 and the AP 622.
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI that is an integrated circuit. These may be individually chipped, or may be chipped to include some or all of them. Here, it is sometimes called IC, system LSI, super LS I, or ultra LSI, depending on the difference in power integration of LSI.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • FPGAs Field Programmable Gate Arrays
  • reconfigurable processors that can reconfigure the connection and settings of circuit cells inside the LSI may be used.
  • the high-speed QoS handover method according to the present invention and the processing node used in the method are such that the QoS path reconfigured before the handover becomes the optimum QoS path after the handover as much as possible, and the QoS path reroute configuration performed after the handover
  • the load can be reduced, and the QoS path setup section to be performed immediately after handover is shortened, and the QoS interruption time can be minimized, so that a high-speed QoS handover method for a mobile terminal (mopile node) performing wireless communication and
  • This method can be used for processing nodes used in that method, and in particular, a high-speed QoS handover method in a mopile node that performs wireless communication using the mobile Internet Protocol version 6 (Mobile IPv6) protocol, which is a next-generation Internet protocol, and its Useful for processing nodes used in the method.
  • Mobile IPv6 mobile Internet Protocol version 6

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 ハンドオーバ前に再構成されたQoSパスができる限りハンドオーバ後の最適なQoSパスとなり、ハンドオーバ後に行うQoSパスの再ルート構成の負荷を低減させることができ、ハンドオーバ直後に行うQoSパス設定区間が短くなり、QoS中断時間を最小にすることができる高速QoSハンドオーバ方法及びその方法で用いられる処理ノードを提供する技術が開示され、その技術によれば移動端末10が、ハンドオーバ後のQoSパスの変更処理の負荷を低減させるための所定の処理を行う処理ノードに対して、所定のQoSパスを構成させるための第1のシグナリングを送信するステップと、第1のシグナリングを受信する処理ノードが、受信した第1のシグナリングに基づいて、所定のQoSパスのQoS設定をするための第2のシグナリングを生成し、生成された第2のシグナリングを所定のQoSパスのQoS設定を行う所定の通信相手に送出するステップとを有する。

Description

明 細 書
高速 QoSハンドオーバ方法及びその方法で用いられる処理ノード 技術分野
[0001] 本発明は、無線通信を行う移動端末 (モバイルノード)の高速 QoSハンドオーバ方 法及びその方法で用いられる処理ノードに関し、特に、次世代インターネットプロトコ ルであるモパイル IPv6 (Mobile Internet Protocol version 6)プロトコルを利用した無 線通信を行うモパイルノードにおける高速 QoSハンドオーバ方法及びその方法で用 Vヽられる処理ノードに関する。
背景技術
[0002] 新たなシグナリングプロトコルとして、 NSIS (Next Step In Signaling)力 ETFの NSI Sワーキンググループによって標準化されつつある(下記の非特許文献 1を参照)。 N SISは QoS (Quality of Service)リソース予約において特に有効であると期待されて いる。最近のインターネットドラフトには、一般的な NSIS (下記の非特許文献 5及び 6 を参照)だけでなぐ他の NSISにおける QoSシグナリングやモビリティサポートの実 施の必要性や提案が記載されている(下記の非特許文献 2から 4を参照)。ネットヮー クにおけるルータ若しくはターミナルのすべてが NSIS Entities (NE)ではないが、 NEは NSIS機能を有している。なお、 NEのすべてがモビリティ機能における QoSを サポートするわけではない。ここでは、 QoS機能を有する NEを QNE (QoS NE)と呼
[0003] QoSリソースは、転送されるデータを通すパスに沿ってそれぞれの QNEで予約さ れる。パス上で保証された QoSのパケットを識別するためにフロー IDが用いられる。 フロー IDはデータ送信側と受信側の IPアドレスを含んで 、る(下記の非特許文献 5を 参照)ので、フロー IDは IPアドレスがハンドオーバなどのモビリティの移動により変わ ると変化する。一方、セッション IDは MN (Mobile Node)と CN (Correspondent Node) との間のセッションを識別するために用いられる。そのため、セッション IDはフロー ID がモビリティの移動により変化しても同じままである。
[0004] ここで、図 10に示すように、ハンドオーバが起こると、経路(古いパス) 24'と経路( 新たなパス) 34'との分岐点に位置する QNEである CRN (Crossover Node) 12Ίま、 QoSハンドオーバで二重予約を避けるために重要な役割を有する。 CRN12 ま、重 なり合うパス部分(CN6CT— CRN12'間)と新たなパス部分(CRN12'— ΜΝ1(Τ間 )で異なる処理をする必要がある。すなわち、 CN6(T—CRN12'間における状態の 更新と CRN12'—MN1(T間における QoSの状態予約をする必要がある。したがつ て、 CRN12'の発見は QoSハンドオーバで重要な問題の 1つである。ハンドオーバ による QoS中断を避けるため、若しくは最小限にするため、すばやく処理しなければ ならない。し力しながら、 CRN発見には時間を要し、シグナリング負荷も大きくなる。
[0005] そこで、このような問題を解消するためのいくつかのテクニックが提案されている。例 えば、下記の非特許文献 7に開示されている技術がある。下記の非特許文献 7に開 示されて!/、る技術ではすばゃ 、CRN発見を実現するプロキシを提案して!/、る。 MN はプロキシとして振舞う NAR (New Access Router)に、古いフロー IDとセッション ID の組を含めたリクエストを送信する。 NARは上流方向の CRNを発見するために QU ERYメッセージを CNに送信する。パス上のそれぞれの QNEは QUERYメッセージ を取得し、古いフロー IDとセッション IDの組を比較し、自身が CRNか否かをチェック する。 QUERYメッセージを受けると、 CNは、受けた QUERYメッセージに対する RE SPONSEメッセージだけでなぐ下流方向の CRNを発見するための QUERYメッセ ージを NARに送信する。 CRNの発見には少なくとも 1回の RTT(Round Trip Time) がかかり、 MNがハンドオーバをするたびに CRNの発見をしなければならず負荷が か 、 。
[0006] そこで、シグナリングの負荷を低減させるため、 1つの方法として CRNとしてある QN Eを指定する方法がある。ある CRNとして古い QoSパス上の QNEが指定され、その 指定される QNEとして、例えば PAR (Previous Access Router)が考えられる。このよ うに構成することにより、シグナリングの負荷を低減させることができる。このような技術 は下記の特許文献 1及び 2に開示されている。
非特許文献 1 :NSIS WG (http://www.ietf.org/html.charters/nsis-charter.html) 非特干文献 2 : H. し haskar, Ed, "Requirements of a Quality of service (QoS) Solution for Mobile IP", RFC3583, September 2003 非特許文献 3 : Sven Van den Bosch, Georgios Karagiannis and Andrew McDonald, "N SLP for Quality— of— Service signalling , draft-ietf-nsis-qos-nslp-06.txt, May 2005 非特許文献 4 : S. Lee, et al., "Applicability Statement of NSIS Protocols in Mobile E nvironments", draft— ietf—nsis— applicability— mobility— signaling— 01. txt, February 2005 非特許文献 5 : R. Hancock et al.,"Next Steps in Signaling: Framework", RFC4080, J une 2005
非特許文献 6 : M. Brunner (Editor), Requirements for Signaling Protocols", RFC372 6, April 2004
f^^ j¾ : T.Ue,T.Sanda,K.Honma, QoS Mobility Support with Proxy-assisted Fast Crossover Node Discovery", WPMC2004,September 2004
特許文献 1 :特許第 3441367号公報(図 1)
特許文献 2:特表 2002— 528976号公報(段落 0024、 0032)
[0007] し力しながら、図 11に示すような、上記の特許文献 1及び 2に開示された技術にお けるネットワークにおいて、ハンドオーバ直後の QoSパス 64Ίま、ほとんど古い QoS パス 24^と同じであり最適なパスではない。それゆえ、 ΜΝ10Ίまハンドオーバ後に Q oSパス 34'を再度構成する必要があり負荷力かかってしまうという問題がある。
発明の開示
[0008] 本発明は、上記の問題点に鑑み、ハンドオーバ前に再構成された QoSパスができ る限りハンドオーバ後の最適な QoSパスとなり、ハンドオーバ後に行う QoSパスの再 ルート構成の負荷を低減させることができ、ハンドオーバ直後に行う QoSパス設定区 間が短くなり、 QoS中断時間を最小にすることができる高速 QoSハンドオーバ方法 及びその方法で用いられる処理ノードを提供することを目的とする。
[0009] 上記目的を達成するために、本発明によれば、それぞれがサブネットを構成する複 数のアクセスルータが通信ネットワークを介して接続されており、固有の通信可能領 域を形成するアクセスポイントが前記複数のアクセスルータのそれぞれに少なくとも 1 つ以上接続されて 、る通信システムで、前記通信可能領域内で前記アクセスポイント との無線通信を通じて、前記アクセスポイントが接続されて ヽる前記アクセスルータと の通信を行うよう構成されている移動端末が、ハンドオーバにより、現在通信中の、第 1のアクセスルータに接続する第 1のアクセスポイントから、第 2のアクセスルータに接 続する第 2のアクセスポイントへ接続を切り替える際の QoSパスの変更による高速 Qo Sハンドオーバ方法であって、前記移動端末が、前記ハンドオーバ後の前記 QoSパ スの変更処理の負荷を低減させるための所定の処理を行う処理ノードに対して、所 定の QoSパスを構成させるための第 1のシグナリングを送信するステップと、前記第 1 のシグナリングを受信する前記処理ノードが、受信した前記第 1のシグナリングに基 づいて、前記所定の QoSパスの QoS設定をするための第 2のシグナリングを生成し、 生成された前記第 2のシグナリングを前記所定の QoSパスの前記 QoS設定を行う所 定の通信相手に送出するステップとを有する高速 QoSハンドオーバ方法が提供され る。この構成により、ハンドオーバ前に再構成された QoSパスができる限りハンドォー バ後の最適な QoSパスとなり、ハンドオーバ後に行う QoSパスの再ルート構成の負 荷を低減させることができる。また、ハンドオーバ直後に行う QoSパス設定区間が短く なり、 QoS中断時間を最小にすることができる。
[0010] また、本発明の高速 QoSハンドオーバ方法において、前記所定の QoSパス力 前 記移動端末自身の通信相手の端末から、前記第 2のアクセスポイントが接続されて 、 る前記第 2のアクセスルータ及び前記第 1のアクセスポイントが接続されている前記第 1のアクセスルータを経由することは、本発明の好ましい態様である。この構成により 、ハンドオーバ前に再構成された QoSパスができる限りハンドオーバ後の最適な Qo Sパスとなることができる。
[0011] また、本発明の高速 QoSハンドオーバ方法において、前記第 1のシグナリングが前 記ハンドオーバ前の QoSパスの情報を含むことは、本発明の好ましい態様である。こ の構成により、ハンドオーバ前に QoSパスを再構成することができる。
[0012] また、本発明の高速 QoSハンドオーバ方法において、前記ハンドオーバ前の QoS パスの前記情報がセッション識別情報及びフロー識別情報であることは、本発明の 好ましい態様である。この構成により、ハンドオーバ前に QoSパスを再構成することが できる。
[0013] また、本発明の高速 QoSハンドオーバ方法において、前記所定の QoSパスが構成 され、前記移動端末が前記ハンドオーバをした後、前記処理ノード、前記第 1のァク セスポイントが接続されて 、る前記第 1のアクセスルータ、前記第 2のアクセスポイント が接続されて ヽる前記第 2のアクセスルータのうちの ヽずれかが、前記所定の QoS パスのうち、前記第 2のアクセスルータと前記ハンドオーバ前の前記移動端末が接続 していた前記第 1のアクセスポイントとの間の QoSパスを消去することは、本発明の好 ましい態様である。この構成により、不必要となった QoSパスを消去でき、無駄な帯 域の消費を減らすことができる。
[0014] また、本発明によれば、それぞれがサブネットを構成する複数のアクセスルータが 通信ネットワークを介して接続されており、固有の通信可能領域を形成するアクセス ポイントが前記複数のアクセスルータのそれぞれに少なくとも 1つ以上接続されて 、る 通信システムで、前記通信可能領域内で前記アクセスポイントとの無線通信を通じて 、前記アクセスポイントが接続されて ヽる前記アクセスルータとの通信を行うよう構成 されている移動端末力 ハンドオーバにより、現在通信中の、第 1のアクセスルータに 接続する第 1のアクセスポイントから、第 2のアクセスルータに接続する第 2のアクセス ポイントへ接続を切り替える際の QoSパスの変更による高速 QoSハンドオーバ方法 で用いられる処理ノードであって、所定の QoSパスを構成させるための第 1のシグナ リングを前記移動端末力 受信する受信手段と、受信された前記第 1のシグナリング に基づ!/、て、前記所定の QoSパスの QoS設定をするための第 2のシグナリングを生 成するシグナリング生成手段と、生成された前記第 2のシグナリングを前記所定の Qo Sパスの前記 QoS設定を行う所定の通信相手に送出する送信手段とを備える処理ノ ードが提供される。この構成により、ハンドオーバ前に再構成された QoSパスができ る限りハンドオーバ後の最適な QoSパスとなり、ハンドオーバ後に行う QoSパスの再 ルート構成の負荷を低減させることができる。また、ハンドオーバ直後に行う QoSパス 設定区間が短くなり、 QoS中断時間を最小にすることができる。
[0015] また、本発明の処理ノードにおいて、前記所定の QoSパス力 前記移動端末の通 信相手の端末から、前記第 2のアクセスポイントが接続されて 、る前記第 2のアクセス ルータ及び前記第 1のアクセスポイントが接続されている前記第 1のアクセスルータを 経由することは、本発明の好ましい態様である。この構成により、ハンドオーバ前に再 構成された QoSパスができる限りハンドオーバ後の最適な QoSパスとなることができ る。
[0016] また、本発明の処理ノードにおいて、前記第 1のシグナリングが前記ハンドオーバ 前の QoSパスの情報を含むことは、本発明の好ましい態様である。この構成により、 ハンドオーバ前に QoSパスを再構成することができる。
[0017] また、本発明の処理ノードにおいて、前記ハンドオーバ前の QoSパスの前記情報 がセッション識別情報及びフロー識別情報であることは、本発明の好まし 、態様であ る。この構成により、ハンドオーバ前に QoSパスを再構成することができる。
[0018] また、本発明の処理ノードにおいて、前記所定の QoSパスが構成され、前記移動 端末が前記ハンドオーバをした後、前記所定の QoSパスのうち、前記第 2のアクセス ポイントが接続されている前記第 2のアクセスルータと前記ハンドオーバ前の前記移 動端末が接続していた前記第 1のアクセスポイントとの間の QoSパスを消去するパス 消去手段を更に備えることは、本発明の好ましい態様である。この構成により、不必 要となった QoSパスを消去でき、無駄な帯域の消費を減らすことができる。
[0019] また、本発明によれば、それぞれがサブネットを構成する複数のアクセスルータが 通信ネットワークを介して接続されており、固有の通信可能領域を形成するアクセス ポイントが前記複数のアクセスルータのそれぞれに少なくとも 1つ以上接続されて 、る 通信システムで、前記通信可能領域内で前記アクセスポイントとの無線通信を通じて 、前記アクセスポイントが接続されて ヽる前記アクセスルータとの通信を行うよう構成 されている移動端末力 ハンドオーバにより、現在通信中のアクセスルータに接続す るアクセスポイントから、他のアクセスルータに接続する他のアクセスポイントへ接続を 切り替え、さらにその後前記他のアクセスルータに接続する前記他のアクセスポイント を離れ、所定のアクセスルータに接続する所定アクセスポイントへ接続を切り替えて いく際の QoSパスの変更による高速 QoSハンドオーバ方法であって、前記移動端末 力 前記ハンドオーバ後の前記 QoSパスの変更処理の負荷を低減させるための所 定の処理を行う処理ノードに対して、所定の QoSパスを構成させるための第 1のシグ ナリングを送信するステップと、前記第 1のシグナリングを受信する前記処理ノードが 、受信した前記第 1のシグナリングに基づいて、前記所定の QoSパスの QoS設定を するための第 2のシグナリングを生成し、生成された前記第 2のシグナリングを前記所 定の QoSパスの前記 QoS設定を行う所定の通信相手に送出するステップとを有する 高速 QoSハンドオーバ方法が提供される。この構成により、ハンドオーバ前に再構成 された QoSパスができる限りハンドオーバ後の最適な QoSパスとなり、ハンドオーバ 後に行う QoSパスの再ルート構成の負荷を低減させることができる。また、ハンドォー バ直後に行う QoSパス設定区間が短くなり、 QoS中断時間を最小にすることができる
[0020] また、本発明の高速 QoSハンドオーバ方法において、前記所定の QoSパス力 前 記移動端末自身の通信相手の端末から、前記所定アクセスポイントが接続されて 、 る前記所定のアクセスルータ、前記他のアクセスポイントから前記所定アクセスポイン トへの移動の間に接続したアクセスポイントがある場合には前記接続したアクセスボイ ントが接続されて 、るアクセスルータ、前記他のアクセスポイントが接続されて 、る前 記他のアクセスルータ、及び前記現在通信中のアクセスポイントが接続されている前 記アクセスルータを経由することは、本発明の好ましい態様である。この構成により、 ハンドオーバ前に再構成された QoSパスができる限りハンドオーバ後の最適な QoS パスとなることができる。
[0021] また、本発明の高速 QoSハンドオーバ方法において、前記第 1のシグナリングが前 記ハンドオーバ前の QoSパスの情報を含むことは、本発明の好ましい態様である。こ の構成により、ハンドオーバ前に QoSパスを再構成することができる。
[0022] また、本発明の高速 QoSハンドオーバ方法にお!、て、前記ハンドオーバ前の QoS パスの前記情報がセッション識別情報及びフロー識別情報であることは、本発明の 好ましい態様である。この構成により、ハンドオーバ前に QoSパスを再構成することが できる。
[0023] また、本発明の高速 QoSハンドオーバ方法にぉ 、て、前記所定の QoSパスが構成 され、前記移動端末が前記ハンドオーバをした後、前記処理ノード、前記移動端末 のハンドオーバ前に接続して 、たアクセスポイントが接続されて!、るアクセスルータ、 前記移動端末のハンドオーバ後に接続するアクセスポイントが接続されて 、るァクセ スルータのうちのいずれ力が、前記所定の QoSパスのうち、移動先の前記アクセスル ータと前記ハンドオーバ前の前記移動端末が接続していた前記アクセスポイントとの 間の QoSパスを消去することは、本発明の好ましい態様である。この構成により、不 必要となった QoSパスを消去でき、無駄な帯域の消費を減らすことができる。
[0024] また、本発明によれば、それぞれがサブネットを構成する複数のアクセスルータが 通信ネットワークを介して接続されており、固有の通信可能領域を形成するアクセス ポイントが前記複数のアクセスルータのそれぞれに少なくとも 1つ以上接続されて 、る 通信システムで、前記通信可能領域内で前記アクセスポイントとの無線通信を通じて 、前記アクセスポイントが接続されて ヽる前記アクセスルータとの通信を行うよう構成 されている移動端末力 ハンドオーバにより、現在通信中のアクセスルータに接続す るアクセスポイントから、他のアクセスルータに接続する他のアクセスポイントへ接続を 切り替え、さらにその後前記他のアクセスルータに接続する前記他のアクセスポイント を離れ、所定のアクセスルータに接続する所定アクセスポイントへ接続を切り替えて いく際の QoSパスの変更による高速 QoSハンドオーバ方法で用いられる処理ノード であって、所定の QoSパスを構成させるための第 1のシグナリングを前記移動端末か ら受信する受信手段と、受信された前記第 1のシグナリングに基づいて、前記所定の QoSパスの QoS設定をするための第 2のシグナリングを生成するシグナリング生成手 段と、生成された前記第 2のシグナリングを前記所定の QoSパスの前記 QoS設定を 行う所定の通信相手に送出する送信手段とを備える処理ノードが提供される。この構 成により、ハンドオーバ前に再構成された QoSパスができる限りハンドオーバ後の最 適な QoSノ スとなり、ハンドオーバ後に行う QoSパスの再ルート構成の負荷を低減さ せることができる。また、ハンドオーバ直後に行う QoSパス設定区間が短くなり、 QoS 中断時間を最小にすることができる。
[0025] また、本発明の処理ノードにおいて、前記所定の QoSパスが、前記移動端末自身 の通信相手の端末から、前記所定アクセスポイントが接続されて 、る前記所定のァク セスルータ、前記他のアクセスポイントから前記所定アクセスポイントへの移動の間に 接続したアクセスポイントがある場合には前記接続したアクセスポイントが接続されて V、るアクセスルータ、前記他のアクセスポイントが接続されて 、る前記他のアクセスル ータ、及び前記現在通信中のアクセスポイントが接続されている前記アクセスルータ を経由することは、本発明の好ましい態様である。この構成により、ハンドオーバ前に 再構成された QoSパスができる限りハンドオーバ後の最適な QoSパスとなることがで きる。
[0026] また、本発明の処理ノードにおいて、前記第 1のシグナリングが前記ハンドオーバ 前の QoSパスの情報を含むことは、本発明の好ましい態様である。この構成により、 ハンドオーバ前に QoSパスを再構成することができる。
[0027] また、本発明の処理ノードにおいて、前記ハンドオーバ前の QoSパスの前記情報 がセッション識別情報及びフロー識別情報であることは、本発明の好ま 、態様であ る。この構成により、ハンドオーバ前に QoSパスを再構成することができる。
[0028] また、本発明の処理ノードにぉ 、て、前記所定の QoSパスが構成され、前記移動 端末が前記ハンドオーバをした後、前記所定の QoSパスのうち、移動先のアクセスル ータと前記ハンドオーバ前の前記移動端末が接続していたアクセスポイントとの間の QoSパスを消去するパス消去手段を更に備えることは、本発明の好ましい態様であ る。この構成により、不必要となった QoSパスを消去でき、無駄な帯域の消費を減ら すことができる。
[0029] 本発明の高速 QoSハンドオーバ方法及びその方法で用いられる処理ノードは、上 記構成を有し、ハンドオーバ前に再構成された QoSパスができる限りハンドオーバ後 の最適な QoSパスとなり、ハンドオーバ後に行う QoSパスの再ルート構成の負荷を低 減させることができる。また、ハンドオーバ直後に行う QoSパス設定区間が短くなり、 QoS中断時間を最小にすることができる。
図面の簡単な説明
[0030] [図 1]本発明の第 1及び第 2の実施の形態における通信ネットワークの構成を示す構 成図
[図 2]本発明の第 1の実施の形態に係る高速 QoSハンドオーバ方法におけるシグナリ ングのシーケンスを示すシーケンスチャート
[図 3]本発明の第 1の実施の形態に係る処理ノードの構成を示す構成図
[図 4]本発明の第 2の実施の形態に係る高速 QoSハンドオーバ方法におけるシグナリ ングのシーケンスを示すシーケンスチャート
[図 5]本発明の第 2の実施の形態に係る処理ノードの構成を示す構成図 [図 6]本発明の第 3の実施の形態における通信ネットワークの構成を示す構成図
[図 7]本発明の第 3の実施の形態に係る高速 QoSハンドオーバ方法におけるシグナリ ングのシーケンスを示すシーケンスチャート
[図 8]本発明の第 3の実施の形態に係る処理ノードの構成を示す構成図
[図 9]本発明の第 3の実施の形態に係る高速 QoSハンドオーバ方法におけるシグナリ ングの他のシーケンスを示すシーケンスチャート
[図 10]従来の通信ネットワークを示す図
[図 11]従来の通信ネットワークにおける移動端末のハンドオーバ直後の QoSパスを 示す図
発明を実施するための最良の形態
[0031] <第 1の実施の形態 >
以下、本発明の第 1の実施の形態について図 1から図 3を用いて説明する。図 1は 本発明の第 1の実施の形態における通信ネットワークの構成を示す構成図である。 図 2は本発明の第 1の実施の形態に係る高速 QoSハンドオーバ方法におけるシグナ リングのシーケンスを示すシーケンスチャートである。図 3は本発明の第 1の実施の形 態に係る処理ノードの構成を示す構成図である。
[0032] まず、本発明の第 1の実施の形態における通信ネットワークの構成について図 1を 用いて説明する。通信ネットワークは、 MN (移動端末) 10、 MN10の通信相手の C N60、 MN10と CN60との間に位置し、 MN10と CN60との間におけるシグナリング( シグナリングメッセージとも言う)やデータパケットなどを中継する QNE11、 12、 13、 14、それぞれのサブネット 20、 30を構成するアクセスルータである PAR21及び NA R31、 PAR21及び NAR31に接続し、固有の通信可能領域を形成する AP (Access Point) 22、 23、 32、 33から構成されている。なお、ここでの通信ネットワークの構成 は一例であり、これに限られるものではない。
[0033] MN10は現在サブネット 20におり、無線で AP22と接続し、経路(QoSパス) 24を 通じて CN60と通信をしている。すなわち、 MN10は QoSパス 24上の AP22、 PAR2 1、 QNE11、 QNE12、 QNE13を通じて CN60と通信をしている。以下では、本発 明の第 1の実施の形態に係る QoSパス変更に伴う処理を行う処理ノードに、サブネッ ト 30に属する NAR31を指定した場合について説明する。後述する第 2の実施の形 態では、処理ノードにサブネット 20に属する PAR21を指定した場合について説明す る。なお、処理ノードは NAR31や PAR21に限られるものではなぐ他の QNE (プロ キシ)などであってもよい。
[0034] MN10がサブネット 20からサブネット 30へ移動(ハンドオーバ)する場合、 MN10 は、ハンドオーバ前に NAR31に対して、 CN60から NAR31及び AP22が接続され ている PAR21を経由した経路(QoSパス) 64 (ここでは、 CN60から AP22までの経 路)を構成させるためのシグナリングを送信する。このシグナリングには、現在の QoS パス 24のセッション ID及びフロー IDのような QoSパス情報が含まれて!/、る。具体的 には、図 1に示すような、例えば QoSパス 24のセッション IDである Yとフロー IDである Xがシグナリングには含まれる。なお、 MN10のハンドオーバ後の新たな経路(QoS パス) 34のセッション IDは Yであり、フロー IDは Zである。上述したように、セッション I Dは MN10の移動によっても同じままである。
[0035] シグナリングを受信した NAR31は 2つの処理を開始する。 1つ目の処理は、 NAR3 1力 CN60に向かって QoSパスを構成する処理である。具体的には、 NAR31は C N60 (上述した所定の通信相手に相当)に向力つて QoSパスの構成(QoSの状態設 定)をするためのシグナリングを送信する。そして、 NAR31と CN60との間に位置す る QNE14、 QNE 12, QNE13では、送信されるシグナリングに基づく新たな QoSパ スの状態設定が行われ、 CN60と NAR31との間に QoSパス(経路 64の一部の QoS パス)が構成される。構成される QoSパスは、 NAR31と CN60との間の最適なパスと なる。
[0036] 2つ目の処理は、 NAR31から PAR21に向かって一時的な QoSパス(AP22まで の QoSパス)を構成する処理である。具体的には、 NAR31は PAR21 (上述した所 定の通信相手に相当)に向力つて一時的な QoSパスの構成 (QoSの状態設定)をす るためのシグナリングを送信する。そして、送信されるシグナリングにより一時的な Qo Sパスの状態設定が行われ、 AP22と NAR31との間に一時的な QoSパス(経路 64 の一部)が構成される。構成される一時的な QoSパスは、 MN10のハンドオーバが 完了すると NAR31若しくは PAR21などによって消去される。これにより、不要となつ た QoSパスによる帯域の無駄な消費を防ぐことができる。以下に、上述した処理にお けるシグナリングのシーケンスについて図 2を用いて説明する。
[0037] 図 2に示すように、 MN10と CN60との間には既に QoSパス 24 (古い QoSパス)が 構成されている。この状態から、 MN10がハンドオーバをすると決定すると、 MN10 は NAR31に対してセッション ID及びフロー IDを含むシグナリングを送信する(ステツ プ S201)。なお、送信されるシグナリングには、再ルート構成される QoSパス 64と、 MN10のハンドオーバ後の新たな QoSパス 34との分岐点になるようリクエストする情 報を含めるようにしてもよい。
[0038] MN10からのシグナリングを受信した NAR31は、 NAR31から AP22までの一時 的な QoSパスの構成(QoSの状態設定)のためのシグナリングを PAR21に送信し( ステップ S202)、 NAR31から CN60までの QoSパスの構成(QoSの状態設定)のた めのシグナリングを CN60に送信する(ステップ S 203)。これらのシグナリングにより 再ルート構成された QoSパス 64の状態設定が行われ、 CN60と AP22との間に QoS パス 64が構成される。そして、 MN10がハンドオーバを開始して完了すると、 NAR3 1力 AP22までの一時的な QoSパスは消去され、 CN60と AP32との間に新たな Q oSパス 34が構成される。このように構成されることにより、 MN10のハンドオーバ後の QoSパスができる限り最適な QoSパスとなり、ハンドオーバ後に行う QoSパスの再ル ート構成の負荷を低減させることができる。また、ハンドオーバ直後に行う QoSパス設 定区間は、従来では図 11に示すように PAR2r— NAR3 — AP32'— MN1CTで あるのに対し、本発明の第 1の実施の形態では図 1に示すように NAR31— AP32— MN10と短くなる。このため、 QoSパス構成に要する時間が短くなり、 QoS中断時間 も短くすることができる。また、生成される QoSパスが PAR21及び NAR31の双方を 通っているため、 PAR21と NAR31との間で MN10が行ったり来たりする、いわゆる" ピンポン現象"においても有用である。
[0039] 次に、本発明の第 1の実施の形態に係る処理ノードの構成について図 3を用いて 説明する。以下では、処理ノードとして MN10のハンドオーバ後のサブネット 30に属 する NAR31を例にとって説明する。図 3に示すように、 NAR31は、受信手段 301、 送信手段 302、シグナリング生成手段 303、パス消去手段 304、記憶手段 305から 構成されている。受信手段 301は、上述した MN10からの QoSパス 64の構成のため のシグナリングや、 CN60と MN10との間でやりとりされるパケットなどを受信するもの である。送信手段 302は、後述するシグナリング生成手段 303によって生成された Q oSパス 64を構成するためのシグナリングや、 CN60と MN10との間でやりとりされる パケットなどを送信するものである。
[0040] シグナリング生成手段 303は、受信手段 301によって受信された、 MN10から送信 される QoSパス 64を構成するためのシグナリングに基づいて、 CN60と NAR31との 間の QoSパス及び NAR31と AP22との間の QoSパスを構成するためのシグナリング をそれぞれ生成するものである。パス消去手段 304は、 CN60と AP22との間に QoS パス 64が構成された後に MN10がハンドオーバを完了した場合に、 NAR31から A P22までの一時的な QoSパスを消去するものである。なお、この一時的な QoSパス の消去は PAR21や他の装置などが行うようにしてもよい。記憶手段 305は、 NAR31 の動作を制御するための制御プログラムや、 NAR31が処理を行う際に生じるデータ などの情報を格納するものである。
[0041] <第 2の実施の形態 >
以下、本発明の第 2の実施の形態について図 4及び図 5を用いて説明する。図 4は 本発明の第 2の実施の形態に係る高速 QoSハンドオーバ方法におけるシグナリング のシーケンスを示すシーケンスチャートである。図 5は本発明の第 2の実施の形態に 係る処理ノードの構成を示す構成図である。
[0042] 第 2の実施の形態では、上述したように処理ノードに、サブネット 20に属する PAR2 1を指定した場合について説明する。なお、第 2の実施の形態における通信ネットヮ ークは、第 1の実施の形態における通信ネットワークと同様のものとする。第 2の実施 の形態の場合のシグナリングシーケンスについて図 4を用いて説明する。図 4に示す ように、ハンドオーバをする前には、 MN10と CN60との間には経路(古い QoSパス) 24が構成されている。
[0043] この状態から、 MN10がハンドオーバをすると決定すると、 MN10はシグナリング( セッション ID、フロー IDなどを含む)を PAR21に対して送信する(ステップ S401)。 そして、シグナリングを受け取った PAR21は、 NAR31 (上述した所定の通信相手に 相当)に向けて QoSの状態設定のためのシグナリングを送信する(ステップ S402)。 そのシグナリングを受け取った NAR31は、 CN60に向けて同様に QoSの状態設定 のためのシグナリングを送信する(ステップ S403)。これ〖こより、 NAR31と CN60との 間に位置する QNE14、 QNE12、 QNE13では、送信されるシグナリングに基づく新 たな QoSパスの状態設定が行われ、再ルート構成された QoSパス 64が CN60と AP 22との間に構成される。
[0044] そして、 MN10がハンドオーバを実際に開始し完了すると、 NAR31から AP22ま での一時的な QoSパスは消去され、 CN60と AP32との間に新たな QoSパス 34が構 成される。このように構成されることにより、 MN10のハンドオーバ後の QoSパスがで きる限り最適な QoSパスとなり、ハンドオーバ後に行う QoSパスの再ルート構成の負 荷を低減させることができる。また、ハンドオーバ直後に行う QoSパス設定区間は、従 来では図 11に示すように PAR21' -NAR31' AP32'—ΜΝ1(Γであるのに対し 、本発明の第 2の実施の形態では図 1に示すように NAR31— AP32— MN10と短く なる。このため、 QoSパス構成に要する時間が短くなり、 QoS中断時間も短くすること ができる。また、生成される QoSパスが PAR21及び NAR31の双方を通っているた め、 PAR21と NAR31との間で MN10が行ったり来たりする、いわゆる"ピンポン現 象"においても有用である。
[0045] 次に、本発明の第 2の実施の形態に係る処理ノードの構成について図 5を用いて 説明する。以下では、処理ノードとして MN10のハンドオーバ前のサブネット 20に属 する PAR21を例にとって説明する。図 5に示すように、 PAR21は、受信手段 501、 送信手段 502、シグナリング生成手段 503、パス消去手段 504、記憶手段 505から 構成されている。受信手段 501は、上述した MN10からの QoSパス 64の構成のため のシグナリングや、 CN60と MN10との間でやりとりされるパケットなどを受信するもの である。送信手段 502は、後述するシグナリング生成手段 503によって生成された Q oSパス 64を構成するためのシグナリングや、 CN60と MN10との間でやりとりされる パケットなどを送信するものである。
[0046] シグナリング生成手段 503は、受信手段 501によって受信された、 MN10から送信 される QoSパス 64を構成するためのシグナリングに基づいて、 CN60と AP22との間 の QoSパスを構成するためのシグナリングを生成するものである。そして、生成された シグナリングを受信する NAR31は、受信したシグナリングに基づいて、 CN60と NA R31自身との間の QoSパスを構成するためのシグナリングを生成して CN60へ送信 する。
[0047] ノ ス消去手段 504は、 CN60と AP22との間に QoSパス 64が構成された後に MN1 0がハンドオーバを開始して完了した場合に、 NAR31から AP22までの一時的な Qo Sパスを消去するものである。なお、この一時的な QoSパスの消去は NAR31や他の 装置などが行うようにしてもよい。記憶手段 505は、 PAR21の動作を制御するための 制御プログラムや、 PAR21が処理を行う際に生じるデータなどの情報を格納するも のである。
[0048] <第 3の実施の形態 >
以下、本発明の第 3の実施の形態について図 6から図 9を用いて説明する。図 6は 本発明の第 3の実施の形態における通信ネットワークの構成を示す構成図である。 図 7は本発明の第 3の実施の形態に係る高速 QoSハンドオーバ方法におけるシグナ リングのシーケンスを示すシーケンスチャートである。図 8は本発明の第 3の実施の形 態に係る処理ノードの構成を示す構成図である。図 9は本発明の第 3の実施の形態 に係る高速 QoSハンドオーバ方法におけるシグナリングの他のシーケンスを示すシ 一ケンスチャートである。
[0049] まず、本発明の第 3の実施の形態における通信ネットワークの構成について図 6を 用いて説明する。通信ネットワークは、 MN (移動端末) 610、 MN610の通信相手の CN660、 MN610と CN660との間に位置し、 MN610と CN660との間におけるシ グナリング(シグナリングメッセージとも言う)やデータパケットなどを中継する QNE61 1、 612、 613、 614、 615、それぞれのサブネット 620、 630、 640を構成するァクセ スルータである PAR621、 [NAR1]631、 [NAR2]641、そして PAR621、 [NAR1]6 31、 [NAR2]641それぞれに接続し、固有の通信可能領域を形成する AP (Access Point) 622, 623、 632、 633、 642、 643力ら構成されて!ヽる。なお、ここでの通信ネ ットワークの構成は一例であり、これに限られるものではない。
[0050] MN610は現在サブネット 620におり、無線で AP622と接続し、経路(QoSパス) 6 24を通じて CN660と通信をしている。すなわち、 MN610は QoSパス 624上の AP6 22、 PAR621, QNE611, QNE612, QNE613を通じて CN660と通信をして!/、る 。以下では、本発明の第 3の実施の形態に係る QoSパス変更に伴う処理を行う処理 ノードに、サブネット 640に属する [NAR2]641を指定した場合について説明する。 なお、処理ノードにサブネット 620に属する PAR621を指定した場合については後 述する。なお、処理ノードは [NAR1]631、 [NAR2]641、 PAR621に限られるもので はなぐ他の QNE (プロキシ)などであってもよ!/、。
[0051] MN610がサブネット 620からサブネット 630へ移動(ノヽンドォーノ )する場合、 MN 610は、ハンドオーバ前に [NAR2]641に対して、 CN660力ら [NAR2]641、 [NAR 1]631、及ひ703622が接続されてぃる!3^621を経由した経路(<303パス)664 (こ こでは、 CN660から AP622までの経路)を構成させるためのシグナリングを送信す る。このシグナリングには、現在の QoSパス 624のセッション ID及びフロー IDのような QoSパス情報が含まれている。具体的には、図 6に示すような、例えば QoSパス 624 のセッション IDである Yとフロー IDである Xがシグナリングには含まれる。なお、 MN6 10のハンドオーバ後の新たな経路(QoSパス) 634のセッション IDは Yであり、フロー IDは Zである。上述したように、セッション IDは MN610の移動によっても同じままで ある。
[0052] シグナリングを受信した [NAR2]641は 2つの処理を開始する。 1つ目の処理は、 [ NAR2]641から CN660 (上述した所定の通信相手に相当)に向力つて QoSパスを 構成する処理である。具体的には、 [NAR2]641は CN660に向かって QoSパスの 構成 (QoSの状態設定)をするためのシグナリングを送信する。そして、 [NAR21641 と CN660との間に位置する QNE615、 QNE612、 QNE613では、送信されるシグ ナリングに基づく新たな QoSパスの状態設定が行われ、 CN660と [NAR2]641との 間に QoSパス(経路 664の一部の QoSパス)が構成される。構成される QoSパスは、 [NAR2]641と CN660との間の最適なパスとなる。
[0053] 2つ目の処理は、 [NAR2]641力ら PAR621 (上述した所定の通信相手に相当)に 向かって [NAR1]631を経由した一時的な QoSパス(AP622までの QoSパス)を構 成する処理である。具体的には、 [NAR2]641は [NAR1]631を経由させて PAR62 1に向力つて一時的な QoSパスの構成 (QoSの状態設定)をするためのシグナリング を送信する。そして、送信されるシグナリングにより一時的な QoSパスの状態設定が 行われ、 AP622と [NAR2]641との間に一時的な QoSパス(経路 664の一部)が構 成される。このように、例えば 2つ先の [NAR2]641が分かっている場合、 [NAR2]64 1をパス上に含めることにより、 1つ先の [NAR1]631においてパス変更の処理を省略 することができる。また、構成される一時的な QoSパスのうちの [NAR1]631から AP6 22の一部の QoSパスは、 MN610のハンドオーバが完了すると [NAR1]631若しく は PAR621などによって消去される。これにより、不要となった QoSパスによる帯域 の無駄な消費を防ぐことができる。以下に、上述した処理におけるシグナリングのシ 一ケンスについて図 7を用いて説明する。
[0054] 図 7に示すように、 MN610と CN660との間には既に QoSパス 624 (古い QoSパス )が構成されている。この状態から、 MN610がハンドオーバをすると決定すると、 M N610は [NAR2]641に対してセッション ID及びフロー IDを含むシグナリングを送信 する(ステップ S 701)。
[0055] MN610からのシグナリングを受信した [NAR2]641は、 [NAR2]641力ら AP622 までの QoSパスの構成(QoSの状態設定)のためのシグナリングを [NAR1]631に送 信し (ステップ S 702)、シグナリングを受信した [NAR1]631は受信したシグナリング を PAR621に送信する(ステップ S703)。また、 [NAR2]641は、 [NAR2]641から C N660までの QoSパスの構成(QoSの状態設定)のためのシグナリングを CN660に 送信する(ステップ S 704)。これらのシグナリングにより再ルート構成された QoSパス 664の状態設定が行われ、 CN660と AP622との間に QoSノ ス 664力構成される。 そして、 MN610がハンドオーバを開始して完了すると、 [NAR1]631から AP622ま での QoSパスは消去され、 CN660と AP632との間に新たな QoSノ ス 634 (新たな Q oSパス a)が構成される。さらにその後 MN610が AP632から AP642へのハンドォ ーバを完了させると、 [NAR2]641から AP632との間の QoSパスは消去され、 CN6 60と AP642との間に新たな QoSパス(経路) 644 (新たな QoSパス b)が構成される。
[0056] このように構成されることにより、 MN610のハンドオーバ後の QoSパスができる限り 最適な QoSパスとなり、ハンドオーバ後に行う QoSパスの再ルート構成の負荷を低減 させることができる。また、ハンドオーバ直後に行う QoSパス設定区間は、従来では P AR621—NAR631—AP632— MN610であるのに対し、本発明の第 3の実施の 形態では図 6に示すように [NAR1]631—AP632— MN610と短くなる。このため、 QoSパス構成に要する時間が短くなり、 QoS中断時間も短くすることができる。また、 生成される QoSパス力 PAR621、 [NAR1]631、 [NAR2]641を通っているため、 P AR621、 [NAR1]631、 [NAR2]641の間で MN610が行ったり来たりする、いわゆ る"ピンポン現象"においても有用である。
[0057] 次に、本発明の第 3の実施の形態に係る処理ノードの構成について図 8を用いて 説明する。以下では、処理ノードとしてサブネット 640に属する [NAR2]641を例にと つて説明する。図 8に示すように、 [NAR2]641は、受信手段 801、送信手段 802、シ ダナリング生成手段 803、パス消去手段 804、記憶手段 805から構成されている。受 信手段 801は、上述した MN610からの QoSパス 664の構成のためのシグナリング や、 CN660と MN610との間でやりとりされるパケットなどを受信するものである。送 信手段 802は、後述するシグナリング生成手段 803によって生成された QoSパス 66 4を構成するためのシグナリングや、 CN660と MN610との間でやりとりされるバケツ トなどを送信するものである。
[0058] シグナリング生成手段 803は、受信手段 801によって受信された、 MN610から送 信される QoSパス 664を構成するためのシグナリングに基づいて、 CN660と [NAR2 ]641との間の QoSパス及び [NAR2]641と AP622との間の QoSパスを構成するた めのシグナリングをそれぞれ生成するものである。パス消去手段 804は、例えば CN6 60と AP622との間に QoSパス 664が構成された後に MN610がハンドオーバを繰り 返し、サブネット 630内の AP632からサブネット 640内の AP642へのハンドオーバ が完了した場合に、 [NAR2]641から [NAR1]631までの一時的な QoSパスを消去 するものである。なお、この一時的な QoSパスの消去は [NAR1]631や他の装置など が行うようにしてもよい。記憶手段 805は、 [NAR2]641の動作を制御するための制 御プログラムや、 [NAR2]641が処理を行う際に生じるデータなどの情報を格納する ものである。
[0059] 次に、上述したように処理ノードにサブネット 620に属する PAR621を指定した場 合のシグナリングのシーケンスについて図 9を用いて説明する。まず、図 9に示すよう に、 MN610と CN660との間には既に QoSパス 624 (古い QoSパス)が構成されて いる。この状態から、 MN610がハンドオーバをすると決定すると、 MN610は PAR6 21に対してセッション ID及びフロー IDを含むシグナリングを送信する(ステップ S901
) o
[0060] MN610からのシグナリングを受信した PAR621は、 PAR621 (AP622)力ら CN6 60までの QoSパスの構成(QoSの状態設定)のためのシグナリングを CN660 (上述 した所定の通信相手に相当)に向けて [NAR1]631に送信する(ステップ 902)。シグ ナリングを受信した [NAR1]631は受信したシグナリングを [NAR2]641へ送信し (ス テツプ S903)、シグナリングを受信した [NAR2]641は受信したシグナリングを CN66 0に送信する(ステップ S904)。これらのシグナリングにより再ルート構成された QoS パス 664の状態設定が行われ、 CN660と AP622との間に QoSノ ス 664力構成され る。そして、 MN610がハンドオーバを開始して完了すると、 [NAR1]631から AP62 2までの QoSパスは消去され、 CN660とAP632との間に新たなQoSパス634 (新た な QoSパス a)が構成される。さらにその後 MN610が AP632から AP642へのハンド オーバを完了させると、 [NAR2]641から AP632との間の QoSパスは消去され、 CN 660と AP642との間に新たな QoSノ ス 644 (新たな QoSノ ス b)が構成される。この ように構成されることにより、例えば 2つ先の [NAR2]641が分力つている場合、 [NA R2]641をパス上に含めることにより、 1つ先の [NAR1]631においてパス変更の処 理を省略することができる。
[0061] 以上、本発明の各実施の形態について説明した。なお、上記各実施の形態の説明 に用いた各機能ブロックは、典型的には集積回路である LSIとして実現される。これ らは個別に 1チップィ匕されてもよいし、一部又はすベてを含むように 1チップィ匕されて もよい。ここでは、 LSIとした力 集積度の違いにより、 IC、システム LSI、スーパー LS I、ウルトラ LSIと呼称されることもある。また、集積回路化の手法は LSIに限るもので はなぐ専用回路又は汎用プロセッサで実現してもよい。 LSI製造後に、プログラムす ることが可能な FPGA (Field Programmable Gate Array)や、 LSI内部の回路セルの 接続や設定を再構成可能なリコンフィギユラブル'プロセッサを利用してもよい。さらに は、半導体技術の進歩又は派生する別技術により LSIに置き換わる集積回路化の技 術が登場すれば、当然、その技術を用いて機能ブロックの集積ィ匕を行ってもよい。例 えばバイオ技術の適応などが可能性としてあり得る。
産業上の利用可能性
本発明に係る高速 QoSハンドオーバ方法及びその方法で用いられる処理ノードは 、ハンドオーバ前に再構成された QoSパスができる限りハンドオーバ後の最適な Qo Sパスとなり、ハンドオーバ後に行う QoSパスの再ルート構成の負荷を低減させること ができ、また、ハンドオーバ直後に行う QoSパス設定区間が短くなり、 QoS中断時間 を最小にすることができるため、無線通信を行う移動端末 (モパイルノード)の高速 Qo Sハンドオーバ方法及びその方法で用いられる処理ノードに利用することができ、特 に、次世代インターネットプロトコルであるモパイル IPv6 (Mobile Internet Protocol ve rsion 6)プロトコルを利用した無線通信を行うモパイルノードにおける高速 QoSハンド オーバ方法及びその方法で用いられる処理ノードに有用である。

Claims

請求の範囲
[1] それぞれがサブネットを構成する複数のアクセスルータが通信ネットワークを介して 接続されており、固有の通信可能領域を形成するアクセスポイントが前記複数のァク セスルータのそれぞれに少なくとも 1つ以上接続されている通信システムで、前記通 信可能領域内で前記アクセスポイントとの無線通信を通じて、前記アクセスポイントが 接続されて ヽる前記アクセスルータとの通信を行うよう構成されて ヽる移動端末が、 ハンドオーバにより、現在通信中の、第 1のアクセスルータに接続する第 1のアクセス ポイントから、第 2のアクセスルータに接続する第 2のアクセスポイントへ接続を切り替 える際の QoSパスの変更による高速 QoSハンドオーバ方法であって、
前記移動端末が、前記ハンドオーバ後の前記 QoSパスの変更処理の負荷を低減 させるための所定の処理を行う処理ノードに対して、所定の QoSパスを構成させるた めの第 1のシグナリングを送信するステップと、
前記第 1のシグナリングを受信する前記処理ノードが、受信した前記第 1のシグナリ ングに基づいて、前記所定の QoSパスの QoS設定をするための第 2のシグナリング を生成し、生成された前記第 2のシグナリングを前記所定の QoSパスの前記 QoS設 定を行う所定の通信相手に送出するステップとを、
有する高速 QoSハンドオーバ方法。
[2] 前記所定の QoSパスは、前記移動端末自身の通信相手の端末から、前記第 2のァ クセスポイントが接続されている前記第 2のアクセスルータ及び前記第 1のアクセスポ イントが接続されている前記第 1のアクセスルータを経由する請求項 1に記載の高速 QoSハンドオーバ方法。
[3] 前記第 1のシグナリングは、前記ハンドオーバ前の QoSパスの情報を含む請求項 1 に記載の高速 QoSハンドオーバ方法。
[4] 前記ハンドオーバ前の QoSパスの前記情報は、セッション識別情報及びフロー識 別情報である請求項 3に記載の高速 QoSハンドオーバ方法。
[5] 前記所定の QoSパスが構成され、前記移動端末が前記ハンドオーバをした後、前 記処理ノード、前記第 1のアクセスポイントが接続されている前記第 1のアクセスルー タ、前記第 2のアクセスポイントが接続されて 、る前記第 2のアクセスルータのうちの いずれかが、前記所定の QoSパスのうち、前記第 2のアクセスルータと前記ハンドォ ーバ前の前記移動端末が接続していた前記第 1のアクセスポイントとの間の QoSパ スを消去する請求項 1に記載の高速 QoSハンドオーバ方法。
[6] それぞれがサブネットを構成する複数のアクセスルータが通信ネットワークを介して 接続されており、固有の通信可能領域を形成するアクセスポイントが前記複数のァク セスルータのそれぞれに少なくとも 1つ以上接続されている通信システムで、前記通 信可能領域内で前記アクセスポイントとの無線通信を通じて、前記アクセスポイントが 接続されて ヽる前記アクセスルータとの通信を行うよう構成されて ヽる移動端末が、 ハンドオーバにより、現在通信中の、第 1のアクセスルータに接続する第 1のアクセス ポイントから、第 2のアクセスルータに接続する第 2のアクセスポイントへ接続を切り替 える際の QoSパスの変更による高速 QoSハンドオーバ方法で用いられる処理ノード であって、
所定の QoSパスを構成させるための第 1のシグナリングを前記移動端末力 受信す る受信手段と、
受信された前記第 1のシグナリングに基づいて、前記所定の QoSパスの QoS設定 をするための第 2のシグナリングを生成するシグナリング生成手段と、
生成された前記第 2のシグナリングを前記所定の QoSパスの前記 QoS設定を行う 所定の通信相手に送出する送信手段とを、
備える処理ノード。
[7] 前記所定の QoSパスは、前記移動端末の通信相手の端末から、前記第 2のァクセ スポイントが接続されている前記第 2のアクセスルータ及び前記第 1のアクセスポイン トが接続されて ヽる前記第 1のアクセスルータを経由する請求項 6に記載の処理ノー ド、。
[8] 前記第 1のシグナリングは、前記ハンドオーバ前の QoSパスの情報を含む請求項 6 に記載の処理ノード。
[9] 前記ハンドオーバ前の QoSパスの前記情報は、セッション識別情報及びフロー識 別情報である請求項 8に記載の処理ノード。
[10] 前記所定の QoSパスが構成され、前記移動端末が前記ハンドオーバをした後、前 記所定の QoSパスのうち、前記第 2のアクセスポイントが接続されて 、る前記第 2のァ クセスルータと前記ハンドオーバ前の前記移動端末が接続していた前記第 1のァク セスポイントとの間の QoSパスを消去するパス消去手段を更に備える請求項 6に記載 の処理ノード。
[11] それぞれがサブネットを構成する複数のアクセスルータが通信ネットワークを介して 接続されており、固有の通信可能領域を形成するアクセスポイントが前記複数のァク セスルータのそれぞれに少なくとも 1つ以上接続されている通信システムで、前記通 信可能領域内で前記アクセスポイントとの無線通信を通じて、前記アクセスポイントが 接続されて ヽる前記アクセスルータとの通信を行うよう構成されて ヽる移動端末が、 ハンドオーバにより、現在通信中のアクセスルータに接続するアクセスポイントから、 他のアクセスルータに接続する他のアクセスポイントへ接続を切り替え、さらにその後 前記他のアクセスルータに接続する前記他のアクセスポイントを離れ、所定のァクセ スルータに接続する所定アクセスポイントへ接続を切り替えていく際の QoSパスの変 更による高速 QoSハンドオーバ方法であって、
前記移動端末が、前記ハンドオーバ後の前記 QoSパスの変更処理の負荷を低減 させるための所定の処理を行う処理ノードに対して、所定の QoSパスを構成させるた めの第 1のシグナリングを送信するステップと、
前記第 1のシグナリングを受信する前記処理ノードが、受信した前記第 1のシグナリ ングに基づいて、前記所定の QoSパスの QoS設定をするための第 2のシグナリング を生成し、生成された前記第 2のシグナリングを前記所定の QoSパスの前記 QoS設 定を行う所定の通信相手に送出するステップとを、
有する高速 QoSハンドオーバ方法。
[12] 前記所定の QoSパスは、前記移動端末自身の通信相手の端末から、前記所定ァ クセスポイントが接続されて ヽる前記所定のアクセスルータ、前記他のアクセスポイン トから前記所定アクセスポイントへの移動の間に接続したアクセスポイントがある場合 には前記接続したアクセスポイントが接続されて ヽるアクセスルータ、前記他のァクセ スポイントが接続されている前記他のアクセスルータ、及び前記現在通信中のァクセ スポイントが接続されて 、る前記アクセスルータを経由する請求項 11に記載の高速 QoSハンドオーバ方法。
[13] 前記第 1のシグナリングは、前記ハンドオーバ前の QoSパスの情報を含む請求項 1 1に記載の高速 QoSハンドオーバ方法。
[14] 前記ハンドオーバ前の QoSパスの前記情報は、セッション識別情報及びフロー識 別情報である請求項 13に記載の高速 QoSハンドオーバ方法。
[15] 前記所定の QoSパスが構成され、前記移動端末が前記ハンドオーバをした後、前 記処理ノード、前記移動端末のハンドオーバ前に接続して 、たアクセスポイントが接 続されて!ヽるアクセスルータ、前記移動端末のハンドオーバ後に接続するアクセスポ イントが接続されて 、るアクセスルータのうちの 、ずれかが、前記所定の QoSパスの うち、移動先の前記アクセスルータと前記ハンドオーバ前の前記移動端末が接続し て 、た前記アクセスポイントとの間の QoSパスを消去する請求項 11に記載の高速 Q oSハンドオーバ方法。
[16] それぞれがサブネットを構成する複数のアクセスルータが通信ネットワークを介して 接続されており、固有の通信可能領域を形成するアクセスポイントが前記複数のァク セスルータのそれぞれに少なくとも 1つ以上接続されている通信システムで、前記通 信可能領域内で前記アクセスポイントとの無線通信を通じて、前記アクセスポイントが 接続されて ヽる前記アクセスルータとの通信を行うよう構成されて ヽる移動端末が、 ハンドオーバにより、現在通信中のアクセスルータに接続するアクセスポイントから、 他のアクセスルータに接続する他のアクセスポイントへ接続を切り替え、さらにその後 前記他のアクセスルータに接続する前記他のアクセスポイントを離れ、所定のァクセ スルータに接続する所定アクセスポイントへ接続を切り替えていく際の QoSパスの変 更による高速 QoSハンドオーバ方法で用いられる処理ノードであって、
所定の QoSパスを構成させるための第 1のシグナリングを前記移動端末力 受信す る受信手段と、
受信された前記第 1のシグナリングに基づいて、前記所定の QoSパスの QoS設定 をするための第 2のシグナリングを生成するシグナリング生成手段と、
生成された前記第 2のシグナリングを前記所定の QoSパスの前記 QoS設定を行う 所定の通信相手に送出する送信手段とを、 備える処理ノード。
[17] 前記所定の QoSパスは、前記移動端末自身の通信相手の端末から、前記所定ァ クセスポイントが接続されて ヽる前記所定のアクセスルータ、前記他のアクセスポイン トから前記所定アクセスポイントへの移動の間に接続したアクセスポイントがある場合 には前記接続したアクセスポイントが接続されて ヽるアクセスルータ、前記他のァクセ スポイントが接続されている前記他のアクセスルータ、及び前記現在通信中のァクセ スポイントが接続されている前記アクセスルータを経由する請求項 16に記載の処理ノ ード。
[18] 前記第 1のシグナリングは、前記ハンドオーバ前の QoSパスの情報を含む請求項 1 6に記載の処理ノード。
[19] 前記ハンドオーバ前の QoSパスの前記情報は、セッション識別情報及びフロー識 別情報である請求項 18に記載の処理ノード。
[20] 前記所定の QoSパスが構成され、前記移動端末が前記ハンドオーバをした後、前 記所定の QoSパスのうち、移動先のアクセスルータと前記ハンドオーバ前の前記移 動端末が接続していたアクセスポイントとの間の QoSパスを消去するパス消去手段を 更に備える請求項 16に記載の処理ノード。
PCT/JP2007/056998 2006-03-31 2007-03-29 高速QoSハンドオーバ方法及びその方法で用いられる処理ノード WO2007119598A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/295,125 US20090180445A1 (en) 2006-03-31 2007-03-29 HIGH-SPEED QoS HANDOVER METHOD AND PROCESSING NODE USED IN THE METHOD
JP2008510892A JPWO2007119598A1 (ja) 2006-03-31 2007-03-29 高速QoSハンドオーバ方法及びその方法で用いられる処理ノード

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006101187 2006-03-31
JP2006-101187 2006-03-31

Publications (1)

Publication Number Publication Date
WO2007119598A1 true WO2007119598A1 (ja) 2007-10-25

Family

ID=38609370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056998 WO2007119598A1 (ja) 2006-03-31 2007-03-29 高速QoSハンドオーバ方法及びその方法で用いられる処理ノード

Country Status (3)

Country Link
US (1) US20090180445A1 (ja)
JP (1) JPWO2007119598A1 (ja)
WO (1) WO2007119598A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060571A1 (ja) * 2007-11-05 2009-05-14 Panasonic Corporation 通信方法、通信システム、モバイルノード、代表サーバ及びノード
JP2009171571A (ja) * 2007-12-21 2009-07-30 Ntt Docomo Inc 高速モバイルipハンドオーバのための方法および装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7251216B2 (en) * 2003-04-23 2007-07-31 At&T Corp. Methods and systems for configuring voice over internet protocol network quality of service
KR100763522B1 (ko) * 2006-11-15 2007-10-04 한국전자통신연구원 네트워크 시스템에서의 인터넷 프로토콜 핸드오프 처리방법
GB2489221A (en) * 2011-03-18 2012-09-26 Ip Wireless Inc Establishing preconfigured shared logical communications bearers and preconfigured shared radio bearers to provide a predefined quality of service
JP6479180B2 (ja) 2014-12-17 2019-03-06 テレフオンアクチーボラゲット エルエム エリクソン(パブル) モビリティマネージメントのための方法および装置
JP2019125822A (ja) * 2016-05-17 2019-07-25 シャープ株式会社 端末装置、SME(Session Management Entity)、および通信制御方法
US12010027B2 (en) 2020-10-22 2024-06-11 Qualcomm Incorporated QOS information exchange to setup a backhaul routing path in IAB

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244205A (ja) * 2001-12-12 2003-08-29 Ntt Docomo Inc QoS保証パスの移動追従システム、このシステムに用いるルータ装置、移動通信端末、ルータ装置を制御するための制御プログラム
JP2004015143A (ja) * 2002-06-04 2004-01-15 Fujitsu Ltd 移動通信システムにおけるハンドオーバ方法、および移動通信システムにおいて使用されるルータ装置
JP2005086688A (ja) * 2003-09-10 2005-03-31 Ntt Docomo Inc プロトコル終端方法、制御信号終端サーバ装置及び移動通信ネットワーク

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7099283B2 (en) * 2002-01-25 2006-08-29 Ntt Docomo, Inc. Quality of service aware handoff trigger
US20040085957A1 (en) * 2002-11-01 2004-05-06 Sanjeev Verma Apparatus and method for providing IP connectivity to mobile nodes during handover
KR100568152B1 (ko) * 2003-10-20 2006-04-07 삼성전자주식회사 이동망 환경에서의 크로스오버 라우터 탐색방법,자원예약방법 및 이를 이용하는 자원 예약 시스템
WO2005053250A1 (ja) * 2003-11-28 2005-06-09 Matsushita Electric Industrial Co., Ltd. 通信ハンドオーバ方法、通信メッセージ処理方法及びこれらの方法をコンピュータにより実行するためのプログラム並びに通信システム
EP1715633A4 (en) * 2004-02-06 2008-08-27 Matsushita Electric Ind Co Ltd A COMMUNICATION TRANSMISSION PROCESS, COMMUNICATION METHOD PROCESSING METHOD AND PROGRAM FOR CARRYING OUT THESE PROCEDURES BY USING A COMPUTER
KR101162674B1 (ko) * 2004-10-18 2012-07-05 삼성전자주식회사 이동망 환경에서의 다중 인터페이스를 이용한 자원예약방법
KR100819055B1 (ko) * 2006-12-08 2008-04-02 한국전자통신연구원 이동 IPv6 네트워크에서 플로우 기반 QoS 보장을위한 3 계층 핸드오버 경로 설정 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244205A (ja) * 2001-12-12 2003-08-29 Ntt Docomo Inc QoS保証パスの移動追従システム、このシステムに用いるルータ装置、移動通信端末、ルータ装置を制御するための制御プログラム
JP2004015143A (ja) * 2002-06-04 2004-01-15 Fujitsu Ltd 移動通信システムにおけるハンドオーバ方法、および移動通信システムにおいて使用されるルータ装置
JP2005086688A (ja) * 2003-09-10 2005-03-31 Ntt Docomo Inc プロトコル終端方法、制御信号終端サーバ装置及び移動通信ネットワーク

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060571A1 (ja) * 2007-11-05 2009-05-14 Panasonic Corporation 通信方法、通信システム、モバイルノード、代表サーバ及びノード
JP2009171571A (ja) * 2007-12-21 2009-07-30 Ntt Docomo Inc 高速モバイルipハンドオーバのための方法および装置

Also Published As

Publication number Publication date
JPWO2007119598A1 (ja) 2009-08-27
US20090180445A1 (en) 2009-07-16

Similar Documents

Publication Publication Date Title
JP4543041B2 (ja) 新規経路設定方法及び移動端末並びに経路管理装置
US20080137625A1 (en) Communication System Resource Management Device Resource Management Method Communication Management Device and Communication Management Method
US8406198B2 (en) Distributed mobile agent
JP5570611B2 (ja) 改善されたサービス品質処理のための通信方法、通信プロトコル及び通信装置
JP5485345B2 (ja) 移動端末並びに移動端末により実行される方法
KR100651495B1 (ko) 이동 애드혹 네트워크에서의 이동성을 확장하기 위한 장치및 방법
WO2007119598A1 (ja) 高速QoSハンドオーバ方法及びその方法で用いられる処理ノード
US7010299B2 (en) Method and apparatus for mobility in WLAN systems
KR20070041642A (ko) 이동 단말 장치 및 그 통화채널전환 방법
KR20140124116A (ko) 이동 통신 네트워크에서 데이터-패스를 최적화시키는 장치 및 방법
US20100214998A1 (en) Network Management Device and Packet Transfer Device
Karimzadeh et al. Software Defined Networking to support IP address mobility in future LTE network
WO2006118188A1 (ja) クロスオーバノード検出方法及びこの方法をコンピュータにより実行するためのクロスオーバノード検出用プログラム
US20090190551A1 (en) Route Setting Method and Route Management Device
JP4664965B2 (ja) 通信システム及び通信ノード
JP2006352444A (ja) パケット転送システム及びパケット転送方法
Karimzadeh et al. Double-NAT based mobility management for future LTE networks
WO2007037372A1 (ja) アグリゲーション管理方法、アグリゲートノード、デアグリゲートノード
US20100157939A1 (en) Crossover node detection pre-processing method, crossover node detection pre-processing program for executing this method by computer, and mobile terminal used in this method
JP4750115B2 (ja) クロスオーバノード検出方法、この方法をコンピュータにより実行するためのクロスオーバノード検出用プログラム、クロスオーバノード検出方法で用いられる移動端末及び中継装置
Mavromoustakis et al. QoS in Next generation mobile networks: an analytical study
WO2007074885A1 (ja) 代理ノード発見方法とその方法で用いられる中継ノード、及びノード発見方法とその方法で用いられる第1のノード、第2のノード、中継ノード
WO2007037346A1 (ja) 高速QoSハンドオーバ方法及びその方法で用いられる処理ノード
Azevedo et al. Distributed IP mobility in a real vehicular network
WO2008072565A1 (ja) QoS早期確立方法、その方法で用いられる移動端末、その方法で用いられるアクセスルータ、その方法で用いられる通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740436

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008510892

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12295125

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07740436

Country of ref document: EP

Kind code of ref document: A1