WO2007116557A1 - 座標位置検出装置、および、タッチパネル一体型表示装置 - Google Patents

座標位置検出装置、および、タッチパネル一体型表示装置 Download PDF

Info

Publication number
WO2007116557A1
WO2007116557A1 PCT/JP2006/322115 JP2006322115W WO2007116557A1 WO 2007116557 A1 WO2007116557 A1 WO 2007116557A1 JP 2006322115 W JP2006322115 W JP 2006322115W WO 2007116557 A1 WO2007116557 A1 WO 2007116557A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
touch
discharging
charge
period
Prior art date
Application number
PCT/JP2006/322115
Other languages
English (en)
French (fr)
Inventor
Kazuki Takahashi
Toshihiro Yanagi
Asahi Yamato
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2007116557A1 publication Critical patent/WO2007116557A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0444Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single conductive element covering the whole sensing surface, e.g. by sensing the electrical current flowing at the corners
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0442Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using active external devices, e.g. active pens, for transmitting changes in electrical potential to be received by the digitiser

Definitions

  • the present invention relates to a touch panel coordinate position detection device and a touch panel integrated display device using the touch panel coordinate position detection device.
  • a touch panel has been widely used as one of input devices, and a capacitively coupled touch panel is also used as one type of input device.
  • a coordinate position detection device for the touch panel a means for charging a coupling capacitor, a means for converting the amount of charged charge into a voltage, and a means for sampling the converted voltage are disclosed.
  • the panel is charged (discharged) from the periphery of the panel by collecting a voltage at a constant cycle. Therefore, the charging (discharging) current does not flow when the finger is not touching the panel or when charging is completed even if the finger is touching. In other words, if the finger is touched, the position can be specified by charging even once, so the coordinates can be accurately determined in a short time. In addition, current consumption (charging and discharging) flows only when necessary, which contributes to lower power consumption overall.
  • Patent Document 1 Japanese Patent Publication “JP 2005-301974 (Publication Date: October 27, 2005)”
  • the touch is undesirably strong, the output of the means for converting the amount of charge into voltage increases undesirably, the output of each of the means saturates, and the position can be detected correctly. Lost There is a risk.
  • the coordinates are determined based on the sampling result when the output of the means for converting the amount of charge into voltage is at a low level, and a sufficient dynamic range may not be secured. There is. Furthermore, there is a possibility that a positional shift may occur due to a difference in dynamic range.
  • the present invention has been made in view of the above-described problems, and an object thereof is to stabilize the coordinates of the touch position regardless of the strength of the touch and the type of input means such as the touch pen. It is to realize a coordinate position detection device that can be detected in this manner, and a touch panel integrated display device using the same.
  • the display device of the present invention is a touch of input means for a touch panel having a resistance film, an insulating film covering the resistance film, and a plurality of electrodes provided on the resistance film.
  • the coordinate position detecting device for detecting the coordinates of the position, it is provided corresponding to each of the electrodes, and is capacitively coupled to the resistance film by the touch to the insulating film by the input means during the touch position detection period.
  • Charging / discharging means that repeats charging / discharging to the coupling capacity via the corresponding electrodes, and charging periods by the charging / discharging means corresponding to each of the above-described detection periods.
  • charge amount measuring means for measuring the amount of charge exchanged between the charge / discharge means and the coupling capacity during a measurement period that is one of the discharge periods;
  • the touch position is detected based on the measurement result of each of the charge amount measuring means at the time when charging / discharging by the charging / discharging means has passed for a predetermined number of charge / discharge times. It comprises a position detecting means and a control means for changing the number of times of charging / discharging according to the strength of the touch by the input means.
  • the coordinate position detection apparatus includes a resistance film, an insulating film covering the resistance film, and a plurality of electrodes provided on the resistance film.
  • the coordinate position detecting device for detecting the coordinates of the touch position of the input means with respect to the channel, provided in correspondence with each of the above electrodes, the touch by the touch to the insulating film by the input means during the touch position detection period.
  • Charging / discharging means that repeats charging / discharging via a corresponding electrode to the coupling capacitance that is capacitively coupled to the resistive film, and corresponding to each of the charging / discharging means, and corresponding to each of the detection periods.
  • a charge amount measuring means for measuring the amount of charge exchanged between the charge / discharge means and the coupling capacitor during a measurement period which is one of a charging period and a discharging period by the charging / discharging means; and Of these, based on the measurement result of each of the charge amount measuring means when charging / discharging by the charging / discharging means is performed for a predetermined number of times of charge / discharge! It further comprises position detecting means for detecting the coordinates of the touch position, and control means for monitoring the measurement results of the respective charge amount measuring means and changing the number of times of charging and discharging.
  • the number of times of charging / discharging is changed depending on the strength of the touch or the measurement result of each of the charge amount measuring means, and the position detecting means is charged / discharged by the number of times of charging / discharging within the detection period The touch position is detected based on the measurement result at that time.
  • the touch by the input means such as the touch pen is too strong, and the output of each charge amount measuring means increases undesirably.
  • the coordinates of the touch position are detected, or the touch by the input means is too weak, and the output of each charge amount measuring means is the output range of each charge amount measuring means. It is possible to prevent the coordinates of the touch position from being detected based on the value when staying at an undesirably low level. As a result, it is possible to realize a coordinate position detecting apparatus that can stably detect the coordinates of the touch position regardless of the strength of the touch and the type of input means.
  • FIG. 1, showing an embodiment of the present invention is a block diagram showing a main configuration of an input device having a touch panel.
  • ⁇ 2] It is a schematic diagram showing a state where a finger touches the touch panel.
  • FIG. 3 is a circuit diagram showing an equivalent circuit of FIG.
  • FIG. 5 is a block diagram showing a main configuration of a control processing unit provided in the coordinate position detection device of the input device.
  • FIG. 6 is a flowchart showing the operation of the input device.
  • FIG. 7 is a schematic diagram showing a modification of the input device and schematically showing the panel portion of the touch panel integrated liquid crystal display device.
  • FIG. 8 is a plan view showing a counter substrate, a position detection resistive film, and a position detection electrode in the touch panel integrated liquid crystal display device.
  • FIG. 9 is a block diagram showing a main configuration of the input device.
  • touch panel integrated liquid crystal display touch panel integrated display
  • the coordinate position detection device changes the number of times of charge / discharge according to the strength of the touch in the capacitively coupled touch panel, and is charged / discharged for the number of times of charge / discharge within the detection period.
  • a coordinate position detection device that can stably detect the coordinates of the touch position regardless of the strength of the touch and the type of input means by detecting the touch position based on the measurement result of It can be suitably used as a coordinate position detection device for a touch panel used for applications in which the size and pressure of a user's finger are greatly different, such as a touch panel used regardless of age or sex.
  • an input device 1 is connected to a capacitively coupled touch panel 3 and the touch panel 3, and a panel 31 of the touch panel 3 is, for example, a human finger (there is It is provided with a coordinate position detection device 5 that recognizes the touch position as a coordinate in the panel 31 when touched by a conductive object such as a pen).
  • the coordinate position detection device 5 is configured to increase the capacitance (capacitor) between the resistance film 32 and the insulating film 33 with the above-described object depending on the amount of current when charging (or discharging) via the resistance component of the panel 31. Coordinates can be obtained. As will be described later, two-dimensional coordinates can be detected. However, for the sake of convenience of explanation, the case of detecting one-dimensional coordinates will be described below.
  • a resistance film 32 is formed on the panel 31 of the touch panel 3 according to the present embodiment, and is touched from the outside so as to cover the resistance film 32.
  • An insulating film 33 that forms the surface is also provided.
  • the panel 31 is also provided with a pair of electrodes 34 a ′ 34 b, and the electrodes 33 a ′ 34 b are connected via the resistance film 32.
  • the resistance film 32 can operate as a one-dimensional resistance film.
  • the resistance film 32 is capacitively coupled to the ground as shown in the equivalent circuit of FIG.
  • the capacitance coupled to the resistive film 32 4) is a capacitance formed between the resistive film 32 and the ground when an object such as a human finger touches the panel 31.
  • the resistive film 3 The capacitance between 2 and the above object (finger) of the insulating film 33.
  • the resistances m and rb are the resistances of the resistance film 32
  • the resistance ra indicates the resistance of the resistance film 32 from the electrode 34a to the touch position P
  • the resistance rb is The resistance of the resistance film 32 from the electrode 34b to the touch position P is shown.
  • the coordinate position detection device 5 includes a charge / discharge circuit (charge / discharge means) 51a connected to the electrode 34a as a member related to the electrode 34a and an object touching the panel 31.
  • the total amount of current when the charge / discharge circuit 51a charges the coupling capacitor 4 is converted into voltage.Current Z voltage conversion circuit (charge amount measuring means) 52a and the output voltage of the current Z voltage conversion circuit 52a are sampled.
  • a sampling circuit 53a The coordinate position detection device 5 includes members 51b to 53b that are the same as the members 51a to 53a except that the electrode 3 is connected as a member related to the electrode 34b.
  • the coordinate position detection device 5 is also provided with a control processing section (control means) 54 for calculating the coordinates of the touch position P based on the output signals of the sampling circuits 53a ′ 53b.
  • Both the charging / discharging circuits 51a and 51b repeat charging / discharging in synchronization with each other by, for example, determining the timing of charging / discharging based on a charging signal from the control processing unit 54, respectively. Voltages having the same homologous amplitude can be applied to the electrodes 34a or 34b corresponding to.
  • the charge / discharge circuit 51a '51b according to the present embodiment applies a pulse voltage, applies a predetermined voltage VO + Vref during charging, and applies a predetermined voltage VO during discharge. Apply!
  • the current Z voltage conversion circuit 52a supplies the electrode 34a to the charge / discharge circuit 5la in, for example, a charge period (a period in which the charge / discharge circuit 51a applies the voltage VO + Vref).
  • the total amount of electric current (charge amount Qa) charged by the charge / discharge circuit 51a to the coupling capacitor 4 can be converted into the sensing voltage v2a by integrating the current with an integration circuit.
  • the current Z voltage conversion circuit 52b can convert the total amount of electric current (charge amount Qb) charged by the charge / discharge circuit 5lb into the coupling capacitor 4 through the electrode 34b into the voltage v2b.
  • the current Z voltage conversion circuit 52a '52b includes charge / discharge circuits 5 corresponding to As will be described later, the details of not only converting the total amount of current when la '51b is charged into a voltage are stored in the integration capacity of the integration circuit, for example, when a reset command is issued from the control processing unit 54. For example, the measurement result of the amount of current can be reset by discharging the accumulated charge, and the output voltage (v2a or v2b) can be returned to the state before the start of measurement.
  • the coupling capacitor 4 is coupled to the touch position P as shown in the equivalent circuit of FIG. Therefore, when the charging / discharging circuit 51a applies the voltage VO + Vref to the electrode 34a during charging, the current ia flows from the electrode 34a to the coupling capacitor 4 via the resistor ra as shown by the solid arrow in the figure. Flowing. Similarly, when the charge / discharge circuit 5 lb applies the voltage VO + Vref to the electrode 34b, the current ib flows from the electrode 34b to the coupling capacitor 4 via the resistor rb as shown by the solid line arrow in the figure. . The coupling capacitor 4 is charged by both these currents ia 'ib. Note that vla and vlb indicate the voltages applied to the electrodes 34a and 34b.
  • the voltages 1 & 21) applied to the electrodes 34 & '341) have the same in-phase and amplitude, and therefore the voltages having the same homologous amplitude are also applied to the resistors ra'rb. . Therefore, the currents ia and ib are in inverse proportion to the resistance values ra and rb of the resistors ra and rb. As shown in the following equation (1),
  • the current Z voltage conversion circuits 52a and 52b are, for example, charged in a charging period (period in which the charging / discharging circuit 51a ⁇ 5 lb applies the voltage VO + Vref! /).
  • the current ia or ib is integrated by the integration circuit, and the total amount of electric currents ia and ib charged by the charge / discharge circuits 51a and 51b (charge amounts Qa and Qb) is calculated as the output voltage v2a and v2b. Convert to.
  • the ratio of the currents ia and ib is constant and the ratio of the charge amounts Qa and Qb is equal to the ratio of the currents ia and ib, so that the offset of the output voltages v2a and v2b can be ignored.
  • the ratio ratio of the resistance resistance values of the above-mentioned resistance resistances rrbb and rraa is in accordance with the tapping position PP.
  • the ratio ratio ratio of resistance resistance value rrbb :: rraa is the ratio ratio ratio vv22aa :: vv22bb of the above-mentioned output force voltage voltage. I agree. . Therefore, the control and control processing unit 5544 is connected to both the sampling circuits 5533aa and 5533bb, respectively. From the ratio ratio between the output current and voltage of ZZ voltage and voltage conversion circuit 5522aa and 5522bb above, You can detect and detect the coordinates of the PP. .
  • the XX coordinate coordinate of electrode 3344aa is 00
  • the xx coordinate of electrode 3344bb is XX.
  • the XX coordinate coordinate of the tapping position PP is as follows:
  • the control processing unit 54 instructs the both current Z voltage conversion circuits 52a and 52b to reset the measurement result of the current amount, and the both current Z voltage conversion circuits 52a 52b returns the output voltage to the state before the start of measurement.
  • the above operation is repeated every predetermined touch position detection period T, for example, every vertical synchronization period.
  • the coordinate position detection device 5 can continuously detect the coordinates of the touch position P at a predetermined time interval.
  • the amount of current supplied to the coupling capacitor 4 at the time of charging by the both charging / discharging circuits 51 a ′ 51 b varies depending on the capacitance value of the coupling capacitor 4. Therefore, for example, when strongly touched, the output voltages 2 & 21 ) of both current Z voltage conversion circuits 52 &'521) increase more rapidly than when touched weakly.
  • the output voltage waveform W500 ⁇ rises more steeply at an earlier time point (fifth charge). Middle), the maximum output voltage of the current-voltage converter circuit is reached.
  • the maximum output voltage Vmax is set according to, for example, the maximum value that can be converted by the AZD converter provided in the control processing unit 54.
  • the voltage applied by the charge / discharge circuit is set to a large value, or the gain of the current Z voltage conversion circuit is set to a large value to increase the sensitivity of the touch panel. If it is raised, the coordinates of the touch position P can be detected with high accuracy when touched weakly. However, in this case, the output voltage is likely to saturate, so even with an ordinary touch, the coordinates of the touch position P cannot be specified, or the detected position may be misaligned.
  • the control processing unit 54 changes the number N of times of charging by the charge / discharge circuit 51a ′ 51b per one coordinate detection of the touch position P according to the strength of the touch. is doing. Specifically, when the touch is weak, the control processing unit 54 increases the number of times of charging and increases the dynamic range. Thereby, the coordinate position detection device 5 can detect the touch position P with high accuracy even when the touch is weak. On the other hand, when the touch is strong, the control processing unit 54 reduces the number of times of charging to prevent the saturation. As a result, the coordinate position detection device 5 can detect the coordinates of the touch position P that does not interfere even if the touch is strong.
  • control processing unit 54 suppresses a change in the dynamic range by dynamically increasing / decreasing the number of times of charging depending on the state of the touch, and maintains the dynamic range at an appropriate value. .
  • the occurrence of positional deviation due to the difference in dynamic range can be suppressed, and the coordinate position detection device 5 can stably detect the coordinates of the touch position P.
  • the control processing unit 54 reads the output value of the sampling circuit 53a '53b only after a predetermined number of times of charging, and determines the coordinates of the touch position P. Whenever the charging / discharging circuit 51a '51b is charged a predetermined number of times (in this embodiment, every time), for example, the output voltage of the current Z voltage conversion circuit 52a' 52b is added to the sampling circuit 53a '53b. By sampling v2a'v2b and reading its output value, etc., the output voltage 2 & 21 ) of the current Z voltage conversion circuit 52 &'521 ) is detected, and the number of times of charging N is determined according to the detection result. It has changed.
  • the control processing unit 54 includes a charge / discharge control unit 61 for controlling the charge / discharge operation of the both charge / discharge circuits 51a ′ 51b, and a sampling circuit 53a ′ 53b.
  • the detection unit 62 that detects the output voltage of the battery
  • the number determination unit 63 that determines the number of times of charging N by comparing whether the output voltage has reached a predetermined threshold value Vtl
  • the number of times determination unit 63 Calculate the coordinates of the touch position P based on the output voltage when the determined number of charging times N has elapsed.
  • a calculation unit (position detecting means) 64 for performing the above operation.
  • Each of these members 61 to 64 may be realized only by a circuit. For example, after being converted into a digital value by an AZD converter, a processor (CPU or the like) operates according to a predetermined program. Realize it.
  • the charge / discharge control unit 61 gives a charge signal indicating whether or not it is a charge period to the charge / discharge circuits 51a, 51b. Controls the charge / discharge operation.
  • the charging signal is a signal having a predetermined period T.
  • the charge / discharge control unit 61 detects that the detection period T has been reached, Application of a periodic charging signal is started.
  • the charge / discharge circuit 51a '5 lb is charged when the charge signal is a value indicating charge (high level in the example in the figure) and is a value indicating discharge (low level in the example in the figure). Can be discharged.
  • the charge / discharge control unit 61 can stop the charging operation of the charge / discharge circuits 51a ′ 51b by maintaining the charge signal at a value indicating discharge.
  • the detection unit 62 causes the sampling circuit 53a '53b to sample the output voltage v2a'v2b of the current Z voltage conversion circuit 52a' 52b every time charging of the charge / discharge circuit 51a '51b ends, The output value can be read.
  • the frequency determining unit 63 determines whether or not the output voltage v2a′v2b has reached the threshold value Vtl. In this case, the number of times until that time is determined as the number of charging times N per detection. In this case, the number determination unit 63 instructs the calculation unit 64 to calculate the coordinates of the touch position P using the output voltage v2a′v2b. In this case, the number-of-times determining unit 63 instructs the charging / discharging circuits 51a and 51b to end charging.
  • the charging / discharging circuit 51a '51b stops the charging until the next detection period T such as the next vertical synchronization period, for example. Furthermore, the number determination unit 63 can instruct the current Z voltage conversion circuit 52a ′ 52b to reset the measurement result of the current amount.
  • the threshold value Vtl is set to a value smaller than the maximum value that can be converted by the AZD converter provided in the control processing unit 54, for example.
  • the number determination unit 63 does not set the number N of charging, and the next charging by the charging / discharging circuit 51a' 51b is not performed. Is done.
  • an upper limit value is set in advance for the number of times of charging N, and the number of times determination unit 63 outputs the output voltage v2a'v2b when the number of times of charging of the charge / discharge circuit 51a '52b reaches the upper limit value. Regardless of whether or not, the number N of times of charging is set to the upper limit.
  • the coordinate position detection device 5 detects whether or not the touch is performed, and when it is determined that the touch is not performed, the charge / discharge until the next detection period T is reached.
  • the charging operation by the circuits 51 a and 52 b can be stopped.
  • the control processing unit 54 is provided with a touch presence / absence detection unit (touch presence / absence detection means) 65, and the touch presence / absence detection unit 65 is, for example, at the end of the first charge.
  • the touch presence / absence detection unit 65 is, for example, at the end of the first charge.
  • the current Z voltage conversion circuit 52a'52b output voltage v2a'v2b read by the detection unit 62 is predetermined. Compared with the threshold value Vt2, the presence or absence of touch is detected.
  • the threshold value Vt2 is a value smaller than the threshold value Vtl, and more specifically, if not touched, for example, the output voltage v2a is offset by the offset of the charge / discharge circuit 51a′51b or the sampling circuit 53a′53b. ⁇ Even if v2b changes slightly, the output voltage v2a 'v2b at the time when charging of the charge / discharge circuit 51a' 51b is completed for the predetermined number of times is set as a value that cannot be reached.
  • the touch presence / absence detection unit 65 detects the next detection period. Until charging reaches T, the charging / discharging circuit 5 la '51b is instructed to stop the charging operation. Thereby, the power consumption of the coordinate position detection device 5 when not touched can be reduced.
  • the coordinate position detection device 5 uses, for example, the notification from the touch presence / absence detection unit 65 or the output voltage v2a'v2b of the sampling circuit 53a '53b after a predetermined timeout time elapses. Detect that it is not.
  • the touch presence / absence detection unit 65 particularly Do not instruct the charging / discharging circuit 51a '51b to stop the charging operation.
  • operations such as determination of the number of times of charging N by the number of times determination unit 63 are performed, and the coordinates of the touch position P are detected.
  • step 1 of FIG. 6 the charge / discharge control unit 61 of the control processing unit 54 waits for the detection period T, and the detection period When it is detected that T has been reached (YES in S1), control processing unit 54 outputs a charging signal indicating charging to both charging / discharging circuits 51a '51b in S2 to instruct charging.
  • the current Z voltage conversion circuit 52a' 52b calculates the total amount of current supplied by both charging / discharging circuits 5la '51b in S3, and outputs the output voltage. Output as V 2a'v2b. Further, the sampling circuit 53a ′ 53b samples the output result of the current Z voltage conversion circuit 52a ′ 52b, and the detection unit 62 of the control processing unit 54 reads the output voltage v2a′v2b.
  • the touch presence / absence detection unit 65 of the control processing unit 54 determines that no touch has been made when both of the read output voltages v2a'v2b are equal to or lower than the threshold value Vt2 (YES in S4). To do. In this case, the touch presence / absence detection unit 65 instructs the charge / discharge circuits 51a ′ 51b to stop the charging operation, and the control processing unit 54 repeats the processes after S1. Thus, the charging / discharging operation of each charging / discharging circuit 51a '51b is stopped until the next detection period T.
  • the frequency determination unit 62 reads the above-mentioned reading in S5. It is determined whether any of the included output voltages v2a ⁇ v2b exceeds the threshold Vt1.
  • the frequency determination unit 63 determines the current charging frequency as the touch position P of The number of times of charging by the charging / discharging circuit 51a ′ 51b per detection of the coordinates is determined as N, and the calculation unit 64 of the control processing unit 54 calculates the coordinates of the touch position P based on the output voltage v2a′v2b.
  • the number-of-times determination unit 63 sets the number of times of charging N to 10. Thereby, the calculation unit 64 calculates the coordinates of the touch position P based on the output voltages v2a and v2b at that time. As a result, the dynamic range is expanded compared to the configuration in which the number of times of charging N is fixed, and the coordinate position detection device 5 can detect the coordinates of the touch position P with high accuracy even when the touch is weak.
  • the output voltages v2a and v2b rise more steeply.
  • the output voltage v2a or v2b or both reaches the threshold Vtl when the number of charge reaches 4.
  • the number determination unit 63 sets the number of times of charging N to 4, and the calculation unit 64 calculates the coordinates of the touch position P based on the output voltages v2a and v2b at that time.
  • the output voltages v2a and v2b do not saturate unlike the case where the number of times of charging N is fixed (in the case of W500 y).
  • coordinate position detection The device 5 can detect the coordinates of the touch position P that does not hinder the object with high accuracy even when the touch is strong.
  • the number determination unit 63 Sets the charging count N to a smaller value (3 times in the example in the figure). Therefore, even when the panel 31 is pressed solidly, the output voltages v2a and v2b do not saturate, and the coordinate position detection device 5 can detect the coordinates of the touch position P that does not interfere at all with high accuracy.
  • the position detection resistor film (32a) is also used as the display common electrode (107), which is formed integrally with the display device. I will explain. In this modification, the configuration in which the coordinate detection of the touch position P is extended two-dimensionally will also be described.
  • the touch panel integrated liquid crystal display device 100 includes a knocklight 101, a diffusion sheet 102, a polarizing plate (first polarizing plate) 103, a substrate (first substrate). ) 104, TFT array 105, liquid crystal layer 106, counter conductive film (transparent conductive thin film) 107, color filter 108, counter substrate (second substrate) 109, and polarizing plate (second polarizing plate) 110 are laminated in this order. Configured.
  • the substrate 104 is also formed of a transparent insulating material force such as glass or plastic, and the TFT array 5 is formed on the first surface of the substrate 104, as shown in FIG. Pixel electrodes not shown are arranged in a matrix. This pixel electrode is driven by an active matrix system, and the substrate 104 on which the TFT array 105 is formed can function as an “active matrix substrate”.
  • the TFT array 105 on the substrate 104 is an array of thin film transistors (TFTs) having thin semiconductor layers such as amorphous silicon and polycrystalline silicon. Note that the actual substrate 104 has a widened area outside the periphery of the display area.
  • the pixel TFT in the display area is driven to supply a desired amount of charge to the pixel electrode.
  • a drive circuit (gate driver and source drain) is formed.
  • the pixel TFTs constituting the TFT array 105 are connected to the drive circuit via wirings (gate wirings and data lines) not shown.
  • a protective film and an alignment film (not shown) are provided on the substrate 104 so as to cover the TFT array 105.
  • a color filter 108 and a counter conductive film 107 formed of, for example, an ITO film are stacked on the surface of the substrate 109 facing the substrate 104 on the liquid crystal layer 106 side in this order. It has been.
  • a desired voltage is applied to each pixel by the counter conductive film 107 and a pixel electrode (not shown). .
  • the direction of the liquid crystal molecules changes, and the light emitted from the backlight 101 can be modulated.
  • the luminance of each pixel can be controlled by controlling the voltage applied to the pixel electrode for each pixel, and the touch panel integrated liquid crystal display device 100 can display a desired image.
  • the touch panel includes a resistance film for position detection and the insulating film 33 that covers the resistance film and forms a surface that can be touched from the outside.
  • the counter conductive film 107 is used not only as a common electrode for display but also as the resistance film of the touch panel.
  • the color filter 108 as the insulating film, the counter substrate 109, and the polarizing plate 110 are attached to the touch panel 3 described above. Also used as insulating film 33.
  • the touch panel integrated liquid crystal display device 100 when the counter conductive film 7 is used as a common electrode for display and when it is used as a resistance film for position detection, they are separated in time, and alternately. Has been switched to.
  • a period within the blanking period of the vertical synchronization period or the horizontal synchronization period is used as a position detection resistance film (detection period).
  • the control processing unit 54a operates in synchronization with the vertical synchronization period of the liquid crystal display or the blanking period of the horizontal synchronization period.
  • the control processing unit 54a generates a vertical synchronization signal or a horizontal synchronization signal of the liquid crystal display. Based on this, the start and end times of the detection period are determined.
  • the control processing unit 54a detects the detection period T based on a vertical synchronization signal and a horizontal synchronization signal (not shown) of the liquid crystal module power including the liquid crystal drive circuit 120, and a charging signal. Is generated.
  • the control processing unit 54a for example, the counter conductive film 7
  • the liquid crystal drive circuit 120 and the counter conductive film 7 are separated by cutting off the switch 54b provided between the liquid crystal drive circuit 120 for applying a common voltage to the counter conductive film 7 and the like.
  • the control processing unit 54a connects the liquid crystal driving circuit 120 and the counter conductive film 7 when the detection period ends.
  • the liquid crystal driving circuit 120 is connected to the counter conductive film 7, and the liquid crystal driving circuit 120 uses the counter conductive film 7 as a resistance film for position detection. Nevertheless, the liquid crystal can be driven without any trouble.
  • the touch panel integrated liquid crystal display device 100 is configured to be able to detect the coordinates at the touch position P in two dimensions, and as shown in FIG. 8, a resistance film for position detection is used.
  • Position detection electrodes 34a to 34d (voltage application terminals) are formed at the four corners of 3 2a.
  • the coordinate position detection device 5a of the input device la includes members 51a to 53a corresponding to the electrodes 34a described above corresponding to the electrodes 34a to 34d, respectively. Similar members 51a to 53d are provided.
  • the charging / discharging circuits 51a to 51d operate in synchronization with each other, and voltages having the same homologous amplitude are applied to the corresponding electrodes 34a to 34d.
  • the detection unit 62 of the control processing unit 54a causes the current Z voltage conversion circuits 52a to 52d to change the corresponding electrodes 34a to 34d according to the outputs of the sampling circuits 53a to 53d.
  • the output voltages v2a to v2d indicating the total amount of currents ia to id charged to the coupling capacitor 4 are obtained.
  • the number-of-times determining unit 63 determines the number of times of charging when one or more of these output voltages v2a to v2d exceeds the threshold value Vtl as the number of times of charging N described above.
  • the touch presence / absence detection unit 65 determines that there is no touch when any of these output voltages v2a to v2d is equal to or lower than the threshold value Vt2.
  • the currents ia to id are inversely proportional to the resistance values of the resistors ra to rd from the electrodes 34a to 34d to the touch position P, and the resistors ra to rd are the touch positions. It changes according to the (X, Y) coordinates of P. Therefore, the calculation unit 64 can calculate the (X, Y) coordinates of the touch position P from the output voltages v2a to v2d that do not interfere with the operation.
  • kl is an offset
  • k2 is a magnification
  • kl and k2 are values independent of the coupling capacity 4.
  • the touch panel integrated liquid crystal display device 100 the configuration in which the opposing conductive film 107 is also used as the position detection resistive film 32 has been described.
  • the touch panel integrated display device is a touch panel type display device.
  • the opposing conductive film 107 of the display device and the resistance film 32 of the touch panel 3 may be separate members.
  • the resistance film 32 is required separately from the opposing conductive film 107, but unlike the configuration of the above-described modified example, the position detection resistance film 32 is always attached to the coordinate position detection device 5 of the touch panel 3.
  • the counter conductive film 107 can be always connected to the liquid crystal driving circuit 120.
  • the resistance film 32 for position detection is provided on the display surface side from the counter conductive film 107, that is, on the surface side touched by the external cover.
  • the parasitic capacitance of the touch panel 3 is a value that can be ignored, and in particular, a configuration in which a member for compensating for the influence of the parasitic capacitance is not provided.
  • a circuit that compensates for the current due to the parasitic capacitance of the touch panel may be provided in the current that flows during charging.
  • the force described above is not limited to the force described for the configuration in which the strength of the touch is detected by the output voltage of the current Z voltage conversion circuit (52a '52b or 52a to 52d). Even if other detection means can detect the strength of the touch, substantially the same effect can be obtained. However, if the detection is performed using the output voltage of the current Z voltage conversion circuit as in each of the above-described configurations, it is not necessary to newly provide a strong or weak detection sensor, so that the configuration of the entire apparatus can be simplified.
  • the configuration is described in which the charge / discharge circuit stops the charge / discharge circuit until the next detection period T when the number of times of charge N is exceeded, but the present invention is not limited to this.
  • the charging number N is fixed, and the control processing unit (54, 54a) uses the output voltage (v2a 'v2b or v2a to v2d) when charging is performed for the charging number N.
  • Calculate coordinates May be.
  • the power consumption of the device can be further reduced by stopping the charging / discharging operation until the charging / discharging circuit reaches the next detection period T.
  • the current Z voltage conversion circuit (52a'52b or 52a to 52d) is charged in each of the charge and discharge circuits (51a 52b or 51a to 5a) during the charge period and the discharge period.
  • Id) is a force that explains the configuration for detecting the current charged in the coupling capacitor 4.
  • the present invention is not limited to this. Instead of the charging current, a discharging current may be detected. In any case, if the amount of charge exchanged between the charge / discharge circuit and the coupling capacitor (4) can be measured during the measurement period, which is one of the charge period and the discharge period, the same effect can be obtained. Is obtained.
  • control unit may monitor the measurement results of the charge amount measuring units and detect the strength of the touch by the input unit.
  • each charging / discharging by the charging / discharging means it is determined whether or not the measurement result of each charge amount measuring means exceeds a predetermined value.
  • the number of times of charging / discharging so far may be determined as the number of times of charging / discharging.
  • the charging / discharging unit may stop the charging / discharging operation until the next detection period after charging / discharging the number of times of charging / discharging.
  • the charging / discharging operation is stopped until the next detection period, so that the coordinates of the touch position can be continuously detected at predetermined time intervals, It is possible to realize a coordinate position detection apparatus with low power consumption and low power consumption.
  • the coordinate position detection apparatus of the present invention includes a touch presence / absence detection unit that monitors the measurement result of the charge amount measuring unit and detects the presence / absence of a touch on the insulating film. You may have.
  • the touch presence / absence detecting means for detecting the touch presence / absence is provided, the charging operation can be stopped if the touch is not made. Therefore, power consumption can be reduced.
  • a touch panel integrated display device includes any one of the touch panel and the coordinate position detection device, and a display device. As a result, a touch panel integrated display device capable of stably detecting the coordinates of the touch position regardless of the strength of the touch and the type of input means can be realized.
  • the display device is a liquid crystal display device including a common electrode common to each pixel and a driving circuit for the common electrode, and the common electrode is used as the resistance film.
  • the detection period is set within the blanking period of the video signal of the liquid crystal display device, and the control means separates the drive circuit and the common electrode during the detection period.
  • the detection period is set within a blanking period of the video signal of the liquid crystal display device, and the control means separates the drive circuit and the common electrode during the detection period.
  • the resistive film is used as a common electrode for display and when it is used as a resistive film for position detection, the common electrode is used as a resistive film for the touch panel. Even so, both troublesome display and coordinate detection of the touch position can be performed.
  • the number of times of charge / discharge is changed depending on the strength of the touch or the measurement result of each of the charge amount measuring means, and the charge / discharge times corresponding to the number of times of charge / discharge in the detection period are changed.
  • the touch position is detected based on the measurement result.
  • the number of times of charging / discharging is dynamically changed, for example, the touch by an input means such as a touch pen is too strong, and the output of each charge amount measuring means increases undesirably and becomes saturated.
  • the coordinates of the touch position are detected, or the touch by the input means is too weak, and the output of each charge amount measurement means is not desired in the output range of each charge amount measurement means. Therefore, it is possible to prevent the coordinates of the touch position from being detected based on the value at a low level. As a result, the coordinates of the touch position can be detected stably regardless of the strength of the touch and the type of input means.
  • the present invention can be used widely and suitably as a coordinate position detecting device for various touch panels including a touch panel integrated display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Description

明 細 書
座標位置検出装置、および、タツチパネル一体型表示装置
技術分野
[0001] 本発明は、タツチパネルの座標位置検出装置、および、それを用いたタツチパネル 一体型表示装置に関するものである。
背景技術
[0002] 従来から、入力装置の 1つとして、タツチパネルが広く使われており、その一種とし て、容量結合方式のタツチパネルも使用されている。例えば、後述する特許文献 1に は、当該タツチパネルの座標位置検出装置として、結合容量を充電する手段と、充 電された電荷量を電圧に変換する手段と、変換された電圧をサンプリングする手段と 、充電された結合容量を充電前の状態に戻す手段と、変換された電圧を充電前の状 態に戻す手段とを備え、各手段が、間歇動作が可能に構成された装置が記載されて いる。
[0003] 当該装置では、パネルの周囲から、一定の周期で電圧をカ卩えてパネルを充電 (放 電)している。したがって、指がパネルに触れていない場合や、指が触れていても充 電が完了した状態では、充電 (放電)電流は流れない。つまり、指が触れた状態であ れば 1回でも充電によって位置が特定できるので、短時間でかつ正確に座標がわか る。さらに、必要な時だけ消費電流 (充電、放電)が流れるので、全体的に低消費電 力化に寄与する。
特許文献 1 :日本国特許公開公報「特開 2005— 301974号公報 (公開日:平成 17年 10月 27日)」
発明の開示
[0004] し力しながら、上記従来の構成にお!、て、充電回数を固定にすると、不所望にタツ チが強かったり、不所望にタツチが弱力つたりしたときに、充分なダイナミックレンジを 確保できな力つたり、位置ズレが発生したりする虞れがある。
[0005] 具体的には、不所望にタツチが強いと、電荷量を電圧に変換する手段の出力が不 所望に増加して、上記各手段の出力が飽和してしまい、正しく位置を検出できなくな る虞れがある。一方、不所望にタツチが弱いと、電荷量を電圧に変換する手段の出 力が低いレベルのときのサンプリング結果に基づいて、座標を判定してしまい、充分 なダイナミックレンジを確保できなくなる虞れがある。さらに、ダイナミックレンジの差に よって位置ズレが発生する虞れもある。
[0006] なお、タツチパネルの感度を下げれば、飽和は発生しにくくなる一方で、軽く(弱く) タツチした場合に反応しにくくなつてしまう。これとは逆に、タツチパネルの感度を上げ れば、座標位置検出装置の反応が良くなり、弱いタツチのときにダイナミックレンジを 充分に確保できる一方で、強くタツチした場合に上記各手段の出力が飽和し易くなつ てしまう。
[0007] 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、タツチの強弱 、および、指ゃタツチペンなどの入力手段の種類に拘らず、タツチ位置の座標を安定 して検出可能な座標位置検出装置、および、それを用いたタツチパネル一体型表示 装置を実現することにある。
[0008] 本発明の表示装置は、上記課題を解決するために、抵抗膜と当該抵抗膜を覆う絶 縁膜と上記抵抗膜に設けられた複数の電極とを有するタツチパネルに対する、入力 手段のタツチ位置の座標を検出する座標位置検出装置において、上記各電極に対 応して設けられ、タツチ位置の検出期間中に、上記入力手段による絶縁膜へのタツ チによって上記抵抗膜に容量結合される結合容量へ、それぞれに対応する電極を 介して充放電を繰り返す充放電手段と、上記各充放電手段に対応して設けられ、上 記検出期間のうち、それぞれに対応する充放電手段による充電期間および放電期 間のうちの一方である測定期間に、当該充放電手段と結合容量との間でやり取りされ る電荷量を測定する電荷量測定手段と、
上記各検出期間のうち、上記充放電手段による充放電が予め定められた充放電回 数だけ経過した時点における、上記各電荷量測定手段の測定結果に基づ!、てタツ チ位置を検出する位置検出手段と、上記入力手段によるタツチの強弱に応じて、上 記充放電回数を変更する制御手段とを備えて 、ることを特徴として 、る。
[0009] また、本発明に係る座標位置検出装置は、上記課題を解決するために、抵抗膜と 当該抵抗膜を覆う絶縁膜と上記抵抗膜に設けられた複数の電極とを有するタツチパ ネルに対する、入力手段のタツチ位置の座標を検出する座標位置検出装置におい て、上記各電極に対応して設けられ、タツチ位置の検出期間中に、上記入力手段に よる絶縁膜へのタツチによって上記抵抗膜に容量結合される結合容量へ、それぞれ に対応する電極を介して充放電を繰り返す充放電手段と、上記各充放電手段に対 応して設けられ、上記検出期間のうち、それぞれに対応する充放電手段による充電 期間および放電期間のうちの一方である測定期間に、当該充放電手段と結合容量と の間でやり取りされる電荷量を測定する電荷量測定手段と、上記各検出期間のうち、 上記充放電手段による充放電が予め定められた充放電回数だけ行われた時点にお ける、上記各電荷量測定手段の測定結果に基づ!ヽてタツチ位置の座標を検出する 位置検出手段と、上記各電荷量測定手段の測定結果を監視して、上記充放電回数 を変更する制御手段とを備えて 、ることを特徴として 、る。
[0010] 上記構成では、タツチの強弱、あるいは、上記各電荷量測定手段の測定結果によ つて、充放電回数が変更され、位置検出手段は、検出期間のうち、当該充放電回数 だけ充放電された時点の測定結果に基づいてタツチ位置を検出する。
[0011] このように、上記充放電回数が動的に変更されるので、例えば、指ゃタツチペンな どの入力手段によるタツチが強過ぎて、各電荷量測定手段の出力が不所望に増加し て飽和してしまった後の値に基づいて、タツチ位置の座標を検出したり、入力手段に よるタツチが弱過ぎて、各電荷量測定手段の出力が、各電荷量測定手段の出力レン ジのうちの不所望に低 、レベルに留まって 、るときの値に基づ!/、て、タツチ位置の座 標を検出したりすることを防止できる。この結果、タツチの強弱および入力手段の種 類に拘らず、タツチ位置の座標を安定して検出可能な座標位置検出装置を実現でき る。
[0012] 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分か るであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであ ろう。
図面の簡単な説明
[0013] [図 1]本発明の実施形態を示すものであり、タツチパネルを有する入力装置の要部構 成を示すブロック図である。 圆 2]上記タツチパネルに指が触れた状態を示す模式図である。
圆 3]図 2の等価回路を示す回路図である。
圆 4]上記入力装置の動作を示すものであり、各部の信号波形を示す波形図である。 圆 5]上記入力装置の座標位置検出装置に設けられた制御処理部の要部構成を示 すブロック図である。
[図 6]上記入力装置の動作を示すフローチャートである。
圆 7]上記入力装置の変形例を示すものであり、タツチパネル一体型液晶表示装置 のパネル部分を模式的に示した模式図である。
圆 8]上記タツチパネル一体型液晶表示装置における対向基板、位置検出用抵抗膜 および位置検出用の電極を示す平面図である。
圆 9]上記入力装置の要部構成を示すブロック図である。
符号の説明
3 タツチパネル
4 結合容量
5 · 5a 座標位置検出装置
32 抵抗膜
33 絶縁膜
34a〜34d 電極
51a〜51d 充放電回路(充放電手段)
52a〜52d 電流 Z電圧変換回路 (電荷量測定手段)
54 · 54a 制御処理部(制御手段)
64 演算部 (位置検出手段)
65 タツチ有無検出部(タツチ有無検出手段)
100 タツチパネル一体型液晶表示装置 (タツチパネル一体型表示装置)
107 対向導電膜 (抵抗膜'共通電極)
108 カラーフィルタ (絶縁膜)
109 対向基板 (絶縁膜)
110 偏光板 (絶縁膜) 120 液晶駆動回路 (共通電極の駆動回路)
発明を実施するための最良の形態
[0015] 本発明の一実施形態について図 1ないし図 9に基づいて説明すると以下の通りで ある。すなわち、本実施形態に係る座標位置検出装置は、容量結合式のタツチパネ ルにおいて、タツチの強弱に応じて充放電回数を変更し、検出期間のうち、当該充放 電回数だけ充放電された時点の測定結果に基づいてタツチ位置を検出することによ つて、タツチの強弱および入力手段の種類に拘らず、タツチ位置の座標を安定して検 出可能な座標位置検出装置であって、例えば、老若男女を問わず使用されるタツチ パネルなど、ユーザの指の大きさや押圧が大きく相違する用途に使用されるタツチパ ネルの座標位置検出装置として好適に使用できる。
[0016] 以下では、充電回数を変更するための構成について説明する前に、座標位置検出 装置の概略構成について説明する。
[0017] 図 1に示すように、本実施形態に係る入力装置 1は、容量結合式のタツチパネル 3と 、当該タツチパネル 3に接続され、当該タツチパネル 3のパネル 31が、例えば、人間 の指 (ある ヽはペン)などの電導性を持った物体でタツチされた場合に、そのタツチ位 置をパネル 31中の座標として認識する座標位置検出装置 5とを備えて ヽる。当該座 標位置検出装置 5は、抵抗膜 32と絶縁膜 33の上記物体との間の容量 (キャパシタ) を、パネル 31の抵抗成分を介して充電 (あるいは放電)する際の電流量によって、上 記座標を求めることができる。なお、後述するように、 2次元の座標を検出可能に構成 することもできるが、以下では、説明の便宜上、 1次元の座標を検出する場合につい て説明する。
[0018] より詳細には、本実施形態に係るタツチパネル 3のパネル 31には、図 2に示すよう に、抵抗膜 32が形成されており、当該抵抗膜 32を覆うように、外部から触れられる表 面を形成する絶縁膜 33も設けられている。また、パネル 31には、 1対の電極 34a ' 34 bも設けられており、当該電極 33a' 34bは、当該抵抗膜 32を介して接続されている。 これにより、抵抗膜 32は、 1次元の抵抗膜として動作できる。
[0019] 上記絶縁膜 33を、例えば、人間の指が触れると、抵抗膜 32は、図 3の等価回路に 示すように、グランドと容量的に結合される。ここで、抵抗膜 32に結合される容量 (結 合容量) 4は、人間の指などの物体がパネル 31に触れることによって、抵抗膜 32とグ ランドとの間に形成される容量であって、例えば、人間の指が触れた場合、抵抗膜 3 2と絶縁膜 33の上記物体 (指)との間の容量になる。なお、図 3において、抵抗 mおよ び rbは、抵抗膜 32の抵抗であって、抵抗 raが、電極 34aからタツチ位置 Pまでの抵 抗膜 32の抵抗を示しており、抵抗 rbが、電極 34bからタツチ位置 Pまでの抵抗膜 32 の抵抗を示している。
[0020] 一方、上記座標位置検出装置 5には、電極 34aに関連する部材として、上記電極 3 4aに接続された充放電回路(充放電手段) 51aと、物体がパネル 31に触れたときに 上記結合容量 4に充放電回路 51aが充電する際の電流量の合計を電圧に変換する 電流 Z電圧変換回路 (電荷量測定手段) 52aと、当該電流 Z電圧変換回路 52aの出 力電圧をサンプリングするサンプリング回路 53aとが設けられている。また、座標位置 検出装置 5は、電極 34bに関連する部材として、接続されている電極が電極 3を除い て、上記各部材 51a〜53aと同一の部材 51b〜53bを備えている。さらに、座標位置 検出装置 5には、上記各サンプリング回路 53a' 53bの出力信号に基づいて、タツチ 位置 Pの座標を計算する制御処理部 (制御手段) 54も設けられて 、る。
[0021] 上記両充放電回路 51aおよび 51bは、例えば、制御処理部 54からの充電信号によ つて充電 Z放電のタイミングを決定するなどして、互いに同期して充放電を繰り返し ており、それぞれに対応する電極 34aまたは 34bに、互いに同相同振幅の電圧を印 加できる。本実施形態に係る充放電回路 51a ' 51bは、パルス状の電圧を印加してお り、充電時に、予め定められた電圧 VO+Vrefを印加すると共に、放電時には、予め 定められた電圧 VOを印加して!/、る。
[0022] また、上記電流 Z電圧変換回路 52aは、例えば、充電期間(充放電回路 51aが電 圧 VO+Vrefを印加している期間)において、充放電回路 5 laが電極 34aへ供給す る電流を、積分回路により積分するなどして、上記充放電回路 51aが結合容量 4に充 電する電流量の合計 (電荷量 Qa)を、センシング電圧 v2aに変換できる。同様に、上 記電流 Z電圧変換回路 52bは、上記充放電回路 5 lbが電極 34bを介して結合容量 4に充電する電流量の合計 (電荷量 Qb)を、電圧 v2bに変換できる。
[0023] さらに、上記電流 Z電圧変換回路 52a ' 52bは、それぞれに対応する充放電回路 5 la ' 51bが充電する際の電流量の合計を電圧に変換するだけではなぐ詳細は後述 するように、制御処理部 54からリセットが指示されると、例えば、積分回路の積分容 量に蓄積された電荷を放電するなどして、電流量の測定結果をリセットして、出力電 圧 (v2aまたは v2b)を、測定開始前の状態に戻すことができる。
[0024] 上記構成において、タツチされている状態では、図 3の等価回路に示すように、タツ チ位置 Pに結合容量 4が結合されている。したがって、充電時に、充放電回路 51aが 電極 34aに電圧 VO+Vrefを印加すると、図中、実線の矢印に示すように、電極 34a カゝら抵抗 raを介して結合容量 4へと電流 iaが流れる。同様に、充放電回路 5 lbが電 極 34bに電圧 VO+Vrefを印加すると、図中、実線の矢印に示すように、電極 34bか ら抵抗 rbを介して結合容量 4へと電流 ibが流れる。そして、これら両電流 ia 'ibによつ て、結合容量 4が充電される。なお、 vla、 vlbは、電極 34a ' 34bに印加された電圧 を示している。
[0025] ここで、上述したように、電極 34& ' 341)に印加された電圧 1& 21)は、互いに同相 同振幅なので、上記各抵抗 ra 'rbにも同相同振幅の電圧が印加されている。したが つて、上記電流 iaおよび ibは、抵抗 raおよび rbの抵抗値 raおよび rbに反比例した値 になり、以下の式(1)に示すように、
ia : ib =rb :ra · · · (1)
となる。
[0026] 一方、上記電流 Z電圧変換回路 52aおよび 52bは、例えば、充電期間(充放電回 路 51 a · 5 lbが電圧 VO + Vrefを印加して!/、る期間)にお!/、て電流 iaまたは ibを積分 回路により積分するなどして、上記充放電回路 51aおよび 51bによって充電される電 流 iaおよび ibの電流量の合計(電荷量 Qaおよび Qb)を、出力電圧 v2aおよび v2bに 変換する。
[0027] ここで、電流 iaおよび ibの比は、一定であり、電荷量 Qaおよび Qbの比は、電流 iaお よび ibの比と等 、ので、出力電圧 v2aおよび v2bのオフセットを無視できる値に設 定すると、以下の式(2)に示すように、
v2a :v2b = Qa : Qb = ia : io = rb :ra · · · (2)
が成立する。 [[00002288]] ままたた、、上上記記抵抵抗抗 rrbbおおよよびび rraaのの抵抵抗抗値値のの比比率率はは、、タタツツチチ位位置置 PPにに応応じじたた値値ににななっってておお りり、、抵抵抗抗値値のの比比率率 rrbb ::rraaはは、、上上記記出出力力電電圧圧のの比比率率 vv22aa ::vv22bbとと一一致致ししてていいるる。。ししたたががつつ てて、、制制御御処処理理部部 5544はは、、両両ササンンププリリンンググ回回路路 5533aaおおよよびび 5533bbががそそれれぞぞれれササンンププリリンンググしし たた、、上上記記両両電電流流 ZZ電電圧圧変変換換回回路路 5522aaおおよよびび 5522bbのの出出力力電電圧圧のの比比率率かからら、、タタツツチチ位位置置 PPのの座座標標をを検検出出ででききるる。。
[[00002299]] 一一例例ととししてて、、電電極極 3344aaのの XX座座標標をを 00、、電電極極 3344bbのの xx座座標標をを XXととししたたとときき、、タタツツチチ位位置置 PPのの XX座座標標はは、、以以下下のの式式((33))にに示示すすよよううにに、、
Figure imgf000010_0001
…… ))
となる。
[0030] また、タツチ位置 Pが検出されると、制御処理部 54は、上記両電流 Z電圧変換回路 52a · 52bへ電流量の測定結果のリセットを指示し、両電流 Z電圧変換回路 52a · 52 bは、出力電圧を、測定開始前の状態に戻す。
[0031] 以上の動作は、例えば、垂直同期期間毎など、予め定められた、タツチ位置の検出 期間 T毎に繰り返される。これにより、座標位置検出装置 5は、予め定められた時間 間隔で、タツチ位置 Pの座標を連続的に検出できる。
[0032] ところで、上記両充放電回路 51a ' 51bが、充電時に結合容量 4へ供給する電流量 は、結合容量 4の静電容量値の大きさによって変化する。したがって、例えば、強くタ ツチした場合、両電流 Z電圧変換回路 52&' 521)の出カ電圧 2& 21)は、弱くタツチ した場合よりも急峻に増加する。
[0033] ここで、比較例として、タツチ位置 Pの座標を検出する際の充電回数が固定されて いる構成について説明する。当該構成では、図 4の期間 T o;において、予め想定さ れた程度の強さ(普通の強さ)でタツチされると、電流 Ζ電圧変換回路の出力電圧は 、波形 W500 aのように変化する。この場合、上記回数(図の例では、 8回)だけ充電 された後でも、出力電圧は、 V aにしか到達していない。このように、充電終了後の電 圧が、電流 Ζ電圧変換回路の出力レンジに入っており、充分な SZN比を維持して いるので、座標位置検出装置は、タツチ位置 Ρの座標を高精度に検出できる。
[0034] しかしながら、図 4の期間 T j8のように、タツチが弱いと、出力電圧は、波形 W500 β に示すように、期間 Τ αの場合よりも緩やかに上昇する。この結果、上記回数だけ充 電しても、上記到達値 V aよりも低い値 V |8にし力到達できない。この場合、出力電 圧は、電流 Z電圧変換回路の出力レンジには入っているが、充分な SZN比を確保 することができなくなる虞れがある。したがって、タツチ位置 Pの座標を検出する際の 精度が低下してしまう。
[0035] 一方、図 4の期間 Τγのように、タツチが強いと、出力電圧は、波形 W500 yに示す ように、期間 T aの場合よりも急峻に上昇して、上記回数だけ充電するよりも前の時点 (図の例では、 7回目の充電中)に、電流 Z電圧変換回路の最大出力電圧 Vmaxに 到達してしまい、出力電圧が飽和してしまう。この結果、電流 Z電圧変換回路は、充 電電流 ia'ibの電流量の合計を正しく電圧に変換することができず、制御処理部は、 タツチ位置 Pの位置を特定できなくなる虞れがある。なお、図 4の期間 Τ δのように、 例えば、ベタ押しなど、より強いタツチがなされると、出力電圧の波形 W500 δは、よ り急峻に上昇して、より早い時点(5回目の充電中)に、電流 Ζ電圧変換回路の最大 出力電圧に到達してしまう。なお、上記最大出力電圧 Vmaxは、例えば、制御処理 部 54に設けられた AZD変^^が変換可能な最大値などに応じて設定されている。
[0036] さらに、弱くタツチしたときのダイナミックレンジと強くタツチしたときのダイナミックレン ジとが相違すると、両ダイナミックレンジの差によって、位置ズレが発生する虞れもあ る。
[0037] ここで、弱くタツチされる場合に備えて、例えば、充放電回路が印加する電圧を大き く設定したり、電流 Z電圧変換回路のゲインを大きく設定したりして、タツチパネルの 感度を上げると、弱くタツチされた場合に高精度にタツチ位置 Pの座標を検出できる。 ところが、この場合は、出力電圧が飽和しやすくなるため、普通のタツチでも、タツチ 位置 Pの座標を特定できなかったり、検出した位置が実際の位置力 ズレてしまった りしてしまう。
[0038] これとは逆に、強くタツチされる場合に備えて、タツチパネル 2の感度を下げると、飽 和し難くなるので、より強いタツチでも、タツチ位置 Pの位置を正しく検出できる。ただ し、弱くタツチされた場合の SZN比低下がより深刻になり、タツチ位置 Pの座標を検 出する際の精度がより低下してしまう。
[0039] なお、上記では、電流 Z電圧変換回路の出力レンジによる制限について説明した 力 サンプリング回路の入出力レンジ、および、制御処理部の入力レンジの制限によ つても、上記 SZN比の低下および飽和が発生し、タツチ位置 Pの座標の特定失敗、 ダイナミックレンジの差による位置ズレ、あるいは、検出精度の低下などが発生する虡 れがある。
[0040] これに対して、本実施形態に係る制御処理部 54は、タツチの強さに応じて、タツチ 位置 Pの座標検出 1回あたりの、充放電回路 51a' 51bによる充電回数 Nを変更して いる。具体的には、制御処理部 54は、タツチが弱い場合には、充電回数を増やして ダイナミックレンジを上げる。これにより、座標位置検出装置 5は、タツチが弱い場合 でも、タツチ位置 Pを高精度に検出できる。一方、制御処理部 54は、タツチが強い場 合には、充電回数を減らして、上記飽和の発生を防止する。この結果、座標位置検 出装置 5は、タツチが強い場合でも、何ら支障なぐタツチ位置 Pの座標を検出できる
[0041] このように、本実施形態に係る制御処理部 54は、タツチの状況により充電回数を動 的に増減させることによって、ダイナミックレンジの変化を抑え、ダイナミックレンジを 適切な値に保っている。この結果、ダイナミックレンジの差による位置ズレの発生を抑 制でき、座標位置検出装置 5は、タツチ位置 Pの座標を安定して検出できる。
[0042] タツチ強弱検出の一例として、本実施形態に係る制御処理部 54は、所定回数の充 電が終わった後にのみサンプリング回路 53a ' 53bの出力値を読み取って、タツチ位 置 Pの座標を検出するのではなぐ充放電回路 51a' 51bが予め定められた回数だけ 充電する度に (本実施形態では、毎回)、例えば、サンプリング回路 53a' 53bに電流 Z電圧変換回路 52a' 52bの出力電圧 v2a'v2bをサンプリングさせて、その出力値 を読み取るなどして、電流 Z電圧変換回路 52&' 521)の出カ電圧 2& 21)を検出し 、その検出結果に応じて、上記充電回数 Nを変更している。
[0043] より詳細には、図 5に示すように、制御処理部 54には、上記両充放電回路 51a' 51 bの充放電動作を制御する充放電制御部 61と、サンプリング回路 53a ' 53bの出力電 圧を検出する検出部 62と、当該出力電圧が予め定められた閾値 Vtlに到達している かを比較して、充電回数 Nを決定する回数決定部 63と、回数決定部 63により決定さ れた充電回数 Nが経過したときの出力電圧に基づいて、タツチ位置 Pの座標を算出 する演算部 (位置検出手段) 64とが設けられている。なお、これらの各部材 61〜64 は、回路のみによって実現してもよいし、例えば、 AZD変換器によってデジタル値 に変換した後、プロセッサ(CPUなど)が予め定められたプログラムに従って動作する ことによって実現してもよ 、。
[0044] 上記充放電制御部 61は、例えば、上記両充放電回路 51a, 51bへ充電期間である か否かを示す充電信号を与えるなどして、上記両両充放電回路 5 la · 5 lbの充放電 動作を制御している。本実施形態では、上記充電信号は、図 4に示すように、予め定 められた周期 Tの信号であって、充放電制御部 61は、検出期間 Tになったことを検 出すると、当該周期の充電信号の印加を開始する。一方、上記両充放電回路 51a ' 5 lbは、当該充電信号が充電を示す値(図の例ではハイレベル)の場合に充電し、放 電を示す値(図の例ではローレベル)の場合に放電できる。また、充放電制御部 61 は、充電信号を放電を示す値に維持することによって、上記両充放電回路 51a' 51b の充電動作を停止させることができる。
[0045] 上記検出部 62は、充放電回路 51a ' 51bの充電が終了する度に、サンプリング回 路 53a' 53bに電流 Z電圧変換回路 52a' 52bの出力電圧 v2a'v2bをサンプリングさ せて、その出力値を読み取ることができる。
[0046] 一方、回数決定部 63は、充放電回路 51a' 51bの充電が終了する度に、出力電圧 v2a'v2bが上記閾値 Vtlに到達している力否かを判定し、到達している場合、そのと きまでの回数を、上記検出 1回あたりの充電回数 Nと決定する。この場合、回数決定 部 63は、当該出力電圧 v2a 'v2bを用いて、タツチ位置 Pの座標を算出するように、演 算部 64へ指示する。また、この場合、回数決定部 63は、充放電回路 51a, 51bへ充 電の終了を指示する。これにより、充放電回路 51a' 51bは、例えば、次の垂直同期 期間など、次の検出期間 Tになるまで、充電を停止する。さらに、回数決定部 63は、 電流 Z電圧変換回路 52a ' 52bへ、電流量の測定結果のリセットを指示できる。
[0047] なお、上記閾値 Vtlは、例えば、制御処理部 54に設けられた AZD変換器が変換 可能な最大値よりも小さな値に設定される。
[0048] これとは逆〖こ、出力電圧 v2a 'v2bが閾値 Vtlに到達していない場合、回数決定部 63は、特に充電回数 Nを設定せず、充放電回路 51a' 51bによる次の充電が行われ る。
[0049] なお、上記充電回数 Nには、予め上限値が設定されており、上記回数決定部 63は 、上記充放電回路 51a' 52bの充電回数が上限値に到達すると、出力電圧 v2a'v2b に拘らず、充電回数 Nを当該上限値に設定する。
[0050] また、本実施形態に係る座標位置検出装置 5は、タツチされているか否かを検出す ると共に、タツチされていないと判定した場合は、次の検出期間 Tになるまで、充放電 回路 51 a · 52bによる充電動作を停止させることができる。
[0051] 具体的には、上記制御処理部 54には、タツチ有無検出部(タツチ有無検出手段) 6 5が設けられており、当該タツチ有無検出部 65は、例えば、初回の充電終了時点な ど、予め定められた回数だけ、充放電回路 51a ' 51bの充電が終了した時点で、上記 検出部 62が読み取った電流 Z電圧変換回路 52a ' 52bの出力電圧 v2a 'v2bと、予 め定められた閾値 Vt2と比較して、タツチの有無を検出する。
[0052] なお、閾値 Vt2は、上記閾値 Vtlよりも小さい値、より詳細には、タツチされていなけ れば、例えば、充放電回路 51a ' 51bやサンプリング回路 53a ' 53bのオフセットなど によって出力電圧 v2a · v2bが微小に変化したとしても、上記予め定められた回数だ け充放電回路 51a ' 51bの充電が終了した時点の出力電圧 v2a 'v2bが到達し得な い値として設定されている。
[0053] さらに、電流 Z電圧変換回路 52a ' 52bの出力電圧 v2a 'v2bのいずれもが当該閾 値 Vt2以下であり、タツチされていないと判断すると、タツチ有無検出部 65は、次の 検出期間 Tになるまでの間、充放電回路 5 la ' 51bへ充電動作の停止を指示する。こ れにより、タツチされていない場合の座標位置検出装置 5の消費電力を低減できる。 なお、この場合、座標位置検出装置 5は、例えば、タツチ有無検出部 65からの通知、 あるいは、予め定められたタイムアウト時間経過後のサンプリング回路 53a ' 53bの出 力電圧 v2a'v2bなどから、タツチされていないことを検出する。
[0054] これとは逆に、電流 Z電圧変換回路 52&' 521)の出カ電圧 2& 21)が当該閾値¥ 2を越え、タツチされていると判断すると、タツチ有無検出部 65は、特に、各充放電回 路 51a' 51bへ充電動作の停止を指示しない。これにより、上述したように、回数決定 部 63による充電回数 Nの決定などの動作が行われ、タツチ位置 Pの座標が検出され る。
[0055] 上記構成では、図 6のステップ 1 (以下では、 S1のように略称する)において、制御 処理部 54の充放電制御部 61は、検出期間 Tになるのを待ち受けており、検出期間 Tになったことを検出すると(S1にて、 YESの場合)、制御処理部 54は、 S2において 、上記両充放電回路 51a' 51bへ、充電を示す充電信号を出力して充電を指示する
[0056] 一方、充放電回路 51a' 51bが充電すると、電流 Z電圧変換回路 52a' 52bは、 S3 において、両充放電回路 5 la ' 51bが供給した電流量の合計を計算して、出力電圧 V 2a'v2bとして出力する。さらに、サンプリング回路 53a' 53bは、電流 Z電圧変換回 路 52a' 52bの出力結果をサンプリングし、制御処理部 54の検出部 62は、当該出力 電圧 v2a'v2bを読み込む。
[0057] 一方、制御処理部 54のタツチ有無検出部 65は、読み込まれた出力電圧 v2a'v2b の双方が上記閾値 Vt2以下の場合 (S4にて YESの場合)、タツチがされていないと 判断する。この場合、タツチ有無検出部 65は、上記両充放電回路 51a' 51bに充電 動作の停止を指示すると共に、制御処理部 54は、 S1以降の処理を繰り返す。これに より、次の検出期間 Tになるまで、各充放電回路 51a' 51bの充放電動作が停止され る。
[0058] これとは逆に、読み込まれた出力電圧 v2a'v2bのいずれかが上記閾値 Vt2を超え ている場合(上記 S4にて NOの場合)、回数決定部 62は、 S5において、上記読み込 まれた出力電圧 v2a · v2bのいずれかが上記閾値 Vt 1を超えているか否かを判定す る。
[0059] 両出力電圧 v2a'v2bのいずれもが閾値 Vtl以下の場合 (YESの場合)、制御処理 部 54は、上記 S2および S3と同様の処理(S6および S7の処理)を行った後、 S5の処 理を行う。これにより、当該 S5〜S7の処理、すなわち、両充放電回路 51a' 51bによ る充放電処理、および、出力電圧 v2a'v2bと閾値 Vtlとの比較処理は、出力電圧 v2 a'v2bのいずれかが上記閾値 Vtlを超えるまでの間、繰り返される。
[0060] 一方、出力電圧 v2a'v2bのいずれかが上記閾値 Vtlを超えると(上記 S5におて、 NOの場合)、 S11において、回数決定部 63は、現在の充電回数を、タツチ位置 Pの 座標検出 1回あたりの、充放電回路 51a' 51bによる充電回数 Nとして決定し、制御処 理部 54の演算部 64は、出力電圧 v2a 'v2bに基づいて、タツチ位置 Pの座標を算出 する。
[0061] 例えば、図 4の期間 Τ αのように、タツチパネル 3のパネル 31が普通の強さでタツチ されると、 8回充電された時点で、出力電圧 v2aまたは v2bあるいは両方が閾値 Vtl に到達するので、充電回数 Nが 8回に設定される。これにより、電流 Z電圧変換回路 52a-
Figure imgf000016_0001
上述した波形 W500 αと同様、 W αに示 すように変化する。この場合、充電終了後の電圧 v2a'v2bは、電流 Z電圧変換回路 52a' 52bの出力レンジに入っており、充分な SZN比を維持しているので、座標位置 検出装置 5は、タツチ位置 Pの座標を高精度に検出できる。
[0062] 一方、期間 Τ |8のように、タツチが弱いと、図中、 W |8に示すように、出力電圧 v2a および v2bが、より緩やかに上昇するので、充電回数が 8回になった時点でも、出力 電圧 v2aおよび v2bが閾値 Vtlに到達していない。したがって、座標位置検出装置 5 は、充電回数 Nが固定されている構成とは異なって、さらに充電を繰り返す。これによ り、出力電圧 v2aおよび v2bは、充電回数 Nが固定の場合 (W500 |8の場合)よりも長 い期間上昇する。そして、 10回充電された時点で、出力電圧 v2aまたは v2bあるいは 両方が閾値 Vtlに到達すると、回数決定部 63は、充電回数 Nを 10回に設定する。こ れにより、演算部 64は、そのときの出力電圧 v2aおよび v2bに基づいて、タツチ位置 Pの座標を算出する。この結果、充電回数 Nが固定されている構成と比較して、ダイ ナミックレンジが拡大され、座標位置検出装置 5は、タツチが弱いときでも、タツチ位 置 Pの座標を高精度に検出できる。
[0063] これとは逆に、期間 Τ γのように、タツチパネル 3のパネル 31が強くタツチされると、 図中、 に示すように、出力電圧 v2aおよび v2bが、より急峻に上昇して、充電回 数が 4回になったときに、出力電圧 v2aまたは v2bあるいは両方が閾値 Vtlに到達す る。この場合、回数決定部 63は、充電回数 Nを 4回に設定し、演算部 64は、そのとき の出力電圧 v2aおよび v2bに基づいて、タツチ位置 Pの座標を算出する。この場合、 充電回数 Nが 4回に設定されているので、充電回数 Nが固定の場合 (W500 yの場 合)とは異なって、出力電圧 v2aおよび v2bは飽和しない。この結果、座標位置検出 装置 5は、タツチが強い場合でも、何ら支障なぐタツチ位置 Pの座標を高精度に検出 できる。
[0064] なお、例えば、期間 Τ δのように、さらに強くパネル 31がタツチされ、図中、 W δに 示すように、出力電圧 v2aおよび v2bがより急峻に上昇したとしても、回数決定部 63 が充電回数 Nをより小さな値(図の例では、 3回)に設定する。したがって、パネル 31 がベタ押しされた場合であっても、出力電圧 v2aおよび v2bの飽和は発生せず、座標 位置検出装置 5は、何ら支障なぐタツチ位置 Pの座標を高精度に検出できる。
[0065] 以下では、上記入力装置 1の変形例として、表示装置と一体に形成され、位置検出 用の抵抗膜 (32a)が表示用の共通電極 (107)としても使用されて 、る構成につ 、て 説明する。なお、当該変形例では、タツチ位置 Pの座標検出を 2次元に拡張した構成 につ 、ても併せて説明する。
[0066] すなわち、図 7に示すように、本変形例に係るタツチパネル一体型液晶表示装置 1 00は、ノ ックライト 101、拡散シート 102、偏光板 (第 1偏光板) 103、基板 (第 1基板) 104、 TFTアレイ 105、液晶層 106、対向導電膜 (透明導電性薄膜) 107、カラーフィ ルタ 108、対向基板 (第 2基板) 109、および偏光板 (第 2偏光板) 110が順に積層さ れて構成されている。
[0067] より詳細には、上記基板 104は、ガラスやプラスチックなどの透明絶縁材料力も形 成されており、当該基板 104の第 1の面上には、 TFTアレイ 5が形成されると共に、図 示しない画素電極がマトリクス状に配列されている。この画素電極は、アクティブマトリ タス方式で駆動されるものであり、 TFTアレイ 105が形成された状態の基板 104は、「 アクティブマトリクス基板」として機能できる。当該基板 104上の TFTアレイ 105は、非 晶質シリコンや多結晶シリコンなどの半導体薄層を有する薄膜トランジスタ (TFT)が 配列されたものである。なお、実際の基板 104には、表示領域の周辺外側に広がつ た領域があり、その領域には表示領域内の画素用 TFTを駆動し、画素電極に所望 量の電荷を供給するための駆動回路 (ゲートドライバおよびソースドライノく)が形成さ れている。また、 TFTアレイ 105を構成する画素用 TFTは、図示しない配線 (ゲート 配線およびデータ線)を介して駆動回路に接続されている。さらに、基板 104の上に は、 TFTアレイ 105を覆うように図示しない保護膜や配向膜が設けられている。 [0068] また、上記基板 104に対向する基板 109の液晶層 106側の面には、カラーフィルタ 108と、例えば、 ITO膜などカゝら形成された対向導電膜 107とが、この順序で積層さ れている。
[0069] ここで、上記基板 104と対向基板 109との間に設けられた液晶層 106に対しては、 対向導電膜 107と図示しない画素電極とによって、画素毎に所望の電圧が印加され る。この電圧印加により、液晶分子の方向が変化し、バックライト 101から出た光を変 調することができる。この結果、各画素毎の画素電極に印加する電圧を制御すること によって、各画素の輝度を制御でき、タツチパネル一体型液晶表示装置 100は、所 望の画像を表示することができる。
[0070] ここで、上述したように、タツチパネルは、位置検出用の抵抗膜と、この抵抗膜を覆 つており外部から触れられる表面を形成する絶縁膜 33とを含んで構成されているが 、本変形例に係るタツチパネル一体型液晶表示装置 100では、上記対向導電膜 10 7を表示用の共通電極としてのみ用いるのではなぐタツチパネルの上記抵抗膜とし ても使用している。また、本変形例では、絶縁膜としてのカラーフィルタ 108、対向基 板 109、および、偏光板 110 (さらにその上に形成された他の絶縁部材を含んでもよ V、)を、タツチパネル 3の上記絶縁膜 33としても使用して 、る。
[0071] より詳細には、タツチパネル一体型液晶表示装置 100は、上記対向導電膜 7を表 示用共通電極として用いるときと、位置検出用抵抗膜として用いるときとを時間的に 分離し、交互に切り換えている。
[0072] 一例として、本変形例に係るタツチパネル一体型液晶表示装置 100では、垂直同 期期間あるいは水平同期期間の帰線期間内の期間を、位置検出用抵抗膜として用 いる期間(検出期間)に設定している。より詳細には、上記制御処理部 54aは、液晶 表示の垂直同期期間あるいは水平同期期間の帰線期間と同期して動作しており、例 えば、液晶表示の垂直同期信号あるいは水平同期信号などに基づいて、検出期間 の開始および終了時点を決定する。なお、本実施形態に係る制御処理部 54aは、液 晶駆動回路 120を含む、図示しない液晶モジュール力 の垂直同期信号と水平同 期信号とに基づいて、検出期間 Tを検出すると共に、充電信号を生成している。
[0073] さらに、上記制御処理部 54aは、検出期間が開始されると、例えば、対向導電膜 7 に共通の電圧を印加する液晶駆動回路 120と対向導電膜 7との間に設けられたスィ ツチ 54bを遮断するなどして、液晶駆動回路 120と対向導電膜 7とを切り離す。一方 、制御処理部 54aは、検出期間が終了すると、当該液晶駆動回路 120と対向導電膜 7とを接続する。これにより、液晶表示の表示期間には、当該液晶駆動回路 120が対 向導電膜 7に接続され、液晶駆動回路 120は、上記対向導電膜 7が位置検出用の 抵抗膜として使用されているにも拘らず、何ら支障なく液晶を駆動できる。
[0074] また、本変形例に係るタツチパネル一体型液晶表示装置 100は、タツチ位置 Pの座 標を 2次元で検出可能に構成されており、図 8に示すように、位置検出用の抵抗膜 3 2aの 4隅には、位置検出用の電極 34a〜34d (電圧印加用端子)が形成されている。 さらに、図 9に示すように、本実施形態に係る入力装置 laの座標位置検出装置 5aに は、各電極 34a〜34dのそれぞれに対応して、上述した電極 34aに対応する部材 51 a〜53aと同様の部材 51a〜53dが設けられている。なお、充放電回路が 2つの場合 と同様に、各充放電回路 51a〜51dは、互いに同期して動作しており、それぞれに対 応する電極 34a〜34dに互いに同相同振幅の電圧を印加して 、る。
[0075] さらに、これに伴って、制御処理部 54aの検出部 62は、各サンプリング回路 53a〜 53dの出力によって、各電流 Z電圧変換回路 52a〜52dがそれぞれに対応する電 極 34a〜34dを介して結合容量 4へ充電した電流 ia〜idの電流量の合計を示す出力 電圧 v2a〜v2dを取得している。また、回数決定部 63は、これらの出力電圧 v2a〜v2 dの 1つ以上が閾値 Vtlを超えたときの充電回数を、上述した充電回数 Nとして決定 する。同様に、タツチ有無検出部 65は、これらの出力電圧 v2a〜v2dのいずれもが閾 値 Vt2以下の場合、タツチがないと判定する。
[0076] ここで、 1次元の場合と同様に、電流 ia〜idは、各電極 34a〜34dからタツチ位置 P までの抵抗 ra〜rdの抵抗値に反比例し、抵抗 ra〜rdは、タツチ位置 Pの(X, Y)座標 に応じて変化する。したがって、演算部 64は、何ら支障なぐ上記各出力電圧 v2a〜 v2dからタツチ位置 Pの (X, Y)座標を算出できる。
[0077] 例えば、図 8に示すように、電極34&〜34(1を抵抗膜32&の4隅に配置し、電極 34a 〜34dの(X, y)座標を、それぞれ (0, 0)、 (0, Y)、 (X, Υ)、 (X, 0)とする場合、タツ チ位置 Ρの (X, y)座標は、例えば、以下の式 (4)および(5)に示すように、 x=kl +k2 X (v2b+v2d) / (v2a+v2b +v2c +v2d) · · · (4)
y=kl +k2 X (v2a+v2d) / (v2a+v2b+v2c +v2d) · · · (5)
により算出できる。なお、上記式 (4)および(5)において、 klは、オフセット、 k2は、 倍率であり、 klおよび k2は、結合容量 4に依存しない値である。
[0078] なお、上記では、タツチパネル一体型液晶表示装置 100において、対向導電膜 10 7を、位置検出用の抵抗膜 32としても使用する構成について説明したが、タツチパネ ルー体型の表示装置であっても、表示装置の対向導電膜 107と、タツチパネル 3の 抵抗膜 32とを別々の部材にしてもよい。この場合は、対向導電膜 107とは別に抵抗 膜 32が必要になるが、上述の変形例の構成とは異なって、位置検出用の抵抗膜 32 を、タツチパネル 3の座標位置検出装置 5に常時接続すると共に、対向導電膜 107を 液晶駆動回路 120に常時接続しておくことができる。なお、この場合、位置検出用の 抵抗膜 32は、対向導電膜 107より表示面側、つまり外部カゝら触れられる面側に設け られる。
[0079] また、上記では、図 1および図 9を参照しながら、タツチパネル 3の寄生容量が無視 できる程度の値であり、特に、寄生容量による影響を補償するための部材を設けてい ない構成について説明したが、寄生容量の影響を無視できない場合は、充電時に流 れる電流の中で、タツチパネルの寄生容量による電流を補償する回路を設けてもよ い。
[0080] さらに、上記では、タツチの強弱を電流 Z電圧変換回路(52a' 52b、あるいは、 52a 〜52d)の出力電圧によって検出する構成について説明した力 これに限るものでは ない。他の検出手段であっても、タツチの強弱を検出できれば、略同様の効果が得ら れる。ただし、上記各構成のように、電流 Z電圧変換回路の出力電圧で検出すれば 、強弱の検出用のセンサを新たに設ける必要がないので、装置全体の構成を簡略化 できる。
[0081] なお、上記では、充電回数 Nを超過すると、充放電回路が次の検出期間 Tになるま で、充放電動作を停止する構成について説明したが、これに限るものではない。例え ば、充電回数 Nを固定しておき、制御処理部(54、 54a)が、充電回数 Nだけ充電し たときの出力電圧 (v2a 'v2bまたは v2a〜v2d)を用いて、タツチ位置 Pの座標を算出 してもよい。いずれの場合であっても、制御処理部 54が、各検出期間 Tのうち、上記 充放電回路による充放電が予め定められた充放電回数だけ経過した時点における、 上記各電流 Z電圧変換回路の測定結果に基づいてタツチ位置 Pの座標を検出すれ ば同様の効果が得られる。ただし、上記のように、充電回数 Nを超過すると、充放電 回路が次の検出期間 Tになるまで、充放電動作を停止すれば、装置の消費電力をよ り削減できる。
[0082] また、上記では、電流 Z電圧変換回路(52a' 52b、あるいは、 52a〜52d)力 充電 期間および放電期間のうちの充電期間に各充放電回路( 51 a · 52bあるいは 51 a〜 5 Id)が結合容量 4へ充電する電流を検出する構成について説明した力 これに限る ものではない。充電電流に代えて、放電電流を検出してもよい。いずれの場合であつ ても、充電期間および放電期間のうちの一方である測定期間に、当該各充放電回路 と結合容量 (4)との間でやり取りされる電荷量を測定できれば、同様の効果が得られ る。
[0083] また、上記構成に加えて、上記制御手段は、上記各電荷量測定手段の測定結果を 監視して、上記入力手段によるタツチの強弱を検出してもよい。
[0084] さらに、上記構成に加えて、記充放電手段による充放電毎に、上記各電荷量測定 手段の測定結果が予め定められた値を超過したか否かを判定し、超過したときに、そ れまでの充放電の回数を、上記充放電回数と決定してもよい。
[0085] また、上記構成に加えて、上記充放電手段は、上記充放電回数だけ充放電した後 は、次の検出期間になるまで充放電動作を停止してもよい。当該構成では、上記充 放電回数だけ充放電した後は、次の検出期間になるまで充放電動作を停止するの で、予め定められた時間間隔で、タツチ位置の座標を連続的に検出でき、し力も、消 費電力の少な 、座標位置検出装置を実現できる。
[0086] また、上記構成に加えて、本発明の座標位置検出装置は、上記電荷量測定手段 の測定結果を監視して、上記絶縁膜へのタツチの有無を検出するタツチ有無検出手 段を有していてもよい。上記構成によれば、タツチの有無を検出するタツチ有無検出 手段を有して 、るので、タツチされて 、な 、場合に充電動作を停止させることができ る。そのため、消費電力の低減を図ることができる。 [0087] また、本発明に係るタツチパネル一体型表示装置は、上記タツチパネルおよび座標 位置検出装置のいずれかと、表示装置とを備えていることを特徴としている。これによ り、タツチの強弱および入力手段の種類に拘らず、タツチ位置の座標を安定して検出 可能なタツチパネル一体型表示装置を実現できる。
[0088] さらに、上記構成に加えて、上記表示装置は、各画素に共通の共通電極と、当該 共通電極の駆動回路とを備えた液晶表示装置であり、上記共通電極は、上記抵抗 膜としても使用されており、上記検出期間は、上記液晶表示装置の映像信号の帰線 期間内に設定されており、上記制御手段は、上記検出期間中は、上記駆動回路と共 通電極とを切り離してもよ 、。
[0089] 当該構成では、上記検出期間は、上記液晶表示装置の映像信号の帰線期間内に 設定されており、上記制御手段は、上記検出期間中は、上記駆動回路と共通電極と を切り離す。このように、上記抵抗膜を表示用の共通電極として用いるときと、位置検 出用の抵抗膜として用いるときとを時間的に分離しているので、上記共通電極をタツ チパネルの抵抗膜として使用しても、何ら支障なぐ表示と、タツチ位置の座標検出と の双方を実施できる。
[0090] 本発明によれば、タツチの強弱、あるいは、上記各電荷量測定手段の測定結果に よって、充放電回数が変更され、検出期間のうち、当該充放電回数だけ充放電され た時点の測定結果に基づいてタツチ位置を検出する。このように、上記充放電回数 が動的に変更されるので、例えば、指ゃタツチペンなどの入力手段によるタツチが強 過ぎて、各電荷量測定手段の出力が不所望に増加して飽和してしまった後の値に基 づいて、タツチ位置の座標を検出したり、入力手段によるタツチが弱過ぎて、各電荷 量測定手段の出力が、各電荷量測定手段の出力レンジのうちの不所望に低いレべ ルに留まっているときの値に基づいて、タツチ位置の座標を検出したりすることを防止 できる。この結果、タツチの強弱および入力手段の種類に拘らず、タツチ位置の座標 を安定して検出できる。
[0091] 本発明は上述した実施形態に限定されるものではなぐ請求項に示した範囲で種 々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段 を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 [0092] 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あく までも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限 定して狭義に解釈されるべきものではなぐ本発明の精神と次に記載する特許請求 事項の範囲内で、いろいろと変更して実施することができるものである。
産業上の利用可能性
[0093] タツチパネル一体型表示装置をはじめとして、種々のタツチパネルの座標位置検出 装置として広く好適に使用できる。

Claims

請求の範囲
[1] 抵抗膜と当該抵抗膜を覆う絶縁膜と上記抵抗膜に設けられた複数の電極とを有す るタツチパネルに対する、入力手段のタツチ位置の座標を検出する座標位置検出装
¾【こ; i l /、て、
上記各電極に対応して設けられ、タツチ位置の検出期間中に、上記入力手段によ る絶縁膜へのタツチによって上記抵抗膜に容量結合される結合容量へ、それぞれに 対応する電極を介して充放電を繰り返す充放電手段と、
上記各充放電手段に対応して設けられ、上記検出期間のうち、それぞれに対応す る充放電手段による充電期間および放電期間のうちの一方である測定期間に、当該 充放電手段と結合容量との間でやり取りされる電荷量を測定する電荷量測定手段と 上記各検出期間のうち、上記充放電手段による充放電が予め定められた充放電回 数だけ経過した時点における、上記各電荷量測定手段の測定結果に基づ!、てタツ チ位置の座標を検出する位置検出手段と、
上記入力手段によるタツチの強弱に応じて、上記充放電回数を変更する制御手段 とを備えていることを特徴とする座標位置検出装置。
[2] 上記制御手段は、上記各電荷量測定手段の測定結果を監視して、上記入力手段 によるタツチの強弱を検出することを特徴とする請求の範囲第 1項に記載の座標位置 検出装置。
[3] 抵抗膜と当該抵抗膜を覆う絶縁膜と上記抵抗膜に設けられた複数の電極とを有す るタツチパネルに対する、入力手段のタツチ位置の座標を検出する座標位置検出装 ¾【こ; i l /、て、
上記各電極に対応して設けられ、タツチ位置の検出期間中に、上記入力手段によ る絶縁膜へのタツチによって上記抵抗膜に容量結合される結合容量へ、それぞれに 対応する電極を介して充放電を繰り返す充放電手段と、
上記各充放電手段に対応して設けられ、上記検出期間のうち、それぞれに対応す る充放電手段による充電期間および放電期間のうちの一方である測定期間に、当該 充放電手段と結合容量との間でやり取りされる電荷量を測定する電荷量測定手段と 上記各検出期間のうち、上記充放電手段による充放電が予め定められた充放電回 数だけ行われた時点における、上記各電荷量測定手段の測定結果に基づ!、てタツ チ位置を検出する位置検出手段と、
上記各電荷量測定手段の測定結果を監視して、上記充放電回数を変更する制御 手段とを備えていることを特徴とする座標位置検出装置。
[4] 上記制御手段は、上記充放電手段による充放電毎に、上記各電荷量測定手段の 測定結果が予め定められた値を超過したか否かを判定し、超過したときに、それまで の充放電の回数を、上記充放電回数と決定することを特徴とする請求の範囲第 2項 または第 3項に記載の座標位置検出装置。
[5] 上記充放電手段は、上記充放電回数だけ充放電した後は、次の検出期間になるま で充放電動作を停止することを特徴とする請求の範囲第 1項または第 3項に記載の 座標位置検出装置。
[6] 上記電荷量測定手段の測定結果を監視して、上記絶縁膜へのタツチの有無を検 出するタツチ有無検出手段を有していることを特徴とする請求の範囲第 1項〜第 5項 のいずれか 1項に記載の座標位置検出装置。
[7] 請求の範囲第 1項〜第 6項の 、ずれ力 1項に記載のタツチパネルおよび座標位置 検出装置と、表示装置とを備えていることを特徴とするタツチパネル一体型表示装置
[8] 上記表示装置は、各画素に共通の共通電極と、当該共通電極の駆動回路とを備 えた液晶表示装置であり、
上記共通電極は、上記抵抗膜としても使用されており、
上記検出期間は、上記液晶表示装置の映像信号の帰線期間内に設定されており 上記制御手段は、上記検出期間中は、上記駆動回路と共通電極とを切り離すこと を特徴とする請求の範囲第 7項に記載のタツチパネル一体型表示装置。
PCT/JP2006/322115 2006-03-30 2006-11-06 座標位置検出装置、および、タッチパネル一体型表示装置 WO2007116557A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006095861 2006-03-30
JP2006-095861 2006-03-30

Publications (1)

Publication Number Publication Date
WO2007116557A1 true WO2007116557A1 (ja) 2007-10-18

Family

ID=38580860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322115 WO2007116557A1 (ja) 2006-03-30 2006-11-06 座標位置検出装置、および、タッチパネル一体型表示装置

Country Status (1)

Country Link
WO (1) WO2007116557A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003060A (ja) * 2008-06-19 2010-01-07 Hitachi Displays Ltd タッチパネル付き表示装置
JP2010061351A (ja) * 2008-09-03 2010-03-18 Konica Minolta Holdings Inc 情報入力装置
JP2010117829A (ja) * 2008-11-12 2010-05-27 Hitachi Displays Ltd タッチパネル付き表示装置
JP2010191574A (ja) * 2009-02-17 2010-09-02 Victor Co Of Japan Ltd 電子機器及びタッチパネルを用いた操作制御方法
JPWO2012169454A1 (ja) * 2011-06-08 2015-02-23 シャープ株式会社 座標位置検出装置
CN110580108A (zh) * 2018-06-07 2019-12-17 李尚礼 触控感测装置与触碰感测信号的感测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005165768A (ja) * 2003-12-03 2005-06-23 Wacom Co Ltd 位置指示器及び位置検出装置
JP2005301974A (ja) * 2004-03-15 2005-10-27 Sharp Corp 座標位置検出装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005165768A (ja) * 2003-12-03 2005-06-23 Wacom Co Ltd 位置指示器及び位置検出装置
JP2005301974A (ja) * 2004-03-15 2005-10-27 Sharp Corp 座標位置検出装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003060A (ja) * 2008-06-19 2010-01-07 Hitachi Displays Ltd タッチパネル付き表示装置
JP2010061351A (ja) * 2008-09-03 2010-03-18 Konica Minolta Holdings Inc 情報入力装置
JP2010117829A (ja) * 2008-11-12 2010-05-27 Hitachi Displays Ltd タッチパネル付き表示装置
JP2010191574A (ja) * 2009-02-17 2010-09-02 Victor Co Of Japan Ltd 電子機器及びタッチパネルを用いた操作制御方法
JPWO2012169454A1 (ja) * 2011-06-08 2015-02-23 シャープ株式会社 座標位置検出装置
US9235305B2 (en) 2011-06-08 2016-01-12 Sharp Kabushiki Kaisha Coordinate position detection apparatus
CN110580108A (zh) * 2018-06-07 2019-12-17 李尚礼 触控感测装置与触碰感测信号的感测方法
CN110580108B (zh) * 2018-06-07 2023-11-14 李尚礼 触控感测装置与触碰感测信号的感测方法

Similar Documents

Publication Publication Date Title
US10019105B2 (en) Display panel and touch-control force detection method
US9690424B2 (en) In-cell multi-touch display panel system
US8841927B2 (en) Touch sensing circuit
TWI588689B (zh) 具有低雜訊和分時多工的嵌入式多點觸控面板系統及其驅動方法
US8692180B2 (en) Readout circuit for touch sensor
TWI465995B (zh) 用以驅動觸控面板之裝置以及包含此裝置之顯示裝置
US8384678B2 (en) Touch sensing device and method for correcting output thereof
US9927925B2 (en) Touch sensor, display and electronic device using a timing control signal
CN107643852B (zh) 显示面板和显示装置
US9362322B2 (en) Light-sensing apparatus, method of driving the light-sensing apparatus, and optical touch screen apparatus including the light-sensing apparatus
JP5171132B2 (ja) タッチパネル付き表示装置
US8730202B2 (en) Touch sensing apparatus and touch sensing method thereof
US8441459B2 (en) In-cell capacitive touch panel
CN101739186B (zh) 影像显示系统、电容式触控面板及其电容测量装置与方法
US11182020B2 (en) Position detection device, electronic device equipped with same, and position detection method
TW201023129A (en) Touch controller having increased sensing sensitivity, and display driving circuit and display device and system having the touch controller
WO2007116557A1 (ja) 座標位置検出装置、および、タッチパネル一体型表示装置
CN107479776B (zh) 压感检测电路及其驱动方法、电子装置
US20180307340A1 (en) Touch detection device and touch detection method
WO2007091579A1 (ja) タッチパネルの座標位置検出装置
EP1660983A2 (en) Touch-input active matrix display device
US20140375609A1 (en) Apparatus and method for detecting touch, capable of reducing parasitic capacitance
KR20170046231A (ko) 터치 센서 및 이를 포함한 액정 표시 장치
KR20160119294A (ko) 터치 감지 장치 및 그를 포함하는 터치 표시 장치
KR20110081474A (ko) 정밀도가 높은 단일층 터치스크린 장치 및 위치 결정방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06823028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06823028

Country of ref document: EP

Kind code of ref document: A1