WO2007114727A1 - Procédé de compactage du sol et dispositif de mise en oeuvre de ce procédé - Google Patents

Procédé de compactage du sol et dispositif de mise en oeuvre de ce procédé Download PDF

Info

Publication number
WO2007114727A1
WO2007114727A1 PCT/RU2006/000181 RU2006000181W WO2007114727A1 WO 2007114727 A1 WO2007114727 A1 WO 2007114727A1 RU 2006000181 W RU2006000181 W RU 2006000181W WO 2007114727 A1 WO2007114727 A1 WO 2007114727A1
Authority
WO
WIPO (PCT)
Prior art keywords
soil
cement mortar
injectors
compaction
soils
Prior art date
Application number
PCT/RU2006/000181
Other languages
English (en)
Russian (ru)
Inventor
Viktor Ivanovich Osipov
Sergei Dmitrievich Filimonov
Original Assignee
Viktor Ivanovich Osipov
Sergei Dmitrievich Filimonov
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Viktor Ivanovich Osipov, Sergei Dmitrievich Filimonov filed Critical Viktor Ivanovich Osipov
Publication of WO2007114727A1 publication Critical patent/WO2007114727A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil

Definitions

  • the invention relates to the field of construction, namely, to technology and means of compaction of soils during the construction of buildings and structures or during the repair and reconstruction of existing buildings and structures on dispersed bound or unbound soils, as well as on bulk (man-made) soils and landslide slopes.
  • the closest known are the method and device for compacting bound dispersed soils to create the foundations of buildings and structures by supplying a hardening mortar in the form of a sand-cement mixture, in which the solution is supplied at a pressure of 2-10 atm. through injectors arranged in steps of 2-3 m in the form of perforated pipes submerged to the depth of the active zone (RU # 22059044 Cl, E 02D 3/12, 1996).
  • the technical task of the present invention is the expansion of functionality by compaction of not only dispersed bonded soils - clays, loams, loamy sand, but also unbound dispersed soils - sand, as well as bulk (man-made) soils due to the mode of pumping the solution into the soil when choosing a quality solution , providing its high penetrating ability, as well as - the use of tools to ensure the creation of an array of soil reinforced with a single frame from the hardened solution. This ensures an increase in the bearing capacity of the soil, effective fixing in a single soil massif of landslide slopes with the formation in it frame, reducing material consumption for the process, as well as increasing the pace of work.
  • the method of compaction of the soil involves injecting cement mortar through injectors in the form of perforated pipes with simultaneously destructible perforation plugs, carried out through or under a concrete slab in the form of a load or with a load placed on it to ensure hydraulic fracturing of the soil under hydraulic fracturing pressure 3.0-20.0 atm.
  • soil compression is carried out by expanding hydraulic fractures due to the supply of cement mortar.
  • the supply of cement mortar to expand hydraulic fractures can be carried out continuously in a pulsating mode.
  • the distance between their longitudinal axes is selected from a range of 2.0–4.0 m with an injection depth of 3.0–8.0 m.
  • the injectors in the plan are arranged in rows, as an option, and the cement mortar in their rows is supplied from the center to the periphery, preferably in a spiral plan, sequentially into each injector or in increments of 1-3 injectors.
  • the arrangement of injectors in the plan in rows, while supplying cement mortar in their rows is carried out sequentially from the center to the periphery, preferably in the direction radial in plan, sequentially into each injector or in increments of 1-3 injectors in the radial direction or alternating between adjacent injectors in adjacent radial directions.
  • the task is achieved in that the device for injecting cement mortar is made in the form of a perforated pipe on the side surface, the perforation holes of which are plugged at the same time with plugs that are destructible at a given cement mortar pressure, made in the form of a tape covering the perforation hole, located in a spiral or in the form of rings.
  • the tape can be made with an adhesive layer facing the perforated pipe, and the plugs can be formed by several layers of tape, the amount of which is determined by the specified value of the fracturing pressure in the ground.
  • the perforated pipe is provided with a bottom end cap that is not destructible at fracturing pressure.
  • Figure l shows an injector with a perforated side surface, the openings of which are closed by destructible plugs (a variant of the spiral arrangement of the tape - the upper part and the variant of the ring arrangement of the tape - the lower part);
  • Figure 2 presents the layout of the injectors in plan and the direction of supply of the solution A- in them radially, B- in a spiral.
  • the method of compaction of the soil includes the injection of cement through injectors 1 in the form of pipes with holes (perforations) 2 on the side surface.
  • the holes 2 are blocked by destructible plugs 3.
  • the pressure providing hydraulic fracturing of the soil is 3.0-20.0 atm. determined in accordance with the extended categories of soil and the features of fixing it on the slopes. A decrease in pressure does not lead to hydraulic fracturing, and an increase negatively affects economic performance, requiring high performance equipment and increasing the flow rate of the solution.
  • the supply of cement mortar to expand hydraulic fractures can be carried out continuously in a pulsating mode.
  • the distance between their longitudinal axes is selected from the range of 2.0–4.0 m, which is due to work on various categories of soil with an injection depth of 3.0–8.0 m, which in some cases requires an extension of the injector in length.
  • the injectors in the plan are arranged, as an option, in rows, and the cement mortar in their rows is supplied from the center to the periphery, preferably in a spiral in the plan (Fig. 2 - “B”), sequentially into each injector or in steps of 1-3 injectors.
  • the location of the injectors in the plan in rows, and when applying cement in their rows is carried out sequentially from the center to the periphery, preferably in the direction radial in the plan, sequentially into each injector or in increments of 1-3 injectors in the radial direction or alternating between adjacent injectors in adjacent radial directions.
  • the simultaneous destruction of the plugs ensures the formation of hydraulic fracturing in the soil in all directions.
  • the plugs 3 are made in the form of an overlapping hole 2 of the perforation of the tape located in a spiral (Fig. 1) or in the form of rings.
  • the tape of the plugs 2 is made with a sticky layer facing the perforated pipe.
  • the plugs 2 are formed, as a rule, by several layers of tape, the amount of which is determined by a given value of hydraulic fracture pressure in the soil.
  • the lower end cap 4 which is not destroyed under hydraulic fracturing pressure, is placed.
  • the injectors are wrapped in tape, for example with adhesive tape, in several layers.
  • the number of layers of adhesive tape depends on the required pressure at which fractures are formed.
  • the pressure in the hoses and the injector rises to the hydraulic fracture pressure characteristic of this type of soil and after the adhesive tape ruptures, the solution instantly enters the soil mass and forms hydraulic fractures.
  • the pitch and depth of the location of the injectors depend on the properties of the soil stratum, the loads from the structure and the power of the compressible stratum.
  • the injection volumes depend on the porosity of these soils and the load from a particular structure.
  • the foundation pit is opened to the level of the foundation plate.
  • Standard concrete preparation is being arranged.
  • leader wells are drilled from it.
  • Injectors perforated pipe
  • Injectors with a diameter of 30-50 mm are lowered into the leader wells in increments of 2.5x2.5 - 3.0x3.0 meters to the depth of propagation of soft soils within the compressible zone.
  • the connection of the injector and concrete preparation is varnished with a special cement mortar.
  • the release of the injector above the foundation slab is 5-10 cm. After that, the reinforcing cage is knitted according to the design of the foundation slab.
  • the injectors are expanded with blind pipes so that the injectors rise 10-20 cm above the future foundation plate and the foundation plate is poured with concrete.
  • the injector is wrapped with tape to create hydraulic fracturing pressure.
  • 2-3 floors of the building are erected to create the necessary load, because otherwise, the injection of the sealing solution will not lead to soil compaction, but to the rise of the building.
  • the injection of cementitious cement slurry is carried out at a fracturing pressure characteristic of this type of soil. As a result, hydraulic fractures form 2-3 meters long in the most weakened areas of the soil mass.
  • the compaction solution which continues to enter the fractures, expands them and the expanding crack begins to work as an intramuscular jack, compacting an array of soil around itself.
  • clay flooded and water-saturated loams and sandy loams water is squeezed out and, accordingly, their consistency changes.
  • the consistency of clay soils changes into 2 categories, i.e. if the soils were fluid plastic, they become stiff, and if soft plastic, they are semi-solid.
  • the valve installed on the injector is closed, because otherwise, the elastic deformations of the soil mass will be pushed out by the sealing solution through hydraulic fractures and the injector and the compaction will only partially occur.
  • the valve remains closed until the sealing solution has set. After hardening of the sealing solution, the injector is cut flush with the base plate.
  • the soil mass contains a hardened compacting solution, which forms a single reinforced cage, which increases (due to the presence of hard inclusions) indicators of physical and mechanical properties by another 1.3-1.5 times.
  • the resulting pile-frame system in a compacted mass of soil works as a whole and significantly increases the bearing capacity and reliability of the base as a whole.
  • Example 2 On a landslide-hazardous slope, folded with loose and refractory clay loams of natural composition, injectors are immersed with a step of 4x4m to a depth of 3 to 8 meters and through them a low-viscosity cement mortar is injected under hydraulic fracturing pressure of 7 atm. Further injection of cement mortar through hydraulic fractures leads to compaction of the soil and the formation of a single reinforcing cage, the presence of which will completely eliminate the possibility of a landslide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Abstract

La présente invention relève du domaine de la construction et concerne en particulier une technique et des moyens de compactage du sol lors de la construction d'édifices et d'ouvrages. Cette invention vise à élargir les possibilités fonctionnelles grâce au compactage non seulement de sols cohérents dispersés, tels que les argiles, les argiles sableuses et les sables argileux, mais aussi de sols dispersés non cohérents, tels que les sables ainsi que les sols artificiels de remblai, par injection dans le sol d'un mortier présentant une forte capacité de pénétration. Le procédé de compactage du sol de cette invention consiste à injecter un mortier de ciment dans le sol à l'aide d'injecteurs se présentant sous la forme de tubes perforés pourvus de bouchons simultanément destructibles, l'injection étant réalisée à travers ou sous une dalle de béton disposée sur un sol non cohérent et se présentant sous la forme d'une charge ou portant une charge disposée sur celle-ci afin qu'on obtienne une fracturation hydraulique du sol à une pression de fracturation hydraulique comprise entre 3,0 et 20,0 atm.
PCT/RU2006/000181 2006-04-05 2006-04-12 Procédé de compactage du sol et dispositif de mise en oeuvre de ce procédé WO2007114727A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2006110994 2006-04-05
RU2006110994/03A RU2324788C2 (ru) 2006-04-05 2006-04-05 Способ уплотнения грунта и устройство для его осуществления

Publications (1)

Publication Number Publication Date
WO2007114727A1 true WO2007114727A1 (fr) 2007-10-11

Family

ID=38563915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2006/000181 WO2007114727A1 (fr) 2006-04-05 2006-04-12 Procédé de compactage du sol et dispositif de mise en oeuvre de ce procédé

Country Status (2)

Country Link
RU (1) RU2324788C2 (fr)
WO (1) WO2007114727A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108169072A (zh) * 2017-12-15 2018-06-15 北京市建设工程质量第二检测所有限公司 一种水泥标准稠度用水量测定方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2487976C1 (ru) * 2011-11-07 2013-07-20 Александр Васильевич Лубягин Способ укрепления оснований фундаментов в сейсмически опасных зонах
RU2616631C1 (ru) * 2016-01-13 2017-04-18 Михаил Анатольевич Чирва Способ крепления стенок ограждения котлована лидерным тампонажным слоем
RU2757901C1 (ru) * 2020-12-23 2021-10-22 федеральное государственное бюджетное образовательное учреждение высшего образования «Кузбасский государственный технический университет имени Т.Ф. Горбачева» (КузГТУ) Способ гидроизоляции эксплуатируемого подземного сооружения в обводненных грунтах

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1294910A1 (ru) * 1985-01-08 1987-03-07 МГУ им.М.В.Ломоносова Способ улучшени массива лессового просадочного грунта в основании зданий и сооружений
US5005649A (en) * 1990-02-28 1991-04-09 Union Oil Company Of California Multiple fracture production device and method
RU2015247C1 (ru) * 1991-12-27 1994-06-30 Осипов Виктор Иванович Способ уплотнения лессовых грунтов в основании зданий и сооружений
RU2059044C1 (ru) * 1991-12-27 1996-04-27 Осипов Виктор Иванович Способ уплотнения связных дисперсных грунтов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1294910A1 (ru) * 1985-01-08 1987-03-07 МГУ им.М.В.Ломоносова Способ улучшени массива лессового просадочного грунта в основании зданий и сооружений
US5005649A (en) * 1990-02-28 1991-04-09 Union Oil Company Of California Multiple fracture production device and method
RU2015247C1 (ru) * 1991-12-27 1994-06-30 Осипов Виктор Иванович Способ уплотнения лессовых грунтов в основании зданий и сооружений
RU2059044C1 (ru) * 1991-12-27 1996-04-27 Осипов Виктор Иванович Способ уплотнения связных дисперсных грунтов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108169072A (zh) * 2017-12-15 2018-06-15 北京市建设工程质量第二检测所有限公司 一种水泥标准稠度用水量测定方法

Also Published As

Publication number Publication date
RU2324788C2 (ru) 2008-05-20
RU2006110994A (ru) 2007-10-10

Similar Documents

Publication Publication Date Title
WO2020175844A1 (fr) Procédé de construction pour structure sous-marine en blocs de béton
KR101259364B1 (ko) 가압식 지반보강 장치
CN104532957B (zh) 原有建筑增设地下室逆作施工方法
KR100982951B1 (ko) 기시공된 기초 콘크리트체의 보강방법
CS238291B1 (en) Compacted deep foundation and method and equipment for its construction
CN110616740A (zh) 一种地铁矿山法建成区间扩建成渡线段的结构及其施工方法
KR101135163B1 (ko) 그라우트 분사치환장치 및 이를 이용한 콘크리트 기초파일 시공방법
RU2324788C2 (ru) Способ уплотнения грунта и устройство для его осуществления
RU2331736C1 (ru) Способ улучшения массива лессового просадочного грунта в основании зданий и сооружений
KR100781492B1 (ko) 옹벽구조 및 그 시공방법
KR100455915B1 (ko) 마이크로파일용 패커 및 이를 이용한 압력식 마이크로파일 시공방법
KR100991248B1 (ko) 팩을 이용한 마이크로 파일 기초공법 및 이에 사용되는파일 조립체
RU2550620C1 (ru) Способ устройства инъекционной сваи
RU55796U1 (ru) Устройство для уплотнения грунта и грунтовое основание с техногенным каркасом
KR940002457B1 (ko) 연약지반의 지내력 증강 및 차단벽 형성방법 및 장치
RU2238366C1 (ru) Способ устройства инъекционной сваи
CN1042158C (zh) 钢筋混凝土预制桩端部注浆法
WO2007114728A1 (fr) Procédé de compactage du sol et sol de fondation à structure artificielle
RU2795924C2 (ru) Способ укрепления структурно-неустойчивых грунтов с карстовыми образованиями и/или водонасыщенных грунтов посредством микросвай и инъекторы для формирования микросвай
WO2009139510A1 (fr) Procédé de construction d'un mur parafouille continu
RU2263745C1 (ru) Способ возведения инъекционной сваи (варианты)
CN109778873A (zh) 一种围护桩间注浆止水方法及装置
RU2757901C1 (ru) Способ гидроизоляции эксплуатируемого подземного сооружения в обводненных грунтах
RU2698783C2 (ru) Способ устройства фундаментов глубокого заложения и фундамент глубокого заложения
CN118207884B (zh) 既有建筑拆除与新建建筑基坑支护交叉综合施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06799633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06799633

Country of ref document: EP

Kind code of ref document: A1