WO2007114470A1 - X-ray ct scan simulator device, x-ray ct device and x-ray ct scan simulator program - Google Patents

X-ray ct scan simulator device, x-ray ct device and x-ray ct scan simulator program Download PDF

Info

Publication number
WO2007114470A1
WO2007114470A1 PCT/JP2007/057576 JP2007057576W WO2007114470A1 WO 2007114470 A1 WO2007114470 A1 WO 2007114470A1 JP 2007057576 W JP2007057576 W JP 2007057576W WO 2007114470 A1 WO2007114470 A1 WO 2007114470A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
noise
ray
projection data
simulation
Prior art date
Application number
PCT/JP2007/057576
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuo Omi
Osamu Miyazaki
Kouichi Hirokawa
Toshiyuki Irie
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to JP2008508713A priority Critical patent/JP5047945B2/en
Publication of WO2007114470A1 publication Critical patent/WO2007114470A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • A61B6/544Control of apparatus or devices for radiation diagnosis involving control of exposure dependent on patient size

Definitions

  • the present invention relates to an X-ray CT scan simulator apparatus, an X-ray CT apparatus, and an X-ray CT scan simulator program, and in particular, a technique useful for simulation of image noise and pre-examination of appropriate imaging conditions. It is about.
  • the conventional X-ray CT system uses X-ray source power to detect X-rays radiated on a fan with a single-row detector.
  • X-rays radiated to a cone type are detected in multiple rows. Detect multi-slice CT in practical use. Not only the number of detectors but also the thinning is remarkable.
  • Patent Document 1 In order to obtain a uniform image quality regardless of the body shape of the subject while suppressing unnecessary X-ray exposure, an automatic X-ray exposure mechanism (Auto Exposure Control: AEC) as shown in Patent Document 1
  • AEC Auto Exposure Control
  • the target image SD is usually specified by the operator, and the tube voltage and tube current values are automatically set so as to achieve this target SD.
  • How many SD images can provide an image suitable for diagnosis depends on the type of disease. Even for the same disease, the required image quality differs depending on the purpose of the examination (whether it is a medical examination or a close examination). For this reason, it is not easy to set optimal imaging conditions according to the purpose of the disease and the subject while the exposure dose is suppressed. Therefore, it is clinically useful to know what kind of image can be obtained under the imaging conditions before the examination, and a simulation technique for examining the optimal imaging conditions has been proposed (Patent Document 2, Patent Document). 3).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-073865
  • Patent Document 2 JP 2004-329661 A
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-57831
  • Patent Document 1 With the technology disclosed in Patent Document 1, an image with a desired noise amount and SD value can be obtained. There is a problem that it is not easy to set an optimal target SD value to obtain an image suitable for the inspection purpose while suppressing unnecessary exposure, and it requires a wealth of experience and advanced knowledge.
  • An object of the present invention is to prepare an enormous sample image and noise pattern image.
  • An X-ray CT scan simulator device capable of highly accurate simulation regardless of the presence or absence of a history of imaging a subject.
  • an X-ray CT scan simulator device includes an image storage unit that stores a reference image, a target noise value setting unit that sets a noise target value of a desired image, Noise image generation means for generating a noise image based on the set target noise value, simulation image generation means for generating a simulation image by synthesizing the generated noise image and the reference image, and the simulation And display means for displaying an image.
  • the X-ray CT apparatus includes an X-ray source that irradiates a subject with X-rays, and an X-ray detection that detects X-rays that are disposed opposite to the X-ray source and transmitted through the subject.
  • An X-ray source a rotating device that mounts the X-ray detector and rotates around the subject, and the subject based on transmitted X-ray doses in a plurality of directions detected by the X-ray detector
  • An X-ray comprising: an image reconstruction device that reconstructs a tomographic image of the image; an imaging condition input device that inputs the X-ray irradiation conditions and image reconstruction conditions; and an image display device that displays the tomographic image
  • a CT apparatus further comprising the X-ray CT scan simulator apparatus.
  • the X-ray CT scan simulator program includes a step of acquiring a reference image, a step of setting a noise target value of a desired image, and a noise image based on the set target noise value. And generating a simulation image by synthesizing the generated noise image and the reference image, and outputting the simulation image.
  • FIG. 1 is a diagram showing a preferred embodiment of an X-ray CT apparatus equipped with an X-ray CT scan simulator according to the present invention.
  • An X-ray CT apparatus 1 equipped with an X-ray CT scan simulator according to the present invention includes a gantry 2, and the gantry 2 includes an X-ray source 3, a collimator 4, and a detector array 5 located on the opposite surface of the gantry 2.
  • the gantry 2 includes an X-ray source 3, a collimator 4, and a detector array 5 located on the opposite surface of the gantry 2.
  • the detector array 5 is formed by a detector element 6 that detects X-rays transmitted through a subject on a bed (not shown).
  • the detector elements 6 are arranged in rows or in a plurality of parallel rows. Each detector element 6 generates an electrical signal representing the intensity of the incident X-ray beam, in other words, attenuation when the X-ray beam passes through the subject.
  • X-ray projection data is collected by rotating the gantry 2 around the rotation center 8 in a state where X-rays 7 are irradiated from the X-ray source 3.
  • the country 2 and the X-ray source 3 are controlled by the control unit 9 of the X-ray CT apparatus 1.
  • the control unit 9 includes an X-ray control unit 10, a gantry control unit 11 and a DAS (data acquisition system) 12, and an analog signal from the detector element 6 is converted into a digital signal by the DAS 12.
  • the digitized X-ray data is reconstructed by the reconstruction means 19 in the arithmetic processing means 13 and stored in the storage means 22 in the arithmetic processing means 13.
  • the arithmetic processing means 13 is an arithmetic processing device such as a computer, and obtains the body thickness of the subject.
  • Body thickness estimation means 14 approximate model calculation means 15 that obtains a water phantom that has the same amount of X-ray absorption as the subject by converting the body thickness to water equivalent thickness, and image SD that obtains the image SD in images taken in the past Calculation means 16, addition noise quantity calculation means 17 for determining the amount of noise to be added to the original image (also referred to as reference image) in order to create a desired SD image, and approximation with an X-ray absorption equivalent to the subject
  • Water approximation model projection data creation means 18 for generating model projection data
  • reconstruction means 19 for image reconstruction from projection data, approximation model projection data with added noise and projection data for approximation model without noise addition
  • Noise image creation means 20 that obtains a noise image
  • simulation image creation means 21 that obtains a simulation image by adding the noise image to the original image
  • a hard disk Each
  • the image display means 25 is a display device such as a display integrated with or independent from the arithmetic processing means 13.
  • the control unit 9 and the arithmetic processing means 13 are separated, but both may be integrated.
  • the reconstruction means 19 may be an arithmetic unit independent of the arithmetic processing means 13.
  • FIG. 2 is a configuration diagram of the X-ray CT scan simulator 200 of the present embodiment.
  • the X-ray CT scan simulator 200 includes a storage unit 22 that is an image storage unit, an input unit 24 that is a target noise value setting unit, a noise image generation unit 30, and a simulation image generation unit 21.
  • the storage unit 22 stores a reference image that serves as a reference for the simulation image created by the X-ray CT scan simulator 200.
  • the reference image is a past image obtained by CT imaging of a subject in the past, or a human phantom image obtained by CT imaging in advance of a human phantom that faithfully reproduces the internal tissue of the human body.
  • Sufficient X-ray dose should be used to capture human phantom images so that clear images can be obtained.
  • the input unit 24 is for inputting a target noise value, and is specifically a keyboard, a mouse, or the like.
  • the noise image generation means 30 performs noise based on the target noise value input by the input means 24. Generate and output the image.
  • the noise image generating means 30 includes a body thickness estimating means 14, an approximate model calculating means 15, an approximate model projection data creating means 18, an image SD calculating means 16, an added noise amount calculating means 17, and a noise image creating means 20.
  • the body thickness estimation means 14 acquires the body thickness of the subject.
  • the body thickness may be manually input by the operator, or the scanogram force may be obtained. If the reference image is a past image, it may be automatically estimated by a method described later.
  • the approximate model calculating means 15 calculates an approximate model based on the body thickness estimated by the body thickness estimating means 14.
  • the approximate model is a model approximated with water so as to have the same amount of X-ray absorption as the subject (hereinafter referred to as water approximate model). X-ray absorption equivalent to the subject obtained from the average CT value of the subject Even a model with a virtual substance with a quantity (hereinafter referred to as an average CT value substance approximation model). A method for calculating the approximate model will be described later.
  • the approximate model projection data creating means 18 creates projection data by irradiating the approximate model calculated by the approximate model calculating means 15 in a simulated manner with X-rays. A method for creating projection data will be described later.
  • the image SD calculation means 16 calculates the noise amount of the reference image. The method for calculating the noise amount of the reference image will be described later.
  • the addition noise amount calculation unit 17 calculates a noise amount to be added to the reference image.
  • the noise image creating means 20 creates a noise image by reconstructing the added projection data obtained by adding the amount of noise to be added to the approximate model projection data.
  • the simulation image creating unit 21 synthesizes the noise image generated by the noise image generating unit 30 and the reference image to create a simulation image.
  • FIG. 3 is a process flow showing a method for creating a simulation image in the present embodiment.
  • a search is made as to whether or not there is a history of imaging the same part in the past (step S201), and if there is an imaging history, based on the image (past image) taken in the past.
  • Set to image step S202.
  • an image obtained by shooting a phantom (human phantom) that faithfully reproduces the internal composition of the human body is set as the original image (step S203).
  • the body thickness of the subject is automatically estimated (step S204).
  • the body thickness may be obtained from a scanogram, or a method as described later may be used.
  • the operator may directly input the body thickness in step S204, it is preferable to automatically estimate the body thickness in order to reduce the burden on the operator.
  • a water equivalent thickness is obtained based on the body thickness obtained in step S204, and an approximate model having this water equivalent thickness is calculated (step S205). The calculation method of water equivalent thickness and approximate model will be described later.
  • the image SD in the original image is calculated (step S206). The method for calculating the image SD in the original image will be described later.
  • step S207 the target image SD value is input (step S207).
  • the SD value entered here is any SD value desired by the operator.
  • the X-ray conditions (tube voltage, tube current, slice thickness, etc.) that allow the SD value to be directly input may be input. In this case, convert it to SD from the input X-ray conditions and the size of the approximate model!
  • step S206 the SD value in the original image obtained in step S206 is compared with the target SD value input in step S207 to calculate the amount of noise to be added to the original image (step S208).
  • projection data of the approximate model is created (step S209).
  • Two types of projection data are created: an ideal system that does not include noise, and a projection that adds noise by the amount of noise obtained in step S208.
  • noise-free projection data obtained in step S209 and the projection data force obtained by adding the noise also create a noise image (step S210).
  • Noise images are projection data with added noise. Obtained by differentiating the reconstructed image of the image and the reconstructed image of the projection data without adding noise, or by reconstructing the difference between the projection data with added noise and the projection data without adding noise. . Then by adding the noise image obtained by the scan Tetsupu S210 based on the image set in step S202 or step S203, creating a simulation image (step S211) 0
  • Figure 4 shows the body thickness estimation method.
  • a mask image 31 in which the pixel value of the pixel in the subject is 1 and the pixel values of the other pixels are 0 is created from the original image 30, and the inertia main axis 32 in the mask image 31 is obtained.
  • the mask image 31 may be created by any other known method, such as that disclosed in Japanese Patent Application Laid-Open No. 2004-097665.
  • the distance between the intersection points PI and P2 of the contours of the inertial principal axis 32 and the mask image 31 is the body thickness in the inertial principal axis direction.
  • the inertial main axis 32 can be obtained according to the following formula (1), where I (x, y) is the pixel at the inertial main axis q and coordinates (x, y).
  • Equation 1 a, b, and c are expressed by Equation 2 below.
  • the body thickness in the AP direction can be determined from the maximum attenuation of X-rays attenuated in the subject.
  • Body thickness strength of S205 A method for calculating the water equivalent thickness and the approximate model will be described. Body thickness can be obtained from the method described above with reference to FIG.
  • the pixel value of the pixel located in the original image 31 on the inertial main axis 32 shown in FIG. 4 is scanned and the average CT value is CA
  • the water permeation length L1 in the inertial main axis direction is expressed by the following equation (3). Desired.
  • Equation 3 1000 In Equation 3, 1 represents the distance between P1 and P2.
  • L1 obtained by Equation 3 is the water-equivalent thickness in the inertial main axis direction. Water in a direction perpendicular to the principal axis of inertia The value thickness may be obtained assuming that the cross section of the subject is an ellipse. If the average pixel value of all the pixels in the mask is CS, the water equivalent thickness L2 in the direction perpendicular to the principal axis of inertia can be obtained by the following equation (4).
  • Equation 4 S represents the number of pixels in the mask, that is, the area.
  • the approximate center is the ellipse whose major axis length is L1 (or L2) and whose minor axis length is L2 (or L1).
  • the body thickness in the AP direction (or LR direction) described above is assumed. Therefore, the water equivalent thickness in the AP direction (or LR direction) can be calculated.
  • the water equivalent thickness in the LR direction (or AP direction) may be obtained assuming that the cross section of the subject is an ellipse.
  • An ellipse is an approximate model, and the method for obtaining the scanogram force water equivalent thickness is not limited to this, and any known method may be used.
  • the approximate model may be obtained by approximating the whole imaging target with a water phantom based on the water equivalent thickness, but the X-ray absorption characteristics such as bone and soft tissue are greatly different in the imaging target. It is desirable to segment the imaging target for each organ and approximate it with a different X-ray absorbing material for each segmented region. Each segmented segment may be assigned an absorption coefficient ⁇ obtained by the following equation when creating projection data described later.
  • ⁇ w is the X-ray absorption coefficient of water
  • ACT is the difference between the CT value of each segmented part and the CT value of air.
  • Any known method may be used for segmentation. In this segmentation, for example, in photographing the head, a calcium absorption coefficient is assigned in order to approximate the inner area of a predetermined width from the outer edge of the ellipse to the bone (skull), and the area further inside than that area is May be used to assign a water absorption coefficient to approximate soft tissue.
  • the number of used views M is not necessarily equal to the number of views N per rotation.
  • the X-ray attenuation index T can be expressed as a function T (m) of the view number to be used.
  • tube current value for view number m iv (m) is expressed by the following equation (6).
  • the X-ray attenuation index T is a constant value, and xv is used as the tube voltage and the reference tube current value i-re is used as the tube current value i. Then, the number of views in one rotation N_ref ⁇ is evenly weighted, and the image noise variance value V when the image thickness thk is reconstructed as the reference image thickness thk_ref using the reconstruction filter function g is X-ray attenuation.
  • T As a function of the exponent T, it is expressed as the following equation (7).
  • a (xv) is a constant at 3 ⁇ 4H v
  • b (xv, g) is a constant that depends on ⁇ 3 ⁇ 4ffixv and the Pi constituent filter Yu 3 ⁇ 4
  • a (xv) 4 b (xv, g) is obtained empirically.
  • w (m) in Expression 8 is a view direction weight applied to each view. Since the parameters such as tube voltage, tube current, reconstruction filter function, and image thickness are already known in the original image, the image noise variance prediction value V * in the original image can be calculated according to Eq. For the square root force, the SD value in the original image is also obtained.
  • N q 2 fi 2 g ⁇ rjE 2 PdE [0069]
  • 13 is a constant determined depending on the device, and ⁇ is obtained empirically also for the signal strength when shooting without a subject.
  • g is the energy conversion efficiency of the detector
  • is the X-ray detection efficiency of the detector.
  • the photon energy, photon number, photon noise, and system noise in the X-ray condition of the original image (SD is ⁇ 0) are E0, P0, Nq0, and Ns0, respectively. If the energy, photon number, and photon noise are Et, Pt, Nqt, and Nst, respectively, the variance of the photon noise amount Nadd that should be added to the original image to obtain the simulation image is expressed by the following equation (10).
  • N ⁇ 2 g 2 i E t 2 P t dE N s- ( 2 g 2 rji E. 2 P. dE + NJ)
  • Equation 10 For simplicity of calculation, the term of system noise in Equation 10 may be ignored, but in order to perform a detailed simulation, it is necessary to consider not only photon noise but also the effect of system noise. Hope U ,. System noise under each imaging condition can be obtained by scanning the X-ray tube with a sufficiently thick lead plate that does not transmit X-rays.
  • SD in the original image is ⁇ 0, and the target image SD is ⁇ t.
  • SD ⁇ a in the noise image can be calculated by the following equation (11).
  • FIG. 5 is an example showing the relationship between the transmission length and the SD in the water phantom.
  • the force curve shown in Fig. 5 can be obtained by photographing water phantoms of various diameters and measuring the SD at that time. It is desirable to prepare the curve shown in Fig. 5 for every tube voltage that can be set by the CT scanner to be used.
  • the transmission length (transmission thickness) of the approximate model is obtained by using the method as described above. Therefore, referring to the curve shown in FIG. 5, the ⁇ a calculated by Equation 11 can be obtained.
  • mAs values are obtained.
  • the amount of noise at any mAs value is Since it is obtained empirically by actually measuring the atom, this can be used as the amount of added noise.
  • the curve shown in Fig. 5 is prepared by preparing only the curve at a typical mAs value, and the curves at other mAs values can be calculated using the fact that SD is proportional to the square root of the mAs value. Good. However, in this case, there may be a large error under imaging conditions where system noise is conspicuous. Therefore, it is possible to prepare curves for all mAs values that can be set in the CT device to be used. Hope.
  • FIG. 6 shows an illustration of how to create projection data. If the energy intensity of X-rays with energy E is I, I
  • N is the Avogadro number
  • p and A are the density and atomic weight of the target
  • m0 is the electron mass
  • c is the speed of light
  • TO is the energy of the incident electron
  • Q is also radiating one electron force
  • X The energy intensity of the line.
  • Q is an approximate expression that is determined by the ratio E / T of photon energy E and electron energy T.
  • the following non-patent document 1 gives an approximate expression!
  • Non-Patent Document 1 R. Bitch and M. Marshall, Computation of Bremsstrahlung X-ray Spectro and Comparison with Spectra Measured with a Ge (Li) Detector, Phys. Med. B iol, Vol 24, No. 3, 505-517, 1979 dT / dl is the amount of energy loss per unit length and is called stopping power. The stopping power is described in Non-Patent Document 2 for each element.
  • Non-Patent Document 2 Katsuhiko Yamada, Hiroki Nohara, Radiation Metrology, Chapter 2, Japan Society for Radiological Technology, 1983.
  • ⁇ ⁇ is the X-ray absorption coefficient of the target in the X-ray tube
  • 1 is the electron incident distance is there.
  • Equation 12 is the energy intensity distribution.
  • ⁇ ⁇ / ⁇ can be calculated to obtain the photon number distribution.
  • Equation 12 is a force representing the spectrum of X-rays by bremsstrahlung Emission from excited atoms
  • C is the characteristic X-ray Ich is approximated by the number 13 formula follows
  • TK and L are energy required to remove electrons from the K and L electron orbitals, and can be obtained by comparing the absolute intensity of Ich with the value described in Non-Patent Document 3.
  • Non-Patent Document 3 HPA. Catalog of Spectctral Data for Diagnostic X-rays, SRS-30, Hospital Physicist's Association, 1979 Approximate model projection data is calculated using linear attenuation characteristics and transmission distance be able to. For each photon energy E, the X-ray absorption coefficient n of each X-ray absorbing material n is calculated for each photon energy E, and the projected value at each photon energy is calculated based on the product of the transmission path length In. Then, the projection data is created by the product sum of the contribution rate W (E) of each energy that can obtain the effective spectral distribution force and the projection value.
  • W (E) contribution rate
  • Nadd is the above-described addition noise.
  • Figure 7 outlines the calculation of transmission nose length. Considering a three-dimensional coordinate system with the origin as an arbitrary point (for example, the IISO center), the geometric coordinates of the X-ray source, detector, and approximate model can be obtained. In the equation, the X-ray path incident on an arbitrary detector can be expressed by a linear equation.
  • KVpt and mAst in Fig. 8 are the tube voltage and mAs value for obtaining the simulation image of the target image SD value.
  • the tube image and mAs value are centered on the simulation image 80 of the target image SD value.
  • a simulation image 81 is displayed side by side in the case where is appropriately changed.
  • the target image SD value is a parameter arbitrarily designated by the operator, but the set target image SD value is not necessarily optimal for reaching the inspection purpose. Therefore, in a user interface that displays only the target image SD value simulation image (hereinafter referred to as [UI] and!, U), the target image SD value is repeatedly calculated in the process of studying the optimal shooting conditions. A process is required to recreate the simulation image while changing.
  • the force shown for changing the mAs value and tube voltage value is not limited to these two parameters, but the imaging slice thickness, reconstruction slice thickness, reconstruction function, helicity force Arbitrary parameters such as Rubych may be used.
  • the imaging slice thickness, reconstruction slice thickness, reconstruction function, helicity force Arbitrary parameters such as Rubych may be used.
  • the X-ray condition at that time is the imaging protocol. If the system is such that the imaging protocol is automatically set to the imaging conditions when imaging a patient that is registered and simulated, the clinical utility will increase.
  • Fig. 8 shows an example of displaying simulation images with several SDs side by side
  • selecting one of the simulation images arranged in Fig. 8 fixes the parameters of the two axes displayed in parallel
  • others Let's try displaying multiple simulation images side by side with different parameters.
  • FIG. 9 is a screen display example showing this embodiment.
  • the vertical axis is the tube voltage kVp
  • the horizontal axis is the tube voltage mAs
  • the simulation image 80 generated in step S211 is centered
  • the simulation image 81 when the tube voltage and mAs value are appropriately changed is surrounded.
  • the tube voltage and tube current kVpt, mAst of the simulation image 80 are fixed, and other parameters such as the helical pitch (HP) and the reconstruction function (F1, F2 , F3) is generated and a simulation image 82 is generated.
  • the combination of the tube current and the tube voltage is first determined, and then the helical pitch and the reconstruction function are determined.
  • the combination of parameters and the order of determination are not limited to this.
  • the third embodiment is an embodiment in which a simulation image is confirmed, and the X-ray imaging conditions at that time are used as scanning imaging conditions.
  • FIGS. 8 and 9B a “shooting condition determination” icon 90 is provided in FIGS. 8 and 9B.
  • the tube voltage and tube current are determined, and all other imaging conditions such as FOV, imaging slice thickness, etc. necessary for scanning are transmitted from the simulator camera. If not, the control unit 9 of the X-ray CT apparatus 1 automatically inputs the received imaging conditions and causes the user to input the insufficient imaging conditions.
  • the imaging conditions determined while viewing the simulation image can be transmitted to the X-ray CT apparatus, and the imaging conditions can be automatically input to perform scanning imaging.
  • SD may be displayed side by side with the same simulation images with the same noise pattern. Due to the randomness of noise, the appearance of noise, that is, the noise pattern, is different even when the same subject is imaged under exactly the same X-ray conditions. Therefore, because of the combination of the size and position of the disease and the noise pattern, it may be difficult to see the disease even if the images are taken under the same X-ray conditions. Therefore, especially in close examinations, it is necessary to set imaging conditions that can reliably detect diseases regardless of the noise pattern.
  • FIG. 10 shows a screen display example in which nine simulation images 85 with the same SD value and different noise patterns are displayed in parallel.
  • the number of dots indicating noise is the same, but the positions where dots are scattered are different in each simulation image.
  • Non-patent document 4 Video information Medical separate volume multi-slice CT Book2005 vol37 (7) 145-149 Therefore, when considering an exposure reduction imaging protocol using image filters, noise removal processing is performed on simulation images using any image filter such as the image filter shown in Non-Patent Document 4. A UI that can do this would be clinically useful.
  • simulation images after filtering processing are displayed side by side when arbitrary parameters are selected on the vertical axis and horizontal axis and the X-ray conditions are changed as appropriate.
  • processing parameters smoothing level, sharpness level, etc.
  • a UI that displays the simulation image 111 after filtering processing when the smoothing level and the sharpening level are changed with respect to the same simulation 110 image is also clinically useful. I will.
  • FIG. 12 is a configuration diagram of the X-ray CT scan simulator 1200 of the present embodiment.
  • the X-ray CT scan simulator 1200 includes image storage means 1210, target noise value setting means 1230, noise image generation means 1240, simulation image creation means 1244, and sample noise image editing means 1250.
  • the image storage means 1210 stores a reference image serving as a reference for the simulation image created by the X-ray CT scan simulator 1200 and a plurality of sample noise images.
  • the reference image is a past image obtained by CT imaging of a subject in the past, or a human phantom image obtained by CT imaging in advance of a human phantom that faithfully reproduces the internal tissue of the human body.
  • Sufficient X-ray dose should be used to capture human phantom images so that clear images can be obtained.
  • images taken with typical FOVs should be prepared for each part.
  • the sample noise image is an image including only noise components. It is desirable to prepare the sample noise image according to the part, the FOV, the ratio of the FOV to the subject size, and the reconstruction function used during image reconstruction. The method for creating the sample noise image has already been described.
  • the target noise value setting means 1230 is a simulation created by the X-ray CT scan simulator 1200. -Set the noise target value of the image.
  • the target noise value setting means 1230 includes body thickness acquisition means 1231, approximate model generation means 1232, and target noise value calculation means 1233.
  • the target noise value setting unit 1230 may be an image noise amount input unit that inputs an image noise amount. Note that the image noise amount is usually defined as the standard deviation of the CT value variation of a homogeneous phantom image, and is sometimes abbreviated as image SD (Standard Deviation).
  • the body thickness acquisition means 1231 acquires the body thickness of the subject.
  • the body thickness may be manually input by the operator, or the scanogram force may be obtained. If the reference image is a past image, it may be automatically estimated by the method described above.
  • the approximate model generation unit 1232 generates an approximate model based on the body thickness acquired by the body thickness acquisition unit 1231.
  • the approximate model may be a model that is similar to water so that it has the same amount of X-ray absorption as the subject (hereinafter referred to as the water approximate model).
  • a model using a virtual substance having a quantity (hereinafter referred to as an average CT value substance approximation model) may be used.
  • the target noise value calculation unit 1233 calculates the image noise amount based on the input shooting conditions and the approximate model generated by the approximate model generation unit 1232.
  • the noise image generation means 1240 generates and outputs a noise image based on the target noise value set by the target noise value setting means 1230.
  • the noise image generation means 1240 includes sample noise image selection means 1220, reference image noise amount calculation means 1241, added noise amount calculation means 1242, and noise amplitude change means 1243.
  • the sample noise image selection means 1220 selects one sample noise image according to the photographing condition of the reference image, among the plurality of sample noise images.
  • To select a sample noise image refer to the FOV, FOV and subject size ratio, reconstruction function, etc. from the shooting conditions.
  • the reference image noise amount calculation means 1241 calculates the noise amount of the reference image. The method for calculating the noise amount of the reference image has already been described.
  • the addition noise amount calculation means 1242 should add to the reference image based on the target noise value set by the target noise value setting means 1230 and the noise amount calculated by the reference image noise amount calculation means 1241. Calculate the amount of noise.
  • the noise amplitude changing unit 1243 changes the noise amplitude of the sample noise image selected by the sample noise image selecting unit 1220 based on the added noise amount calculated by the added noise amount calculating unit 1242.
  • the simulation image creating means 1244 creates a simulation image by synthesizing the noise image generated by the noise image generating means 1240 and the reference image.
  • the sample noise image editing unit 1250 is a unit for performing editing such as addition and deletion of the sample noise image stored in the image storage unit 1210. Using the sample noise image editing means 1250, the operator designates at least one of the shape of the virtual phantom, the CT value, the barycentric coordinates, and the field of view for imaging, and adds the sample noise image.
  • FIG. 13 is a diagram showing a processing flow until a simulation image is generated according to the present embodiment.
  • the general flow is setting the reference image in steps S1301 to S1303, setting the target noise value in steps S1304 to S1306, generating a noise image in steps S1307 to S1311, and synthesizing the simulation image in step S1312. .
  • Each step is described below.
  • the X-ray CT scan simulator 1200 searches the image storage means 1210 for past images of the subject to be simulated, and determines whether there is a history of imaging the same part in the past. If it is determined that there is a past image, the process proceeds to step S1302, and if not, the process proceeds to step S1303.
  • X-ray CT scan simulator 1200 sets a past image as a reference image.
  • the X-ray CT scan simulator 1200 sets a human phantom image as a reference image.
  • the body thickness acquisition means 1231 automatically estimates the body thickness of the subject from the scanogram and past images.
  • the estimation method has already been described.
  • the operator may input the body thickness directly, but it is better to estimate the body thickness automatically in order to reduce the burden on the operator. [0125] (Step SI 305)
  • the approximate model generation means 1232 generates an approximate model based on the body thickness obtained in S 1306.
  • the approximate model may be a water approximate model or an average CT value substance approximate model. The method for calculating the approximate model has already been described.
  • Target noise value setting means 1230 sets the target noise value.
  • the target noise value can be set manually by the operator, or the target noise value calculation means 1233 can set the approximate model generated in S1307 and the shooting conditions. good.
  • the X-ray CT scan simulator 1200 acquires FOV, FOV and the size ratio of the subject, and the reconstruction function from the imaging conditions of the reference image set in S1302 or S1303.
  • the sample noise image selection means 1220 selects one sample noise image based on the photographing conditions acquired in S1305, among the plurality of sample noise images in the image storage means 1210.
  • the reference image noise amount calculation unit 1241 calculates the image noise amount of the reference image. The method for calculating the amount of image noise has already been described.
  • the added noise amount calculation unit 1242 calculates the noise amount to be added to the reference image. The method for calculating the amount of added noise has already been described.
  • the noise amplitude changing means 1243 changes the noise amplitude of the sample noise image selected in S1305 according to the added noise amount calculated in S1310.
  • the simulation image creating means 1244 combines the reference image set in S1302 or S1303 with the sample noise image whose noise amplitude has been changed in S1311, thereby simulating. Create a layout image.
  • the human body has a vertically long organ such as the head and a horizontally long organ such as the abdomen.
  • the X-axis diameter of the subject is Rx
  • the Y-axis diameter is Ry.
  • Sample noise images are created for each part.
  • Rx / Ry is about 0.787 for a longitudinal organ such as the head
  • Ry / Rx is 0.787 for a lateral organ such as the abdomen. It is desirable to create a sample noise image with such a virtual phantom where it is desirable that a simulated organ is placed in the above-mentioned virtual phantom so as to have a value of about.
  • Fig. 14 is an explanatory diagram of the ratio between FOV and subject size.
  • a subject 902 is included in an image 901 as shown in FIG.
  • the ratio of FOV to subject size described in the present invention is the ratio of Rx / FOV or Ry / FOV. Real number of ⁇ 1.
  • the subject size may be almost the same as the FOV, or it may be only about 30% of the FOV.
  • sample noise images in steps of about 0.05 when the ratio of FOV to subject size is in the range of 0.3 to 1.00. Even for data taken under the same ⁇ - ray conditions, the noise pattern varies depending on the reconstruction function. Therefore, it is desirable to create sample noise images for all reconstruction functions used in clinical practice.
  • the display described in the first embodiment to the fourth embodiment may be performed.
  • FIG. 16 shows an application example of the present invention.
  • Figure 16 (a) is an SD force head CT image 120 taken at 100kV, 200mAs.
  • FIG. 16 (b) is a noise image 121 to be added to create a simulation image with Sd force .6 from the original image 120 in FIG. 16 (a).
  • FIG. 16 (c) is a simulation image 122 obtained by adding the noise image 121 of FIG. 16 (b) to the original image 120 of FIG. 16 (a), and SD is 5.6. Therefore, this corresponds to a case where the mAs value is reduced by about 1/2 compared to the shooting conditions when the original image was obtained.
  • simulation images can be created in the same way when the SD in a simulation image is changed or in other parts.
  • an X-ray CT apparatus equipped with an X-ray CT scan simulator has been described. However, it is configured as an X-ray CT scan simulator apparatus equipped with only a simulator function without an X-ray imaging function.
  • the function described in the above embodiment may be configured as a scan simulator program that causes a computer to execute the function, and the above function may be realized by installing this program in a personal computer or a workstation.
  • the simulator image does not necessarily have to be displayed on the monitor of the personal computer installed with the scan simulator program.
  • the simulator image is transmitted to a terminal device connected via a network such as a LAN.
  • the simulator image may be displayed on the terminal device.
  • FIG. 1 A configuration diagram of an X-ray CT apparatus equipped with the X-ray CT scan simulator of the present invention.
  • FIG. 2 is a configuration diagram of the first embodiment.
  • FIG. 3 is a processing flow of the first embodiment.
  • FIG. 4 is an explanatory diagram of a body thickness estimation method.
  • FIG. 5 is a diagram showing the relationship between transmission length and SD in a water phantom.
  • FIG. 6 is an explanatory diagram of a method for creating projection data.
  • FIG. 7 is an explanatory diagram of a method for calculating a transmission length.
  • FIG. 8 is a screen display example of the first embodiment.
  • FIG. 9 shows a screen display example of the second embodiment.
  • FIG. 10 shows a screen display example of the fourth embodiment.
  • FIG. 11 shows a screen display example of the fourth embodiment.
  • FIG. 12 is a configuration diagram of the fifth embodiment.
  • FIG. 13 is a processing flow of the fifth embodiment.
  • FIG. 14 is an explanatory diagram of the ratio between FOV and subject size.
  • FIG. 16 shows an example of clinical application of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Processing Or Creating Images (AREA)

Abstract

A high accuracy simulation image is provided without preparing a mass of sample images or noise pattern images and whether there is a history or not in which an examinee was photographed in the past. An image in the past of an examinee or an original image of a photographed phantom of a human body is input (S201-203), the body thickness of the examinee is estimated (S204) and an approximation mode is calculated on a basis of a water equivalent thickness of the estimated body thickness (S205). A noise amount added to the original image is calculated based on a difference between an image noise amount of the original image and the target image noise amount (S208). Based on the approximation model, standard projection data, which are projection data of the approximation model without noise, and added projection data, which are the standard projection data to which the noise amount added to the original image is added, are made out (S209). Further, based on the standard projection data and the added projection data, a noise image including a noise amount added to the original image is reconstructed (S210) and the same is added to the original image to make out and display a simulation image (S211).

Description

明 細 書  Specification
X線 CTスキャンシミュレータ装置、 X線 CT装置、及び X線 CTスキャンシミ ユレータプログラム  X-ray CT scan simulator device, X-ray CT device, and X-ray CT scan simulator program
技術分野  Technical field
[0001] 本発明は、 X線 CTスキャンシミュレータ装置、 X線 CT装置、及び X線 CTスキャンシミ ユレータプログラムに関し、特に画像ノイズのシミュレーションや適切な撮影条件の事 前検討に対して有用な技術に関するものである。  TECHNICAL FIELD [0001] The present invention relates to an X-ray CT scan simulator apparatus, an X-ray CT apparatus, and an X-ray CT scan simulator program, and in particular, a technique useful for simulation of image noise and pre-examination of appropriate imaging conditions. It is about.
[0002] 本出願は、日本国特許法に基づく特許出願特願 2006-103547号、及び特願 2007- 059408号に基づくパリ優先権主張を伴う出願であり、特願 2006-103547号及び特願 2 007-059408号の利益を享受するために参照による援用を受ける出願である。  [0002] This application is a patent application claiming priority based on Japanese Patent Application No. 2006-103547 and Japanese Patent Application No. 2007-059408 based on Japanese Patent Law. 2 This application is incorporated by reference to enjoy the benefits of 007-059408.
背景技術  Background art
[0003] 従来の X線 CT装置は、 X線源力 扇形上に照射される X線を 1列の検出器で検出し ていた力 近年ではコーン型に照射される X線を多列の検出器で検出マルチスライス CTが実用化されている。また検出器の多列化だけでなく薄化も著しい。  [0003] The conventional X-ray CT system uses X-ray source power to detect X-rays radiated on a fan with a single-row detector. In recent years, X-rays radiated to a cone type are detected in multiple rows. Detect multi-slice CT in practical use. Not only the number of detectors but also the thinning is remarkable.
[0004] X線 CT装置の技術革新は検出器だけにとどまらず、ガントリ回転速度の高速ィ匕の 進んでおり、短時間で広範囲のデータ収集が可能になってきている。従来に比べて はるかに広い範囲をスキャンすることが可能となったため、従来と同じ管電流で撮影 した場合、被曝線量の増加が顕著になる。さらに比較的撮影範囲が狭い場合であつ ても CT Perfusionや ECGのように撮影時間が長 、ために局所線量が高 、検査も増加 している。  [0004] Technological innovations in X-ray CT systems are not limited to detectors, and the speed of gantry rotation speed is increasing, making it possible to collect a wide range of data in a short time. Since it was possible to scan a much wider range than before, the increase in exposure dose was noticeable when taking images with the same tube current as before. Even when the imaging range is relatively narrow, the imaging time is long like CT Perfusion and ECG, so the local dose is high and the number of examinations is increasing.
[0005] 以上の理由から低管電圧撮影や低管電流撮影などの低線量撮影による被曝低減 が重要となってくるが、低線量撮影は画像ノイズの増加を招く。また画像ノイズはスラ イス厚に依存するため、薄 、スライス厚での撮影は画像ノイズの増加を招く。  [0005] For the above reasons, it is important to reduce exposure by low-dose imaging such as low tube voltage imaging and low tube current imaging, but low-dose imaging causes an increase in image noise. In addition, since image noise depends on the slice thickness, photographing with a thin slice thickness causes an increase in image noise.
[0006] 無用な X線被曝を抑制しながら被写体の体型によらず均一な画質を得るために、特 許文献 1に示されているような X線自動露出機構( Auto Exposure Control: AEC)と呼 ばれる技術が実用化されている。 AECでは通常、目標とする画像 SDを操作者が指定 し、この目標 SDになるような管電圧値、管電流値が自動的に設定される。 [0007] どのぐらいの SDの画像ならば診断に適した画像が得られるかは、疾患の種類ゃ大 きさによって異なる。また同じ疾患であっても検査目的(検診であるか精密検査であ るか)によって求められる画質は異なる。このため被曝量を抑制しつつ検査目的ゃ疾 患、被検体の大きさに応じた最適な撮影条件を設定するのは容易ではない。よって 検査前にある撮影条件でどのような画像が得られるかを知ることは臨床上有用であり 、最適な撮影条件を検討するためのシミュレーション技術が提案されている(特許文 献 2、特許文献 3参照)。 [0006] In order to obtain a uniform image quality regardless of the body shape of the subject while suppressing unnecessary X-ray exposure, an automatic X-ray exposure mechanism (Auto Exposure Control: AEC) as shown in Patent Document 1 The so-called technology has been put into practical use. In AEC, the target image SD is usually specified by the operator, and the tube voltage and tube current values are automatically set so as to achieve this target SD. [0007] How many SD images can provide an image suitable for diagnosis depends on the type of disease. Even for the same disease, the required image quality differs depending on the purpose of the examination (whether it is a medical examination or a close examination). For this reason, it is not easy to set optimal imaging conditions according to the purpose of the disease and the subject while the exposure dose is suppressed. Therefore, it is clinically useful to know what kind of image can be obtained under the imaging conditions before the examination, and a simulation technique for examining the optimal imaging conditions has been proposed (Patent Document 2, Patent Document). 3).
[0008] 特許文献 1:特開 2004-073865号公報  [0008] Patent Document 1: Japanese Patent Application Laid-Open No. 2004-073865
特許文献 2:特開 2004-329661号公報  Patent Document 2: JP 2004-329661 A
特許文献 3:特開 2004-57831号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2004-57831
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 特許文献 1に開示されて!ヽる技術では、所望のノイズ量や SD値の画像を得る事が できる。し力 無用な被曝を抑制しながら検査目的に適した画像が得るための最適な 目標 SD値を設定するのは容易ではなぐ豊富な経験や高度な知識を必要とするとい う問題がある。 [0009] With the technology disclosed in Patent Document 1, an image with a desired noise amount and SD value can be obtained. There is a problem that it is not easy to set an optimal target SD value to obtain an image suitable for the inspection purpose while suppressing unnecessary exposure, and it requires a wealth of experience and advanced knowledge.
[0010] 特許文献 2に開示されて 、る技術では、任意の撮影条件にお!、てどのような画像が 得られるか、撮影前にシミュレーションすることができる。画面に表示されるシミュレ一 シヨン画像を見ながら視覚的に画質を確認できるため、特許文献 1に開示されている 技術に比べると最適な撮影条件の設定は簡便化されている。しかし、特許文献 2に開 示されて!/ヽる技術では、撮影部位ごとにさまざまな SDを持つサンプル画像をあらかじ め用意しておく必要があるため、用意すべきサンプル画像は膨大な量にのぼる。また 撮影条件から予想される SDの画像がサンプル画像中にな 、場合、それに近 、SDを 持つ二つの画像力も補間処理によってシミュレーション画像を作成する。このため撮 影条件によっては誤差が大きくなる恐れがありシミュレーション精度の信頼性に欠け る可能性があるという問題がある。  [0010] With the technique disclosed in Patent Document 2, it is possible to simulate what kind of image is obtained under an arbitrary shooting condition before shooting. Compared with the technique disclosed in Patent Document 1, the setting of the optimum shooting conditions is simplified because the image quality can be visually confirmed while viewing the simulation image displayed on the screen. However, since the technique disclosed in Patent Document 2 is required to prepare sample images with various SDs for each imaging region in advance, there is a huge amount of sample images to be prepared. Go up. If the SD image expected from the shooting conditions is not in the sample image, a simulation image is also created by interpolation processing for two image forces with SD. For this reason, the error may increase depending on the shooting conditions, and there is a problem that the reliability of the simulation accuracy may be lacking.
[0011] 特許文献 3に開示されている技術では、計測した投影データに対して量子ノイズと 電気ノイズを加算してカゝら再構成を行うことでシミュレーション画像を作成する。よって 、特許文献 2に開示されている技術のように補間処理は含まれておらず、シミュレーシ ヨンの精度は向上するものと考えられる。し力しシミュレーション画像の作成には実測 した投影データを必要とするため、被検者を過去に撮影した履歴がある場合にしか 適用できな ヽと 、う問題がある。 [0011] In the technique disclosed in Patent Document 3, a simulation image is created by adding quantum noise and electrical noise to the measured projection data and performing reconstruction. Therefore The interpolation processing is not included as in the technique disclosed in Patent Document 2, and it is considered that the accuracy of the simulation is improved. However, the creation of a simulation image requires actually measured projection data, which is a problem that can only be applied when there is a history of photographing the subject in the past.
[0012] また、特許文献 3の別の実施形態に開示されて 、る技術では、再構成画像にあらか じめ作成してあるノイズパターン画像を加算する方法が示されて ヽる。この方法の場 合、撮影条件に応じて様々なノイズパターン画像をあらかじめ用意する必要がある。 管電圧、管電流、 FOVなどの各撮影パラメータにはそれぞれ多くのパターンを持って いるため、全ての撮影条件に対応するには、膨大な量のノイズパターン画像を用意し なければならな!/ヽと ヽぅ問題がある。  [0012] In addition, in the technique disclosed in another embodiment of Patent Document 3, a method of adding a noise pattern image that has been created in advance to a reconstructed image is shown. In this method, it is necessary to prepare various noise pattern images in advance according to the shooting conditions. Each shooting parameter such as tube voltage, tube current, and FOV has many patterns, so a huge amount of noise pattern images must be prepared to support all shooting conditions! / There are ヽ and ヽ ぅ problems.
[0013] 本発明の目的は、膨大なサンプル画像やノイズパターン画像を用意することなぐ 被検者を過去に撮影した履歴の有無にかかわらず精度の高いシミュレーションが可 能な X線 CTスキャンシミュレータ装置、 X線 CT装置、及び X線 CTスキャンシミュレータ プログラムを提供することにある。 課題を解決するための手段  [0013] An object of the present invention is to prepare an enormous sample image and noise pattern image. An X-ray CT scan simulator device capable of highly accurate simulation regardless of the presence or absence of a history of imaging a subject. To provide an X-ray CT system and an X-ray CT scan simulator program. Means for solving the problem
[0014] 上記問題を解決するために、本発明に係る X線 CTスキャンシミュレータ装置は、基 準画像を格納する画像格納手段と、所望画像のノイズ目標値を設定する目標ノイズ 値設定手段と、前記設定された目標ノイズ値に基づきノイズ画像を生成するノイズ画 像生成手段と、前記生成されたノイズ画像と前記基準画像を合成してシミュレーショ ン画像を作成するシミュレーション画像作成手段と、前記シミュレーション画像を表示 する表示手段と、を備えることを特徴とする。  In order to solve the above problem, an X-ray CT scan simulator device according to the present invention includes an image storage unit that stores a reference image, a target noise value setting unit that sets a noise target value of a desired image, Noise image generation means for generating a noise image based on the set target noise value, simulation image generation means for generating a simulation image by synthesizing the generated noise image and the reference image, and the simulation And display means for displaying an image.
[0015] また、本発明に係る X線 CT装置は、被検体に X線を照射する X線源と、前記 X線源 に対抗配置され前記被検体を透過した X線を検出する X線検出器と、前記 X線源と前 記 X線検出器を搭載し前記被検体の周囲を回転する回転装置と、前記 X線検出器に より検出された複数方向の透過 X線量に基づき前記被検体の断層像を再構成する 画像再構成装置と、前記 X線の照射条件と画像再構成の条件を入力する撮影条件 入力装置と、前記断層像を表示する画像表示装置と、を備えた X線 CT装置であって 、さらに前記 X線 CTスキャンシミュレータ装置を搭載したことを特徴とする。 [0016] また、本発明に係る X線 CTスキャンシミュレータプログラムは、基準画像を取得する ステップと、所望画像のノイズ目標値を設定するステップと、前記設定された目標ノィ ズ値に基づきノイズ画像を生成するステップと、前記生成されたノイズ画像と前記基 準画像を合成してシミュレーション画像を作成し出力するステップと、をコンピュータ に実行させることを特徴とする。 [0015] In addition, the X-ray CT apparatus according to the present invention includes an X-ray source that irradiates a subject with X-rays, and an X-ray detection that detects X-rays that are disposed opposite to the X-ray source and transmitted through the subject. An X-ray source, a rotating device that mounts the X-ray detector and rotates around the subject, and the subject based on transmitted X-ray doses in a plurality of directions detected by the X-ray detector An X-ray comprising: an image reconstruction device that reconstructs a tomographic image of the image; an imaging condition input device that inputs the X-ray irradiation conditions and image reconstruction conditions; and an image display device that displays the tomographic image A CT apparatus, further comprising the X-ray CT scan simulator apparatus. [0016] The X-ray CT scan simulator program according to the present invention includes a step of acquiring a reference image, a step of setting a noise target value of a desired image, and a noise image based on the set target noise value. And generating a simulation image by synthesizing the generated noise image and the reference image, and outputting the simulation image.
発明の効果  The invention's effect
[0017] 本発明によれば、 X線 CTスキャンシミュレータにおいて、過去の撮影履歴の有無に よらず、目標 SD値の条件でどのような画像が得られるかをシミュレーションすることで 、被検者を計測する前に最適な撮影条件を検討することができると 、う効果がある。  [0017] According to the present invention, in the X-ray CT scan simulator, by simulating what kind of image is obtained under the condition of the target SD value regardless of the presence or absence of past imaging history, If the optimum shooting conditions can be examined before measurement, it is effective.
[0018] 以下、添付図面に従って本発明の好ましい実施の形態について詳説する。  [0018] Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0019] <第一実施形態 >  <First Embodiment>
[ハードウェア構成]  [Hardware configuration]
図 1は本発明に係る X線 CTスキャンシミュレータを搭載した X線 CT装置の好ましい 実施の形態を示す図である。本発明に係る X線 CTスキャンシミュレータを搭載した X 線 CT装置 1は、ガントリ 2を含み、ガントリ 2はガントリ 2の対向面上に位置する X線源 3と コリメータ 4と検出器アレイ 5とを有する。  FIG. 1 is a diagram showing a preferred embodiment of an X-ray CT apparatus equipped with an X-ray CT scan simulator according to the present invention. An X-ray CT apparatus 1 equipped with an X-ray CT scan simulator according to the present invention includes a gantry 2, and the gantry 2 includes an X-ray source 3, a collimator 4, and a detector array 5 located on the opposite surface of the gantry 2. Have.
[0020] 検出器アレイ 5は図示しな 、寝台上の被検者を透過した X線を検出する検出器素 子 6によって形成される。検出器素子 6は横列の形、または複数の並列な横列の形に 配置されている。各々の検出器素子 6は、入射した X線ビームの強度、言い換えると X 線ビームが被検者を透過した際の減衰を表す電気信号を発生させる。  [0020] The detector array 5 is formed by a detector element 6 that detects X-rays transmitted through a subject on a bed (not shown). The detector elements 6 are arranged in rows or in a plurality of parallel rows. Each detector element 6 generates an electrical signal representing the intensity of the incident X-ray beam, in other words, attenuation when the X-ray beam passes through the subject.
[0021] X線源 3から X線 7が照射された状態でガントリ 2が回転中心 8を中心にして回転する ことで X線投影データが収集される。カントリ 2や X線源 3は、 X線 CT装置 1の制御部 9 により制御される。  [0021] X-ray projection data is collected by rotating the gantry 2 around the rotation center 8 in a state where X-rays 7 are irradiated from the X-ray source 3. The country 2 and the X-ray source 3 are controlled by the control unit 9 of the X-ray CT apparatus 1.
[0022] 制御部 9は、 X線制御手段 10とガントリ制御手段 11と DAS(データ収集システム) 12を 含み、検出器素子 6からのアナログ信号は DAS12によってデジタル信号に変換される 。デジタル化された X線データは演算処理手段 13内の再構成手段 19によって再構成 され、演算処理手段 13内の保存手段 22に格納される。  The control unit 9 includes an X-ray control unit 10, a gantry control unit 11 and a DAS (data acquisition system) 12, and an analog signal from the detector element 6 is converted into a digital signal by the DAS 12. The digitized X-ray data is reconstructed by the reconstruction means 19 in the arithmetic processing means 13 and stored in the storage means 22 in the arithmetic processing means 13.
[0023] 演算処理手段 13はコンピュータなど演算処理装置であり、被写体の体厚を求める 体厚推定手段 14と、体厚を水等価厚に変換し被写体と同等の X線吸収量を持つ水フ アントムを求める近似モデル算出手段 15と、過去に撮影した画像における画像 SDを 求める画像 SD算出手段 16と、所望 SDの画像を作成するために元画像(基準画像と も言う)に加算すべきノイズ量を求める加算ノイズ量算出手段 17と、被写体と等価な X 線吸収量をもつ近似モデルの投影データを発生する水近似モデル投影データ作成 手段 18と、投影データから画像再構成を行う再構成手段 19と、ノイズを加算した近似 モデルの投影データとノイズを加算しない近似モデルの投影データ力もノイズ画像を 求めるノイズ画像作成手段 20と、元画像にノイズ画像を加算することでシミュレーショ ン画像を求めるシミュレーション画像作成手段 21と、ハードディスクなどの保存手段 22 と、メモリなどの一時格納手段 23と、マウスやキーボードなどの入力手段 24力 構成さ れている。 The arithmetic processing means 13 is an arithmetic processing device such as a computer, and obtains the body thickness of the subject. Body thickness estimation means 14, approximate model calculation means 15 that obtains a water phantom that has the same amount of X-ray absorption as the subject by converting the body thickness to water equivalent thickness, and image SD that obtains the image SD in images taken in the past Calculation means 16, addition noise quantity calculation means 17 for determining the amount of noise to be added to the original image (also referred to as reference image) in order to create a desired SD image, and approximation with an X-ray absorption equivalent to the subject Water approximation model projection data creation means 18 for generating model projection data, reconstruction means 19 for image reconstruction from projection data, approximation model projection data with added noise and projection data for approximation model without noise addition Noise image creation means 20 that obtains a noise image, simulation image creation means 21 that obtains a simulation image by adding the noise image to the original image, and a hard disk Each storage means 22, a temporary storage means 23 such as a memory, and an input means 24 such as a mouse and a keyboard are configured.
[0024] また図示しな ヽ Digital Signal Processor( DSP)や Micro Processor Unit( MPU)、 Cent ral Processing Unit( CPU)の少なくとも一つを備える。画像表示手段 25は、演算処理 手段 13と一体化した、あるいは独立したディスプレイなどの表示装置である。図 1では 制御部 9と演算処理手段 13を分離しているが、両者は一体ィ匕していてもよい。また再 構成手段 19は演算処理手段 13と独立した演算器でもよい。  [0024] Further, at least one of a digital signal processor (DSP), a micro processor unit (MPU), and a central processing unit (CPU) is provided. The image display means 25 is a display device such as a display integrated with or independent from the arithmetic processing means 13. In FIG. 1, the control unit 9 and the arithmetic processing means 13 are separated, but both may be integrated. The reconstruction means 19 may be an arithmetic unit independent of the arithmetic processing means 13.
[0025] [X線 CTスキャンシミュレータの構成]  [0025] [Configuration of X-ray CT scan simulator]
図 2は本実施例の X線 CTスキャンシミュレータ 200の構成図である。 X線 CTスキャン シミュレータ 200は、画像格納手段である保存手段 22と目標ノイズ値設定手段である 入力手段 24とノイズ画像生成手段 30とシミュレーション画像作成手段 21とを備える。  FIG. 2 is a configuration diagram of the X-ray CT scan simulator 200 of the present embodiment. The X-ray CT scan simulator 200 includes a storage unit 22 that is an image storage unit, an input unit 24 that is a target noise value setting unit, a noise image generation unit 30, and a simulation image generation unit 21.
[0026] 保存手段 22は、 X線 CTスキャンシミュレータ 200が作成するシミュレーション画像の 基準となる基準画像を格納する。基準画像は、被検体を過去に CT撮影して得られた 過去画像、または人体の内部組織を忠実に再現した人体ファントムを予め CT撮影し て得られた人体ファントム画像である。人体ファントム画像の撮影には充分な X線量を 用い、鮮明な画像が得られるようにする。  The storage unit 22 stores a reference image that serves as a reference for the simulation image created by the X-ray CT scan simulator 200. The reference image is a past image obtained by CT imaging of a subject in the past, or a human phantom image obtained by CT imaging in advance of a human phantom that faithfully reproduces the internal tissue of the human body. Sufficient X-ray dose should be used to capture human phantom images so that clear images can be obtained.
[0027] 入力手段 24は、 目標ノイズ値を入力するためのものであり、具体的にはキーボード 、マウスなどである。  [0027] The input unit 24 is for inputting a target noise value, and is specifically a keyboard, a mouse, or the like.
[0028] ノイズ画像生成手段 30は、入力手段 24で入力された目標ノイズ値に基づ ヽて、ノィ ズ画像を生成し出力する。ノイズ画像生成手段 30は、体厚推定手段 14と近似モデル 算出手段 15と近似モデル投影データ作成手段 18と画像 SD算出手段 16と加算ノイズ 量算出手段 17とノイズ画像作成手段 20とを備える。 [0028] The noise image generation means 30 performs noise based on the target noise value input by the input means 24. Generate and output the image. The noise image generating means 30 includes a body thickness estimating means 14, an approximate model calculating means 15, an approximate model projection data creating means 18, an image SD calculating means 16, an added noise amount calculating means 17, and a noise image creating means 20.
[0029] 体厚推定手段 14は、被検体の体厚を取得する。体厚は、操作者が手入力しても良 いし、スキヤノグラム力も求めても良い。また基準画像が過去画像である場合は後述 する方法により自動推定しても良い。 [0029] The body thickness estimation means 14 acquires the body thickness of the subject. The body thickness may be manually input by the operator, or the scanogram force may be obtained. If the reference image is a past image, it may be automatically estimated by a method described later.
[0030] 近似モデル算出手段 15は、体厚推定手段 14が推定した体厚に基づき、近似モデ ルを算出する。近似モデルは、被検体と同等の X線吸収量を持つように水で近似し たモデル(以下、水近似モデル)でもよぐ被検体の平均 CT値から求められる被検体 と同等の X線吸収量を持つ仮想物質によるモデル(以下、平均 CT値物質近似モデ ル)でもよ 、。近似モデルの算出方法にっ 、て後述する。 [0030] The approximate model calculating means 15 calculates an approximate model based on the body thickness estimated by the body thickness estimating means 14. The approximate model is a model approximated with water so as to have the same amount of X-ray absorption as the subject (hereinafter referred to as water approximate model). X-ray absorption equivalent to the subject obtained from the average CT value of the subject Even a model with a virtual substance with a quantity (hereinafter referred to as an average CT value substance approximation model). A method for calculating the approximate model will be described later.
[0031] 近似モデル投影データ作成手段 18は、近似モデル算出手段 15が算出した近似モ デルへ模擬的に X線を照射して投影データを作成する。投影データの作成方法につ いては後述する。 The approximate model projection data creating means 18 creates projection data by irradiating the approximate model calculated by the approximate model calculating means 15 in a simulated manner with X-rays. A method for creating projection data will be described later.
[0032] 画像 SD算出手段 16は、基準画像のノイズ量を算出する。基準画像のノイズ量の算 出方法については後述する。  [0032] The image SD calculation means 16 calculates the noise amount of the reference image. The method for calculating the noise amount of the reference image will be described later.
[0033] 加算ノイズ量算出手段 17は、入力手段 24により設定された目標ノイズ値と、画像 SD 算出手段 16により算出されたノイズ量に基づき、基準画像に加算すべきノイズ量を算 出する。 Based on the target noise value set by the input unit 24 and the noise amount calculated by the image SD calculation unit 16, the addition noise amount calculation unit 17 calculates a noise amount to be added to the reference image.
[0034] ノイズ画像作成手段 20は、近似モデル投影データに加算すべきノイズ量を加算し て得られる加算投影データを再構成することにより、ノイズ画像を作成する。  [0034] The noise image creating means 20 creates a noise image by reconstructing the added projection data obtained by adding the amount of noise to be added to the approximate model projection data.
[0035] シミュレーション画像作成手段 21は、ノイズ画像生成手段 30により生成されたノイズ 画像と、基準画像を合成し、シミュレーション画像を作成する。  The simulation image creating unit 21 synthesizes the noise image generated by the noise image generating unit 30 and the reference image to create a simulation image.
[0036] [処理の流れ]  [0036] [Process flow]
図 3は本実施形態における、シミュレーション画像を作成する方法を示した処理フロ 一である。まずシミュレーション対象となる被検者において、過去に同一部位を撮影 した履歴がある力否かを検索し (ステップ S201)、撮影履歴がある場合には過去に撮 影した画像(過去画像)を元画像に設定する (ステップ S202)。 [0037] 撮影履歴がない場合には人体の内部組成を忠実に再現したファントム(人体ファン トム)を撮影した画像を元画像に設定する (ステップ S203)。人体ファントムの画像はあ らかじめ用意しておく。公知例において、人体ファントムの画像は撮影部位ごとに様 々な SDの画像を用意する必要があるが、本発明においては鮮明な画像が得られるよ う十分な線量で撮影した画像が各部位ごとに一つあれば、言 、換えると SDの小さ ヽ 画像を各部位ごとに一つ用意すれば十分である。 FIG. 3 is a process flow showing a method for creating a simulation image in the present embodiment. First, in the subject to be simulated, a search is made as to whether or not there is a history of imaging the same part in the past (step S201), and if there is an imaging history, based on the image (past image) taken in the past. Set to image (step S202). [0037] When there is no shooting history, an image obtained by shooting a phantom (human phantom) that faithfully reproduces the internal composition of the human body is set as the original image (step S203). Prepare an image of the human phantom in advance. In the publicly known example, it is necessary to prepare various SD images for human body phantoms for each imaging region, but in the present invention, images captured at a sufficient dose so that a clear image can be obtained for each region. In other words, it is enough to prepare one small SD image for each part.
[0038] また FOVに関しては、各部位ごとに代表的な FOVで撮影しておき、これを適宜、拡 大縮小することでシミュレーションにおける FOVと一致させればょ 、。よって公知例の ように SDごと、 FOVごとに膨大な量の人体ファントム画像を用意する必要はない。  [0038] As for the FOV, it is necessary to take a picture with a representative FOV for each part and scale it appropriately to match the FOV in the simulation. Therefore, it is not necessary to prepare a huge amount of human phantom images for each SD and FOV as in the known example.
[0039] 次に、被検体の体厚を自動推定する (ステップ S204)。体厚はスキヤノグラムから求め てもよく、後述するような方法を用いてもよい。ステップ S204において体厚を操作者が 直接入力してもよ ヽが、操作者の負担を低減するためには体厚を自動推定する方が 望ましい。  Next, the body thickness of the subject is automatically estimated (step S204). The body thickness may be obtained from a scanogram, or a method as described later may be used. Although the operator may directly input the body thickness in step S204, it is preferable to automatically estimate the body thickness in order to reduce the burden on the operator.
[0040] 次に、ステップ S204で得られた体厚をもとに水等価厚を求め、この水等価厚をもつ た近似モデルを算出する (ステップ S205)。水等価厚および近似モデルの算出方法は 後述する。次に元画像における画像 SDを算出する (ステップ S206)。元画像における 画像 SDの算出方法については後述する。  Next, a water equivalent thickness is obtained based on the body thickness obtained in step S204, and an approximate model having this water equivalent thickness is calculated (step S205). The calculation method of water equivalent thickness and approximate model will be described later. Next, the image SD in the original image is calculated (step S206). The method for calculating the image SD in the original image will be described later.
[0041] 次に目標画像 SD値を入力する (ステップ S207)。ここで入力する SD値は操作者が所 望する任意の SD値である。ステップ S207では SD値を直接入力してもよぐ X線条件( 管電圧、管電流、スライス厚等)を入力してもよい。この場合、入力された X線条件と近 似モデルの大きさから SDに換算すればよ!、。 Next, the target image SD value is input (step S207). The SD value entered here is any SD value desired by the operator. In step S207, the X-ray conditions (tube voltage, tube current, slice thickness, etc.) that allow the SD value to be directly input may be input. In this case, convert it to SD from the input X-ray conditions and the size of the approximate model!
[0042] 次に、ステップ S206で求めた元画像における SD値とステップ S207で入力された目 標 SD値を比較し、元画像に加算すべきノイズ量を算出する (ステップ S208)。 [0042] Next, the SD value in the original image obtained in step S206 is compared with the target SD value input in step S207 to calculate the amount of noise to be added to the original image (step S208).
[0043] 次に近似モデルの投影データを作成する (ステップ S209)。投影データは、ノイズを 含まな 、理想系のものと、ステップ S208で得られたノイズ量の分だけノイズを加算した ものの二種類を作成する。 Next, projection data of the approximate model is created (step S209). Two types of projection data are created: an ideal system that does not include noise, and a projection that adds noise by the amount of noise obtained in step S208.
[0044] 次にステップ S209で得られたノイズなしの投影データとノイズを加算した投影データ 力もノイズ画像を作成する (ステップ S210)。ノイズ画像は、ノイズを加算した投影デー タの再構成画像と、ノイズを加算しない投影データの再構成画像とを差分する、また はノイズを加算した投影データとノイズを加算しない投影データを差分してから再構 成することで得られる。次にステップ S202またはステップ S203で設定した元画像にス テツプ S210で得られたノイズ画像を加算し、シミュレーション画像を作成する (ステップ S211)0 Next, the noise-free projection data obtained in step S209 and the projection data force obtained by adding the noise also create a noise image (step S210). Noise images are projection data with added noise. Obtained by differentiating the reconstructed image of the image and the reconstructed image of the projection data without adding noise, or by reconstructing the difference between the projection data with added noise and the projection data without adding noise. . Then by adding the noise image obtained by the scan Tetsupu S210 based on the image set in step S202 or step S203, creating a simulation image (step S211) 0
[0045] [体厚の推定方法]  [0045] [Method of estimating body thickness]
S204の体厚の推定方法について説明する。図 4に体厚推定方法を示す。まず元画 像 30から被検体内の画素の画素値が 1でその他の画素の画素値は 0であるようなマス ク画像 31を作成し、マスク画像 31における慣性主軸 32を求める。マスク画像 31の作成 方法は特開 2004-097665号公報に開示されているような方法を用いてもよぐその他 公知の任意の方法でょ 、。  The body thickness estimation method in S204 will be described. Figure 4 shows the body thickness estimation method. First, a mask image 31 in which the pixel value of the pixel in the subject is 1 and the pixel values of the other pixels are 0 is created from the original image 30, and the inertia main axis 32 in the mask image 31 is obtained. The mask image 31 may be created by any other known method, such as that disclosed in Japanese Patent Application Laid-Open No. 2004-097665.
[0046] ここで慣性主軸 32とマスク画像 31の輪郭の交点 PI ,P2間の距離が慣性主軸方向の 体厚となる。慣性主軸 32は慣性主軸 q、座標( x,y)における画素を I( x,y)とおくと、以 下の数 1式に従って求められる。  Here, the distance between the intersection points PI and P2 of the contours of the inertial principal axis 32 and the mask image 31 is the body thickness in the inertial principal axis direction. The inertial main axis 32 can be obtained according to the following formula (1), where I (x, y) is the pixel at the inertial main axis q and coordinates (x, y).
[0047] {数 1}
Figure imgf000010_0001
[0047] {number 1}
Figure imgf000010_0001
[0048] 数 1式中の a,b,cは以下の数 2式で表される。 [0048] In Equation 1, a, b, and c are expressed by Equation 2 below.
[0049] {数 2} [0049] {number 2}
Figure imgf000011_0001
c-∑∑y2l(x,y) /∑∑I(x,y)-Yc 2
Figure imgf000011_0001
c-∑∑y 2 l (x, y) / ∑∑I (x, y) -Y c 2
x y x y し、  x y x y
xc ^∑∑xi(x,y) /∑∑/ ( , ) x c ^ ∑∑xi (x, y) / ∑∑ / (,)
x y JC y  x y JC y
rc =r c =
Figure imgf000011_0002
Figure imgf000011_0002
[0050] 体厚の推定には、スキヤノグラムを用いる方法もある。スキヤノグラムを解析し、被検 体内で減衰した X線の最大減衰量カゝら AP方向(または LR方向)の体厚が求められる [0050] There is also a method using a scanogram for estimating the body thickness. Analyzing the scanogram, the body thickness in the AP direction (or LR direction) can be determined from the maximum attenuation of X-rays attenuated in the subject.
[0051] [体厚から水等価厚および近似モデルを算出する方法] [0051] [Method of calculating water equivalent thickness and approximate model from body thickness]
S205の体厚力 水等価厚および近似モデルを算出する方法について説明する。図 4を用いて前述した手法から、体厚が得られる。ここで図 4に示す慣性主軸 32上で元 画像 31内に位置する画素の画素値をスキャンしその平均 CT値を CAとすると、慣性主 軸方向の水透過長 L1は次の数 3式で求められる。  Body thickness strength of S205 A method for calculating the water equivalent thickness and the approximate model will be described. Body thickness can be obtained from the method described above with reference to FIG. Here, when the pixel value of the pixel located in the original image 31 on the inertial main axis 32 shown in FIG. 4 is scanned and the average CT value is CA, the water permeation length L1 in the inertial main axis direction is expressed by the following equation (3). Desired.
[0052] {数 3}  [0052] {number 3}
1000 数 3式において 1は P1,P2間の距離を表す。ここで被検体を水等価と仮定すれば、数 3式で得られる L1が慣性主軸方向の水等価厚となる。慣性主軸に垂直な方向の水等 価厚は被検体の断面を楕円と仮定して求めればよい。マスク内の全画素の平均画素 値を CSとすると、慣性主軸に垂直な方向の水等価厚 L2は次の数 4式で求められる。 1000 In Equation 3, 1 represents the distance between P1 and P2. If the subject is assumed to be water-equivalent, L1 obtained by Equation 3 is the water-equivalent thickness in the inertial main axis direction. Water in a direction perpendicular to the principal axis of inertia The value thickness may be obtained assuming that the cross section of the subject is an ellipse. If the average pixel value of all the pixels in the mask is CS, the water equivalent thickness L2 in the direction perpendicular to the principal axis of inertia can be obtained by the following equation (4).
[0054] 細  [0054] Fine
L 1000+ Cs π L 1000+ C s π
π 1000  π 1000
[0055] 数 4式において Sはマスク内の画素数すなわち面積を表す。元画像と重心が等しぐ 長軸長が L1は(または L2)、短軸長が L2は(または L1)であるような楕円が近似モデル となる。 In Equation 4, S represents the number of pixels in the mask, that is, the area. The approximate center is the ellipse whose major axis length is L1 (or L2) and whose minor axis length is L2 (or L1).
[0056] スキヤノグラム力 体厚を求めた場合には、任意の減衰量に対する水の深さは既知 であるので、被検体を水等価と仮定すれば前述の AP方向(または LR方向)の体厚か ら AP方向(または LR方向)の水等価厚は計算可能である。 LR方向(または AP方向)の 水等価厚は被検体の断面を楕円と仮定して求めればよい。  [0056] When the body thickness is obtained, the depth of water for an arbitrary attenuation is known, so if the subject is assumed to be water equivalent, the body thickness in the AP direction (or LR direction) described above is assumed. Therefore, the water equivalent thickness in the AP direction (or LR direction) can be calculated. The water equivalent thickness in the LR direction (or AP direction) may be obtained assuming that the cross section of the subject is an ellipse.
[0057] 楕円の面積と減衰量の総和は比例すると考えられ、楕円の面積は楕円の長軸と短 軸の積に比例するので、減衰量の総和( =楕円の面積)と AP方向(または LR方向)の 水等価厚( =楕円の短軸または長柳から LR方向(または AP方向)の水等価厚( =楕円 の長軸または短柳を計算する事が可能である。こうして算出された楕円が近似モデ ルとなる。なおスキヤノグラム力 水等価厚を求める手法はこれに限らず任意の公知 の方法でよい。  [0057] The total area of the ellipse is considered to be proportional to the sum of the attenuation, and the area of the ellipse is proportional to the product of the major and minor axes of the ellipse, so the sum of the attenuation (= the area of the ellipse) and the AP direction (or It is possible to calculate the water equivalent thickness (= ellipse long axis or short willow) in the LR direction (or AP direction) from the water equivalent thickness (= ellipse short axis or long willow) in the LR direction. An ellipse is an approximate model, and the method for obtaining the scanogram force water equivalent thickness is not limited to this, and any known method may be used.
[0058] 近似モデルは、上述のように水等価厚に基づ 、て撮影対象全体を水ファントムで 近似してもよいが、撮影対象中に骨と軟部組織など X線吸収特性が大きく異なるもの が含まれている場合には、撮影対象を臓器ごとにセグメンテーションし、セグメンテ一 シヨンした部位ごとに異なる X線吸収物質で近似することが望ま U、。セグメンテーシ ヨンした各部位には、後述する投影データ作成時に次式で得られる吸収係数 αを 割り当てればよい。  [0058] As described above, the approximate model may be obtained by approximating the whole imaging target with a water phantom based on the water equivalent thickness, but the X-ray absorption characteristics such as bone and soft tissue are greatly different in the imaging target. It is desirable to segment the imaging target for each organ and approximate it with a different X-ray absorbing material for each segmented region. Each segmented segment may be assigned an absorption coefficient α obtained by the following equation when creating projection data described later.
[0059] {数 5} II ― [0059] {number 5} II ―
a 10(X)  a 10 (X)
[0060] ここで、 μ wは水の X線吸収係数、 ACTはセグメンテーションした各部位の CT値と 空気の CT値の差である。なお、セグメンテーションには任意の公知の手法を用いれ ばよい。このセグメンテーションは、例えば頭部の撮影において、楕円の外縁から所 定の幅の内側の領域を骨(頭蓋骨)に近似させるためにカルシウムの吸収係数を割り 当て、その領域よりも更に内側の領域は軟部組織に近似させるために水の吸収係数 を割り当てるように用いてもょ 、。 [0060] where μ w is the X-ray absorption coefficient of water, and ACT is the difference between the CT value of each segmented part and the CT value of air. Any known method may be used for segmentation. In this segmentation, for example, in photographing the head, a calcium absorption coefficient is assigned in order to approximate the inner area of a predetermined width from the outer edge of the ellipse to the bone (skull), and the area further inside than that area is May be used to assign a water absorption coefficient to approximate soft tissue.
[0061] [元画像における画像 SDを算出する方法]  [0061] [Method for calculating image SD in original image]
S206の元画像における画像 SDを算出する方法について説明する。スライス位置 zに おける CT画像 Img( z)を再構成するために使用するビュー数を Mとし、便宜的なビュ 一番号 mを m=0〜M-lとする。一回転あたりのビュー数を Nとした時、使用ビュー数 M は一回転あたりのビュー数 Nと必ずしも等しくない。ここで、 X線減弱指数 Tは使用す るビュー番号の関数 T( m)として表すことができる。ビュー番号 m=0〜M_lにおける X 線減弱指数 Tの最大値を Tmax( 0:M-1)とし、この時に基準管電流値 i_re 対応させ ると仮定した場合、ビュー番号 mに対する管電流値 iv( m)は次の数 6式のようになる。  A method for calculating the image SD in the original image in S206 will be described. The number of views used to reconstruct the CT image Img (z) at the slice position z is M, and the convenient view number m is m = 0 to M-l. When the number of views per rotation is N, the number of used views M is not necessarily equal to the number of views N per rotation. Here, the X-ray attenuation index T can be expressed as a function T (m) of the view number to be used. Assuming that the maximum value of the X-ray attenuation index T in view number m = 0 to M_l is Tmax (0: M-1), and the reference tube current value i_re is assumed to correspond to this, tube current value for view number m iv (m) is expressed by the following equation (6).
[0062] {数 6} iv( m) = i— ref * exp( T( m) - Tmax( 0:M— 1》  [0062] {Equation 6} iv (m) = i— ref * exp (T (m)-Tmax (0: M— 1)
一方、スキャナが一回転する時間 trotが基準時間 trot_refに等しぐその間は X線減 弱指数 Tが一定値であり、管電圧として xv、管電流値 iとして基準管電流値 i— re 用い たとし、一回転中のビュー数 N_ref〖こ均等な重み付けをして、再構成フィルタ関数 gを 用い、画像厚 thkを基準画像厚 thk_refとして再構成した場合の画像ノイズ分散値 Vは 、 X線減弱指数 Tの関数として次の数 7式のように表される。  On the other hand, when the time trot when the scanner makes one revolution is equal to the reference time trot_ref, the X-ray attenuation index T is a constant value, and xv is used as the tube voltage and the reference tube current value i-re is used as the tube current value i. Then, the number of views in one rotation N_ref 均等 is evenly weighted, and the image noise variance value V when the image thickness thk is reconstructed as the reference image thickness thk_ref using the reconstruction filter function g is X-ray attenuation. As a function of the exponent T, it is expressed as the following equation (7).
[0063] {数 7} V(T i _ ref trot一 ref thk ref) = [0063] {number 7} V (T i _ ref trot one ref thk ref) =
c(xv, ,'' ref , trot一 ref , thk一 ref)* exp(a(xv)* T)  c (xv,, '' ref, trot-one ref, thk-one ref) * exp (a (xv) * T)
a (xv) は ¾H vに る定数、
Figure imgf000014_0001
b (x v, g) は^ ¾ffixvと Pi構成フィル夕関 ¾に依 る定数 であり、 a (x v)4 b (xv, g) は経験的に求められる。
a (xv) is a constant at ¾H v,
Figure imgf000014_0001
b (xv, g) is a constant that depends on ^ ¾ffixv and the Pi constituent filter Yu ¾, and a (xv) 4 b (xv, g) is obtained empirically.
[0064] 前述の数 6式で表される管電流値 iv( m)を用いた場合の画像ノイズ分散予測値 V* は次の数 8式のように表される。 [0064] The predicted image noise variance value V * when the tube current value iv (m) represented by the above equation 6 is used is represented by the following equation 8.
[0065] 删  [0065] 删
M-\( -1 ヽ M-\ (-1 ヽ
V =JV* ∑ 咖)/ ∑ w(m) 2 *V(T\m), iv(m), trot , thk) m=0 V m=0V = JV * ∑ 咖) / ∑ w (m) 2 * V (T \ m), i v (m), trot, thk) m = 0 V m = 0
[0066] ここで数 8式の w( m)は各ビューに対して適用されるビュー方向重みである。元画像 において管電圧、管電流、再構成フィルタ関数、画像厚等の各パラメータは既知で あるから、式 8に従って元画像における画像ノイズ分散予測値 V*を算出することがで き、 V*の平方根力も元画像における SD値が求められる。  Here, w (m) in Expression 8 is a view direction weight applied to each view. Since the parameters such as tube voltage, tube current, reconstruction filter function, and image thickness are already known in the original image, the image noise variance prediction value V * in the original image can be calculated according to Eq. For the square root force, the SD value in the original image is also obtained.
[0067] [¾ロ算ノイズ量を算出する方法]  [0067] [¾ Method of calculating the amount of noise to be calculated]
S208の加算ノイズ量を算出する方法について説明する。 X線粒子(フオトン)のエネ ルギーを E、 X線粒子の数(フオトン数)を Pとおく。 Eは管電圧 kVの、 Pは管電圧 kVと管 電流 mAに依存して決まる量であり、フオトンノイズ(フオトンの SD)Nqの分散は次の数 9 式のようになる。  A method of calculating the added noise amount in S208 will be described. Let X be the energy of X-ray particles (photons), and P be the number of X-ray particles (photons). E is the tube voltage kV, P is an amount determined depending on the tube voltage kV and tube current mA, and the variance of photon noise (photon SD) Nq is given by the following equation (9).
[0068] 翻  [0068]
Nq 2 =fi2g^rjE2PdE [0069] ここで 13は装置に依存して決まる定数であり、 βは被写体なしで撮影した際の信号 強度力も経験的に求められる。 gは検出器のエネルギー変換効率、 ηは検出器の X 線検出効率である。元画像( SDは σ 0)を撮影した X線条件におけるフオトンエネルギ 一、フオトン数、フオトンノイズ、システムノイズをそれぞれ E0,P0,Nq0,Ns0とし、シミュレ ーシヨン画像( SDは σ t)におけるフオトンエネルギー、フオトン数、フオトンノイズをそ れぞれ Et,Pt,Nqt,Nstとすると、シミュレーション画像を得るために元画像に加算すベ きフオトンノイズ量 Naddの分散は次の数 10式のようになる。 N q 2 = fi 2 g ^ rjE 2 PdE [0069] Here, 13 is a constant determined depending on the device, and β is obtained empirically also for the signal strength when shooting without a subject. g is the energy conversion efficiency of the detector, and η is the X-ray detection efficiency of the detector. The photon energy, photon number, photon noise, and system noise in the X-ray condition of the original image (SD is σ 0) are E0, P0, Nq0, and Ns0, respectively. If the energy, photon number, and photon noise are Et, Pt, Nqt, and Nst, respectively, the variance of the photon noise amount Nadd that should be added to the original image to obtain the simulation image is expressed by the following equation (10).
[0070] {数 10}  [0070] {number 10}
N = {β2 g 2 i Et 2 PtdE N s - ( 2 g 2rji E。2 P。dE。 + N J ) N = {β 2 g 2 i E t 2 P t dE N s- ( 2 g 2 rji E. 2 P. dE + NJ)
[0071] 計算の簡略ィ匕のために、数 10式中のシステムノイズの項を無視してもよいが、精細 なシミュレーションを行うにはフオトンノイズだけでなくシステムノイズの影響も考慮す ることが望ま U、。各撮影条件におけるシステムノイズは X線が透過しな 、ような十分 に厚い鉛板で X線管球を遮蔽してスキャンすることで得られる。 [0071] For simplicity of calculation, the term of system noise in Equation 10 may be ignored, but in order to perform a detailed simulation, it is necessary to consider not only photon noise but also the effect of system noise. Hope U ,. System noise under each imaging condition can be obtained by scanning the X-ray tube with a sufficiently thick lead plate that does not transmit X-rays.
[0072] 加算ノイズ量を算出する方法については、次のような方法も考えられる。元画像に おける SDを σ 0、目標画像 SDを σ tとする。元画像にノイズ画像を加算しシミュレーシ ヨン画像を作る場合、ノイズ画像における SD σ aは、次の数 11式で求められる。 [0072] As a method of calculating the amount of added noise, the following method may be considered. SD in the original image is σ 0, and the target image SD is σ t. When a noise image is added to the original image to create a simulation image, SD σ a in the noise image can be calculated by the following equation (11).
Figure imgf000015_0001
Figure imgf000015_0001
_ 「 2 2 _ " twenty two
σひ = t ~ σ σ hi = t ~ σ
[0074] 図 5は、水ファントムにおける透過長と SDの関係を示した一例である。図 5に示す力 ーブは、様々な径の水ファントムを撮影しその際の SDを計測することで得られる。図 5 に示すカーブは使用する CTスキャナで設定可能なすべての管電圧ごとに用意する ことが望ましい。ステップ S205において前述のような方法を用いることにより近似モデ ルの透過長(透過厚)は求まっているので、図 5に示すカーブを参照すれば数 11式で 算出された σ aを得るような mAs値が得られる。任意の mAs値におけるノイズ量はファ ントムを実測することにより経験的に求められるので、これを加算ノイズ量とすればよ い。 FIG. 5 is an example showing the relationship between the transmission length and the SD in the water phantom. The force curve shown in Fig. 5 can be obtained by photographing water phantoms of various diameters and measuring the SD at that time. It is desirable to prepare the curve shown in Fig. 5 for every tube voltage that can be set by the CT scanner to be used. In step S205, the transmission length (transmission thickness) of the approximate model is obtained by using the method as described above. Therefore, referring to the curve shown in FIG. 5, the σ a calculated by Equation 11 can be obtained. mAs values are obtained. The amount of noise at any mAs value is Since it is obtained empirically by actually measuring the atom, this can be used as the amount of added noise.
[0075] 図 5に示すカーブは代表的な mAs値におけるカーブのみをあら力じめ用意し、他の mAs値におけるカーブは SDが mAs値の平方根に比例することを利用して算出しても よい。ただしこの場合、システムノイズが目立つような撮影条件においては誤差が大 きくなる可能性があるので、使用する CT装置において設定可能なすべての mAs値に 対してカーブをあら力じめ用意する事が望ま 、。  [0075] The curve shown in Fig. 5 is prepared by preparing only the curve at a typical mAs value, and the curves at other mAs values can be calculated using the fact that SD is proportional to the square root of the mAs value. Good. However, in this case, there may be a large error under imaging conditions where system noise is conspicuous. Therefore, it is possible to prepare curves for all mAs values that can be set in the CT device to be used. Hope.
[0076] [近似モデルの投影データ作成方法]  [0076] [Method for creating projection data of approximate model]
S209の近似モデルの投影データ作成方法にっ 、て説明する。図 6に投影データの 作成方法の説明図を示す。エネルギー Eを持つ X線のエネルギー強度を Iとすると、 I  The approximate model projection data creation method of S209 will be described. Figure 6 shows an illustration of how to create projection data. If the energy intensity of X-rays with energy E is I, I
E  E
は次式で表される。  Is expressed by the following equation.
E  E
[0077] {数 12}  [0077] {number 12}
( e- El cot a dT ( e - E l cot a dT
£ — A Je
Figure imgf000016_0001
£ — A Je
Figure imgf000016_0001
o ノ  o
[0078] 二こで Nはァボガドロ数、 p、 Aはそれぞれターゲットの密度および原子量、 m0は電 子の質量、 cは光速、 TOは入射電子のエネルギー、 Qは一つの電子力も放射される X 線のエネルギー強度である。 Qはフオトンエネルギー Eと電子エネルギー Tの比 E/Tで 決まる近似式であり、下記の非特許文献 1ぉ 、て近似式が求められて!/、る。 [0078] Here, N is the Avogadro number, p and A are the density and atomic weight of the target, m0 is the electron mass, c is the speed of light, TO is the energy of the incident electron, Q is also radiating one electron force X The energy intensity of the line. Q is an approximate expression that is determined by the ratio E / T of photon energy E and electron energy T. The following non-patent document 1 gives an approximate expression!
[0079] 非特許文献 1: R. Bitch and M. Marshall, Computation of Bremsstrahlung X-ray Spe ctra and Comparison with Spectra Measured with a Ge( Li) Detector, Phys. Med. B iol, Vol24, No.3, 505-517, 1979 dT/dlは単位長当たりのエネルギー損失量であり 阻止能と呼ばれる。阻止能は非特許文献 2において各元素に対する値が記載されて いる。 [0079] Non-Patent Document 1: R. Bitch and M. Marshall, Computation of Bremsstrahlung X-ray Spectro and Comparison with Spectra Measured with a Ge (Li) Detector, Phys. Med. B iol, Vol 24, No. 3, 505-517, 1979 dT / dl is the amount of energy loss per unit length and is called stopping power. The stopping power is described in Non-Patent Document 2 for each element.
[0080] 非特許文献 2 :山田勝彦,野原弘基,放射線計測学,第 2章, 日本放射線技術学会 , 1983. μ Εは X線管内のターゲットの X線吸収係数、 1は電子の入射距離である。 式 12はエネルギー強度分布であり、フオトン数の分布を得るならば ΙΕ/Εを計算すれ ばよい。式 12は制動放射による X線のスペクトルを表す力 励起された原子から放出 される特性 X線 Ichは次の数 13式で近似される c [0080] Non-Patent Document 2: Katsuhiko Yamada, Hiroki Nohara, Radiation Metrology, Chapter 2, Japan Society for Radiological Technology, 1983. μ Ε is the X-ray absorption coefficient of the target in the X-ray tube, 1 is the electron incident distance is there. Equation 12 is the energy intensity distribution. 得 る / Ε can be calculated to obtain the photon number distribution. Equation 12 is a force representing the spectrum of X-rays by bremsstrahlung Emission from excited atoms C is the characteristic X-ray Ich is approximated by the number 13 formula follows
{数 13}  {Number 13}
Figure imgf000017_0001
Figure imgf000017_0001
[0082] TK,Lは K、 L電子軌道から電子を除去するのに必要なエネルギーであり、 Ichの絶対 強度を非特許文献 3に記載されている値と比較すれば得ることができる。 [0082] TK and L are energy required to remove electrons from the K and L electron orbitals, and can be obtained by comparing the absolute intensity of Ich with the value described in Non-Patent Document 3.
[0083] 非特許文献 3 : HPA. Catalogue of Spectctral Data for Diagnostic X-rays, SRS- 30, H ospital Physicist' s Association, 1979 近似モデルの投影データは、線減弱特性と 透過距離を用いて算出することができる。下記の数 14式に示すようにフォトンェネル ギー E毎に、各 X線吸収物質 nの X線吸収係数 nを算出し透過パス長 Inとの乗算値 に基づき各フオトンエネルギーにおける投影値を算出し、実効スペクトル分布力も得 られる各エネルギーの寄与率 W( E)と投影値との積和により投影データを作成する。  [0083] Non-Patent Document 3: HPA. Catalog of Spectctral Data for Diagnostic X-rays, SRS-30, Hospital Physicist's Association, 1979 Approximate model projection data is calculated using linear attenuation characteristics and transmission distance be able to. For each photon energy E, the X-ray absorption coefficient n of each X-ray absorbing material n is calculated for each photon energy E, and the projected value at each photon energy is calculated based on the product of the transmission path length In. Then, the projection data is created by the product sum of the contribution rate W (E) of each energy that can obtain the effective spectral distribution force and the projection value.
[0084] {数 14}  [0084] {number 14}
Figure imgf000017_0002
Figure imgf000017_0002
[0085] ここで Naddは、前述の加算ノイズである。図 7に透過ノ ス長算出の概要を示す。任 意の点(例えばアイイソセンター)を原点とするような三次元座標系を考えれば X線源 や検出器、近似モデルの幾何学的な座標が得られ、近似モデル 70の外周は楕円の 方程式で、任意の検出器に入射した X線経路は直線の方程式で表現できる。 Here, Nadd is the above-described addition noise. Figure 7 outlines the calculation of transmission nose length. Considering a three-dimensional coordinate system with the origin as an arbitrary point (for example, the IISO center), the geometric coordinates of the X-ray source, detector, and approximate model can be obtained. In the equation, the X-ray path incident on an arbitrary detector can be expressed by a linear equation.
[0086] 楕円と直線の交点を求める方法は既知であるから、二つの交点の座標は容易に求 められ、交点間の距離すなわち透過パス長( L1や L2)が得られる。このような演算を すべての X線経路について行えばよい。図 7の例では、簡単のために X線吸収係数 IX 1の楕円模擬人体の中に X線吸収係数 2の楕円模擬臓器が配置されている場合 につ 、て示したが、より多くの個数の臓器や異なる形状の臓器が配置されて 、る場 合についても同様にして投影データが得られることは同業者ならば容易に理解され るであろう。 [0086] Since the method for obtaining the intersection of the ellipse and the straight line is known, the coordinates of the two intersections can be easily obtained, and the distance between the intersections, that is, the transmission path length (L1 and L2) can be obtained. Such an operation can be performed for all X-ray paths. In the example shown in Fig. 7, for the sake of simplicity, an ellipsoidal simulated organ with an X-ray absorption coefficient of 2 is placed in an ellipsoidal simulated human body with an X-ray absorption coefficient of IX 1, but a larger number is shown. Organs with different shapes or organs Those skilled in the art will readily understand that projection data can be obtained in the same way.
[0087] なお、より精密なシミュレーションを行うには、投影データの作成にお!ヽて補償フィ ルタゃシンチレ一ターにおける X線の減弱も考慮することが望ましい。本実施の形態 では近似モデルの擬似投影データを作成することで投影データを得て ヽるが、もし 過去に撮影履歴がある場合には、 CT画像を再投影することで投影データを得てもよ い。  [0087] In order to perform a more accurate simulation, it is desirable to consider the attenuation of X-rays in the compensation filter and scintillator for the creation of projection data. In this embodiment, it is possible to obtain projection data by creating pseudo-projection data of an approximate model. However, if there is an imaging history in the past, the projection data can be obtained by reprojecting the CT image. Good.
[0088] [画面表示]  [0088] [Screen Display]
シミュレーション画像の表示は、目標画像 SD値のシミュレーション画像だけを画面 に表示してもよいが、図 8に示すような表示を行ってもよい。図 8中の kVpt, mAstは、 目標画像 SD値のシミュレーション画像を得るための管電圧、 mAs値であり、図 8の例 では目標画像 SD値のシミュレーション画像 80を中央に、管電圧、 mAs値を適宜変更 した場合のシミュレーション画像 81を周囲に並べて表示している。  For the simulation image display, only the simulation image of the target image SD value may be displayed on the screen, but the display as shown in FIG. 8 may be performed. KVpt and mAst in Fig. 8 are the tube voltage and mAs value for obtaining the simulation image of the target image SD value. In the example of Fig. 8, the tube image and mAs value are centered on the simulation image 80 of the target image SD value. A simulation image 81 is displayed side by side in the case where is appropriately changed.
[0089] 目標画像 SD値は操作者が任意に指定するパラメータであるが、設定した目標画像 SD値が検査目的を達するのに最適であるとは限らない。よって目標画像 SD値のシミ ユレーシヨン画像だけを表示するようなユーザーインターフェース(以下 [UI]と!、う)で は、最適な撮影条件を検討して ヽく過程で目標画像 SD値を何度も変更しながらシミ ユレーシヨン画像を作り直す工程が必要となる。  The target image SD value is a parameter arbitrarily designated by the operator, but the set target image SD value is not necessarily optimal for reaching the inspection purpose. Therefore, in a user interface that displays only the target image SD value simulation image (hereinafter referred to as [UI] and!, U), the target image SD value is repeatedly calculated in the process of studying the optimal shooting conditions. A process is required to recreate the simulation image while changing.
[0090] し力し図 8のように目標画像 SD値のシミュレーション画像だけでなく X線条件を適宜 変更させた場合のシミュレーション画像も並べて表示することにより、シミュレーション 画像を作り直す工程が大幅に低減できるだけでなぐ各 SDの画像を簡便に比較でき 、最適な撮影条件の設定が容易になる。  [0090] As shown in Fig. 8, not only the simulation image of the target image SD value but also the simulation image when the X-ray conditions are appropriately changed are displayed side by side, so that the process of recreating the simulation image can be greatly reduced. The SD images can be easily compared and the optimal shooting conditions can be easily set.
[0091] 図 8の例では mAs値と管電圧値を変更した場合について示した力 変更するパラメ ータはこれら二つに限らず、撮影スライス厚、再構成スライス厚、再構成関数、ヘリ力 ルビッチなどの任意のパラメータでよい。また図 8の例では、縦方向、横方向ともに 3 枚ずつ、計 9枚の画像を並べて表示した力 画像を並べる枚数やレイアウトはこれに 限られず任意のものでょ 、。  [0091] In the example of Fig. 8, the force shown for changing the mAs value and tube voltage value is not limited to these two parameters, but the imaging slice thickness, reconstruction slice thickness, reconstruction function, helicity force Arbitrary parameters such as Rubych may be used. In the example shown in Fig. 8, there are three images in the vertical and horizontal directions, and a total of nine images are displayed side by side. The number and layout of images are not limited to this, and are arbitrary.
[0092] なお、画面上で任意の画像を選択すれば、その際の X線条件が撮影プロトコルとし て登録され、シミュレーション対象となった患者を撮影する際にその撮影プロトコルが 自動的に撮影条件に設定されるようなシステムならば臨床上の有用性は増すであろ [0092] If an arbitrary image is selected on the screen, the X-ray condition at that time is the imaging protocol. If the system is such that the imaging protocol is automatically set to the imaging conditions when imaging a patient that is registered and simulated, the clinical utility will increase.
[0093] <第二実施形態 > [0093] <Second embodiment>
図 8ではいくつかの SDを持つシミュレーション画像を並べて表示する例について示 したが、図 8で並べたシミュレーション画像のうちの一つを選択すると、並列表示した 二つの軸のパラメータを固定し、その他のパラメータを変えた複数のシミュレーション 画像を並べて表示するようにしてもょ 、。  Although Fig. 8 shows an example of displaying simulation images with several SDs side by side, selecting one of the simulation images arranged in Fig. 8 fixes the parameters of the two axes displayed in parallel, and others Let's try displaying multiple simulation images side by side with different parameters.
[0094] 図 9は、本実施の形態を示す画面表示例である。図 9( a)では、縦軸を管電圧 kVp、 横軸を管電圧 mAsとし、ステップ S211で生成したシミュレーション画像 80を中央に、管 電圧、 mAs値を適宜変更した場合のシミュレーション画像 81を周囲に並べて表示して いる。ここで、ユーザがマウスによりシミュレーション画像 80をクリックして選択すると、 シミュレーション画像 80の管電圧、管電流 kVpt, mAstを固定し、その他のパラメータ、 例えばヘリカルピツチ( HP)と再構成関数( F1,F2,F3)を変化させたシミュレーション画 像 82を生成する。  FIG. 9 is a screen display example showing this embodiment. In Fig. 9 (a), the vertical axis is the tube voltage kVp, the horizontal axis is the tube voltage mAs, the simulation image 80 generated in step S211 is centered, and the simulation image 81 when the tube voltage and mAs value are appropriately changed is surrounded. Are displayed side by side. Here, when the user clicks and selects the simulation image 80 with the mouse, the tube voltage and tube current kVpt, mAst of the simulation image 80 are fixed, and other parameters such as the helical pitch (HP) and the reconstruction function (F1, F2 , F3) is generated and a simulation image 82 is generated.
[0095] そして、図 9( a)で選択したシミュレーション画像 80を中央に、それと同じ管電流及び 管電圧であって、異なる HP、再構成関数を用いたシミュレーション画像 82を周辺に並 ベて表示してもよい(図 9( b》。  [0095] Then, the simulation image 80 selected in FIG. 9 (a) is displayed in the center, and the simulation image 82 having the same tube current and tube voltage and different HP and reconstruction function is displayed side by side. (Figure 9 (b).
[0096] これにより、まず二つのパラメータについて設定し、次に更なるパラメータを変えたと きのシミュレーション画像を見ながら、最適な X線撮影条件を検討することができる。 [0096] With this, it is possible to examine optimal X-ray imaging conditions while first setting two parameters and then viewing a simulation image when further parameters are changed.
[0097] 上記では、最初に管電流と管電圧との組み合わせを決め、続いてヘリカルピツチと 再構成関数とを決めたが、パラメータの組み合わせや決定順序はこれに限らない。 In the above description, the combination of the tube current and the tube voltage is first determined, and then the helical pitch and the reconstruction function are determined. However, the combination of parameters and the order of determination are not limited to this.
[0098] <第三実施形態 > [0098] <Third embodiment>
第三実施形態は、シミュレーション画像を確認し、そのときの X線撮影条件をスキヤ ン撮影の撮影条件に流用する実施形態である。  The third embodiment is an embodiment in which a simulation image is confirmed, and the X-ray imaging conditions at that time are used as scanning imaging conditions.
[0099] 例えば、図 8や図 9( b)に「撮影条件決定」アイコン 90を備えておく。そして、図 8や図For example, a “shooting condition determination” icon 90 is provided in FIGS. 8 and 9B. Figure 8 and figure
9( b)においてシミュレーション画像を一つマウスでクリックして選択し、続いて撮影条 件決定アイコン 90をマウスでクリックすると、選択されたシミュレーション画像の撮影条 件( FOV、撮影スライス厚、再構成関数、 HP、画像スライス厚、管電圧、管電流)を示 す情報が、 X線 CT装置 1の制御部 9へ送信される。制御部 9の X線制御手段 10は、受 信した撮影条件に従ってスキャン撮影を行う。 In 9 (b), select one simulation image by clicking with the mouse, and then click the shooting condition determination icon 90 with the mouse to select the shooting condition for the selected simulation image. Information indicating the conditions (FOV, imaging slice thickness, reconstruction function, HP, image slice thickness, tube voltage, tube current) is transmitted to the control unit 9 of the X-ray CT apparatus 1. The X-ray control means 10 of the control unit 9 performs scanning imaging according to the received imaging conditions.
[0100] 図 8のように、管電圧及び管電流を決定し、その他の撮影条件、例えば、 FOV、撮 影スライス厚など、スキャン撮影に必要な撮影条件の全てがシミュレータカゝら送信さ れない場合には、 X線 CT装置 1の制御部 9は、受信した撮影条件を自動入力し、不足 している撮影条件はユーザに入力をさせる。 [0100] As shown in Fig. 8, the tube voltage and tube current are determined, and all other imaging conditions such as FOV, imaging slice thickness, etc. necessary for scanning are transmitted from the simulator camera. If not, the control unit 9 of the X-ray CT apparatus 1 automatically inputs the received imaging conditions and causes the user to input the insufficient imaging conditions.
[0101] 本実施形態により、シミュレーション画像を見ながら決定した撮影条件を X線 CT装 置に送信することができ、その撮影条件を自動入力してスキャン撮影を行うことができ る。 [0101] According to the present embodiment, the imaging conditions determined while viewing the simulation image can be transmitted to the X-ray CT apparatus, and the imaging conditions can be automatically input to perform scanning imaging.
[0102] <第四実施形態 >  [0102] <Fourth embodiment>
SDは同等でノイズパターンが異なるシミュレーション画像を並べて表示してもよい。 ノイズのランダム性のために、まったく同一の X線条件で同一の被検体を撮影した場 合であっても、ノイズの現れ方、すなわちノイズパターンは異なる。したがって疾患の 大きさや位置とノイズパターンの兼ね合 ヽから、同一の X線条件で撮影した場合であ つても疾患が見えにくくなる場合がある。よって特に精密検査においては、どのような ノイズパターンになっても確実に疾患が発見できるような撮影条件を設定する必要が ある。  SD may be displayed side by side with the same simulation images with the same noise pattern. Due to the randomness of noise, the appearance of noise, that is, the noise pattern, is different even when the same subject is imaged under exactly the same X-ray conditions. Therefore, because of the combination of the size and position of the disease and the noise pattern, it may be difficult to see the disease even if the images are taken under the same X-ray conditions. Therefore, especially in close examinations, it is necessary to set imaging conditions that can reliably detect diseases regardless of the noise pattern.
[0103] このような場合には、 SDは同等でノイズパターンが異なるシミュレーション画像を並 ベて表示するような UIが臨床上有用であろう。図 10は、同 SD値でノイズパターンが異 なる九つのシミュレーション画像 85を並列表示した画面表示例である。ノイズを示すド ットの数(大きな点一つと小さな点八つ)は同一であるが、ドットが点在する位置は、各 シミュレーション画像で異なる。このようなシミュレーション画像を表示することにより、 ノイズパターンを考慮して撮影条件を決定することができる。  [0103] In such a case, a UI that displays simulation images with the same SD and different noise patterns in parallel would be clinically useful. FIG. 10 shows a screen display example in which nine simulation images 85 with the same SD value and different noise patterns are displayed in parallel. The number of dots indicating noise (one large dot and eight small dots) is the same, but the positions where dots are scattered are different in each simulation image. By displaying such a simulation image, it is possible to determine shooting conditions in consideration of noise patterns.
[0104] また、近年、非特許文献 4に示されて ヽるような解像度低下を抑制しながらノイズ除 去が可能な画像フィルタを用いて画像の SNを改善することで被曝線量を低減する手 法が導入されている。  [0104] Further, in recent years, a technique for reducing the exposure dose by improving the SN of an image by using an image filter capable of removing noise while suppressing the reduction in resolution as shown in Non-Patent Document 4. Law has been introduced.
[0105] 非特許文献 4:映像情報 Medical別冊マルチスライス CT Book2005 vol37( 7)145-149 そこで、画像フィルタを用いた被曝低減撮影プロトコルを検討する場合、シミュレ一 シヨン画像に対し、非特許文献 4で示されて ヽるような画像フィルタをはじめとする任 意の画像フィルタでノイズ除去処理が可能な UIが臨床上有用であろう。 [0105] Non-patent document 4: Video information Medical separate volume multi-slice CT Book2005 vol37 (7) 145-149 Therefore, when considering an exposure reduction imaging protocol using image filters, noise removal processing is performed on simulation images using any image filter such as the image filter shown in Non-Patent Document 4. A UI that can do this would be clinically useful.
[0106] 例えば前述の図 8の場合と同様にして、任意のパラメータを縦軸、横軸に選択して X 線条件を適宜変更させた場合のフィルタリング処理後のシミュレーション画像を並べ て表示する場合、画像フィルタの処理パラメータ(平滑化レベル、先鋭ィ匕レベルなど) が変更されるとそれに従ってフィルタリング処理後のシミュレーション画像の表示が切 り替わることが望ましい。  [0106] For example, in the same way as in the case of Fig. 8 described above, simulation images after filtering processing are displayed side by side when arbitrary parameters are selected on the vertical axis and horizontal axis and the X-ray conditions are changed as appropriate. When the processing parameters (smoothing level, sharpness level, etc.) of the image filter are changed, it is desirable to switch the display of the simulation image after the filtering process accordingly.
[0107] また図 11のように、同一のシミュレーション 110画像に対して、平滑化レベルと先鋭 化レベルを変更した場合のフィルタリング処理後のシミュレーション画像 111を並べて 表示するような UIも臨床上有用であろう。  In addition, as shown in FIG. 11, a UI that displays the simulation image 111 after filtering processing when the smoothing level and the sharpening level are changed with respect to the same simulation 110 image is also clinically useful. I will.
[0108] <第五実施形態 >  <Fifth embodiment>
[X線 CTスキャンシミュレータの構成]  [Configuration of X-ray CT scan simulator]
図 12は本実施形態の X線 CTスキャンシミュレータ 1200の構成図である。 X線 CTスキ ヤンシミュレータ 1200は、画像格納手段 1210と目標ノイズ値設定手段 1230とノイズ画 像生成手段 1240とシミュレーション画像作成手段 1244とサンプルノイズ画像編集手 段 1250を備える。  FIG. 12 is a configuration diagram of the X-ray CT scan simulator 1200 of the present embodiment. The X-ray CT scan simulator 1200 includes image storage means 1210, target noise value setting means 1230, noise image generation means 1240, simulation image creation means 1244, and sample noise image editing means 1250.
[0109] 画像格納手段 1210は、 X線 CTスキャンシミュレータ 1200が作成するシミュレーション 画像の基準となる基準画像と、複数のサンプルノイズ画像を格納する。基準画像は、 被検体を過去に CT撮影して得られた過去画像、または人体の内部組織を忠実に再 現した人体ファントムを予め CT撮影して得られた人体ファントム画像である。人体ファ ントム画像の撮影には充分な X線量を用い、鮮明な画像が得られるようにする。また 人体ファントム画像には、部位ごとに代表的な FOVで撮影したものを用意しておけば よい。サンプルノイズ画像は、ノイズ成分のみを含んだ画像である。サンプルノイズ画 像は、部位、 FOV、 FOVと被写体サイズの比、画像再構成時に用いる再構成関数に 応じて用意することが望ましい。サンプルノイズ画像の作成方法については既に述べ た。  The image storage means 1210 stores a reference image serving as a reference for the simulation image created by the X-ray CT scan simulator 1200 and a plurality of sample noise images. The reference image is a past image obtained by CT imaging of a subject in the past, or a human phantom image obtained by CT imaging in advance of a human phantom that faithfully reproduces the internal tissue of the human body. Sufficient X-ray dose should be used to capture human phantom images so that clear images can be obtained. For human phantom images, images taken with typical FOVs should be prepared for each part. The sample noise image is an image including only noise components. It is desirable to prepare the sample noise image according to the part, the FOV, the ratio of the FOV to the subject size, and the reconstruction function used during image reconstruction. The method for creating the sample noise image has already been described.
[0110] 目標ノイズ値設定手段 1230は、 X線 CTスキャンシミュレータ 1200が作成するシミュレ ーシヨン画像のノイズ目標値を設定する。 目標ノイズ値設定手段 1230は、体厚取得 手段 1231と近似モデル生成手段 1232と目標ノイズ値算出手段 1233とを備える。なお 、 目標ノイズ値設定手段 1230は、画像ノイズ量を入力する画像ノイズ量入力手段であ つても良い。なお、画像ノイズ量とは、通常、均質ファントム像の CT値のバラツキを標 準偏差として定義され、画像 SD( Standard Deviation)と略称されることがある。 [0110] The target noise value setting means 1230 is a simulation created by the X-ray CT scan simulator 1200. -Set the noise target value of the image. The target noise value setting means 1230 includes body thickness acquisition means 1231, approximate model generation means 1232, and target noise value calculation means 1233. The target noise value setting unit 1230 may be an image noise amount input unit that inputs an image noise amount. Note that the image noise amount is usually defined as the standard deviation of the CT value variation of a homogeneous phantom image, and is sometimes abbreviated as image SD (Standard Deviation).
[0111] 体厚取得手段 1231は、被検体の体厚を取得する。体厚は、操作者が手入力しても 良いし、スキヤノグラム力も求めても良ぐまた基準画像が過去画像である場合は既に 述べた方法により自動推定しても良い。  [0111] The body thickness acquisition means 1231 acquires the body thickness of the subject. The body thickness may be manually input by the operator, or the scanogram force may be obtained. If the reference image is a past image, it may be automatically estimated by the method described above.
[0112] 近似モデル生成手段 1232は、体厚取得手段 1231が取得した体厚に基づき、近似 モデルを生成する。近似モデルは、被検体と同等の X線吸収量を持つように水で近 似したモデル(以下、水近似モデル)でもよぐ被検体の平均 CT値から求められる被 検体と同等の X線吸収量を持つ仮想物質によるモデル(以下、平均 CT値物質近似 モデル)でもよい。  The approximate model generation unit 1232 generates an approximate model based on the body thickness acquired by the body thickness acquisition unit 1231. The approximate model may be a model that is similar to water so that it has the same amount of X-ray absorption as the subject (hereinafter referred to as the water approximate model). A model using a virtual substance having a quantity (hereinafter referred to as an average CT value substance approximation model) may be used.
[0113] 目標ノイズ値算出手段 1233は、入力された撮影条件と、近似モデル生成手段 1232 により生成された近似モデルに基づき画像ノイズ量を算出する。  The target noise value calculation unit 1233 calculates the image noise amount based on the input shooting conditions and the approximate model generated by the approximate model generation unit 1232.
[0114] ノイズ画像生成手段 1240は、 目標ノイズ値設定手段 1230により設定された目標ノィ ズ値に基づいて、ノイズ画像を生成し出力する。ノイズ画像生成手段 1240は、サンプ ルノイズ画像選択手段 1220と基準画像ノイズ量算出手段 1241と加算ノイズ量算出手 段 1242とノイズ振幅変更手段 1243とを備える。  The noise image generation means 1240 generates and outputs a noise image based on the target noise value set by the target noise value setting means 1230. The noise image generation means 1240 includes sample noise image selection means 1220, reference image noise amount calculation means 1241, added noise amount calculation means 1242, and noise amplitude change means 1243.
[0115] サンプルノイズ画像選択手段 1220は、複数のサンプルノイズ画像の中カゝら基準画 像の撮影条件に応じて一つのサンプルノイズ画像を選択する。サンプルノイズ画像 の選択には、撮影条件の中から FOV、 FOVと被写体のサイズ比、再構成関数などを 参照する。  [0115] The sample noise image selection means 1220 selects one sample noise image according to the photographing condition of the reference image, among the plurality of sample noise images. To select a sample noise image, refer to the FOV, FOV and subject size ratio, reconstruction function, etc. from the shooting conditions.
[0116] 基準画像ノイズ量算出手段 1241は、基準画像のノイズ量を算出する。基準画像のノ ィズ量の算出方法については既に述べた。  [0116] The reference image noise amount calculation means 1241 calculates the noise amount of the reference image. The method for calculating the noise amount of the reference image has already been described.
[0117] 加算ノイズ量算出手段 1242は、 目標ノイズ値設定手段 1230により設定された目標ノ ィズ値と、基準画像ノイズ量算出手段 1241により算出されたノイズ量に基づき、基準 画像に加算すべきノイズ量を算出する。 [0118] ノイズ振幅変更手段 1243は、加算ノイズ量算出手段 1242により算出された加算ノィ ズ量に基づき、サンプルノイズ画像選択手段 1220により選択されたサンプルノイズ画 像のノイズ振幅を変更する。 [0117] The addition noise amount calculation means 1242 should add to the reference image based on the target noise value set by the target noise value setting means 1230 and the noise amount calculated by the reference image noise amount calculation means 1241. Calculate the amount of noise. The noise amplitude changing unit 1243 changes the noise amplitude of the sample noise image selected by the sample noise image selecting unit 1220 based on the added noise amount calculated by the added noise amount calculating unit 1242.
[0119] シミュレーション画像作成手段 1244は、ノイズ画像生成手段 1240により生成されたノ ィズ画像と、基準画像を合成し、シミュレーション画像を作成する。  The simulation image creating means 1244 creates a simulation image by synthesizing the noise image generated by the noise image generating means 1240 and the reference image.
[0120] サンプルノイズ画像編集手段 1250は、画像格納手段 1210に格納されるサンプルノ ィズ画像の追加'削除といった編集を行うための手段である。操作者は、サンプルノィ ズ画像編集手段 1250を用いて、仮想ファントムの形状と CT値、重心座標、撮影視野 の少なくとも一つを指定し、サンプルノイズ画像の追加を行う。  The sample noise image editing unit 1250 is a unit for performing editing such as addition and deletion of the sample noise image stored in the image storage unit 1210. Using the sample noise image editing means 1250, the operator designates at least one of the shape of the virtual phantom, the CT value, the barycentric coordinates, and the field of view for imaging, and adds the sample noise image.
[0121] [処理の流れ]  [0121] [Process flow]
図 13は、本実施形態によりシミュレーション画像を生成するまでの処理の流れを示 す図である。大まかな流れは、ステップ S1301〜S1303での基準画像の設定、ステップ S1304〜S1306での目標ノイズ値の設定、ステップ S1307〜S1311でのノイズ画像の生 成、ステップ S1312でのシミュレーション画像の合成である。以下で各ステップについ て説明する。  FIG. 13 is a diagram showing a processing flow until a simulation image is generated according to the present embodiment. The general flow is setting the reference image in steps S1301 to S1303, setting the target noise value in steps S1304 to S1306, generating a noise image in steps S1307 to S1311, and synthesizing the simulation image in step S1312. . Each step is described below.
[0122] (ステップ S 1301)  [0122] (Step S 1301)
X線 CTスキャンシミュレータ 1200は、シミュレーション対象となる被検体の過去画像 を画像格納手段 1210の中で検索し、過去に同一部位を撮影した履歴があるか否か を判断する。判断の結果、過去画像があればステップ S1302に、なければステップ S13 03に進む。  The X-ray CT scan simulator 1200 searches the image storage means 1210 for past images of the subject to be simulated, and determines whether there is a history of imaging the same part in the past. If it is determined that there is a past image, the process proceeds to step S1302, and if not, the process proceeds to step S1303.
[0123] (ステップ S 1302)  [0123] (Step S 1302)
X線 CTスキャンシミュレータ 1200は、過去画像を基準画像に設定する。  X-ray CT scan simulator 1200 sets a past image as a reference image.
(ステップ S 1303)  (Step S 1303)
X線 CTスキャンシミュレータ 1200は、人体ファントム画像を基準画像に設定する。  The X-ray CT scan simulator 1200 sets a human phantom image as a reference image.
[0124] (ステップ S 1304) [0124] (Step S 1304)
体厚取得手段 1231は、被検体の体厚をスキヤノグラムや過去画像から自動推定す る。推定方法については既に述べた。操作者が体厚を直接入力してもよいが、操作 者の負担を軽減するためには体厚を自動推定する方が良い。 [0125] (ステップ SI 305) The body thickness acquisition means 1231 automatically estimates the body thickness of the subject from the scanogram and past images. The estimation method has already been described. The operator may input the body thickness directly, but it is better to estimate the body thickness automatically in order to reduce the burden on the operator. [0125] (Step SI 305)
近似モデル生成手段 1232は、 S 1306で得られた体厚をもとに近似モデルを生成す る。近似モデルは、水近似モデルでも、平均 CT値物質近似モデルでもよい。近似モ デルの算出方法は既に述べた。  The approximate model generation means 1232 generates an approximate model based on the body thickness obtained in S 1306. The approximate model may be a water approximate model or an average CT value substance approximate model. The method for calculating the approximate model has already been described.
[0126] (ステップ S 1306) [0126] (Step S 1306)
目標ノイズ値設定手段 1230は、 目標ノイズ値を設定する。 目標ノイズ値の設定は、 操作者が直接手入力して設定しても良いし、 S1307で生成された近似モデルと、撮影 条件に基づき目標ノイズ値算出手段 1233が算出した値を設定しても良い。  Target noise value setting means 1230 sets the target noise value. The target noise value can be set manually by the operator, or the target noise value calculation means 1233 can set the approximate model generated in S1307 and the shooting conditions. good.
[0127] (ステップ S1307) [0127] (Step S1307)
X線 CTスキャンシミュレータ 1200は、 S1302若しくは S1303で設定された基準画像の 撮影条件の中から、 FOV、 FOVと被写体のサイズ比、再構成関数を取得する。  The X-ray CT scan simulator 1200 acquires FOV, FOV and the size ratio of the subject, and the reconstruction function from the imaging conditions of the reference image set in S1302 or S1303.
[0128] (ステップ S 1308) [0128] (Step S 1308)
サンプルノイズ画像選択手段 1220は、画像格納手段 1210の中の複数のサンプルノ ィズ画像の中カゝら S1305で取得した撮影条件に基づき一つのサンプルノイズ画像を 選択する。  The sample noise image selection means 1220 selects one sample noise image based on the photographing conditions acquired in S1305, among the plurality of sample noise images in the image storage means 1210.
[0129] (ステップ S 1309) [0129] (Step S 1309)
基準画像ノイズ量算出手段 1241は、基準画像の画像ノイズ量を算出する。画像ノィ ズ量の算出方法については既に述べた。  The reference image noise amount calculation unit 1241 calculates the image noise amount of the reference image. The method for calculating the amount of image noise has already been described.
[0130] (ステップ S1310) [0130] (Step S1310)
加算ノイズ量算出手段 1242は、 S1308で設定された目標ノイズ値と、 S1309で算出し た基準画像の画像ノイズ量とに基づき、基準画像に加算すべきノイズ量を算出する。 加算ノイズ量の算出方法は既に述べた。  Based on the target noise value set in S1308 and the image noise amount of the reference image calculated in S1309, the added noise amount calculation unit 1242 calculates the noise amount to be added to the reference image. The method for calculating the amount of added noise has already been described.
[0131] (ステップ S1311) [0131] (Step S1311)
ノイズ振幅変更手段 1243は、 S1310で算出された加算ノイズ量に応じて、 S1305で選 択されたサンプルノイズ画像のノイズ振幅を変更する。  The noise amplitude changing means 1243 changes the noise amplitude of the sample noise image selected in S1305 according to the added noise amount calculated in S1310.
[0132] (ステップ S1312) [0132] (Step S1312)
シミュレーション画像作成手段 1244は、 S1302若しくは S1303で設定された基準画像 と、 S1311でノイズ振幅を変更されたサンプルノイズ画像を合成することにより、シミュ レーシヨン画像を作成する。 The simulation image creating means 1244 combines the reference image set in S1302 or S1303 with the sample noise image whose noise amplitude has been changed in S1311, thereby simulating. Create a layout image.
[0133] サンプルノイズ画像は、部位、 FOV、 FOVと被写体サイズの比、再構成関数に応じ て用意しておくことが望ましい。人体には、頭部のように縦長の臓器と腹部のように横 長の臓器が存在する。ここで被写体の X軸径を Rx、 Y軸径を Ryとする。サンプルノイズ 画像は部位毎に作成するが、頭部のような縦長の臓器の場合には Rx/Ryが 0.787程 度の値に、腹部のような横長の臓器の場合には Ry/Rxが 0.787程度の値になるように 、前述の仮想ファントムには模擬臓器が配置されていることが望ましぐこのような仮 想ファントムによってサンプルノイズ画像を作成することが望ましい。  [0133] It is desirable to prepare a sample noise image according to the part, the FOV, the ratio of the FOV to the subject size, and the reconstruction function. The human body has a vertically long organ such as the head and a horizontally long organ such as the abdomen. Here, the X-axis diameter of the subject is Rx, and the Y-axis diameter is Ry. Sample noise images are created for each part. Rx / Ry is about 0.787 for a longitudinal organ such as the head, and Ry / Rx is 0.787 for a lateral organ such as the abdomen. It is desirable to create a sample noise image with such a virtual phantom where it is desirable that a simulated organ is placed in the above-mentioned virtual phantom so as to have a value of about.
[0134] FOVに関しては、全撮影プロトコルにおいて有り得る全ての FOVについてサンプル ノイズ画像を作成することが望ましい。図 14は FOVと被写体サイズの比の説明図であ る。例えば図 14に示すように画像 901中に被写体 902が含まれていたとする。ここで被 写体の X軸径を Rx、 Y軸径を Ryとすると、本発明で述べるところの FOVと被写体サイ ズの比とは Rx/FOVまたは Ry/FOVの比の事であり、 0〜1の実数である。撮影部位に よって、被写体サイズは FOVとほぼ同等である場合もあれば、 FOVの 3割程度にすぎ ない場合もある。よって FOVと被写体サイズの比が 0.3〜1.00の範囲で 0.05程度の刻 みでサンプルノイズ画像を作成することが望まし ヽ。同一の χ線条件で撮影したデー タであっても再構成関数によってノイズパターンは異なる。よって臨床で使用される全 ての再構成関数に対してサンプルノイズ画像を作成することが望ましい。 [0134] Regarding FOV, it is desirable to create sample noise images for all possible FOVs in all imaging protocols. Fig. 14 is an explanatory diagram of the ratio between FOV and subject size. For example, assume that a subject 902 is included in an image 901 as shown in FIG. Here, if the X-axis diameter of the object is Rx and the Y-axis diameter is Ry, the ratio of FOV to subject size described in the present invention is the ratio of Rx / FOV or Ry / FOV. Real number of ~ 1. Depending on the part to be imaged, the subject size may be almost the same as the FOV, or it may be only about 30% of the FOV. Therefore, it is desirable to create sample noise images in steps of about 0.05 when the ratio of FOV to subject size is in the range of 0.3 to 1.00. Even for data taken under the same χ- ray conditions, the noise pattern varies depending on the reconstruction function. Therefore, it is desirable to create sample noise images for all reconstruction functions used in clinical practice.
[0135] 前述のサンプルノイズ画像はあらかじめ用意するだけでなぐ操作者が任意に作成 、追加できるような機能が臨床上有用である。操作者がサンプルノイズ画像を追加す るために、図 15に示すように、前述の仮想ファントムの形状や CT値、重心座標、ノィ ズ量( SD)、 FOVを操作者が任意に指定できるような GUIが備えられていることが望ま しい。また保存されているサンプルノイズ画像一覧を画面上に表示し、操作者が不要 と判断したノイズ画像に関しては操作者が任意に削除できるような GUIが備えられて 、ることが望まし!/、。 [0135] It is clinically useful to have a function that allows the operator to create and add the sample noise image described above by simply preparing it in advance. In order for the operator to add a sample noise image, the operator can arbitrarily specify the virtual phantom shape, CT value, barycentric coordinates, noise amount (SD), and FOV as shown in Fig. 15. It is desirable to have a simple GUI. It is also desirable to have a GUI that displays a list of stored sample noise images on the screen and allows the operator to delete any noise images that the operator determines unnecessary! /, .
[0136] 以上の処理により、作成されたシミュレーション画像を表示する際、シミュレーション 画像と同時に、 S1302若しくは S1303で設定された基準画像と S1305で選択したサンプ ルノイズ画像、 S1311で得られた振幅変更後のサンプルノイズ画像をすベて、あるい は操作者希望する任意の組み合わせにつ 、て並べて表示することが望まし 、。また[0136] When the created simulation image is displayed by the above processing, the reference image set in S1302 or S1303, the sample noise image selected in S1305, and the amplitude change obtained in S1311 are displayed simultaneously with the simulation image. All sample noise images It is desirable for the operator to display side by side for any combination desired. Also
、第一実施形態〜第四実施形態で述べたような表示を行っても良い。 The display described in the first embodiment to the fourth embodiment may be performed.
[0137] 図 16に本発明の適用例を示す。図 16(a)は 100kV,200mAsで撮影した SD力 の頭 部 CT像 120である。図 16(b)は図 16(a)の元画像 120から Sd力 .6のシミュレーション画 像を作成するために加算するノイズ画像 121である。図 16(c)は図 16(a)の元画像 120に 図 16(b)のノイズ画像 121をカ卩算して得られたシミュレーション画像 122であり、 SDは 5.6 である。したがって元画像を得た際の撮影条件に比べて mAs値を 1/2程度に低減し た場合に相当する。  FIG. 16 shows an application example of the present invention. Figure 16 (a) is an SD force head CT image 120 taken at 100kV, 200mAs. FIG. 16 (b) is a noise image 121 to be added to create a simulation image with Sd force .6 from the original image 120 in FIG. 16 (a). FIG. 16 (c) is a simulation image 122 obtained by adding the noise image 121 of FIG. 16 (b) to the original image 120 of FIG. 16 (a), and SD is 5.6. Therefore, this corresponds to a case where the mAs value is reduced by about 1/2 compared to the shooting conditions when the original image was obtained.
[0138] シミュレーション画像における SDを変更した場合や他の部位においても同様にして シミュレーション画像を作成できることは同業者ならば容易に理解されるであろう。  [0138] Those skilled in the art will readily understand that simulation images can be created in the same way when the SD in a simulation image is changed or in other parts.
[0139] 上記実施形態では、 X線 CTスキャンシミュレータを搭載した X線 CT装置について説 明したが、 X線撮影機能を有さずシミュレータ機能だけを搭載した X線 CTスキャンシミ ユレータ装置として構成してもよ 、。  [0139] In the above embodiment, an X-ray CT apparatus equipped with an X-ray CT scan simulator has been described. However, it is configured as an X-ray CT scan simulator apparatus equipped with only a simulator function without an X-ray imaging function. Anyway.
[0140] また、上記実施形態に記載の機能をコンピュータに実行させるスキャンシミュレータ プログラムとして構成し、このプログラムをパーソナルコンピュータやワークステーショ ンにインストールして上記機能を実現してもよい。その場合、シミュレータ画像は、必 ずしもスキャンシミュレータプログラムをインストールしたパーソナルコンピュータゃヮ ークステーションのモニタに表示させる必要はなぐ LANなどのネットワークを介して 接続された端末装置にシミュレータ画像を送信し、その端末装置においてシミュレ一 タ画像を表示させてもよい。 [0140] Further, the function described in the above embodiment may be configured as a scan simulator program that causes a computer to execute the function, and the above function may be realized by installing this program in a personal computer or a workstation. In that case, the simulator image does not necessarily have to be displayed on the monitor of the personal computer installed with the scan simulator program. The simulator image is transmitted to a terminal device connected via a network such as a LAN. The simulator image may be displayed on the terminal device.
図面の簡単な説明  Brief Description of Drawings
[0141] [図 1]本発明の X線 CTスキャンシミュレータを搭載した X線 CT装置の構成図。 [0141] [FIG. 1] A configuration diagram of an X-ray CT apparatus equipped with the X-ray CT scan simulator of the present invention.
[図 2]第一実施形態の構成図。  FIG. 2 is a configuration diagram of the first embodiment.
[図 3]第一実施形態の処理フロー。  FIG. 3 is a processing flow of the first embodiment.
[図 4]体厚推定方法の説明図。  FIG. 4 is an explanatory diagram of a body thickness estimation method.
[図 5]水ファントムにおける透過長と SDの関係を示す図。  FIG. 5 is a diagram showing the relationship between transmission length and SD in a water phantom.
[図 6]投影データの作成方法の説明図。  FIG. 6 is an explanatory diagram of a method for creating projection data.
[図 7]透過長の算出方法の説明図。 [図 8]第一実施形態の画面表示例。 FIG. 7 is an explanatory diagram of a method for calculating a transmission length. FIG. 8 is a screen display example of the first embodiment.
[図 9]第二実施形態の画面表示例。 FIG. 9 shows a screen display example of the second embodiment.
[図 10]第四実施形態の画面表示例。 FIG. 10 shows a screen display example of the fourth embodiment.
[図 11]第四実施形態の画面表示例。 FIG. 11 shows a screen display example of the fourth embodiment.
[図 12]第五実施形態の構成図。 FIG. 12 is a configuration diagram of the fifth embodiment.
[図 13]第五実施形態の処理フロー。 FIG. 13 is a processing flow of the fifth embodiment.
[図 14]FOVと被写体サイズの比の説明図。 FIG. 14 is an explanatory diagram of the ratio between FOV and subject size.
[図 15]サンプルノイズ画像を操作者が作成、追加するための GUI例。  [Figure 15] Example GUI for operator to create and add sample noise images.
[図 16]本発明を臨床適用した例。 FIG. 16 shows an example of clinical application of the present invention.
符号の説明 Explanation of symbols
1 X線 CT装置、 2 ガントリ、 3 X線源、 4 コリメータ、 5 検出器アレイ、 6 検出器素 子、 7 X線、 8 回転中心、 9 制御部、 10 X線制御手段、 11 ガントリ制御手段、 12 DAS、 13 演算処理手段、 14 体厚推定手段、 15 近似モデル算出手段、 16 画像 S D算出手段、 17 加算ノイズ量算出手段、 18 近似モデル投影データ作成手段、 19 再構成手段、 20 ノイズ画像作成手段、 21 シミュレーション画像作成手段、 22 保存 手段、 23 —時格納手段、 24 入力手段、 25 画像表示手段  1 X-ray CT system, 2 Gantry, 3 X-ray source, 4 Collimator, 5 Detector array, 6 Detector element, 7 X-ray, 8 Center of rotation, 9 Control unit, 10 X-ray control means, 11 Gantry control means , 12 DAS, 13 Arithmetic processing means, 14 Body thickness estimation means, 15 Approximation model calculation means, 16 Image SD calculation means, 17 Addition noise amount calculation means, 18 Approximation model projection data creation means, 19 Reconstruction means, 20 Noise image Creation means, 21 simulation image creation means, 22 storage means, 23 — hour storage means, 24 input means, 25 image display means

Claims

請求の範囲 The scope of the claims
基準画像を格納する画像格納手段と、  Image storage means for storing a reference image;
所望画像のノイズ目標値を設定する目標ノイズ値設定手段と、  Target noise value setting means for setting a noise target value of a desired image;
前記設定された目標ノイズ値に基づきノイズ画像を生成するノイズ画像生成手段と 前記生成されたノイズ画像と前記基準画像を合成してシミュレーション画像を作成 するシミュレーション画像作成手段と、  Noise image generation means for generating a noise image based on the set target noise value; simulation image generation means for generating a simulation image by combining the generated noise image and the reference image;
前記シミュレーション画像を表示する表示手段と、  Display means for displaying the simulation image;
を備えることを特徴とする X線 CTスキャンシミュレータ装置。 An X-ray CT scan simulator device comprising:
請求項 1の X線 CTスキャンシミュレータ装置において、  The X-ray CT scan simulator apparatus according to claim 1,
前記ノイズ画像生成手段は、  The noise image generation means includes
前記被検体の体厚を取得する体厚取得手段と、  Body thickness obtaining means for obtaining the body thickness of the subject;
前記体厚に基づき前記被検体の近似モデルを生成する近似モデル生成手段と、 前記基準画像のノイズ量を算出する基準画像ノイズ量算出手段と、  An approximate model generating unit that generates an approximate model of the subject based on the body thickness; a reference image noise amount calculating unit that calculates a noise amount of the reference image;
前記目標ノイズ値と前記基準画像のノイズ量に基づき前記基準画像に加算するノ ィズ量を算出する加算ノイズ量算出手段と、  Added noise amount calculating means for calculating a noise amount to be added to the reference image based on the target noise value and the noise amount of the reference image;
前記近似モデルの投影データである基準投影データと、前記基準投影データに前 記加算ノイズ量を加算した加算投影データと、を作成する近似モデル投影データ作 成手段と、  Approximate model projection data creating means for creating reference projection data that is projection data of the approximate model, and addition projection data obtained by adding the amount of addition noise to the reference projection data;
前記加算投影データを用いてノイズ画像を再構成するノイズ画像再構成手段と、 を有することを特徴とする X線 CTスキャンシミュレータ装置。  An X-ray CT scan simulator apparatus comprising: noise image reconstruction means for reconstructing a noise image using the addition projection data.
請求項 2の X線 CTスキャンシミュレータ装置において、  The X-ray CT scan simulator device according to claim 2,
前記ノイズ画像作成手段は、前記加算投影データに基づく再構成画像と前記基準 投影データに基づく再構成画像とを差分してノイズ画像を作成する、又は前記加算 投影データと前記基準投影データとを差分処理して差分投影データを生成し、その 差分投影データを再構成してノイズ画像を作成することを特徴とする X線 CTスキャン シミュレータ装置。  The noise image creation means creates a noise image by subtracting the reconstructed image based on the addition projection data and the reconstructed image based on the reference projection data, or creates a difference between the addition projection data and the reference projection data An X-ray CT scan simulator device that generates differential projection data by processing and reconstructs the differential projection data to create a noise image.
請求項 2の X線 CTスキャンシミュレータ装置において、 前記近似モデル算出手段は、前記被検体の体厚から推定される水等価厚をもった 仮想的な水ファントムカゝらなる近似モデルを算出する、または前記被検体の撮影部 位を分割した部位ごとに、その部位の CT値と空気の CT値との差及び水の X線吸収 係数カゝら算出される X線吸収係数を割り当てた近似モデルを算出することを特徴とす る X線 CTスキャンシミュレータ装置。 The X-ray CT scan simulator device according to claim 2, The approximate model calculating means calculates an approximate model such as a virtual water phantom camera having a water equivalent thickness estimated from the body thickness of the subject, or a part obtained by dividing the imaging part of the subject X-ray CT, which is characterized by calculating an approximate model to which the X-ray absorption coefficient calculated from the difference between the CT value of the part and the CT value of air and the X-ray absorption coefficient of water is calculated. Scan simulator device.
[5] 請求項 2の X線 CTスキャンシミュレータ装置にお!、て、 [5] In the X-ray CT scan simulator apparatus according to claim 2,
前記近似モデル投影データ作成手段は、仮想的に X線エネルギースペクトルを発 生させ、フオトンエネルギー毎に各 X線吸収物質の X線吸収係数と透過パス長との乗 算値に基づき各フオトンエネルギーにおける投影値を算出し、各エネルギーの寄与 率と前記投影値との積和により前記基準投影データ及び前記加算投影データを作 成する、又は前記被検体の過去画像を再投影して前記基準投影データ及び前記加 算投影データを作成することを特徴とする X線 CTスキャンシミュレータ装置。  The approximate model projection data creation means virtually generates an X-ray energy spectrum, and for each photon energy, each photon is based on the product of the X-ray absorption coefficient and the transmission path length of each X-ray absorbing material. The projection value in energy is calculated, and the reference projection data and the addition projection data are generated by the product sum of the contribution rate of each energy and the projection value, or the past image of the subject is reprojected and the reference An X-ray CT scan simulator device that creates projection data and the addition projection data.
[6] 請求項 2の X線 CTスキャンシミュレータ装置にお!、て、 [6] In the X-ray CT scan simulator apparatus of claim 2,!
前記基準画像ノイズ算出手段は、前記基準画像を撮影したときの撮影条件に基づ いて前記基準画像に含まれる画像ノイズ量を算出することを特徴とする X線 CTスキヤ ンシミュレータ装置。  The X-ray CT scan simulator device, wherein the reference image noise calculation means calculates an image noise amount included in the reference image based on an imaging condition when the reference image is captured.
[7] 請求項 1の X線 CTスキャンシミュレータ装置において、 [7] The X-ray CT scan simulator device according to claim 1,
前記シミュレーション画像作成手段は、前記シミュレーション画像の撮影条件のうち の少なくとも一つの撮影条件、画像フィルタ、及び前記画像ノイズの点在パターン、 のいずれかが異なる複数のシミュレーション画像力もなるシミュレーション画像群を更 に作成し、前記表示手段は、前記シミュレーション画像及び前記シミュレーション画 像群を並べて表示することを特徴とする X線 CTスキャンシミュレータ装置。  The simulation image creating means further updates a simulation image group having a plurality of simulation image forces that differ in at least one of the imaging conditions of the simulation image, an image filter, and a scattered pattern of the image noise. The X-ray CT scan simulator device is characterized in that the display means displays the simulation image and the simulation image group side by side.
[8] 請求項 7の X線 CTスキャンシミュレータ装置にお!、て、 [8] In the X-ray CT scan simulator device of claim 7,
前記表示手段に並べて表示されたシミュレーション画像のうちの一つを選択する選 択手段を更に備え、前記表示手段は、撮影条件と複数のシミュレーション画像とを対 応させて表示し、前記選択手段により前記シミュレーション画像の一つが選択される と、前記シミュレーション画像作成手段は、選択されたシミュレーション画像の撮影条 件のうち、前記表示手段に表示された撮影条件は同一であって他の撮影条件は異 なる複数のシミュレーション画像力もなるシミュレーション画像群を再度作成し、前記 表示手段は、再度作成されたシミュレーション画像群と前記選択されたシミュレーショ ン画像とを並べて表示することを特徴とする請求項 6に記載の X線 CTスキャンシミュレ ータ装置。 The image processing apparatus further includes selection means for selecting one of the simulation images displayed side by side on the display means, and the display means displays the imaging conditions and the plurality of simulation images in association with each other, and the selection means When one of the simulation images is selected, the simulation image creating means has the same shooting conditions displayed on the display means among the shooting conditions of the selected simulation image, and different shooting conditions. 7. A simulation image group having a plurality of simulation image powers is created again, and the display means displays the simulation image group created again and the selected simulation image side by side. X-ray CT scan simulator device described.
[9] 請求項 7の X線 CTスキャンシミュレータ装置にぉ 、て、  [9] In the X-ray CT scan simulator device according to claim 7,
前記表示手段に表示された前記シミュレーション画像又は前記シミュレーション画 像群のうちの一つのシミュレーション画像を指定する指定手段を更に備え、前記表示 手段に表示されたシミュレーション画像が指定されると、前記指定されたシミュレーシ ヨン画像を得るための撮影条件を、前記被検体のスキャン撮影時の撮影条件として 出力することを特徴とする X線 CTスキャンシミュレータ装置。  The apparatus further comprises a designation unit that designates one of the simulation images or the simulation image group displayed on the display unit, and the designation is performed when the simulation image displayed on the display unit is designated. An X-ray CT scan simulator device that outputs an imaging condition for obtaining a simulated image as an imaging condition at the time of scan imaging of the subject.
[10] 請求項 1の X線 CTスキャンシミュレータ装置において、 [10] In the X-ray CT scan simulator device of claim 1,
前記画像格納手段は、さらに複数のサンプルノイズ画像を格納し、前記ノイズ画像 生成手段は、前記複数のサンプルノイズ画像カゝら一つのサンプルノイズ画像を撮影 条件に応じて選択するサンプルノイズ画像選択手段と、  The image storage means further stores a plurality of sample noise images, and the noise image generation means selects one sample noise image from the plurality of sample noise images according to the shooting conditions. When,
前記基準画像のノイズ量を算出する基準画像ノイズ量算出手段と、  Reference image noise amount calculating means for calculating the noise amount of the reference image;
前記目標ノイズ値と前記基準画像のノイズ量に基づき前記基準画像に加算するノ ィズ量を算出する加算ノイズ量算出手段と、  Added noise amount calculating means for calculating a noise amount to be added to the reference image based on the target noise value and the noise amount of the reference image;
前記選択されたサンプルノイズ画像のノイズ振幅を前記加算ノイズ量に基づいて変 更するノイズ振幅変更手段と、  Noise amplitude changing means for changing the noise amplitude of the selected sample noise image based on the added noise amount;
を有することを特徴とする X線 CTスキャンシミュレータ装置。  An X-ray CT scan simulator device characterized by comprising:
[11] 請求項 10の X線 CTスキャンシミュレータ装置において、 [11] In the X-ray CT scan simulator device of claim 10,
前記画像格納手段に格納される前記基準画像は、被検体を過去に撮影して得ら れた過去画像、または人体ファントムを撮影して得られた人体ファントム画像であるこ とを特徴とする X線 CTスキャンシミュレータ装置。  The reference image stored in the image storage means is a past image obtained by imaging a subject in the past or a human phantom image obtained by imaging a human phantom. CT scan simulator device.
[12] 請求項 10の X線 Ctスキャンシミュレータ装置において、 [12] The X-ray Ct scan simulator device according to claim 10,
前記目標ノイズ値設定手段は、前記被検体の体厚を取得する体厚取得手段と、 前記体厚に基づき前記被検体の近似モデルを生成する近似モデル生成手段と、 前記撮影条件と前記近似モデルに基づき前記目標ノイズ値を算出する目標ノイズ 値算出手段と、 The target noise value setting means includes a body thickness acquisition means for acquiring a body thickness of the subject, an approximate model generation means for generating an approximate model of the subject based on the body thickness, the imaging conditions, and the approximate model Target noise for calculating the target noise value based on A value calculating means;
を備えることを特徴とする X線 CTスキャンシミュレータ装置。  An X-ray CT scan simulator device comprising:
[13] 請求項 12の X線 CTスキャンシミュレータ装置において、 [13] In the X-ray CT scan simulator device of claim 12,
前記体厚取得手段は、スキヤノグラム撮影して得られたスキヤノグラム画像に基づ ヽ て前記被検体の体厚を推定する手段、または被検体を過去に撮影して得られた過 去画像に基づいて体厚を推定する手段であることを特徴とする X線 CTスキャンシミュ レータ装置。  The body thickness acquisition means is a means for estimating the body thickness of the subject based on a scanogram image obtained by scanning a scanogram, or based on a past image obtained by imaging the subject in the past. An X-ray CT scan simulator that is a means for estimating body thickness.
[14] 請求項 12の X線 CTスキャンシミュレータ装置において、  [14] The X-ray CT scan simulator device according to claim 12,
前記近似モデル生成手段は、前記体厚と等価な水等価厚を算出し、その水等価 厚を有する近似モデルを算出する手段であることを特徴とする X線 CTスキャンシミュ レータ装置。  The X-ray CT scan simulator device, wherein the approximate model generation means is means for calculating a water equivalent thickness equivalent to the body thickness and calculating an approximate model having the water equivalent thickness.
[15] 請求項 10の X線 CTスキャンシミュレータ装置において、  [15] The X-ray CT scan simulator device according to claim 10,
前記画像格納手段に格納される複数のサンプルノイズ画像は、部位、撮影視野、 撮影視野と被検体サイズの比、画像再構成時用いる再構成関数の異なるサンプルノ ィズ画像であることを特徴とする X線 CTスキャンシミュレータ装置。  The plurality of sample noise images stored in the image storage means are sample noise images having different parts, imaging field of view, ratio of imaging field of view to subject size, and reconstruction function used for image reconstruction. X-ray CT scan simulator device.
[16] 請求項 10の X線 CTスキャンシミュレータ装置において、  [16] The X-ray CT scan simulator device according to claim 10,
仮想ファントムの形状と CT値、重心座標、撮影視野、の少なくとも一つを指定し、サ ンプルノイズ画像の追加と削除するための編集手段をさらに備えることを特徴とする X 線 CTスキャンシミュレータ装置。  An X-ray CT scan simulator characterized by further comprising an editing means for specifying at least one of a virtual phantom shape, CT value, barycentric coordinates, and field of view, and adding and deleting sample noise images.
[17] 被検体に X線を照射する X線源と、前記 X線源に対抗配置され前記被検体を透過し た X線を検出する X線検出器と、前記 X線源と前記 X線検出器を搭載し前記被検体の 周囲を回転する回転装置と、前記 X線検出器により検出された複数方向の透過 X線 量に基づき前記被検体の断層像を再構成する画像再構成装置と、前記 X線の照射 条件と画像再構成の条件を入力する撮影条件入力装置と、前記断層像を表示する 画像表示装置と、を備えた X線 CT装置において、  [17] An X-ray source that irradiates the subject with X-rays, an X-ray detector that is disposed opposite to the X-ray source and detects X-rays transmitted through the subject, and the X-ray source and the X-rays A rotation device that mounts a detector and rotates around the subject; an image reconstruction device that reconstructs a tomographic image of the subject based on transmitted X-ray amounts in a plurality of directions detected by the X-ray detector; An X-ray CT apparatus comprising: an imaging condition input device that inputs the X-ray irradiation condition and image reconstruction condition; and an image display device that displays the tomographic image.
請求項 1乃至 16のいずれかに記載の X線 CTスキャンシミュレータ装置を搭載したこと を特徴とする X線 CT装置。  An X-ray CT apparatus comprising the X-ray CT scan simulator apparatus according to any one of claims 1 to 16.
[18] 基準画像を取得するステップと、 所望画像のノイズ目標値を設定するステップと、 [18] obtaining a reference image; Setting a desired noise value for the desired image;
前記設定された目標ノイズ値に基づきノイズ画像を生成するステップと、 前記生成されたノイズ画像と前記基準画像を合成してシミュレーション画像を作成 し出力するステップと、  Generating a noise image based on the set target noise value; creating a simulation image by combining the generated noise image and the reference image; and outputting the simulation image;
をコンピュータに実行させることを特徴とする X線 CTスキャンシミュレータプログラム。  X-ray CT scan simulator program characterized by causing a computer to execute.
[19] 請求項 18の X線 CTスキャンシミュレータプログラムにおいて、前記ノイズ画像生成ス テツプは、 [19] The X-ray CT scan simulator program according to claim 18, wherein the noise image generation step includes:
前記被検体の体厚を取得するステップと、  Obtaining a body thickness of the subject;
前記体厚に基づき前記被検体の近似モデルを生成するステップと、  Generating an approximate model of the subject based on the body thickness;
前記基準画像のノイズ量を算出するステップと、  Calculating a noise amount of the reference image;
前記目標ノイズ値と前記基準画像のノイズ量に基づき前記基準画像に加算するノ ィズ量を算出するステップと、  Calculating a noise amount to be added to the reference image based on the target noise value and a noise amount of the reference image;
前記近似モデルの投影データである基準投影データと、前記基準投影データに前 記加算ノイズ量を加算した加算投影データと、を作成するステップと、  Creating reference projection data that is projection data of the approximate model, and addition projection data obtained by adding the addition noise amount to the reference projection data; and
前記加算投影データを用いてノイズ画像を再構成するステップと、  Reconstructing a noise image using the added projection data;
をコンピュータに実行させることを特徴とする X線 CTスキャンシミュレータプログラム。  X-ray CT scan simulator program characterized by causing a computer to execute.
[20] 請求項 18の X線 CTスキャンシミュレータプログラムにおいて、 [20] In the X-ray CT scan simulator program of claim 18,
前記ノイズ画像生成ステップは、  The noise image generation step includes
複数のサンプルノイズ画像から一つのサンプルノイズ画像を撮影条件に応じて選 択するステップと、  Selecting one sample noise image from a plurality of sample noise images according to the shooting conditions;
前記基準画像のノイズ量を算出するステップと、  Calculating a noise amount of the reference image;
前記目標ノイズ値と前記基準画像のノイズ量に基づき前記基準画像に加算するノ ィズ量を算出するステップと、  Calculating a noise amount to be added to the reference image based on the target noise value and a noise amount of the reference image;
前記選択されたサンプルノイズ画像のノイズ振幅を前記加算ノイズ量に基づいて変 更するステップと、  Changing the noise amplitude of the selected sample noise image based on the amount of added noise;
をコンピュータに実行させることを特徴とする X線 CTスキャンシミュレータプログラム。  X-ray CT scan simulator program characterized by causing a computer to execute.
PCT/JP2007/057576 2006-04-04 2007-04-04 X-ray ct scan simulator device, x-ray ct device and x-ray ct scan simulator program WO2007114470A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008508713A JP5047945B2 (en) 2006-04-04 2007-04-04 X-ray CT scan simulator apparatus, X-ray CT apparatus, and X-ray CT scan simulator program

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006103547 2006-04-04
JP2006-103547 2006-04-04
JP2007059408 2007-03-09
JP2007-59408 2007-03-09

Publications (1)

Publication Number Publication Date
WO2007114470A1 true WO2007114470A1 (en) 2007-10-11

Family

ID=38563731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057576 WO2007114470A1 (en) 2006-04-04 2007-04-04 X-ray ct scan simulator device, x-ray ct device and x-ray ct scan simulator program

Country Status (2)

Country Link
JP (1) JP5047945B2 (en)
WO (1) WO2007114470A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107658A1 (en) * 2008-02-25 2009-09-03 株式会社 日立メディコ X-ray ct scan simulator and x-ray ct device
JP2009273594A (en) * 2008-05-13 2009-11-26 Canon Inc Image processing apparatus and image processing method
US20110158550A1 (en) * 2009-12-24 2011-06-30 Canon Kabushiki Kaisha Information processing apparatus, processing method, and computer-readable storage medium
WO2013005805A1 (en) * 2011-07-07 2013-01-10 株式会社 東芝 Image processing apparatus and method, and x-ray diagnosis apparatus
JP2013516267A (en) * 2010-01-06 2013-05-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for simulating reduction of collected dose of X-ray system, computer system and X-ray system
WO2013159792A1 (en) * 2012-04-26 2013-10-31 Universitätsklinikum Erlangen Method and device for computed tomography angiography
JP2014128576A (en) * 2012-11-30 2014-07-10 Canon Inc Image processor, image processing method, and program
JP2016198475A (en) * 2015-04-14 2016-12-01 東芝メディカルシステムズ株式会社 Medical image diagnostic apparatus
JP2017148142A (en) * 2016-02-22 2017-08-31 東レエンジニアリング株式会社 Medical support device
JP2018050664A (en) * 2016-09-26 2018-04-05 キヤノンメディカルシステムズ株式会社 X-ray CT apparatus
US9947101B2 (en) 2013-07-31 2018-04-17 Fujifilm Corporation Radiographic image analysis device and method, and recording medium having program recorded therein
JP2018536487A (en) * 2015-12-14 2018-12-13 シロナ・デンタル・システムズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for calibrating an X-ray image
EP3424431A1 (en) * 2017-05-17 2019-01-09 Carestream Health, Inc. Automatic exposure control setup
JP2019502436A (en) * 2015-12-03 2019-01-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Device for determining the effective energy spectrum of an X-ray tube
US10426424B2 (en) 2017-11-21 2019-10-01 General Electric Company System and method for generating and performing imaging protocol simulations
JP2020508172A (en) * 2017-02-24 2020-03-19 バイエル・ヘルスケア・エルエルシーBayer HealthCare LLC Systems and methods for generating simulated computed tomography (CT) images
JP2021137259A (en) * 2020-03-04 2021-09-16 キヤノンメディカルシステムズ株式会社 Medical diagnostic system, medical diagnostic apparatus, and medical information processing apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004057831A (en) * 2002-07-29 2004-02-26 Ge Medical Systems Global Technology Co Llc Method and system for low-dose image simulation of image forming system
JP2004329661A (en) * 2003-05-09 2004-11-25 Toshiba Corp X-ray computerized tomographic apparatus and image noise simulation apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004057831A (en) * 2002-07-29 2004-02-26 Ge Medical Systems Global Technology Co Llc Method and system for low-dose image simulation of image forming system
JP2004329661A (en) * 2003-05-09 2004-11-25 Toshiba Corp X-ray computerized tomographic apparatus and image noise simulation apparatus

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009107658A1 (en) * 2008-02-25 2011-07-07 株式会社日立メディコ X-ray CT scan simulator and X-ray CT apparatus
US8270560B2 (en) 2008-02-25 2012-09-18 Hitachi Medical Corporation X-ray CT scan simulator and X-ray CT apparatus
WO2009107658A1 (en) * 2008-02-25 2009-09-03 株式会社 日立メディコ X-ray ct scan simulator and x-ray ct device
JP5588859B2 (en) * 2008-02-25 2014-09-10 株式会社日立メディコ X-ray CT scan simulator and X-ray CT apparatus
JP2009273594A (en) * 2008-05-13 2009-11-26 Canon Inc Image processing apparatus and image processing method
US8655034B2 (en) * 2009-12-24 2014-02-18 Canon Kabushiki Kaisha Information processing apparatus, processing method, and computer-readable storage medium
US20110158550A1 (en) * 2009-12-24 2011-06-30 Canon Kabushiki Kaisha Information processing apparatus, processing method, and computer-readable storage medium
US9131906B2 (en) 2010-01-06 2015-09-15 Koninklijke Philips N.V. Method for simulating reduction of acquisition dosage of an X-ray system, computer system and X-ray system
JP2013516267A (en) * 2010-01-06 2013-05-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for simulating reduction of collected dose of X-ray system, computer system and X-ray system
CN102970932A (en) * 2011-07-07 2013-03-13 株式会社东芝 Image processing apparatus and method, and x-ray diagnosis apparatus
WO2013005805A1 (en) * 2011-07-07 2013-01-10 株式会社 東芝 Image processing apparatus and method, and x-ray diagnosis apparatus
WO2013159792A1 (en) * 2012-04-26 2013-10-31 Universitätsklinikum Erlangen Method and device for computed tomography angiography
JP2014128576A (en) * 2012-11-30 2014-07-10 Canon Inc Image processor, image processing method, and program
US9947101B2 (en) 2013-07-31 2018-04-17 Fujifilm Corporation Radiographic image analysis device and method, and recording medium having program recorded therein
US10398395B2 (en) 2015-04-14 2019-09-03 Canon Medical Systems Corporation Medical image diagnostic apparatus
JP2016198475A (en) * 2015-04-14 2016-12-01 東芝メディカルシステムズ株式会社 Medical image diagnostic apparatus
JP2019502436A (en) * 2015-12-03 2019-01-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Device for determining the effective energy spectrum of an X-ray tube
JP2018536487A (en) * 2015-12-14 2018-12-13 シロナ・デンタル・システムズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for calibrating an X-ray image
JP2017148142A (en) * 2016-02-22 2017-08-31 東レエンジニアリング株式会社 Medical support device
JP2018050664A (en) * 2016-09-26 2018-04-05 キヤノンメディカルシステムズ株式会社 X-ray CT apparatus
JP2020508172A (en) * 2017-02-24 2020-03-19 バイエル・ヘルスケア・エルエルシーBayer HealthCare LLC Systems and methods for generating simulated computed tomography (CT) images
JP7100048B2 (en) 2017-02-24 2022-07-12 バイエル・ヘルスケア・エルエルシー Systems and methods for generating simulated computer tomography (CT) images
EP3424431A1 (en) * 2017-05-17 2019-01-09 Carestream Health, Inc. Automatic exposure control setup
US11452491B2 (en) 2017-05-17 2022-09-27 Carestream Health, Inc. Automatic exposure control setup
US10426424B2 (en) 2017-11-21 2019-10-01 General Electric Company System and method for generating and performing imaging protocol simulations
JP2021137259A (en) * 2020-03-04 2021-09-16 キヤノンメディカルシステムズ株式会社 Medical diagnostic system, medical diagnostic apparatus, and medical information processing apparatus
JP7462433B2 (en) 2020-03-04 2024-04-05 キヤノンメディカルシステムズ株式会社 Medical diagnostic system, medical diagnostic device, and medical information processing device

Also Published As

Publication number Publication date
JPWO2007114470A1 (en) 2009-08-20
JP5047945B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP5047945B2 (en) X-ray CT scan simulator apparatus, X-ray CT apparatus, and X-ray CT scan simulator program
US6904118B2 (en) Method and apparatus for generating a density map using dual-energy CT
JP5588859B2 (en) X-ray CT scan simulator and X-ray CT apparatus
JP5918374B2 (en) X-ray CT apparatus and X-ray CT image processing method
US10772594B2 (en) Methods, systems, apparatuses, and computer program products for extending the field of view of a sensor and obtaining a synthetic radiagraph
JP4344191B2 (en) Method and system for low-dose image simulation of an imaging system
JP2004174264A (en) Method and apparatus for forming computed tomography scout image
JP7199399B2 (en) Systems and methods for automatic tube potential selection in dual-energy imaging
US11288775B2 (en) Methods and systems for parametric noise modulation in x-ray imaging
JP6767997B2 (en) Method for improving the image of the image data of the dental image generation system
JP5978432B1 (en) Medical image processing apparatus and medical image processing method
JP4509255B2 (en) Perspective image creation method and apparatus
US10019795B2 (en) Focal spot de-blurring
JP2005143759A (en) X-ray ct apparatus
JP2004073397A (en) X-ray ct apparatus
WO2019116619A1 (en) Computed tomogram processing device and computed tomograph device
JP2005095397A (en) Method of correcting scattered x-ray component, program therefor, and x-ray ct system
US20050018889A1 (en) Systems and methods for filtering images
EP3809376A2 (en) Systems and methods for visualizing anatomical structures
JP5010167B2 (en) X-ray CT system
JP6873831B2 (en) Medical image diagnostic equipment, medical image processing equipment and medical image processing program
US12004893B2 (en) Systems and methods for artifact detection for images
WO2018116791A1 (en) Medical image processing device and x-ray ct device provided with same, and medical image processing method
WO2021252751A1 (en) Systems and methods for generating synthetic baseline x-ray images from computed tomography for longitudinal analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741012

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008508713

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741012

Country of ref document: EP

Kind code of ref document: A1