WO2007116174A1 - Procede et dispositif de gestion de l'alimentation electrique d'un panneau de toit en verre electrochrome pour vehicule automobile - Google Patents

Procede et dispositif de gestion de l'alimentation electrique d'un panneau de toit en verre electrochrome pour vehicule automobile Download PDF

Info

Publication number
WO2007116174A1
WO2007116174A1 PCT/FR2007/051055 FR2007051055W WO2007116174A1 WO 2007116174 A1 WO2007116174 A1 WO 2007116174A1 FR 2007051055 W FR2007051055 W FR 2007051055W WO 2007116174 A1 WO2007116174 A1 WO 2007116174A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulses
computer
battery
roof panel
pulse trains
Prior art date
Application number
PCT/FR2007/051055
Other languages
English (en)
Inventor
Guillaume Lesiewiez
Hoang - Giang Nguyen
Hervé SICOT
Original Assignee
Renault S.A.S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S filed Critical Renault S.A.S
Priority to EP07731859A priority Critical patent/EP2004431A1/fr
Publication of WO2007116174A1 publication Critical patent/WO2007116174A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • B60J3/04Antiglare equipment associated with windows or windscreens; Sun visors for vehicles adjustable in transparency
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor

Definitions

  • the present invention relates to a method and a device for managing the power supply of an electrochromic glass roof panel for a motor vehicle.
  • Some motor vehicles have a roof equipped with a glass panel to increase the brightness inside the vehicle.
  • the glass panel can be obscured by a sliding sunshade.
  • electrochromic glass panels are described for example in US6501457. These electrochromic glass panels have the property of being able to transmit more or less light according to the transparency or opacity desired by the user. Such panels become opaque for example to protect themselves against the sun by feeding the panel with electrical pulses whose amplitude can adjust the desired transmission rate.
  • a computer is used for this purpose which is powered by the battery of the motor vehicle and which is programmed to supply the electrochromic glass roof panel with electrical pulse trains, each pulse train having pulses having a constant amplitude and a period, the duration and / or amplitude of the pulses in different pulse trains being adjustable over time depending on the desired light transmission rate.
  • the electrochromic roof is permanently powered, which strongly demands the battery of the vehicle.
  • the roof has a reduced surface and the battery has sufficient capacity.
  • the applicant has planned to limit the duration of power of the roof panel to a maximum duration, for example eight hours, to avoid the discharge of the battery.
  • This battery is indeed solicited not only during the duration of application of the electrical pulses necessary to opacify the roof panel, but also during other periods during which only the computer is powered.
  • the object of the present invention is to overcome this drawback by proposing a method and a device for better managing the power supply of an electrochromic glass roof panel of a motor vehicle.
  • the method for managing the power supply of an electrochromic glass roof panel for a motor vehicle in which a computer is used which is powered by the vehicle battery and which is programmed to power the control panel.
  • roof by electric pulse trains each electrical pulse train having pulses having a constant amplitude and a period, the amplitude and / or the duration of the pulses in different pulse trains being adjustable according to the transmission rate of desired light, these electrical pulse trains being maintained for a predetermined maximum duration to prevent the discharge of the battery and followed by a period during which only the computer is powered, is characterized in that the power supply of the computer is disconnected from the battery when the ambient brightness falls below a predetermined threshold.
  • the device for managing the power supply of an electrochromic glass roof panel for a motor vehicle comprising a computer which is powered by the vehicle battery and which is programmed to supply the roof panel with electric pulse trains, each electrical pulse train having pulses having a constant amplitude and a period, the amplitude and / or the duration of the pulses in different pulse trains being adjustable according to the desired light transmission rate, and to maintain these electrical pulse trains for a predetermined maximum duration to avoid discharge of the battery, these electrical pulse trains being followed by a period of time which only the computer is powered, is characterized in that it comprises a sensor for detecting the intensity of the ambient brightness, the computer having means programmed to disconnect its power supply from the battery when said sensor detects that the intensity of the brightness falls below a predetermined threshold. This predetermined threshold may correspond to the fall of the day.
  • the brightness sensor is preferably located in the passenger compartment of the vehicle.
  • the management device further comprises an external temperature sensor cooperating with said computer to optimize the amplitude and / or the duration of said pulses in said current pulse trains.
  • the device further comprises a control button located inside the motor vehicle for adjusting the amplitude and / or the duration of the pulses in the electric pulse trains as a function of the desired light transmission rate of the control panel.
  • electrochromic glass roof located inside the motor vehicle for adjusting the amplitude and / or the duration of the pulses in the electric pulse trains as a function of the desired light transmission rate of the control panel.
  • FIG. 1 is a partial perspective view of the upper part of a motor vehicle whose roof is equipped with an electrochromic glass panel
  • FIG. 3 is a diagram of a power supply management device, according to the invention, of the electrochromic glass roof panel
  • FIG. 4 is a diagram similar to FIG. 3 relating to an improved version of the device according to FIG. 'invention.
  • Figure 1 partially shows a motor vehicle whose roof comprises a panel 1 of electrochromic glass for a motor vehicle.
  • the device for electrically powering the roof panel 1 comprises a computer 2 which is powered by the battery 3 of the vehicle and which is programmed to feed the roof panel 1 by electric pulse trains 4 (see FIG. 2), the amplitude and the period of each pulse train being constant, while the amplitude and / or duration of the pulses in different pulse trains is adjustable depending on the desired light transmission rate.
  • the computer 2 is also programmed to maintain the electrical pulse trains 4 for a predetermined maximum duration T1 to prevent the discharge of the battery. These electric pulses 4 are followed by a period T2 during which, only the computer 2 is powered by the battery 3.
  • the electrical pulses 4 have an intensity I 5% to obtain for the roof panel 1 a light transmission rate equal to 5%.
  • Ip represents the intensity of the current that is consumed by the computer 2 alone, that is to say outside periods T1 during which the pulses 4 are delivered.
  • the roof panel 1 becomes dark and the occupants of the vehicle are protected against excessive brightness due to solar radiation.
  • the roof panel 1 becomes clear and transparent again.
  • the intelligent management of the production of the pulses 4 allows the battery 3 to consume typically 250 ⁇ A over a period of 30 days. Currently, it is planned to disconnect the computer 2 from the power supply provided by the battery after a maximum of eight hours. 007/051055
  • the power supply management device of the electrochromic glass roof panel 1 comprises (see FIG. 2) a sensor 5 for detecting the intensity of the ambient brightness and the computer 2 is programmed to disconnect its supplying the battery 3 when the sensor 5 detects that the intensity of the brightness falls below a predetermined threshold.
  • the senor 5 is placed in the passenger compartment 6 of the vehicle, behind the windshield, whose transparency is constant.
  • This sensor 5 is thus able to detect the drop in brightness occurring at dusk when it is no longer necessary to feed the roof panel 1 to darken it.
  • Such a system also allows the device not to operate unnecessarily when the ambient light does not require, especially when the driver forgets to turn off the device overnight.
  • the invention thus saves battery power and avoids the risk of discharging it.
  • Figure 3 shows the electrical diagram of the power management device of the roof panel 1 of electrochromic glass.
  • the battery 3 which electrically feeds the computer 2 which itself feeds the roof panel 1 by trains of electrical pulses to reduce its light transmission rate.
  • the light sensor 5 which is able to detect the drop in brightness at dusk and send the computer 2 a corresponding electrical signal which then controls the disconnection of the power supply 2.
  • Figure 3 further shows a control button 7 located inside the vehicle, that is to say accessible to the driver, to adjust the amplitude of the electrical pulses 4 according to the transmission rate of desired light from the roof panel 1 of electrochromic glass.
  • the control button 7 may have for example the following three positions: position TL 15% (light transmission equal to 15%), in which the roof panel 1 is brightened, position TL 5%, position TL 1%, in which the roof panel is obscured.
  • the power supply device of the panel 1 further comprises a sensor 8 of the outside temperature cooperating with the computer 2 to optimize the amplitude of the current pulses 4 which supply the roof panel 1.
  • This temperature sensor 8 can be integrated in the roof of the vehicle as shown in FIG.
  • This temperature sensor 8 makes it possible, in correlation with the computer 2, to correct the amplitude of the pulses 4 in order to make the opacity of the panel independent of the outside temperature and to optimize a light transmission rate and an electrical consumption of the panel 1 whatever the outside temperature.
  • the current pulses are generated by a converter, and vary according to various parameters, including the electrochromic roof temperature and the desired transmission rate.
  • the current pulses vary in intensity as a function of the electrochromic roof temperature, so that a low temperature roof will require pulses of higher intensity than a roof at high temperature, or conversely according to the technology of the electrochromic glasses.
  • the current pulses vary in duration, for example 100 ms every 1000 ms for a light transmission of 5%, as a function of the required rate of light transmission.
  • the diagram of FIG. 4 also shows a CAN 9 (Controller Area Network) diagnostic socket, LIN (Local Interconnect).
  • CAN 9 Controller Area Network
  • LIN Local Interconnect
  • the device that has just been described, given the energy savings it makes it possible to achieve, is particularly useful for managing the power supply of a large-area electrochromic glass roof panel of a vehicle of the minivan type.

Abstract

Procédé de gestion de l'alimentation électrique d'un panneau de toit (1) en verre électrochrome pour véhicule automobile, dans lequel on utilise un calculateur (2) qui est alimenté par la batterie (3) du véhicule et qui est programmé pour alimenter le panneau de toit (1) par des trains d'impulsions électriques, chaque train d'impulsions électriques présentant des impulsions ayant une amplitude et une période constantes, l'amplitude et/ou la durée des impulsions dans différents trains d'impulsions étant réglable en fonction du taux de transmission de lumière désiré, ces impulsions électriques étant maintenues pendant une durée maximale prédéterminée pour éviter la décharge de la batterie (3) et suivies par une période pendant laquelle seul le calculateur (2) est alimenté, caractérisé en ce que l'alimentation du calculateur (2) est déconnectée de la batterie (3) lorsque la luminosité ambiante chute en dessous d'un seuil prédéterminé.

Description

Procédé et dispositif de gestion de l'alimentation électrique d'un panneau de toit en verre électrochrome pour véhicule automobile.
La présente invention concerne un procédé et un dispositif de gestion de l'alimentation électrique d'un panneau de toit en verre électrochrome pour véhicule automobile.
Certains véhicules automobiles présentent un toit équipé d'un panneau en verre permettant d'augmenter la luminosité à l'intérieur du véhicule. Pour protéger les passagers à l'égard d'un rayonnement solaire trop intense, le panneau en verre peut être occulté par un rideau pare- soleil coulissant.
On connaît d'autre part des véhicules automobiles très haut de gamme de type sportif dont le toit est équipé d'un panneau en verre électrochrome dont le taux de transmission de lumière peut être réglé. De tels panneaux en verre électrochrome sont décrits par exemple dans le document US6501457. Ces panneaux en verre électrochrome présentent la propriété de pouvoir transmettre plus ou moins bien la lumière en fonction de la transparence ou de l'opacité désirée par l'utilisateur. De tels panneaux deviennent opaques par exemple pour se protéger à l'égard du soleil en alimentant le panneau par des impulsions électriques dont l'amplitude permet de régler le taux de transmission désiré.
De façon connue, on utilise à cet effet un calculateur qui est alimenté par la batterie du véhicule automobile et qui est programmé pour alimenter le panneau de toit en verre électrochrome par des trains d'impulsions électriques, chaque train d'impulsions présentant des impulsions ayant une amplitude et une période constantes, la durée et/ ou l'amplitude des impulsions dans différents trains d'impulsions étant réglables dans le temps en fonction du taux de transmission de lumière désiré.
Dans les véhicules automobiles très haut de gamme évoqués ci- dessus, le toit électrochrome est alimenté en permanence, ce qui sollicite fortement la batterie du véhicule. Cependant, ceci ne présente pas de problème, car dans ce type de véhicule, le toit a une surface réduite et la batterie présente une capacité suffisante. Le problème se pose cependant, notamment dans le cas des véhicules de grande capacité du type monospace présentant un toit de grande surface qu'il est souhaitable d'équiper d'un grand panneau en verre électrochrome. Pour de tels véhicules, la demanderesse a prévu de limiter la durée d'alimentation du panneau de toit à une durée maximale, par exemple de huit heures, pour éviter la décharge de la batterie. Cette batterie est en effet sollicitée non seulement pendant la durée d'application des impulsions électriques nécessaires pour opacifier le panneau de toit, mais également pendant les autres périodes pendant lesquelles seul le calculateur est alimenté.
Par conséquent, cette mesure ne suffit pas pour éviter une décharge de la batterie.
Le but de la présente invention est de remédier à cet inconvénient en proposant un procédé et un dispositif permettant de mieux gérer l'alimentation électrique d'un panneau de toit en verre électrochrome d'un véhicule automobile.
Suivant l'invention, le procédé de gestion de l'alimentation électrique d'un panneau de toit en verre électrochrome pour véhicule automobile, dans lequel on utilise un calculateur qui est alimenté par la batterie du véhicule et qui est programmé pour alimenter le panneau de toit par des trains d'impulsions électriques, chaque train d'impulsions électriques présentant des impulsions ayant une amplitude et une période constantes, l'amplitude et/ou la durée des impulsions dans différents trains d'impulsions étant réglable en fonction du taux de transmission de lumière désiré, ces trains d'impulsions électriques étant maintenus pendant une durée maximale prédéterminée pour éviter la décharge de la batterie et suivis par une période pendant laquelle seul le calculateur est alimenté, est caractérisé en ce que l'alimentation du calculateur est déconnectée de la batterie lorsque la luminosité ambiante chute en dessous d'un seuil prédéterminé.
Ainsi, l'alimentation électrique du calculateur est déconnectée de la batterie dès que la luminosité ambiante chute, par exemple à la tombée du jour. Selon un autre aspect de l'invention, le dispositif de gestion de l'alimentation électrique d'un panneau de toit en verre électrochrome pour véhicule automobile, comprenant un calculateur qui est alimenté par la batterie du véhicule et qui est programmé pour alimenter le panneau de toit par des trains d'impulsions électriques, chaque train d'impulsions électriques présentant des impulsions ayant une amplitude et une période constantes, l'amplitude et/ou la durée des impulsions dans différents train d'impulsions étant réglable en fonction du taux de transmission de lumière désiré, et pour maintenir ces trains impulsions électriques pendant une durée maximale prédéterminée pour éviter la décharge de la batterie, ces trains d'impulsions électriques étant suivis par une période pendant laquelle seul le calculateur est alimenté, est caractérisé en ce qu'il comprend un capteur pour détecter l'intensité de la luminosité ambiante, le calculateur comportant des moyens programmés pour déconnecter son alimentation de la batterie lorsque ledit capteur détecte que l'intensité de la luminosité chute en dessous d'un seuil prédéterminé. Ce seuil prédéterminé peut correspondre à la tombée du jour.
Le capteur de luminosité est de préférence situé dans l'habitacle du véhicule.
Dans un mode de réalisation de l'invention, le dispositif de gestion comprend en outre un capteur de la température extérieure coopérant avec ledit calculateur pour optimiser l'amplitude et/ ou la durée desdites impulsions dans lesdits trains d'impulsions de courant.
Avantageusement, le dispositif comprend en outre un bouton de commande situé à l'intérieur du véhicule automobile pour régler l'amplitude et/ ou la durée des impulsions dans les trains d'impulsions électriques en fonction du taux de transmission de lumière désiré du panneau de toit en verre électrochrome.
D'autres particularités et avantages de l'invention apparaîtront encore tout au long de la description ci-après.
Aux dessins annexés, donnés à titre d'exemples, non limitatifs : - la figure 1 est une vue en perspective partielle de la partie supérieure d'un véhicule automobile dont le toit est équipé d'un panneau en verre électrochrome, la figure 2 est un diagramme montrant le courant I en fonction du temps t d'alimentation électrique du panneau en verre électrochrome, la figure 3 est un schéma d'un dispositif de gestion de l'alimentation électrique, selon l'invention, du panneau de toit en verre électrochrome, la figure 4 est un schéma analogue à la figure 3 concernant une version améliorée du dispositif selon l'invention.
La figure 1 représente partiellement un véhicule automobile dont le toit comporte un panneau 1 en verre électrochrome pour véhicule automobile. Le dispositif pour alimenter électriquement le panneau de toit 1 comprend un calculateur 2 qui est alimenté par la batterie 3 du véhicule et qui est programmé pour alimenter le panneau de toit 1 par des trains d'impulsions électriques 4 (voir figure 2), l'amplitude et la période de chaque train d'impulsions étant constantes, alors que l'amplitude et/ ou la durée des impulsions dans différents trains d'impulsions est réglable en fonction du taux de transmission de lumière désiré.
Le calculateur 2 est également programmé pour maintenir les trains d'impulsions électriques 4 pendant une durée maximale prédéterminée Tl pour éviter la décharge de la batterie. Ces impulsions électriques 4 sont suivies par une période T2 pendant laquelle, seul le calculateur 2 est alimenté par la batterie 3.
Dans l'exemple représenté sur la figure 2 les impulsions électriques 4 présentent une intensité I 5% permettant d'obtenir pour le panneau de toit 1 un taux de transmission de la lumière égal à 5%.
Ip représente l'intensité du courant qui est consommé par le calculateur 2 seul c'est-à-dire en dehors des périodes Tl pendant lesquelles les impulsions 4 sont délivrées.
Lorsque les impulsions 4 sont délivrées, le panneau de toit 1 devient sombre et les occupants du véhicule sont protégés à l'égard d'une luminosité trop importante due au rayonnement solaire. Lorsque les impulsions 4 sont arrêtées, le panneau de toit 1 redevient clair et transparent.
La gestion intelligente de la production des impulsions 4 permet à la batterie 3 de consommer typiquement 250 μA sur une période de 30 jours. Actuellement, on prévoit de déconnecter le calculateur 2 de l'alimentation fournie par la batterie après une durée maximale de huit heures. 007/051055
Conformément à la présente invention, le dispositif de gestion de l'alimentation électrique du panneau de toit 1 en verre électrochrome comprend (voir figure 2) un capteur 5 pour détecter l'intensité de la luminosité ambiante et le calculateur 2 est programmé pour déconnecter son alimentation de la batterie 3 lorsque le capteur 5 détecte que l'intensité de la luminosité chute en dessous d'un seuil prédéterminé.
Dans l'exemple de la figure 1, le capteur 5 est placé dans l'habitacle 6 du véhicule, derrière le pare brise, dont la transparence est constante.
Ce capteur 5 est ainsi capable de détecter la chute de luminosité ayant lieu à la tombée du jour où il n'est plus nécessaire d'alimenter le panneau de toit 1 pour l'assombrir. Un tel système permet également au dispositif de ne pas fonctionner inutilement lorsque la luminosité ambiante ne l'exige pas, notamment lorsque le conducteur oublie d'éteindre le dispositif pendant la nuit.
L'invention permet ainsi d'économiser l'énergie de la batterie et d'éviter les risques de décharge de celle-ci.
La figure 3 représente le schéma électrique du dispositif de gestion de l'alimentation électrique du panneau de toit 1 en verre électrochrome. Sur ce schéma, on voit la batterie 3 qui alimente électriquement le calculateur 2 qui alimente lui-même le panneau de toit 1 par des trains d'impulsions électriques permettant de réduire son taux de transmission de la lumière. Sur le schéma de la figure 3, on retrouve également le capteur de lumière 5 qui est capable de détecter la chute de luminosité à la tombée du jour et d'envoyer au calculateur 2 un signal électrique correspondant qui commande alors la déconnexion de l'alimentation électrique du calculateur 2. La figure 3 montre en outre un bouton de commande 7 situé à l'intérieur du véhicule, c'est-à-dire accessible au conducteur, pour régler l'amplitude des impulsions électriques 4 en fonction du taux de transmission de lumière désiré du panneau de toit 1 en verre électrochrome. Le bouton de commande 7 peut avoir par exemple les trois positions suivantes : position TL 15% (transmission lumineuse égale à 15%), dans laquelle le panneau de toit 1 est éclairci, position TL 5%, position TL 1%, dans laquelle le panneau de toit est obscurci.
Sur le schéma de la figure 4, on retrouve les mêmes composants que la figure 3. Sur ce schéma, le dispositif d'alimentation électrique du panneau 1 comprend en outre un capteur 8 de la température extérieure coopérant avec le calculateur 2 pour optimiser l'amplitude des impulsions de courant 4 qui alimentent le panneau de toit 1. Ce capteur de température 8 peut être intégré dans le toit du véhicule comme montré sur la figure 1.
Ce capteur de température 8 permet, en corrélation avec le calculateur 2, de corriger l'amplitude des impulsions 4 pour rendre l'opacité du panneau indépendante de la température extérieure et optimiser un taux de transmission de la lumière et une consommation électrique du panneau 1 quelle que soit la température extérieure.
En effet, les impulsions de courant sont générées par un convertisseur, et varient en fonction de divers paramètres, notamment de la température du toit électrochrome et du taux de transmission désiré. Les impulsions de courant varient en intensité en fonction de la température de toit électrochrome, de sorte qu'un toit à basse température nécessitera des impulsions d'intensité plus élevée qu'un toit à température élevée, ou inversement selon la technologie des verres électrochromes. En revanche, les impulsions de courant varient en durée, par exemple 100ms toutes les 1000 ms pour une transmission de lumière de 5%, en fonction du taux de transmission lumineuse requis.
Le schéma de la figure 4 montre en outre une prise de diagnostic 9 de type CAN (Controller Area Network), LIN (Local Interconnect
Network) ou FLEXRAY (bus de données haut débit automobile) ou autres, reliée au calculateur 2 par un réseau multiplexe et permettant de relever d'éventuels dysfonctionnements du calculateur.
Le dispositif que l'on vient de décrire, compte tenu des économies d'énergie qu'il permet de réaliser, est particulièrement utile pour gérer l'alimentation électrique d'un panneau de toit en verre électrochrome de grande surface d'un véhicule du type monospace.

Claims

REVENDICATIONS
1) Procédé de gestion de l'alimentation électrique d'un panneau de toit (1) en verre électrochrome pour véhicule automobile, dans lequel on utilise un calculateur (2) qui est alimenté par la batterie (3) du véhicule et qui est programmé pour alimenter le panneau de toit (1) par des trains d'impulsions électriques, chaque train d'impulsions électriques présentant des impulsions ayant une amplitude et une période constantes, l'amplitude et/ou la durée des impulsions dans différents trains d'impulsions étant réglable en fonction du taux de transmission de lumière désiré, ces impulsions électriques étant maintenues pendant une durée maximale prédéterminée pour éviter la décharge de la batterie (3) et suivies par une période pendant laquelle seul le calculateur (2) est alimenté, caractérisé en ce que l'alimentation du calculateur (2) est déconnectée de la batterie (3) lorsque la luminosité ambiante chute en dessous d'un seuil prédéterminé.
2) Dispositif de gestion de l'alimentation électrique d'un panneau de toit (1) en verre électrochrome pour véhicule automobile, comprenant un calculateur (2) qui est alimenté par la batterie (3) du véhicule et qui est programmé pour alimenter le panneau de toit (1) par des trains d'impulsions électriques (4), chaque train d'impulsions électriques présentant des impulsions ayant une amplitude et une période constantes, l'amplitude et/ou la durée des impulsions dans différents trains d'impulsions étant réglable en fonction du taux de transmission de lumière désiré, et pour maintenir ces trains d'impulsions électriques (4) pendant une durée maximale prédéterminée pour éviter la décharge de la batterie (3), ces impulsions électriques (4) étant suivies par une période pendant laquelle, seul le calculateur (2) est alimenté, caractérisé en ce qu'il comprend un capteur (5) pour détecter l'intensité de la luminosité ambiante, le calculateur (2) comportant des moyens programmés pour déconnecter son alimentation de la batterie (3) lorsque ledit capteur (5) détecte que l'intensité de la luminosité chute en dessous d'un seuil prédéterminé.
3) Dispositif selon la revendication 2, caractérisé en ce que ledit capteur (5) est situé dans l'habitacle du véhicule automobile. 4) Dispositif selon l'une des revendications 2 ou 3, caractérisé en ce que ledit capteur (5) est apte à détecter la chute de luminosité ayant lieu à la tombée du jour. 5) Dispositif selon l'une des revendications 2 à 4, caractérisé en ce qu'il comprend en outre un capteur (8) de la température extérieure coopérant avec ledit calculateur (2) pour optimiser l'amplitude et/ ou la durée desdites impulsions dans lesdits trains d'impulsions (4) de courant.
6) Dispositif selon l'une des revendications 2 à 5, caractérisé en ce qu'il comprend en outre un bouton de commande (7) situé à l'intérieur du véhicule automobile pour régler l'amplitude et/ ou la durée des impulsions dans les trains d'impulsions électriques en fonction du taux de transmission de lumière désiré du panneau de toit (1) en verre électro chrome.
7) Utilisation du procédé selon la revendication 1 ou du dispositif selon l'une des revendications 2 à 6 à la gestion de l'alimentation électrique d'un panneau de toit (1) en verre électrochrome de grande surface d'un véhicule de type monospace.
PCT/FR2007/051055 2006-04-12 2007-04-03 Procede et dispositif de gestion de l'alimentation electrique d'un panneau de toit en verre electrochrome pour vehicule automobile WO2007116174A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07731859A EP2004431A1 (fr) 2006-04-12 2007-04-03 Procede et dispositif de gestion de l'alimentation electrique d'un panneau de toit en verre electrochrome pour vehicule automobile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0603245A FR2899855B1 (fr) 2006-04-12 2006-04-12 Procede et dispositif de gestion de l'alimentation electrique d'un panneau de toit en verre electrochrome pour vehicule automobile
FR0603245 2006-04-12

Publications (1)

Publication Number Publication Date
WO2007116174A1 true WO2007116174A1 (fr) 2007-10-18

Family

ID=37312007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/051055 WO2007116174A1 (fr) 2006-04-12 2007-04-03 Procede et dispositif de gestion de l'alimentation electrique d'un panneau de toit en verre electrochrome pour vehicule automobile

Country Status (3)

Country Link
EP (1) EP2004431A1 (fr)
FR (1) FR2899855B1 (fr)
WO (1) WO2007116174A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150097389A1 (en) * 2013-10-03 2015-04-09 Volvo Car Corporation Digital sunshade for automotive glass
CN114007880A (zh) * 2019-06-21 2022-02-01 金泰克斯公司 活动窗的电连接方法
WO2023202845A1 (fr) 2022-04-20 2023-10-26 Renault S.A.S. Agencement d'un pavillon de véhicule automobile comprenant un panneau de toit en verre

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103407350A (zh) * 2013-07-31 2013-11-27 吴江市同心电子科技有限公司 一种可变色的挡风玻璃

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105303A (en) * 1988-03-30 1992-04-14 Saab Automobile Aktiebolag Arrangement for a transparent covering element with an electrochromatic layer
US5384578A (en) * 1990-12-11 1995-01-24 Donnelly Corporation Electrochromic device capable of prolonged coloration
US20030210450A1 (en) * 2000-08-23 2003-11-13 Yu Phillip C. Method and apparatus for controlling an electrochromic device
US20030227663A1 (en) * 2000-05-04 2003-12-11 Anoop Agrawal Chromogenic glazing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19925335A1 (de) 1999-06-02 2001-02-08 Daimler Chrysler Aerospace Verfahren zur Regelung der Lichtdurchlässigkeit eines elektrochromen Glases

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105303A (en) * 1988-03-30 1992-04-14 Saab Automobile Aktiebolag Arrangement for a transparent covering element with an electrochromatic layer
US5384578A (en) * 1990-12-11 1995-01-24 Donnelly Corporation Electrochromic device capable of prolonged coloration
US20030227663A1 (en) * 2000-05-04 2003-12-11 Anoop Agrawal Chromogenic glazing
US20030210450A1 (en) * 2000-08-23 2003-11-13 Yu Phillip C. Method and apparatus for controlling an electrochromic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150097389A1 (en) * 2013-10-03 2015-04-09 Volvo Car Corporation Digital sunshade for automotive glass
US9776478B2 (en) * 2013-10-03 2017-10-03 Volvo Car Corporation Digital sunshade for automotive glass
CN114007880A (zh) * 2019-06-21 2022-02-01 金泰克斯公司 活动窗的电连接方法
WO2023202845A1 (fr) 2022-04-20 2023-10-26 Renault S.A.S. Agencement d'un pavillon de véhicule automobile comprenant un panneau de toit en verre
FR3134755A1 (fr) 2022-04-20 2023-10-27 Renault S.A.S Agencement d’un pavillon de véhicule automobile comprenant un panneau de toit en verre

Also Published As

Publication number Publication date
FR2899855A1 (fr) 2007-10-19
FR2899855B1 (fr) 2008-07-11
EP2004431A1 (fr) 2008-12-24

Similar Documents

Publication Publication Date Title
EP0451060B1 (fr) Circuit de réveil d'alimentation de microprocesseur, notamment pour une carte d'identification d'un ensemble de télécommande d'automobile
WO2007116174A1 (fr) Procede et dispositif de gestion de l'alimentation electrique d'un panneau de toit en verre electrochrome pour vehicule automobile
FR2740825A1 (fr) Installation de commande d'elements de protection solaire
EP2764602B1 (fr) Réseau électrique pour véhicule ayant au moins un composant activable
US20080205076A1 (en) Automatic Dimming Liquid Crystal Mirror System
WO2008089811A1 (fr) Dispositif de détection de défaillance d'alimentation électrique pour unité logique
EP3615379B1 (fr) Système embarqué de véhicule automobile destiné à alimenter et à piloter des feux d'une remorque connectée
FR2873473A1 (fr) Procede et dispositif de gestion de la consommation d'energie d'un capteur de proximite d'un dispositif de controle d'acces a un habitacle de vehicule automobile
WO2014044354A1 (fr) Dispositif de maintien dans un mode de veille et de commutation dans un mode actif d'un calculateur de véhicule automobile comportant un microprocesseur
FR3086589A1 (fr) Ensemble de gestion de l'exposition a la lumiere d'un habitacle de vehicule
EP3271993A1 (fr) Dispositif de pilotage d'alimentation electrique de circuit pour un vehicule comprenant une batterie et ensemble correspondant
EP3626572A1 (fr) Voiture de véhicule de transport public à climatisation perfectionnée
FR2816699A1 (fr) Enceinte frigorifique amovible et transportable dans un vehicule
WO2012156651A2 (fr) Installation de commande permettant de commander l'alimentation électrique d'une pluralité d'organes électriques en courant continu
EP2817865B1 (fr) Procédé de gestion de l'énergie électrique d'une architecture électrique d'un véhicule automobile et véhicule automobile mettant en oeuvre un tel procédé
FR2998035A1 (fr) Dispositif d'eclairage pour vehicule automobile
FR2941118A1 (fr) Procede et dispositif de controle de phases de vie d'organes d'un reseau multiplexe, par groupage des organes et controle de l'alimentation des organes par groupe
FR2736768A1 (fr) Dispositif d'alimentation des charges electriques dans un vehicule automobile et procede de commande d'un tel dispositif
EP4359249A1 (fr) Gestion d'une unité de contrôle d'un convertisseur de tension pour véhicule automobile
EP2061130A1 (fr) Dispositif de commande de l'alimentation électrique d'un appareil embarqué sur un véhicule à moteur à combustion interne
FR3101035A1 (fr) Véhicule automobile à rétroviseur intérieur numérique
EP1459940A1 (fr) Système de sécurisation de sorties de signaux de commande d'une unité de traitement d'informations
FR2936379A1 (fr) Procede de gestion d'un appareil de commande electrique avec protection de surchauffe
FR2864362A1 (fr) Systeme de controle de l'alimentation en energie d'organes fonctionnels d'un reseau de bord de vehicule automobile
FR2974552A1 (fr) Vehicule muni d'un dispositif de gestion de collisions, procede et vehicule associes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07731859

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007731859

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE