WO2007116448A1 - Method for driving display element and display device - Google Patents

Method for driving display element and display device Download PDF

Info

Publication number
WO2007116448A1
WO2007116448A1 PCT/JP2006/306693 JP2006306693W WO2007116448A1 WO 2007116448 A1 WO2007116448 A1 WO 2007116448A1 JP 2006306693 W JP2006306693 W JP 2006306693W WO 2007116448 A1 WO2007116448 A1 WO 2007116448A1
Authority
WO
WIPO (PCT)
Prior art keywords
scan
display
image
data
rewrite
Prior art date
Application number
PCT/JP2006/306693
Other languages
French (fr)
Japanese (ja)
Inventor
Masaki Nose
Toshiaki Yoshihara
Hisashi Yamaguchi
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2008509600A priority Critical patent/JP4680297B2/en
Priority to TW095111231A priority patent/TW200737088A/en
Priority to PCT/JP2006/306693 priority patent/WO2007116448A1/en
Publication of WO2007116448A1 publication Critical patent/WO2007116448A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13718Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a change of the texture state of a cholesteric liquid crystal
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0205Simultaneous scanning of several lines in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0221Addressing of scan or signal lines with use of split matrices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0283Arrangement of drivers for different directions of scanning
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/04Partial updating of the display screen

Definitions

  • the present invention relates to a display element driving method and a display device, and more particularly, to a display element driving technique for still image display including cholesteric liquid crystal.
  • a cholesteric liquid crystal is known as a prominent electronic paper.
  • This cholesteric liquid crystal has excellent characteristics such as semi-permanent display retention (memory property), vivid color display, high contrast and high resolution.
  • Sarakuko and cholesteric liquid crystals can also display vivid full-color images by stacking display layers that exhibit RGB colors.
  • Cholesteric liquid crystals are also sometimes referred to as chiral nematic liquid crystals, and a relatively large amount (several tens of percent) of a chiral additive (also referred to as chiral material) is added to nematic liquid crystals. As a result, nematic liquid crystal molecules form a spiral cholesteric phase.
  • the cholesteric liquid crystal is a liquid crystal having a memory property, it can be driven by a simple simple matrix, and for example, it is relatively easy to increase the size of A4 size or larger.
  • the cholesteric liquid crystal consumes power only when the display content is updated (image is rewritten). When the image rewriting is completed, the image is held as it is even if the power is turned off.
  • FIGS. 1A and 1B are diagrams for explaining the alignment state of the cholesteric liquid crystal.
  • A shows the planar state
  • Figure 1B shows the focal conic state.
  • the cholesteric liquid crystal can take two stable states, a planar state and a focal conic state, under no electric field.
  • the incident light is reflected by the liquid crystal, so that the human eye can see the reflected light.
  • Fig. 2 (b), Fig. 2 (b) and Fig. 2C are graphs showing the voltage characteristics (relationship between time and voltage) for driving the cholesteric liquid crystal. It shows how the state and the planar state change.
  • is the homeopic pick state
  • FC is the focal conic state
  • P is the planar state.
  • the homeotopic pick state H force When the electric field is suddenly reduced to zero, the spiral axis of the liquid crystal becomes perpendicular to the electrode, and the planar state selectively reflects light according to the spiral pitch. Become P.
  • FIG. 3 is a diagram showing the reflectance characteristics (relationship between voltage and reflectance) of cholesteric liquid crystal, and collectively shows the voltage responsiveness of cholesteric liquid crystal described with reference to FIGS. 2A to 2C. is there.
  • the pulse voltage is raised to a certain range, and the drive band to the focal conic state FC is reached.
  • the driving band for the planar state P (the portion with the highest voltage at the right end) is reached again.
  • the driving band for the planar state P gradually becomes higher as the pulse voltage is increased.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-171837
  • Patent Document 2 Pamphlet of International Publication No. 2005Z024774 (Fig. 55, Fig. 56, and Example 4)
  • FIG. 4A and FIG. 4B are diagrams for explaining an example of a display element driving method of related technology proposed in Japanese Patent Application 2005-099711.
  • reference numeral 100 is an original image (existing image)
  • 121 is a driver IC (scan driver) on the scanning side
  • 122 is a driver IC (data driver) on the data side
  • 200 is a partial rewrite.
  • the later image and R0 indicate a partial rewrite area.
  • the related technique described above displays a normal image.
  • the scan side area including the rewrite area R0 (rewrite area) Scan electrode corresponding to R0) Scan the S12 at normal speed to write (rewrite) the image and also include the rewrite area R0 ⁇ Scan side area (Do not correspond to the rewrite area R0 !, scan electrode : Skip area) S 11 and S 13 are scanned at high speed to maintain the original image.
  • the scan operation by the scan driver 121 first scans the V ⁇ region SI 1 where partial rewriting is performed in the high-speed mode, and when reaching the region R0 where partial rewriting is performed, scans the image by scanning at a normal scanning speed. After rewriting, after scanning of the rewriting area R0, the area S13 where partial rewriting is not performed is scanned in the high speed mode. This speeds up the processing operation for partial image rewriting.
  • the voltage output from the data driver 122 is applied to the skip areas (Sl, S13) where rewriting is not performed so as not to affect the display image already written. Although it is most preferable to turn it off, since the response of the liquid crystal becomes dull by increasing the speed, it is possible to scan without turning off the voltage output by utilizing this phenomenon.
  • FIG. 5 is a diagram for explaining a shift in threshold characteristics due to high-speed scanning.
  • the threshold characteristic during high-speed scanning is greatly shifted (shifted to the high potential side), and specifically, the operating threshold voltage of the cholesteric liquid crystal is shifted to a high voltage of 32V or higher.
  • the alignment state (display state) of the liquid crystal does not change. Therefore, in the skip regions Sl and S13, the original image can be maintained as it is by simply scanning at high speed without turning off the voltage output.
  • FIG. 6A to FIG. 6C are diagrams for explaining an example of a conventional display element driving method proposed in the above-described prior art document 2.
  • reference numeral 100 is the previous image (existing image)
  • 121 is the common side driver IC (scan driver)
  • 122 is the segment side driver IC (data driver)
  • 200 is the new image. Show (image after rewriting)!
  • FIG. 6A shows a state in which the lower half is rewritten with the previous image 100 and the upper half is rewritten with the new image 200.
  • reference symbol Eio indicates a common side selection signal for selecting a scan electrode for writing data by one line
  • L p corresponds to each scan electrode (scan line).
  • the data side latch that scans the scan line sequentially and captures the data for one line is shown.
  • FIGS. 6A to 6C in the past, for example, when rewriting (writing) an image of a cholesteric liquid crystal, immediately before writing a new image, in the same frame as the writing, the reset period RS ⁇ pause It has been proposed to perform image writing in the sequence of section PS ⁇ writing section WS.
  • reference symbol WT indicates a write start line in the write sequence
  • PL indicates a pause line
  • RL indicates a reset line.
  • the reset line RL (reset section RS) has a force of 10 lines depending on the response characteristics of the liquid crystal.
  • the pause section PS (pause line) may be about 1 line.
  • this conventional display element driving method is reset only for a specific number of lines, it can achieve overwhelming power saving compared to the case where the entire screen is reset at once. Thus, a stable and high-contrast display can be obtained.
  • FIG. 7A and FIG. 7B are diagrams for explaining problems in an example of a conventional display element driving method.
  • reference symbol RO indicates a partial rewrite area
  • S21 and S23 indicate areas where high-speed skip (high-speed skip processing) is performed
  • S22 indicates high-speed write (high-speed write processing). Show the area to do.
  • the conventional display element driving method described above requires a predetermined number of reset lines RL (for example, about 20 lines: reset section RS) preceding the line to be actually written. Therefore, for example, when a part of the display screen (rewrite area RO) as shown in FIG. 7B is rewritten, when the write line reaches near the end of the rewrite area RO, the reset is performed by the reset line RL.
  • the region Rz protrudes outside the rewriting region RO, and the display state of the original image is impaired without performing partial rewriting.
  • the present invention impairs the image quality and the afterimage and the decrease in contrast, compared to the driving method using the reset pulse. It is an object of the present invention to provide a display element driving method and a display device capable of realizing stable partial rewriting without any problems.
  • the apparatus includes a plurality of scan electrodes and a plurality of data electrodes that intersect with each other in an opposing state, and the scan electrodes are selected in a predetermined order and A display element driving method for performing image rewriting processing of a display screen by applying a pulsed voltage to the display medium between the data electrodes, wherein the image rewriting processing includes a reset pulse for initializing the display medium, When a rewrite pulse for rewriting the display medium according to the image data is continuously applied to perform partial rewrite on the existing display image, the partial rewrite area is positioned at the position on the display screen. Accordingly, there is provided a display element driving method characterized by switching the scan direction accordingly.
  • a plurality of scan electrodes and a plurality of data electrodes intersecting each other in a state of being opposed to each other are provided, and the scan electrodes are selected in a predetermined order and
  • a method for driving a display element characterized in that a time for selecting a line or a termination line is set to an application time longer than a time for not selecting the start line and the termination line. Is provided.
  • a plurality of scan electrodes and a plurality of data electrodes intersecting each other in an opposing state are provided, and the scan electrodes are selected in a predetermined order and A display element that rewrites an image on a display screen by applying a pulsed voltage to a display medium between the data electrodes, a scan driver connected to the scan electrode, and a data driver connected to the data electrode; A reset pulse for initializing the display medium, an image rewrite processing unit for continuously applying a rewrite pulse for rewriting the display medium according to image data, and an existing display image
  • a display device comprising: a scanning direction switching unit that switches a scanning direction in accordance with the position of the partial rewriting area on the display screen.
  • a plurality of scan electrodes and a plurality of data electrodes intersecting each other in an opposing state are provided, and the scan electrodes are selected in a predetermined order and A display element that rewrites an image on a display screen by applying a pulsed voltage to a display medium between the data electrodes, a scan driver connected to the scan electrode, and a data driver connected to the data electrode;
  • an image rewrite processing unit that continuously applies a reset pulse for initializing the display medium, and a rewrite pulse for rewriting the display medium according to image data.
  • the reset pulse indicates the time during which the start line or end line of the partial rewrite area is selected as the start line.
  • the Select end line, Do long than the time, a processing unit for the application time, the display device according to feature in that it comprises is provided with.
  • a plurality of scan electrodes and a plurality of data electrodes intersecting each other in an opposing state are provided, and the scan electrodes are selected in a predetermined order and
  • a display element that rewrites an image on a display screen by applying a pulsed voltage to a display medium between the data electrodes, a scan driver connected to the scan electrode, and a data driver connected to the data electrode;
  • an image rewrite processing unit that continuously applies a reset pulse for initializing the display medium, and a rewrite pulse for rewriting the display medium according to image data.
  • a scanning direction switching unit that switches a scanning direction in accordance with the position of the partial rewriting area on the display screen when performing partial rewriting.
  • Electronic terminal characterized in that the application of the display device is provided.
  • a plurality of scan electrodes and a plurality of data electrodes intersecting each other in an opposing state are provided, and the scan electrodes are selected in a predetermined order and A display element that rewrites an image on a display screen by applying a pulsed voltage to the display medium between the data electrodes, a scan driver connected to the scan electrodes, and And a data driver connected to the data electrode, wherein the image is continuously applied with a reset pulse for initializing the display medium and a rewrite pulse for rewriting the display medium in accordance with image data.
  • the reset pulse indicates the time when the start line or the end line of the partial rewrite area is selected, the start line and the end line.
  • FIG. 1A is a diagram (part 1) for explaining the alignment state of a cholesteric liquid crystal.
  • FIG. 1B is a diagram (part 2) for explaining the alignment state of the cholesteric liquid crystal.
  • FIG. 2A is a diagram (part 1) illustrating voltage characteristics for driving a cholesteric liquid crystal.
  • FIG. 2B is a diagram (part 2) illustrating voltage characteristics for driving a cholesteric liquid crystal.
  • FIG. 2C is a diagram (part 3) illustrating voltage characteristics for driving a cholesteric liquid crystal.
  • FIG. 3 is a graph showing the reflectance characteristics of cholesteric liquid crystal.
  • FIG. 4A is a diagram (No. 1) for explaining an example of the driving method of the display element according to the related art.
  • FIG. 4B is a diagram (No. 2) for explaining an example of the driving method of the display element according to the related art.
  • FIG. 5 is a diagram for explaining a shift in threshold characteristics due to high-speed scanning.
  • FIG. 6A is a diagram (No. 1) for explaining an example of the conventional display element driving method
  • FIG. 6B is a diagram (No. 2) for explaining an example of the conventional display element driving method
  • FIG. 6C is a diagram (No. 3) for explaining an example of the driving method of the conventional display element.
  • FIG. 7A is a diagram (No. 1) for describing a problem in an example of a conventional display element driving method.
  • FIG. 7B is a diagram (No. 2) for describing a problem in an example of a conventional display element driving method.
  • FIG. 8A] is a diagram (No. 1) for explaining the principle of the first embodiment in the display element driving method according to the present invention.
  • FIG. 8B] is a diagram (No. 2) for explaining the principle of the first embodiment in the driving method of the display element according to the present invention.
  • FIG. 9A is a diagram (No. 1) for explaining the assignment of image memory in the scan direction in an example of the display element driving method according to the invention.
  • FIG. 9B is a diagram (No. 2) for explaining the allocation of image memory depending on the scan direction in an example of the display element driving method according to the invention.
  • FIG. 10 is a block diagram schematically showing a first embodiment of the display device according to the present invention.
  • FIG. 11 is a cross-sectional view schematically showing an example of a display element in the display device shown in FIG. 10.
  • FIG. 11A is a diagram for explaining an example of a method for driving a display element according to the present invention.
  • FIG. 12B is a diagram for explaining a modification of the display element driving method shown in FIG. 12A.
  • 13A] is a flowchart (No. 1) for explaining an embodiment of the display element driving method according to the present invention.
  • FIG. 13B is a flowchart (No. 2) for explaining an embodiment of the display element driving method according to the present invention.
  • FIG. 13C A flow chart (No. 3) for describing one embodiment of the display element driving method according to the present invention.
  • FIG. 15A is a view (No. 1) for explaining still another embodiment of the display element driving method according to the present invention.
  • FIG. 15B is a diagram (No. 2) for explaining still another embodiment of the display element driving method according to the present invention.
  • FIG. 16 is a diagram schematically showing a main part of a second embodiment of the display device according to the present invention.
  • FIG. 17 is a diagram schematically showing a main part of a third embodiment of the display device according to the present invention.
  • FIG. 18A is a diagram showing an example of an input voltage to the driver in the scan mode and the data mode.
  • FIG. 18B is a diagram showing an example of correspondence when driving a cholesteric liquid crystal.
  • FIG. 18C is a diagram showing an example of the output voltage of the driver in the scan mode and the data mode.
  • FIG. 18D is a diagram showing an example of a composite waveform applied to the liquid crystal.
  • Liquid crystal composition (cholesteric liquid crystal)
  • 8A and 8B are views for explaining the principle of the first embodiment in the display element driving method according to the present invention.
  • the partial rewrite is performed from the start point to the end of the display screen by rewriting the reset pulse and the write pulse in the same frame as in the case of the full rewrite.
  • the scanning direction is the direction in which the force is applied from the top to the bottom (S31 ⁇ S32).
  • the scan direction is the direction in which the force is applied from the bottom to the top (S34 ⁇ S33).
  • reference numerals S31 and S34 indicate areas where high-speed skip processing is performed
  • S32 and S33 indicate areas where high-speed writing is performed!
  • FIG. 9A and FIG. 9B are diagrams for explaining image memory allocation according to a scan direction in an example of a display element driving method according to the present invention.
  • the scan direction is the direction in which the scan direction is directed from top to bottom. become.
  • the data driver 22 reads the image data of the partial rewrite area R11 stored in the memory as usual in the normal order, that is, the data read with the upper left of the image data as the address 0. Is transferred.
  • the scan direction is from the bottom to the top.
  • the direction becomes the direction of force.
  • the data read from the partial rewrite area R11 stored in the memory in the reverse direction is transferred to the data driver 22, that is, the data read with the lower left of the image data as the address 0 is transferred. Is done.
  • the access procedure for the address of the image data in the partial rewrite area R11 is also switched according to the switching of the scanning direction.
  • FIG. 10 is a block diagram schematically showing a first embodiment of a display device (electronic terminal) according to the present invention.
  • reference numeral 1 is a display element
  • 3 is a power supply circuit
  • 4 is a control circuit
  • 5 is an inverter
  • 21 is a scan driver IC (scan driver)
  • 22 is a data driver IC (data driver). Show me! /
  • the power supply circuit 3 includes a booster 31, a display element drive voltage generator (voltage generator) 32, and a regulator 33.
  • the booster 31 receives an input voltage of about +3 to +5 V from the battery, boosts the voltage to drive the display medium (display element 1), and supplies the boosted voltage to the voltage generator 32.
  • the voltage generation unit 32 generates necessary voltages for the scan driver 21 and the data driver 22, respectively, and the regulator 33 stabilizes the voltage from the voltage generation unit 32 and supplies it to the scan driver 21 and the data driver 22.
  • Supply includes a booster 31, a display element drive voltage generator (voltage generator) 32, and a regulator 33.
  • the booster 31 receives an input voltage of about +3 to +5 V from the battery, boosts the voltage to drive the display medium (display element 1), and supplies the boosted voltage to the voltage generator 32.
  • the voltage generation unit 32 generates necessary voltages for the scan driver 21 and the data driver 22, respectively, and the regulator 33 stabilizes the voltage from the voltage generation unit 32 and supplies it to the scan driver 21
  • the control circuit 4 includes a partial rewrite input unit 41, an image data generation unit 42, and a position information generation unit 43. And a data conversion circuit 44.
  • the control circuit 4 calculates image data and control signals supplied from the outside, and when the image pattern to be partially rewritten and the position in the display screen to which it is input are input, the data conversion circuit 44 converts the information into the information.
  • the scanning direction of the scan driver 21 is determined accordingly, and the image data input to the driver 21 is rearranged as necessary.
  • the partial rewriting input unit 41 recognizes partial rewriting from image data and control signals supplied from the outside, and generates image data of an area where partial rewriting is performed by the image data generating unit 42, as well as the position.
  • the information generation unit 43 generates position information of the area to be partially rewritten (position information on the display area of the rewrite area).
  • the image data and position information in the rewrite area are input to the data conversion circuit 44, and the scan direction signal CS1, the data capture clock CS2, the pulse polarity control signal CS3, and the frame start signal CS4 that determine the scan direction of the scan driver 21 described above.
  • Data latch 'scan shift signal CS5 and driver output cutoff signal CS6 are output.
  • the data capture clock CS2 is supplied to the driver set in the data mode, and is a signal for sequentially capturing data for one line (in the case of partial rewriting, data in the area to be rewritten).
  • the pulse polarity control signal CS3 is a signal for inversion control of the polarity of the pulse voltage applied to the display element 1
  • the frame start signal CS4 is a signal indicating the start of an image of one frame.
  • the latch 'scan shift signal CS5 is a signal for controlling the synchronization of the line in which data is stored by the data driver and the line selected by the scan driver
  • the driver output cutoff signal CS6 is the data driver. This is a signal for cutting off the driver output of the bus or scan driver.
  • the scan direction is the direction from the top to the bottom of the display screen. If the partial rewrite area is in the upper part of the display screen, the scan direction is the upward force direction on the lower force of the display screen.
  • FIG. 11 is a cross-sectional view schematically showing an example of the display element (liquid crystal display element) in the display device shown in FIG.
  • reference numerals 11 and 12 are film substrates
  • 13 And 14 are transparent electrodes (for example, ITO)
  • 15 is a liquid crystal composition (cholesteric liquid crystal)
  • 16 and 17 are sealing materials
  • 18 is a light absorbing layer
  • 19 is a drive circuit.
  • the display element 1 includes the liquid crystal composition 15, and the transparent electrodes 13 and 12 that intersect perpendicularly on the inner surfaces of the transparent film substrates 11 and 12 (the surfaces in which the liquid crystal composition 15 is sealed), respectively. 14 are formed. That is, a plurality of scan electrodes 13 and a plurality of data electrodes 14 are formed in a matrix on opposing film substrates 11 and 12. In FIG. 11, the scan electrode 13 and the data electrode 14 are drawn so as to be parallel at first glance. However, actually, for example, a plurality of data electrodes 14 intersect one scan electrode 13. Needless to say. Furthermore, the thickness of each of the film substrates 11 and 12 is, for example, about 0.2 mm, and the thickness of the layer of the liquid crystal composition 15 is, for example, about 3 ⁇ m to 6 ⁇ m. Those ratios are ignored for illustration.
  • the electrodes 13 and 14 are coated with an insulating thin film or an alignment stability film.
  • a visible light absorbing layer 18 is provided on the outer surface (back surface) of the substrate (12) opposite to the side on which light is incident, as necessary.
  • the liquid crystal composition 15 is a cholesteric liquid crystal that exhibits a cholesteric phase at room temperature, and these materials and combinations thereof will be specifically described by the following experimental examples.
  • the sealing materials 16 and 17 are for sealing the liquid crystal composition 15 between the film substrates 11 and 12.
  • the drive circuit 19 is for applying a predetermined pulse voltage to the electrodes 13 and 14.
  • the film substrates 11 and 12 both have translucency. At least one of the pair of substrates that can be used as the display element 1 of this example has translucency. It is necessary.
  • a glass substrate can be exemplified, but a flexible resin film substrate such as PET or PC can be used in addition to the glass substrate.
  • the electrodes 13 and 14 for example, ITO (Indium Tin Oxide) is a representative force.
  • a transparent conductive film such as IZO (Indium Zinc Oxide)
  • a metal electrode such as aluminum or silicon, or a photoconductive film such as amorphous silicon or BSO (Bismuth Silicon Oxide) is used. It can be done.
  • a plurality of strip-like transparent electrodes 13 and 14 parallel to each other are formed on the inner surfaces of the transparent film substrates 11 and 12 as described above. 13 and 14 face each other so as to cross each other with reference to the direction force perpendicular to the substrate.
  • an insulating thin film having a function of preventing a short circuit between the electrodes or improving the reliability of the liquid crystal display element as a gas barrier layer may be formed.
  • an organic film such as polyimide resin, polyamideimide resin, polyetherimide resin, polybutylpropylene resin, and acrylic resin, or silicon oxide, acid resin
  • an inorganic material such as aluminum can be exemplified. Note that the orientation stable film coated on the electrodes 13 and 14 can also be used as an insulating thin film.
  • a spacer may be provided between the pair of substrates to keep the inter-substrate gap uniform.
  • the spacer include spheres made of resin or inorganic acid.
  • a fixed spacer whose surface is coated with a thermoplastic resin can also be suitably used.
  • the substance constituting the liquid crystal composition (liquid crystal layer) 15 is, for example, cholesteric liquid crystal in which 10 to 40 wt% of a chiral agent is added to the nematic liquid crystal composition.
  • the addition amount of the chiral agent is a value when the total amount of the nematic liquid crystal component and the chiral agent is 100 wt%.
  • nematic liquid crystals can be used as the nematic liquid crystal. It is preferable in view of driving voltage that the dielectric constant anisotropy is 20 or more. That is, when the dielectric anisotropy is 20 or more, the drive voltage is relatively low.
  • the dielectric anisotropy ( ⁇ ) of the cholesteric liquid crystal composition is preferably 20 to 50. Within this range, general-purpose drivers can be used.
  • the refractive index anisotropy ( ⁇ ) is preferably 0.18 to 0.24. If it is smaller than this range, the reflectivity in the planar state will be low, and if it is larger than this range, the scattering reflection in the focal conic state will increase, and the response speed will decrease as the viscosity increases.
  • the thickness of this liquid crystal is about 3 111 to 6 111. The reflectance of the state becomes low, and if it is larger than this, the driving voltage becomes too high, which is not preferable.
  • FIG. 12A is a diagram for explaining one embodiment of a display element driving method according to the present invention
  • FIGS. 13A to 13C are one embodiment of a display element driving method according to the present invention. It is a flowchart for demonstrating.
  • the common side (scan driver 21) is composed of two scan drivers 211 and 212.
  • FIG. 13A Note that the flowcharts shown in FIGS. 13A to 13C explain the operation when only two scan drivers shown in FIG. 12A are provided.
  • step ST1 partial rewrite conditions, that is, image data Example.dat (u, v) are set.
  • step ST2 the image data Example.dat (u, v) is stored in the memory, and further proceeding to step ST3, the rewrite position is stored in the memory.
  • step ST4 it is determined whether or not the position of the partially rewritten image (partially rewritten region R2) is a force straddling the two scan drivers 211 and 212.
  • step ST4 when it is determined that the position of the partial rewrite region R2 crosses the two scan drivers 211 and 212, the process proceeds to step ST5, where the first scan driver 211 starts partial rewrite, Proceed to ST6.
  • the position of the partial rewrite area R2 straddles the two scan drivers 211 and 212, it is a case where the rewrite area R2 is located below the display screen corresponding to the first scan driver 211.
  • the scanning direction of the driver 211 is a direction in which it is directed downward from the top of the display screen. It should be noted that the scan direction that is directed from the top to the bottom is determined in advance as the basic scan direction.
  • step ST6 the first scan driver 211 performs high-speed skip processing of the region S41, and further proceeds to step ST14 where the first scan driver 211 corresponds to a part of the rewrite region R2. Start image writing to S42.
  • step ST 15 image data Example. Dat (u, v) is input to the data driver 22.
  • the memory access order is forward, and the coordinate data (0, 0), (1, 0), (0, 0), (2, 0), ⁇ , (u— 1, 0); (0, 1), (1, 1), (2, 1), ⁇ , (u— 1, 1); « ; (0, v— 1), (1, V— 1), (2, V— 1),..., (U— 1, V— 1) in order to correspond to each scan line in area S42 Write to data driver 22.
  • the process proceeds to step ST16, and the voltage pulse output (32V or 24V) is applied to the corresponding data electrode.
  • the process proceeds to step ST17, and the writing by the first scan driver 211 is completed.
  • the scanning direction of the second scan driver 212 is switched to the direction of the upward force on the lower force of the display screen opposite to the basic scanning direction.
  • the position of the partial rewrite area R2 straddles the two scan drivers 211 and 212, it is a case where the rewrite area R2 is located above the display screen corresponding to the second scan driver 212.
  • the scanning direction of the driver 212 is directed from the bottom to the top of the display screen.
  • step ST27 where the second scan driver 212 performs the high-speed skip processing of the region S44, and further proceeds to step ST28, where the second scan driver 212 performs a part of the rewrite region R2. Image writing to the area S43 corresponding to is started.
  • step ST 29 image data Example. Dat (u, v) is input to the data driver 22.
  • the memory access order is upside down, and image data stored in memory Example.dat (u, v) Coordinate data (0, v—l), (1, v—l), (2, v—l), ⁇ , (u- 1, v—l); (0, v- 2), (1, v— 2), (2, v— 2) , ..., (u- 1, v- 2); ... (0, 0), (1, 0), (2, 0), ..., (u-l, 0 ) Are sequentially written to the data driver 22 corresponding to each scan line in the region S43.
  • step ST30 the voltage pulse output (32V or 24V) is applied to the corresponding data electrode
  • step ST31 the writing by the second scan driver 212 is terminated
  • step ST32 the partial rewriting (writing of the rewriting area R2) is completed.
  • step ST4 the position of the partial rewrite area (R2) does not cross the two scan planes 211 and 212, that is, the partial rewrite area is within the area of one scan driver. If it is determined that it is included, the process proceeds to step ST7, where it is determined whether the partial rewrite area is included in the area of the first scan driver 211 or whether it is included in the area of the second scan driver 212. Proceed to ST8. In step ST8, whether or not the partial rewrite area force has a long distance to the data driver 22, that is, whether the partial rewrite area is From the top to the top of the display screen ⁇ partial rewrite area force The bottom length to the bottom of the display screen is determined.
  • step ST8 If it is determined in step ST8 that the upper length ⁇ the lower length, that is, the first or second scan driver (rewrite area) that scans the area including the partial rewrite area. If it is determined that the partial rewrite area is below the display screen corresponding to the scan driver including the rewrite area, the process proceeds to step ST9, and the partial rewrite is performed with the scan driver including the rewrite area. And proceed to step ST10.
  • step ST10 high-speed skip processing is performed by the scan driver including the rewrite area, and the process proceeds to step ST18, where image writing is started by the scan driver including the rewrite area, and further, the process proceeds to step ST19.
  • step ST18 image writing is started by the scan driver including the rewrite area
  • step ST19 Input the image data Example.dat (u, V) to the data driver 22.
  • the memory access order is forward as in step ST15 described above.
  • step ST20 the voltage pulse output (32V or 24V) is applied to the corresponding data electrode.
  • step ST21 the writing by the scan driver including the rewrite area is terminated. Proceed to and end the partial rewriting.
  • step ST8 If it is determined in step ST8 that the upper length is not the lower length, that is, the partial rewrite area is in the display screen corresponding to the scan driver including the rewrite area. If it is determined that the position is above, the process proceeds to step ST11, and the scan direction of the scan driver including the rewrite area is switched from the bottom of the display screen to the direction opposite to the basic scan direction, and the process proceeds to step ST12. .
  • step ST12 partial rewriting is started by the scan driver including the rewriting area, and the process proceeds to step ST13.
  • the high-speed skip processing is performed by the scan driver including the rewriting area, and the process proceeds to step ST22.
  • Image writing is started by the included scan driver.
  • step ST23 the image data Example.dat (u, v) is transferred to the data driver 2
  • step ST29 the memory access order is the upside down direction.
  • step ST24 the voltage pulse output (32V or 24V) is applied to the corresponding data electrode.
  • step ST25 the writing by the scan driver including the rewrite area is terminated. Proceed to and end the partial rewriting.
  • FIG. 12B is a diagram for explaining a modification of the method for driving the display element shown in FIG. 12A.
  • the above description is based on two scan drivers 211 and 212 on the common side as shown in FIG. 12A.
  • the present invention can be similarly applied to a display element constituted by two data drivers 221 and 222 which are configured by the scan drivers 211 and 212 and the segment side is provided at both ends (upper and lower ends) of the display screen.
  • the first write process by the first scan driver 211 and the first data driver 221 and the second It is also possible to perform the second writing process by the scan driver 212 and the second data driver 222 in parallel (simultaneously). That is, in the display element (display device) shown in FIG. 12B, the first scan driver 211 performs the high-speed skip processing in the scan direction (downward) from the top to the bottom of the region S45 and the region by the second scan driver 212.
  • FIG. 14A and FIG. 14B are diagrams for explaining another embodiment of the display element driving method according to the present invention.
  • FIG. 14A shows the common side (scan driver 21) configured with four scan drivers 211 to 214
  • FIG. 14B shows the common side with four scan drivers 211 to 214 as in FIG. 14A
  • the segment side (data driver 22) that is simply configured is also composed of two data drivers 221 and 222 provided at the upper and lower ends of the display screen.
  • the first to fourth scan drivers 211 to 214 and the partial rewrite image (partial rewrite area) When the positional relationship of (R3) is as shown in FIG. 14A, for example, the high-speed skip processing of the area S51 downward by the first scan driver 211 and the downward movement of the area S52 by the second scan driver 212 are sequentially performed. Performs high-speed skip processing, downward high-speed writing processing of area S53 by the second scan driver 212, and downward high-speed writing processing of area S54 by the third scan driver 213, and then the area by the fourth scan driver 214. The upward high-speed skip processing of S5 6 and the upward high-speed writing processing of the area S55 by the fourth scan driver 214 are performed.
  • the first scan driver 211 sequentially moves downward in the region S61.
  • High-speed skip processing of the area S66 by the fourth scan driver 214 and the high-speed skip processing of the area S66 by the second scan driver 212 and the fourth scan driver Simultaneously performs upward high-speed write processing of area S65 by 214 and downward high-speed write processing of area S63 by second scan driver 212 and upward high-speed write processing of area S64 by third scan driver 213 It will be.
  • segment-side data driver may be one at one end of the display screen or two at both ends of the display screen. Good.
  • FIG. 15A and FIG. 15B are diagrams for explaining still another embodiment of the display element driving method according to the present invention.
  • the display element driving method of the present embodiment is characterized in that the reset period and the writing period are performed in different frames (frame division) at the time of partial rewriting.
  • the high-speed skip processing of region S71 is performed in the scan direction from top to bottom, and then the partial rewrite region R4 is supported.
  • a reset process for the scan line (area S72) to be performed is performed, and a high-speed skip process for the area S73 is further performed.
  • the region S72 corresponding to the partial rewrite region R4 is in a planar state.
  • the difference voltage between the scan electrode and the data electrode is set to be equal to or lower than the response value voltage of the display medium (for example, cholesteric liquid crystal).
  • the number of lines from the beginning of partial rewriting and the number of lines at the end of writing before writing cannot obtain the predetermined display characteristics because the number of reset lines is insufficient at a certain scanning speed. It is possible. Therefore, when the reset pulse is selected by selecting the start line and end line for partial rewriting, it is effective to reduce the scan speed and increase the pulse application time to compensate for the reset effect.
  • the reset time is the scan speed X the number of reset lines.
  • reference numeral 101 is a blue (B) layer that reflects blue light
  • 102 is a green (G) layer that reflects green light
  • 103 is red (R) that reflects red light.
  • a black (K) layer that absorbs light may be provided under the R layer 103.
  • the display device of the second embodiment includes scan drivers 2101, 2102 and 2103, and a data dryer 2201 for the B layer 101, the G layer 102 and the R layer 103, respectively. , 2202 and 2203 forces are provided.
  • the scan drivers 2101, 2102, and 2103 they are connected to the scan drivers 2101, 2102, and 2103, and the data drivers 2201, 2202, and 2203, respectively, and intersect each other with the cholesteric liquid crystal (display medium) interposed therebetween.
  • the scan electrode and the data electrode allow the display element 1 to display near the full power error.
  • FIG. 17 is a diagram schematically showing the main part of a third embodiment of the display device according to the present invention.
  • the display device of the third embodiment has a common scan driver 21 and individual data drivers 2201, 2 202 and B layer 101, G layer 102 and R layer 103. 2203 is waiting for you!
  • the number of drivers and the like can be reduced and the cost can be reduced.
  • FIG. 18A is a diagram showing an example of the input voltage to the driver in the scan mode and the data mode
  • FIG. 18B is a diagram showing an example of correspondence when driving the cholesteric liquid crystal
  • FIG. 18C is a diagram in the scan mode and the data mode
  • FIG. 18D is a diagram showing an example of the output voltage of the driver
  • FIG. 18D is a diagram showing an example of a composite waveform applied to the liquid crystal.
  • any line can be selected in the data mode (segment mode: data driver), and a high level “
  • the AC signal of “H” is the voltage VO (32V)
  • the AC signal of the low level “L” is the voltage V5 (0V)
  • the low level “L” data signal is the high level “H”.
  • the voltage V21 (28V) and as a low-level “L” AC signal the voltage V34 Use (4V).
  • a pulse voltage of ⁇ 32V is stably applied to the on pixel and ⁇ 24V is stably applied to the off pixel.
  • a pulse voltage of ⁇ 4V is applied to the pixel. That is, as shown in FIG. 18B, the scan driver (common driver: COM) and the data driver (segment driver: SEG) are, for example, 32V, 28V, 24V, 8V generated by the power supply circuit 3 in FIG. , 4V and 0V are input.
  • 32V, 28V, 4V, and 0V are input to the driver in scan mode, and 32V, 24V, 8V, and 0V are input to the driver in data mode.
  • switching modes each voltage input to those drivers is also switched.
  • COM is 0V in the first half of AC drive, 32V in the second half, and OFF— COM is 28V in the first half of AC drive and 4V in the second half, and the output voltage when the data driver is on and off is ON—
  • the first half of AC drive is 32V and 0V in the second half
  • the OFF—SEG is 24V in the first half of AC drive and 8V in the second half.
  • the first half AV11 of the AC drive is 32V and the second half AV21 is 32V
  • the first half of AC drive AV12 is 24V and the second half AV22 is 24V
  • the second half AV22 is 4V.
  • a pulse waveform of -4V is applied, and in the non-selected off liquid crystal, the first half of AC drive AV14 is -4V and the second half AV24 is a 4V pulse. A waveform will be applied.
  • the area where partial rewriting is performed is scanned at a speed of approximately 10 msec, for example, and the non-target area where partial rewriting is not performed is instantaneously scanned at a scanning speed of, for example, about sec.Z line. Will end.
  • the voltage output from the driver it is preferable to turn off the voltage output from the driver.
  • the voltage is lower than the response voltage of the liquid crystal (pixel) in high-speed scanning, the previous image is maintained, which is a problem. There is no.
  • the present invention can be applied to, for example, a display element capable of full color display in which the B layer 101, the G layer 102, and the R layer 103 are stacked, and a partially rewritten image (rewrite)
  • a display element capable of full color display in which the B layer 101, the G layer 102, and the R layer 103 are stacked and a partially rewritten image (rewrite)
  • rewrite a partially rewritten image
  • the present invention is not limited to cholesteric liquid crystals, and is widely applicable to, for example, electronic devices using other liquid crystals that require reset processing before rewriting processing, and electronic terminals having a display device using the same. Can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

In a display element driving method, a plurality of scan electrodes intersecting in a confronting state with a plurality of data electrodes are selected in a predetermined order, and a pulsating voltage is applied to a display medium between each of the scan electrodes and each of the data electrodes, thereby to perform an image rewriting operation of a display screen. In this image rewriting operation, reset pulses for initializing the display medium and rewrite pulses for rewriting the display medium according to image data are continuously applied, thereby to perform the partial rewrite in an existing display image. In this case, the scan direction is switched according to the position of the area of the partial rewrite in the display screen.

Description

表示素子の駆動方法および表示装置  Display element driving method and display device
技術分野  Technical field
[0001] 本発明は、表示素子の駆動方法および表示装置に関し、特に、コレステリック液晶 を始めとする静止画表示向けの表示素子の駆動技術に関する。  The present invention relates to a display element driving method and a display device, and more particularly, to a display element driving technique for still image display including cholesteric liquid crystal.
背景技術  Background art
[0002] 近年、各企業や大学等の研究機関で電子ぺーパの開発が盛んに進められている 。電子ぺーパが期待されている応用市場としては、電子書籍を筆頭として、モパイル 端末のサブディスプレイや ICカードの表示部といった多様な応用形態が提案されて いる。  [0002] In recent years, development of electronic paper has been actively promoted at research institutions such as companies and universities. In the application market where electronic paper is expected, various application forms such as sub-displays for mopile terminals and display units for IC cards have been proposed.
[0003] 従来、電子ぺーパの有力なものとして、コレステリック液晶が知られている。このコレ ステリック液晶は、半永久的な表示保持 (メモリ性)、並びに、鮮やかなカラー表示、 高コントラストおよび高解像性といった優れた特徴を有している。さら〖こ、コレステリッ ク液晶は、 RGB各反射色を呈する表示層を積層することにより鮮やかなフルカラー 表示も可能になる。  Conventionally, a cholesteric liquid crystal is known as a prominent electronic paper. This cholesteric liquid crystal has excellent characteristics such as semi-permanent display retention (memory property), vivid color display, high contrast and high resolution. Sarakuko and cholesteric liquid crystals can also display vivid full-color images by stacking display layers that exhibit RGB colors.
[0004] また、コレステリック液晶は、カイラルネマティック液晶とも称されることがあり、ネマテ イツク液晶にキラル性の添加剤 (カイラル材とも称される)を比較的多く(数十%)添カロ することにより、ネマティック液晶の分子がらせん状のコレステリック相を形成する液晶 である。  [0004] Cholesteric liquid crystals are also sometimes referred to as chiral nematic liquid crystals, and a relatively large amount (several tens of percent) of a chiral additive (also referred to as chiral material) is added to nematic liquid crystals. As a result, nematic liquid crystal molecules form a spiral cholesteric phase.
[0005] ところで、コレステリック液晶はメモリ性を有する液晶であるため、安価な単純マトリク ス駆動が可能であり、例えば、 A4サイズ以上の大型化も比較的容易である。そして、 コレステリック液晶は、表示内容を更新する(画像を書換える)時だけ電力が消費され 、画像の書換えが終了したら電源を全てオフにしても画像はそのまま保持されること になる。  By the way, since the cholesteric liquid crystal is a liquid crystal having a memory property, it can be driven by a simple simple matrix, and for example, it is relatively easy to increase the size of A4 size or larger. The cholesteric liquid crystal consumes power only when the display content is updated (image is rewritten). When the image rewriting is completed, the image is held as it is even if the power is turned off.
[0006] まず、本発明に係る表示素子の一例としてのコレステリック液晶の駆動例について 説明する。  First, an example of driving a cholesteric liquid crystal as an example of a display element according to the present invention will be described.
[0007] 図 1Aおよび図 1Bはコレステリック液晶の配向状態を説明するための図であり、図 1 Aはプレーナ状態を示し、図 1Bはフォーカルコニック状態を示す。 1A and 1B are diagrams for explaining the alignment state of the cholesteric liquid crystal. A shows the planar state, and Figure 1B shows the focal conic state.
[0008] コレステリック液晶は、プレーナ状態およびフォーカルコニック状態の安定した 2つ の状態を無電界下でとることができる。 [0008] The cholesteric liquid crystal can take two stable states, a planar state and a focal conic state, under no electric field.
[0009] すなわち、図 1Aに示されるように、プレーナ状態において、入射光は液晶で反射さ れるため、人間の目はその反射光を見ることができる。 That is, as shown in FIG. 1A, in the planar state, the incident light is reflected by the liquid crystal, so that the human eye can see the reflected light.
[0010] また、図 1Bに示されるように、フォーカルコニック状態において、入射光は液晶を通 過する。そして、液晶層とは別に光吸収層を設けることにより、フォーカルコニック状 態において、黒色を表示させることができる。 In addition, as shown in FIG. 1B, in the focal conic state, incident light passes through the liquid crystal. Further, by providing a light absorption layer separately from the liquid crystal layer, black can be displayed in the focal conic state.
[0011] ここで、プレーナ状態においては、液晶分子の螺旋ピッチに応じた波長の光が反 射され、反射が最大になる波長えは、液晶の平均屈折率を nとし、螺旋ピッチを pとす ると、 λ =η·ρで示される。なお、反射帯域 Δ λは、液晶の屈折率異方性 Δ ηに伴つ て大きくなり、液晶の平均屈折率 ηおよび螺旋ピッチ ρを選ぶことにより、プレーナ状 態時には波長 λの色を表示させることができる。 [0011] Here, in the planar state, light having a wavelength corresponding to the helical pitch of the liquid crystal molecules is reflected, and the wavelength at which the reflection is maximized is defined as the average refractive index of the liquid crystal is n, and the helical pitch is p. Then, λ = η · ρ. Note that the reflection band Δλ increases with the refractive index anisotropy Δη of the liquid crystal, and the color of the wavelength λ is displayed in the planar state by selecting the average refractive index η and the helical pitch ρ of the liquid crystal. be able to.
[0012] 図 2Α,図 2Βおよび図 2Cはコレステリック液晶を駆動するための電圧特性(時間と 電圧との関係)を示す図であり、液晶に印加する電界と各ホメオト口ピック状態、フォ 一カルコニック状態およびプレーナ状態の変化の様子を示している。ここで、ホメオト 口ピック状態を Η、フォーカルコニック状態を FC、そして、プレーナ状態を Pとする。 [0012] Fig. 2 (b), Fig. 2 (b) and Fig. 2C are graphs showing the voltage characteristics (relationship between time and voltage) for driving the cholesteric liquid crystal. It shows how the state and the planar state change. Here, Η is the homeopic pick state, FC is the focal conic state, and P is the planar state.
[0013] まず、コレステリック液晶に対して強い電界を与えると、液晶分子の螺旋構造は完 全にほどけ、全ての分子が電界の向きに従うホメオト口ピック状態 Hになる。 [0013] First, when a strong electric field is applied to a cholesteric liquid crystal, the helical structure of the liquid crystal molecules is completely unwound, and a homeotopic picking state H in which all molecules follow the direction of the electric field is obtained.
[0014] 図 2Bに示されるように、ホメオト口ピック状態 H力 急激に電界をゼロにすると、液晶 の螺旋軸は電極に垂直になり、螺旋ピッチに応じた光を選択的に反射するプレーナ 状態 Pになる。 [0014] As shown in FIG. 2B, the homeotopic pick state H force When the electric field is suddenly reduced to zero, the spiral axis of the liquid crystal becomes perpendicular to the electrode, and the planar state selectively reflects light according to the spiral pitch. Become P.
[0015] 一方、図 2Aに示されるように、液晶分子の螺旋軸がやっとほどける程度の弱い電 界の形成後に電界を除去した場合、或いは、図 2Cに示されるように、強い電界をか け緩やかに電界を除去した場合には、液晶の螺旋軸は電極に平行になり、入射光を 透過するフォーカルコニック状態 FCになる。  On the other hand, as shown in FIG. 2A, when the electric field is removed after formation of a weak electric field that can barely unwind the liquid crystal molecules, or when a strong electric field is applied as shown in FIG. 2C. When the electric field is gently removed, the spiral axis of the liquid crystal is parallel to the electrode, resulting in a focal conic state FC that transmits incident light.
[0016] また、中間的な強さの電界を与え、それを急激に除去すると、プレーナ状態 Pとフォ 一カルコニック状態 FCの液晶が混在し、中間調の表示が可能になる。 [0017] このように、コレステリック液晶は双安定性であり、この現象を利用して情報の表示を 行うことができる。 [0016] Further, when an electric field having an intermediate strength is applied and rapidly removed, the liquid crystal in the planar state P and the focal conic state FC is mixed, and halftone display becomes possible. [0017] Thus, cholesteric liquid crystal is bistable, and information can be displayed using this phenomenon.
[0018] 図 3はコレステリック液晶の反射率特性 (電圧と反射率との関係)を示す図であり、 図 2A〜図 2Cを参照して説明したコレステリック液晶の電圧応答性をまとめて示すも のである。  [0018] FIG. 3 is a diagram showing the reflectance characteristics (relationship between voltage and reflectance) of cholesteric liquid crystal, and collectively shows the voltage responsiveness of cholesteric liquid crystal described with reference to FIGS. 2A to 2C. is there.
[0019] 図 3に示されるように、初期状態がプレーナ状態 P (図 3の左端の反射率の高い部 分)だと、パルス電圧をある範囲に上げるとフォーカルコニック状態 FCへの駆動帯域 になり、さらにパルス電圧を上げると再度プレーナ状態 P (右端の電圧の高い部分) への駆動帯域になる。  [0019] As shown in Fig. 3, if the initial state is the planar state P (the portion with high reflectivity at the left end of Fig. 3), the pulse voltage is raised to a certain range, and the drive band to the focal conic state FC is reached. When the pulse voltage is further increased, the driving band for the planar state P (the portion with the highest voltage at the right end) is reached again.
[0020] 初期状態がフォーカルコニック状態 FC (左端の反射率の低!、部分)だと、パルス電 圧を上げるにつれて次第にプレーナ状態 Pへの駆動帯域になる。  [0020] When the initial state is the focal conic state FC (the left end of the reflectance is low !, part), the driving band for the planar state P gradually becomes higher as the pulse voltage is increased.
[0021] なお、プレーナ状態 Pでは、右円偏光または左円偏光のみを反射し、残りの円偏光 は透過するため、理論上の反射率の最大値は 50%である。  [0021] In the planar state P, only the right circularly polarized light or the left circularly polarized light is reflected, and the remaining circularly polarized light is transmitted. Therefore, the maximum theoretical reflectance is 50%.
[0022] 従来、プレーナ状態およびフォーカルコニック状態を選択して情報を表示する液晶 表示素子の駆動方法において、早送りモードでは表示素子を相転移駆動によって迅 速に動作させるものが提案されている (例えば、特許文献 1参照)。  [0022] Conventionally, in a driving method of a liquid crystal display element that displays information by selecting a planar state and a focal conic state, in the fast-forward mode, the display element is operated quickly by phase transition driving (for example, Patent Document 1).
[0023] また、従来、コレステリック液晶を用いた表示装置における表示素子の駆動方法とし て、実際に画像を書込む前に、所定数のスキャンラインでリセットを行い、さらに、休 止を設けた後、書込みを行う書込みシーケンスが提案されている (例えば、特許文献 2参照)。なお、特許文献 2に記載された従来技術およびその課題に関しては、後に 詳述する。  [0023] Further, as a conventional method of driving a display element in a display device using cholesteric liquid crystal, resetting is performed with a predetermined number of scan lines before an image is actually written, and further after a pause is provided. A writing sequence for performing writing has been proposed (see, for example, Patent Document 2). The prior art described in Patent Document 2 and its problems will be described in detail later.
[0024] 特許文献 1:特開 2000— 171837号公報  Patent Document 1: Japanese Patent Laid-Open No. 2000-171837
特許文献 2 :国際公開第 2005Z024774号パンフレット(図 55,図 56、および、実施 例 4)  Patent Document 2: Pamphlet of International Publication No. 2005Z024774 (Fig. 55, Fig. 56, and Example 4)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0025] 前述したように、近年、電子ぺーパは、例えば、コレステリック液晶等を使用して実 用化されつつある。ところで、電子ぺーパでは、例えば、表示エリア内の特定の領域 のみ書換え機能 (部分書換え機能)が求められている。 [0025] As described above, in recent years, electronic paper has been put into practical use, for example, using cholesteric liquid crystal. By the way, in the electronic paper, for example, a specific area in the display area Only rewriting function (partial rewriting function) is required.
[0026] 本出願人は、従来、高速に部分的な画面の書換えができる液晶表示素子の駆動 方法に関する特許出願を行った(日本国特願 2005— 099711)。  [0026] The applicant has filed a patent application relating to a method for driving a liquid crystal display element capable of rewriting a partial screen at high speed (Japanese Patent Application 2005-099711).
[0027] 図 4Aおよび図 4Bは、 日本国特願 2005— 099711で提案した関連技術の表示素 子の駆動方法の一例を説明するための図である。図 4Aおよび図 4Bにおいて、参照 符号 100は元の画像 (既存の画像)、 121は走査側のドライバ IC (スキャンドライノく)、 122はデータ側のドライバ IC (データドライバ)、 200は部分書換え後の画像、そして 、 R0は部分的な書換え領域を示している。  FIG. 4A and FIG. 4B are diagrams for explaining an example of a display element driving method of related technology proposed in Japanese Patent Application 2005-099711. 4A and 4B, reference numeral 100 is an original image (existing image), 121 is a driver IC (scan driver) on the scanning side, 122 is a driver IC (data driver) on the data side, and 200 is a partial rewrite. The later image and R0 indicate a partial rewrite area.
[0028] 図 4Aに示す元の画像 100において、部分的な書換え領域 R0を書換えて図 4Bに 示す部分書換え後の画像 200を表示する場合、前述した関連技術では、通常の画 像を表示する場合のように、スキャン側の全ての領域 (全てのスキャン電極) S 10を通 常の速度でスキャンして画像の書込みを行うのではなぐ例えば、書換え領域 R0を 含むスキャン側の領域 (書換え領域 R0に対応するスキャン電極) S12を通常の速度 でスキャンして画像の書込み(書換え)を行うと共に、書換え領域 R0を含まな ヽスキヤ ン側の領域(書換え領域 R0に対応しな!、スキャン電極:スキップ領域) S 11および S 1 3を高速でスキャンして元の画像をそのまま維持するようになって 、る。  [0028] In the original image 100 shown in FIG. 4A, when the partially rewritten region R0 is rewritten and the partially rewritten image 200 shown in FIG. 4B is displayed, the related technique described above displays a normal image. In this case, it is not necessary to scan all areas on the scan side (all scan electrodes) S10 at normal speed and write the image. For example, the scan side area including the rewrite area R0 (rewrite area) Scan electrode corresponding to R0) Scan the S12 at normal speed to write (rewrite) the image, and also include the rewrite area R0 領域 Scan side area (Do not correspond to the rewrite area R0 !, scan electrode : Skip area) S 11 and S 13 are scanned at high speed to maintain the original image.
[0029] すなわち、スキャンドライバ 121によるスキャン動作は、まず、部分書換えを行わな Vヽ領域 SI 1を高速モードでスキャンし、部分書換えを行う領域 R0に到達したら通常 の走査速度のスキャンにより画像の書換えを行い、その後、書換え領域 R0のスキヤ ンが終わったら、部分書換えを行わない領域 S 13を高速モードでスキャンする。これ により、画像の部分書換えの処理動作を高速化する。  That is, the scan operation by the scan driver 121 first scans the V ヽ region SI 1 where partial rewriting is performed in the high-speed mode, and when reaching the region R0 where partial rewriting is performed, scans the image by scanning at a normal scanning speed. After rewriting, after scanning of the rewriting area R0, the area S13 where partial rewriting is not performed is scanned in the high speed mode. This speeds up the processing operation for partial image rewriting.
[0030] ここで、書換えを行わないスキップ領域(Sl l、 S13)に対しては、既に書込まれて V、る表示画像に影響を及ぼさな 、ように、データドライバ 122からの電圧出力をオフ にするのが最も好ましいが、高速にすることで液晶の応答が鈍くなるため、この現象 を利用して電圧出力をオフすることなくスキャンを行うこともできる。  [0030] Here, the voltage output from the data driver 122 is applied to the skip areas (Sl, S13) where rewriting is not performed so as not to affect the display image already written. Although it is most preferable to turn it off, since the response of the liquid crystal becomes dull by increasing the speed, it is possible to scan without turning off the voltage output by utilizing this phenomenon.
[0031] 図 5は高速スキャンによる閾値特性のシフトを説明するための図である。  FIG. 5 is a diagram for explaining a shift in threshold characteristics due to high-speed scanning.
すなわち、書換え領域 ROの前後の領域 (Sl l、 SI 3)をスキャンする高速モードに おいて、例えば、 ± 24V或いは ± 32Vの電圧が印加される力 例えば、図 5に示され るように、高速スキャン時における閾値特性は大きくシフト(高電位側へシフト)し、具 体的に、コレステリック液晶の動作閾値電圧は 32V以上の高い電圧にシフトするため 、例えば、 ± 24V或いは ± 32Vの電圧が印加されても液晶の配向状態 (表示状態) が変化することはない。従って、スキップ領域 Sl l、 S13では、電圧出力をオフせず にスキャンを高速にするだけで元の画像をそのまま維持することができる。 In other words, in the high-speed mode that scans the region (Sl, SI 3) before and after the rewrite region RO, for example, a force to which a voltage of ± 24V or ± 32V is applied is shown in FIG. Thus, the threshold characteristic during high-speed scanning is greatly shifted (shifted to the high potential side), and specifically, the operating threshold voltage of the cholesteric liquid crystal is shifted to a high voltage of 32V or higher. For example, ± 24V or ± Even when a voltage of 32V is applied, the alignment state (display state) of the liquid crystal does not change. Therefore, in the skip regions Sl and S13, the original image can be maintained as it is by simply scanning at high speed without turning off the voltage output.
[0032] このように、関連技術の表示素子の駆動方法によれば、元の画像の一部を部分書 換えする場合、書換え処理の高速ィ匕を行うことが可能であった。  As described above, according to the related art display element driving method, when a part of the original image is partially rewritten, it is possible to perform a high-speed rewriting process.
[0033] ところで、コレステリック液晶の駆動には、実画像の書込みの前に、リセット電圧を印 加することが好ましい。そして、本出願人は、従来、電力消費が少なぐ且つ、安定し たコントラストを実現できる画像の書込み方法として、実際に画像を書込む前に、所 定数のスキャンラインでリセットを行い、さらに、休止を設けた後、書込みを行う書込み シーケンスを前述した特許文献 2にお 、て提案した。  By the way, in driving the cholesteric liquid crystal, it is preferable to apply a reset voltage before writing an actual image. In addition, as a conventional image writing method that consumes less power and can achieve stable contrast, the applicant of the present invention performs a reset with a predetermined scan line before actually writing an image, In the above-mentioned Patent Document 2, a writing sequence for performing writing after providing a pause was proposed.
[0034] 図 6A〜図 6Cは、前述した従来技術文献 2で提案した従来の表示素子の駆動方法 の一例を説明するための図である。図 6A〜図 6Cにおいて、参照符号 100は前回の 画像 (既存の画像)、 121はコモン側のドライバ IC (スキャンドライバ)、 122はセグメン ト側のドライバ IC (データドライバ)、 200は新たな画像 (書換え後の画像)を示して!/ヽ る。なお、図 6Aは、下半分が前回の画像 100で上半分が新たな画像 200に書換え られている様子を示している。さらに、図 6Cにおいて、参照符号 Eioは 1ラインずっデ 一タの書込を行うためにスキャン電極の選択を行うコモン側選択信号を示し、また、 L pは各スキャン電極 (スキャンライン)に対応した 1ライン分のデータを取込むと共に、 スキャンラインを順次シフトするデータ側ラッチ'スキャン側シフト信号を示して 、る。  FIG. 6A to FIG. 6C are diagrams for explaining an example of a conventional display element driving method proposed in the above-described prior art document 2. FIG. 6A to 6C, reference numeral 100 is the previous image (existing image), 121 is the common side driver IC (scan driver), 122 is the segment side driver IC (data driver), and 200 is the new image. Show (image after rewriting)! FIG. 6A shows a state in which the lower half is rewritten with the previous image 100 and the upper half is rewritten with the new image 200. Further, in FIG. 6C, reference symbol Eio indicates a common side selection signal for selecting a scan electrode for writing data by one line, and L p corresponds to each scan electrode (scan line). The data side latch that scans the scan line sequentially and captures the data for one line is shown.
[0035] 図 6A〜図 6Cに示されるように、従来、例えば、コレステリック液晶の画像書換え( 書込み)を行う場合、新たな画像を書込む直前に、書込みと同じフレームにおいて、 リセット区間 RS→休止区間 PS→書込み区間 WSのシーケンスで画像書込みを行うこ とが提案されている。なお、図 6Aにおける参照符号 WTは、上記書込シーケンスに おける書込み先頭ラインを示し、 PLは休止ラインを示し、そして、 RLはリセットライン を示している。  [0035] As shown in FIGS. 6A to 6C, in the past, for example, when rewriting (writing) an image of a cholesteric liquid crystal, immediately before writing a new image, in the same frame as the writing, the reset period RS → pause It has been proposed to perform image writing in the sequence of section PS → writing section WS. In FIG. 6A, reference symbol WT indicates a write start line in the write sequence, PL indicates a pause line, and RL indicates a reset line.
[0036] ここで、リセットライン RL (リセット区間 RS)は、液晶の応答特性にもよる力 10ライン 〜100ライン程度(例えば、 20ライン)、リセット区間 WS (リセットライン RL)は 50〜: LO Omse 程度が好ましい。なお、休止区間 PS (休止ライン)としては、 1ライン程度でよ い。 [0036] Here, the reset line RL (reset section RS) has a force of 10 lines depending on the response characteristics of the liquid crystal. About 100 lines (for example, 20 lines) and the reset section WS (reset line RL) is preferably about 50: LO Omse. The pause section PS (pause line) may be about 1 line.
[0037] この従来の表示素子の駆動方法は、特定の数のラインに限定してリセットを行うた め、全画面を一括してリセットする場合に比べて圧倒的な省電力化が可能であり、安 定したコントラストの高い表示を得ることができるものである。  [0037] Since this conventional display element driving method is reset only for a specific number of lines, it can achieve overwhelming power saving compared to the case where the entire screen is reset at once. Thus, a stable and high-contrast display can be obtained.
[0038] し力しながら、上述した従来の表示素子の駆動方法には、以下に述べるような解決 すべき課題が存在した。  However, the conventional display element driving method described above has problems to be solved as described below.
[0039] 図 7Aおよび図 7Bは従来の表示素子の駆動方法の一例における課題を説明する ための図である。なお、図 7Bにおいて、参照符号 ROは、部分的な書換え領域を示し 、 S21, S 23は高速スキップ(高速スキップ処理)を行う領域を示し、そして、 S22は高 速書込み(高速書込み処理)を行う領域を示して ヽる。  FIG. 7A and FIG. 7B are diagrams for explaining problems in an example of a conventional display element driving method. In FIG. 7B, reference symbol RO indicates a partial rewrite area, S21 and S23 indicate areas where high-speed skip (high-speed skip processing) is performed, and S22 indicates high-speed write (high-speed write processing). Show the area to do.
[0040] 図 7Aに示されるように、前述した従来の表示素子の駆動方法は、実際に書込むラ インに先行した所定数のリセットライン RL (例えば、 20ライン程度:リセット区間 RS)が 必要であったため、例えば、図 7Bに示されるような表示画面の一部(書換え領域 RO )を書換える場合、書込みラインが書換え領域 ROの終端近くに達すると、リセットライ ン RLによりリセットを行った領域 Rzが書換え領域 ROの外にはみ出してしまい、部分 書換えを行わな 、元の画像の表示状態を損なうことになつて 、た。  [0040] As shown in FIG. 7A, the conventional display element driving method described above requires a predetermined number of reset lines RL (for example, about 20 lines: reset section RS) preceding the line to be actually written. Therefore, for example, when a part of the display screen (rewrite area RO) as shown in FIG. 7B is rewritten, when the write line reaches near the end of the rewrite area RO, the reset is performed by the reset line RL. The region Rz protrudes outside the rewriting region RO, and the display state of the original image is impaired without performing partial rewriting.
[0041] 一方、上記リセットを用いずに部分書換えを行うことは可能ではあるが、例えば、部 分書換えの速度を 20mSec.Zライン以下まで落とさないと安定した書込みを行うこと ができず、また、表示パターンの種類や多少の温度変動等により書換え前の表示パ ターンの残像が生じて本来のコントラストに届力ないといった不安定な部分書換えに なる恐れがあった。すなわち、リセット処理を行わない書込みでは、書換え前の残像 やコントラストの低下が生じるだけでなぐ書込み速度を大幅に低下させなければ書 換えを行うことが困難になるため、部分書換えの本来のメリットである書換え時間の短 縮が発揮されな 、ことになつて 、た。 [0041] On the other hand, although it is possible to perform partial rewriting without using the reset, for example, stable writing cannot be performed unless the partial rewriting speed is reduced to 20 m Sec .Z line or lower. In addition, there was a risk of an unstable partial rewriting in which an afterimage of the display pattern before rewriting occurs due to the type of display pattern and some temperature fluctuations and the original contrast cannot be reached. In other words, in writing without reset processing, it is difficult to perform rewriting unless the writing speed is drastically reduced, as well as the afterimage before rewriting and the contrast decrease. There was a certain shortening of the rewriting time.
[0042] 本発明は、上述した従来の表示素子の駆動方法が有する課題に鑑み、リセットパ ルスを用いた駆動方法にぉ 、て、残像やコントラストの低下と 、つた画質を損ねること のない安定した部分書換えを実現することのできる表示素子の駆動方法および表示 装置の提供を目的とする。 [0042] In view of the problems of the above-described conventional display element driving method, the present invention impairs the image quality and the afterimage and the decrease in contrast, compared to the driving method using the reset pulse. It is an object of the present invention to provide a display element driving method and a display device capable of realizing stable partial rewriting without any problems.
課題を解決するための手段  Means for solving the problem
[0043] 本発明の第 1の形態によれば、互いに対向状態で交差する複数のスキャン電極お よび複数のデータ電極を備え、前記スキャン電極を所定の順序で選択して該各スキ ヤン電極と前記各データ電極間の表示媒体にパルス状の電圧を印加して表示画面 の画像書換え処理を行う表示素子の駆動方法であって、前記画像書換え処理は、 前記表示媒体を初期化するリセットパルス、および、該表示媒体を画像データに従つ て書換える書換えパルスを連続的に印加し、既存の表示画像における部分的な書 換えを行う場合、該部分的な書換え領域の前記表示画面における位置に応じてスキ ヤン方向を切換えることを特徴とする表示素子の駆動方法が提供される。  [0043] According to the first aspect of the present invention, the apparatus includes a plurality of scan electrodes and a plurality of data electrodes that intersect with each other in an opposing state, and the scan electrodes are selected in a predetermined order and A display element driving method for performing image rewriting processing of a display screen by applying a pulsed voltage to the display medium between the data electrodes, wherein the image rewriting processing includes a reset pulse for initializing the display medium, When a rewrite pulse for rewriting the display medium according to the image data is continuously applied to perform partial rewrite on the existing display image, the partial rewrite area is positioned at the position on the display screen. Accordingly, there is provided a display element driving method characterized by switching the scan direction accordingly.
[0044] 本発明の第 2の形態によれば、互いに対向状態で交差する複数のスキャン電極お よび複数のデータ電極を備え、前記スキャン電極を所定の順序で選択して該各スキ ヤン電極と前記各データ電極間の表示媒体にパルス状の電圧を印加して表示画面 の画像書換え処理を行う表示素子の駆動方法であって、前記画像書換え処理は、 前記表示媒体を初期化するリセットパルス、および、該表示媒体を画像データに従つ て書換える書換えパルスを連続的に印加し、既存の表示画像における部分的な書 換えを行う場合、前記リセットパルスは、前記部分的な書換え領域の開始ラインまた は終端ラインを選択して 、る時間を、前記開始ラインと前記終端ラインを選択して 、 ない時間よりも長い印加時間とすることを特徴とする表示素子の駆動方法が提供され る。 [0044] According to the second embodiment of the present invention, a plurality of scan electrodes and a plurality of data electrodes intersecting each other in a state of being opposed to each other are provided, and the scan electrodes are selected in a predetermined order and A display element driving method for performing image rewriting processing of a display screen by applying a pulsed voltage to the display medium between the data electrodes, wherein the image rewriting processing includes a reset pulse for initializing the display medium, When the rewriting pulse for rewriting the display medium according to the image data is continuously applied to perform partial rewriting on the existing display image, the reset pulse is used to start the partial rewriting area. A method for driving a display element, characterized in that a time for selecting a line or a termination line is set to an application time longer than a time for not selecting the start line and the termination line. Is provided.
[0045] 本発明の第 3の形態によれば、互いに対向状態で交差する複数のスキャン電極お よび複数のデータ電極を備え、前記スキャン電極を所定の順序で選択して該各スキ ヤン電極と前記各データ電極間の表示媒体にパルス状の電圧を印加して表示画面 の画像を書換える表示素子と、前記スキャン電極に接続されたスキャンドライバおよ び前記データ電極に接続されたデータドライバと、を有する表示装置であって、前記 表示媒体を初期化するリセットパルス、および、該表示媒体を画像データに従って書 換える書換えパルスを連続的に印加する画像書換え処理部と、既存の表示画像に おける部分的な書換えを行う場合、該部分的な書換え領域の前記表示画面におけ る位置に応じてスキャン方向を切換えるスキャン方向切換え部と、を備えることを特徴 とする表示装置が提供される。 [0045] According to the third aspect of the present invention, a plurality of scan electrodes and a plurality of data electrodes intersecting each other in an opposing state are provided, and the scan electrodes are selected in a predetermined order and A display element that rewrites an image on a display screen by applying a pulsed voltage to a display medium between the data electrodes, a scan driver connected to the scan electrode, and a data driver connected to the data electrode; A reset pulse for initializing the display medium, an image rewrite processing unit for continuously applying a rewrite pulse for rewriting the display medium according to image data, and an existing display image When performing partial rewriting, a display device is provided, comprising: a scanning direction switching unit that switches a scanning direction in accordance with the position of the partial rewriting area on the display screen.
[0046] 本発明の第 4の形態によれば、互いに対向状態で交差する複数のスキャン電極お よび複数のデータ電極を備え、前記スキャン電極を所定の順序で選択して該各スキ ヤン電極と前記各データ電極間の表示媒体にパルス状の電圧を印加して表示画面 の画像を書換える表示素子と、前記スキャン電極に接続されたスキャンドライバおよ び前記データ電極に接続されたデータドライバと、を有する表示装置であって、前記 表示媒体を初期化するリセットパルス、および、該表示媒体を画像データに従って書 換える書換えパルスを連続的に印加する画像書換え処理部と、既存の表示画像に おける部分的な書換えを行う場合、前記リセットパルスは、前記部分的な書換え領域 の開始ラインまたは終端ラインを選択している時間を、前記開始ラインと前記終端ライ ンを選択して 、な 、時間よりも長 、印加時間とするための処理部と、を備えることを特 徴とする表示装置が提供される。  [0046] According to the fourth aspect of the present invention, a plurality of scan electrodes and a plurality of data electrodes intersecting each other in an opposing state are provided, and the scan electrodes are selected in a predetermined order and A display element that rewrites an image on a display screen by applying a pulsed voltage to a display medium between the data electrodes, a scan driver connected to the scan electrode, and a data driver connected to the data electrode; In an existing display image, an image rewrite processing unit that continuously applies a reset pulse for initializing the display medium, and a rewrite pulse for rewriting the display medium according to image data. In the case of performing partial rewriting, the reset pulse indicates the time during which the start line or end line of the partial rewrite area is selected as the start line. The Select end line, Do, long than the time, a processing unit for the application time, the display device according to feature in that it comprises is provided with.
[0047] 本発明の第 5の形態によれば、互いに対向状態で交差する複数のスキャン電極お よび複数のデータ電極を備え、前記スキャン電極を所定の順序で選択して該各スキ ヤン電極と前記各データ電極間の表示媒体にパルス状の電圧を印加して表示画面 の画像を書換える表示素子と、前記スキャン電極に接続されたスキャンドライバおよ び前記データ電極に接続されたデータドライバと、を有する表示装置であって、前記 表示媒体を初期化するリセットパルス、および、該表示媒体を画像データに従って書 換える書換えパルスを連続的に印加する画像書換え処理部と、既存の表示画像に おける部分的な書換えを行う場合、該部分的な書換え領域の前記表示画面におけ る位置に応じてスキャン方向を切換えるスキャン方向切換え部と、を備える表示装置 を適用したことを特徴とする電子端末が提供される。  [0047] According to the fifth aspect of the present invention, a plurality of scan electrodes and a plurality of data electrodes intersecting each other in an opposing state are provided, and the scan electrodes are selected in a predetermined order and A display element that rewrites an image on a display screen by applying a pulsed voltage to a display medium between the data electrodes, a scan driver connected to the scan electrode, and a data driver connected to the data electrode; In an existing display image, an image rewrite processing unit that continuously applies a reset pulse for initializing the display medium, and a rewrite pulse for rewriting the display medium according to image data. A scanning direction switching unit that switches a scanning direction in accordance with the position of the partial rewriting area on the display screen when performing partial rewriting. Electronic terminal, characterized in that the application of the display device is provided.
[0048] 本発明の第 6の形態によれば、互いに対向状態で交差する複数のスキャン電極お よび複数のデータ電極を備え、前記スキャン電極を所定の順序で選択して該各スキ ヤン電極と前記各データ電極間の表示媒体にパルス状の電圧を印加して表示画面 の画像を書換える表示素子と、前記スキャン電極に接続されたスキャンドライバおよ び前記データ電極に接続されたデータドライバと、を有する表示装置であって、前記 表示媒体を初期化するリセットパルス、および、該表示媒体を画像データに従って書 換える書換えパルスを連続的に印加する画像書換え処理部と、既存の表示画像に おける部分的な書換えを行う場合、前記リセットパルスは、前記部分的な書換え領域 の開始ラインまたは終端ラインを選択している時間を、前記開始ラインと前記終端ライ ンを選択して 、な 、時間よりも長 、印加時間とするための処理部と、を備える表示装 置を適用したことを特徴とする電子端末が提供される。 [0048] According to the sixth aspect of the present invention, a plurality of scan electrodes and a plurality of data electrodes intersecting each other in an opposing state are provided, and the scan electrodes are selected in a predetermined order and A display element that rewrites an image on a display screen by applying a pulsed voltage to the display medium between the data electrodes, a scan driver connected to the scan electrodes, and And a data driver connected to the data electrode, wherein the image is continuously applied with a reset pulse for initializing the display medium and a rewrite pulse for rewriting the display medium in accordance with image data. When performing a partial rewrite on an existing display image with a rewrite processing unit, the reset pulse indicates the time when the start line or the end line of the partial rewrite area is selected, the start line and the end line. There is provided an electronic terminal characterized in that a display device including a processing unit for selecting a line and setting an application time longer than the time is applied.
発明の効果  The invention's effect
[0049] 本発明によれば、リセットパルスを用いた駆動方法において、画質を損ねることのな い安定した部分書換えを実現できる表示素子の駆動方法および表示装置を提供す ることがでさる。  [0049] According to the present invention, it is possible to provide a display element driving method and a display device capable of realizing stable partial rewriting without impairing image quality in a driving method using a reset pulse.
図面の簡単な説明  Brief Description of Drawings
[0050] [図 1A]コレステリック液晶の配向状態を説明するための図(その 1)である。 [0050] FIG. 1A is a diagram (part 1) for explaining the alignment state of a cholesteric liquid crystal.
[図 1B]コレステリック液晶の配向状態を説明するための図(その 2)である。  FIG. 1B is a diagram (part 2) for explaining the alignment state of the cholesteric liquid crystal.
[図 2A]コレステリック液晶を駆動するための電圧特性を示す図(その 1)である。  FIG. 2A is a diagram (part 1) illustrating voltage characteristics for driving a cholesteric liquid crystal.
[図 2B]コレステリック液晶を駆動するための電圧特性を示す図(その 2)である。  FIG. 2B is a diagram (part 2) illustrating voltage characteristics for driving a cholesteric liquid crystal.
[図 2C]コレステリック液晶を駆動するための電圧特性を示す図(その 3)である。  FIG. 2C is a diagram (part 3) illustrating voltage characteristics for driving a cholesteric liquid crystal.
[図 3]コレステリック液晶の反射率特性を示す図である。  FIG. 3 is a graph showing the reflectance characteristics of cholesteric liquid crystal.
[図 4A]関連技術の表示素子の駆動方法の一例を説明するための図(その 1)である。  FIG. 4A is a diagram (No. 1) for explaining an example of the driving method of the display element according to the related art.
[図 4B]関連技術の表示素子の駆動方法の一例を説明するための図(その 2)である。  FIG. 4B is a diagram (No. 2) for explaining an example of the driving method of the display element according to the related art.
[図 5]高速スキャンによる閾値特性のシフトを説明するための図である。  FIG. 5 is a diagram for explaining a shift in threshold characteristics due to high-speed scanning.
[図 6A]従来の表示素子の駆動方法の一例を説明するための図(その 1)である。  FIG. 6A is a diagram (No. 1) for explaining an example of the conventional display element driving method;
[図 6B]従来の表示素子の駆動方法の一例を説明するための図(その 2)である。  FIG. 6B is a diagram (No. 2) for explaining an example of the conventional display element driving method;
[図 6C]従来の表示素子の駆動方法の一例を説明するための図(その 3)である。  FIG. 6C is a diagram (No. 3) for explaining an example of the driving method of the conventional display element.
[図 7A]従来の表示素子の駆動方法の一例における課題を説明するための図(その 1 )である。  FIG. 7A is a diagram (No. 1) for describing a problem in an example of a conventional display element driving method.
[図 7B]従来の表示素子の駆動方法の一例における課題を説明するための図(その 2 )である。 圆 8A]本発明に係る表示素子の駆動方法における第 1の形態の原理を説明するた めの図(その 1)である。 FIG. 7B is a diagram (No. 2) for describing a problem in an example of a conventional display element driving method. FIG. 8A] is a diagram (No. 1) for explaining the principle of the first embodiment in the display element driving method according to the present invention.
圆 8B]本発明に係る表示素子の駆動方法における第 1の形態の原理を説明するた めの図(その 2)である。 FIG. 8B] is a diagram (No. 2) for explaining the principle of the first embodiment in the driving method of the display element according to the present invention.
[図 9A]本発明に係る表示素子の駆動方法の一例におけるスキャン方向による画像メ モリの割付けを説明するための図(その 1)である。  FIG. 9A is a diagram (No. 1) for explaining the assignment of image memory in the scan direction in an example of the display element driving method according to the invention.
[図 9B]本発明に係る表示素子の駆動方法の一例におけるスキャン方向による画像メ モリの割付けを説明するための図(その 2)である。  FIG. 9B is a diagram (No. 2) for explaining the allocation of image memory depending on the scan direction in an example of the display element driving method according to the invention.
圆 10]本発明に係る表示装置の第 1実施例を概略的に示すブロック図である。 [10] FIG. 10 is a block diagram schematically showing a first embodiment of the display device according to the present invention.
[図 11]図 10に示す表示装置における表示素子の一例を概略的に示す断面図である 圆 12A]本発明に係る表示素子の駆動方法の一実施例を説明するための図である。 圆 12B]図 12Aに示す表示素子の駆動方法の変形例を説明するための図である。 圆 13A]本発明に係る表示素子の駆動方法の一実施例を説明するためのフローチヤ ート(その 1)である。  FIG. 11 is a cross-sectional view schematically showing an example of a display element in the display device shown in FIG. 10. [0112] FIG. 11A is a diagram for explaining an example of a method for driving a display element according to the present invention. FIG. 12B is a diagram for explaining a modification of the display element driving method shown in FIG. 12A. 13A] is a flowchart (No. 1) for explaining an embodiment of the display element driving method according to the present invention.
圆 13B]本発明に係る表示素子の駆動方法の一実施例を説明するためのフローチヤ ート(その 2)である。 13B] is a flowchart (No. 2) for explaining an embodiment of the display element driving method according to the present invention.
圆 13C]本発明に係る表示素子の駆動方法の一実施例を説明するためのフローチヤ ート(その 3)である。 13C] A flow chart (No. 3) for describing one embodiment of the display element driving method according to the present invention.
圆 14A]本発明に係る表示素子の駆動方法の他の実施例を説明するための図(その14A] A diagram for explaining another embodiment of the display element driving method according to the present invention (
1)である。 1).
圆 14B]本発明に係る表示素子の駆動方法の他の実施例を説明するための図(その14B] A diagram for explaining another embodiment of the display element driving method according to the present invention
2)である。 2).
圆 15A]本発明に係る表示素子の駆動方法のさらに他の実施例を説明するための図 (その 1)である。 FIG. 15A is a view (No. 1) for explaining still another embodiment of the display element driving method according to the present invention.
圆 15B]本発明に係る表示素子の駆動方法のさらに他の実施例を説明するための図 (その 2)である。 FIG. 15B is a diagram (No. 2) for explaining still another embodiment of the display element driving method according to the present invention.
圆 16]本発明に係る表示装置の第 2実施例の要部を模式的に示す図である。 [図 17]本発明に係る表示装置の第 3実施例の要部を模式的に示す図である。 FIG. 16 is a diagram schematically showing a main part of a second embodiment of the display device according to the present invention. FIG. 17 is a diagram schematically showing a main part of a third embodiment of the display device according to the present invention.
[図 18A]スキャンモードおよびデータモードにおけるドライバへの入力電圧の一例を 示す図である。  FIG. 18A is a diagram showing an example of an input voltage to the driver in the scan mode and the data mode.
[図 18B]コレステリック液晶を駆動する場合の対応の一例を示す図である。  FIG. 18B is a diagram showing an example of correspondence when driving a cholesteric liquid crystal.
[図 18C]スキャンモードおよびデータモードにおけるドライバの出力電圧の一例を示 す図である。  FIG. 18C is a diagram showing an example of the output voltage of the driver in the scan mode and the data mode.
[図 18D]液晶に印加される合成波形の一例を示す図である。  FIG. 18D is a diagram showing an example of a composite waveform applied to the liquid crystal.
符号の説明 Explanation of symbols
1 表示素子  1 Display element
3 電源回路  3 Power supply circuit
4 制御回路  4 Control circuit
11, 12 フイノレム基板  11, 12 Finorem PCB
13, 14 透明電極(ITO)  13, 14 Transparent electrode (ITO)
15 液晶組成物(コレステリック液晶)  15 Liquid crystal composition (cholesteric liquid crystal)
16, 17 シーノレ材  16, 17 Sinore wood
18 光吸収層  18 Light absorption layer
19 駆動回路  19 Drive circuit
21 ; 211, 212, 213, 214 ; 2101, 2102, 2103 スキャンドライノく IC (スキャンド ライバ)  21; 211, 212, 213, 214; 2101, 2102, 2103 Scan dryer IC (scan driver)
22 ; 221, 222, 223, 224 ; 2201, 2202, 2203 データドライノく IC (データドラ ィバ)  22; 221, 222, 223, 224; 2201, 2202, 2203 Data driver IC (data driver)
31 昇圧部  31 Booster
32 電圧生成部  32 Voltage generator
33 レギユレータ  33 Regulator
41 部分書換え入力部  41 Partial rewrite input section
42 画像データ生成部  42 Image data generator
43 位置情報生成部  43 Location information generator
44 データ変換回路 (画像書換え処理部'スキャン方向切換え部) 100 元の画像 (既存の画像) 44 Data conversion circuit (image rewrite processing section 'scan direction switching section) 100 original image (existing image)
101 青 (B)層  101 Blue (B) layer
102 緑 (G)層  102 Green (G) layer
103 赤 (R)層  103 Red (R) layer
121 走査側のドライバ IC (スキャンドライノく)  121 Scan-side driver IC
122 データ側のドライバ IC (データドライノく)  122 Data side driver IC
200 部分書換え後の画像  200 Image after partial rewriting
FC フォーカルコニック状態  FC focal conic state
H ホメ才卜口ピック状態  H
P プレーナ状態  P Planar state
RO, Rl, R2, R3, R4 部分的な書換え領域  RO, Rl, R2, R3, R4 Partial rewrite area
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0052] まず、本発明に係る表示素子の駆動方法における第 1の形態の原理を説明する。 First, the principle of the first embodiment in the display element driving method according to the present invention will be described.
図 8Aおよび図 8Bは本発明に係る表示素子の駆動方法における第 1の形態の原 理を説明するための図である。  8A and 8B are views for explaining the principle of the first embodiment in the display element driving method according to the present invention.
[0053] 本発明に係る表示素子の駆動方法は、部分書換えを表示画面の開始点から終端 まで、全面書換えと同様に、リセットパルスおよび書込みパルスを同一フレームに印 カロして書換える。 In the display element driving method according to the present invention, the partial rewrite is performed from the start point to the end of the display screen by rewriting the reset pulse and the write pulse in the same frame as in the case of the full rewrite.
[0054] 図 8Aに示されるように、例えば、部分的な書換え領域 R1の位置が表示画面 300 内の下方である場合には、スキャン方向は上から下に向力う方向(S31→S32)とし、 逆に、図 8Bに示されるように、例えば、部分的な書換え領域 R1の位置が表示画面 3 00内の上方である場合には、スキャン方向は下から上に向力う方向(S34→S33)と する。ここで、参照符号 S31および S34は高速スキップ処理を行う領域を示し、また、 S 32および S 33は高速書込みを行う領域を示して!/、る。  As shown in FIG. 8A, for example, when the position of the partial rewrite region R1 is the lower side in the display screen 300, the scanning direction is the direction in which the force is applied from the top to the bottom (S31 → S32). On the other hand, as shown in FIG. 8B, for example, when the position of the partial rewrite region R1 is the upper side in the display screen 300, the scan direction is the direction in which the force is applied from the bottom to the top (S34 → S33). Here, reference numerals S31 and S34 indicate areas where high-speed skip processing is performed, and S32 and S33 indicate areas where high-speed writing is performed!
[0055] 図 9Aおよび図 9Bは本発明に係る表示素子の駆動方法の一例におけるスキャン方 向による画像メモリの割付けを説明するための図である。  FIG. 9A and FIG. 9B are diagrams for explaining image memory allocation according to a scan direction in an example of a display element driving method according to the present invention.
[0056] 図 9Aに示されるように、例えば、「明日の天気 晴れ」という部分的な書換え領域 R 11が表示画面 301内の下方に位置する場合、スキャン方向は上から下に向力う方向 になる。このとき、データドライバ 22には、例えば、メモリに格納されている部分的な 書換え領域 R11の画像データを上力も順に通常通り読出したデータ、すなわち、画 像データの左上をアドレス 0として読出したデータが転送される。 [0056] As shown in FIG. 9A, for example, when the partial rewrite region R11 "Tomorrow's weather is fine" is located in the lower part of the display screen 301, the scan direction is the direction in which the scan direction is directed from top to bottom. become. At this time, for example, the data driver 22 reads the image data of the partial rewrite area R11 stored in the memory as usual in the normal order, that is, the data read with the upper left of the image data as the address 0. Is transferred.
[0057] これに対して、図 9Bに示されるように、例えば、「明日の天気 晴れ」という部分的な 書換え領域 Rl 1が表示画面 301内の上方に位置する場合、スキャン方向は下から 上に向力 方向になる。このとき、データドライバ 22には、例えば、メモリに格納されて いる部分的な書換え領域 R11の画像データを下力も逆に読出したデータ、すなわち 、画像データの左下をアドレス 0として読出したデータが転送される。  On the other hand, as shown in FIG. 9B, for example, when the partial rewrite area Rl 1 of “Tomorrow's weather clear” is located in the upper part of the display screen 301, the scan direction is from the bottom to the top. The direction becomes the direction of force. At this time, for example, the data read from the partial rewrite area R11 stored in the memory in the reverse direction is transferred to the data driver 22, that is, the data read with the lower left of the image data as the address 0 is transferred. Is done.
[0058] このように、スキャン方向の切換えに応じて、部分的な書換え領域 R11の画像デー タのアドレスに対するアクセス手順も切換わることになる。  In this way, the access procedure for the address of the image data in the partial rewrite area R11 is also switched according to the switching of the scanning direction.
[0059] このように、本発明によれば、前述したリセットラインのはみ出しによる書換え領域 R 1以外の表示の損失を防止することができ、残像やコントラスト低下のない、安定した 部分書換えを実現することが可能になる。  As described above, according to the present invention, it is possible to prevent display loss other than the rewrite region R 1 due to the protrusion of the reset line described above, and to realize stable partial rewrite without any afterimage or contrast deterioration. It becomes possible.
実施例  Example
[0060] 以下、本発明に係る表示素子の駆動方法および表示装置の実施例を、添付図面 を参照して詳述する。  Hereinafter, embodiments of a display element driving method and a display device according to the present invention will be described in detail with reference to the accompanying drawings.
[0061] 図 10は本発明に係る表示装置 (電子端末)の第 1実施例を概略的に示すブロック 図である。図 10において、参照符号 1は表示素子、 3は電源回路、 4は制御回路、 5 はインバータ、 21はスキャンドライバ IC (スキャンドライバ)、そして、 22はデータドライ バ IC (データドライノく)を示して!/、る。  FIG. 10 is a block diagram schematically showing a first embodiment of a display device (electronic terminal) according to the present invention. In FIG. 10, reference numeral 1 is a display element, 3 is a power supply circuit, 4 is a control circuit, 5 is an inverter, 21 is a scan driver IC (scan driver), and 22 is a data driver IC (data driver). Show me! /
[0062] 図 10に示されるように、電源回路 3は、昇圧部 31、表示素子ドライブ電圧生成部( 電圧生成部) 32およびレギユレータ 33を備える。昇圧部 31は、例えば、電池から + 3 〜 + 5V程度の入力電圧を受け取り、表示媒体 (表示素子 1)を駆動する電圧に昇圧 して電圧生成部 32に供給する。電圧生成部 32は、スキャンドライバ 21およびデータ ドライバ 22に対してそれぞれ必要な電圧を生成し、レギユレータ 33は、電圧生成部 3 2からの電圧を安定ィ匕させてスキャンドライバ 21およびデータドライバ 22に供給する  As shown in FIG. 10, the power supply circuit 3 includes a booster 31, a display element drive voltage generator (voltage generator) 32, and a regulator 33. For example, the booster 31 receives an input voltage of about +3 to +5 V from the battery, boosts the voltage to drive the display medium (display element 1), and supplies the boosted voltage to the voltage generator 32. The voltage generation unit 32 generates necessary voltages for the scan driver 21 and the data driver 22, respectively, and the regulator 33 stabilizes the voltage from the voltage generation unit 32 and supplies it to the scan driver 21 and the data driver 22. Supply
[0063] 制御回路 4は、部分書換え入力部 41、画像データ生成部 42、位置情報生成部 43 、並びに、データ変換回路 44を備える。制御回路 4は、外部から供給された画像デ ータおよび制御信号を演算し、部分書換えを行う画像パターンとそれを行う表示画面 内の位置が入力されたら、データ変換回路 44がそれらの情報に応じてスキャンドライ バ 21のスキャン方向を決定し、また、必要に応じてドライバ 21に入力する画像データ を再配列する。 [0063] The control circuit 4 includes a partial rewrite input unit 41, an image data generation unit 42, and a position information generation unit 43. And a data conversion circuit 44. The control circuit 4 calculates image data and control signals supplied from the outside, and when the image pattern to be partially rewritten and the position in the display screen to which it is input are input, the data conversion circuit 44 converts the information into the information. The scanning direction of the scan driver 21 is determined accordingly, and the image data input to the driver 21 is rearranged as necessary.
[0064] すなわち、部分書換え入力部 41は、外部から供給される画像データおよび制御信 号から部分書換えを認識し、画像データ生成部 42で部分書換えを行う領域の画像 データを生成すると共に、位置情報生成部 43で部分書換えを行う領域の位置情報( 書換え領域の表示画面内における位置情報)を生成する。これら書換え領域の画像 データおよび位置情報は、データ変換回路 44に入力され、前述したスキャンドライバ 21のスキャン方向を決定するスキャン方向信号 CS1,データ取り込みクロック CS2, パルス極性制御信号 CS3,フレーム開始信号 CS4,データラッチ'スキャンシフト信 号 CS5およびドライバ出力遮断信号 CS6を出力する。  That is, the partial rewriting input unit 41 recognizes partial rewriting from image data and control signals supplied from the outside, and generates image data of an area where partial rewriting is performed by the image data generating unit 42, as well as the position. The information generation unit 43 generates position information of the area to be partially rewritten (position information on the display area of the rewrite area). The image data and position information in the rewrite area are input to the data conversion circuit 44, and the scan direction signal CS1, the data capture clock CS2, the pulse polarity control signal CS3, and the frame start signal CS4 that determine the scan direction of the scan driver 21 described above. , Data latch 'scan shift signal CS5 and driver output cutoff signal CS6 are output.
[0065] ここで、データ取り込みクロック CS2は、データモードに設定されたドライバに供給さ れ、 1ライン分のデータ (部分書換えの場合は、書換えを行う領域のデータ)を順次取 込むための信号であり、パルス極性制御信号 CS 3は、表示素子 1に与えるパルス電 圧の極性を反転制御するための信号であり、フレーム開始信号 CS4は、 1フレームの 画像の開始を示す信号であり、データラッチ'スキャンシフト信号 CS5は、データドラ ィバによりデータが格納されるラインおよびスキャンドライバにより選択されるラインの 同期制御を行うための信号であり、そして、ドライバ出力遮断信号 CS6は、データドラ ィバまたはスキャンドライバのドライバ出力を遮断するための信号である。  [0065] Here, the data capture clock CS2 is supplied to the driver set in the data mode, and is a signal for sequentially capturing data for one line (in the case of partial rewriting, data in the area to be rewritten). The pulse polarity control signal CS3 is a signal for inversion control of the polarity of the pulse voltage applied to the display element 1, and the frame start signal CS4 is a signal indicating the start of an image of one frame. The latch 'scan shift signal CS5 is a signal for controlling the synchronization of the line in which data is stored by the data driver and the line selected by the scan driver, and the driver output cutoff signal CS6 is the data driver. This is a signal for cutting off the driver output of the bus or scan driver.
[0066] すなわち、既存の表示画像において一部の領域を書換える場合、その書換え領域 が表示画面内の下方だった場合には、スキャン方向を表示画面の上から下に向かう 方向とし、逆に、部分的な書換え領域が表示画面内の上方だった場合には、スキヤ ン方向を表示画面の下力 上に向力 方向とする。なお、本発明に係る表示素子の 駆動方法は、後に詳述する。  [0066] That is, when a part of the existing display image is rewritten, if the rewritten area is in the lower part of the display screen, the scan direction is the direction from the top to the bottom of the display screen. If the partial rewrite area is in the upper part of the display screen, the scan direction is the upward force direction on the lower force of the display screen. The display element driving method according to the present invention will be described in detail later.
[0067] 図 11は図 10に示す表示装置における表示素子 (液晶表示素子)の一例を概略的 に示す断面図である。図 11において、参照符号 11および 12はフィルム基板、 13お よび 14は透明電極 (例えば、 ITO)、 15は液晶組成物(コレステリック液晶)、 16およ び 17はシール材、 18は光吸収層、そして、 19は駆動回路を示している。 FIG. 11 is a cross-sectional view schematically showing an example of the display element (liquid crystal display element) in the display device shown in FIG. In FIG. 11, reference numerals 11 and 12 are film substrates, and 13 And 14 are transparent electrodes (for example, ITO), 15 is a liquid crystal composition (cholesteric liquid crystal), 16 and 17 are sealing materials, 18 is a light absorbing layer, and 19 is a drive circuit.
[0068] 表示素子 1は、液晶組成物 15を含み、透明のフィルム基板 11および 12の内面 (液 晶組成物 15が封入されている面)には、それぞれ垂直に交差する透明電極 13およ び 14がそれぞれ形成されている。すなわち、対向するフィルム基板 11および 12には 複数のスキャン電極 13および複数のデータ電極 14がマトリクス状に形成されている。 なお、図 11では、一見するとスキャン電極 13とデータ電極 14が平行するように描か れているが、実際には、例えば、 1本のスキャン電極 13に対して複数のデータ電極 1 4が交差しているのはいうまでもない。さらに、各フィルム基板 11および 12の厚さとし ては、例えば、 0. 2mm程度であり、また、液晶組成物 15の層の厚さは、例えば、 3 μ m〜6 μ m程度ではあるが、説明のためにそれらの比率は無視されている。  [0068] The display element 1 includes the liquid crystal composition 15, and the transparent electrodes 13 and 12 that intersect perpendicularly on the inner surfaces of the transparent film substrates 11 and 12 (the surfaces in which the liquid crystal composition 15 is sealed), respectively. 14 are formed. That is, a plurality of scan electrodes 13 and a plurality of data electrodes 14 are formed in a matrix on opposing film substrates 11 and 12. In FIG. 11, the scan electrode 13 and the data electrode 14 are drawn so as to be parallel at first glance. However, actually, for example, a plurality of data electrodes 14 intersect one scan electrode 13. Needless to say. Furthermore, the thickness of each of the film substrates 11 and 12 is, for example, about 0.2 mm, and the thickness of the layer of the liquid crystal composition 15 is, for example, about 3 μm to 6 μm. Those ratios are ignored for illustration.
[0069] ここで、各電極 13および 14上には、絶縁性薄膜や配向安定ィ匕膜がコーティングさ れていることが好ましい。また、光を入射させる側とは反対側の基板(12)の外面 (裏 面)には、必要に応じて、可視光吸収層 18が設けられる。  [0069] Here, it is preferable that the electrodes 13 and 14 are coated with an insulating thin film or an alignment stability film. In addition, a visible light absorbing layer 18 is provided on the outer surface (back surface) of the substrate (12) opposite to the side on which light is incident, as necessary.
[0070] 本実施例において、液晶組成物 15は室温でコレステリック相を示すコレステリック 液晶であり、これらの材料やその組み合わせについては以下の実験例によって具体 的に説明する。  In this example, the liquid crystal composition 15 is a cholesteric liquid crystal that exhibits a cholesteric phase at room temperature, and these materials and combinations thereof will be specifically described by the following experimental examples.
[0071] シール材 16および 17は、液晶組成物 15をフィルム基板 11および 12間に封入する ためのものである。なお、駆動回路 19は、電極 13および 14に所定のパルス状の電 圧を印加するためのものである。  The sealing materials 16 and 17 are for sealing the liquid crystal composition 15 between the film substrates 11 and 12. The drive circuit 19 is for applying a predetermined pulse voltage to the electrodes 13 and 14.
[0072] フィルム基板 11および 12は、いずれも透光性を有している力 本実施例の表示素 子 1として用いることができる一対の基板は、少なくとも一方が透光性を有していること が必要である。なお、透光性を有する基板としては、ガラス基板を例示できるが、ガラ ス基板以外にも、 PETや PCなどの可撓性の榭脂フィルム基板を使用することができ る。また、電極 13および 14としては、例えば、 ITO (Indium Tin Oxide :インジウム錫 酸化物)が代表的である力 その他に、例えば、 IZO (Indium Zinc Oxide:インジウム 亜鉛酸化物)等の透明導電膜、或いは、アルミニウムやシリコン等の金属電極、若しく は、アモルファスシリコン、 BSO (Bismuth Silicon Oxide : )等の光導電性膜等を用い ることがでさる。 [0072] The film substrates 11 and 12 both have translucency. At least one of the pair of substrates that can be used as the display element 1 of this example has translucency. It is necessary. As the substrate having translucency, a glass substrate can be exemplified, but a flexible resin film substrate such as PET or PC can be used in addition to the glass substrate. In addition, as the electrodes 13 and 14, for example, ITO (Indium Tin Oxide) is a representative force. In addition, for example, a transparent conductive film such as IZO (Indium Zinc Oxide), Alternatively, a metal electrode such as aluminum or silicon, or a photoconductive film such as amorphous silicon or BSO (Bismuth Silicon Oxide) is used. It can be done.
[0073] 図 11に示す液晶表示素子においては、前述したように、透明フィルム基板 11およ び 12の内表面に互いに平行な複数の帯状透明電極 13および 14が形成されており 、これらの電極 13および 14は基板に垂直な方向力も見て互いに交差するように向か い合わされている。  In the liquid crystal display element shown in FIG. 11, a plurality of strip-like transparent electrodes 13 and 14 parallel to each other are formed on the inner surfaces of the transparent film substrates 11 and 12 as described above. 13 and 14 face each other so as to cross each other with reference to the direction force perpendicular to the substrate.
[0074] 本発明に係る表示素子は、電極間の短絡を防止し、或いは、ガスバリア層として液 晶表示素子の信頼性を向上させる機能を有する絶縁性薄膜を形成してもよ!/、。また 、配向安定ィ匕膜としては、ポリイミド榭脂、ポリアミドイミド榭脂、ポリエーテルイミド榭脂 、ポリビュルプチラール榭脂、アクリル榭脂等の有機膜、或いは、酸ィ匕シリコン、酸ィ匕 アルミニウム等の無機材料を例示することができる。なお、電極 13および 14にコーテ イングする配向安定ィ匕膜は、絶縁性薄膜と兼用することもできる。  [0074] In the display element according to the present invention, an insulating thin film having a function of preventing a short circuit between the electrodes or improving the reliability of the liquid crystal display element as a gas barrier layer may be formed. In addition, as the orientation stabilizing film, an organic film such as polyimide resin, polyamideimide resin, polyetherimide resin, polybutylpropylene resin, and acrylic resin, or silicon oxide, acid resin An inorganic material such as aluminum can be exemplified. Note that the orientation stable film coated on the electrodes 13 and 14 can also be used as an insulating thin film.
[0075] 本発明に係る液晶表示素子は、一対の基板間に、基板間ギャップを均一に保持す るためのスぺーサを設けてもよい。このスぺーサとしては、榭脂製または無機酸ィ匕物 製の球体を F例示することができる。また、表面に熱可塑性の榭脂がコーティングして ある固着スぺーサも好適に用いることができる。  [0075] In the liquid crystal display element according to the present invention, a spacer may be provided between the pair of substrates to keep the inter-substrate gap uniform. Examples of the spacer include spheres made of resin or inorganic acid. Further, a fixed spacer whose surface is coated with a thermoplastic resin can also be suitably used.
[0076] 液晶組成物 (液晶層) 15を構成する物質としては、例えば、ネマティック液晶組成 物にカイラル剤を 10〜40wt%添カ卩したコレステリック液晶である。ここで、カイラル剤 の添加量は、ネマティック液晶成分とカイラル剤の合計量を 100wt%としたときの値 である。  [0076] The substance constituting the liquid crystal composition (liquid crystal layer) 15 is, for example, cholesteric liquid crystal in which 10 to 40 wt% of a chiral agent is added to the nematic liquid crystal composition. Here, the addition amount of the chiral agent is a value when the total amount of the nematic liquid crystal component and the chiral agent is 100 wt%.
[0077] ネマティック液晶としては従来公知の各種のものを用いることができる力 誘電率異 方性が 20以上あることが、駆動電圧の都合上好ましい。すなわち、誘電率異方性が 20以上であれば、駆動電圧が比較的低くなる。また、コレステリック液晶組成物として の誘電率異方性(Δ ε )は、 20〜50あることが好ましい。概ねこの範囲であれば、汎 用のドライバが利用可能になる。  [0077] Various types of conventionally known nematic liquid crystals can be used as the nematic liquid crystal. It is preferable in view of driving voltage that the dielectric constant anisotropy is 20 or more. That is, when the dielectric anisotropy is 20 or more, the drive voltage is relatively low. The dielectric anisotropy (Δε) of the cholesteric liquid crystal composition is preferably 20 to 50. Within this range, general-purpose drivers can be used.
[0078] また、屈折率異方性( Δη)は、 0. 18〜0. 24が好ましい。この範囲より小さいと、プ レーナ状態の反射率が低くなり、この範囲より大きいと、フォーカルコニック状態での 散乱反射が大きくなる他、粘度もつられて高くなつて応答速度が低下することになる。 また、この液晶の厚みは、 3 111〜6 111程度カ 子ましく、これより小さいとプレーナ状 態の反射率が低くなり、これより大きいと駆動電圧が高くなりすぎるため好ましくない。 Further, the refractive index anisotropy (Δη) is preferably 0.18 to 0.24. If it is smaller than this range, the reflectivity in the planar state will be low, and if it is larger than this range, the scattering reflection in the focal conic state will increase, and the response speed will decrease as the viscosity increases. The thickness of this liquid crystal is about 3 111 to 6 111. The reflectance of the state becomes low, and if it is larger than this, the driving voltage becomes too high, which is not preferable.
[0079] 図 12Aは本発明に係る表示素子の駆動方法の一実施例を説明するための図であ り、また、図 13A〜図 13Cは本発明に係る表示素子の駆動方法の一実施例を説明 するためのフローチャートである。  FIG. 12A is a diagram for explaining one embodiment of a display element driving method according to the present invention, and FIGS. 13A to 13C are one embodiment of a display element driving method according to the present invention. It is a flowchart for demonstrating.
[0080] 図 12Aは、コモン側(スキャンドライバ 21)を 2つのスキャンドライバ 211および 212 で構成したものである。なお、図 13A〜図 13Cに示すフローチャートは、図 12Aに示 すスキャンドライバが 2つだけ設けられた場合の動作を説明するものである。  In FIG. 12A, the common side (scan driver 21) is composed of two scan drivers 211 and 212. FIG. Note that the flowcharts shown in FIGS. 13A to 13C explain the operation when only two scan drivers shown in FIG. 12A are provided.
[0081] まず、ステップ ST1で部分書換え条件、すなわち、画像データ Example.dat (u, v) を設定する。次に、ステップ ST2に進んで、画像データ Example. dat (u, v)をメモリに 格納し、さらに、ステップ ST3に進んで、書換え位置をメモリに格納する。そして、ステ ップ ST4に進んで、部分書換え画像 (部分書換え領域 R2)の位置が 2つのスキャンド ライバ 211および 212を跨ぐ力どうかを判別する。  [0081] First, in step ST1, partial rewrite conditions, that is, image data Example.dat (u, v) are set. Next, proceeding to step ST2, the image data Example.dat (u, v) is stored in the memory, and further proceeding to step ST3, the rewrite position is stored in the memory. Then, proceeding to step ST4, it is determined whether or not the position of the partially rewritten image (partially rewritten region R2) is a force straddling the two scan drivers 211 and 212.
[0082] ステップ ST4において、部分書換え領域 R2の位置が 2つのスキャンドライバ 211お よび 212を跨ぐと判別されると、ステップ ST5に進んで、第 1のスキャンドライバ 211で 部分書換えを開始し、ステップ ST6に進む。ここで、部分書換え領域 R2の位置が 2 つのスキャンドライバ 211および 212を跨ぐ場合は、書換え領域 R2が第 1のスキャン ドライバ 211に対応する表示画面内の下方に位置する場合であるため、スキャンドラ ィバ 211のスキャン方向は表示画面の上から下に向力う方向になる。なお、この上か ら下に向力うスキャン方向は、予め基本スキャン方向として決めておく。  [0082] In step ST4, when it is determined that the position of the partial rewrite region R2 crosses the two scan drivers 211 and 212, the process proceeds to step ST5, where the first scan driver 211 starts partial rewrite, Proceed to ST6. Here, when the position of the partial rewrite area R2 straddles the two scan drivers 211 and 212, it is a case where the rewrite area R2 is located below the display screen corresponding to the first scan driver 211. The scanning direction of the driver 211 is a direction in which it is directed downward from the top of the display screen. It should be noted that the scan direction that is directed from the top to the bottom is determined in advance as the basic scan direction.
[0083] ステップ ST6において、第 1のスキャンドライバ 211により、領域 S41の高速スキップ 処理を行い、さらに、ステップ ST14に進んで、第 1のスキャンドライバ 211により書換 え領域 R2の一部に対応する領域 S42に対する画像書込みを開始する。  [0083] In step ST6, the first scan driver 211 performs high-speed skip processing of the region S41, and further proceeds to step ST14 where the first scan driver 211 corresponds to a part of the rewrite region R2. Start image writing to S42.
[0084] さらに、ステップ ST15において、画像データ Example. dat (u, v)をデータドライバ 2 2に入力する。この場合、メモリアクセスの順番は順方向になり、メモリ内に格納されて いる画像データ Example.dat (u, v)を読出した各ラインの座標データ(0, 0) , (1, 0) , (2, 0) , · ··, (u— 1, 0); (0, 1) , (1, 1) , (2, 1) , · ··, (u— 1, 1);……; (0, v— 1 ) , (1, V— 1) , (2, V— 1) , · ··, (u— 1, V— 1)を順に領域 S42の各スキャンラインに 対応させてデータドライバ 22に書込む。 [0085] そして、ステップ ST16に進んで、電圧パルス出力(32Vまたは 24V)を対応するデ ータ電極に与え、ステップ ST17に進んで、第 1のスキャンドライバ 211による書込を 終了する。 Further, in step ST 15, image data Example. Dat (u, v) is input to the data driver 22. In this case, the memory access order is forward, and the coordinate data (0, 0), (1, 0), (0, 0), (2, 0), ···, (u— 1, 0); (0, 1), (1, 1), (2, 1), ···, (u— 1, 1); …… ; (0, v— 1), (1, V— 1), (2, V— 1),..., (U— 1, V— 1) in order to correspond to each scan line in area S42 Write to data driver 22. Then, the process proceeds to step ST16, and the voltage pulse output (32V or 24V) is applied to the corresponding data electrode. The process proceeds to step ST17, and the writing by the first scan driver 211 is completed.
[0086] 次に、ステップ ST26に進んで、第 2のスキャンドライバ 212のスキャン方向を、基本 スキャン方向とは逆の表示画面の下力 上に向力 方向に切換える。ここで、部分書 換え領域 R2の位置が 2つのスキャンドライバ 211および 212を跨ぐ場合は、書換え 領域 R2が第 2のスキャンドライバ 212に対応する表示画面内の上方に位置する場合 であるため、スキャンドライバ 212のスキャン方向は表示画面の下から上に向力う方 向になる。  Next, proceeding to step ST 26, the scanning direction of the second scan driver 212 is switched to the direction of the upward force on the lower force of the display screen opposite to the basic scanning direction. Here, when the position of the partial rewrite area R2 straddles the two scan drivers 211 and 212, it is a case where the rewrite area R2 is located above the display screen corresponding to the second scan driver 212. The scanning direction of the driver 212 is directed from the bottom to the top of the display screen.
[0087] また、ステップ ST27に進んで、第 2のスキャンドライバ 212により、領域 S44の高速 スキップ処理を行い、さらに、ステップ ST28に進んで、第 2のスキャンドライバ 212に より書換え領域 R2の一部に対応する領域 S43に対する画像書込みを開始する。  [0087] Further, the process proceeds to step ST27, where the second scan driver 212 performs the high-speed skip processing of the region S44, and further proceeds to step ST28, where the second scan driver 212 performs a part of the rewrite region R2. Image writing to the area S43 corresponding to is started.
[0088] さらに、ステップ ST29において、画像データ Example. dat (u, v)をデータドライバ 2 2に入力する。この場合、メモリアクセスの順番は上下反転方向になり、メモリ内に格 納されている画像データ Example.dat (u, v)読出した各ラインの座標データ(0, v—l ) , (1, v—l) , (2, v—l) , · ··, (u- 1, v—l); (0, v- 2) , (1, v— 2) , (2, v— 2) , · ··, (u- 1, v- 2); · ··· ·· ; (0, 0) , (1, 0) , (2, 0) , · ··, (u—l, 0)を順に領域 S43 の各スキャンラインに対応させてデータドライバ 22に書込む。  Furthermore, in step ST 29, image data Example. Dat (u, v) is input to the data driver 22. In this case, the memory access order is upside down, and image data stored in memory Example.dat (u, v) Coordinate data (0, v—l), (1, v—l), (2, v—l), ···, (u- 1, v—l); (0, v- 2), (1, v— 2), (2, v— 2) , ..., (u- 1, v- 2); ... (0, 0), (1, 0), (2, 0), ..., (u-l, 0 ) Are sequentially written to the data driver 22 corresponding to each scan line in the region S43.
[0089] そして、ステップ ST30に進んで、電圧パルス出力(32Vまたは 24V)を対応するデ ータ電極に与え、ステップ ST31に進んで、第 2のスキャンドライバ 212による書込を 終了し、さらに、ステップ ST32に進んで、部分書換え (書換え領域 R2の書込み)を 終了する。  Then, the process proceeds to step ST30, the voltage pulse output (32V or 24V) is applied to the corresponding data electrode, the process proceeds to step ST31, the writing by the second scan driver 212 is terminated, and Proceeding to step ST32, the partial rewriting (writing of the rewriting area R2) is completed.
[0090] 一方、ステップ ST4にお!/、て、部分書換え領域 (R2)の位置が 2つのスキャンドライ ノ 211および 212を跨がない、すなわち、部分書換え領域が一方のスキャンドライバ の領域内に含まれると判別されると、ステップ ST7に進んで、部分書換え領域が第 1 のスキャンドライバ 211の領域に含まれる力 或いは、第 2のスキャンドライバ 212の 領域に含まれるかを判別して、ステップ ST8に進む。ステップ ST8では、部分書換え 領域力もデータドライバ 22までの距離が長いかどうか、すなわち、部分書換え領域か ら表示画面の上端までの上側の長さ≥部分書換え領域力 表示画面の下端までの 下側の長さを判別する。 [0090] On the other hand, in step ST4, the position of the partial rewrite area (R2) does not cross the two scan planes 211 and 212, that is, the partial rewrite area is within the area of one scan driver. If it is determined that it is included, the process proceeds to step ST7, where it is determined whether the partial rewrite area is included in the area of the first scan driver 211 or whether it is included in the area of the second scan driver 212. Proceed to ST8. In step ST8, whether or not the partial rewrite area force has a long distance to the data driver 22, that is, whether the partial rewrite area is From the top to the top of the display screen ≥ partial rewrite area force The bottom length to the bottom of the display screen is determined.
[0091] ステップ ST8にお 、て、上側の長さ≥下側の長さであると判別されると、すなわち、 部分書換え領域を含む領域をスキャンする第 1または第 2のスキャンドライバ (書換え 領域を含むスキャンドライバ)において、部分書換え領域がその書換え領域を含むス キャンドライバに対応する表示画面内の下方であると判別されると、ステップ ST9に 進んで、書換え領域を含むスキャンドライバで部分書換えを開始し、ステップ ST10 に進む。  [0091] If it is determined in step ST8 that the upper length ≥ the lower length, that is, the first or second scan driver (rewrite area) that scans the area including the partial rewrite area. If it is determined that the partial rewrite area is below the display screen corresponding to the scan driver including the rewrite area, the process proceeds to step ST9, and the partial rewrite is performed with the scan driver including the rewrite area. And proceed to step ST10.
[0092] ステップ ST10において、書換え領域を含むスキャンドライバにより高速スキップ処 理を行い、また、ステップ ST18に進んで、書換え領域を含むスキャンドライバにより 画像書込みを開始し、さらに、ステップ ST19に進んで、画像データ Example.dat (u, V)をデータドライバ 22に入力する。この場合、前述したステップ ST15と同様に、メモ リアクセスの順番は順方向になる。  [0092] In step ST10, high-speed skip processing is performed by the scan driver including the rewrite area, and the process proceeds to step ST18, where image writing is started by the scan driver including the rewrite area, and further, the process proceeds to step ST19. Input the image data Example.dat (u, V) to the data driver 22. In this case, the memory access order is forward as in step ST15 described above.
[0093] そして、ステップ ST20に進んで、電圧パルス出力(32Vまたは 24V)を対応するデ ータ電極に与え、ステップ ST21に進んで、書換え領域を含むスキャンドライバによる 書込を終了し、ステップ ST32に進んで、部分書換えを終了する。  [0093] Then, the process proceeds to step ST20, and the voltage pulse output (32V or 24V) is applied to the corresponding data electrode. The process proceeds to step ST21, and the writing by the scan driver including the rewrite area is terminated. Proceed to and end the partial rewriting.
[0094] ステップ ST8にお 、て、上側の長さ≥下側の長さではな 、と判別されると、すなわ ち、部分書換え領域がその書換え領域を含むスキャンドライバに対応する表示画面 内の上方であると判別されると、ステップ ST11に進んで、書換え領域を含むスキャン ドライバのスキャン方向を、基本スキャン方向とは逆の表示画面の下から上に向かう 方向に切換え、ステップ ST12に進む。  [0094] If it is determined in step ST8 that the upper length is not the lower length, that is, the partial rewrite area is in the display screen corresponding to the scan driver including the rewrite area. If it is determined that the position is above, the process proceeds to step ST11, and the scan direction of the scan driver including the rewrite area is switched from the bottom of the display screen to the direction opposite to the basic scan direction, and the process proceeds to step ST12. .
[0095] ステップ ST12において、書換え領域を含むスキャンドライバで部分書換えを開始 し、ステップ ST13に進んで、書換え領域を含むスキャンドライバにより高速スキップ 処理を行い、また、ステップ ST22に進んで、書換え領域を含むスキャンドライバによ り画像書込みを開始する。 [0095] In step ST12, partial rewriting is started by the scan driver including the rewriting area, and the process proceeds to step ST13. The high-speed skip processing is performed by the scan driver including the rewriting area, and the process proceeds to step ST22. Image writing is started by the included scan driver.
[0096] さらに、ステップ ST23に進んで、画像データ Example.dat (u, v)をデータドライバ 2[0096] Further, proceeding to step ST23, the image data Example.dat (u, v) is transferred to the data driver 2
2に入力する。この場合、前述したステップ ST29と同様に、メモリアクセスの順番は 上下反転方向になる。 [0097] そして、ステップ ST24に進んで、電圧パルス出力(32Vまたは 24V)を対応するデ ータ電極に与え、ステップ ST25に進んで、書換え領域を含むスキャンドライバによる 書込を終了し、ステップ ST32に進んで、部分書換えを終了する。 Enter in 2. In this case, as in step ST29 described above, the memory access order is the upside down direction. [0097] Then, the process proceeds to step ST24, and the voltage pulse output (32V or 24V) is applied to the corresponding data electrode. The process proceeds to step ST25, and the writing by the scan driver including the rewrite area is terminated. Proceed to and end the partial rewriting.
[0098] 図 12Bは図 12Aに示す表示素子の駆動方法の変形例を説明するための図である 上述した説明は、図 12Aに示されるようなコモン側を 2個のスキャンドライバ 211お よび 212で構成し、セグメント側を表示画面の一端 (上端)に設けた 1個のデータドラ ィバ 22で構成した表示素子に関して説明した力 例えば、図 12Bに示されるようなコ モン側を 2個のスキャンドライバ 211および 212で構成し、セグメント側を表示画面の 両端 (上端および下端)に設けた 2個のデータドライバ 221および 222で構成した表 示素子に関して同様に適用することができる。  FIG. 12B is a diagram for explaining a modification of the method for driving the display element shown in FIG. 12A. The above description is based on two scan drivers 211 and 212 on the common side as shown in FIG. 12A. The force described for a display element composed of one data driver 22 with the segment side provided at one end (upper end) of the display screen. For example, the common side as shown in FIG. The present invention can be similarly applied to a display element constituted by two data drivers 221 and 222 which are configured by the scan drivers 211 and 212 and the segment side is provided at both ends (upper and lower ends) of the display screen.
[0099] なお、図 12Bに示されるような 2個のスキャンドライバ 211および 212を有する表示 素子では、第 1のスキャンドライバ 211および第 1のデータドライバ 221による第 1の書 込み処理と、第 2のスキャンドライバ 212および第 2のデータドライバ 222による第 2の 書込み処理とを並列的に(同時に)行うことも可能である。すなわち、図 12Bに示す表 示素子 (表示装置)では、第 1のスキャンドライバ 211による領域 S45の上から下に向 力うスキャン方向(下向き)の高速スキップ処理と第 2のスキャンドライバ 212による領 域 S48の下から上に向力うスキャン方向(上向き)の高速スキップ処理とを同時に行 い、且つ、第 1のスキャンドライバ 211による領域 S46の下向きの高速書込み処理と 第 2のスキャンドライバ 212による領域 S47の上向きの高速書込み処理とを同時に行 うことで、より一層部分書換えに要する時間を短縮することが可能になる。  Note that in the display element having two scan drivers 211 and 212 as shown in FIG. 12B, the first write process by the first scan driver 211 and the first data driver 221 and the second It is also possible to perform the second writing process by the scan driver 212 and the second data driver 222 in parallel (simultaneously). That is, in the display element (display device) shown in FIG. 12B, the first scan driver 211 performs the high-speed skip processing in the scan direction (downward) from the top to the bottom of the region S45 and the region by the second scan driver 212. Simultaneously performs high-speed skip processing in the scan direction (upward) from the bottom to the top of area S48, and also performs high-speed write processing in the downward direction of area S46 by first scan driver 211 and second scan driver 212. By simultaneously performing the upward high-speed writing process in the area S47, the time required for partial rewriting can be further reduced.
[0100] 図 14Aおよび図 14Bは本発明に係る表示素子の駆動方法の他の実施例を説明す るための図である。  FIG. 14A and FIG. 14B are diagrams for explaining another embodiment of the display element driving method according to the present invention.
[0101] 図 14Aは、コモン側(スキャンドライバ 21)を 4つのスキャンドライバ 211〜214で構 成したものであり、図 14Bは、図 14Aと同様にコモン側を 4つのスキャンドライバ 211 〜214で構成するだけでなぐセグメント側(データドライバ 22)も表示画面の上端お よび下端に設けた 2個のデータドライバ 221および 222で構成したものである。  FIG. 14A shows the common side (scan driver 21) configured with four scan drivers 211 to 214, and FIG. 14B shows the common side with four scan drivers 211 to 214 as in FIG. 14A. The segment side (data driver 22) that is simply configured is also composed of two data drivers 221 and 222 provided at the upper and lower ends of the display screen.
[0102] なお、第 1〜第 4のスキャンドライバ 211〜214と部分書換え画像 (部分書換え領域 R3)の位置関係が図 14Aに示されるような場合、例えば、順に、第 1のスキャンドライ ノ 211による領域 S51の下向きの高速スキップ処理、第 2のスキャンドライバ 212によ る領域 S52の下向きの高速スキップ処理、第 2のスキャンドライバ 212による領域 S53 の下向きの高速書込み処理、および、第 3のスキャンドライバ 213による領域 S54の 下向きの高速書込み処理を行い、その後、第 4のスキャンドライバ 214による領域 S5 6の上向きの高速スキップ処理、および、第 4のスキャンドライバ 214による領域 S55 の上向きの高速書込み処理を行うことになる。 [0102] The first to fourth scan drivers 211 to 214 and the partial rewrite image (partial rewrite area) When the positional relationship of (R3) is as shown in FIG. 14A, for example, the high-speed skip processing of the area S51 downward by the first scan driver 211 and the downward movement of the area S52 by the second scan driver 212 are sequentially performed. Performs high-speed skip processing, downward high-speed writing processing of area S53 by the second scan driver 212, and downward high-speed writing processing of area S54 by the third scan driver 213, and then the area by the fourth scan driver 214. The upward high-speed skip processing of S5 6 and the upward high-speed writing processing of the area S55 by the fourth scan driver 214 are performed.
[0103] また、第 1〜第 4のスキャンドライバ 211〜214と部分書換え領域 R3の位置関係が 図 14Bに示されるような場合、例えば、順に、第 1のスキャンドライバ 211による領域 S 61の下向きの高速スキップ処理と第 4のスキャンドライバ 214による領域 S66の上向 きの高速スキップ処理を同時に行い、さらに、第 2のスキャンドライバ 212による領域 S 62の下向きの高速スキップ処理および第 4のスキャンドライバ 214による領域 S65の 上向きの高速書込み処理を同時に行い、そして、第 2のスキャンドライバ 212による 領域 S63の下向きの高速書込み処理と第 3のスキャンドライバ 213による領域 S64の 上向きの高速書込み処理を同時に行うことになる。  [0103] Further, when the positional relationship between the first to fourth scan drivers 211 to 214 and the partial rewrite region R3 is as shown in Fig. 14B, for example, the first scan driver 211 sequentially moves downward in the region S61. High-speed skip processing of the area S66 by the fourth scan driver 214 and the high-speed skip processing of the area S66 by the second scan driver 212 and the fourth scan driver Simultaneously performs upward high-speed write processing of area S65 by 214 and downward high-speed write processing of area S63 by second scan driver 212 and upward high-speed write processing of area S64 by third scan driver 213 It will be.
[0104] このように、コモン側のスキャンドライバの数は複数であってもよぐさらに、セグメント 側のデータドライノも表示画面の一端に 1つまたは表示画面の両端に 2つであっても よい。  [0104] As described above, there may be a plurality of common-side scan drivers, and the segment-side data driver may be one at one end of the display screen or two at both ends of the display screen. Good.
[0105] なお、例えば、部分書換えの書始めラインからの数ラインは、リセットパルスが与えら れずに直接書込みパルスが印加される力、或いは、リセットパルスが与えられるライン 数が不足するため所定の表示特性が得られない場合がある。そこで、例えば、その、 J セットパルスが与えられないラインに限り前もってリセットパルスを印加する力、或いは 、スキャン速度を低下させてパルス印加時間を長くすることが好ま 、。  [0105] Note that, for example, several lines from the write start line of partial rewriting have a predetermined number of lines because there is not enough force to directly apply a write pulse without being given a reset pulse or the number of lines to which a reset pulse is given. Display characteristics may not be obtained. Therefore, for example, it is preferable to increase the pulse application time by reducing the scan speed or the force to apply the reset pulse in advance only to the line to which the J set pulse is not applied.
[0106] ところで、前に図 7B等を参照して説明したように、従来の表示素子の駆動方法は、 表示画面の一部 (書換え領域 RO)を書換える場合、書込みラインが書換え領域 ROの 終端近くに達すると、リセットライン RLによりリセットを行った領域 Rzが書換え領域 RO の外にはみ出してしまい、部分書換えを行わない元の画像の表示状態を損なうこと になっていた。また、リセットを行わないで部分書換えを行う場合には、例えば、書込 み速度を大幅に低下させなければならず、部分書換え本来のメリットである書換え時 間の短縮を行うことができな力つた。 By the way, as described above with reference to FIG. 7B and the like, in the conventional display element driving method, when a part of the display screen (rewrite region RO) is rewritten, the write line is in the rewrite region RO. When reaching the end, the area Rz reset by the reset line RL protrudes outside the rewriting area RO, and the display state of the original image without partial rewriting is impaired. When performing partial rewrite without resetting, for example, write The speed of rewriting must be greatly reduced, and the rewriting time, which is the original merit of partial rewriting, cannot be shortened.
[0107] 図 15Aおよび図 15Bは本発明に係る表示素子の駆動方法のさらに他の実施例を 説明するための図である。  FIG. 15A and FIG. 15B are diagrams for explaining still another embodiment of the display element driving method according to the present invention.
[0108] 本実施例の表示素子の駆動方法は、部分書換え時において、リセット区間と書込 み区間を異なるフレームで行う(フレーム分割する)ことを特徴としている。  [0108] The display element driving method of the present embodiment is characterized in that the reset period and the writing period are performed in different frames (frame division) at the time of partial rewriting.
[0109] すなわち、図 15Aに示されるように、まず、第 1のフレームにおいて、例えば、上から 下に向かうスキャン方向で、領域 S71の高速スキップ処理を行い、次いで、部分書換 え領域 R4に対応するスキャンライン (領域 S72)のリセット処理を行い、さらに、領域 S 73の高速スキップ処理を行う。これにより、例えば、コレステリック液晶を用いた表示 素子において、部分書換え領域 R4に対応する領域 S72はプレーナ状態になる。  That is, as shown in FIG. 15A, first, in the first frame, for example, the high-speed skip processing of region S71 is performed in the scan direction from top to bottom, and then the partial rewrite region R4 is supported. A reset process for the scan line (area S72) to be performed is performed, and a high-speed skip process for the area S73 is further performed. Thereby, for example, in a display element using cholesteric liquid crystal, the region S72 corresponding to the partial rewrite region R4 is in a planar state.
[0110] そして、次の第 2のフレームにおいて、例えば、上から下に向力うスキャン方向で、 領域 S71の高速スキップ処理を行い、次いで、部分書換え領域 R4に対応する領域 S72で書換え画像の高速書込み処理を行い、さらに、領域 S73の高速スキップ処理 を行う。  [0110] Then, in the next second frame, for example, high-speed skip processing of the region S71 is performed in the scan direction that is directed from top to bottom, and then the rewritten image of the rewritten image in the region S72 corresponding to the partial rewrite region R4. Perform high-speed write processing, and then perform high-speed skip processing for area S73.
[0111] なお、部分的な書換え領域をスキャンしている間、スキャン電極およびデータ電極 間の差電圧は、表示媒体 (例えば、コレステリック液晶)の応答値電圧以下とする。  [0111] While the partial rewrite region is scanned, the difference voltage between the scan electrode and the data electrode is set to be equal to or lower than the response value voltage of the display medium (for example, cholesteric liquid crystal).
[0112] これにより、リセットを行った領域 (Rz)が書換え領域からはみ出すことを回避するこ とができる。なお、リセット区間は選択ライン数が限定されているため、消費電力の上 昇ち抑免ることがでさる。  [0112] Thus, it is possible to prevent the reset area (Rz) from protruding from the rewritten area. In addition, since the number of selected lines is limited in the reset section, the power consumption can be increased and suppressed.
[0113] この場合も、例えば、部分書換えの書始めからの数ラインと書終わり前力 の数ライ ンは、一定のスキャン速度ではリセットライン数が不足するため、所定の表示特性が 得られないことが考えられる。そのため、リセットパルスが部分書換えの開始ラインと 終端ラインを選択して ヽる場合には、スキャン速度を低下させてパルス印加時間を長 くし、リセット効果を補償するのが有効である。なお、そのリセット時間は、スキャン速 度 Xリセットライン数になる。  [0113] Also in this case, for example, the number of lines from the beginning of partial rewriting and the number of lines at the end of writing before writing cannot obtain the predetermined display characteristics because the number of reset lines is insufficient at a certain scanning speed. It is possible. Therefore, when the reset pulse is selected by selecting the start line and end line for partial rewriting, it is effective to reduce the scan speed and increase the pulse application time to compensate for the reset effect. The reset time is the scan speed X the number of reset lines.
[0114] 図 16において、参照符号 101は青色の光を反射する青 (B)層、 102は緑色の光を 反射する緑 (G)層、そして、 103は赤色の光を反射する赤 (R)層を示している。なお 、 R層 103の下に光を吸収する黒 (K)層を設けることもできる。 [0114] In FIG. 16, reference numeral 101 is a blue (B) layer that reflects blue light, 102 is a green (G) layer that reflects green light, and 103 is red (R) that reflects red light. ) Layer. In addition A black (K) layer that absorbs light may be provided under the R layer 103.
[0115] 図 16に示されるように、本第 2実施例の表示装置は、 B層 101, G層 102および R 層 103に対して、それぞれスキャンドライバ 2101, 2102および 2103、並びに、デー タドライノ 2201, 2202および 2203力設けられている。なお、各層 101, 102および 103では、それぞれスキャンドライバ 2101, 2102および 2103、並びに、データドラ ィバ 2201, 2202および 2203に接続されコレステリック液晶(表示媒体)を挟んで互 いに対向状態で交差するスキャン電極およびデータ電極により、表示素子 1がフル力 ラーに近 、表示を行うことができるようになって 、る。 [0115] As shown in FIG. 16, the display device of the second embodiment includes scan drivers 2101, 2102 and 2103, and a data dryer 2201 for the B layer 101, the G layer 102 and the R layer 103, respectively. , 2202 and 2203 forces are provided. In each of the layers 101, 102, and 103, they are connected to the scan drivers 2101, 2102, and 2103, and the data drivers 2201, 2202, and 2203, respectively, and intersect each other with the cholesteric liquid crystal (display medium) interposed therebetween. The scan electrode and the data electrode allow the display element 1 to display near the full power error.
[0116] 図 17は本発明に係る表示装置の第 3実施例の要部を模式的に示す図である。 FIG. 17 is a diagram schematically showing the main part of a third embodiment of the display device according to the present invention.
図 17に示されるように、本第 3実施例の表示装置は、 B層 101, G層 102および R 層 103に対して、共通のスキャンドライバ 21、並びに、個別のデータドライバ 2201, 2 202および 2203力待設けられて!ヽる。  As shown in FIG. 17, the display device of the third embodiment has a common scan driver 21 and individual data drivers 2201, 2 202 and B layer 101, G layer 102 and R layer 103. 2203 is waiting for you!
[0117] このように、スキャンドライバを B層 101, G層 102および R層 103で共通化すること により、ドライバの数等を低減して低コストィ匕することができる。 In this way, by sharing the scan driver in the B layer 101, the G layer 102, and the R layer 103, the number of drivers and the like can be reduced and the cost can be reduced.
[0118] 以下、上述した図 16に示す第 2実施例の表示装置を適用して作製した Q VGAの カラー表示素子の駆動電圧を、図 18A〜図 18Dを参照して説明する。なお、スキヤ ンドライバ 2101〜2103およびデータドライバ 2201〜2203としては、汎用の STNド ライバを使用した。また、必要に応じて、各ドライバに入力する電圧を安定化させるた めに、オペアンプのボルテージフォロアを適用してもよ 、。 Hereinafter, the drive voltage of the color display element of Q VGA manufactured by applying the display device of the second embodiment shown in FIG. 16 will be described with reference to FIGS. 18A to 18D. Note that general-purpose STN drivers were used as the scan drivers 2101 to 2103 and the data drivers 2201 to 2203. If necessary, an operational amplifier voltage follower may be applied to stabilize the voltage input to each driver.
[0119] 図 18Aはスキャンモードおよびデータモードにおけるドライバへの入力電圧の一例 を示す図、図 18Bはコレステリック液晶を駆動する場合の対応の一例を示す図、図 1 8Cはスキャンモードおよびデータモードにおけるドライバの出力電圧の一例を示す 図、そして、図 18Dは液晶に印加される合成波形の一例を示す図である。 FIG. 18A is a diagram showing an example of the input voltage to the driver in the scan mode and the data mode, FIG. 18B is a diagram showing an example of correspondence when driving the cholesteric liquid crystal, and FIG. 18C is a diagram in the scan mode and the data mode. FIG. 18D is a diagram showing an example of the output voltage of the driver, and FIG. 18D is a diagram showing an example of a composite waveform applied to the liquid crystal.
[0120] まず、図 18Aおよび図 18Bに示されるように、データモード(セグメントモード:デー タドライバ)では任意のラインが選択可能であり、高レベル『H』のデータ信号に対して 、高レベル『H』の交流信号としては電圧 VO (32V)および低レベル『L』の交流信号と しては電圧 V5 (0V)、並びに、低レベル『L』のデータ信号に対して、高レベル『H』の 交流信号としては電圧 V21 (28V)および低レベル『L』の交流信号としては電圧 V34 (4V)を使用する。 First, as shown in FIG. 18A and FIG. 18B, any line can be selected in the data mode (segment mode: data driver), and a high level “ The AC signal of “H” is the voltage VO (32V), the AC signal of the low level “L” is the voltage V5 (0V), and the low level “L” data signal is the high level “H”. As an AC signal, the voltage V21 (28V) and as a low-level “L” AC signal, the voltage V34 Use (4V).
[0121] また、スキャンモード(コモンモード:スキャンドライノく)では任意のラインの選択は不 可であり全ラインをスキャンし、高レベル『H』のデータ信号に対して、高レベル『H』の 交流信号としては電圧 V5 (OV)および低レベル『L』の交流信号としては電圧 VO (32 V)、並びに、低レベル『L』のデータ信号に対して、高レベル『H』の交流信号として は電圧 V21 (28V)および低レベル『L』の交流信号としては電圧 V34 (4V)を使用す る。ここで、 V0≥V21≥V34≥V5の関係が成立している。  [0121] Also, in scan mode (common mode: scan dry), it is not possible to select an arbitrary line. All lines are scanned, and a high level "H" is applied to a high level "H" data signal. AC signal with voltage V5 (OV) and low level “L” AC signal with voltage VO (32 V) and low level “L” data signal with high level “H” AC signal The voltage V21 (28V) and the low level “L” AC signal use the voltage V34 (4V). Here, the relationship V0≥V21≥V34≥V5 is established.
[0122] そして、 RGBの各素子(R層 103、 G層 102および B層 101)において、オン画素に は ± 32V、オフ画素には ± 24Vのパルス電圧が安定して印加され、非選択の画素 には ±4Vのパルス電圧が印加されるようにする。すなわち、図 18Bに示されるように 、スキャンドライバ(コモンドライバ: COM)およびデータドライバ(セグメントドライバ: S EG)には、例えば、図 10における電源回路 3で生成された 32V, 28V, 24V, 8V, 4V, 0Vの 6つのレベルの電圧が入力される。  [0122] In each of the RGB elements (R layer 103, G layer 102, and B layer 101), a pulse voltage of ± 32V is stably applied to the on pixel and ± 24V is stably applied to the off pixel. A pulse voltage of ± 4V is applied to the pixel. That is, as shown in FIG. 18B, the scan driver (common driver: COM) and the data driver (segment driver: SEG) are, for example, 32V, 28V, 24V, 8V generated by the power supply circuit 3 in FIG. , 4V and 0V are input.
[0123] 従って、スキャンモードのドライバには、 32V, 28V, 4V, 0Vが入力され、また、デ ータモードのドライバには、 32V, 24V, 8V, 0Vが入力され、ドライバのスキャンモー ドとデータモードを切換える場合、それらのドライバに入力する各電圧入力も切換え る。  Therefore, 32V, 28V, 4V, and 0V are input to the driver in scan mode, and 32V, 24V, 8V, and 0V are input to the driver in data mode. When switching modes, each voltage input to those drivers is also switched.
[0124] 図 18Cに示されるように、スキャンドライバのオンおよびオフ時の出力電圧は、 ON  [0124] As shown in Figure 18C, the output voltage when the scan driver is on and off is ON.
COMが交流駆動の前半は 0Vで後半は 32V、および、 OFF— COMが交流駆動 の前半は 28Vで後半は 4Vになっており、また、データドライバのオンおよびオフ時の 出力電圧は、 ON— SEGが交流駆動の前半は 32Vで後半は 0V、および、 OFF— S EGが交流駆動の前半は 24Vで後半は 8Vになっている。  COM is 0V in the first half of AC drive, 32V in the second half, and OFF— COM is 28V in the first half of AC drive and 4V in the second half, and the output voltage when the data driver is on and off is ON— The first half of AC drive is 32V and 0V in the second half, and the OFF—SEG is 24V in the first half of AC drive and 8V in the second half.
[0125] そして、図 18Dに示されるように、各スキャン電極および各データ電極間の液晶(画 素)に対して、選択オンの液晶には、交流駆動の前半 AV11は 32Vで後半 AV21は 32Vのパルス波形が印加され、選択オフの液晶には、交流駆動の前半 AV12は 2 4Vで後半 AV22は 24Vのパルス波形が印加され、非選択オンの液晶には、交流 駆動の前半 AV13は 4Vで後半 AV23は—4Vのパルス波形が印加され、そして、非 選択オフの液晶には、交流駆動の前半 AV14は—4Vで後半 AV24は 4Vのパルス 波形が印加されることになる。 [0125] Then, as shown in FIG. 18D, for the liquid crystal (pixel) between each scan electrode and each data electrode, the first half AV11 of the AC drive is 32V and the second half AV21 is 32V The first half of AC drive AV12 is 24V and the second half AV22 is 24V, and the second half AV22 is 4V. In the second half AV23, a pulse waveform of -4V is applied, and in the non-selected off liquid crystal, the first half of AC drive AV14 is -4V and the second half AV24 is a 4V pulse. A waveform will be applied.
[0126] なお、部分書換えを行う領域は、例えば、約 10msecノラインの速度でスキャンし、 部分書換えを行わない非対象の領域は、例えば、 sec.Zライン程度のスキャン速 度により一瞬にスキャンが終了することになる。なお、非対象の領域をスキャンする時 、ドライバからの電圧出力をオフにするのが好ましいが、高速スキャンにおいて液晶( 画素)が応答する電圧以下であれば、それまでの画像を維持するので問題はない。  [0126] It should be noted that the area where partial rewriting is performed is scanned at a speed of approximately 10 msec, for example, and the non-target area where partial rewriting is not performed is instantaneously scanned at a scanning speed of, for example, about sec.Z line. Will end. Note that when scanning non-target areas, it is preferable to turn off the voltage output from the driver. However, if the voltage is lower than the response voltage of the liquid crystal (pixel) in high-speed scanning, the previous image is maintained, which is a problem. There is no.
[0127] このように、本発明は、例えば、 B層 101, G層 102および R層 103を積層したフル カラー表示が可能な表示素子に適用することができ、部分的に書換える画像 (書換 え領域)も、全ての層を書換えることでフルカラーの書換えを行うことができる力 例え ば、 G層 102だけを書換えることも可能である。  As described above, the present invention can be applied to, for example, a display element capable of full color display in which the B layer 101, the G layer 102, and the R layer 103 are stacked, and a partially rewritten image (rewrite) For example, it is also possible to rewrite only the G layer 102 if it is possible to perform full color rewriting by rewriting all layers.
産業上の利用可能性  Industrial applicability
[0128] 本発明は、コレステリック液晶に限らず、例えば、書換え処理を行う前にリセット処理 を必要とする他の液晶を使用した電子素子やそれを使用した表示装置を有する電子 端末に対して幅広く適用することができる。 [0128] The present invention is not limited to cholesteric liquid crystals, and is widely applicable to, for example, electronic devices using other liquid crystals that require reset processing before rewriting processing, and electronic terminals having a display device using the same. Can be applied.

Claims

請求の範囲 The scope of the claims
[1] 互いに対向状態で交差する複数のスキャン電極および複数のデータ電極を備え、 前記スキャン電極を所定の順序で選択して該各スキャン電極と前記各データ電極間 の表示媒体にパルス状の電圧を印加して表示画面の画像書換え処理を行う表示素 子の駆動方法であって、  [1] comprising a plurality of scan electrodes and a plurality of data electrodes intersecting each other in a state of being opposed to each other, selecting the scan electrodes in a predetermined order, and applying a pulse voltage to a display medium between the scan electrodes and the data electrodes A display element driving method for applying image to rewrite the display screen image,
前記画像書換え処理は、前記表示媒体を初期化するリセットパルス、および、該表 示媒体を画像データに従って書換える書換えパルスを連続的に印加し、  The image rewriting process continuously applies a reset pulse for initializing the display medium and a rewrite pulse for rewriting the display medium according to image data,
既存の表示画像における部分的な書換えを行う場合、該部分的な書換え領域の前 記表示画面における位置に応じてスキャン方向を切換えることを特徴とする表示素 子の駆動方法。  A display element driving method characterized in that, when partial rewriting of an existing display image is performed, the scanning direction is switched in accordance with the position of the partial rewriting area on the display screen.
[2] 請求項 1に記載の表示素子の駆動方法にお!、て、  [2] In the driving method of the display element according to claim 1,!
前記リセットパルスおよび前記書換えパルスは、同一フレーム内で前記部分的な書 換え領域に印加されることを特徴とする表示素子の駆動方法。  The display element driving method, wherein the reset pulse and the rewrite pulse are applied to the partial rewrite region within the same frame.
[3] 請求項 1または 2に記載の表示素子の駆動方法において、 [3] In the display element driving method according to claim 1 or 2,
前記部分的な書換え領域が前記スキャンドライバに対応する前記表示画面内の下 方だった場合には、該スキャンドライバのスキャン方向を該表示画面の上から下に向 力う方向とし、且つ、前記部分的な書換え領域が前記スキャンドライバに対応する前 記表示画面内の上方だった場合には、該スキャンドライバのスキャン方向を該表示 画面の下力 上に向力う方向とすることを特徴とする表示素子の駆動方法。  When the partial rewrite area is at the lower side in the display screen corresponding to the scan driver, the scan direction of the scan driver is set to the direction from the top to the bottom of the display screen, and the When the partial rewrite area is above the display screen corresponding to the scan driver, the scan direction of the scan driver is set to be a direction in which the downward force on the display screen is directed upward. Display element driving method.
[4] 互いに対向状態で交差する複数のスキャン電極および複数のデータ電極を備え、 前記スキャン電極を所定の順序で選択して該各スキャン電極と前記各データ電極間 の表示媒体にパルス状の電圧を印加して表示画面の画像書換え処理を行う表示素 子の駆動方法であって、 [4] A plurality of scan electrodes and a plurality of data electrodes intersecting each other in a state of being opposed to each other, and selecting the scan electrodes in a predetermined order and applying a pulse voltage to a display medium between the scan electrodes and the data electrodes A display element driving method for applying image to rewrite the display screen image,
前記画像書換え処理は、前記表示媒体を初期化するリセットパルス、および、該表 示媒体を画像データに従って書換える書換えパルスを連続的に印加し、  The image rewriting process continuously applies a reset pulse for initializing the display medium and a rewrite pulse for rewriting the display medium according to image data,
既存の表示画像における部分的な書換えを行う場合、前記リセットパルスは、前記 部分的な書換え領域の開始ラインまたは終端ラインを選択している時間を、前記開 始ラインと前記終端ラインを選択していない時間よりも長い印加時間とすることを特徴 とする表示素子の駆動方法。 When performing partial rewriting in an existing display image, the reset pulse selects the start line and the end line for the time during which the start line or end line of the partial rewrite area is selected. Characterized by longer application time than no application time A display element driving method.
[5] 請求項 4に記載の表示素子の駆動方法にお 、て、 [5] In the display element driving method according to claim 4,
前記リセットパルスの選択ライン数は、前記部分的な書換えの書換えライン数以下 であることを特徴とする表示素子の駆動方法。  The number of selected lines of the reset pulse is equal to or less than the number of partial rewrite lines.
[6] 請求項 5に記載の表示素子の駆動方法において、 [6] In the display element driving method according to claim 5,
前記リセットパルスおよび前記書換えパルスは、異なるフレームで前記部分的な書 換え領域に印加されることを特徴とする表示素子の駆動方法。  The display element driving method, wherein the reset pulse and the rewrite pulse are applied to the partial rewrite region in different frames.
[7] 請求項 1または 4に記載の表示素子の駆動方法において、 [7] The method for driving a display element according to claim 1 or 4,
前記リセットパルスは、前記部分的な書換え領域をプレーナ状態にすることを特徴 とする表示素子の駆動方法。  The display element driving method, wherein the reset pulse causes the partial rewrite region to be in a planar state.
[8] 互いに対向状態で交差する複数のスキャン電極および複数のデータ電極を備え、 前記スキャン電極を所定の順序で選択して該各スキャン電極と前記各データ電極間 の表示媒体にパルス状の電圧を印加して表示画面の画像を書換える表示素子と、 前記スキャン電極に接続されたスキャンドライバおよび前記データ電極に接続された データドライバと、を有する表示装置であって、 [8] A plurality of scan electrodes and a plurality of data electrodes intersecting each other in a state of being opposed to each other, and selecting the scan electrodes in a predetermined order and applying a pulse voltage to the display medium between the scan electrodes and the data electrodes A display device that rewrites an image on a display screen by applying a scan driver, a scan driver connected to the scan electrode, and a data driver connected to the data electrode,
前記表示媒体を初期化するリセットパルス、および、該表示媒体を画像データに従 つて書換える書換えパルスを連続的に印加する画像書換え処理部と、  An image rewrite processing unit for continuously applying a reset pulse for initializing the display medium and a rewrite pulse for rewriting the display medium according to image data;
既存の表示画像における部分的な書換えを行う場合、該部分的な書換え領域の前 記表示画面における位置に応じてスキャン方向を切換えるスキャン方向切換え部と、 を備えることを特徴とする表示装置。  A display device, comprising: a scan direction switching unit that switches a scan direction in accordance with a position of the partial rewrite area on the display screen when performing partial rewrite on an existing display image.
[9] 請求項 8に記載の表示装置において、 [9] The display device according to claim 8,
該表示装置は、 1個のスキャンドライバを備え、  The display device includes one scan driver,
前記スキャン方向切換え部は、前記部分的な書換え領域が前記スキャンドライバに 対応する前記表示画面内の下方だつた場合には、該スキャンドライバのスキャン方向 を該表示画面の上力 下に向力 方向とし、且つ、前記部分的な書換え領域が前記 スキャンドライバに対応する前記表示画面内の上方だった場合には、該スキャンドラ ィバのスキャン方向を該表示画面の下力 上に向力う方向とすることを特徴とする表 示装置。 When the partial rewrite area is located in the lower part of the display screen corresponding to the scan driver, the scan direction switching unit sets the scan direction of the scan driver to an upward or downward force of the display screen. And when the partial rewrite area is in the upper part of the display screen corresponding to the scan driver, the scan direction of the scan driver is directed upward on the lower force of the display screen. A display device characterized by that.
[10] 請求項 8に記載の表示装置において、 [10] The display device according to claim 8,
該表示装置は、複数個のスキャンドライバを備え、  The display device includes a plurality of scan drivers,
前記スキャン方向切換え部は、前記部分的な書換え領域が前記各スキャンドライバ に対応する前記表示画面内の下方だった場合には、当該各スキャンドライバのスキ ヤン方向を該表示画面の上から下に向力う方向とし、且つ、前記部分的な書換え領 域が前記各スキャンドライバに対応する前記表示画面内の上方だった場合には、当 該各スキャンドライバのスキャン方向を該表示画面の下から上に向力う方向とすること を特徴とする表示装置。  When the partial rewrite area is below the display screen corresponding to each scan driver, the scan direction switching unit changes the scan direction of each scan driver from the top to the bottom of the display screen. In the case where the direction is to be applied and the partial rewrite area is above the display screen corresponding to each scan driver, the scan direction of each scan driver is changed from the bottom of the display screen. A display device characterized by being directed upward.
[11] 請求項 10に記載の表示装置において、 [11] The display device according to claim 10,
該表示装置は、表示画面内の両端に設けられた第 1および第 2の 2個のデータドラ ィバを備え、  The display device includes first and second two data drivers provided at both ends in the display screen,
前記第 1のデータドライバおよび前記複数個のスキャンドライバにおける任意の第 1 のスキャンドライバによる第 1の画像書換え処理と、前記第 2のデータドライバおよび 前記複数個のスキャンドライバにおける他の第 2のスキャンドライバによる第 2の画像 書換え処理とを同時に行うことを特徴とする表示装置。  A first image rewriting process by an arbitrary first scan driver in the first data driver and the plurality of scan drivers, and another second scan in the second data driver and the plurality of scan drivers. A display device that performs a second image rewriting process by a driver at the same time.
[12] 互いに対向状態で交差する複数のスキャン電極および複数のデータ電極を備え、 前記スキャン電極を所定の順序で選択して該各スキャン電極と前記各データ電極間 の表示媒体にパルス状の電圧を印加して表示画面の画像を書換える表示素子と、 前記スキャン電極に接続されたスキャンドライバおよび前記データ電極に接続された データドライバと、を有する表示装置であって、  [12] A plurality of scan electrodes and a plurality of data electrodes intersecting each other in a state of being opposed to each other, and selecting the scan electrodes in a predetermined order and applying a pulse voltage to a display medium between the scan electrodes and the data electrodes A display device that rewrites an image on a display screen by applying a scan driver, a scan driver connected to the scan electrode, and a data driver connected to the data electrode,
前記表示媒体を初期化するリセットパルス、および、該表示媒体を画像データに従 つて書換える書換えパルスを連続的に印加する画像書換え処理部と、  An image rewrite processing unit for continuously applying a reset pulse for initializing the display medium and a rewrite pulse for rewriting the display medium according to image data;
既存の表示画像における部分的な書換えを行う場合、前記リセットパルスは、前記 部分的な書換え領域の開始ラインまたは終端ラインを選択している時間を、前記開 始ラインと前記終端ラインを選択していない時間よりも長い印加時間とするための処 理部と、を備えることを特徴とする表示装置。  When performing partial rewriting in an existing display image, the reset pulse selects the start line and the end line for the time during which the start line or end line of the partial rewrite area is selected. And a processing unit for applying an application time longer than the non-application time.
[13] 請求項 8または 12に記載の表示装置において、 [13] The display device according to claim 8 or 12,
前記表示媒体は、メモリ性を有することを特徴とする表示装置。 The display device is characterized in that the display medium has a memory property.
[14] 請求項 13に記載の表示装置において、 [14] The display device according to claim 13,
前記表示媒体は、コレステリック相を形成する液晶であることを特徴とする表示装置  The display device is a liquid crystal forming a cholesteric phase.
[15] 請求項 8または 12に記載の表示装置において、 [15] The display device according to claim 8 or 12,
前記表示素子は、反射光が異なる複数の表示素子ユニットの積層構造であることを 特徴とする表示装置。  The display device has a laminated structure of a plurality of display element units having different reflected light.
[16] 請求項 8または 12に記載の表示装置を適用したことを特徴とする電子端末。  [16] An electronic terminal to which the display device according to claim 8 or 12 is applied.
PCT/JP2006/306693 2006-03-30 2006-03-30 Method for driving display element and display device WO2007116448A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008509600A JP4680297B2 (en) 2006-03-30 2006-03-30 Display element driving method and display device
TW095111231A TW200737088A (en) 2006-03-30 2006-03-30 Driving method of display element and display device
PCT/JP2006/306693 WO2007116448A1 (en) 2006-03-30 2006-03-30 Method for driving display element and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/306693 WO2007116448A1 (en) 2006-03-30 2006-03-30 Method for driving display element and display device

Publications (1)

Publication Number Publication Date
WO2007116448A1 true WO2007116448A1 (en) 2007-10-18

Family

ID=38580757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306693 WO2007116448A1 (en) 2006-03-30 2006-03-30 Method for driving display element and display device

Country Status (3)

Country Link
JP (1) JP4680297B2 (en)
TW (1) TW200737088A (en)
WO (1) WO2007116448A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181106A (en) * 2008-02-01 2009-08-13 Fujitsu Ltd Dot matrix type display device and image writing method
JP2009251453A (en) * 2008-04-09 2009-10-29 Fujitsu Ltd Dot matrix type display
WO2013124952A1 (en) * 2012-02-20 2013-08-29 富士通フロンテック株式会社 Display device and display method
CN113948046A (en) * 2020-07-15 2022-01-18 虹曜电纸技术股份有限公司 Driving module for active matrix driving cholesterol liquid crystal display device and driving method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102081134B1 (en) * 2013-12-30 2020-02-25 엘지디스플레이 주식회사 Cholesteric liquid crystal display device and driving method for the same
KR102238645B1 (en) * 2014-10-24 2021-04-12 엘지디스플레이 주식회사 Liquid Crystal Display and Driving and Driving Method of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253026A (en) * 1988-08-17 1990-02-22 Canon Inc Liquid crystal device
JPH04255822A (en) * 1991-02-08 1992-09-10 Fujitsu Ltd Liquid crystal display device
JPH05216008A (en) * 1992-02-04 1993-08-27 Fujitsu Ltd Scanning driver circuit for liquid crystal display device
JP2000171837A (en) * 1998-12-01 2000-06-23 Minolta Co Ltd Liquid crystal display element drive method and information display device
JP2006018125A (en) * 2004-07-05 2006-01-19 Citizen Watch Co Ltd Liquid crystal display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253026A (en) * 1988-08-17 1990-02-22 Canon Inc Liquid crystal device
JPH04255822A (en) * 1991-02-08 1992-09-10 Fujitsu Ltd Liquid crystal display device
JPH05216008A (en) * 1992-02-04 1993-08-27 Fujitsu Ltd Scanning driver circuit for liquid crystal display device
JP2000171837A (en) * 1998-12-01 2000-06-23 Minolta Co Ltd Liquid crystal display element drive method and information display device
JP2006018125A (en) * 2004-07-05 2006-01-19 Citizen Watch Co Ltd Liquid crystal display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181106A (en) * 2008-02-01 2009-08-13 Fujitsu Ltd Dot matrix type display device and image writing method
JP2009251453A (en) * 2008-04-09 2009-10-29 Fujitsu Ltd Dot matrix type display
WO2013124952A1 (en) * 2012-02-20 2013-08-29 富士通フロンテック株式会社 Display device and display method
CN113948046A (en) * 2020-07-15 2022-01-18 虹曜电纸技术股份有限公司 Driving module for active matrix driving cholesterol liquid crystal display device and driving method thereof

Also Published As

Publication number Publication date
TW200737088A (en) 2007-10-01
JPWO2007116448A1 (en) 2009-08-20
JP4680297B2 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
JPWO2008038358A1 (en) Display element, display element image rewriting method, and electronic paper and electronic terminal using display element
JP4850850B2 (en) Display element driving method, display element, and electronic terminal
US7847770B2 (en) Method of driving liquid crystal display element
WO2007116448A1 (en) Method for driving display element and display device
US8013822B2 (en) Method of driving display element
JP4754627B2 (en) Display element driving method and display device
US8279157B2 (en) Liquid crystal display element, method of driving the same, and electronic paper using the same
JP4580427B2 (en) Display element, driving method thereof, and information display system including the same
JPWO2009050778A1 (en) Display device having dot matrix type display element
US8199140B2 (en) Display device
JPS6261930B2 (en)
JP2010128365A (en) Display device
US8310410B2 (en) Display device having display element of simple matrix type, driving method of the same and simple matrix driver
JP5115217B2 (en) Dot matrix type liquid crystal display device
JPH0578803B2 (en)
TW200816132A (en) Display element, method of image overwriting in display element, and electronic paper as well as electronic terminal using display element
JPH0448367B2 (en)
JP5310517B2 (en) Liquid crystal drive method
JPWO2009087756A1 (en) Display device and driving method thereof
JPH04249216A (en) Method for driving liquid crystal display device
JPS61140924A (en) Driving method of optical modulation element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06730641

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008509600

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06730641

Country of ref document: EP

Kind code of ref document: A1