WO2007116450A1 - Nucleic acid extraction method and nucleic acid extraction kit - Google Patents

Nucleic acid extraction method and nucleic acid extraction kit Download PDF

Info

Publication number
WO2007116450A1
WO2007116450A1 PCT/JP2006/306699 JP2006306699W WO2007116450A1 WO 2007116450 A1 WO2007116450 A1 WO 2007116450A1 JP 2006306699 W JP2006306699 W JP 2006306699W WO 2007116450 A1 WO2007116450 A1 WO 2007116450A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
acid extraction
reaction
sample
extraction method
Prior art date
Application number
PCT/JP2006/306699
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Ezaki
Yuki Shiraiwa
Ryuichiro Kurane
Original Assignee
Biocosm Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biocosm Inc. filed Critical Biocosm Inc.
Priority to JP2008509602A priority Critical patent/JPWO2007116450A1/en
Priority to PCT/JP2006/306699 priority patent/WO2007116450A1/en
Publication of WO2007116450A1 publication Critical patent/WO2007116450A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor

Definitions

  • the present invention relates to a nucleic acid extraction method.
  • nucleic acid extraction methods many steps are required, such as destroying cell walls and cell membranes, removing them, denaturing proteins, and separating nucleic acids.
  • the reagents used at this time included those requiring careful handling such as strongly alkaline sodium hydroxide solution and highly corrosive phenol solution.
  • a reagent remaining in a nucleic acid sample extracted by using a conventional extraction method may interfere with subsequent analysis, requiring a further purification step and reducing analysis accuracy.
  • a method for efficiently and intactly extracting genetic DNA from cells is essential for genetic testing of organisms.
  • automation of gene extraction and other operations has been attempted.
  • the steps for purification such as centrifugation and suction filtration are complicated. Therefore, it was an obstacle to labor saving and downsizing of automatic genetic testing equipment.
  • nucleic acid extract after amplifying the nucleic acid extract using a nucleic acid amplification technique, rather than subjecting the nucleic acid extracted from the test subject to direct analysis. ing .
  • An analysis method using a nucleic acid amplification technique is also a general-purpose technique.
  • PCR polymerase chain reaction
  • a method for efficiently amplifying nucleic acid in a sample such as stool and blood without passing through a nucleic acid extraction step has been proposed (for example, See Patent Documents 2, 3, 4, 5, 6, 7, and 8;).
  • charged substances such as polyamines, polyions, surfactants, and DDT
  • the PCR reaction of dyes, proteins, sugars, or unknown contaminants contained in the sample is inhibited. It neutralizes positive and negative charged substances to suppress the effects of these PCR reaction inhibitors.
  • these methods are not intended to rapidly destroy cells and extract nucleic acids.
  • a technique for extracting nucleic acid from a biological sample by using a surfactant and a chelating agent that avoids the use of a reagent that requires careful handling is known.
  • a method of extracting nucleic acid from a biological sample by capturing it on a nonwoven fabric or a method of extracting nucleic acid from a biological sample by capturing it on a polysaccharide carrier such as dextran sulfate, pretreatment of these nucleic acid extractions It is reported that cells, bacteria, etc.
  • the above-mentioned surfactants such as cholic acid and chelating agents are used for nucleic acid extraction, but on the other hand, they may also inhibit various enzyme reactions such as nucleic acid amplification reactions. It was known. For this reason, when nucleic acids are extracted using these substances, a series of reactions following nucleic acid amplification and subsequent analysis are performed without steps such as purification and dilution of nucleic acid samples. There is a problem that the nucleic acid after extraction cannot be used in the reaction system. However, none of the above-mentioned methods gives any knowledge to the solution of the problematic problems.
  • Non-Patent Document 1 a reaction solution that has doxycholic acid and glycocholic acid power is added to the test sample so as to have lmM and 10 mM, respectively, followed by reaction that also has proteinase 1: and EDTA power. After adding the solution, the nucleic acid is extracted from the test sample by heating at 70 ° C for 10 minutes and then at 94 ° C for 10 minutes.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 5-236963
  • Patent Document 2 Japanese Patent Laid-Open No. 6-270661
  • Patent Document 3 JP-A-8-173198
  • Patent Document 4 JP-A-9 9967
  • Patent Document 5 Japanese Patent Laid-Open No. 9-238687
  • Patent Document 6 Japanese Patent Laid-Open No. 2000-93175
  • Patent Document 7 Japanese Patent Laid-Open No. 2001-258556
  • Patent Document 8 Japanese Patent Laid-Open No. 2001-258562
  • Patent Document 9 Japanese Patent Laid-Open No. 2006-55079
  • Patent Document 10 Japanese Patent Laid-Open No. 2003-235555
  • Patent Document 11 Japanese Unexamined Patent Application Publication No. 2004-201558
  • Non-Patent Document 1 Yuki Oizumi et al., Detection and Species Identification of Cryptosporidium by DNA Microarray, Water and Wastewater, August 1, 2004, No. 46, No. 8, pp. 685-692
  • the above-described conventional method of the present inventors is a useful method capable of performing processing in a short time without using a reagent having careful handling regardless of the type of the test sample. It has been confirmed.
  • the above-described conventional method of the present inventors should examine the above-mentioned recent technical situation and suppress the influence on the reaction system such as analysis after nucleic acid extraction including nucleic acid amplification reaction. However, depending on the reaction system, it was found that the nucleic acid amplification reaction may not proceed effectively. Therefore, the nucleic acid extract may need to be diluted when amplifying the nucleic acid after nucleic acid extraction, and the analysis accuracy of a very small amount of sample may not be sufficient.
  • the object of the present invention is to allow processing to be performed in a short time without using a carefully handled reagent regardless of the type of test sample, and to affect the subsequent analysis. Further, the present invention is to provide a nucleic acid extraction method which is further reduced and suitable for detection of a small amount of sample. In particular, the inventor's conventional nucleic acid extraction method was improved in order to facilitate the nucleic acid amplification following the nucleic acid extraction and the sequence of reaction systems following the subsequent analysis.
  • the characteristic means of the nucleic acid extraction method of the present invention comprises the step of bringing a test sample into contact with a chelating agent of deoxycholic acid, glycolic acid, and divalent cation to liberate nucleic acid. It is in having.
  • the concentration force of the deoxycholic acid is preferably 0.01 to 10 mM
  • the concentration force of the daricholic acid is preferably 0.1 to 100 mM
  • a proteolytic enzyme is used. It is preferable to have a step of releasing nucleic acid by contacting with the test sample, or it is preferable to have a step of performing heat treatment at 25 to 95 ° C for 5 to 120 minutes, or It is preferable to have a step of adding a magnesium salt and a buffer solution following the nucleic acid releasing step.
  • test sample is a sample containing microorganisms.
  • the nucleic acid extraction kit of the present invention is characterized in that it contains deoxycholate, glycolic acid, and a divalent cation chelating agent.
  • deoxycholic acid so that the final concentration is 0.01 to 10 mM when used
  • glycolic acid is included so that the final concentration is 0.1 to 100 mM when used.
  • proteolytic enzymes Preferably, it preferably contains a magnesium salt and a buffer.
  • the nucleic acid extraction method of the present invention focuses on bile acid, which is one of digestive fluids possessed by mammals.
  • the main components of bile acids are cholic acids such as taurocholic acid, deoxycholic acid and glycocholic acid.
  • Cholic acids also have properties as surfactants and are highly useful substances that are also used as cell membrane disrupting reagents for the extraction of membrane proteins.
  • cholic acids inhibit the enzyme reaction, when they are used in the enzyme reaction, they must be removed after cell destruction or diluted.
  • the inventors on the other hand, used a cholic acid, deoxycholic acid, in combination with glycolic acid, so that one kind of cholic acid did not give any strength to the subsequent enzymatic reaction and maintained stability.
  • nucleic acids can be extracted efficiently in the state. Furthermore, it has also been found that the nucleic acid released from the cell can be protected by the nucleolytic enzyme force by the coexistence of the chelating agent in the nucleic acid extraction reaction, thereby achieving efficient nucleic acid extraction.
  • the nucleic acid extraction method of the present invention is constructed by optimizing the nucleic acid extraction reagents and the application concentration, thereby achieving efficient nucleic acid extraction.
  • deoxycholic acid and glycolic acid are easier to handle than phenolic solutions and strong alkaline solutions.
  • the sample used in the subsequent reaction system such as nucleic acid amplification reaction is purified because it is configured not to interfere with the enzyme reaction after nucleic acid extraction by limiting cholic acid to one kind of doxycholic acid in combination with glycolic acid. No process is required.
  • the nucleic acid extraction method comprising the step of bringing a test sample into contact with a chelating agent of deoxycholic acid, glycolic acid, and a divalent cation according to the nucleic acid extraction method of the present invention is careful. It is possible to perform the processing in a short time without using a reagent having a proper handling.
  • the nucleic acid extract can be easily incorporated into a subsequent reaction system such as a nucleic acid amplification reaction. Therefore, the nucleic acid extraction method of the present invention is considered to be greatly useful for automation and labor saving of a series of reaction systems including a nucleic acid extraction reaction and subsequent analysis. In turn, labor saving and downsizing of automated genetic testing equipment can be realized.
  • the concentration of the deoxycholic acid in contact with the test sample is 0.01 to 10 mM, or when the concentration of the daricholic acid is 0.1 to 100 mM, an enzyme reaction after nucleic acid extraction is included.
  • the nucleic acid can be reliably extracted without hindering the reaction system, which is the most efficient.
  • nucleic acid when nucleic acid is released from the cell, it is often heated.
  • the destruction of the cell membrane is promoted by the thermal fluctuation at the same time as the decomposition of the protein without decomposing the released nucleic acid.
  • Samples containing microbial cells may be difficult to extract quickly and efficiently due to obstacles such as a robust structure peculiar to the organism or a multi-layered membrane structure.
  • the present method can be applied. Therefore, by adopting this method, it is possible to achieve high speed and high accuracy in the medical field such as diagnosis of diseases and in the inspection of environmental pollution.
  • nucleic acid extraction method In carrying out the above-described nucleic acid extraction method, using a nucleic acid extraction kit containing a chelating agent of deoxycholic acid, glycolic acid and divalent cation capable of carrying out this method, a reagent having careful handling is not used. Processing can be performed in a short time.
  • the nucleic acid extract can be easily incorporated into a subsequent reaction system such as a nucleic acid amplification reaction. Therefore, it is considered to be very useful for automation and labor saving including the nucleic acid extraction reaction and the subsequent analysis, and greatly contributing to labor saving by preparing necessary reagents as a kit. Can do.
  • the nucleic acid extraction kit contains deoxycholic acid so that the final concentration is 0.01 to 10 mM at the time of use, and glycolic acid is included so that the final concentration is 0.1 to 100 mM at the time of use.
  • the nucleic acid can be extracted reliably without inhibiting the reaction system including the enzyme reaction after the nucleic acid extraction.
  • nucleic acid extraction kit contains a proteolytic enzyme
  • the protein mixed in the sample is degraded, so that the cells can be more reliably destroyed.
  • the nucleic acid extraction kit contains a magnesium salt and a buffer, it can be easily incorporated into a subsequent reaction system such as a nucleic acid amplification reaction.
  • nucleic acid extraction method of the present invention is based on the above-described conventional nucleic acid extraction method of the present inventors (“Water and wastewater”, No. 46, No. 8, pages 685 to 692).
  • nucleic acid is used as a concept including DNA, RNA, and derivatives thereof.
  • the nucleic acid extraction method according to the present invention includes a step of contacting a test sample with a chelating agent of deoxycholic acid, glycolic acid and divalent cation.
  • the divalent cation chelating agent is not limited as long as it can form a stable complex salt by coordinating with metal ions in the sample, particularly magnesium ions, but ethylenediamine tetraacetic acid (hereinafter referred to as ⁇ EDTA ''). (Omitted) is a good example.
  • the deoxycholate is added to the test sample in a state where the deoxycholate concentration is 0.01 to 10 mM, the glycomonophosphate is 100 to 100 mM, the EDTA is 0.01 to 200 mM, more preferably 10 to 100 mM.
  • the deoxycholate concentration is 0.01 to 10 mM
  • the glycomonophosphate is 100 to 100 mM
  • the EDTA is 0.01 to 200 mM, more preferably 10 to 100 mM.
  • nucleic acid can be efficiently extracted and the extracted nucleic acid can be protected.
  • Cell membranes and the like are dissolved by utilizing the surface-active action of deoxycholic acid and dalicholic acid, in particular, deoxycholic acid, whereby nucleic acids inside the cells are released into the solution.
  • the released nucleic acid is protected from nucleolytic enzymes such as DNA degrading enzymes by the action of glycolic acid and EDTA.
  • glycolic acid is hydroxyacetic acid. It is also called a low molecular weight compound of an electrolyte that protects nucleic acids from DNA-degrading enzymes around the nucleic acids.
  • the magnesium-requiring DNA-degrading enzyme is inactivated by chelating magnesium ions in the solution with the chelating agent. This process is continued until the cell membrane of the test sample is sufficiently destroyed.
  • a contact time of about 5 to 60 minutes is sufficient.
  • deoxycholic acid In the conventional method proposed by the present inventors described above, two types of cholic acids, deoxycholic acid and dalcocholic acid, were used.
  • deoxycholic acid It is limited to only one type, and it is configured to coexist with glycolic acid and divalent cation chelating agent.
  • the method of the present invention is configured by restricting the use of cholic acids, which are inhibitors of enzyme reactions such as DNA polymerase, and it is possible to minimize the influence on subsequent analysis. .
  • the nucleic acid extract obtained by the nucleic acid extraction method of the present invention can be directly applied to subsequent analysis such as nucleic acid amplification reaction without passing through means for removing enzyme reaction inhibitor such as dilution. It can be suitably used even when the extraction target is a very small amount.
  • a step of bringing the proteolytic enzyme into contact with the test sample can be further provided.
  • protein components such as cell membranes of cells in the test sample are decomposed, and the release of nucleic acids inside the cells into the solution is further promoted.
  • This step can be performed simultaneously with the step of bringing the above-mentioned deoxycholic acid, glycolic acid and divalent cation chelating agent into contact with the test sample.
  • proteinase K is suitable as the proteolytic enzyme, and for example, 0.01 to 10 mAU is added thereto.
  • heat treatment is performed to decompose the protein component.
  • the heat treatment is performed at 25 to 95 ° C for 5 to 120 minutes.
  • the protein component in the sample is decomposed.
  • the heat treatment is performed at 70 ° C. for 10 minutes and then at 94 ° C. for 10 minutes.
  • the heating temperature is lowered.
  • the heating time is shortened. This makes it possible to suppress the degradation of long-chain DNA by heating under milder conditions than the conventional method, and to further improve the nucleic acid extraction efficiency and the detection sensitivity of subsequent analysis.
  • a step of bringing a magnesium salt and a pH buffer solution into contact with a test sample can be further provided.
  • the magnesium salt is not limited as long as it does not interfere with the stability of nucleic acid and the subsequent analysis, but is preferably magnesium salt.
  • the magnesium salt is preferably added in an amount corresponding to the binding amount of the chelating agent added previously.
  • the buffer solution is not limited as long as it does not inhibit the stability of nucleic acid and the subsequent analysis, but preferably has a buffer capacity in the range of pH 6 to 10, particularly preferably a TAPS buffer solution.
  • magnesium chloride is adjusted to 0.1 to 50 mM
  • TAPS buffer is adjusted to 0.01 to 200 mM
  • pH 7 to 9 the magnesium salt and the buffer solution may be added alone, or may be added in a form in which the magnesium salt is dissolved in the buffer solution.
  • the nucleic acid extract obtained by the nucleic acid extraction method of the present invention can be directly applied to subsequent analysis such as nucleic acid amplification reaction, and optimized nucleic acid amplification reaction conditions according to individual detection targets. It can be easily incorporated into the reaction system without changing.
  • Taq DNA polymerase and other DNA polymerases used in nucleic acid amplification reactions are magnesium-requiring enzymes, which can eliminate the effects of previously added chelating agents, and can be used in later reactions such as PCR.
  • the nucleic acid extract can be applied as it is without changing the reaction conditions optimized for each reaction system, particularly the magnesium ion concentration.
  • a reaction environment suitable for the expression of the activity of an enzyme such as DNA polymerase can be formed, and the analysis accuracy is improved.
  • a magnesium salt is preferred, but a metal salt that is suitable for forming an enzyme reaction environment, such as iron or manganese salt, that is suitable for the formation of the reaction environment of the enzyme, or a magnesium salt that does not affect the magnesium salt. It can be configured to be added in place of the salt or in combination.
  • pH buffer solution pH adjustment in subsequent analysis is facilitated.
  • the nucleic acid extract obtained by the nucleic acid extraction method of the present invention can be directly incorporated into the subsequent reaction system. That is, in the nucleic acid extract obtained by the nucleic acid extraction method of the present invention, contamination of reaction inhibitory substances that inhibit subsequent analysis is minimized. Therefore, it is not necessary to provide a process for removing the reaction inhibitory substance including dilution of the nucleic acid extract required in the conventional method. As a result, it is possible to save labor and to minimize the loss of the nucleic acid sample, and to reduce the decrease in detection sensitivity due to an increase in the total liquid volume. Therefore, it is possible to meet market demands for reliably detecting a small amount of various detection objects without taking time and effort.
  • the analytical reaction system suitable for incorporating the nucleic acid extract obtained by the nucleic acid extraction method of the present invention is not particularly limited, but preferred examples include amplification and detection of nucleic acid by a nucleic acid amplification method.
  • nucleic acid amplification methods include PCR, LCR (ligase chain reaction) and the like, which can be particularly preferably used for PCR with Taq DNA polymerase, which is a general-purpose technology, and its application range is wide.
  • test sample is a concept that includes any organism, that is, an environment estimated to contain nucleic acid, a biological sample, or the like.
  • test sample containing microorganisms examples include samples containing all bacteria, yeasts, protozoa, protozoa, etc. regardless of whether they are gram-positive or gram-negative. Microbial samples may be difficult to extract rapidly and efficiently due to the obstruction of a robust structure peculiar to the organism and the layered membrane structure, etc. Even in the case of such microorganisms, it is applicable. Therefore, by adopting the nucleic acid extraction method of the present invention, rapid and high accuracy can be achieved even in the medical field such as disease diagnosis and in the examination of environmental pollution.
  • test samples containing microorganisms can be used for examining environmental pollution by microorganisms, or in the field of bioremediation, pollutants in the environment such as soil and water to be purified. It can be used to confirm the existence of assimilating bacteria.
  • the microorganism contained in the test sample is cryptosporidium, it can be used for the safety test of tap water and the like, so it is very useful in epidemiological viewpoint.
  • the Cryptosporidium is a human belonging to the order of the spore genus Coccidium. It is a parasitic protozoan that parasitizes the digestive tract of domestic animals such as pigs and mammals such as pigs and mice, and when humans are infected with this protozoa, watery or mucous feces with abdominal pain are the main features. Symptoms that persist for about 3 days to a week, sometimes with vomiting and fever.
  • animal-derived samples include hair roots, blood containing blood cells, feces, etc. If animal-derived test sample nucleic acids such as biopsy samples containing some animal cells are extracted, for example, it can be used for examinations in the medical field such as diagnosing diseases, and a rapid and highly accurate diagnosis method can be provided.
  • Examples of plant-derived samples include seeds, fruits, seed coats, stems, leaves, roots and the like.
  • robust structures such as cell walls may be an obstacle, and it may be difficult to extract nucleic acids quickly and efficiently from plant cells. Even in such cases, this method can be applied. It can be used to identify brands. In addition, these uses are examples and the above-mentioned thing It is not limited to.
  • cell wall degrading enzymes for example, cellulase, zymolyase, lysozyme, etc.
  • this method can be applied without causing cell wall degrading enzymes to act on these organisms.
  • each step (including the subsequent analysis step) can be performed by a mechanical device and automated.
  • a reagent containing deoxycholic acid, glycolic acid, and a divalent cation chelating agent should be supplied as a nucleic acid extraction kit.
  • This kit mix deoxycholic acid to a final concentration of 0.01 to 10 mM at the time of use, glycolic acid to 0.1 to 100 mM, and a divalent cation chelating agent to 0.01 to 200 mM. Is preferred.
  • this nucleic acid extraction kit can contain cell wall degrading enzyme and Z or proteolytic enzyme, and can further contain magnesium salt and buffer.
  • they can be supplied as a stock solution or concentrated solution of a liquid (solution) dissolved and sealed together with a reagent such as a buffer solution required for each step.
  • DNA was extracted from Legionella pneumophila (L. pneumophila) SG3 strain of Legionella genus and cells of Legionella genus bacteria (Legionella sp.) Of a different species by the following procedure, and its presence was confirmed.
  • Legionella cells were suspended in a buffer solution to prepare a 5 L test sample.
  • 2 L of IB solution (10 mM deoxycholic acid, 0.35 mM glycolic acid, lOOmM EDTA-2Na) was added and incubated at 37 ° C for 15 minutes.
  • 2 L of the liquid O.lmAU proteinase K (QIAGEN)
  • sag 25 mM MgCl, 0.5 mM TA
  • PS Buffer pH 9.5
  • Example a nucleic acid sample containing the chromosomal DNA extracted from Legionella cell force.
  • a nucleic acid sample (control) treated in the same manner as described above was prepared, except that the same volume of sterilized water was added instead of the above reaction solutions ⁇ to ⁇ .
  • the nucleic acid samples prepared above were cooled to room temperature, and PCR was performed using each of the samples as cages to obtain amplified fragments containing the gene of Legionella.
  • the forward primer Legll 3F (5, -GCACGTGTGTAGCCCTACCC-3 ′; sequence identification number 1) and the reverse primer Lrgl 115R (5′-ACTGGAACTGAGACACGGTC-3 ′; sequence identification number 2) were used as the primer set.
  • the PCR reaction solution is 5 ⁇ L of X 10 Reaction Buffer (Ex Taq Buffer (+ Mg 2+ ), manufactured by Takara Bio Inc.), 5 ⁇ L of 2.5 mM dNTPs, 1 ⁇ L each of ⁇ / ⁇ L primer, 5 U I ⁇ L Ex Taq (manufactured by Takara Bio Inc.) was prepared in 0.5 ⁇ L, the nucleic acid sample prepared above was prepared in 12.5 ⁇ L, and sterilized water was added in 25 L to make a total volume of 50 L.
  • the reaction was performed for 40 cycles, with denaturation at 94 ° C for 60 seconds, denaturation at 94 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, and extension at 72 ° C for 60 seconds. Thereafter, the reaction was terminated by a final extension reaction at 72 ° C for 240 seconds. Next, each amplification product obtained by the PCR reaction was subjected to electrophoresis based on a conventional method to visualize the nucleic acid fragment.
  • FIG. 1 shows the results of visualizing the amount of DNA extracted by gel electrophoresis.
  • Nucleic acid samples to be loaded were loaded into each lane.
  • the control nucleic acid sample was similarly loaded.
  • gels 1 and 2 show the results of the examples treated with the IB solution to the filtrate, which are the nucleic acid extraction methods of the present invention
  • gel 1 shows the results of pneumophila SG3 strain
  • gel 2 shows the results of Legionella sp.
  • Gels 3 and 4 show the results of the control, gel 3 shows the results of L. pneumophila SG3 strain, and gel 4 shows the results of Legionella sp.
  • M represents a molecular weight marker of 100 bp ladder.
  • Nucleic acid of the present invention In the example where nucleic acid extraction was performed by the extraction method, gene amplification occurred even with a small cell force for each of L. pneumophila SG3 strain and Legione Hasp. The amplified DNA band became thicker as the number of cells increased. As a result, quantitative amplification occurred depending on the number of cells (gels 1 and 2). From this, it was found that the nucleic acid extraction method of the present invention enables stable nucleic acid extraction and amplification.
  • the nucleic acid extraction method of the present invention can be applied as a quantitative PCR method to detect and quantify Legionella.
  • the PCR product has a strong correlation between the number of generated cells and the thickness of the amplified DNA band. There is a possibility that the DNA extraction or PCR reaction may be inhibited (gels 3 and 4). ).
  • Legionella is an intracellularly proliferating Gram-negative rod. In protozoa, algae, and the human body, it grows in neutrophils and macrophages, causing pneumonia (legionellosis). Inhabiting a moist environment, it grows in natural water systems such as rivers, as well as in cooling towers and recirculating tubs, and human outbreaks of pneumonia may occur. Under such circumstances, in order to detect Legionella rapidly and accurately, it is very useful from the viewpoint of epidemiological viewpoint to extract the nucleic acid using the nucleic acid extraction method of the present invention and provide it for prayer. In particular, legionellosis effectively suppresses Legionella infection in humans and the associated pneumonia by applying this method to nucleic acid extraction of species that are often caused by L. p neumophila. can do.
  • Hela S3 cells were suspended in a buffer to prepare a 5 L test sample.
  • two 18 solutions (1 ( ⁇ ⁇ 1 deoxycholic acid, 0.35 mM glycolic acid, lOOmM EDTA'2Na) and incubate for 15 minutes at 37 ° C.
  • the solution (O.lmAU proteinase K (QIAGEN)) was added and incubated at 50 ° C for 10 minutes, followed by further incubation at 80 ° C for 5 minutes, then 2 L Nose solution (25mM MgCl, 0.5mM TAPS Bu
  • nucleic acid sample (Example) containing chromosomal DNA extracted from HelaS3 cells.
  • a nucleic acid sample (control) was prepared in the same manner as described above except that the same volume of sterilized water was added instead of the reaction solutions (1) to (8).
  • the nucleic acid sample prepared above was cooled to room temperature, and PCR was performed using primers designed based on the human globin gene, each in a saddle shape, to obtain an amplified fragment containing the gene for Hela S3 cells.
  • forward primer KM29 (5, -GGTTGGCCAA TCTACTCCCAGG-3 '; sequence identification number 3) and reverse primer PC04 (5'-CAACTT CATCCACGTTCACC-3'; sequence identification number 4) were used as a primer set.
  • PCR reaction solution is 5 ⁇ L of X 10 Reaction Buffer (Ex Taq Buffer (+ Mg 2+ ), manufactured by Takarabio), 5 ⁇ L of 2.5 mM dNTPs, 1 ⁇ L of lOpmol / ⁇ L primer, Prepare 5 U / ⁇ L Ex Taq (manufactured by Takara Bio Inc.) 0.5 ⁇ L, 12.5 ⁇ L of the nucleic acid sample prepared above, and 25 ⁇ L of sterilized water for a total volume of 50 L.
  • the reaction consists of denaturation at 94 ° C for 60 seconds, followed by denaturation at 94 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, and extension at 72 ° C for 60 seconds for one cycle. Thereafter, the reaction was terminated by a final extension reaction at 72 ° C for 240 seconds.
  • each amplification product obtained by the PCR reaction was subjected to electrophoresis based on a conventional method to visualize nucleic acid
  • FIG. 2 shows the results of visualizing the amount of DNA extracted by gel electrophoresis. Nucleic acid samples corresponding to 1 ⁇ 10 °, 1 ⁇ 10 1 , 1 ⁇ 10 2 , 1 ⁇ 10 3 cells were loaded into each lane. The control console was loaded in the same way.
  • gel A shows the results of the examples treated with the IB solution to the filtrate as the nucleic acid extraction method of the present invention
  • gel B shows the results of the control.
  • M represents a molecular weight marker of lOObp ladder.
  • nucleic acid specimen containing chromosomal DNA extracted from rice seeds was prepared.
  • a nucleic acid sample (control) treated in the same manner as described above was prepared, except that the same volume of sterilized water was added instead of the reaction solutions (1) to (8).
  • the nucleic acid samples prepared above were cooled to room temperature, and PCR was carried out using each as a saddle type to obtain an amplified fragment containing a gene derived from rice seeds.
  • PCR reaction solution is 5 ⁇ L of X 10 Reaction Buffer (Ex Taq Buffer (+ Mg 2+ ), manufactured by Takara Bio Inc.), 5 ⁇ L of 2.5 mM dNTPs, and 1 ⁇ L each of lOpmol / ⁇ L primer.
  • 5 U / ⁇ L Ex Taq (manufactured by Takara Bio Inc.) was added at 0.5 ⁇ L, the nucleic acid sample prepared above was added at 12.5 L, and sterilized water was added at 25 ⁇ L to prepare a total volume of 50 ⁇ L.
  • each amplification product obtained by the PCR reaction was subjected to electrophoresis based on a conventional method to visualize nucleic acid fragments.
  • FIG. 3 shows the results of visualizing the amount of DNA extracted by gel electrophoresis.
  • the thus obtained nucleic acid sample to the operation, without dilution, or, respectively, 1.0 X 10- 1.0 X 10, a diluted to 1.0 X 10- 3 were loaded in each lane.
  • the controls were loaded in the same way.
  • lanes 1 to 5 show the results of Examples treated with the IB solution to the filtrate, which are the nucleic acid extraction methods of the present invention
  • lanes 6 to 9 show the results of controls.
  • M represents a molecular weight marker of 10 Obp ladder.
  • the nucleic acid extraction method of the present invention is a quantitative PCR method, It can be seen that the method can be applied to the detection and quantification of nucleic acids contained in plant seed-derived samples such as milled rice (lanes 2-5). On the other hand, in the control, the PCR product may interfere with nucleic acid extraction or PCR reaction in which there is no correlation between the concentration of the generated test sample and the thickness of the amplified DNA band (lanes 6 to 6). 9).
  • the effectiveness of the nucleic acid extraction method of the present invention will be further described below by taking as an example DNA extraction from Cryptosporidium oocysts and a series of analyzes using the extracted DNA. At the same time, a comparison was made with the previous method of the present inventors.
  • the conventional nucleic acid extraction method is the nucleic acid extraction method disclosed in the above-mentioned “use water and wastewater”.
  • DNA was extracted from Cryptosporidium oocysts and PCR amplification was performed on the extracted DNA.
  • a sample of 5 ⁇ L was prepared by suspending 3 ⁇ 10 3 oocysts of Cryptosporidium in a buffer solution.
  • 2 L of IB solution (10 mM deoxycholic acid, 0.35 mM glycolic acid, lOOmM EDTA'2Na) was added and incubated at 37 ° C for 15 minutes.
  • 2 ⁇ L of a filtrate (O.lmAU proteinase K (manufactured by QIAGEN) was added and incubated at 50 ° C. for 10 minutes. Thereafter, proteinase K was inactivated by further incubation at 80 ° C. for 5 minutes.
  • the 2 1 solution 25 mM MgCl
  • a nucleic acid sample was prepared by adding 0.5 mM TAPS Buffer (pH 9.5)).
  • the nucleic acid sample prepared above was cooled to room temperature, PCR was performed using this as a cage, and an amplified fragment containing a gene derived from Talibutosporidium was obtained.
  • forward primer 18SF (5, -GGAACCTGGTTGATCCTGCCAG-3 '; SEQ ID NO: 7)
  • reverse primer 18SR (5, -GGTCGATCCCCTAACTTTCGTT-3'; SEQ ID NO: 8) were used as a set of primers.
  • PCR reaction solution is X 10 Reaction Buffer (buffer for Blend Taq (+ M g) 5 ⁇ L of Toyobo Co., Ltd.), 5 ⁇ L of 2 mM dNTPs, and lOpmol / ⁇ L primer: LL, 0.5 U / ⁇ L of Blend Taq (Toyobo Co., Ltd.) 0.5 ⁇ L Then, 12.5 ⁇ L of the nucleic acid sample prepared above and 25 ⁇ L of sterilized water were added to prepare a total volume of 50 ⁇ L.
  • the reaction was carried out for 40 cycles with denaturation at 94 ° C for 60 seconds, denaturation at 94 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, and extension at 72 ° C for 60 seconds. Later, the reaction was terminated by a final extension reaction at 72 ° C for 240 seconds.
  • each amplification product obtained by the PCR reaction was subjected to electrophoresis based on a conventional method to visualize nucleic acid fragments.
  • DNA was extracted from cryptosporidium oocysts, and PCR amplification was performed on the extracted DNA.
  • a test sample of Cryptosporidium oocyst was prepared in the same manner as in Example 4 above.
  • 2 L of reaction solution IA 3.5 mM deoxycholic acid (final concentration lmM), 35 mM glycocholic acid (final concentration 10 mM) was added and incubated at 37 ° C for 15 minutes.
  • reaction solution IIA 17 mAU proteinase K (600 mAU / mL, manufactured by QIAG EN), 9.7 mM EDTA ′ 2Na) was added and incubated at 70 ° C. for 10 minutes. Thereafter, the proteinase K was inactivated by further incubation at 94 ° C. for 10 minutes.
  • the nucleic acid sample thus prepared was subjected to PCR and electrophoresis in the same manner as in Example 4 above.
  • the nucleic acid sample obtained in Comparative Example 1 was subjected to electrophoresis in the same manner except that the nucleic acid sample was diluted to 1/10 with a buffer solution.
  • FIG. 4 shows the results of visualizing the amount of DNA extracted by gel electrophoresis.
  • Lane 1 shows the result of Comparative Example 1
  • Lane 2 shows the result of Comparative Example 2
  • Lane 3 shows the result of Example 4.
  • M represents a molecular weight marker of lOObp ladder.
  • the reaction may be inhibited by any of the reagent groups added during the nucleic acid extraction at either the nucleic acid extraction or the PCR reaction stage. Therefore, in order to avoid such reaction inhibition, the conventional method requires the dilution of the nucleic acid extract during PCR. Even when the extracted nucleic acid sample is diluted to 1/10 concentration and used for the amplification reaction, Almost no confirmation was possible (lane 2). In other words, it can be seen that the analysis sensitivity decreased due to dilution.
  • the nucleic acid extraction method of the present invention does not require any means such as dilution, and the nucleic acid extract can be directly applied to the nucleic acid amplification method and is contained in the test sample with high sensitivity. It can be seen that nucleic acids can be detected and quantified. It is particularly useful for analysis of trace samples because of its high detection sensitivity.
  • the conventional method has high utility value as a nucleic acid extraction method. It has been found that there are some problems in application to nucleic acid amplification methods, especially to trace samples. Further, the nucleic acid extraction method of the present invention, which has improved problems, has a wider utility value.
  • the present invention can efficiently extract nucleic acids regardless of the type of organism, medical fields such as diagnosis of diseases, inspection of environmental pollution, and identification of plant varieties and brands, etc. Can be used.
  • FIG. 1 Electrophoretic diagram showing the results of extraction of nucleic acid by the nucleic acid extraction method of the present invention using Legionella cells as a test sample.
  • FIG. 2 Electrophoretic diagram showing the results of nucleic acid extraction by using the nucleic acid extraction method of the present invention using human cultured cells as a test sample.
  • FIG. 3 Electrophoretic diagram showing the results of nucleic acid extraction by the nucleic acid extraction method of the present invention using Koshihikari rice mill as a test sample.
  • FIG. 4 Electrophoretic diagram showing the results of comparing the nucleic acid extraction method of the present invention with the conventional nucleic acid extraction method using cryptosporidium oocysts as test samples.

Abstract

The object is to provide a nucleic acid extraction method which can treat any type of sample in a short time without using a reagent that needs to be handled carefully, can further reduce the influence on the subsequent analysis and is suitable for the detection of a trace amount of a sample. Particularly, it is intended to improve such a method for conveniently performing the procedures of a series of reaction system including the extraction of a nucleic acid, the amplification of the nucleic acid and the analysis of the nucleic acid in this order. The nucleic acid extraction method comprises the step of contacting a sample with deoxycholic acid, glycolic acid and a divalent cation chelator to release a nucleic acid.

Description

明 細 書  Specification
核酸抽出方法及び核酸抽出キット  Nucleic acid extraction method and nucleic acid extraction kit
技術分野  Technical field
[0001] 本発明は、核酸抽出方法に関する。  [0001] The present invention relates to a nucleic acid extraction method.
背景技術  Background art
[0002] 従来の核酸抽出方法においては、細胞壁や細胞膜を破壊した後にこれらを取り除 き、タンパク質を変性させ、核酸を分離する等の多くの工程を必要としていた。この際 使用される試薬には、強アルカリ性の水酸ィ匕ナトリウム溶液や腐食性の高いフエノー ル液等の慎重な取り扱 、を要するものが含まれて 、た。  [0002] In conventional nucleic acid extraction methods, many steps are required, such as destroying cell walls and cell membranes, removing them, denaturing proteins, and separating nucleic acids. The reagents used at this time included those requiring careful handling such as strongly alkaline sodium hydroxide solution and highly corrosive phenol solution.
[0003] そこで、力かる問題を解決すベぐ微生物菌体とファージの混合物力 DNAを精製 する方法が提案されている(例えば、特許文献 1参照。 ) o具体的には、本法は、フエ ノールとエタノールとを用いた DNA濃縮工程に代えて、限外濾過膜に試料を通過さ せる工程を設けることによって、不純物を除去し DNAを濃縮するものである。  [0003] Therefore, a method for purifying DNA, which is a mixture of microbial cells and phages that solves the problem, has been proposed (see, for example, Patent Document 1). Instead of the DNA concentration step using phenol and ethanol, a step of passing the sample through an ultrafiltration membrane is provided to remove impurities and concentrate the DNA.
[0004] 上述した従来の核酸抽出方法によれば、フエノール液の使用を回避することはでき ても、強アルカリ性の水酸ィ匕ナトリウム溶液は精製が必要であった。このように、慎重 な取り扱 、を要する試薬の種類を減らすことはできても、すべての試薬を取り扱 、が 容易なもので代替するのは困難であるという問題点があった。更には、微生物菌体、 具体的には大腸菌、とファージとの混合物力 DNAを精製するのは、夾雑物が少なく 、細胞壁等の障害が少ないので、比較的容易であるが、他の試料に応用する場合に は、その生物特有の構造物や試料に含まれる夾雑物が障害となって、広く生物の種 別を問わず効率的に核酸を抽出する方法を提供することは困難であった。  [0004] According to the conventional nucleic acid extraction method described above, although the use of a phenol solution can be avoided, a strongly alkaline sodium hydroxide solution needs to be purified. As described above, there is a problem in that although it is possible to reduce the types of reagents that require careful handling, it is easy to handle all the reagents and is difficult to replace. Furthermore, microbial cells, specifically Escherichia coli, and a mixture of phages. Purifying DNA is relatively easy because it contains few contaminants and has few obstacles such as cell walls. In the case of application, it was difficult to provide a method for efficiently extracting nucleic acids regardless of the species of organisms, because the impurities contained in the structures and samples peculiar to the organisms became an obstacle. .
[0005] 更には、従来の抽出方法を用いて抽出した核酸試料に残存する試薬が、後の分析 を阻害することがあり、更なる精製工程を必要としたり、分析精度が落ちたりするという 問題点があった。特に、現在、バイオテクノロジーの分野では生物の遺伝子検査に ついて細胞から遺伝子 DNAを効率よく無傷で抽出する方法が必須であると認識され ている。又、研究の迅速ィ匕のため、遺伝子抽出等の操作の自動化が図られているが 、工程が増えると、遠心分離、吸引ろ過などの精製にかけるステップが煩雑なものと なり、自動遺伝子検査機器の省力化、小型化の障害となっていた。更に、昨今の当 該技術情勢は、被検対象物から抽出した核酸を直接分析に供するよりも、核酸抽出 物を、核酸増幅技術を利用して増幅した後に分析を行なうことが一般的となっている 。また、核酸増幅技術を利用した分析方法も汎用技術となっている。 [0005] Furthermore, a reagent remaining in a nucleic acid sample extracted by using a conventional extraction method may interfere with subsequent analysis, requiring a further purification step and reducing analysis accuracy. There was a point. In particular, at present, in the field of biotechnology, it is recognized that a method for efficiently and intactly extracting genetic DNA from cells is essential for genetic testing of organisms. In addition, for rapid research, automation of gene extraction and other operations has been attempted. However, as the number of processes increases, the steps for purification such as centrifugation and suction filtration are complicated. Therefore, it was an obstacle to labor saving and downsizing of automatic genetic testing equipment. Furthermore, in the current technical situation, it is common to analyze a nucleic acid extract after amplifying the nucleic acid extract using a nucleic acid amplification technique, rather than subjecting the nucleic acid extracted from the test subject to direct analysis. ing . An analysis method using a nucleic acid amplification technique is also a general-purpose technique.
[0006] そこで、ポリメラーゼ連鎖反応(以下、 PCRと略する)法において、核酸抽出工程を 経ず、糞便、血液等の試料中の核酸を効率よく増幅する方法が提案されている (例 えば、特許文献 2、 3、 4、 5、 6、 7、 8参照。;)。具体的には、ポリアミン、ポリア-オン、 界面活性剤、 DDT等の電荷物質を添加することにより、試料中に含まれる色素、タン パク質、糖類、若しくは未知の夾雑物等の PCR反応を阻害する正、負の電荷物質を 中和して、これら PCR反応阻害物質の影響を抑制するものである。しかし、これらの方 法は、細胞を迅速に破壊して核酸を抽出することを目的とするものではない。  [0006] Therefore, in the polymerase chain reaction (hereinafter abbreviated as PCR) method, a method for efficiently amplifying nucleic acid in a sample such as stool and blood without passing through a nucleic acid extraction step has been proposed (for example, See Patent Documents 2, 3, 4, 5, 6, 7, and 8;). Specifically, by adding charged substances such as polyamines, polyions, surfactants, and DDT, the PCR reaction of dyes, proteins, sugars, or unknown contaminants contained in the sample is inhibited. It neutralizes positive and negative charged substances to suppress the effects of these PCR reaction inhibitors. However, these methods are not intended to rapidly destroy cells and extract nucleic acids.
[0007] また、慎重な取り扱いを必要とする試薬の使用を回避すベぐ界面活性剤およびキ レート剤の利用により生体試料から核酸を抽出する技術が知られている。具体的に は、不織布に捕捉することにより生体試料カゝら核酸を抽出する方法、硫酸デキストラ ン等の多糖担体に捕捉することにより生体試料力 核酸を抽出する方法において、 これら核酸抽出の前処理として界面活性剤、キレート剤、還元剤、タンパク質分解酵 素等で細胞及び細菌等を破壊することが報告され、界面活性剤としてコール酸の利 用が例示されている(例えば、特許文献 9、 10参照。 )0し力しながら、これらの方法は 、不織布やカラム等の特別の用具を必要とするものであり、界面活性剤およびキレー ト剤等は細胞破壊の前処理段階で利用されるに過ぎず、更に、捕捉後に担体の洗 浄等の工程が必要であると想定される。また、プロティナーゼ Kを、塩ィ匕カリウム、陰 イオン界面活性剤、チオールィ匕合物の存在下で反応させて、硬組織由来の生体試 料から核酸を抽出する方法が報告され、陰イオン界面活性剤としてコール酸の利用 が例示されている (例えば、特許文献 11参照)。 [0007] In addition, a technique for extracting nucleic acid from a biological sample by using a surfactant and a chelating agent that avoids the use of a reagent that requires careful handling is known. Specifically, in a method of extracting nucleic acid from a biological sample by capturing it on a nonwoven fabric, or a method of extracting nucleic acid from a biological sample by capturing it on a polysaccharide carrier such as dextran sulfate, pretreatment of these nucleic acid extractions It is reported that cells, bacteria, etc. are destroyed by surfactants, chelating agents, reducing agents, proteolytic enzymes, etc., and the use of cholic acid as a surfactant is exemplified (for example, Patent Document 9, 10 reference.) while 0 tooth force, these methods, which require special equipment such as a nonwoven fabric or column, surfactants and chelate agent is utilized in the pretreatment stage of the cell disruption Furthermore, it is assumed that a process such as cleaning of the carrier is necessary after capture. In addition, a method for extracting nucleic acids from biological samples derived from hard tissues by reacting proteinase K in the presence of potassium chloride, anionic surfactant, and thiol compound was reported. The use of cholic acid as an agent is exemplified (for example, see Patent Document 11).
[0008] ここで、上述のコール酸等の界面活性剤、及びキレート剤は核酸の抽出に利用さ れることが知られるが、一方で、核酸増幅反応等の種々の酵素反応を阻害することも 知られていた。そのため、これらの物質を利用して核酸を抽出した場合、核酸試料の 精製、希釈等の工程を経ずして、核酸増幅、並びにその後の分析へと続く一連の反 応系に抽出後の核酸を供することはできないとの問題点を有していた。しかしながら 、上述した方法は、いずれも力かる問題点の解決に対して何らの知見を与えるもので はなかった。 Here, it is known that the above-mentioned surfactants such as cholic acid and chelating agents are used for nucleic acid extraction, but on the other hand, they may also inhibit various enzyme reactions such as nucleic acid amplification reactions. It was known. For this reason, when nucleic acids are extracted using these substances, a series of reactions following nucleic acid amplification and subsequent analysis are performed without steps such as purification and dilution of nucleic acid samples. There is a problem that the nucleic acid after extraction cannot be used in the reaction system. However, none of the above-mentioned methods gives any knowledge to the solution of the problematic problems.
[0009] そこで、本発明者らは、上記問題点に鑑み、特定の試薬構成のコール酸類を利用 した核酸抽出方法を開発した (非特許文献 1を参照)。具体的は、被検試料に、デォ キシコール酸、及びグリココール酸力 なる反応液を、それぞれ lmM、 10mMとなるよ うに添カ卩し、続いてプロティナ一ゼ1:、及び EDTA力もなる反応液を添カ卩した後、 70°C で 10分間、それに続いて 94°Cで 10分間、加熱処理することにより被検試料から核酸 を抽出するものである。  [0009] In view of the above problems, the present inventors have developed a nucleic acid extraction method using cholic acids having a specific reagent configuration (see Non-Patent Document 1). Specifically, a reaction solution that has doxycholic acid and glycocholic acid power is added to the test sample so as to have lmM and 10 mM, respectively, followed by reaction that also has proteinase 1: and EDTA power. After adding the solution, the nucleic acid is extracted from the test sample by heating at 70 ° C for 10 minutes and then at 94 ° C for 10 minutes.
特許文献 1:特開平 5 - 236963号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 5-236963
特許文献 2:特開平 6 - 277061号公報  Patent Document 2: Japanese Patent Laid-Open No. 6-270661
特許文献 3:特開平 8— 173198号公報  Patent Document 3: JP-A-8-173198
特許文献 4:特開平 9 9967号公報  Patent Document 4: JP-A-9 9967
特許文献 5:特開平 9 - 238687号公報  Patent Document 5: Japanese Patent Laid-Open No. 9-238687
特許文献 6:特開 2000 - 93175号公報  Patent Document 6: Japanese Patent Laid-Open No. 2000-93175
特許文献 7:特開 2001— 258556号公報  Patent Document 7: Japanese Patent Laid-Open No. 2001-258556
特許文献 8:特開 2001— 258562号公報  Patent Document 8: Japanese Patent Laid-Open No. 2001-258562
特許文献 9:特開 2006 - 55079号公報  Patent Document 9: Japanese Patent Laid-Open No. 2006-55079
特許文献 10:特開 2003 - 235555号公報  Patent Document 10: Japanese Patent Laid-Open No. 2003-235555
特許文献 11 :特開 2004— 201558号公報  Patent Document 11: Japanese Unexamined Patent Application Publication No. 2004-201558
非特許文献 1:大泉由紀他、 DNAマイクロアレイによるクリプトスポリジゥムの検出と種 同定、用水と廃水、 2004年 8月 1日、第 46卷、第 8号、第 685〜692頁  Non-Patent Document 1: Yuki Oizumi et al., Detection and Species Identification of Cryptosporidium by DNA Microarray, Water and Wastewater, August 1, 2004, No. 46, No. 8, pp. 685-692
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 上述した本発明者らの従前法は、被検試料の種別を問わず、慎重な取り扱いを有 する試薬を使わずに短時間で処理を行うことができる有用な方法であることが確認さ れている。そして、上述の本発明者らの従前法は、上述の昨今の当該技術情勢を鑑 みて、核酸増幅反応を含めた核酸抽出後の分析等の反応系への影響を抑制するべ く構成されたものではあるが、反応系によっては核酸増幅反応が効果的に進行しな い場合があることが判明した。そのため、核酸抽出後の核酸増幅に際して核酸抽出 物の希釈を要する場合があり、特に微量試料の分析精度が十分でない場合があつ た。更に、 94°Cという高温下での加熱処理を行うことで、長鎖 DNAの分解が生じ分析 精度が低下する場合があることも判明した。また、個々の分析対象に合致させて最適 化した PCR条件を変更することなぐ核酸抽出物を容易に反応系に組み込みた!/、と の巿場の要求があった。 [0010] The above-described conventional method of the present inventors is a useful method capable of performing processing in a short time without using a reagent having careful handling regardless of the type of the test sample. It has been confirmed. In addition, the above-described conventional method of the present inventors should examine the above-mentioned recent technical situation and suppress the influence on the reaction system such as analysis after nucleic acid extraction including nucleic acid amplification reaction. However, depending on the reaction system, it was found that the nucleic acid amplification reaction may not proceed effectively. Therefore, the nucleic acid extract may need to be diluted when amplifying the nucleic acid after nucleic acid extraction, and the analysis accuracy of a very small amount of sample may not be sufficient. Furthermore, it was also found that heat treatment at a high temperature of 94 ° C may cause degradation of long-chain DNA and reduce the analysis accuracy. In addition, there was a demand for a place where it was easy to incorporate a nucleic acid extract into the reaction system without changing the PCR conditions optimized for each analysis target!
[0011] 従って、本発明の目的は、被検試料の種別を問わず、慎重な取り扱いを有する試 薬を使わずに短時間で処理を行うことができ、且つ、その後の分析への影響を更に 低減し、微量試料の検出にも好適な核酸抽出方法を提供することにある。特には、 核酸抽出に続く核酸増幅、並びにその後の分析へと続く一連の反応系の手順の便 宜を図るべく本発明者の従前核酸抽出方法の改良を行なった。 [0011] Therefore, the object of the present invention is to allow processing to be performed in a short time without using a carefully handled reagent regardless of the type of test sample, and to affect the subsequent analysis. Further, the present invention is to provide a nucleic acid extraction method which is further reduced and suitable for detection of a small amount of sample. In particular, the inventor's conventional nucleic acid extraction method was improved in order to facilitate the nucleic acid amplification following the nucleic acid extraction and the sequence of reaction systems following the subsequent analysis.
課題を解決するための手段  Means for solving the problem
[0012] この目的を達成するための本発明の核酸抽出方法の特徴手段は、デォキシコール 酸、グリコール酸、及び二価陽イオンのキレート剤を被検試料に接触させて核酸を遊 離させる工程を有する点にある。 [0012] In order to achieve this object, the characteristic means of the nucleic acid extraction method of the present invention comprises the step of bringing a test sample into contact with a chelating agent of deoxycholic acid, glycolic acid, and divalent cation to liberate nucleic acid. It is in having.
[0013] 上記特徴手段において、前記デォキシコール酸の濃度力 0.01〜10mMであること が好ましぐまた、前記ダリコール酸の濃度力 0.1〜100mMであることが好ましぐ或 いは、タンパク質分解酵素を前記被検試料に接触させて核酸を遊離させる工程を有 することが好ましぐ或いは、 25〜95°Cにて 5〜120分間、熱処理を行なう工程を有す ることが好ましぐ或いは、前記核酸の遊離工程に続いて、マグネシウム塩、及び緩 衝液を添加する工程を有することが好まし 、。  [0013] In the above characteristic means, the concentration force of the deoxycholic acid is preferably 0.01 to 10 mM, the concentration force of the daricholic acid is preferably 0.1 to 100 mM, or a proteolytic enzyme is used. It is preferable to have a step of releasing nucleic acid by contacting with the test sample, or it is preferable to have a step of performing heat treatment at 25 to 95 ° C for 5 to 120 minutes, or It is preferable to have a step of adding a magnesium salt and a buffer solution following the nucleic acid releasing step.
そして、前記被検試料が、微生物を含む試料であることが好ましい。  And it is preferable that the said test sample is a sample containing microorganisms.
[0014] この目的を達成するための本発明の核酸抽出キットの特徴構成は、デォキシコー ル酸、グリコール酸、及び二価陽イオンのキレート剤を含む点にある。  [0014] To achieve this object, the nucleic acid extraction kit of the present invention is characterized in that it contains deoxycholate, glycolic acid, and a divalent cation chelating agent.
[0015] 上記特徴構成において、使用時において終濃度が 0.01〜10mMとなるようにデォキ シコール酸を含むことが好ましぐまた、使用時において終濃度が 0.1〜100mMとなる ようにグリコール酸を含むことが好ましぐ或いは、タンパク質分解酵素を含むことが 好ましぐ或いは、マグネシウム塩、及び緩衝液を含むことが好ましい。 [0015] In the above feature configuration, it is preferable to include deoxycholic acid so that the final concentration is 0.01 to 10 mM when used, and glycolic acid is included so that the final concentration is 0.1 to 100 mM when used. Or contain proteolytic enzymes Preferably, it preferably contains a magnesium salt and a buffer.
[0016] 本発明の核酸抽出方法は、哺乳類が持つ消化液の一つである胆汁酸に着目した ものである。胆汁酸の主成分はタウロコール酸、デォキシコール酸、グリココール酸な どコール酸類である。コール酸類は界面活性剤としての性質も持っており、膜タンパ ク質の抽出のための細胞膜破壊試薬としても用いられている利用価値の高い物質で ある。ところが、コール酸類は、酵素反応を阻害するため、酵素反応に供する際には 、細胞破壊反応後に取り除くか、若しくは希釈を必要とした。発明者らは、これに対し て、コール酸類であるデォキシコール酸をグリコール酸と併用することにより、一種類 のコール酸で、し力も、後の酵素反応に与えず、かつ、安定性を保持した状態で効 率的に核酸を抽出できることを見出した。更に、核酸抽出反応時におけるキレート剤 の併存によって、細胞内から遊離した核酸を核酸分解酵素力 保護することができ 効率的な核酸抽出が達成されることも見出した。本発明の核酸抽出方法は、核酸抽 出試薬類、並びに施用濃度の最適化により構築されたものであり、これにより効率的 な核酸抽出が達成される。  [0016] The nucleic acid extraction method of the present invention focuses on bile acid, which is one of digestive fluids possessed by mammals. The main components of bile acids are cholic acids such as taurocholic acid, deoxycholic acid and glycocholic acid. Cholic acids also have properties as surfactants and are highly useful substances that are also used as cell membrane disrupting reagents for the extraction of membrane proteins. However, since cholic acids inhibit the enzyme reaction, when they are used in the enzyme reaction, they must be removed after cell destruction or diluted. The inventors, on the other hand, used a cholic acid, deoxycholic acid, in combination with glycolic acid, so that one kind of cholic acid did not give any strength to the subsequent enzymatic reaction and maintained stability. It was found that nucleic acids can be extracted efficiently in the state. Furthermore, it has also been found that the nucleic acid released from the cell can be protected by the nucleolytic enzyme force by the coexistence of the chelating agent in the nucleic acid extraction reaction, thereby achieving efficient nucleic acid extraction. The nucleic acid extraction method of the present invention is constructed by optimizing the nucleic acid extraction reagents and the application concentration, thereby achieving efficient nucleic acid extraction.
[0017] デォキシコール酸、及びダリコール酸の細胞破壊の分子化学的なメカニズムは、次 のように推測される。細胞膜はリン脂質とタンパク質力も構成されており、デォキシコ ール酸、及びグリコール酸カこの細胞膜のリン脂質の脂質二重層の中に入り込んで 膜を壊れやすくすると共に界面活性作用によりリン脂質及びタンパク質成分を溶解 する。このメカニズムは 動物、植物、微生物の別を問わず、すべての生物に共通で あろう。従って、本法は、幅広い生物由来の被検試料に対してその効果を発揮すると 考えられる。  [0017] The molecular chemical mechanism of cell destruction of deoxycholic acid and dalicholic acid is presumed as follows. Cell membranes are also composed of phospholipids and protein power. Dexiolic acid and glycolic acid can penetrate into the lipid bilayer of phospholipids of this cell membrane, making the membranes fragile and phospholipids and protein components by surface activity. Dissolve. This mechanism may be common to all living organisms, whether animals, plants or microorganisms. Therefore, this method is considered to be effective for a wide range of biological specimens.
[0018] ここで、デォキシコール酸、及びグリコール酸は、フエノール液や強アルカリ溶液等 と比べて取り扱いが容易である。同時に、グリコール酸との併用によりコール酸類をデ ォキシコール酸 1種類に限定することで核酸抽出後の酵素反応を妨げないよう構成 したことから、核酸増幅反応等の後の反応系に供する試料は精製工程を必要としな い。  [0018] Here, deoxycholic acid and glycolic acid are easier to handle than phenolic solutions and strong alkaline solutions. At the same time, the sample used in the subsequent reaction system such as nucleic acid amplification reaction is purified because it is configured not to interfere with the enzyme reaction after nucleic acid extraction by limiting cholic acid to one kind of doxycholic acid in combination with glycolic acid. No process is required.
[0019] 即ち、本発明の核酸抽出方法に係るデォキシコール酸、グリコール酸、及び二価 陽イオンのキレート剤を被検試料に接触させる工程を有する核酸抽出方法は、慎重 な取り扱いを有する試薬を使わずに短時間で処理を行うことができる。且つ、核酸抽 出物を、核酸増幅反応等の後の反応系に容易に組み込むことができる。したがって 、本発明の核酸抽出方法は、核酸抽出反応、並びにその後に続く分析を含めた一 連の反応系の自動化、省力化に大きく役立つものと考えられる。引いては、自動遺伝 子検査機器の省力化、小型化が実現される。 That is, the nucleic acid extraction method comprising the step of bringing a test sample into contact with a chelating agent of deoxycholic acid, glycolic acid, and a divalent cation according to the nucleic acid extraction method of the present invention is careful. It is possible to perform the processing in a short time without using a reagent having a proper handling. In addition, the nucleic acid extract can be easily incorporated into a subsequent reaction system such as a nucleic acid amplification reaction. Therefore, the nucleic acid extraction method of the present invention is considered to be greatly useful for automation and labor saving of a series of reaction systems including a nucleic acid extraction reaction and subsequent analysis. In turn, labor saving and downsizing of automated genetic testing equipment can be realized.
[0020] 更に、被検試料に接触させる際の前記デォキシコール酸の濃度が 0.01〜10mMで あると、或いは、前記ダリコール酸の濃度力 0.1〜100mMであると、核酸抽出後の酵 素反応を含めた反応系を阻害せずに、確実に、核酸の抽出を行うことができ、最も効 率がよい。  [0020] Further, when the concentration of the deoxycholic acid in contact with the test sample is 0.01 to 10 mM, or when the concentration of the daricholic acid is 0.1 to 100 mM, an enzyme reaction after nucleic acid extraction is included. The nucleic acid can be reliably extracted without hindering the reaction system, which is the most efficient.
[0021] 加えて、タンパク質分解酵素を前記被検試料に接触させる工程を有すると、試料中 に混在するタンパク質を分解するので、膜の分子構造が完全に破壊され、更に確実 に細胞を破壊できる。  [0021] In addition, when the step of bringing a proteolytic enzyme into contact with the test sample is used, the protein mixed in the sample is degraded, so that the molecular structure of the membrane is completely destroyed, and the cells can be more reliably destroyed. .
[0022] カロえて、核酸の遊離に続 、て、マグネシウム塩、及び緩衝液を添加する工程を有 すると、核酸増幅反応等の後の反応系に更に容易に組み込むことができる。  [0022] If there is a step of adding a magnesium salt and a buffer solution after releasing the nucleic acid, it can be more easily incorporated into a subsequent reaction system such as a nucleic acid amplification reaction.
[0023] 更に、核酸を細胞内から遊離させる際に加温することが多ぐその際の加温条件が[0023] Further, when nucleic acid is released from the cell, it is often heated.
30〜70°Cであると、遊離した核酸を分解することなぐタンパク質の分解と同時に熱に よる揺らぎで細胞膜の破壊が促進され、最も効率がょ 、。 When the temperature is 30 to 70 ° C, the destruction of the cell membrane is promoted by the thermal fluctuation at the same time as the decomposition of the protein without decomposing the released nucleic acid.
[0024] 微生物細胞を含む試料は、その生物に特有の堅牢な構造物や、幾重にも重なる膜 構造等が障害となって迅速且つ効率のよい核酸抽出が難しい場合があるが、本法は[0024] Samples containing microbial cells may be difficult to extract quickly and efficiently due to obstacles such as a robust structure peculiar to the organism or a multi-layered membrane structure.
、これら微生物に場合であっても本法は適用可能である。よって、本法を採用するこ とによって、病気の診断等の医療分野や、環境汚染等の検査においても、迅速且つ 高精度化を達成することができる。 Even in the case of these microorganisms, the present method can be applied. Therefore, by adopting this method, it is possible to achieve high speed and high accuracy in the medical field such as diagnosis of diseases and in the inspection of environmental pollution.
[0025] 上記核酸抽出方法を実施するに当たって、本法を実施可能なデォキシコール酸、 グリコール酸及び二価陽イオンのキレート剤を含む核酸抽出キットを用いると、慎重 な取り扱いを有する試薬を使わずに短時間で処理を行うことができる。且つ、核酸抽 出物を、核酸増幅反応等の後の反応系に容易に組み込むことができる。したがって 、核酸抽出反応、並びにその後に続く分析を含めた自動化、省力化に大きく役立つ ものと考えられ、必要な試薬をキットとして揃えることで、省力化に大きく貢献すること ができる。 [0025] In carrying out the above-described nucleic acid extraction method, using a nucleic acid extraction kit containing a chelating agent of deoxycholic acid, glycolic acid and divalent cation capable of carrying out this method, a reagent having careful handling is not used. Processing can be performed in a short time. In addition, the nucleic acid extract can be easily incorporated into a subsequent reaction system such as a nucleic acid amplification reaction. Therefore, it is considered to be very useful for automation and labor saving including the nucleic acid extraction reaction and the subsequent analysis, and greatly contributing to labor saving by preparing necessary reagents as a kit. Can do.
[0026] 更に、前記核酸抽出キットにおいて、使用時において終濃度が 0.01〜10mMとなる ようにデォキシコール酸を含むことで、また、使用時において終濃度が 0.1〜100mM となるようにグリコール酸を含むことで、確実に、核酸抽出後の酵素反応を含めた反 応系を阻害せずに、核酸の抽出を行うことができる。  [0026] Furthermore, the nucleic acid extraction kit contains deoxycholic acid so that the final concentration is 0.01 to 10 mM at the time of use, and glycolic acid is included so that the final concentration is 0.1 to 100 mM at the time of use. Thus, the nucleic acid can be extracted reliably without inhibiting the reaction system including the enzyme reaction after the nucleic acid extraction.
[0027] 更に、前記核酸抽出キットがタンパク質分解酵素を含むと、試料に混在するタンパ ク質を分解するので、更に確実に細胞を破壊できる。 [0027] Furthermore, when the nucleic acid extraction kit contains a proteolytic enzyme, the protein mixed in the sample is degraded, so that the cells can be more reliably destroyed.
[0028] 更に、前記核酸抽出キットがマグネシウム塩、及び緩衝液を含むと、核酸増幅反応 等の後の反応系に容易に組み込むことができる。 Furthermore, when the nucleic acid extraction kit contains a magnesium salt and a buffer, it can be easily incorporated into a subsequent reaction system such as a nucleic acid amplification reaction.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下に本発明の実施の形態を説明する。まず、本発明の核酸抽出方法は、上述の 本発明者らの従前の核酸抽出方法(「用水と廃水」、第 46卷、第 8号、第 685〜692頁[0029] Hereinafter, embodiments of the present invention will be described. First, the nucleic acid extraction method of the present invention is based on the above-described conventional nucleic acid extraction method of the present inventors (“Water and wastewater”, No. 46, No. 8, pages 685 to 692).
)を改良したものである。 ).
[0030] 尚、本願において、「核酸」とは、 DNA、 RNA、及びこれらの誘導体を含む概念とし て用いられる。 In the present application, “nucleic acid” is used as a concept including DNA, RNA, and derivatives thereof.
[0031] 本発明に係る核酸抽出方法は、デォキシコール酸、グリコール酸及び二価陽ィォ ンのキレート剤を被検試料に接触させる工程を有する。二価陽イオンのキレート剤と しては、試料中の金属イオン、特にはマグネシウムイオンと配位して安定な錯塩を形 成できる限り制限はないが、エチレンジァミン四酢酸 (以下、「EDTA」と略する)が好 ましく例示される。そして、好ましくは、デォキシコール酸濃度が 0.01〜10mM、グリコ 一ル酸カ .l〜100mM、 EDTAが 0.01〜200mM、更に好ましくは 10〜100mMとなる状 態で、前記被検試料に前記デォキシコール酸、グリコール酸及び EDTAを接触させる  [0031] The nucleic acid extraction method according to the present invention includes a step of contacting a test sample with a chelating agent of deoxycholic acid, glycolic acid and divalent cation. The divalent cation chelating agent is not limited as long as it can form a stable complex salt by coordinating with metal ions in the sample, particularly magnesium ions, but ethylenediamine tetraacetic acid (hereinafter referred to as `` EDTA ''). (Omitted) is a good example. Preferably, the deoxycholate is added to the test sample in a state where the deoxycholate concentration is 0.01 to 10 mM, the glycomonophosphate is 100 to 100 mM, the EDTA is 0.01 to 200 mM, more preferably 10 to 100 mM. Contact glycolic acid and EDTA
[0032] これにより、核酸を効率的に抽出できると共に、抽出された核酸の保護が可能とな る。デォキシコール酸とダリコール酸、特にはデォキシコール酸のもつ界面活性作用 を利用して細胞膜等を溶解し、それにより細胞内部の核酸が溶液中に遊離する。そ れと同時に、グリコール酸及び EDTAの作用により、遊離された核酸は DNA分解酵素 等の核酸分解酵素から保護される。具体的には、グリコール酸はヒドロキシ酢酸とし ても称される電解質の低分子化合物であり、核酸の周囲で DNA分解酵素から核酸を 保護する。そして、キレート剤により溶液中のマグネシウムイオンをキレートすることで 、マグネシウム要求性の DNA分解酵素が不活化される。被検試料の細胞膜が充分に 破壊されるまで、この工程は続けられ、 PCR試料の調製等の少量の試料の調製にあ たっては、例えば、 5〜60分程度の接触時間があれば足りる。 [0032] Thereby, the nucleic acid can be efficiently extracted and the extracted nucleic acid can be protected. Cell membranes and the like are dissolved by utilizing the surface-active action of deoxycholic acid and dalicholic acid, in particular, deoxycholic acid, whereby nucleic acids inside the cells are released into the solution. At the same time, the released nucleic acid is protected from nucleolytic enzymes such as DNA degrading enzymes by the action of glycolic acid and EDTA. Specifically, glycolic acid is hydroxyacetic acid. It is also called a low molecular weight compound of an electrolyte that protects nucleic acids from DNA-degrading enzymes around the nucleic acids. Then, the magnesium-requiring DNA-degrading enzyme is inactivated by chelating magnesium ions in the solution with the chelating agent. This process is continued until the cell membrane of the test sample is sufficiently destroyed. For preparing a small sample such as a PCR sample, a contact time of about 5 to 60 minutes is sufficient.
[0033] 上述した本発明者らが提案した従前法ではコール酸類としてデォキシコール酸及 びダルココール酸の 2種類を使用して ヽたが、本発明の核酸抽出方法にぉ 、ては、 デォキシコール酸、一種類のみに限定し、グリコール酸及び二価陽イオンのキレート 剤と並存させて構成している。つまり、本発明の方法は、 DNAポリメラーゼ等酵素反 応の阻害物質となるコール酸類の使用を制限して構成したものであり、後に続く分析 への影響を最小限に抑制することが可能となる。したがって、本発明の核酸の抽出 方法により得られた核酸抽出物は、希釈等の酵素反応阻害物質除去のための手段 を経ることなぐ直接的に核酸増幅反応等の後の分析に適用することができ、抽出対 象が微量である場合にも好適に使用可能である。  [0033] In the conventional method proposed by the present inventors described above, two types of cholic acids, deoxycholic acid and dalcocholic acid, were used. However, according to the nucleic acid extraction method of the present invention, deoxycholic acid, It is limited to only one type, and it is configured to coexist with glycolic acid and divalent cation chelating agent. In other words, the method of the present invention is configured by restricting the use of cholic acids, which are inhibitors of enzyme reactions such as DNA polymerase, and it is possible to minimize the influence on subsequent analysis. . Therefore, the nucleic acid extract obtained by the nucleic acid extraction method of the present invention can be directly applied to subsequent analysis such as nucleic acid amplification reaction without passing through means for removing enzyme reaction inhibitor such as dilution. It can be suitably used even when the extraction target is a very small amount.
[0034] 被検試料の細胞膜の破壊を確実なものとするため、更に、タンパク質分解酵素を前 記被検試料に接触させる工程を設けることができる。これにより、被検試料中の細胞 の細胞膜等のタンパク質成分を分解し、細胞内部の核酸の溶液中への遊離が更に 促される。この工程は、上記デォキシコール酸、グリコール酸及び二価陽イオンのキ レート剤を被検試料に接触させる工程と同時に行うこともできる。タンパク質分解酵素 としては、例えば、プロティナーゼ Kが好適であり、例えば、これを 0.01〜10mAUを添 加する。  [0034] In order to ensure the destruction of the cell membrane of the test sample, a step of bringing the proteolytic enzyme into contact with the test sample can be further provided. As a result, protein components such as cell membranes of cells in the test sample are decomposed, and the release of nucleic acids inside the cells into the solution is further promoted. This step can be performed simultaneously with the step of bringing the above-mentioned deoxycholic acid, glycolic acid and divalent cation chelating agent into contact with the test sample. For example, proteinase K is suitable as the proteolytic enzyme, and for example, 0.01 to 10 mAU is added thereto.
[0035] 上記工程の後、タンパク質成分の分解のため加熱処理を行なう。加熱処理は、 25 〜95°Cにて 5〜120分間行なわれる。これにより、試料中のタンパク質成分は分解す る。上述した本発明者らが提案した従前法では加熱処理を 70°Cにて 10分間、それに 続いて 94°Cにて 10分間行なっているが、本発明の方法においては、加熱温度を下げ ると共に、加熱時間を短縮して構成されている。これにより、従前法よりも緩和な条件 での加熱により長鎖 DNAの分解を抑制でき、核酸の抽出効率、並びにその後に続く 分析の検出感度を更に向上することが可能となる。 [0036] 核酸増幅反応等の後の分析への直接的な適用を容易にするため、更に、マグネシ ゥム塩、及び pH緩衝液を被検試料に接触させる工程を設けることができる。マグネシ ゥム塩としては、核酸の安定性並びにその後の分析を阻害しない限り制限はないが、 好ましくは塩ィ匕マグネシウムである。そして、マグネシウム塩は先に添加したキレート 剤の結合量に相当する量添加することが好ましい。また、緩衝液としても核酸の安定 性並びにその後の分析を阻害しない限り制限はないが、好ましくは、 pH6〜10の範 囲での緩衝能を有し、特に好ましくは TAPS緩衝液等である。そして、好ましくは、塩 化マグネシウムを 0.1〜50mM、 TAPS緩衝液を 0.01〜200mM、 pH7〜9に調製して添 加する。ここで、マグネシウム塩と緩衝液は、各々を単独で添加してもよぐまた、マグ ネシゥム塩を緩衝液に溶解させた形態で添加することもできる。 [0035] After the above step, heat treatment is performed to decompose the protein component. The heat treatment is performed at 25 to 95 ° C for 5 to 120 minutes. As a result, the protein component in the sample is decomposed. In the conventional method proposed by the present inventors described above, the heat treatment is performed at 70 ° C. for 10 minutes and then at 94 ° C. for 10 minutes. In the method of the present invention, the heating temperature is lowered. In addition, the heating time is shortened. This makes it possible to suppress the degradation of long-chain DNA by heating under milder conditions than the conventional method, and to further improve the nucleic acid extraction efficiency and the detection sensitivity of subsequent analysis. [0036] In order to facilitate direct application to a subsequent analysis such as a nucleic acid amplification reaction, a step of bringing a magnesium salt and a pH buffer solution into contact with a test sample can be further provided. The magnesium salt is not limited as long as it does not interfere with the stability of nucleic acid and the subsequent analysis, but is preferably magnesium salt. The magnesium salt is preferably added in an amount corresponding to the binding amount of the chelating agent added previously. The buffer solution is not limited as long as it does not inhibit the stability of nucleic acid and the subsequent analysis, but preferably has a buffer capacity in the range of pH 6 to 10, particularly preferably a TAPS buffer solution. Preferably, magnesium chloride is adjusted to 0.1 to 50 mM, TAPS buffer is adjusted to 0.01 to 200 mM, pH 7 to 9, and added. Here, the magnesium salt and the buffer solution may be added alone, or may be added in a form in which the magnesium salt is dissolved in the buffer solution.
[0037] これにより、本発明の核酸抽出方法で得られた核酸抽出物を、核酸増幅反応等の 後の分析への直接適用可能となり、個々の検出対象に併せた最適化した核酸増幅 反応条件を変えることなぐ容易に反応系に組み込むことができる。つまり、核酸増幅 反応に使用される Taq DNAポリメラーゼをはじめとする DNAポリメラーゼはマグネシゥ ム要求性酵素であることから、先に添加したキレート剤の影響を消去することができ、 PCR等の後の反応系に供する際に、個々の反応系にお!/、て好適化された反応条件 、特にはマグネシウムイオン濃度等を変更することなくそのまま核酸抽出物を適用で きる。これにより、 DNAポリメラーゼ等の酵素の活性の発現に好適な反応環境を形成 することができ、分析精度が向上する。ここで、マグネシウム塩の使用が好適であるが 、鉄、マンガン塩等、後の反応系に応じて、酵素の反応環境の形成に好適な、若しく は、影響を与えない金属塩を、マグネシウム塩に代えて、若しくは併用して添加する ように構成することもできる。そして、 pH緩衝液の添加により、その後の分析における pH調整を容易にし、特に PCR法においては、用いる DNAポリメラーゼの至適 pHへの 調整が容易になると共に、先に添加した試薬群の後の反応系への影響を消失させる ことができる。したがって、個々の検出対象に合わせて最適化された反応条件、特に は PCRにおけるマグネシウムイオン濃度、 DNAポリメラーゼの種類等を変更することな く、容易に核酸抽出物を反応系に組み込むことができる。  [0037] Thus, the nucleic acid extract obtained by the nucleic acid extraction method of the present invention can be directly applied to subsequent analysis such as nucleic acid amplification reaction, and optimized nucleic acid amplification reaction conditions according to individual detection targets. It can be easily incorporated into the reaction system without changing. In other words, Taq DNA polymerase and other DNA polymerases used in nucleic acid amplification reactions are magnesium-requiring enzymes, which can eliminate the effects of previously added chelating agents, and can be used in later reactions such as PCR. When used in the system, the nucleic acid extract can be applied as it is without changing the reaction conditions optimized for each reaction system, particularly the magnesium ion concentration. As a result, a reaction environment suitable for the expression of the activity of an enzyme such as DNA polymerase can be formed, and the analysis accuracy is improved. Here, the use of a magnesium salt is preferred, but a metal salt that is suitable for forming an enzyme reaction environment, such as iron or manganese salt, that is suitable for the formation of the reaction environment of the enzyme, or a magnesium salt that does not affect the magnesium salt. It can be configured to be added in place of the salt or in combination. By adding a pH buffer solution, pH adjustment in subsequent analysis is facilitated. Particularly in PCR, it is easy to adjust the DNA polymerase to be used to the optimum pH, and after the previously added reagent group. The influence on the reaction system can be eliminated. Therefore, the nucleic acid extract can be easily incorporated into the reaction system without changing the reaction conditions optimized for each detection target, particularly the magnesium ion concentration in PCR, the type of DNA polymerase, and the like.
[0038] 以上の通り構成することで、本発明の核酸抽出方法によって得られた核酸抽出物 は、直接、その後の反応系に組み込むことができる。つまり、本発明の核酸抽出方法 によって得られた核酸抽出物中には、後の分析を阻害する反応阻害物質の混入を 最小限に低減させたものである。そのため、従前法において必要であった核酸抽出 液の希釈等を含めた該反応阻害物質を除去する工程を設ける必要がない。これによ り、操作の省力化、並びに核酸試料の損失を最小限に低減できる共に、全液量の増 加による検出感度の低下を低減できる。したがって、手間を掛けずに微量の各種検 出対象を確実に検出したいとの市場の要求に応えることができる。本発明の核酸抽 出方法によって得られた核酸抽出物を組み込むのに好適な分析反応系としては特 に制限はないが、核酸増幅法による核酸の増幅並びに検出が好ましく例示される。 そして、核酸増幅法としては PCR、 LCR (リガーゼ連鎖反応)等が例示され、汎用技術 である Taq DNAポリメラーゼによる PCRに特に好ましく利用でき、その応用範囲は広 範に亘る。 [0038] By configuring as described above, the nucleic acid extract obtained by the nucleic acid extraction method of the present invention Can be directly incorporated into the subsequent reaction system. That is, in the nucleic acid extract obtained by the nucleic acid extraction method of the present invention, contamination of reaction inhibitory substances that inhibit subsequent analysis is minimized. Therefore, it is not necessary to provide a process for removing the reaction inhibitory substance including dilution of the nucleic acid extract required in the conventional method. As a result, it is possible to save labor and to minimize the loss of the nucleic acid sample, and to reduce the decrease in detection sensitivity due to an increase in the total liquid volume. Therefore, it is possible to meet market demands for reliably detecting a small amount of various detection objects without taking time and effort. The analytical reaction system suitable for incorporating the nucleic acid extract obtained by the nucleic acid extraction method of the present invention is not particularly limited, but preferred examples include amplification and detection of nucleic acid by a nucleic acid amplification method. Examples of nucleic acid amplification methods include PCR, LCR (ligase chain reaction) and the like, which can be particularly preferably used for PCR with Taq DNA polymerase, which is a general-purpose technology, and its application range is wide.
[0039] 本法は、被検試料として微生物、動物、植物の別を問わず、すべての生物を含む 試料に適用可能である。したがって、被検試料とは、生物、即ち核酸を含有すると推 定される環境もしくは生体試料等の何れをも含む概念である。  [0039] This method can be applied to a sample containing all living organisms regardless of whether they are microorganisms, animals, or plants. Therefore, the test sample is a concept that includes any organism, that is, an environment estimated to contain nucleic acid, a biological sample, or the like.
[0040] 具体的には、微生物を含む被検試料としては、グラム陽性、グラム陰性を問わず、 全ての細菌、酵母、原虫、原生動物等を含有する試料が例示される。微生物試料は 、その生物に特有の堅牢な構造物や、幾重にも重なる膜構造等が障害となって迅速 且つ効率のよい核酸抽出が難しい場合があるが、本発明の核酸抽出方法は、このよ うな微生物の場合であっても適用可能である。よって、本発明の核酸抽出方法を採 用することによって、病気の診断等の医療分野や、環境汚染等の検査においても、 迅速且つ高精度化を達成することができる。特には、微生物を含む被検試料は、微 生物による環境汚染を検査するために利用可能であり、或いは、バイオレメディエー シヨンの分野において、浄化対象である土壌、水等の環境中の汚染物質資化菌の存 在を確認する等のために利用可能であろう。  [0040] Specifically, examples of the test sample containing microorganisms include samples containing all bacteria, yeasts, protozoa, protozoa, etc. regardless of whether they are gram-positive or gram-negative. Microbial samples may be difficult to extract rapidly and efficiently due to the obstruction of a robust structure peculiar to the organism and the layered membrane structure, etc. Even in the case of such microorganisms, it is applicable. Therefore, by adopting the nucleic acid extraction method of the present invention, rapid and high accuracy can be achieved even in the medical field such as disease diagnosis and in the examination of environmental pollution. In particular, test samples containing microorganisms can be used for examining environmental pollution by microorganisms, or in the field of bioremediation, pollutants in the environment such as soil and water to be purified. It can be used to confirm the existence of assimilating bacteria.
[0041] また、前記被検試料に含まれる微生物がクリプトスポリジゥムであると、水道水の安 全性検査等に利用できるので、疫学的見地力 非常に有用である。前記クリプトスポ リジゥム (Cryptosporidium)は、胞子虫類のコクシジゥム(Coccidium)目に属する、ヒト、 ゥシゃブタ等の家畜、ィヌ、ネズミ等の哺乳動物の消化管に寄生する寄生性原虫で あり、本原虫にヒトが感染すると、腹痛を伴う水様性もしくは粘液性便を主徴とする症 状が 3日〜 1週間程度持続し、時として、嘔吐や発熱を伴うこともある。本原虫に感染 した患者、感染動物力 糞便とともに排出される莫大な数のォーシストは、新たな個 体への感染源となるため、クリプトスポリジゥムの伝播経路は多岐にわたる。水中に存 在するクリプトスポリジゥムのォーシストは、塩素抵抗性を示し、浄水処理における塩 素消毒は無効であるため、通常の浄水処理で完全に除去することは困難であり、水 道水を介した大規模集団感染が生じることがある。 [0041] Further, if the microorganism contained in the test sample is cryptosporidium, it can be used for the safety test of tap water and the like, so it is very useful in epidemiological viewpoint. The Cryptosporidium is a human belonging to the order of the spore genus Coccidium. It is a parasitic protozoan that parasitizes the digestive tract of domestic animals such as pigs and mammals such as pigs and mice, and when humans are infected with this protozoa, watery or mucous feces with abdominal pain are the main features. Symptoms that persist for about 3 days to a week, sometimes with vomiting and fever. Patients infected with this protozoa, the power of infected animals The enormous number of oocysts excreted together with feces is a source of infection to new individuals, so the transmission path of cryptosporidium is diverse. Cryptosporidium oocysts present in water are resistant to chlorine and are not effective in removing water from normal water treatment because chlorine disinfection is ineffective in water treatment. Large-scale outbreaks can occur through
[0042] クリプトスポリジゥムの種類や量を判定するために種々の方法が提案されており、ォ ーシストから核酸を抽出し PCRによって同定、定量する方法もあった。この方法では、 凍結融解、超音波処理などを繰り返すことでォーシストからスポロゾイトを脱嚢させた 後、プロテア一ゼでスポロゾイトを溶解させることにより、もしくは、フエノール抽出/ェ タノール沈殿等の公知の核酸精製処理により、行うのが一般的あった。そのため、各 種処理が煩雑で時間がかかり、且つ、核酸精製処理過程においては、必ず、核酸の 損失を生じるがため、検出感度の低下を招くという問題点もあった。 [0042] Various methods have been proposed for determining the type and amount of cryptosporidium, and there has also been a method of extracting nucleic acids from oocysts and identifying and quantifying them by PCR. In this method, after freezing and thawing, sonication, etc., the sporozoites are removed from the oocysts, and then the sporozoites are dissolved with a protease, or known nucleic acid purification such as phenol extraction / ethanol precipitation. It was common to do so by processing. For this reason, each type of treatment is complicated and takes time, and in the process of nucleic acid purification, there is a problem in that the loss of nucleic acid is inevitably caused, resulting in a decrease in detection sensitivity.
[0043] ところが、本法による脱嚢過程を顕微鏡で観察すると、ォーシストの破壊だけでなく 、そこから出てきたスポロゾイトも破壊していることが確認された。従って、本法におい て、前記被検試料がクリプトスポリジゥムであると、検査において、その操作が簡便に なり迅速な分析が可能となると共に、分析精度が向上するという顕著な効果を奏する ものである。 [0043] However, when the decapsulation process by this method was observed with a microscope, it was confirmed that not only the oocysts were destroyed, but also the sporozoites coming out of them were destroyed. Therefore, in the present method, when the test sample is cryptosporidium, the operation in the test is simplified and rapid analysis is possible, and the analysis accuracy is improved. Is.
[0044] また、動物由来の試料としては、毛根、血球細胞を含む血液、糞便等が例示され、 何らかの動物細胞を含む生検サンプル等の動物由来の被検試料力 核酸を抽出す れば、例えば、病気の診断等の医療分野における検査等に利用でき、迅速、高精度 の診断方法を提供することができる。  [0044] In addition, examples of animal-derived samples include hair roots, blood containing blood cells, feces, etc. If animal-derived test sample nucleic acids such as biopsy samples containing some animal cells are extracted, For example, it can be used for examinations in the medical field such as diagnosing diseases, and a rapid and highly accurate diagnosis method can be provided.
[0045] 植物由来の試料としては、種子、果実、種皮、茎、葉、根等が例示される。従来法 では細胞壁等の堅牢な構造物が障害となって植物細胞からの迅速且つ効率のよい 核酸抽出が難しい場合があるが、このような場合であっても本法は適用可能であり、 品種、銘柄の特定等に利用できる。尚、これらの用途は、例示であって、前掲のもの に限定されるものではない。 [0045] Examples of plant-derived samples include seeds, fruits, seed coats, stems, leaves, roots and the like. In conventional methods, robust structures such as cell walls may be an obstacle, and it may be difficult to extract nucleic acids quickly and efficiently from plant cells. Even in such cases, this method can be applied. It can be used to identify brands. In addition, these uses are examples and the above-mentioned thing It is not limited to.
[0046] ここで、植物細胞や酵母などのカビの仲間、グラム陽性菌など細胞壁を有する生物 から核酸を抽出する場合、被検試料とデォキシコール酸、グリコール酸、及び二価陽 イオンのキレート剤と接触させる前に、細胞壁を分解する前処理工程を設けることが 好ましい。細胞壁は生物種によってその組成が異なるので、それぞれの組成に応じ た細胞壁分解酵素 (例えば、セルラーゼ、ザィモリアーゼ、リゾチウム等)を被検試料 に接触させ、細胞壁を溶解させる。但し、これらの生物に対して細胞壁分解酵素を作 用させなくとも、本法を適用することはできる。  [0046] Here, in the case of extracting nucleic acid from an organism having a cell wall such as a plant cell or yeast mold, Gram-positive bacteria, a test sample and a chelating agent of deoxycholic acid, glycolic acid, and divalent cation Before the contact, it is preferable to provide a pretreatment step for decomposing the cell wall. Since the composition of the cell wall differs depending on the species, cell wall degrading enzymes (for example, cellulase, zymolyase, lysozyme, etc.) corresponding to each composition are brought into contact with the test sample to lyse the cell wall. However, this method can be applied without causing cell wall degrading enzymes to act on these organisms.
[0047] 本発明の核酸抽出方法を実施するにあたって、それぞれの工程 (その後の分析ェ 程をも含めて)を機械装置に実行させ、自動化することも可能である。このような場合 、又は、人が操作を行う場合にあってはその人の便宜のため、デォキシコール酸、グ リコール酸、及び二価陽イオンのキレート剤を含む試薬を核酸抽出キットとして供給 することができる。このキットにおいて、使用時における終濃度力 0.01〜10mMとなる ようにデォキシコール酸を、 0.1〜100mMとなるようにグリコール酸を、 0.01〜200mMと なるように二価陽イオンのキレート剤を配合することが好ましい。特には、 0.01〜0.5m Mとなるようにデォキシコール酸を、 0.1〜10mMとなるようにグリコール酸を配合するこ とが好ましい。更には、この核酸抽出キットに、細胞壁分解酵素及び Z又はタンパク 質分解酵素を含ませることもでき、更には、マグネシウム塩、緩衝液を含ませることも できる。例えば、それらは、工程ごとに必要とされる緩衝液等の試薬と共に溶解し密 封した液状物 (溶液)の原液又は濃縮液として供給することができる。  [0047] In carrying out the nucleic acid extraction method of the present invention, each step (including the subsequent analysis step) can be performed by a mechanical device and automated. In such a case, or when a person performs an operation, for the convenience of the person, a reagent containing deoxycholic acid, glycolic acid, and a divalent cation chelating agent should be supplied as a nucleic acid extraction kit. Can do. In this kit, mix deoxycholic acid to a final concentration of 0.01 to 10 mM at the time of use, glycolic acid to 0.1 to 100 mM, and a divalent cation chelating agent to 0.01 to 200 mM. Is preferred. In particular, it is preferable to mix deoxycholic acid so that it may become 0.01-0.5 mM, and glycolic acid so that it may become 0.1-10 mM. Furthermore, this nucleic acid extraction kit can contain cell wall degrading enzyme and Z or proteolytic enzyme, and can further contain magnesium salt and buffer. For example, they can be supplied as a stock solution or concentrated solution of a liquid (solution) dissolved and sealed together with a reagent such as a buffer solution required for each step.
実施例  Example
[0048] 以下、実施例を挙げて本発明の核酸抽出方法を具体的に説明する。  [0048] Hereinafter, the nucleic acid extraction method of the present invention will be specifically described with reference to examples.
[0049] [実施例 1]レジオネラ力 の核酸抽出 [0049] [Example 1] Nucleic acid extraction of Legionella force
レジオネラ属の Legionella pneumophila (L. pneumophila) SG3株、及び、これとは異 なる種のレジオネラ属の細菌(Legionella sp.)の細胞から、以下の手順で DNAを抽出 し、その存在を確認した。  DNA was extracted from Legionella pneumophila (L. pneumophila) SG3 strain of Legionella genus and cells of Legionella genus bacteria (Legionella sp.) Of a different species by the following procedure, and its presence was confirmed.
[0050] 染色体 DNAの調製 [0050] Preparation of chromosomal DNA
レジオネラ細胞を緩衝液に懸濁して 5 Lの被検試料を作製した。この被検試料に 、 2 Lの IB液(10mMデォキシコール酸、 0.35mMグリコール酸、 lOOmM EDTA-2Na )を添カ卩し、 37°Cで 15分間インキュベートをした。続いて、 2 Lの ΠΒ液(O.lmAUプロ ティナーゼ K(QIAGEN社製))を添カ卩し、 50°Cで 10分間インキュベートし、この後、更 に、 80°Cで 5分間インキュベートした。次に、 2 Lの ΠΙΒ液(25mM MgCl、 0.5mM TA Legionella cells were suspended in a buffer solution to prepare a 5 L test sample. In this test sample 2 L of IB solution (10 mM deoxycholic acid, 0.35 mM glycolic acid, lOOmM EDTA-2Na) was added and incubated at 37 ° C for 15 minutes. Next, add 2 L of the liquid (O.lmAU proteinase K (QIAGEN)), incubate at 50 ° C for 10 minutes, and then incubate at 80 ° C for 5 minutes. . Next, 2 L of sag (25 mM MgCl, 0.5 mM TA
2  2
PS Buffer(pH9.5) )を添カ卩し、レジオネラ細胞力 抽出された染色体 DNAを含有する 核酸試料 (実施例)を調製した。尚、上記反応液 ΙΒ〜ΠΙΒ液の代わりに、滅菌水を同 容量添加した以外は上記と同様に処理した核酸試料 (コントロール)を調製した。  PS Buffer (pH 9.5)) was added to prepare a nucleic acid sample (Example) containing the chromosomal DNA extracted from Legionella cell force. A nucleic acid sample (control) treated in the same manner as described above was prepared, except that the same volume of sterilized water was added instead of the above reaction solutions ΙΒ to ΠΙΒ.
[0051] DNAの増幅 [0051] Amplification of DNA
上記で調製した核酸試料を室温まで冷却し、それぞれを铸型として PCRを行い、レ ジォネラの遺伝子を含む増幅断片を得た。 PCR反応は、フォワードプライマー Legll 3F (5,- GCACGTGTGTAGCCCTACCC - 3';配列識別番号 1)、リバースプライマー Lrgl 115R (5'- ACTGGAACTGAGACACGGTC- 3';配列識別番号 2)をプライマーセ ットとして用いた。 PCR反応液は、 X 10 Reaction Buffer (Ex Taq Buffer (+Mg2+)、タカ ラバイオ社製)を 5 μ L、 2.5mMの dNTPsを 5 μ L、 ΙΟρΜ/ μ Lのプライマー各 1 μ L、 5U I μ Lの Ex Taq (タカラバイオ社製)を 0.5 μ L、上記で調製した核酸試料を 12.5 μ L、 滅菌水を 25 Lカ卩えて、全量 50 Lとして調製した。反応は、 94°Cで 60秒での変性の 後、 94°Cで 30秒の変性、 55°Cで 30秒のアニーリング、 72°Cで 60秒の伸長を 1サイクル とし、 40サイクル行った後、 72°Cで 240秒の最終伸長反応で、反応を終了させた。次 に、 PCR反応で得られた各増幅産物を常法に基づき電気泳動に供し、核酸断片を可 視化した。 The nucleic acid samples prepared above were cooled to room temperature, and PCR was performed using each of the samples as cages to obtain amplified fragments containing the gene of Legionella. For the PCR reaction, the forward primer Legll 3F (5, -GCACGTGTGTAGCCCTACCC-3 ′; sequence identification number 1) and the reverse primer Lrgl 115R (5′-ACTGGAACTGAGACACGGTC-3 ′; sequence identification number 2) were used as the primer set. The PCR reaction solution is 5 μL of X 10 Reaction Buffer (Ex Taq Buffer (+ Mg 2+ ), manufactured by Takara Bio Inc.), 5 μL of 2.5 mM dNTPs, 1 μL each of ΜρΜ / μL primer, 5 U I μL Ex Taq (manufactured by Takara Bio Inc.) was prepared in 0.5 μL, the nucleic acid sample prepared above was prepared in 12.5 μL, and sterilized water was added in 25 L to make a total volume of 50 L. The reaction was performed for 40 cycles, with denaturation at 94 ° C for 60 seconds, denaturation at 94 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, and extension at 72 ° C for 60 seconds. Thereafter, the reaction was terminated by a final extension reaction at 72 ° C for 240 seconds. Next, each amplification product obtained by the PCR reaction was subjected to electrophoresis based on a conventional method to visualize the nucleic acid fragment.
[0052] ゲル電気泳動により抽出された DNA量を目認した結果を図 1に示す。し pneumophi la SG3株及び Legionella sp.のそれぞれについて、 3. O X 10°、 3. O X 101、 3. O X 1 02、 3. 0 X 103、 3. 0 X 104個の細胞に相当する核酸試料を各レーンにロードした。 コントロールの核酸試料についても同様にロードした。図中、ゲル 1及び 2は本発明 の核酸抽出方法である IB液〜 ΠΙΒ液によって処理をした実施例の結果を示し、ゲル 1 はし pneumophila SG3株、ゲル 2は Legionellasp.の結果を示す。また、ゲル 3及び 4は コントロールの結果を示し、ゲル 3は L. pneumophilaSG3株、ゲル 4は Legionella sp.の 結果を示す。尚、図中、 Mは 100bpラダーの分子量マーカーを示す。本発明の核酸 抽出方法により核酸抽出を行なった実施例の場合、 L. pneumophila SG3株と Legione Hasp.のそれぞれについて、少ない細胞力 でも遺伝子の増幅が起こり、細胞数が増 えるにつれて増幅された DNAのバンドが太くなつており、細胞数に応じた定量的な増 幅が起こった (ゲル 1、 2)。このことから、本発明の核酸抽出方法により安定した核酸 の抽出及び増幅が可能となることが判明した。更に、本発明の核酸抽出方法は定量 的 PCR法として、レジオネラの検出 '定量に応用可能であることがわかる。他方、コント ロールにおいても PCR産物は生じた力 細胞数と増幅された DNAのバンドの太さの 間に相関性がなぐ DNAの抽出又は PCR反応が阻害されているおそれがある(ゲル 3 、4)。 [0052] FIG. 1 shows the results of visualizing the amount of DNA extracted by gel electrophoresis. For each of pneumophi la SG3 and Legionella sp., It corresponds to 3. OX 10 °, 3. OX 10 1 , 3. OX 10 0 2 , 3.0 X 10 3 , 3.0 X 10 4 cells Nucleic acid samples to be loaded were loaded into each lane. The control nucleic acid sample was similarly loaded. In the figure, gels 1 and 2 show the results of the examples treated with the IB solution to the filtrate, which are the nucleic acid extraction methods of the present invention, gel 1 shows the results of pneumophila SG3 strain, and gel 2 shows the results of Legionella sp. Gels 3 and 4 show the results of the control, gel 3 shows the results of L. pneumophila SG3 strain, and gel 4 shows the results of Legionella sp. In the figure, M represents a molecular weight marker of 100 bp ladder. Nucleic acid of the present invention In the example where nucleic acid extraction was performed by the extraction method, gene amplification occurred even with a small cell force for each of L. pneumophila SG3 strain and Legione Hasp. The amplified DNA band became thicker as the number of cells increased. As a result, quantitative amplification occurred depending on the number of cells (gels 1 and 2). From this, it was found that the nucleic acid extraction method of the present invention enables stable nucleic acid extraction and amplification. Furthermore, it can be seen that the nucleic acid extraction method of the present invention can be applied as a quantitative PCR method to detect and quantify Legionella. On the other hand, in the control, the PCR product has a strong correlation between the number of generated cells and the thickness of the amplified DNA band. There is a possibility that the DNA extraction or PCR reaction may be inhibited (gels 3 and 4). ).
[0053] レジオネラ菌は、細胞内増殖性のグラム陰性桿菌である。原虫や藻類、ヒト体内で は好中球やマクロファージ内で増殖し、肺炎(レジオネラ症)の原因となる。湿った環 境に生息し、河川などの自然の水系のほか、クーリングタワーや循環式浴槽等で増 殖し、ヒトでの肺炎の集団発生が起こることもある。かかる事情により、レジオネラ菌の 迅速且つ正確な検出を行うため、本発明の核酸抽出方法を用いて核酸を抽出し分 祈に供することは疫学的見地力もみて非常に有用である。特に、レジオネラ症は L. p neumophilaが原因となることが多ぐ力かる種の核酸抽出に本法を適用することで、ヒ トへのレジオネラ感染、これに伴う肺炎の発生を効果的に抑制することができる。  [0053] Legionella is an intracellularly proliferating Gram-negative rod. In protozoa, algae, and the human body, it grows in neutrophils and macrophages, causing pneumonia (legionellosis). Inhabiting a moist environment, it grows in natural water systems such as rivers, as well as in cooling towers and recirculating tubs, and human outbreaks of pneumonia may occur. Under such circumstances, in order to detect Legionella rapidly and accurately, it is very useful from the viewpoint of epidemiological viewpoint to extract the nucleic acid using the nucleic acid extraction method of the present invention and provide it for prayer. In particular, legionellosis effectively suppresses Legionella infection in humans and the associated pneumonia by applying this method to nucleic acid extraction of species that are often caused by L. p neumophila. can do.
[0054] [実施例 2]ヒト培養細胞からの核酸抽出  [0054] [Example 2] Nucleic acid extraction from cultured human cells
ヒト培養細胞 (Hela S3)から、以下の手順で DNAを抽出し、その存在を確認した。  DNA was extracted from human cultured cells (Hela S3) according to the following procedure, and its presence was confirmed.
[0055] 染色体 DNAの調製  [0055] Preparation of chromosomal DNA
Hela S3細胞を緩衝液に懸濁して 5 Lの被検試料を作製した。この被検試料に、 2 しの18液(1(^\1デォキシコール酸、 0.35mMグリコール酸、 lOOmM EDTA'2Na)を 添加し、 37°Cで 15分間インキュベートをした。続いて、 2 Lの ΠΒ液(O.lmAUプロティ ナーゼ K(QIAGEN社製))を添カ卩し、 50°Cで 10分間インキュベートし、この後、更に、 8 0°Cで 5分間インキュベートした。次に、 2 Lの ΠΙΒ液(25mM MgCl、 0.5mM TAPS Bu  Hela S3 cells were suspended in a buffer to prepare a 5 L test sample. To this test sample, add two 18 solutions (1 (^ \ 1 deoxycholic acid, 0.35 mM glycolic acid, lOOmM EDTA'2Na) and incubate for 15 minutes at 37 ° C. The solution (O.lmAU proteinase K (QIAGEN)) was added and incubated at 50 ° C for 10 minutes, followed by further incubation at 80 ° C for 5 minutes, then 2 L Nose solution (25mM MgCl, 0.5mM TAPS Bu
2  2
ffer (pH9.5) )を添加し、 HelaS3細胞から抽出された染色体 DNAを含有する核酸試料 (実施例)を調製した。尚、上記反応液 ΙΒ〜ΠΙΒの代わりに、滅菌水を同容量添加した 以外は上記と同様に処理した核酸試料 (コントロール)を調製した。 [0056] DNAの増幅 ffer (pH 9.5)) was added to prepare a nucleic acid sample (Example) containing chromosomal DNA extracted from HelaS3 cells. A nucleic acid sample (control) was prepared in the same manner as described above except that the same volume of sterilized water was added instead of the reaction solutions (1) to (8). [0056] DNA amplification
上記で調製した核酸試料を室温まで冷却し、それぞれを铸型としてヒトグロビン遺 伝子に基づいて設計したプライマーを用いて PCRを行い、 Hela S3細胞の遺伝子を含 む増幅断片を得た。 PCR反応は、フォワードプライマー KM29 (5,- GGTTGGCCAA TCTACTCCCAGG -3';配列識別番号 3)、リバースプライマー PC04 (5'- CAACTT CATCCACGTTCACC - 3';配列識別番号 4)をプライマーセットとして用いた。 PCR 反応液は、 X 10 Reaction Buffer (Ex Taq Buffer (+Mg2+)、タカラバィォ社製)を 5 μ L、 2.5mMの dNTPsを 5 μ L、 lOpmol/ μ Lのプライマーを各 1 μ L、 5U/ μ Lの Ex Taq (タカ ラバイオ社製)を 0.5 μ L、上記で調製した核酸試料を 12.5 μ L、滅菌水を 25 μ Lカロえ て、全量 50 Lとして調製した。反応は、 94°Cで 60秒での変性の後、 94°Cで 30秒の変 性、 55°Cで 30秒のアニーリング、 72°Cで 60秒の伸長を 1サイクルとし、 40サイクル行つ た後、 72°Cで 240秒の最終伸長反応で、反応を終了させた。次に、 PCR反応で得られ た各増幅産物を常法に基づき電気泳動に供し、核酸断片を可視化した。 The nucleic acid sample prepared above was cooled to room temperature, and PCR was performed using primers designed based on the human globin gene, each in a saddle shape, to obtain an amplified fragment containing the gene for Hela S3 cells. For the PCR reaction, forward primer KM29 (5, -GGTTGGCCAA TCTACTCCCAGG-3 '; sequence identification number 3) and reverse primer PC04 (5'-CAACTT CATCCACGTTCACC-3'; sequence identification number 4) were used as a primer set. PCR reaction solution is 5 μL of X 10 Reaction Buffer (Ex Taq Buffer (+ Mg 2+ ), manufactured by Takarabio), 5 μL of 2.5 mM dNTPs, 1 μL of lOpmol / μL primer, Prepare 5 U / μL Ex Taq (manufactured by Takara Bio Inc.) 0.5 μL, 12.5 μL of the nucleic acid sample prepared above, and 25 μL of sterilized water for a total volume of 50 L. The reaction consists of denaturation at 94 ° C for 60 seconds, followed by denaturation at 94 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, and extension at 72 ° C for 60 seconds for one cycle. Thereafter, the reaction was terminated by a final extension reaction at 72 ° C for 240 seconds. Next, each amplification product obtained by the PCR reaction was subjected to electrophoresis based on a conventional method to visualize nucleic acid fragments.
[0057] ゲル電気泳動により抽出された DNA量を目認した結果を図 2に示す。 1 X 10°, 1 X 1 01、 1 X 102、 1 X 103個の細胞に相当する核酸試料を各レーンにロードした。コント口 ールについても同様にロードした。図中、ゲル Aは本発明の核酸抽出方法である IB 液〜 ΠΙΒ液によって処理をした実施例の結果を示し、ゲル Bはコントロールの結果を 示す。尚、図中、 Mは lOObpラダーの分子量マーカーを示す。本発明の核酸抽出方 法により核酸抽出を行った実施例の場合、少な 、細胞カゝらでも遺伝子の増幅が起こ つたことがわかる (ゲル A)。このことから、本発明の核酸抽出方法により安定した核酸 の抽出及び増幅が可能となることが判明した。他方、コントロールにおいて、 PCR産 物は生じたが、そのシグナルは実施例に比べると非常に弱ぐ DNAの抽出効率が悪 いことがわかる(ゲル B)。 [0057] FIG. 2 shows the results of visualizing the amount of DNA extracted by gel electrophoresis. Nucleic acid samples corresponding to 1 × 10 °, 1 × 10 1 , 1 × 10 2 , 1 × 10 3 cells were loaded into each lane. The control console was loaded in the same way. In the figure, gel A shows the results of the examples treated with the IB solution to the filtrate as the nucleic acid extraction method of the present invention, and gel B shows the results of the control. In the figure, M represents a molecular weight marker of lOObp ladder. In the case of the example in which nucleic acid extraction was performed by the nucleic acid extraction method of the present invention, it can be seen that even a small amount of cells had amplified the gene (gel A). From this, it was found that the nucleic acid extraction method of the present invention enables stable nucleic acid extraction and amplification. On the other hand, a PCR product was produced in the control, but the signal was much weaker than in the Examples, indicating that the DNA extraction efficiency was poor (Gel B).
[0058] [実施例 3]イネ種子からの核酸抽出  [Example 3] Nucleic acid extraction from rice seeds
染色体 DNAの調製  Chromosomal DNA preparation
イネ種子として、市販のコシヒカリ精米 1粒を、 TE Buffer 50 μ Lに溶解した後、 0.2 mLチューブ内で 95°Cにて 5分間加熱して被検試料を作製した。そのうち 5 Lを分取 し、 2 しの18液(1(^\1デォキシコール酸、 0.35mMグリコール酸、 lOOmM EDTA-2Na )を添加し、 37°Cで 15分間インキュベートをした。続いて、 2 μ Lの ΠΒ液(O.lmAU プ ロティナーゼ K(QIAGEN社製))を添カ卩し、 50°Cで 10分間インキュベートし、この後、更 に、 80°Cで 5分間インキュベートした。次に、 2 Lの ΠΙΒ液(25mM MgCl、 0.5mM TAAs rice seeds, one commercially available rice koshihikari rice was dissolved in 50 μL of TE Buffer, and then heated at 95 ° C for 5 minutes in a 0.2 mL tube to prepare a test sample. Of this, 5 L was dispensed, and the second 18 liquids (1 (^ \ 1 deoxycholic acid, 0.35 mM glycolic acid, lOOmM EDTA-2Na ) Was added and incubated at 37 ° C for 15 minutes. Next, add 2 μL of the broth (O.lmAU proteinase K (QIAGEN)), incubate at 50 ° C for 10 minutes, and then incubate at 80 ° C for 5 minutes. did. Next, 2 L of sag (25 mM MgCl, 0.5 mM TA
PS Buffer (pH9.5) )を添加し、イネ種子から抽出された染色体 DNAを含有する核酸試 料 (実施例)を調製した。尚、上記反応液 ΙΒ〜ΠΙΒの代わりに、滅菌水を同容量添カロ した以外は上記と同様に処理した核酸試料 (コントロール)を調製した。 Was added PS Buffer (pH 9. 5)), nucleic acid specimen containing chromosomal DNA extracted from rice seeds (Example) was prepared. In addition, a nucleic acid sample (control) treated in the same manner as described above was prepared, except that the same volume of sterilized water was added instead of the reaction solutions (1) to (8).
[0059] DNAの増幅 [0059] DNA amplification
上記で調製した核酸試料を室温まで冷却し、それぞれを铸型として PCRを行い、ィ ネ種子由来の遺伝子を含む増幅断片を得た。 PCR反応は、フォワードプライマー IR F170 (5'- GTAAATGCCCTTTTTTCCCC - 3';配列識別番号 5)、リバースプライマ 一 IRF170 (5'- CGAACCCTCGGTAAACAAAA - 3';配列識別番号 6)をプライマー セットとして用いた。 PCR反応液は、 X 10 Reaction Buffer (Ex Taq Buffer (+Mg2+)、タ カラバイオ社製)を 5 μ L、 2.5mMの dNTPsを 5 μ L、 lOpmol/ μ Lのプライマーを各 1 μ L、 5U/ μ Lの Ex Taq (タカラバイオ社製)を 0.5 μ L、上記で調製した核酸試料を 12. 5 L、滅菌水を 25 μ L加えて、全量 50 μ Lとして調製した。反応は、 94°Cで 60秒での 変性の後、 94°Cで 30秒の変性、 55°Cで 30秒のアニーリング、 72°Cで 60秒の伸長を 1 サイクルとし、 40サイクル行った後、 72°Cで 240秒の最終伸長反応で、反応を終了さ せた。次に、 PCR反応で得られた各増幅産物を常法に基づき電気泳動に供し、核酸 断片を可視化した。 The nucleic acid samples prepared above were cooled to room temperature, and PCR was carried out using each as a saddle type to obtain an amplified fragment containing a gene derived from rice seeds. For the PCR reaction, forward primer IR F170 (5′-GTAAATGCCCTTTTTTCCCC-3 ′; SEQ ID NO: 5) and reverse primer IRF170 (5′-CGAACCCTCGGTAAACAAAA-3 ′; SEQ ID NO: 6) were used as a primer set. PCR reaction solution is 5 μL of X 10 Reaction Buffer (Ex Taq Buffer (+ Mg 2+ ), manufactured by Takara Bio Inc.), 5 μL of 2.5 mM dNTPs, and 1 μL each of lOpmol / μL primer. 5 U / μL Ex Taq (manufactured by Takara Bio Inc.) was added at 0.5 μL, the nucleic acid sample prepared above was added at 12.5 L, and sterilized water was added at 25 μL to prepare a total volume of 50 μL. The reaction was carried out for 40 cycles, with denaturation at 94 ° C for 60 seconds, followed by denaturation at 94 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, and extension at 72 ° C for 60 seconds. Later, the reaction was terminated by a final extension reaction at 72 ° C for 240 seconds. Next, each amplification product obtained by the PCR reaction was subjected to electrophoresis based on a conventional method to visualize nucleic acid fragments.
[0060] ゲル電気泳動により抽出された DNA量を目認した結果を図 3に示す。上記操作に よって得られた核酸試料を、希釈なし、又は、夫々、 1.0 X 10— 1.0 X 10、 1.0 X 10—3 に希釈したものを各レーンにロードした。コントロールについても同様にロードした。 図中、レーン 1〜5は、本発明の核酸抽出方法である IB液〜 ΠΙΒ液によって処理をし た実施例の結果を示し、レーン 6〜9はコントロールの結果を示す。尚、図中、 Mは 10 Obpラダーの分子量マーカーを示す。本発明の核酸抽出法に基づいて核酸抽出を 行った実施例の場合、低濃度の試料からでも遺伝子の増幅が起こり、濃度が上昇す るにつれて増幅された DNAのバンドが太くなつており、試料濃度に応じた定量的な増 幅が起こった。このことから、本発明の核酸抽出方法は定量的 PCR法として、コシヒ力 リ精米のような植物種子由来の試料に含まれる核酸の検出 ·定量に応用可能である ことがわかる(レーン 2〜5)。他方、コントロールにおいても PCR産物は生じた力 試 料濃度と増幅された DNAのバンドの太さの間に相関性がなぐ核酸の抽出又は PCR 反応が阻害されて 、るおそれがある(レーン 6〜9)。 [0060] FIG. 3 shows the results of visualizing the amount of DNA extracted by gel electrophoresis. The thus obtained nucleic acid sample to the operation, without dilution, or, respectively, 1.0 X 10- 1.0 X 10, a diluted to 1.0 X 10- 3 were loaded in each lane. The controls were loaded in the same way. In the figure, lanes 1 to 5 show the results of Examples treated with the IB solution to the filtrate, which are the nucleic acid extraction methods of the present invention, and lanes 6 to 9 show the results of controls. In the figure, M represents a molecular weight marker of 10 Obp ladder. In the example in which nucleic acid extraction was performed based on the nucleic acid extraction method of the present invention, gene amplification occurred even from a low concentration sample, and the amplified DNA band became thicker as the concentration increased. Quantitative amplification depending on the concentration occurred. Therefore, the nucleic acid extraction method of the present invention is a quantitative PCR method, It can be seen that the method can be applied to the detection and quantification of nucleic acids contained in plant seed-derived samples such as milled rice (lanes 2-5). On the other hand, in the control, the PCR product may interfere with nucleic acid extraction or PCR reaction in which there is no correlation between the concentration of the generated test sample and the thickness of the amplified DNA band (lanes 6 to 6). 9).
[0061] [実施例 4、比較例 1、 2] [0061] [Example 4, Comparative Examples 1 and 2]
クリプトスポリジゥムのォーシストからの DNA抽出における本発明の核酸抽出法及び 従前法の比較  Comparison of nucleic acid extraction method of the present invention and conventional method for DNA extraction from cryptosporidium oocysts
以下に、クリプトスポリジゥムのォーシストからの DNA抽出、及び、抽出した DNAを用 いた一連の分析を例に挙げ、本発明の核酸抽出方法の有効性を更に説明する。同 時に、上記した本発明者らの従前法との比較を行なった。なお、従前の核酸抽出方 法とは、上述の「用水と廃水」に開示された核酸抽出方法である。  The effectiveness of the nucleic acid extraction method of the present invention will be further described below by taking as an example DNA extraction from Cryptosporidium oocysts and a series of analyzes using the extracted DNA. At the same time, a comparison was made with the previous method of the present inventors. The conventional nucleic acid extraction method is the nucleic acid extraction method disclosed in the above-mentioned “use water and wastewater”.
[0062] [実施例 4]本発明の核酸抽出方法による抽出 [0062] [Example 4] Extraction by nucleic acid extraction method of the present invention
本発明の核酸抽出方法を用いて、クリプトスポリジゥムのォーシストから DNAを抽出 し、抽出した DNAにっき PCR増幅を行なった。  Using the nucleic acid extraction method of the present invention, DNA was extracted from Cryptosporidium oocysts and PCR amplification was performed on the extracted DNA.
[0063] 染色体 DNAの抽出 [0063] Chromosomal DNA extraction
クリプトスポリジゥムのォーシスト 5 X 103個を緩衝液に懸濁して 5 μ Lの被検試料を 作製した。この被検試料に、 2 Lの IB液(10mMデォキシコール酸、 0.35mMグリコー ル酸、 lOOmM EDTA'2Na)を添カ卩し、 37°Cで 15分間インキュベートをした。続いて、 2 μ Lの ΠΒ液(O.lmAUプロティナーゼ K(QIAGEN社製))を添加し、 50°Cで 10分間イン キュペートした。この後、更に、 80°Cで 5分間インキュベートすることでプロティナーゼ Kを失活させた。次に、 2 1の ΠΙΒ液(25mM MgCl A sample of 5 μL was prepared by suspending 3 × 10 3 oocysts of Cryptosporidium in a buffer solution. To this test sample, 2 L of IB solution (10 mM deoxycholic acid, 0.35 mM glycolic acid, lOOmM EDTA'2Na) was added and incubated at 37 ° C for 15 minutes. Subsequently, 2 μL of a filtrate (O.lmAU proteinase K (manufactured by QIAGEN)) was added and incubated at 50 ° C. for 10 minutes. Thereafter, proteinase K was inactivated by further incubation at 80 ° C. for 5 minutes. Next, the 2 1 solution (25 mM MgCl
2、 0.5mM TAPS Buffer (pH9.5) )を 添加し核酸試料を調製した。  2. A nucleic acid sample was prepared by adding 0.5 mM TAPS Buffer (pH 9.5)).
[0064] DNAの増幅  [0064] Amplification of DNA
上記で調製した核酸試料を室温まで冷却し、これを铸型として PCRを行い、タリブト スポリジゥム由来の遺伝子を含む増幅断片を得た。 PCR反応は、フォワードプライマ 一 18SF (5,- GGAACCTGGTTGATCCTGCCAG- 3';配列識別番号 7)、リバースプラ イマ一 18SR(5,- GGTCGATCCCCTAACTTTCGTT- 3';配列識別番号 8)をプライマ 一セットとして用いた。 PCR反応液は、 X 10 Reaction Buffer (buffer for Blend Taq (+M g )ゝ東洋紡績社製)を 5 μ L、 2mMの dNTPsを 5 μ L、 lOpmol/ μ Lのプライマーを各 : L L、 2.5U/ μ Lの Blend Taq (東洋紡績社製)を 0.5 μ L、上記で調製した核酸試料を 12.5 μ L、滅菌水を 25 μ L加えて、全量 50 μ Lとして調製した。反応は、 94°Cで 60秒で の変性の後、 94°Cで 30秒の変性、 55°Cで 30秒のアニーリング、 72°Cで 60秒の伸長を 1サイクルとし、 40サイクル行った後、 72°Cで 240秒の最終伸長反応で、反応を終了さ せた。 The nucleic acid sample prepared above was cooled to room temperature, PCR was performed using this as a cage, and an amplified fragment containing a gene derived from Talibutosporidium was obtained. For the PCR reaction, forward primer 18SF (5, -GGAACCTGGTTGATCCTGCCAG-3 '; SEQ ID NO: 7) and reverse primer 18SR (5, -GGTCGATCCCCTAACTTTCGTT-3'; SEQ ID NO: 8) were used as a set of primers. PCR reaction solution is X 10 Reaction Buffer (buffer for Blend Taq (+ M g) 5 μL of Toyobo Co., Ltd.), 5 μL of 2 mM dNTPs, and lOpmol / μL primer: LL, 0.5 U / μL of Blend Taq (Toyobo Co., Ltd.) 0.5 μL Then, 12.5 μL of the nucleic acid sample prepared above and 25 μL of sterilized water were added to prepare a total volume of 50 μL. The reaction was carried out for 40 cycles with denaturation at 94 ° C for 60 seconds, denaturation at 94 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, and extension at 72 ° C for 60 seconds. Later, the reaction was terminated by a final extension reaction at 72 ° C for 240 seconds.
次に、 PCR反応で得られた各増幅産物を常法に基づき電気泳動に供し、核酸断片 を可視化した。  Next, each amplification product obtained by the PCR reaction was subjected to electrophoresis based on a conventional method to visualize nucleic acid fragments.
[0065] [比較例 1]従前法による抽出 1 [0065] [Comparative Example 1] Extraction by conventional method 1
本発明の核酸抽出方法の改良の基礎となった、本発明者らの従前法を用いて、ク リプトスポリジゥムのォーシストから DNAを抽出し、抽出した DNAにっき PCR増幅を行 なった。まず、上記実施例 4と同様にしてクリプトスポリジゥムのォーシストの被検試料 を作製した。この被検試料に、 2 Lの反応溶液 IA (3.5mMデォキシコール酸 (終濃度 lmM)、 35mMグリココール酸(終濃度 10mM) )を添カ卩し、 37°Cで 15分間インキュベート をした。続いて、 4 Lの反応溶液 IIA (17mAUプロティナーゼ K(600mAU/mL, QIAG EN社製)、 9.7mM EDTA' 2Na)を添カ卩し、 70°Cで 10分間インキュベートした。この後、 更に、 94°Cで 10分間インキュベートすることでプロティナーゼ Kを失活させた。このよ うにして調整した核酸試料を、上記実施例 4と同様にして PCR、並びに電気泳動に供 した。  Using the conventional method of the present inventors, which was the basis for the improvement of the nucleic acid extraction method of the present invention, DNA was extracted from cryptosporidium oocysts, and PCR amplification was performed on the extracted DNA. First, a test sample of Cryptosporidium oocyst was prepared in the same manner as in Example 4 above. To this test sample, 2 L of reaction solution IA (3.5 mM deoxycholic acid (final concentration lmM), 35 mM glycocholic acid (final concentration 10 mM)) was added and incubated at 37 ° C for 15 minutes. Subsequently, 4 L of reaction solution IIA (17 mAU proteinase K (600 mAU / mL, manufactured by QIAG EN), 9.7 mM EDTA ′ 2Na) was added and incubated at 70 ° C. for 10 minutes. Thereafter, the proteinase K was inactivated by further incubation at 94 ° C. for 10 minutes. The nucleic acid sample thus prepared was subjected to PCR and electrophoresis in the same manner as in Example 4 above.
[0066] [比較例 2]従前法による抽出 2  [0066] [Comparative Example 2] Extraction by conventional method 2
上記比較例 1で取得した核酸試料を 10分の 1に緩衝液で希釈した以外は、同様に して電気泳動に供した。  The nucleic acid sample obtained in Comparative Example 1 was subjected to electrophoresis in the same manner except that the nucleic acid sample was diluted to 1/10 with a buffer solution.
[0067] ゲル電気泳動により抽出された DNA量を目認した結果を図 4に示す。図中、レーン 1は比較例 1の結果を、レーン 2は比較例 2の結果を、レーン 3は実施例 4の結果を示 す。尚、図中、 Mは lOObpラダーの分子量マーカーを示す。本発明の核酸抽出方法 に基づいて核酸抽出を行った場合、低濃度の試料からでも遺伝子の増幅が起こり、 感度よく増幅産物を検出することができた (レーン 3)。一方、本発明者らの従前法に よって抽出された核酸試料を直接に増幅反応に供した場合には、増幅産物をほとん ど確認することができな力つた(レーン 1)。してみると、従前法では、核酸抽出又は P CR反応の段階いずれかで、核酸抽出の際に添加した試薬群のいずれかにより反応 が阻害されている恐れがある。したがって、かかる反応阻害を回避するため従前法で は PCRに際して核酸抽出物の希釈を要する力 抽出された核酸試料を 10分の 1濃度 に希釈して増幅反応に供した場合にも、増幅産物をほとんど確認することができなか つた(レーン 2)。つまり、希釈により分析感度の低下したことがわかる。 [0067] FIG. 4 shows the results of visualizing the amount of DNA extracted by gel electrophoresis. In the figure, Lane 1 shows the result of Comparative Example 1, Lane 2 shows the result of Comparative Example 2, and Lane 3 shows the result of Example 4. In the figure, M represents a molecular weight marker of lOObp ladder. When nucleic acid extraction was performed based on the nucleic acid extraction method of the present invention, gene amplification occurred even from a low concentration sample, and the amplified product could be detected with high sensitivity (lane 3). On the other hand, when the nucleic acid sample extracted by the conventional method of the present inventors is directly subjected to an amplification reaction, most of the amplification product is removed. I couldn't confirm it (lane 1). Therefore, in the conventional method, the reaction may be inhibited by any of the reagent groups added during the nucleic acid extraction at either the nucleic acid extraction or the PCR reaction stage. Therefore, in order to avoid such reaction inhibition, the conventional method requires the dilution of the nucleic acid extract during PCR. Even when the extracted nucleic acid sample is diluted to 1/10 concentration and used for the amplification reaction, Almost no confirmation was possible (lane 2). In other words, it can be seen that the analysis sensitivity decreased due to dilution.
[0068] このことから、本発明の核酸抽出方法は希釈等の手段を必要とせず、直接的に核 酸抽出物を核酸増幅法に適用可能であり、高感度に被検試料中に含まれる核酸を 検出、定量できることがわかる。高精度な検出感度から微量試料の分析に特に有用 である。一方、従前法も核酸抽出法としてその利用価値は高いことは認められている 力 核酸増幅法等への適用、特には微量試料への適用には若干の問題点があるこ とが判明した。そして、力かる問題点を改良した本発明の核酸抽出方法は、更に広 範な利用価値がある。 [0068] Therefore, the nucleic acid extraction method of the present invention does not require any means such as dilution, and the nucleic acid extract can be directly applied to the nucleic acid amplification method and is contained in the test sample with high sensitivity. It can be seen that nucleic acids can be detected and quantified. It is particularly useful for analysis of trace samples because of its high detection sensitivity. On the other hand, it has been found that the conventional method has high utility value as a nucleic acid extraction method. It has been found that there are some problems in application to nucleic acid amplification methods, especially to trace samples. Further, the nucleic acid extraction method of the present invention, which has improved problems, has a wider utility value.
産業上の利用可能性  Industrial applicability
[0069] 本発明は、広く生物の種別を問わず効率的に核酸を抽出することができるので、病 気の診断等の医療分野や、環境汚染等の検査、及び植物品種、銘柄の特定等に利 用することができる。 [0069] Since the present invention can efficiently extract nucleic acids regardless of the type of organism, medical fields such as diagnosis of diseases, inspection of environmental pollution, and identification of plant varieties and brands, etc. Can be used.
図面の簡単な説明  Brief Description of Drawings
[0070] [図 1]レジオネラ細胞を被検試料として、本発明の核酸抽出方法により核酸を抽出し た結果を示す電気泳動図  [0070] [Fig. 1] Electrophoretic diagram showing the results of extraction of nucleic acid by the nucleic acid extraction method of the present invention using Legionella cells as a test sample.
[図 2]ヒト培養細胞を被検試料として、本発明の核酸抽出方法により核酸を抽出した 結果を示す電気泳動図  [Fig. 2] Electrophoretic diagram showing the results of nucleic acid extraction by using the nucleic acid extraction method of the present invention using human cultured cells as a test sample.
[図 3]コシヒカリ精米を被検試料として、本発明の核酸抽出方法により核酸を抽出した 結果を示す電気泳動図  [Fig. 3] Electrophoretic diagram showing the results of nucleic acid extraction by the nucleic acid extraction method of the present invention using Koshihikari rice mill as a test sample.
[図 4]クリプトスポリジゥムのォーシストを被検試料として、本発明の核酸抽出方法と従 前の核酸抽出方法を比較した結果を示す電気泳動図  [Fig. 4] Electrophoretic diagram showing the results of comparing the nucleic acid extraction method of the present invention with the conventional nucleic acid extraction method using cryptosporidium oocysts as test samples.

Claims

請求の範囲  The scope of the claims
[I] デォキシコール酸、グリコール酸、及び二価陽イオンのキレート剤を被検試料に接 触させて核酸を遊離させる工程を有する核酸抽出方法。  [I] A nucleic acid extraction method comprising a step of bringing a test sample into contact with a chelating agent of deoxycholic acid, glycolic acid, and divalent cation to liberate nucleic acid.
[2] 前記デォキシコール酸の濃度が、 0.01〜10mMである請求項 1に記載の核酸抽出 方法。  [2] The nucleic acid extraction method according to [1], wherein the concentration of deoxycholic acid is 0.01 to 10 mM.
[3] 前記ダリコール酸の濃度が、 0.1〜100mMである請求項 1又は 2に記載の核酸抽出 法。  [3] The nucleic acid extraction method according to claim 1 or 2, wherein the concentration of the dalicholic acid is 0.1 to 100 mM.
[4] タンパク質分解酵素を前記被検試料に接触させて核酸を遊離させる工程を有する 請求項 1〜3のいずれか一項に記載の核酸抽出方法。  [4] The method for extracting nucleic acid according to any one of claims 1 to 3, further comprising a step of bringing a protease into contact with the test sample to release the nucleic acid.
[5] 25〜95°Cにて 5〜120分間、熱処理を行なう請求項 1〜4のいずれか一項に記載の 核酸抽出方法。 [5] The nucleic acid extraction method according to any one of claims 1 to 4, wherein the heat treatment is performed at 25 to 95 ° C for 5 to 120 minutes.
[6] 前記核酸の遊離工程に続!、て、マグネシウム塩、及び緩衝液を添加する工程を有 する請求項 1〜5のいずれか一項に記載の核酸抽出方法。  [6] Following the nucleic acid release step! The nucleic acid extraction method according to any one of claims 1 to 5, further comprising a step of adding a magnesium salt and a buffer solution.
[7] 前記被検試料が、微生物を含む試料である請求項 1〜6のいずれか一項に記載の 核酸抽出方法。 7. The nucleic acid extraction method according to any one of claims 1 to 6, wherein the test sample is a sample containing a microorganism.
[8] デォキシコール酸、グリコール酸、及び二価陽イオンのキレート剤を含む核酸抽出 やット。  [8] Nucleic acid extraction kit containing deoxycholic acid, glycolic acid, and divalent cation chelating agent.
[9] 使用時において終濃度が 0.01〜10mMとなるようにデォキシコール酸を含む請求項 [9] Claims containing deoxycholic acid so that the final concentration is 0.01 to 10 mM when in use.
8記載の核酸抽出キット。 8. The nucleic acid extraction kit according to 8.
[10] 使用時において終濃度が 0.1〜100mMとなるようにグリコール酸を含む請求項 8又 は 9に記載の核酸抽出キット。 10. The nucleic acid extraction kit according to claim 8 or 9, comprising glycolic acid so that the final concentration is 0.1 to 100 mM when in use.
[II] タンパク質分解酵素を含む請求項 8〜10のいずれか一項に記載の核酸抽出キット  [II] The nucleic acid extraction kit according to any one of claims 8 to 10, comprising a proteolytic enzyme.
[12] マグネシウム塩、及び緩衝液を含む請求項 8〜: L 1の 、ずれか一項に記載の核酸 抽出キット。 [12] The nucleic acid extraction kit according to any one of claims 8 to 8, comprising a magnesium salt and a buffer.
PCT/JP2006/306699 2006-03-30 2006-03-30 Nucleic acid extraction method and nucleic acid extraction kit WO2007116450A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008509602A JPWO2007116450A1 (en) 2006-03-30 2006-03-30 Nucleic acid extraction method and nucleic acid extraction kit
PCT/JP2006/306699 WO2007116450A1 (en) 2006-03-30 2006-03-30 Nucleic acid extraction method and nucleic acid extraction kit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/306699 WO2007116450A1 (en) 2006-03-30 2006-03-30 Nucleic acid extraction method and nucleic acid extraction kit

Publications (1)

Publication Number Publication Date
WO2007116450A1 true WO2007116450A1 (en) 2007-10-18

Family

ID=38580759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306699 WO2007116450A1 (en) 2006-03-30 2006-03-30 Nucleic acid extraction method and nucleic acid extraction kit

Country Status (2)

Country Link
JP (1) JPWO2007116450A1 (en)
WO (1) WO2007116450A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108471A1 (en) * 2011-02-10 2012-08-16 Biocosm株式会社 Manufacturing method for nucleic acid extract
JP2013042750A (en) * 2011-08-26 2013-03-04 Kanto Chem Co Inc Method for extracting nucleic acid, reagent kit for extracting nucleic acid and reagent for extracting nucleic acid
WO2014065395A1 (en) 2012-10-26 2014-05-01 株式会社カネカ Rna preparation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001204462A (en) * 2000-01-24 2001-07-31 Kurabo Ind Ltd Method for extraction of nucleic acid
JP2004201558A (en) * 2002-12-25 2004-07-22 Wako Pure Chem Ind Ltd Method for dna isolation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001204462A (en) * 2000-01-24 2001-07-31 Kurabo Ind Ltd Method for extraction of nucleic acid
JP2004201558A (en) * 2002-12-25 2004-07-22 Wako Pure Chem Ind Ltd Method for dna isolation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OIZUMI Y. ET AL.: "DNA Microarray ni yoru Cryptosporidium no Kenshutsu to Shudotei", JOURNAL OF WATER AND WASTE, vol. 46, no. 8, 1 August 2004 (2004-08-01), pages 685 - 692, XP003018506 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108471A1 (en) * 2011-02-10 2012-08-16 Biocosm株式会社 Manufacturing method for nucleic acid extract
JP6128371B2 (en) * 2011-02-10 2017-05-17 Biocosm株式会社 Method for producing nucleic acid extract
JP2013042750A (en) * 2011-08-26 2013-03-04 Kanto Chem Co Inc Method for extracting nucleic acid, reagent kit for extracting nucleic acid and reagent for extracting nucleic acid
WO2014065395A1 (en) 2012-10-26 2014-05-01 株式会社カネカ Rna preparation method
US9695413B2 (en) 2012-10-26 2017-07-04 Kaneka Corporation RNA preparation method

Also Published As

Publication number Publication date
JPWO2007116450A1 (en) 2009-08-20

Similar Documents

Publication Publication Date Title
US8465966B2 (en) Post protein hydrolysis removal of a potent ribonuclease inhibitor and the enzymatic capture of DNA
JP2004534515A (en) Compositions and methods for extracting nucleic acids
JP7140762B2 (en) Method for detecting the presence or absence of non-enveloped RNA virus
EP3277809B1 (en) Isolation of nucleic acids
WO2007116450A1 (en) Nucleic acid extraction method and nucleic acid extraction kit
WO2000008136A1 (en) Method for enzymatic amplification of nucleic acid
JP6128371B2 (en) Method for producing nucleic acid extract
JP5979657B2 (en) Primers and detection kits for detection of Escherichia coli causing food poisoning
KR20140064918A (en) Molecular detection assay
JP5599013B2 (en) Extraction method of microbial nucleic acid from blood sample
JP2007189980A (en) Primer for detecting staphylococcus aureus and detection method using the same
JPWO2019212023A1 (en) RNA virus processing method
JP4431775B2 (en) Method for detecting RNA derived from Cryptosporidium parvum
JP2009136221A (en) Method for extracting nucleic acid
JP2005265680A (en) Examination method of legionella bacteria in bathtub water
JP5134071B2 (en) Method for avoiding inhibition in nucleic acid amplification reaction
JP4674073B2 (en) Method for avoiding inhibition in nucleic acid amplification reaction
JP2006166711A (en) Simple method for amplifying feces-derived gene
JP2015119656A (en) Nucleic acid amplification technique
JP2006061041A (en) Method for extracting nucleic acid and kit for extracting nucleic acid
US20230287525A1 (en) Method for the concentration of microscopic substances derived from living organisms, environments, or foods
WO2021216863A1 (en) Universal primers for detection of bacteria, fungi and eukaryotic microorganisms
JP2008092835A (en) Method for extracting nucleic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06730647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008509602

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06730647

Country of ref document: EP

Kind code of ref document: A1