WO2007114317A1 - Peltier device and temperature regulating container equipped with the peltier device - Google Patents

Peltier device and temperature regulating container equipped with the peltier device Download PDF

Info

Publication number
WO2007114317A1
WO2007114317A1 PCT/JP2007/057034 JP2007057034W WO2007114317A1 WO 2007114317 A1 WO2007114317 A1 WO 2007114317A1 JP 2007057034 W JP2007057034 W JP 2007057034W WO 2007114317 A1 WO2007114317 A1 WO 2007114317A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
glass
container body
conductive glass
peltier element
Prior art date
Application number
PCT/JP2007/057034
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuaki Nishida
Kenichi Kobayashi
Akira Morishige
Kazumi Manabe
Original Assignee
Kitakyushu Foundation For The Advancement Of Industry, Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitakyushu Foundation For The Advancement Of Industry, Science And Technology filed Critical Kitakyushu Foundation For The Advancement Of Industry, Science And Technology
Priority to US12/295,598 priority Critical patent/US20090241554A1/en
Priority to JP2008508644A priority patent/JP5024835B2/en
Publication of WO2007114317A1 publication Critical patent/WO2007114317A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction

Definitions

  • the present invention relates to the research field of peltier elements and biotechnology that are easy to adjust temperature and excellent in handleability, and is used for observation and manipulation of tissues and cells in a living body and in the pharmaceutical field.
  • This is related to a temperature control vessel equipped with a Peltier element that can optimally control the temperature of the specimen when performing microscope observation and microscope operation while controlling the temperature of the specimen in quality control and material testing in the industrial field. is there.
  • the method of changing the temperature and controlling the temperature by changing the polarity of the cooling module has the problem that it lacks long life and reliability as a device that causes significant damage to the cooling module.
  • Both methods can heat and cool multiple culture vessels at the same time, but can individually heat and cool containers with fine storage spaces, or culture vessels with multiple cells on a cell-by-cell basis. However, it cannot be heated and cooled selectively, and there is a problem that it lacks versatility.
  • Patent Document 1 states that “a cell cultured in a culture vessel using a temperature-responsive polymer compound as a cell culture substrate is higher than the boundary point at which the temperature-responsive polymer compound starts to precipitate from water. While observing with a microscope at a temperature, the cooling fluid is added until the temperature-responsive polymer compound in the observation field reaches a temperature lower than the critical point without blocking the optical path of the transmitted light. Disclosed is a method for selecting cultured cells using a temperature-responsive polymer compound, wherein only desired cells or cell masses are selected by spraying and cooling, and the cells are detached and recovered from the container. Yes.
  • Patent Document 2 states that “a glass plate for heating having a heater function in which electrodes for an anode and a cathode are attached so as to face each other at the periphery of a transparent glass formed by vacuum deposition of a transparent conductive film; An apparatus for heating and cooling combined with one or a plurality of cooling modules using the Peltier effect is disclosed.
  • Patent Document 1 JP 2003-102466 A
  • Patent Document 1 Japanese Patent Laid-Open No. 9-122507
  • the method for selecting cultured cells of includes a heating surface on which a culture vessel is placed and the bottom surface is heated, a small-range light transmitting hole opened at the center of the heating surface, and the hole. It is possible to cool only a narrow range by providing a discharge port that blows a cooling fluid toward the bottom of the culture vessel facing the cell. The purpose is to recover, and the minute space cannot be heated and cooled to an arbitrary temperature, and the use is limited to the selection of cultured cells.
  • Patent Document 2 The heating / cooling combined device of (Patent Document 2) is formed of hard glass, so that it is difficult to finely process and lacks shape flexibility, and forms a fine space for storing chemicals and aqueous solutions. In other words, it has a problem of lack of handleability and versatility.
  • the present invention solves the above-described problems.
  • a conductive glass mainly composed of vanadate as an electrode, a constant temperature can be accurately maintained, and the temperature can be easily adjusted.
  • ! / Providing excellent Peltier elements and easy processing of the container body, excellent shape flexibility, forming a fine space to accommodate chemicals and aqueous solutions, and excellent chemical resistance and storage stability At the same time, a minute space containing chemicals and aqueous solutions can be efficiently heated and cooled to stably hold it at any temperature for observation and various measurements.
  • the purpose of the present invention is to provide a temperature-controlled container equipped with a Peltier element that is excellent in reliability, versatility, and workability.
  • a Peltier device of the present invention and a temperature control container including the Peltier device have the following configurations.
  • the Peltier element according to claim 1 of the present invention is a Peltier element having a heat absorption part and a heat generation part, and is formed of a conductive glass mainly composed of at least the electrode force vanadate of the heat absorption part. It has the structure which is.
  • This configuration has the following effects.
  • the conductive glass mainly composed of vanadate, vanadium oxide, alkali metal oxides such as diphosphorus pentoxide, potassium oxide and sodium oxide, oxidation It is possible to use an alkaline earth acid such as barium, vitrified acid cerium, tin oxide, lead oxide, copper oxide, etc.
  • This conductive glass is obtained by vitrifying a vanadium-containing composition to produce an acid glass, and subjecting the acid glass to an annealing treatment not lower than the glass transition temperature of the acid glass and not higher than the melting point. And a reheating step of maintaining the temperature in a temperature region, preferably a temperature range of not less than the crystallization temperature of the acid glass and not higher than the melting point, for a predetermined time.
  • the crystallization temperature and melting point can be determined by actually measuring an oxide glass by differential thermal analysis (DTA), differential scanning calorimetry (DSC), or the like. It can also be obtained by performing a thermodynamic calculation using the estimated component phase diagram.
  • DTA differential thermal analysis
  • DSC differential scanning calorimetry
  • the crystallization temperature is determined by differential thermal analysis (DTA)
  • DTA differential thermal analysis
  • the temperature at the center point of the exothermic peak of crystallization or the temperature at the high-side station temperature is used as the crystallization temperature.
  • Differential heat content When determining the melting point by analysis (DTA), the temperature at the center point of the endothermic peak above the crystallization temperature is taken as the melting point.
  • a composition such as a mixture of crystalline solids is changed to a liquid or a gas, and then is crystallized without being crystallized.
  • the glass can be made.
  • an oxide glass can be obtained by heating and melting a composition such as a mixture of crystalline solids and then rapidly cooling the composition.
  • an oxide glass can be obtained by once vaporizing a composition such as a mixture of crystalline solids by vapor deposition, sputtering, glow discharge, or the like.
  • an oxide glass can also be obtained by passing through a gel such as a sol-gel method.
  • an electric furnace or the like is set to the reheating temperature in advance.
  • the acid glass is put into the furnace, and when the target time has elapsed, the electric furnace isotropic acid glass is taken out and air, water, Cooled with a member such as a fluid such as ice water, a cooled copper plate or stainless steel plate, or a roller made of copper or stainless steel.
  • the temperature in the furnace is gradually lowered or the heating source power in the furnace is gradually moved away to place the oxide glass in the furnace. What is allowed to cool in is used.
  • the inside of the furnace for reheating can be an inert gas atmosphere such as air, nitrogen, or argon.
  • the holding time in the reheating step can be appropriately set to an optimal time so that the electric conductivity of the oxide glass that has undergone the reheating step is increased.
  • the holding time varies depending on the composition of oxide glass, heat capacity, and reheating temperature, but is set to, for example, 1 to 180 minutes.
  • the holding time is shorter than 1 minute, the thermal energy given to the oxide glass is small, so the rate of increase in electrical conductivity is small and the rate of increase is uneven. Since the electrical conductivity may decrease due to precipitation or melting, and the productivity decreases, the deviation is also preferable.
  • the heating temperature in the reheating step is equal to or lower than the crystallization temperature of the acid glass, the thermal energy given to the acid glass is small, so the rate of increase in electrical conductivity is small. There is a tendency that variations tend to occur. Also, during the reheating process If the thermal temperature falls below the glass transition temperature of the acid glass, the distortion of the glass skeleton cannot be removed, and the active energy (band gap) for electron hopping cannot be reduced. It is difficult to increase the electrical conductivity, and if the heating temperature is higher than the melting point of the acid glass, the melting of the oxide glass and the precipitation of crystals are promoted and the electrical conductivity is lowered. Absent.
  • the electrical conductivity at 25 ° C at room temperature of the oxide glass (conducting glass) is, for example, by applying a silver paste to a glass piece with a thickness of lmm or less, drying it, and then using silver-containing solder.
  • An electrode is formed and can be obtained by a DC two-terminal method or a DC four-terminal method.
  • the electric conductivity of the oxide glass which has passed through the reheating step (conductive glass), 'is cm- 1 preferably 10 one 3 ⁇ lS' 10 one 4 ⁇ lS and have your room temperature of 25 ° C increase the range of cm- 1 Can be made.
  • the electrical conductivity becomes smaller than 10 cm ⁇ cm- 1
  • the electric conductivity is smaller than 10 _4 S 'cm _1 because this tendency becomes remarkable.
  • the conductive glass was reheated by holding the acidic glass obtained by vitrifying the composition containing vanadium for a predetermined time in a temperature range above the crystallization temperature of the acidic glass and below the melting point. If it is, it is possible to produce conductive glass having a high electrical conductivity of 10 _1 S'cm— 1 or more at room temperature by distributing electrons in the oxide glass to high energy levels, The electrical conductivity can be dramatically increased just by holding it for a short period of about 30 minutes in the specified temperature range, and even if the holding time in the specified temperature range varies, there is little fluctuation in the electrical conductivity. Remarkably excellent in production stability.
  • the electrical conductivity of the conductive glass at room temperature should be designed and controlled accurately in the region of 10 _4 S'cm _ 1 or more. Can increase product yield.
  • the conductive glass contains additives such as Agl, Nal, Ag, Ag0, InO, SnO, and SnO.
  • V O vanadium oxide
  • BaO barium oxide
  • Fe oxide iron oxide
  • vanadium oxide in the three-component system of (VO) is from 40 to 98 mole 0/0 preferably 60
  • 85 mol% is preferred. As it becomes less than 60 mol%, it tends to be difficult to maintain a glass skeleton with vanadium as the main skeleton, and it becomes difficult to obtain high electrical conductivity. In particular, since the content of subcomponents is reduced, adjustment functions such as electrical conductivity and mechanical properties due to the subcomponents tend to be reduced. In particular, if the amount is less than 40 mol% or more than 98%, these tendencies are remarkable, which is not preferable.
  • the barium oxide (BaO) in the above three-component system in the oxide glass is 1 to 40 mol%, preferably 10 to 30 mol%.
  • the amount is less than 10 mol%, homogenous vitrification tends to be difficult, and when the amount is more than 30 mol%, the mechanical strength decreases and the glass tends to become difficult to form.
  • the force is less than 1 mol% and the amount is more than 40 mol%, these tendencies tend to be remarkable, and therefore the deviation is also preferable.
  • Acid iron iron (Fe 2 O 3) in the above three-component system in the acid glass is preferably 1 to 20 mol%
  • V O vanadium oxide
  • BaO barium oxide
  • Fe O iron oxide
  • the thickness of the conductive glass used as the electrode of the Peltier element is 0.1 nm! ⁇ 5mm is preferred. As the thickness of the conductive glass becomes thinner than 0.1 mm, the strength of the electrode decreases and the electrical conductivity tends to decrease. As the thickness becomes thicker than 5 mm, the resistance increases and temperature control becomes difficult. Both are not preferred.
  • a temperature control container according to claim 2 of the present invention has a configuration including a container body and the Peltier element according to claim 1 disposed on the bottom or side of the container body. do it! / Speak. With this configuration, in addition to the operation of claim 1, the following operation is provided.
  • the conductive glass serving as the electrode of the heat absorbing portion of the Peltier element is disposed so as to be in contact with the bottom or side of the container body.
  • the container body is not affected by the chemical solution or solution contained in the interior, and is formed of a material having heat transfer properties that can cool the chemical solution or solution contained in the interior by contacting the heat absorbing portion of the Peltier element.
  • glass such as quartz glass or hard synthetic resin is preferably used.
  • the container body can be partially or entirely formed of conductive glass. When part of the container body is formed of conductive glass, part or the whole of the bottom part or side part is formed of conductive glass, and the container body is formed by pasting it with quartz glass or synthetic resin.
  • conductive glass may be bonded or formed on the outer surface of the inner wall portion formed of the above-described quartz glass or synthetic resin.
  • the conductive glass can be finely processed by a focused ion beam cage or the like, it can be easily processed according to the shape of a part or the whole of the container body, and is excellent in productivity.
  • the invention according to claim 3 is the temperature control container according to claim 2, wherein at least a part of the container body is formed of the conductive glass.
  • the thermal conductivity and chemical resistance can be improved, and various chemicals and solutions can be stored and heated efficiently with heating means and Peltier elements. Can be cooled, and has excellent versatility and reliability.
  • heating is performed by forming at least a part of the bottom part or the side part heated or cooled by a heating means or a Peltier element with conductive glass.
  • the heat can be efficiently transferred between the means and the Peltier element and the chemical solution or solution contained in the container body, and the heating and cooling efficiency is excellent.
  • the heating means one using a heat generating resistor or the like that can selectively heat the container body is suitably used. By disposing one or more heating means and Peltier elements on the bottom or side of the container body, heating and cooling can be performed easily.
  • a temperature sensor such as a thermocouple
  • the temperature sensor measures the temperature of the container body or the chemical solution or solution contained in the container body, and based on the measured value, the controller controls the drive of the heating means and Peltier element, so that any temperature can be obtained. Can be held with high accuracy.
  • the conductive glass forming the container body is the same as the conductive glass forming the electrode of the Peltier element.
  • the invention according to claim 4 is the temperature regulating container according to claim 3, wherein the electrode of the heat absorbing portion of the Peltier element forms at least a part of the container body. Having a configuration that is electric glass! /
  • the electrode of the heat absorption part of the Peltier element is a conductive glass that forms at least a part of the container body, the container body and the Peltier element can be easily integrated, and a minute container body can be formed. It can be reliably cooled, and it can reliably prevent corrosion of the electrode due to chemicals and condensation, and the Peltier element has excellent reliability and durability.
  • the conductive glass serving as the electrode of the heat absorption part of the Peltier element is at least one of the container body.
  • the inner wall portion may be formed of the above-mentioned quartz glass or synthetic resin, and the outer surface thereof may be formed on the outer surface. It may be stacked.
  • the conductive glass power used as the electrode of the heat absorption part of the Peltier element is directly in contact with the chemical solution or solution contained in the container body, which is superior in cooling efficiency and chemical resistance of the container body. It can improve the storage stability of various solutions, and has excellent durability and long life.
  • the invention according to claim 5 is the temperature control container according to any one of claims 2 to 4, further comprising heating means disposed on the bottom or side of the container body. It has a configuration characterized by this.
  • the container body By having both the Peltier element and the heating means in the container body, the container body can be adjusted to a desired temperature in a short time, and is excellent in versatility and handling.
  • the heating means one using the above-described heating resistor or the like is preferably used.
  • the invention according to claim 6 is the temperature regulating container according to claim 5, wherein the heating resistor of the heating means is the conductive glass forming at least a part of the container body. Have a success.
  • the heating resistor of the heating means is a conductive glass that forms at least a part of the container body, the container body and the heating means can be easily integrated, and the small container body can be reliably secured. In addition to being able to heat, it is possible to reliably prevent the heating resistor from deteriorating, and the calorie heat means is excellent in reliability and durability.
  • the conductive glass serving as the heating resistor of the heating means forms at least a part of the container body, but is in direct contact with the chemical solution or solution contained in the container body.
  • the inner wall portion may be formed of the above-described quartz glass or synthetic resin and laminated on the outer surface.
  • the heating efficiency is improved and the chemical resistance of the container body is improved. It can improve the storage stability of various solutions, and has excellent durability and long life.
  • the invention according to claim 7 is the temperature regulating container according to claim 6, wherein the conductive glass serving as the electrode of the heat absorbing portion of the Peltier element and the heat generating resistance of the heating means. It has a configuration provided with an insulating part that insulates the conductive glass to be an antibody.
  • the Peltier element and the heating means are driven at the same time by having an insulating part that insulates the conductive glass that is the electrode of the heat absorption part of the Peltier element and the conductive glass that is the heating resistor of the heating means
  • a material of the insulating portion any material can be used as long as it can insulate between the conductive glass and the conductive glass and has resistance to a chemical solution or a solution contained in the container body.
  • the above-described quartz glass or the like is preferably used.
  • the invention according to claim 8 is the temperature regulating container according to any one of claims 3 to 7, wherein the conductive glass is formed on the outer surface of the container body. Has the same structure.
  • the film thickness can be easily controlled, and heating and cooling can be performed uniformly and without spots. Easy to maintain the temperature of the main body.
  • the inner wall of the container body may be formed of quartz glass or synthetic resin, and conductive glass may be formed on the outer surface thereof.
  • conductive glass is deposited thinly and uniformly. It can be heated and cooled efficiently. In addition, when applied with a brush or the like, a thick conductive glass can be formed in a short time, which is excellent in mass productivity.
  • the container body made of conductive glass is excellent in thermal conductivity and chemical resistance, and versatile and reliable that can store various chemicals and solutions and efficiently heat and cool them in the temperature adjustment unit. It is possible to provide an excellent temperature control container.
  • a fine container body By processing conductive glass using a processing method such as a focused ion beam, a fine container body can be formed, which is excellent in shape flexibility and can be easily reduced in size and saved. A temperature control container excellent in space can be provided.
  • the minute container body can be cooled reliably, and the container body and the Peltier element can be To provide a temperature-controlled container with excellent reliability and durability that can improve the handling and cooling efficiency as a whole, and can reliably prevent corrosion of electrodes due to chemicals and condensation. Can do.
  • the container body can be selectively heated or cooled by Peltier elements and heating means, and the container body can be adjusted to a desired temperature in a short time. Can be provided.
  • the minute container body can be heated reliably, and the container body and the heating means are integrated to facilitate handling and heating.
  • the container body and the heating means are integrated to facilitate handling and heating.
  • FIG. 1 is a schematic side view showing a Peltier element in embodiment 1.
  • FIG. 2 (a) Plan view showing a temperature control vessel provided with a Peltier element in Embodiment 1 (b) Fig. 2 2 (a) A—A line end view
  • FIG. 3 (a) Top view showing temperature control container in embodiment 2 (b) End view taken along line B-B in FIG. 3 (a)
  • FIG. 4 (a) Top view showing temperature control container in Embodiment 3 (b) End view taken along line C—C in FIG. 4 (a)
  • FIG. 6 A plot of the electrical conductivity before and after reheating of the acid oxide glasses of Experimental Examples 1 to 3 cooled below the glass transition temperature
  • FIG. 7 Diagram showing the relationship between reheating temperature, reheating time and electrical conductivity of the oxide glass in Experimental Example 2.
  • Embodiment 1 A Peltier device according to Embodiment 1 of the present invention will be described below with reference to the drawings.
  • FIG. 1 is a schematic side view showing a Peltier element according to the first embodiment.
  • 1 is a Peltier element according to Embodiment 1 of the present invention
  • 2 is an electrode of a heat absorption part of a Peltier element 1 made of a conductive glass mainly composed of vanadate
  • 3a has one end part of the heat absorption part.
  • 3b is formed of P-type thermoelectric semiconductor of Peltier element 1 bonded to electrode 2 of the heat-absorbing part
  • 4a and 4b are formed of conductive glass.
  • the electrodes of the radiating part of the Peltier element 1 joined to the other end of the N-type thermoelectric semiconductor 3a and the P-type thermoelectric semiconductor 3b, respectively, 5 is the force from the N-type thermoelectric semiconductor 3a to the P-type thermoelectric semiconductor 3b
  • the variable voltage application unit of the Peltier element 1 that variably controls the direct current flowing therethrough.
  • the conductive glass forming the heat absorbing portion electrode 2 and the heat radiating portion electrodes 4a and 4b is an oxide-based glass composition containing vanadium, norium and iron, and has a thickness of 3 mm at room temperature.
  • the electric conductivity was 10 _4 to 10 _ 1 S ⁇ cm— 1 .
  • FIG. 2 (a) is a plan view showing a temperature control container having a Peltier element according to Embodiment 1
  • FIG. 2 (b) is an end view taken along line AA in FIG. 2 (a).
  • 10 is a temperature control container provided with the Peltier element 1 according to Embodiment 1 of the present invention
  • 11 is a temperature control container 10 made of quartz glass or the like
  • 10 is a container body
  • 30 is at the bottom of the container body 11
  • a temperature sensor such as a thermocouple of a temperature control container 10 that measures the temperature of a chemical solution or solution that is fixed and stored in the container body 11
  • 30a is a temperature sensor fixing part that fixes the temperature sensor 30 to the container body 11. is there.
  • the electrode 2 of the heat absorption part of the Peltier element 1 is attached to the side of the container body 11 by a heat conductive adhesive. Fixed to prevent a decrease in thermal conductivity.
  • a chemical solution or an aqueous solution for observation or measurement is accommodated in the container body 11.
  • the temperature of the chemical solution or solution contained in the container body 11 is measured by the temperature sensor 30 and the drive of the Peltier element 1 is controlled by the control unit (not shown) based on the measured value!
  • the control unit not shown
  • the Peltier element 1 If the temperature measured by the temperature sensor 30 is within the allowable range of the reference set temperature force, the Peltier element 1 is not driven. If the temperature is within the allowable range, the current is controlled by the variable voltage application section 5 of the Peltier element 1, and cooling is performed so that the temperature of the container body 11 falls within the allowable range of the reference set temperature.
  • the arrangement and number of force Peltier elements 1 in which one Peltier element 1 is provided on the side of the container body 11 can be arbitrarily selected.
  • the electrode 2 of the endothermic part By forming the electrode 2 of the endothermic part with conductive glass mainly composed of vanadate, it is possible to cool the object with a gradual temperature change. It can be held with high accuracy and has excellent cooling temperature stability.
  • Electrodes 2, 4a, 4b of Peltier element 1 By forming the electrodes 2, 4a, 4b of Peltier element 1 with conductive glass mainly composed of vanadate, corrosion of the electrodes 2, 4a, 4b due to chemicals or condensation is surely prevented.
  • the electrodes 2, 4a and 4b are excellent in reliability and durability.
  • thermocontrol container including the Peltier element according to Embodiment 1 Since the temperature control container including the Peltier element according to Embodiment 1 is configured as described above, it has the following effects.
  • Fig. 3 (a) is a plan view showing the temperature control container in Embodiment 2
  • Fig. 3 (b) is a diagram of Fig. 3 (a).
  • FIG. 6 is an end view taken along line B-B. The same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the temperature control container 10a in the second embodiment is different from that in the first embodiment in that the container main body 12 has an insulating inner wall portion 12a formed of quartz glass or the like, and an outer wall portion 12a.
  • a peripheral wall portion 12b, 12c formed by sputtering a conductive glass mainly composed of vanadate on the surface, and the peripheral wall portions 12b, 12c are formed of the same material as the inner wall portion 12a.
  • a heating means 15 disposed on the side of the container body 12 using the peripheral wall portion 12c formed of conductive glass as a heating resistor.
  • the conductive glass forming the peripheral wall portion 12b of the container body 12 serves as an electrode of the heat absorbing portion of the Peltier element la, and the Peltier element la and the container body 12 are integrated.
  • Reference numeral 16 denotes a variable voltage application section of the heating means 15 that variably controls the direct current flowing through the conductive glass 12c.
  • a chemical solution or an aqueous solution for observation or measurement is stored in the container body 12.
  • the temperature of the chemical solution or solution contained in the container body 12 is measured by the temperature sensor 30, and the control unit (not shown) drives the Peltier element 1 and the heating means 15 based on the measured value.
  • the control unit drives the Peltier element 1 and the heating means 15 based on the measured value.
  • the Peltier element la and the heating means 15 are not driven. If the temperature is within the allowable range, the current is controlled by the variable voltage application unit 5 of the Peltier element la to cool the container body 12, and if the temperature is below the allowable range, the variable voltage application unit 16 of the heating means 15 is controlled. The container body 12 is heated by controlling the current with. By repeating these operations, the temperature of the container body 12 is adjusted so that it falls within the allowable range of the reference set temperature.
  • the material of the insulating portion 12d is not limited to the present embodiment, but can be insulated between the peripheral wall portions 12b and 12c, and has resistance to chemicals and solutions stored in the container body 12. What is necessary is just to have.
  • the left and right peripheral wall portions 12b and 12c are divided and insulated by the insulating portion 12d.
  • the number of divisions and the dividing position of the peripheral wall portion are arbitrarily selected. can do.
  • the peripheral wall portion can be divided into upper and lower parts, and the Peltier element la and the heating means 15 can be provided respectively.
  • the force Peltier element la and the heating means 15 are each provided on the opposing surface of the container body 12 one by one.
  • the arrangement and number of the Peltier elements la and the heating means 15 can be arbitrarily selected. .
  • the temperature sensor fixing part 30a may be formed integrally with the insulating part 12d, or may be formed of a separate member having insulating properties.
  • thermocontrol container including the Peltier element according to the second embodiment is configured as described above, in addition to the actions obtained in the first embodiment, the following actions are provided.
  • peripheral wall parts 12b and 12c of the container body 12 By forming the peripheral wall parts 12b and 12c of the container body 12 with conductive glass, it is possible to improve the thermal conductivity, and various chemicals and solutions can be stored and heated and cooled efficiently in the temperature adjustment part. It can be used and has excellent versatility and reliability.
  • the peripheral wall part 12b of the container body 12 made of conductive glass allows the container body 12 and the Peltier element la to be easily integrated into a single piece.
  • the container body 12 can be reliably cooled, and corrosion of the electrode due to chemicals and condensation can be reliably prevented, and the reliability and durability of the Peltier element la are excellent.
  • the container main body 12 can be easily and reliably heated, and the heating efficiency and reliability are excellent.
  • the heating resistor of the heating means 15 is the peripheral wall portion 12c of the container main body 12 made of conductive glass, the container main body 12 and the heating means 15 can be easily integrated, The container body 12 can be reliably heated and the heating resistor can be reliably prevented from deteriorating, and the heating means 15 is excellent in reliability and durability.
  • the container main body 12 Since the container main body 12 has both the Peltier element la and the heating means 15, the container main body 12 can be adjusted to a desired temperature in a short time and is excellent in versatility and handling.
  • peripheral walls 12b and 12c made of conductive glass are formed on the outer surface of the inner wall 12a of the container body 12, the thickness of the peripheral walls 12b and 12c can be easily controlled. Heating and cooling can be performed uniformly and without spots, and the stability of the temperature maintenance of the main body 12 is excellent.
  • FIG. 4 (a) is a plan view showing the temperature control container in Embodiment 3
  • FIG. 4 (b) is an end view taken along the line CC of FIG. 4 (a).
  • the same components as those in the second embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the temperature control container 10b in the third embodiment is different from the second embodiment in that the container main body 22 has an insulating bottom 22a formed of quartz glass or the like, and the same as in the second embodiment.
  • the peripheral wall portions 22b and 22c are made of conductive glass, and the peripheral wall portions 22b and 22c are divided into left and right by an insulating portion 22d formed of the same material as that of the bottom portion 22a.
  • peripheral wall portions 22b and 22c of the container body 22 are formed with conductive glass, fine processing can be performed using a processing method such as a focused ion beam, and the container body has excellent flexibility and shape. 22 is easy to downsize and has excellent space saving.
  • Barium oxide (BaO) is 10 mole 0/0
  • vanadium pentoxide (VO) force 0 mole 0/0
  • Barium oxide (BaO) is 20 mole 0/0
  • Barium oxide (BaO) is 30 mole 0/0
  • vanadium pentoxide (VO) force 0 mole 0/0
  • triacid
  • Differential thermal analysis (DTA) of the oxide glasses of Experimental Examples 1 to 3 was performed.
  • the differential thermal analysis (DTA) conditions are as follows: ex alumina is used as the reference material, and the temperature rise rate is 10 ° CZ in a nitrogen atmosphere.
  • FIG. 5 shows the results of differential thermal analysis of the oxide glasses of Experimental Examples 1 to 3.
  • Figure 6 is a plot of the electrical conductivity before and after reheating of the acid glass of Experimental Examples 1 to 3 cooled below the glass transition temperature.
  • the horizontal axis represents the reheating temperature (° C)
  • the vertical axis represents the electrical conductivity ⁇ (S, cm– 1 ) at 25 ° C.
  • the electrical conductivity when reheated at 400 ° C for 1 hour was the same as before reheating, but by reheating at 400 ° C for 2 hours, it was at room temperature (25 ° C).
  • the electrical conductivity could be about 10 _3 S'cm _1 .
  • the holding time when the reheating temperature is 400 ° C is considered to be short in 1 hour.
  • the electrical conductivity at room temperature has been greatly improved through a reheating process in which the oxide glass (conductive glass) is kept in the temperature range above the crystallization temperature and below the melting point. It became clear that it can be enhanced. In addition, it was found that the electrical conductivity improves as the reheating temperature increases in the temperature range where crystal precipitation and melting do not occur remarkably. In addition, the retention time can be shortened as the reheating temperature increases. From these phenomena, it is considered that the mechanism by which the electric conductivity is improved by reheating above the crystallization temperature and below the melting point is due to the activity energy of the electrons.
  • V 2 O vanadium oxide
  • BaO barium oxide
  • the molar ratio of iron oxide is 40 to 98 mol%, 1 to 40 mol%, and 1 to 20 mol%, respectively.
  • V O vanadium oxide
  • BaO barium oxide
  • Fe O iron oxide
  • Vanadium oxide (V o), dipentaoxide which can be obtained only by using an oxide glass produced by melting and cooling.
  • An acidic glass produced by melting and cooling a mixture of phosphorus (P 2 O 3) and barium oxide (BaO),
  • V O vanadium oxide
  • K O potassium oxide
  • Fe O iron oxide
  • the oxide glass of Experiment 2 cooled to below the glass transition temperature was reheated in the atmosphere at 350 ° C, which is the glass transition temperature (328 ° C) or higher and the crystallization temperature (392 ° C) or lower. From inside the furnace The sample was taken out at regular intervals and the electrical conductivity at 25 ° C was measured.
  • FIG. 7 is a graph showing the relationship between the reheating temperature and reheating time of the oxide glass of Experimental Example 2 and electrical conductivity.
  • the horizontal axis represents the holding time at the reheating temperature
  • the vertical axis represents the electrical conductivity ⁇ (S.cm- 1 ) at 25 ° C.
  • Example 1 the acid-containing glass of Experimental Example 2 cooled to below the glass transition temperature was reheated in the atmosphere at a temperature exceeding the crystallization temperature (392 ° C) and below the melting point (540 ° C). It was confirmed that the electrical conductivity could be improved by more than three orders of magnitude by reheating for only 30 minutes, and that the electrical conductivity hardly fluctuated even if reheating was continued. In addition, it was confirmed that Example 1 having a higher reheating temperature than Example 2 can increase the electrical conductivity.
  • Example 3 which was reheated at a temperature not lower than the glass transition temperature (328 ° C) and not higher than the crystallization temperature (392 ° C), the electrical conductivity increased as the holding time at the reheating temperature increased. It was confirmed that the electrical conductivity could not be kept constant unless maintained for 180 minutes or longer. In addition, it was confirmed that the electrical conductivity of Example 3 was lower by one digit or more than that of Examples 1 and 2.
  • the electrical conductivity does not vary by keeping the time for maintaining the reheating temperature appropriately according to the reheating temperature.
  • the electrical conductivity can be drastically increased even if it is held in the temperature range for about 30 minutes, and even if the holding time varies, the electrical conductivity does not vary and the production stability is remarkably excellent and preferable. It was revealed. Further, by changing the heating time and the like in the reheating step, it was found that the magnitude of the electrical conductivity of the vanadate glass at room temperature can be precisely designed controlled 10 _4 S'cm _1 or more regions.
  • the temperature change can be performed slowly and finely, and the temperature of the object can be accurately maintained within a substantially constant range. It was able to be done and was excellent in stability of cooling performance.
  • the present invention provides a Peltier device that can maintain a constant temperature with high accuracy by using a conductive glass mainly composed of vanadate as an electrode, is easy to adjust the temperature, and has excellent handleability.
  • the container body is easy to process, has excellent shape flexibility, and has a fine space It can be formed to contain chemicals and aqueous solutions, and has excellent chemical resistance and storage stability.
  • a fine space containing chemicals and aqueous solutions can be efficiently heated and cooled to maintain any temperature.

Abstract

There is provided, by using a conductive glass consisting primarily of a salt of vanadic acid as an electrode, a Peltier device capable of maintaining a constant temperature at a high accuracy, excellent in handleability, easy to regulate temperature and excellent in the stability of cooling performance, capable of reliably preventing electrode corrosion caused by chemicals and dew condensation, and excellent in the reliability and durability of the electrode. The Peltier device has a heat absorbing portion and a heat emitting portion, and at least the electrode of the heat absorbing portion is formed of a conductive glass consisting primarily of a salt of vanadic acid.

Description

ペルチヱ素子及びそれを備えた温調容器  Peltier soot element and temperature control container provided with the same
技術分野  Technical field
[0001] 本発明は、温度調整が容易で取り扱い性に優れるペルチヱ素子及びバイオテクノ ロジ一の研究分野などにぉ 、て、生体内の組織や細胞の観察及び操作などを行う 際や、医薬分野や工業分野などにおける品質管理、材料試験等で、検体の温度を 管理しつつ顕微鏡観察及び顕微鏡操作などを行う際に、検体の温度を最適に管理 できるペルチェ素子を備えた温調容器に関するものである。  [0001] The present invention relates to the research field of peltier elements and biotechnology that are easy to adjust temperature and excellent in handleability, and is used for observation and manipulation of tissues and cells in a living body and in the pharmaceutical field. This is related to a temperature control vessel equipped with a Peltier element that can optimally control the temperature of the specimen when performing microscope observation and microscope operation while controlling the temperature of the specimen in quality control and material testing in the industrial field. is there.
背景技術  Background art
[0002] 従来、バイオテクノロジーや医薬の分野などで使用される培養のための温調システ ムでは、不凍液や水などの媒体の温度を変化させ、ポンプにより検体の周辺部に循 環させる方法や、冷却モジュールの極性を変えて、温度変化や温度コントロールをす る方法が用いられていた。媒体の温度を変化させてポンプにより循環させる方法では 、媒体の循環経路を保温しなければならず、装置が大型化し、循環途中で温度差が 生じ易ぐ加熱や冷却に対する応答性に欠け、高い温度精度を得ることが困難であ るという問題点があった。  [0002] Conventionally, in a temperature control system for culturing used in the fields of biotechnology and medicine, a method of changing the temperature of a medium such as antifreeze or water and circulating it around a specimen using a pump, The method used to change the temperature and control the temperature by changing the polarity of the cooling module. In the method of circulating with a pump by changing the temperature of the medium, the circulation path of the medium has to be kept warm, the apparatus becomes large, temperature difference is likely to occur during circulation, lacks responsiveness to heating and cooling, and high There was a problem that it was difficult to obtain temperature accuracy.
冷却モジュールの極性を変えて温度変化や温度コントロールをする方法では、冷 却モジュールへのダメージが大きぐ装置としての長寿命性、信頼性に欠けるという 問題点があった。  The method of changing the temperature and controlling the temperature by changing the polarity of the cooling module has the problem that it lacks long life and reliability as a device that causes significant damage to the cooling module.
いずれの方法も、複数の培養容器などを同時に加熱、冷却することはできるが、微 細な収納空間を有する容器を個別に加熱、冷却することや、複数のセルを有する培 養容器をセル単位で選択的に加熱、冷却することはできず、汎用性に欠けるという問 題点があった。  Both methods can heat and cool multiple culture vessels at the same time, but can individually heat and cool containers with fine storage spaces, or culture vessels with multiple cells on a cell-by-cell basis. However, it cannot be heated and cooled selectively, and there is a problem that it lacks versatility.
また、(特許文献 1)には、「温度応答性高分子化合物を細胞培養基材とする培養 容器に培養した細胞を、前記温度応答性高分子化合物が水中から析出し始める臨 界点より高い温度にして顕微鏡で観測しながら、透過光の光路を遮断せずに前記観 測視野の温度応答性高分子化合物が臨界点より低い温度となるまで冷却用流体を 吹き付けて冷却を行なうことにより、所望の細胞または細胞塊のみを選別し、容器か ら離脱回収することを特徴とする温度応答性高分子化合物を用いた培養細胞の選 別方法」が開示されている。 In addition, (Patent Document 1) states that “a cell cultured in a culture vessel using a temperature-responsive polymer compound as a cell culture substrate is higher than the boundary point at which the temperature-responsive polymer compound starts to precipitate from water. While observing with a microscope at a temperature, the cooling fluid is added until the temperature-responsive polymer compound in the observation field reaches a temperature lower than the critical point without blocking the optical path of the transmitted light. Disclosed is a method for selecting cultured cells using a temperature-responsive polymer compound, wherein only desired cells or cell masses are selected by spraying and cooling, and the cells are detached and recovered from the container. Yes.
(特許文献 2)には、「透明導電膜を真空蒸着により形成した透明ガラスの周辺部に おいて対向する様に陽極、陰極用の電極を貼ったヒーター機能を持つ昇温用ガラス 板と、 1個もしくは複数個のペルチェ効果を利用した冷却モジュールとを組み合わせ て構成される加温冷却兼用装置」が開示されている。  (Patent Document 2) states that “a glass plate for heating having a heater function in which electrodes for an anode and a cathode are attached so as to face each other at the periphery of a transparent glass formed by vacuum deposition of a transparent conductive film; An apparatus for heating and cooling combined with one or a plurality of cooling modules using the Peltier effect is disclosed.
特許文献 1 :特開 2003— 102466号公報  Patent Document 1: JP 2003-102466 A
特許文献 1:特開平 9 - 122507号公報  Patent Document 1: Japanese Patent Laid-Open No. 9-122507
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] し力しながら、上記従来の技術にお!、ては、以下のような課題を有して ヽた。 [0003] However, the above-mentioned conventional technology has had the following problems.
(1) (特許文献 1)の培養細胞の選別方法は、培養容器を載置させその底面を加熱 する加熱面と、加熱面の中心部に開設した小範囲透光用の孔と、該孔に臨む培養 容器の底面に向けて冷却流体を吹き付ける吐出口と、を備えることにより、狭い範囲 のみを冷却することが可能であるが、いくつかの種類の細胞力 欲しい細胞のみを選 別し、回収することを目的としており、微小空間を任意の温度に加熱、冷却することは できず、用途が培養細胞の選別に限定され、汎用性に欠けるという課題を有してい た。  (1) The method for selecting cultured cells of (Patent Document 1) includes a heating surface on which a culture vessel is placed and the bottom surface is heated, a small-range light transmitting hole opened at the center of the heating surface, and the hole. It is possible to cool only a narrow range by providing a discharge port that blows a cooling fluid toward the bottom of the culture vessel facing the cell. The purpose is to recover, and the minute space cannot be heated and cooled to an arbitrary temperature, and the use is limited to the selection of cultured cells.
(2) (特許文献 2)の加温冷却兼用装置は、本体が硬質ガラスで形成されるため、微 細加工が困難で形状自在性に欠け、薬液や水溶液などを収容する微細空間を形成 することができず、取り扱い性、汎用性に欠けるという課題を有していた。  (2) The heating / cooling combined device of (Patent Document 2) is formed of hard glass, so that it is difficult to finely process and lacks shape flexibility, and forms a fine space for storing chemicals and aqueous solutions. In other words, it has a problem of lack of handleability and versatility.
[0004] 本発明は上記課題を解決するもので、電極としてバナジン酸塩を主成分とする導 電ガラスを用いることにより一定の温度を精度よく保持することができ温度調整が容 易で取り扱!/、性に優れるペルチヱ素子の提供、及び容器本体の加工が容易で形状 自在性に優れ、微細な空間を形成して薬液や水溶液などを収容することができ、耐 薬品性、保存性に優れると共に、薬液や水溶液などが収容された微細な空間を効率 よく加熱、冷却して任意の温度に安定的に保持することができ、観察や各種の測定 などを短時間で効率よく行うことが可能な信頼性、汎用性、作業性に優れるペルチヱ 素子を備えた温調容器の提供を目的とする。 [0004] The present invention solves the above-described problems. By using a conductive glass mainly composed of vanadate as an electrode, a constant temperature can be accurately maintained, and the temperature can be easily adjusted. ! / Providing excellent Peltier elements and easy processing of the container body, excellent shape flexibility, forming a fine space to accommodate chemicals and aqueous solutions, and excellent chemical resistance and storage stability At the same time, a minute space containing chemicals and aqueous solutions can be efficiently heated and cooled to stably hold it at any temperature for observation and various measurements. The purpose of the present invention is to provide a temperature-controlled container equipped with a Peltier element that is excellent in reliability, versatility, and workability.
課題を解決するための手段  Means for solving the problem
[0005] 上記課題を解決するために本発明のペルチェ素子及びそれを備えた温調容器は 、以下の構成を有している。  [0005] In order to solve the above problems, a Peltier device of the present invention and a temperature control container including the Peltier device have the following configurations.
本発明の請求項 1に記載のペルチエ素子は、吸熱部と発熱部を有するペルチエ素 子であって、少なくとも前記吸熱部の電極力 バナジン酸塩を主成分とする導電ガラ スで形成されて 、る構成を有して 、る。  The Peltier element according to claim 1 of the present invention is a Peltier element having a heat absorption part and a heat generation part, and is formed of a conductive glass mainly composed of at least the electrode force vanadate of the heat absorption part. It has the structure which is.
この構成により、以下のような作用を有する。  This configuration has the following effects.
(1)吸熱部の電極をバナジン酸塩を主成分とする導電ガラスで形成することにより、 緩やかな温度変化で対象物を冷却することができるので、温度調整が容易で略一定 の温度を精度よく保持することができ、冷却温度の安定性に優れる。  (1) By forming the endothermic electrode with conductive glass mainly composed of vanadate, it is possible to cool the object with a gradual temperature change. It can be held well and has excellent cooling temperature stability.
(2)電極をバナジン酸塩を主成分とする導電ガラスで形成することにより、薬品や結 露などによる電極の腐食を確実に防止することができ、電極の信頼性、耐久性に優 れる。  (2) By forming the electrode with conductive glass whose main component is vanadate, corrosion of the electrode due to chemicals or dew condensation can be surely prevented, and the reliability and durability of the electrode are excellent.
[0006] ここで、バナジン酸塩を主成分とする導電ガラス (バナジン酸塩ガラス)としては、酸 化バナジウムに、五酸化二リン,酸化カリウムや酸化ナトリウム等のアルカリ金属酸ィ匕 物,酸化バリウム等のアルカリ土類酸ィ匕物,酸ィ匕セリウム,酸化スズ,酸化鉛,酸化銅 等をカ卩えてガラス化したものを用いることができる。  [0006] Here, as the conductive glass (vanadate glass) mainly composed of vanadate, vanadium oxide, alkali metal oxides such as diphosphorus pentoxide, potassium oxide and sodium oxide, oxidation It is possible to use an alkaline earth acid such as barium, vitrified acid cerium, tin oxide, lead oxide, copper oxide, etc.
この導電ガラスは、バナジウムを含有する組成物をガラス化し酸ィ匕物ガラスを製造 するガラス化工程と、酸ィヒ物ガラスを酸ィヒ物ガラスのガラス転移温度以上、融点以下 のアニーリング処理の温度、好ましくは酸ィヒ物ガラスの結晶化温度以上、融点以下 の温度領域に所定時間保持する再加熱工程と、で製造される。  This conductive glass is obtained by vitrifying a vanadium-containing composition to produce an acid glass, and subjecting the acid glass to an annealing treatment not lower than the glass transition temperature of the acid glass and not higher than the melting point. And a reheating step of maintaining the temperature in a temperature region, preferably a temperature range of not less than the crystallization temperature of the acid glass and not higher than the melting point, for a predetermined time.
[0007] 結晶化温度や融点は、酸化物ガラスを示差熱分析 (DTA)や示差走査熱量測定( DSC)等により実測することによって求めることができる。また、推定される構成成分 の状態図を用いた熱力学的計算等を行うことで求めることもできる。 [0007] The crystallization temperature and melting point can be determined by actually measuring an oxide glass by differential thermal analysis (DTA), differential scanning calorimetry (DSC), or the like. It can also be obtained by performing a thermodynamic calculation using the estimated component phase diagram.
示差熱分析 (DTA)によって結晶化温度を求める場合、結晶化の発熱ピークの中 心点又は裾の高温側測点温度における温度を結晶化温度とする。また、示差熱分 析 (DTA)によって融点を求める場合、結晶化温度より高温における吸熱ピークの中 心点における温度を融点とする。 When the crystallization temperature is determined by differential thermal analysis (DTA), the temperature at the center point of the exothermic peak of crystallization or the temperature at the high-side station temperature is used as the crystallization temperature. Differential heat content When determining the melting point by analysis (DTA), the temperature at the center point of the endothermic peak above the crystallization temperature is taken as the melting point.
[0008] ガラス化工程において組成物をガラス化する手段としては、結晶質固体の混合物 等の組成物を液体や気体に変えたのち、結晶化させな ヽでガラス転移温度以下の 固体である酸ィ匕物ガラスにできるものであれば特に制限されない。例えば、結晶質固 体の混合物等の組成物を加熱溶融したのち急冷することで酸ィ匕物ガラスを得ること ができる。また、結晶質固体の混合物等の組成物を、蒸着法,スパッタ法,グロ一放 電法等で一旦、蒸気状態にすることでも酸ィ匕物ガラスを得ることができる。また、ゾル ゲル法等のようにゲルを経ることによつても酸ィ匕物ガラスを得ることができる。 [0008] As a means for vitrifying the composition in the vitrification step, a composition such as a mixture of crystalline solids is changed to a liquid or a gas, and then is crystallized without being crystallized. There is no particular limitation as long as the glass can be made. For example, an oxide glass can be obtained by heating and melting a composition such as a mixture of crystalline solids and then rapidly cooling the composition. Alternatively, an oxide glass can be obtained by once vaporizing a composition such as a mixture of crystalline solids by vapor deposition, sputtering, glow discharge, or the like. Further, an oxide glass can also be obtained by passing through a gel such as a sol-gel method.
[0009] 酸ィ匕物ガラスの再加熱工程にぉ 、てガラス転移温度以上若しくは結晶化温度以上 、融点以下の温度領域に保持する手段としては、例えば、電気炉等を予め再加熱温 度に設定しておき炉内の温度が一定になったところで、酸ィ匕物ガラスを炉内に入れ、 目標とする時間が経過したら直ちに電気炉等力 酸ィ匕物ガラスを取り出し、空気や水 ,氷水等の流体、冷却した銅板やステンレス板,銅製やステンレス製等のローラ等の 部材で冷却するものが用いられる。あるいは、上記酸化物ガラスを電気炉等の炉内 で一定時間再加熱後、炉内の温度を徐々に下げたり炉内の加熱源力 少しずつ遠 ざけたりして酸ィ匕物ガラスを炉内で放冷するものが用いられる。再加熱するための炉 内は空気、窒素,アルゴン等の不活性ガス雰囲気等にすることができる。  [0009] As a means for maintaining the temperature range between the glass transition temperature or the crystallization temperature and the melting point or less during the reheating step of the acid oxide glass, for example, an electric furnace or the like is set to the reheating temperature in advance. When the temperature inside the furnace becomes constant after setting, the acid glass is put into the furnace, and when the target time has elapsed, the electric furnace isotropic acid glass is taken out and air, water, Cooled with a member such as a fluid such as ice water, a cooled copper plate or stainless steel plate, or a roller made of copper or stainless steel. Alternatively, after reheating the above oxide glass in a furnace such as an electric furnace for a certain period of time, the temperature in the furnace is gradually lowered or the heating source power in the furnace is gradually moved away to place the oxide glass in the furnace. What is allowed to cool in is used. The inside of the furnace for reheating can be an inert gas atmosphere such as air, nitrogen, or argon.
[0010] 再加熱工程における保持時間は、再加熱工程を経た酸化物ガラスの電気伝導度 が高くなるように適宜最適な時間に設定することができる。保持時間は、酸化物ガラ スの組成や熱容量、再加熱温度によっても異なるが、例えば 1〜180分に設定される 。保持時間が 1分より短くなると、酸ィ匕物ガラスに与えられる熱エネルギーが小さいた め、電気伝導度の増加率が小さぐまた増加率にばらつきがみられ、 180分より長く なると、結晶が析出したり溶融したりすることにより電気伝導度が低下することがあると ともに生産性が低下するため、 、ずれも好ましくな 、。 [0010] The holding time in the reheating step can be appropriately set to an optimal time so that the electric conductivity of the oxide glass that has undergone the reheating step is increased. The holding time varies depending on the composition of oxide glass, heat capacity, and reheating temperature, but is set to, for example, 1 to 180 minutes. When the holding time is shorter than 1 minute, the thermal energy given to the oxide glass is small, so the rate of increase in electrical conductivity is small and the rate of increase is uneven. Since the electrical conductivity may decrease due to precipitation or melting, and the productivity decreases, the deviation is also preferable.
[0011] 再加熱工程における加熱温度が酸ィヒ物ガラスの結晶化温度以下になると、酸ィ匕物 ガラスに与えられる熱エネルギーが小さいため、電気伝導度の増加率が小さくなり、 また増加率にばらつきが生じ易くなる傾向が見られる。また、再加熱工程における加 熱温度が酸ィヒ物ガラスのガラス転移温度以下になると、ガラス骨格の歪みを取り除く ことができず、電子がホッピングする活性ィ匕エネルギー (バンドギャップ)を小さくする ことができなくなるので、この結果、電気伝導度を高くすることが困難となり、加熱温度 が酸ィヒ物ガラスの融点以上になると、酸化物ガラスの溶融や結晶の析出が促進され て電気伝導度が低下するため、いずれも好ましくない。 [0011] When the heating temperature in the reheating step is equal to or lower than the crystallization temperature of the acid glass, the thermal energy given to the acid glass is small, so the rate of increase in electrical conductivity is small. There is a tendency that variations tend to occur. Also, during the reheating process If the thermal temperature falls below the glass transition temperature of the acid glass, the distortion of the glass skeleton cannot be removed, and the active energy (band gap) for electron hopping cannot be reduced. It is difficult to increase the electrical conductivity, and if the heating temperature is higher than the melting point of the acid glass, the melting of the oxide glass and the precipitation of crystals are promoted and the electrical conductivity is lowered. Absent.
酸ィ匕物ガラス (導電ガラス)の 25°Cの室温における電気伝導度は、例えば、厚さが lmm以下のガラス片力 成る試料に銀ペーストを塗り乾燥させた後、銀入り半田を 用いて電極を形成し、直流二端子法又は直流四端子法によって求めることができる。  The electrical conductivity at 25 ° C at room temperature of the oxide glass (conducting glass) is, for example, by applying a silver paste to a glass piece with a thickness of lmm or less, drying it, and then using silver-containing solder. An electrode is formed and can be obtained by a DC two-terminal method or a DC four-terminal method.
[0012] 再加熱工程前の酸ィ匕物ガラス (導電ガラス)の 25°Cにおける電気伝導度は、 10_8 〜10_4S 'cm_ 1好ましくは 10_6〜10_4S 'cm_1の範囲にあるのが好ましい。電気伝 導度が 10_6S 'cm—1より低くなるにつれ、再加熱工程を経ても実用レベルまで電気 伝導度を向上させることが困難になる傾向がみられ、 10_8S 'cm_1より低くなると、こ の傾向が著しくなるため好ましくない。再加熱工程前の酸ィ匕物ガラスの電気伝導度を 10_4S ' cm—1より高くするのは、ガラス酸ィ匕物の組成やガラス化工程の温度履歴等 が制約され生産性に欠けるとともに生産安定性に欠けるため好ましくない。 [0012] The electrical conductivity at 25 ° C reheating step prior to the Sani匕物glass (conductive glass), 10_ 8 ~10 _4 S ' cm _ 1 preferably 10 _6 ~10 _4 S' range cm _1 It is preferable that it exists in. Electric conductivity Shirubedo is 10 _6 S 'as the lower than cm- 1, tends to become difficult to improve the electrical conductivity even after re-heating step to a practical level was observed, 10 _8 S' less than cm _1 This is not preferable because this tendency becomes remarkable. Increasing the electrical conductivity of the acid glass before the reheating process to more than 10 _4 S 'cm- 1 is limited by the composition of the glass oxide and the temperature history of the vitrification process, resulting in poor productivity. At the same time, production stability is lacking, which is not preferable.
再加熱工程を経た酸化物ガラス (導電ガラス)の電気伝導度は、 25°Cの室温にお いて 10一4〜 lS 'cm—1好ましくは 10一3〜 lS 'cm—1の範囲に向上させることができる。 電気伝導度が 10_ · cm—1より小さくなるにつれ、導電ガラスをペルチェ素子の電極 に適用した場合には消費電力が増加し省エネルギー性に欠ける傾向がみられる。特 に、電気伝導度が 10_4S 'cm_1より小さくなると、この傾向が著しくなるため好ましくな い。 The electric conductivity of the oxide glass which has passed through the reheating step (conductive glass), 'is cm- 1 preferably 10 one 3 ~ lS' 10 one 4 ~ lS and have your room temperature of 25 ° C increase the range of cm- 1 Can be made. As the electrical conductivity becomes smaller than 10 cm · cm- 1 , when conductive glass is applied to the electrodes of a Peltier element, there is a tendency that power consumption increases and lacks energy saving. In particular, it is not preferable that the electric conductivity is smaller than 10 _4 S 'cm _1 because this tendency becomes remarkable.
[0013] 特に、導電ガラスが、バナジウムを含有する組成物をガラス化した酸ィ匕物ガラスを 酸ィ匕物ガラスの結晶化温度以上、融点以下の温度領域に所定時間保持して再加熱 したものである場合、酸ィ匕物ガラス中の電子をエネルギー的に高い準位に分布させ て、室温において 10_1S ' cm—1以上の高電気伝導度を有する導電ガラスを製造でき るとともに、所定の温度領域に 30分程度の短時間保持しただけでも電気伝導度を飛 躍的に高めることができ、さらに所定の温度領域での保持時間が変動しても電気伝 導度の変動が少なく生産安定性に著しく優れる。 また、再加熱工程における加熱時間や保持時間等を変えることにより、室温におけ る導電ガラスの電気伝導度の大きさを 10_4S 'cm_ 1以上の領域で精度良く設計し制 御することができ製品得率を高めることができる。 [0013] In particular, the conductive glass was reheated by holding the acidic glass obtained by vitrifying the composition containing vanadium for a predetermined time in a temperature range above the crystallization temperature of the acidic glass and below the melting point. If it is, it is possible to produce conductive glass having a high electrical conductivity of 10 _1 S'cm— 1 or more at room temperature by distributing electrons in the oxide glass to high energy levels, The electrical conductivity can be dramatically increased just by holding it for a short period of about 30 minutes in the specified temperature range, and even if the holding time in the specified temperature range varies, there is little fluctuation in the electrical conductivity. Remarkably excellent in production stability. In addition, by changing the heating time, holding time, etc. in the reheating process, the electrical conductivity of the conductive glass at room temperature should be designed and controlled accurately in the region of 10 _4 S'cm _ 1 or more. Can increase product yield.
[0014] なお、導電ガラスは、 Agl、 Nal、 Ag、 Ag 0、 In O、 SnO、 SnO等の添加剤が添 [0014] The conductive glass contains additives such as Agl, Nal, Ag, Ag0, InO, SnO, and SnO.
2 2 3 2  2 2 3 2
カロされたものでもよ 、。添加剤の効果によって電気伝導度を高めることができるから である。また、 Agl、 Nal、 Ag等に加えて CeO等の還元防止剤を添カ卩してもよい。こ  Even if it ’s scented. This is because the electrical conductivity can be increased by the effect of the additive. In addition to Agl, Nal, Ag, etc., a reduction inhibitor such as CeO may be added. This
2  2
れにより、 Agl、 Nal、 Ag等の添加剤が還元されるのを防止して高い電気伝導度を維 持できる。  This prevents the additives such as Agl, Nal and Ag from being reduced and maintains high electrical conductivity.
[0015] また、酸化物ガラス中の酸化バナジウム (V O ) ,酸化バリウム(BaO) ,酸ィ匕鉄 (Fe  [0015] In addition, vanadium oxide (V O), barium oxide (BaO), and iron oxide (Fe
2 5  twenty five
O )の 3成分系における酸化バナジウム(V O )は、 40〜98モル0 /0好ましくは 60〜O) vanadium oxide in the three-component system of (VO) is from 40 to 98 mole 0/0 preferably 60
2 3 2 5 2 3 2 5
85モル%が好適である。 60モル%より少なくなるにつれ、バナジウムを主骨格とする ガラス骨格を維持させるのが困難になるうえ高い電気伝導度を得ることが困難になる 傾向がみられ、 85モル%より多くなるにつれ、相対的に副成分の含有量が減るため 、副成分による電気伝導度や機械的特性等の調整機能が低下する傾向がみられる 。特に、 40モル%より少なくなるか 98%より多くなると、これらの傾向が著しいためい ずれも好ましくない。  85 mol% is preferred. As it becomes less than 60 mol%, it tends to be difficult to maintain a glass skeleton with vanadium as the main skeleton, and it becomes difficult to obtain high electrical conductivity. In particular, since the content of subcomponents is reduced, adjustment functions such as electrical conductivity and mechanical properties due to the subcomponents tend to be reduced. In particular, if the amount is less than 40 mol% or more than 98%, these tendencies are remarkable, which is not preferable.
酸ィ匕物ガラス中の上記 3成分系における酸化バリウム(BaO)は、 1〜40モル%好 ましくは 10〜30モル%が好適である。 10モル%より少なくなるにつれ均質なガラス 化が困難になる傾向がみられ、 30モル%より多くなるにつれ機械的強度が低下しガ ラス化し難くなる傾向がみられる。特に、 1モル%より少なくなる力 40モル%より多くな ると、これらの傾向が著 U、ため 、ずれも好ましくな 、。  The barium oxide (BaO) in the above three-component system in the oxide glass is 1 to 40 mol%, preferably 10 to 30 mol%. When the amount is less than 10 mol%, homogenous vitrification tends to be difficult, and when the amount is more than 30 mol%, the mechanical strength decreases and the glass tends to become difficult to form. In particular, when the force is less than 1 mol% and the amount is more than 40 mol%, these tendencies tend to be remarkable, and therefore the deviation is also preferable.
酸ィ匕物ガラス中の上記 3成分系における酸ィ匕鉄 (Fe O )は、 1〜20モル%好ましく  Acid iron iron (Fe 2 O 3) in the above three-component system in the acid glass is preferably 1 to 20 mol%
2 3  twenty three
は 5〜20モル%が好適である。 5モル%より少なくなるにつれ、鉄の価電子による電 子ホッピングへの寄与が低下し電気伝導度が向上し難くなる傾向がみられ、 1モル% より少なくなるとこの傾向が著しくなるため好ましくな 、。  Is preferably 5 to 20 mol%. As the content becomes less than 5 mol%, the contribution to the electron hopping due to the valence electrons of iron tends to be reduced, and the electrical conductivity tends to be difficult to improve. .
特に、酸化バナジウム (V O )、酸化バリウム (BaO)、酸化鉄 (Fe O )のモル比が  In particular, the molar ratio of vanadium oxide (V O), barium oxide (BaO), and iron oxide (Fe O)
2 5 2 3  2 5 2 3
、それぞれ 60〜85モノレ0 /0、 10〜30モノレ0 /0、 5〜20モノレ0 /0の範囲にあると、酸ィ匕物 ガラスを再加熱することによって、室温における電気伝導度を数桁以上上昇させて 1 0_ 1S ' cm—1以上にすることができ、発熱体、各種電極材料等として優れた特性を発 現させることができる。 , Respectively 60 to 85 Monore 0/0, 10-30 Monore 0/0, to be in the range of 5 to 20 Monore 0/0, by reheating the Sani匕物glass, the number of electrical conductivity at room temperature Raise by more than an order of magnitude 1 0 _ 1 S ′ cm— 1 or more, and excellent characteristics as a heating element and various electrode materials can be exhibited.
[0016] ペルチェ素子の電極として用いる導電ガラスの厚さとしては、 0. lmn!〜 5mmが好 ましい。導電ガラスの厚さが 0. 1mmより薄くなるにつれ、電極の強度が低下すると共 に、電気伝導度が低下し易くなる傾向があり、 5mmより厚くなるにつれ、抵抗が増加 し、温度コントロールが困難になる傾向があり、いずれも好ましくない。  [0016] The thickness of the conductive glass used as the electrode of the Peltier element is 0.1 nm! ~ 5mm is preferred. As the thickness of the conductive glass becomes thinner than 0.1 mm, the strength of the electrode decreases and the electrical conductivity tends to decrease. As the thickness becomes thicker than 5 mm, the resistance increases and temperature control becomes difficult. Both are not preferred.
[0017] 本発明の請求項 2に記載の温調容器は、容器本体と、前記容器本体の底部又は 側部に配設された請求項 1に記載のペルチヱ素子と、を備えた構成を有して!/ヽる。 この構成により、請求項 1の作用に加え、以下のような作用を有する。  [0017] A temperature control container according to claim 2 of the present invention has a configuration including a container body and the Peltier element according to claim 1 disposed on the bottom or side of the container body. do it! / Speak. With this configuration, in addition to the operation of claim 1, the following operation is provided.
(1)容器本体の底部又は側部に配設されたペルチェ素子を有することにより、温度 調整が容易で冷却の効率性、信頼性に優れると共に、容器本体とペルチヱ素子を一 体に取り扱うことが可能で取り扱 、性、省スペース性に優れる。  (1) By having a Peltier element arranged on the bottom or side of the container body, temperature adjustment is easy and cooling efficiency and reliability are excellent, and the container body and Peltier element can be handled as a unit. It is possible and is excellent in handling, performance and space saving.
[0018] ここで、ペルチヱ素子の吸熱部の電極となる導電ガラスは、容器本体の底部又は側 部に接するように配設される。容器本体は内部に収容される薬液や溶液に侵されず 、ペルチヱ素子の吸熱部と接触することにより内部に収容される薬液や溶液を冷却で きるだけの熱伝達性を有する材質で形成すればよい。例えば、石英ガラス等のガラス や硬質性の合成樹脂等が好適に用いられる。また、容器本体は、その一部又は全体 を導電ガラスで形成することもできる。容器本体の一部を導電ガラスで形成する場合 、底部又は側部の一部若しくは全体を導電ガラスで形成し、前述の石英ガラスや合 成榭脂等と貼り合わせて容器本体を形成してもよ!/ヽし、前述の石英ガラスや合成榭 脂等で形成された内壁部の外表面に導電ガラスを貼り合わせ若しくは成膜してもよ い。  [0018] Here, the conductive glass serving as the electrode of the heat absorbing portion of the Peltier element is disposed so as to be in contact with the bottom or side of the container body. The container body is not affected by the chemical solution or solution contained in the interior, and is formed of a material having heat transfer properties that can cool the chemical solution or solution contained in the interior by contacting the heat absorbing portion of the Peltier element. Good. For example, glass such as quartz glass or hard synthetic resin is preferably used. Further, the container body can be partially or entirely formed of conductive glass. When part of the container body is formed of conductive glass, part or the whole of the bottom part or side part is formed of conductive glass, and the container body is formed by pasting it with quartz glass or synthetic resin. However, conductive glass may be bonded or formed on the outer surface of the inner wall portion formed of the above-described quartz glass or synthetic resin.
導電ガラスには、集束イオンビームカ卩ェなどにより微細加工を施すことができるので 、容器本体の一部若しく全体の形状に合わせて容易に加工することができ、生産性 に優れる。  Since the conductive glass can be finely processed by a focused ion beam cage or the like, it can be easily processed according to the shape of a part or the whole of the container body, and is excellent in productivity.
[0019] 請求項 3に記載の発明は、請求項 2に記載の温調容器であって、前記容器本体の 少なくとも一部が前記導電ガラスで形成されて 、る構成を有して 、る。  [0019] The invention according to claim 3 is the temperature control container according to claim 2, wherein at least a part of the container body is formed of the conductive glass.
この構成により、請求項 2の作用に加え、以下のような作用を有する。 (1)容器本体の少なくとも一部を導電ガラスで形成することにより、熱伝導性、耐薬品 性を向上させることができ、様々な薬液や溶液を保存して加熱手段やペルチェ素子 で効率よく加熱、冷却することができ、汎用性、信頼性に優れる。 With this configuration, in addition to the operation of the second aspect, the following operation is provided. (1) By forming at least a part of the container body with conductive glass, the thermal conductivity and chemical resistance can be improved, and various chemicals and solutions can be stored and heated efficiently with heating means and Peltier elements. Can be cooled, and has excellent versatility and reliability.
(2)容器本体を導電ガラスで形成することにより、集束イオンビームなどの加工方法 を用いて微細加工を行うことができ、形状自在性に優れると共に、容器本体の小型 化が容易で、省スペース性に優れる。  (2) By forming the container body with conductive glass, it is possible to perform fine processing using a processing method such as a focused ion beam, which is excellent in shape flexibility and easy to downsize the container body, saving space. Excellent in properties.
[0020] ここで、容器本体の一部を導電ガラスで形成する場合、特に、加熱手段やペルチェ 素子で加熱又は冷却される底部又は側部の少なくとも一部を導電ガラスで形成する ことにより、加熱手段やペルチェ素子と容器本体の内部に収容された薬液や溶液と の間で効率的に熱伝達することができ、加熱及び冷却の効率性に優れる。  [0020] Here, when a part of the container body is formed of conductive glass, in particular, heating is performed by forming at least a part of the bottom part or the side part heated or cooled by a heating means or a Peltier element with conductive glass. The heat can be efficiently transferred between the means and the Peltier element and the chemical solution or solution contained in the container body, and the heating and cooling efficiency is excellent.
加熱手段は、容器本体を選択的に加熱できるものであればよぐ発熱抵抗体等を 用いたものが好適に用いられる。この加熱手段やペルチェ素子を 1以上、容器本体 の底部又は側部に配設することにより、簡便に加熱や冷却を行うことができる。  As the heating means, one using a heat generating resistor or the like that can selectively heat the container body is suitably used. By disposing one or more heating means and Peltier elements on the bottom or side of the container body, heating and cooling can be performed easily.
容器本体には熱電対などの温度センサを設けることが好まし 、。温度センサで容器 本体若しくは容器本体の内部に収容された薬液や溶液の温度を測定し、その測定 値に基づ 、て制御部で加熱手段やペルチェ素子の駆動を制御することにより、任意 の温度を精度よく保持することができる。  It is preferable to install a temperature sensor such as a thermocouple on the container body. The temperature sensor measures the temperature of the container body or the chemical solution or solution contained in the container body, and based on the measured value, the controller controls the drive of the heating means and Peltier element, so that any temperature can be obtained. Can be held with high accuracy.
尚、容器本体を形成する導電ガラスは、ペルチェ素子の電極を形成する導電ガラ スと同様である。  The conductive glass forming the container body is the same as the conductive glass forming the electrode of the Peltier element.
[0021] 請求項 4に記載の発明は、請求項 3に記載の温調容器であって、前記ペルチェ素 子の前記吸熱部の前記電極が、前記容器本体の少なくとも一部を形成する前記導 電ガラスである構成を有して!/、る。  [0021] The invention according to claim 4 is the temperature regulating container according to claim 3, wherein the electrode of the heat absorbing portion of the Peltier element forms at least a part of the container body. Having a configuration that is electric glass! /
この構成により、請求項 3の作用に加え、以下のような作用を有する。  With this configuration, in addition to the operation of the third aspect, the following operation is provided.
(1)ペルチェ素子の吸熱部の電極が、容器本体の少なくとも一部を形成する導電ガ ラスであることにより、容易に容器本体とペルチェ素子を一体ィ匕することができ、微小 な容器本体を確実に冷却できると共に、薬品や結露などによる電極の腐食を確実に 防止することができ、ペルチヱ素子の信頼性、耐久性に優れる。  (1) Since the electrode of the heat absorption part of the Peltier element is a conductive glass that forms at least a part of the container body, the container body and the Peltier element can be easily integrated, and a minute container body can be formed. It can be reliably cooled, and it can reliably prevent corrosion of the electrode due to chemicals and condensation, and the Peltier element has excellent reliability and durability.
ここで、ペルチェ素子の吸熱部の電極となる導電ガラスは、容器本体の少なくとも一 部を形成するが、容器本体の内部に収容される薬液や溶液に直接、接触するよう〖こ してもよいし、前述の石英ガラスや合成樹脂等で内壁部を形成し、その外表面に積 層してもよい。特に、ペルチェ素子の吸熱部の電極となる導電ガラス力 容器本体の 内部に収容される薬液や溶液に直接、接触するようにした場合、冷却の効率性に優 れると共に、容器本体の耐薬品性、各種溶液の保存性を向上させることができ、耐久 性、長寿命性に優れる。 Here, the conductive glass serving as the electrode of the heat absorption part of the Peltier element is at least one of the container body. However, the inner wall portion may be formed of the above-mentioned quartz glass or synthetic resin, and the outer surface thereof may be formed on the outer surface. It may be stacked. In particular, the conductive glass power used as the electrode of the heat absorption part of the Peltier element is directly in contact with the chemical solution or solution contained in the container body, which is superior in cooling efficiency and chemical resistance of the container body. It can improve the storage stability of various solutions, and has excellent durability and long life.
[0022] 請求項 5に記載の発明は、請求項 2乃至 4の内いずれ力 1項に記載の温調容器で あって、前記容器本体の底部又は側部に配設された加熱手段を有することを特徴と する構成を有している。  [0022] The invention according to claim 5 is the temperature control container according to any one of claims 2 to 4, further comprising heating means disposed on the bottom or side of the container body. It has a configuration characterized by this.
この構成により、請求項 2乃至 4の内いずれか 1項の作用にカ卩え、以下のような作用 を有する。  With this configuration, in addition to the operation of any one of claims 2 to 4, the following operation is provided.
(1)容器本体の底部又は側部に配設された加熱手段を有することにより、加熱の効 率性、信頼性に優れると共に、容器本体と加熱手段を一体に取り扱うことが可能で取 り扱い性、省スペース性に優れる。  (1) By having the heating means arranged at the bottom or side of the container body, it is excellent in heating efficiency and reliability, and it is possible to handle the container body and the heating means integrally. Excellent in performance and space saving.
(2)容器本体にペルチェ素子と加熱手段の両方を有することにより、容器本体を短 時間で所望の温度に調整することができ、汎用性、取り扱い性に優れる。  (2) By having both the Peltier element and the heating means in the container body, the container body can be adjusted to a desired temperature in a short time, and is excellent in versatility and handling.
ここで、加熱手段としては、前述の発熱抵抗体等を用いたものが好適に用いられる  Here, as the heating means, one using the above-described heating resistor or the like is preferably used.
[0023] 請求項 6に記載の発明は、請求項 5に記載の温調容器であって、前記加熱手段の 発熱抵抗体が、前記容器本体の少なくとも一部を形成する前記導電ガラスである構 成を有している。 [0023] The invention according to claim 6 is the temperature regulating container according to claim 5, wherein the heating resistor of the heating means is the conductive glass forming at least a part of the container body. Have a success.
この構成により、請求項 5の作用に加え、以下のような作用を有する。  With this configuration, in addition to the operation of the fifth aspect, the following operation is provided.
(1)加熱手段の発熱抵抗体が、容器本体の少なくとも一部を形成する導電ガラスで あることにより、容易に容器本体と加熱手段を一体化することができ、微小な容器本 体を確実に加熱できると共に、発熱抵抗体の劣化を確実に防止することができ、カロ 熱手段の信頼性、耐久性に優れる。  (1) Since the heating resistor of the heating means is a conductive glass that forms at least a part of the container body, the container body and the heating means can be easily integrated, and the small container body can be reliably secured. In addition to being able to heat, it is possible to reliably prevent the heating resistor from deteriorating, and the calorie heat means is excellent in reliability and durability.
ここで、加熱手段の発熱抵抗体となる導電ガラスは、容器本体の少なくとも一部を 形成するが、容器本体の内部に収容される薬液や溶液に直接、接触するようにして もよいし、前述の石英ガラスや合成樹脂等で内壁部を形成し、その外表面に積層し てもよい。特に、加熱手段の発熱抵抗体となる導電ガラスが、容器本体の内部に収 容される薬液や溶液に直接、接触するようにした場合、加熱の効率性に優れると共に 、容器本体の耐薬品性、各種溶液の保存性を向上させることができ、耐久性、長寿 命性に優れる。 Here, the conductive glass serving as the heating resistor of the heating means forms at least a part of the container body, but is in direct contact with the chemical solution or solution contained in the container body. Alternatively, the inner wall portion may be formed of the above-described quartz glass or synthetic resin and laminated on the outer surface. In particular, when the conductive glass serving as the heating resistor of the heating means is in direct contact with the chemical solution or solution contained in the container body, the heating efficiency is improved and the chemical resistance of the container body is improved. It can improve the storage stability of various solutions, and has excellent durability and long life.
[0024] 請求項 7に記載の発明は、請求項 6に記載の温調容器であって、前記ペルチェ素 子の前記吸熱部の前記電極となる前記導電ガラスと、前記加熱手段の前記発熱抵 抗体となる前記導電ガラスと、を絶縁する絶縁部を備えた構成を有して!/ヽる。  [0024] The invention according to claim 7 is the temperature regulating container according to claim 6, wherein the conductive glass serving as the electrode of the heat absorbing portion of the Peltier element and the heat generating resistance of the heating means. It has a configuration provided with an insulating part that insulates the conductive glass to be an antibody.
この構成により、請求項 6の作用に加え、以下のような作用を有する。  With this configuration, in addition to the operation of the sixth aspect, the following operation is provided.
(1)ペルチエ素子の吸熱部の電極となる導電ガラスと、加熱手段の発熱抵抗体となる 導電ガラスと、を絶縁する絶縁部を有することにより、ペルチェ素子と加熱手段が同 時に駆動された場合でも、不具合が発生することがなぐ信頼性、安全性に優れる。 ここで、絶縁部の材質としては、導電ガラスと導電ガラスの間を絶縁できると共に、 容器本体の内部に収容される薬液や溶液に対する耐性を有するものであればよい。 特に、前述の石英ガラス等が好適に用いられる。  (1) When the Peltier element and the heating means are driven at the same time by having an insulating part that insulates the conductive glass that is the electrode of the heat absorption part of the Peltier element and the conductive glass that is the heating resistor of the heating means However, it is excellent in reliability and safety without causing trouble. Here, as a material of the insulating portion, any material can be used as long as it can insulate between the conductive glass and the conductive glass and has resistance to a chemical solution or a solution contained in the container body. In particular, the above-described quartz glass or the like is preferably used.
[0025] 請求項 8に記載の発明は、請求項 3乃至 7の内いずれ力 1項に記載の温調容器で あって、前記導電ガラスが、前記容器本体の外表面に成膜されて形成されている構 成を有している。 [0025] The invention according to claim 8 is the temperature regulating container according to any one of claims 3 to 7, wherein the conductive glass is formed on the outer surface of the container body. Has the same structure.
この構成により、請求項 3乃至 7の内いずれか 1項の作用にカ卩え、以下のような作用 を有する。  With this configuration, in addition to the operation of any one of claims 3 to 7, the following operation is provided.
(1)導電ガラスが、容器本体の外表面に成膜されて形成されていることにより、膜厚 のコントロールを容易に行うことができ、均一で斑のない加熱、冷却を行うことができ、 容易本体の温度保持の安定性に優れる。  (1) Since the conductive glass is formed on the outer surface of the container body, the film thickness can be easily controlled, and heating and cooling can be performed uniformly and without spots. Easy to maintain the temperature of the main body.
ここで、導電ガラスを容器本体の外表面に成膜する方法としては、スパッタリング、 スピンコート、刷毛による塗布等が好適に用いられる。前述と同様に、石英ガラスや 合成樹脂等で容器本体の内壁部を形成し、その外表面に導電ガラスを成膜すれば よい。  Here, as a method for forming the conductive glass on the outer surface of the container body, sputtering, spin coating, application by brush, or the like is preferably used. Similar to the above, the inner wall of the container body may be formed of quartz glass or synthetic resin, and conductive glass may be formed on the outer surface thereof.
スパッタリングゃスピンコ一トによる塗布を行えば、導電ガラスを薄く均一に成膜する ことができ、加熱、冷却の効率性に優れる。また、刷毛などによる塗布を行えば、短時 間で厚膜の導電ガラスを成膜することができ、量産性に優れる。 If sputtering is applied by spin coating, conductive glass is deposited thinly and uniformly. It can be heated and cooled efficiently. In addition, when applied with a brush or the like, a thick conductive glass can be formed in a short time, which is excellent in mass productivity.
発明の効果  The invention's effect
[0026] 以上のように、本発明のペルチェ素子及びそれを備えた温調容器によれば、以下 のような有利な効果が得られる。  [0026] As described above, according to the Peltier element of the present invention and the temperature control container including the Peltier element, the following advantageous effects can be obtained.
請求項 1に記載の発明によれば、以下のような効果を有する。  According to the invention described in claim 1, the following effects are obtained.
(1)バナジン酸塩を主成分とする導電ガラスで形成された電極を用いることにより、温 度コントロールが容易で細力な温度調整を行うことができ温度保持の安定性に優れ ると共に、薬品や結露などによる電極の腐食を確実に防止することができる冷却性能 の安定性及び電極の信頼性、耐久性に優れたペルチェ素子を提供することができる  (1) By using an electrode formed of conductive glass containing vanadate as a main component, temperature control is easy and fine temperature adjustment is possible. It is possible to provide a Peltier element with excellent cooling performance, electrode reliability and durability that can reliably prevent corrosion of the electrode due to condensation and condensation.
[0027] 請求項 2に記載の発明によれば、以下のような効果を有する。 [0027] According to the invention of claim 2, the following effects are obtained.
(1)容器本体の底部又は側部に配設されたペルチェ素子を有することにより、温度 調整が容易で冷却作用の安定性、信頼性に優れると共に、容器本体とペルチヱ素 子を一体に取り扱うことが可能で取り扱 、性、省スペース性に優れた温調容器を提 供することができる。  (1) By having a Peltier element arranged at the bottom or side of the container body, temperature adjustment is easy, and the stability and reliability of the cooling action are excellent, and the container body and the Peltier element are handled together. Therefore, it is possible to provide a temperature control container that is excellent in handling, properties, and space saving.
[0028] 請求項 3に記載の発明によれば、請求項 2の効果に加え、以下のような効果を有す る。  [0028] According to the invention described in claim 3, in addition to the effect of claim 2, the following effect is obtained.
(1)導電ガラスで形成された容器本体は、熱伝導性、耐薬品性に優れ、様々な薬液 や溶液を保存して温度調整部で効率よく加熱、冷却することができる汎用性、信頼性 に優れた温調容器を提供することができる。  (1) The container body made of conductive glass is excellent in thermal conductivity and chemical resistance, and versatile and reliable that can store various chemicals and solutions and efficiently heat and cool them in the temperature adjustment unit. It is possible to provide an excellent temperature control container.
(2)導電ガラスを集束イオンビームなどの加工方法を用いて加工することにより、微 細な容器本体を形成することができ、形状自在性に優れると共に、容器本体の小型 化が容易で、省スペース性に優れた温調容器を提供することができる。  (2) By processing conductive glass using a processing method such as a focused ion beam, a fine container body can be formed, which is excellent in shape flexibility and can be easily reduced in size and saved. A temperature control container excellent in space can be provided.
[0029] 請求項 4に記載の発明によれば、請求項 3の効果に加え、以下のような効果を有す る。  [0029] According to the invention described in claim 4, in addition to the effect of claim 3, the following effect is obtained.
(1)容器本体の少なくとも一部を形成する導電ガラスをペルチェ素子の吸熱部の電 極とすることにより、微小な容器本体を確実に冷却でき、容器本体とペルチェ素子を 一体ィ匕して取扱い性、冷却の効率性を向上させることができ、薬品や結露などによる 電極の腐食を確実に防止することができる信頼性、耐久性に優れた温調容器を提供 することができる。 (1) By using the conductive glass forming at least a part of the container body as the electrode of the heat absorption part of the Peltier element, the minute container body can be cooled reliably, and the container body and the Peltier element can be To provide a temperature-controlled container with excellent reliability and durability that can improve the handling and cooling efficiency as a whole, and can reliably prevent corrosion of electrodes due to chemicals and condensation. Can do.
[0030] 請求項 5に記載の発明によれば、請求項 2乃至 4の内いずれか 1項の効果にカロえ、 以下のような効果を有する。  [0030] According to the invention described in claim 5, the effect of any one of claims 2 to 4 is reduced, and the following effects are obtained.
(1)ペルチェ素子及び加熱手段により、容器本体を選択的に加熱又は冷却すること ができ、容器本体を短時間で所望の温度に調整することができる汎用性、取り扱い 性に優れた温調容器を提供することができる。  (1) The container body can be selectively heated or cooled by Peltier elements and heating means, and the container body can be adjusted to a desired temperature in a short time. Can be provided.
[0031] 請求項 6に記載の発明によれば、請求項 5の効果に加え、以下のような効果を有す る。 [0031] According to the invention described in claim 6, in addition to the effect of claim 5, the following effect is obtained.
(1)容器本体の少なくとも一部を形成する導電ガラスを加熱手段の発熱抵抗体とす ることにより、微小な容器本体を確実に加熱でき、容器本体と加熱手段を一体化して 取扱い性、加熱の効率性を向上させることができ、発熱抵抗体の劣化を確実に防止 することができる信頼性、耐久性に優れた温調容器を提供することができる。  (1) By using conductive glass that forms at least a part of the container body as a heating resistor for the heating means, the minute container body can be heated reliably, and the container body and the heating means are integrated to facilitate handling and heating. Thus, it is possible to provide a temperature control container with excellent reliability and durability that can reliably prevent deterioration of the heating resistor.
[0032] 請求項 7に記載の発明によれば、請求項 6の効果に加え、以下のような効果を有す る。 [0032] According to the invention described in claim 7, in addition to the effect of claim 6, the following effect is obtained.
(1)ペルチエ素子の吸熱部の電極となる導電ガラスと、加熱手段の発熱抵抗体となる 導電ガラスが、絶縁部で絶縁されていることにより、ペルチェ素子と加熱手段が同時 に駆動された場合でも、不具合が発生することがない信頼性、安全性に優れた温調 容器を提供することができる。  (1) When the Peltier element and the heating means are driven at the same time because the conductive glass that is the electrode of the heat absorption part of the Peltier element and the conductive glass that is the heating resistor of the heating means are insulated by the insulating part However, it is possible to provide a temperature control container that is excellent in reliability and safety without causing any trouble.
[0033] 請求項 8に記載の発明によれば、請求項 3乃至 7の内いずれか 1項の効果にカロえ、 以下のような効果を有する。 [0033] According to the invention of claim 8, the effect of any one of claims 3 to 7 is achieved, and the following effects are obtained.
(1)容器本体の外表面に成膜される導電ガラスの膜厚のコントロールが容易で量産 性に優れ、均一で斑のない加熱、冷却を行うことができ、容易本体の温度保持の安 定性に優れた温調容器を提供することができる。  (1) Easy to control the film thickness of the conductive glass film formed on the outer surface of the container body, which is excellent in mass production, can be heated and cooled uniformly and without spots, and can easily maintain the temperature of the body. It is possible to provide an excellent temperature control container.
図面の簡単な説明  Brief Description of Drawings
[0034] [図 1]実施の形態 1におけるペルチェ素子を示す側面模式図 FIG. 1 is a schematic side view showing a Peltier element in embodiment 1.
[図 2] (a)実施の形態 1におけるペルチェ素子を備えた温調容器を示す平面図 (b)図 2 (a)の A— A線矢視端面図 [Fig. 2] (a) Plan view showing a temperature control vessel provided with a Peltier element in Embodiment 1 (b) Fig. 2 2 (a) A—A line end view
[図 3] (a)実施の形態 2における温調容器を示す平面図 (b)図 3 (a)の B— B線矢視端 面図  [FIG. 3] (a) Top view showing temperature control container in embodiment 2 (b) End view taken along line B-B in FIG. 3 (a)
[図 4] (a)実施の形態 3における温調容器を示す平面図 (b)図 4 (a)の C— C線矢視 端面図  [FIG. 4] (a) Top view showing temperature control container in Embodiment 3 (b) End view taken along line C—C in FIG. 4 (a)
[図 5]実験例 1〜3の酸化物ガラスの示差熱分析結果  [Figure 5] Differential thermal analysis results of oxide glasses of Experimental Examples 1 to 3
[図 6]ガラス転移温度以下に冷却した実験例 1〜3の酸ィ匕物ガラスの再加熱前後の電 気伝導度をプロットした図  [Fig. 6] A plot of the electrical conductivity before and after reheating of the acid oxide glasses of Experimental Examples 1 to 3 cooled below the glass transition temperature
[図 7]実験例 2の酸ィ匕物ガラスの再加熱温度、再加熱時間と電気伝導度との関係を 示す図  [Fig. 7] Diagram showing the relationship between reheating temperature, reheating time and electrical conductivity of the oxide glass in Experimental Example 2.
符号の説明  Explanation of symbols
[0035] 1, la ペルチェ素子 [0035] 1, la Peltier element
2 電極  2 electrodes
3a N型の熱電半導体  3a N-type thermoelectric semiconductor
3b P型の熱電半導体  3b P-type thermoelectric semiconductor
4a, 4b 電極  4a, 4b electrode
5, 16 可変電圧印加部  5, 16 Variable voltage application section
10, 10a, 10b 温調容器  10, 10a, 10b Temperature control container
11, 12, 22 容器本体  11, 12, 22 Container body
12a 内壁部  12a Inner wall
12b, 12c, 22b, 22c 周壁部  12b, 12c, 22b, 22c
12d, 22d 絶縁部  12d, 22d insulation
15 加熱手段  15 Heating means
22a 底部  22a bottom
30 温度センサ  30 Temperature sensor
30a 温度センサ固定部  30a Temperature sensor fixing part
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0036] (実施の形態 1) 本発明の実施の形態 1におけるペルチェ素子について、以下図面を参照しながら 説明する。 [0036] (Embodiment 1) A Peltier device according to Embodiment 1 of the present invention will be described below with reference to the drawings.
図 1は実施の形態 1におけるペルチェ素子を示す側面模式図である。  FIG. 1 is a schematic side view showing a Peltier element according to the first embodiment.
図 1中、 1は本発明の実施の形態 1におけるペルチェ素子、 2はバナジン酸塩を主 成分とする導電ガラスで形成されたペルチヱ素子 1の吸熱部の電極、 3aは一端部が 吸熱部の電極 2に接合されたペルチェ素子 1の N型の熱電半導体、 3bは一端部が 吸熱部の電極 2に接合されたペルチヱ素子 1の P型の熱電半導体、 4a, 4bは導電ガ ラスで形成されそれぞれ N型の熱電半導体 3a及び P型の熱電半導体 3bの他端部に 接合されたペルチェ素子 1の放熱部の電極、 5は N型の熱電半導体 3aから P型の熱 電半導体 3bに向力つて流れる直流電流を可変に制御するペルチ 素子 1の可変電 圧印加部である。  In FIG. 1, 1 is a Peltier element according to Embodiment 1 of the present invention, 2 is an electrode of a heat absorption part of a Peltier element 1 made of a conductive glass mainly composed of vanadate, and 3a has one end part of the heat absorption part. N-type thermoelectric semiconductor of Peltier element 1 bonded to electrode 2, 3b is formed of P-type thermoelectric semiconductor of Peltier element 1 bonded to electrode 2 of the heat-absorbing part, and 4a and 4b are formed of conductive glass. The electrodes of the radiating part of the Peltier element 1 joined to the other end of the N-type thermoelectric semiconductor 3a and the P-type thermoelectric semiconductor 3b, respectively, 5 is the force from the N-type thermoelectric semiconductor 3a to the P-type thermoelectric semiconductor 3b Thus, the variable voltage application unit of the Peltier element 1 that variably controls the direct current flowing therethrough.
[0037] 吸熱部の電極 2及び放熱部の電極 4a, 4bを形成する導電ガラスは、バナジウム、 ノリウム、鉄を含む酸ィ匕物系ガラス組成物であって、厚さは 3mm、その室温における 電気伝導度は 10 _4〜 10 _ 1 S · cm— 1に形成した。 [0037] The conductive glass forming the heat absorbing portion electrode 2 and the heat radiating portion electrodes 4a and 4b is an oxide-based glass composition containing vanadium, norium and iron, and has a thickness of 3 mm at room temperature. The electric conductivity was 10 _4 to 10 _ 1 S · cm— 1 .
酸化バナジウム(V O ) 60〜85モル%、酸化バリウム(BaO) 10〜30モル0 /0、酸 Vanadium oxide (VO) 60 to 85 mol%, barium oxide (BaO) 10 to 30 mole 0/0, acid
2 5  twenty five
化鉄 (Fe O ) 5〜20モル%を含む粉体混合物を白金るつぼ中等で加熱溶融した後  After heating and melting a powder mixture containing 5-20 mol% of iron (Fe 2 O 3) in a platinum crucible
2 3  twenty three
、これを急冷してガラス化し、このガラス組成物の結晶化温度以上、融点以下のァ- 一リング処理の温度に所定時間保持させることにより、その電気伝導度を調整した。  Then, this was rapidly cooled to be vitrified, and the electric conductivity was adjusted by holding it for a predetermined time at a temperature of the ringing treatment at a temperature not lower than the crystallization temperature and not higher than the melting point of the glass composition.
[0038] 以上のように形成された実施の形態 1におけるペルチェ素子を供えた温調容器に ついて、以下図面を参照しながら説明する。 [0038] The temperature regulating container provided with the Peltier element according to Embodiment 1 formed as described above will be described below with reference to the drawings.
図 2 (a)は実施の形態 1におけるペルチェ素子を備えた温調容器を示す平面図で あり、図 2 (b)は図 2 (a)の A— A線矢視端面図である。  FIG. 2 (a) is a plan view showing a temperature control container having a Peltier element according to Embodiment 1, and FIG. 2 (b) is an end view taken along line AA in FIG. 2 (a).
図 2中、 10は本発明の実施の形態 1におけるペルチェ素子 1を備えた温調容器、 1 1は石英ガラス等で形成された温調容器 10の容器本体、 30は容器本体 11の底部に 固設され容器本体 11の内部に収容される薬液や溶液の温度を測定する温調容器 1 0の熱電対などの温度センサ、 30aは温度センサ 30を容器本体 11に固定する温度 センサ固定部である。  In FIG. 2, 10 is a temperature control container provided with the Peltier element 1 according to Embodiment 1 of the present invention, 11 is a temperature control container 10 made of quartz glass or the like, 10 is a container body, and 30 is at the bottom of the container body 11 A temperature sensor such as a thermocouple of a temperature control container 10 that measures the temperature of a chemical solution or solution that is fixed and stored in the container body 11, and 30a is a temperature sensor fixing part that fixes the temperature sensor 30 to the container body 11. is there.
ペルチェ素子 1の吸熱部の電極 2は熱伝導性接着剤により容器本体 11の側部に 固定して熱伝導性の低下を抑えた。 The electrode 2 of the heat absorption part of the Peltier element 1 is attached to the side of the container body 11 by a heat conductive adhesive. Fixed to prevent a decrease in thermal conductivity.
[0039] 以上のように構成されたペルチェ素子を備えた温調容器の使用方法について説明 する。  [0039] A method of using the temperature control container including the Peltier element configured as described above will be described.
まず、容器本体 11の内部に観察や測定を行う薬液や水溶液を収容する。温度セン サ 30で容器本体 11の内部に収容された薬液や溶液の温度を測定し、その測定値 に基づ!/、て制御部(図示せず)でペルチヱ素子 1の駆動を制御することにより、薬液 や溶液を任意の温度に冷却、保持する。  First, a chemical solution or an aqueous solution for observation or measurement is accommodated in the container body 11. The temperature of the chemical solution or solution contained in the container body 11 is measured by the temperature sensor 30 and the drive of the Peltier element 1 is controlled by the control unit (not shown) based on the measured value! By cooling, keep the chemical solution or solution at any temperature.
温度センサ 30で測定した温度が、基準設定温度力も許容範囲内に入っていれば、 ペルチヱ素子 1は駆動されない。許容範囲の温度以上であれば、ペルチヱ素子 1の 可変電圧印加部 5で電流を制御し、容器本体 11の温度が基準設定温度の許容範囲 内に入るように冷却を行う。  If the temperature measured by the temperature sensor 30 is within the allowable range of the reference set temperature force, the Peltier element 1 is not driven. If the temperature is within the allowable range, the current is controlled by the variable voltage application section 5 of the Peltier element 1, and cooling is performed so that the temperature of the container body 11 falls within the allowable range of the reference set temperature.
本実施の形態では、 1つのペルチェ素子 1を容器本体 11の側部に備えた構成とし た力 ペルチェ素子 1の配置や数は任意に選択することができる。  In the present embodiment, the arrangement and number of force Peltier elements 1 in which one Peltier element 1 is provided on the side of the container body 11 can be arbitrarily selected.
[0040] 実施の形態 1のペルチヱ素子は以上のように構成されているので、以下の作用を有 する。 [0040] Since the Peltier element of Embodiment 1 is configured as described above, it has the following effects.
(1)吸熱部の電極 2をバナジン酸塩を主成分とする導電ガラスで形成することにより、 緩やかな温度変化で対象物を冷却することができるので、温度調整が容易で略一定 の温度を精度よく保持することができ、冷却温度の安定性に優れる。  (1) By forming the electrode 2 of the endothermic part with conductive glass mainly composed of vanadate, it is possible to cool the object with a gradual temperature change. It can be held with high accuracy and has excellent cooling temperature stability.
(2)ペルチェ素子 1の電極 2, 4a, 4bをバナジン酸塩を主成分とする導電ガラスで形 成することにより、薬品や結露などによる電極 2, 4a, 4bの腐食を確実に防止すること ができ、電極 2, 4a, 4bの信頼性、耐久性に優れる。  (2) By forming the electrodes 2, 4a, 4b of Peltier element 1 with conductive glass mainly composed of vanadate, corrosion of the electrodes 2, 4a, 4b due to chemicals or condensation is surely prevented. The electrodes 2, 4a and 4b are excellent in reliability and durability.
[0041] 実施の形態 1のペルチェ素子を備えた温調容器は以上のように構成されているの で、以下の作用を有する。  [0041] Since the temperature control container including the Peltier element according to Embodiment 1 is configured as described above, it has the following effects.
(1)容器本体 11の側部に配設されたペルチェ素子 1を有することにより、温度調整が 容易で冷却の効率性、信頼性に優れると共に、容器本体 11とペルチヱ素子 1を一体 に取り扱うことが可能で取り扱 、性、省スペース性に優れる。  (1) By having the Peltier element 1 disposed on the side of the container body 11, temperature adjustment is easy, cooling efficiency and reliability are excellent, and the container body 11 and the Peltier element 1 are handled as a unit. It is possible to handle and excel in handling, property and space saving.
[0042] (実施の形態 2) [0042] (Embodiment 2)
図 3 (a)は実施の形態 2における温調容器を示す平面図であり、図 3 (b)は図 3 (a) の B— B線矢視端面図である。尚、実施の形態 1と同様のものには同一の符号を付し て説明を省略する。 Fig. 3 (a) is a plan view showing the temperature control container in Embodiment 2, and Fig. 3 (b) is a diagram of Fig. 3 (a). FIG. 6 is an end view taken along line B-B. The same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
図 3において、実施の形態 2における温調容器 10aが実施の形態 1と異なるのは、 容器本体 12が、石英ガラス等で形成された絶縁性を有する内壁部 12aと、内壁部 1 2aの外表面にバナジン酸塩を主成分とする導電ガラスをスパッタリングで成膜して形 成された周壁部 12b, 12cと、を有し、周壁部 12b, 12cが内壁部 12aと同様の材質 で形成された絶縁部 12dで左右に分割され絶縁されて 、る点と、導電ガラスで形成 された周壁部 12cを発熱抵抗体として容器本体 12の側部に配設された加熱手段 15 を備えて ヽる点であり、容器本体 12の周壁部 12bを形成する導電ガラスがペルチェ 素子 laの吸熱部の電極となって、ペルチェ素子 laと容器本体 12が一体化されてい る。  In FIG. 3, the temperature control container 10a in the second embodiment is different from that in the first embodiment in that the container main body 12 has an insulating inner wall portion 12a formed of quartz glass or the like, and an outer wall portion 12a. A peripheral wall portion 12b, 12c formed by sputtering a conductive glass mainly composed of vanadate on the surface, and the peripheral wall portions 12b, 12c are formed of the same material as the inner wall portion 12a. And a heating means 15 disposed on the side of the container body 12 using the peripheral wall portion 12c formed of conductive glass as a heating resistor. In this point, the conductive glass forming the peripheral wall portion 12b of the container body 12 serves as an electrode of the heat absorbing portion of the Peltier element la, and the Peltier element la and the container body 12 are integrated.
尚、 16は導電ガラス 12cに流れる直流電流を可変に制御する加熱手段 15の可変 電圧印加部である。  Reference numeral 16 denotes a variable voltage application section of the heating means 15 that variably controls the direct current flowing through the conductive glass 12c.
[0043] 以上のように構成された温調容器の使用方法について説明する。 [0043] A method of using the temperature control container configured as described above will be described.
まず、容器本体 12の内部に観察や測定を行う薬液や水溶液を収容する。温度セン サ 30で容器本体 12の内部に収容された薬液や溶液の温度を測定し、その測定値 に基づ!/、て制御部(図示せず)でペルチェ素子 1及び加熱手段 15の駆動を制御する ことにより、薬液や溶液を任意の温度に調整、保持する。  First, a chemical solution or an aqueous solution for observation or measurement is stored in the container body 12. The temperature of the chemical solution or solution contained in the container body 12 is measured by the temperature sensor 30, and the control unit (not shown) drives the Peltier element 1 and the heating means 15 based on the measured value. By controlling, chemicals and solutions are adjusted and maintained at an arbitrary temperature.
温度センサ 30で測定した温度が、基準設定温度力も許容範囲内に入っていれば、 ペルチェ素子 la及び加熱手段 15は駆動されな 、。許容範囲の温度以上であれば、 ペルチエ素子 laの可変電圧印加部 5で電流を制御して容器本体 12の冷却を行い、 許容範囲の温度以下であれば、加熱手段 15の可変電圧印加部 16で電流を制御し て容器本体 12の加熱を行う。これらの動作を繰り返すことにより、容器本体 12の温度 が基準設定温度の許容範囲内に入るように温度調整される。  If the temperature measured by the temperature sensor 30 is within the allowable range, the Peltier element la and the heating means 15 are not driven. If the temperature is within the allowable range, the current is controlled by the variable voltage application unit 5 of the Peltier element la to cool the container body 12, and if the temperature is below the allowable range, the variable voltage application unit 16 of the heating means 15 is controlled. The container body 12 is heated by controlling the current with. By repeating these operations, the temperature of the container body 12 is adjusted so that it falls within the allowable range of the reference set temperature.
[0044] 尚、絶縁部 12dの材質は、本実施の形態に限定されるものではなぐ周壁部 12b, 12cの間を絶縁できると共に、容器本体 12の内部に収容される薬液や溶液に対する 耐性を有するものであればよい。また、本実施の形態では、絶縁部 12dにより左右の 周壁部 12b, 12cを分割して絶縁したが、周壁部の分割数や分割位置は任意に選択 することができる。例えば周壁部を上下に分割して各々にペルチェ素子 la及び加熱 手段 15を配設することができる。 It should be noted that the material of the insulating portion 12d is not limited to the present embodiment, but can be insulated between the peripheral wall portions 12b and 12c, and has resistance to chemicals and solutions stored in the container body 12. What is necessary is just to have. In this embodiment, the left and right peripheral wall portions 12b and 12c are divided and insulated by the insulating portion 12d. However, the number of divisions and the dividing position of the peripheral wall portion are arbitrarily selected. can do. For example, the peripheral wall portion can be divided into upper and lower parts, and the Peltier element la and the heating means 15 can be provided respectively.
本実施の形態では、ペルチヱ素子 laと加熱手段 15を容器本体 12の対向する面に 1つずつ備えた構成とした力 ペルチェ素子 laと加熱手段 15の配置や数は任意に 選択することができる。  In the present embodiment, the force Peltier element la and the heating means 15 are each provided on the opposing surface of the container body 12 one by one. The arrangement and number of the Peltier elements la and the heating means 15 can be arbitrarily selected. .
尚、温度センサ固定部 30aは絶縁部 12dと一体に形成してもよいし、絶縁性を有す る別部材で形成してもよい。  The temperature sensor fixing part 30a may be formed integrally with the insulating part 12d, or may be formed of a separate member having insulating properties.
実施の形態 2のペルチェ素子を備えた温調容器は以上のように構成されて ヽるの で、実施の形態 1で得られる作用に加え、以下の作用を有する。  Since the temperature control container including the Peltier element according to the second embodiment is configured as described above, in addition to the actions obtained in the first embodiment, the following actions are provided.
(1)容器本体 12の周壁部 12b, 12cを導電ガラスで形成することにより、熱伝導性を 向上させることができ、様々な薬液や溶液を保存して温度調整部で効率よく加熱、冷 却することができ、汎用性、信頼性に優れる。  (1) By forming the peripheral wall parts 12b and 12c of the container body 12 with conductive glass, it is possible to improve the thermal conductivity, and various chemicals and solutions can be stored and heated and cooled efficiently in the temperature adjustment part. It can be used and has excellent versatility and reliability.
(2)ペルチヱ素子 laの吸熱部の電極力 導電ガラスで形成された容器本体 12の周 壁部 12bであることにより、容易に容器本体 12とペルチェ素子 laを一体ィ匕することが でき、微小な容器本体 12を確実に冷却できると共に、薬品や結露などによる電極の 腐食を確実に防止することができ、ペルチヱ素子 laの信頼性、耐久性に優れる。 (2) Electrode force of the heat absorption part of the Peltier element la The peripheral wall part 12b of the container body 12 made of conductive glass allows the container body 12 and the Peltier element la to be easily integrated into a single piece. The container body 12 can be reliably cooled, and corrosion of the electrode due to chemicals and condensation can be reliably prevented, and the reliability and durability of the Peltier element la are excellent.
(3)容器本体 12の側部に配設された加熱手段 15を有するので、容器本体 12を簡便 かつ確実に加熱することができ、加熱の効率性、信頼性に優れる。 (3) Since the heating means 15 disposed on the side of the container main body 12 is provided, the container main body 12 can be easily and reliably heated, and the heating efficiency and reliability are excellent.
(4)加熱手段 15の発熱抵抗体が、導電ガラスで形成された容器本体 12の周壁部 12 cであることにより、容易に容器本体 12と加熱手段 15を一体ィ匕することができ、微小 な容器本体 12を確実に加熱できると共に、発熱抵抗体の劣化を確実に防止すること ができ、加熱手段 15の信頼性、耐久性に優れる。  (4) Since the heating resistor of the heating means 15 is the peripheral wall portion 12c of the container main body 12 made of conductive glass, the container main body 12 and the heating means 15 can be easily integrated, The container body 12 can be reliably heated and the heating resistor can be reliably prevented from deteriorating, and the heating means 15 is excellent in reliability and durability.
(5)容器本体 12が、ペルチェ素子 laと加熱手段 15の両方を有するので、容器本体 12を短時間で所望の温度に調整することができ、汎用性、取り扱い性に優れる。 (5) Since the container main body 12 has both the Peltier element la and the heating means 15, the container main body 12 can be adjusted to a desired temperature in a short time and is excellent in versatility and handling.
(6)ペルチェ素子 laの吸熱部の電極となる導電ガラス製の周壁部 12bと、加熱手段 15の発熱抵抗体となる導電ガラス製の周壁部 12cと、を絶縁する絶縁部 12dを有す ることにより、ペルチェ素子 laと加熱手段 15が同時に駆動された場合でも、不具合 が発生することがなぐ信頼性、安全性に優れる。 (7)周壁部 12b, 12cを形成する導電ガラスの主成分がバナジン酸塩であることによ り、電気伝導性を高めてペルチェ素子 laによる冷却及び加熱手段 15による加熱の 効率性を向上させることができ、省エネルギー性に優れる。 (6) It has an insulating portion 12d that insulates the conductive glass peripheral wall portion 12b that serves as an electrode of the heat absorption portion of the Peltier element la and the conductive glass peripheral wall portion 12c that serves as a heating resistor of the heating means 15. As a result, even when the Peltier element la and the heating means 15 are driven at the same time, it is excellent in reliability and safety without causing trouble. (7) Since the main component of the conductive glass forming the peripheral wall portions 12b and 12c is vanadate, the electrical conductivity is increased to improve the cooling efficiency by the Peltier element la and the heating efficiency by the heating means 15. It is excellent in energy saving.
(8)導電ガラス製の周壁部 12b, 12cが、容器本体 12の内壁部 12aの外表面に成膜 されて形成されていることにより、周壁部 12b, 12cの膜厚のコントロールを容易に行 うことができ、均一で斑のない加熱、冷却を行うことができ、容易本体 12の温度保持 の安定性に優れる。  (8) Since the peripheral walls 12b and 12c made of conductive glass are formed on the outer surface of the inner wall 12a of the container body 12, the thickness of the peripheral walls 12b and 12c can be easily controlled. Heating and cooling can be performed uniformly and without spots, and the stability of the temperature maintenance of the main body 12 is excellent.
[0046] (実施の形態 3)  [Embodiment 3]
図 4 (a)は実施の形態 3における温調容器を示す平面図であり、図 4 (b)は図 4 (a) の C— C線矢視端面図である。尚、実施の形態 2と同様のものには同一の符号を付し て説明を省略する。  FIG. 4 (a) is a plan view showing the temperature control container in Embodiment 3, and FIG. 4 (b) is an end view taken along the line CC of FIG. 4 (a). The same components as those in the second embodiment are denoted by the same reference numerals and description thereof is omitted.
図 4において、実施の形態 3における温調容器 10bが実施の形態 2と異なるのは、 容器本体 22が、石英ガラス等で形成された絶縁性を有する底部 22aと、実施の形態 2と同様の導電ガラスで形成された周壁部 22b, 22cと、を有し、周壁部 22b, 22cが 底部 22aと同様の材質で形成された絶縁部 22dで左右に分割され絶縁されている点 である。  In FIG. 4, the temperature control container 10b in the third embodiment is different from the second embodiment in that the container main body 22 has an insulating bottom 22a formed of quartz glass or the like, and the same as in the second embodiment. The peripheral wall portions 22b and 22c are made of conductive glass, and the peripheral wall portions 22b and 22c are divided into left and right by an insulating portion 22d formed of the same material as that of the bottom portion 22a.
実施の形態 3における温調容器の使用方法は実施の形態 2と同様なので説明を省 略する。  Since the method of using the temperature control container in the third embodiment is the same as that in the second embodiment, the description thereof is omitted.
[0047] 実施の形態 3の温調容器は以上のように構成されているので、実施の形態 3で得ら れる作用に加え、以下の作用を有する。  [0047] Since the temperature control container of the third embodiment is configured as described above, in addition to the actions obtained in the third embodiment, the following actions are provided.
(1)容器本体 22の周壁部 22b, 22cを導電ガラスで形成することにより、集束イオン ビームなどの加工方法を用いて微細加工を行うことができ、形状自在性に優れると共 に、容器本体 22の小型化が容易で、省スペース性に優れる。  (1) By forming the peripheral wall portions 22b and 22c of the container body 22 with conductive glass, fine processing can be performed using a processing method such as a focused ion beam, and the container body has excellent flexibility and shape. 22 is easy to downsize and has excellent space saving.
(2)導電ガラスの主成分がバナジン酸塩であることにより、複雑な形状の成形が容易 で加工性に優れ、種々の形態の容器本体 22を形成することができると共に、小型化 、軽量化が容易で省資源性、量産性に優れる。  (2) Since the main component of the conductive glass is vanadate, it is easy to mold complex shapes and has excellent processability, and can form various types of container body 22 as well as being smaller and lighter. Easy to use, resource-saving and mass-productive.
実施例  Example
[0048] 以下、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に 限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. The present invention is based on these examples. It is not limited.
(実験例 1)  (Experiment 1)
酸化バリウム(BaO)が 10モル0 /0、五酸化二バナジウム(V O )力 0モル0 /0、三酸 Barium oxide (BaO) is 10 mole 0/0, vanadium pentoxide (VO) force 0 mole 0/0, triacid
2 5  twenty five
化二鉄 (Fe O )が 10モル%で全量が 10gになるように試薬特級の各試薬を秤量し、  Weigh each reagent grade reagent so that the total amount is 10 g with 10 mol% ferric oxide (Fe 2 O 3),
2 3  twenty three
メノウ乳鉢で混合したのち白金るつぼに入れ、白金るつぼに入れた混合物を 1000 °Cに昇温した電気炉内で大気中 90分間加熱して溶融させた。溶融物を厚さ 10mm のステンレス板の上に流し出してガラス転移温度以下まで急冷し、実験例 1の酸化物 ガラスを得た。  After mixing in an agate mortar, the mixture was placed in a platinum crucible, and the mixture in the platinum crucible was melted by heating in the air for 90 minutes in an electric furnace heated to 1000 ° C. The melt was poured onto a stainless steel plate having a thickness of 10 mm and quenched to below the glass transition temperature, whereby the oxide glass of Experimental Example 1 was obtained.
(実験例 2)  (Experiment 2)
酸化バリウム(BaO)が 20モル0 /0、五酸化二バナジウム(V O )力 70モル0 /0、三酸 Barium oxide (BaO) is 20 mole 0/0, vanadium pentoxide (VO) force 70 mole 0/0, triacid
2 5  twenty five
化二鉄 (Fe O )が 10モル%で全量が 10gになるように試薬特級の各試薬を秤量し  Weigh each reagent grade reagent so that the total amount of diiron ferrous (Fe 2 O 3) is 10 mol% and 10 g.
2 3  twenty three
た以外は実験例 1と同様にして、実験例 2の酸ィ匕物ガラスを得た。  Except that, the acid oxide glass of Experimental Example 2 was obtained in the same manner as Experimental Example 1.
(実験例 3)  (Experiment 3)
酸化バリウム(BaO)が 30モル0 /0、五酸化二バナジウム(V O )力 0モル0 /0、三酸 Barium oxide (BaO) is 30 mole 0/0, vanadium pentoxide (VO) force 0 mole 0/0, triacid
2 5  twenty five
化二鉄 (Fe O )が 10モル%で全量が 10gになるように試薬特級の各試薬を秤量し  Weigh each reagent grade reagent so that the total amount of diiron ferrous (Fe 2 O 3) is 10 mol% and 10 g.
2 3  twenty three
た以外は実験例 1と同様にして、実験例 3の酸ィ匕物ガラスを得た。  Except that, the acid oxide glass of Experimental Example 3 was obtained in the same manner as Experimental Example 1.
[0049] (実験例 1〜3の酸ィ匕物ガラスの示差熱分析結果) [0049] (Results of differential thermal analysis of acid-containing glass of Experimental Examples 1 to 3)
実験例 1〜3の酸化物ガラスの示差熱分析 (DTA)を行った。示差熱分析 (DTA) の条件は、基準物質に exアルミナを使用し窒素雰囲気中で 10°CZ分の昇温速度で めつに。  Differential thermal analysis (DTA) of the oxide glasses of Experimental Examples 1 to 3 was performed. The differential thermal analysis (DTA) conditions are as follows: ex alumina is used as the reference material, and the temperature rise rate is 10 ° CZ in a nitrogen atmosphere.
図 5は実験例 1〜3の酸化物ガラスの示差熱分析結果である。  FIG. 5 shows the results of differential thermal analysis of the oxide glasses of Experimental Examples 1 to 3.
図 5から、酸化バリウムのモル比が増え五酸化二バナジウムのモル比が少なくなる につれガラス転移温度 (Tg)及び結晶化温度 (Tc)が上昇しており、結晶化温度 Tc は、実験例 1では 362°C、実験例 2では 392°C、実験例 3では 433°Cであった。結晶 化温度 (Tc)を超えた温度域でみられる鋭!、吸熱ピークは融点を示しており、融点は 、実験例 1では 600°C以上、実験例 2では 540°C、実験例 3では 563°Cであった。  From Fig. 5, as the molar ratio of barium oxide increases and the molar ratio of divanadium pentoxide decreases, the glass transition temperature (Tg) and the crystallization temperature (Tc) rise. It was 362 ° C, in Experiment 2 it was 392 ° C, and in Experiment 3 it was 433 ° C. The sharp endothermic peak seen in the temperature range above the crystallization temperature (Tc) shows the melting point, which is 600 ° C or higher in Experimental Example 1, 540 ° C in Experimental Example 2, and 540 ° C in Experimental Example 3. It was 563 ° C.
[0050] (再加熱温度と電気伝導度との関係) [0050] (Relationship between reheating temperature and electrical conductivity)
ガラス転移温度以下に冷却した実験例 1〜3の酸ィ匕物ガラスを大気中、 350°C, 40 0°C, 500°C, 550°Cの各温度で 1時間再加熱し、再加熱前後の酸化物ガラスの 25 °Cにおける電気伝導度を直流 4端子法で測定した。 Experimental example cooled to below the glass transition temperature Reheating was performed at 0 ° C, 500 ° C, and 550 ° C for 1 hour, and the electric conductivity at 25 ° C of the oxide glass before and after the reheating was measured by a DC four-terminal method.
図 6はガラス転移温度以下に冷却した実験例 1〜3の酸ィヒ物ガラスの再加熱前後 の電気伝導度をプロットした図である。図 6において、横軸は再加熱温度 (°C)を示し 、縦軸は 25°Cにおける電気伝導度 σ (S, cm—1)を示している。 Figure 6 is a plot of the electrical conductivity before and after reheating of the acid glass of Experimental Examples 1 to 3 cooled below the glass transition temperature. In Fig. 6, the horizontal axis represents the reheating temperature (° C), and the vertical axis represents the electrical conductivity σ (S, cm– 1 ) at 25 ° C.
図 6から、実験例 1の酸ィ匕物ガラスを、結晶化温度(362°C)を超え融点(600°C以 上)以下の温度である 500〜550°Cで 1時間再加熱した場合、 25°Cにおける電気伝 導度を再加熱前と比較して約 4桁高めることができた。  From Fig. 6, when the oxide glass of Experimental Example 1 is reheated for 1 hour at 500 to 550 ° C, which is the temperature above the crystallization temperature (362 ° C) and below the melting point (600 ° C or higher). The electrical conductivity at 25 ° C was increased by about 4 orders of magnitude compared to before reheating.
なお、図 6中、 400°Cで 1時間再加熱した場合の電気伝導度は再加熱前と変わらな かったが、 400°Cで 2時間再加熱することで、室温(25°C)における電気伝導度を 10 _3S'cm_1程度にすることができた。実験例 1の酸化物ガラスでは、再加熱温度が 40 0°Cの場合の保持時間は 1時間では短かったものと思われる。 In Fig. 6, the electrical conductivity when reheated at 400 ° C for 1 hour was the same as before reheating, but by reheating at 400 ° C for 2 hours, it was at room temperature (25 ° C). The electrical conductivity could be about 10 _3 S'cm _1 . In the oxide glass of Experimental Example 1, the holding time when the reheating temperature is 400 ° C is considered to be short in 1 hour.
また、図 6から、実験例 2の酸ィ匕物ガラスを、結晶化温度(392°C)を超え融点(540 °C)以下の温度である 400〜500°Cで 1時間再加熱した場合、 25°Cにおける電気伝 導度を 10_3S' cm—1以上の高い電気伝導度にすることができた。特に、 500°Cで再 加熱した場合は 10_1S ' cm—1以上の高い電気伝導度を実現することができた。なお 、融点(540°C)より高い 550°Cで 1時間再加熱した場合は、一部が結晶化してしまつ た。 Also, from Fig. 6, when the oxide glass of Experimental Example 2 is reheated for 1 hour at 400 to 500 ° C, which is higher than the crystallization temperature (392 ° C) and lower than the melting point (540 ° C). The electrical conductivity at 25 ° C was higher than 10 _3 S 'cm— 1 . In particular, when reheated at 500 ° C, a high electrical conductivity of 10 _1 S 'cm- 1 or higher was achieved. When reheated at 550 ° C, which is higher than the melting point (540 ° C) for 1 hour, part of it crystallized.
また、図 6から、実験例 3の酸ィ匕物ガラスを、結晶化温度 (433°C)を超え融点(563 °C)以下の温度である 500°Cで再加熱した場合、 25°Cにおける電気伝導度を 10_2S •cm—1以上の高い電気伝導度にすることができた。 In addition, from FIG. 6, when the oxide glass of Experimental Example 3 is reheated at 500 ° C, which is higher than the crystallization temperature (433 ° C) and below the melting point (563 ° C), 25 ° C The electrical conductivity of the material was higher than 10 _2 S • cm— 1 .
なお、融点(563°C)に近い 550°Cで 1時間再加熱した場合は一部が結晶化してし まったため、 550°Cで再加熱した酸化物ガラスの電気伝導度はプロットして!/、な!/、。 五酸ィ匕ニバナジウムに対する酸化バリウムのモル比が増加したためであると推察され る。保持時間を短縮して 550°Cで 0. 5時間再加熱することにより、結晶化することもな く 25°Cにおける電気伝導度を 10_2S · cm—1程度にすることができた。 When reheated at 550 ° C, which is close to the melting point (563 ° C) for 1 hour, part of it crystallized, so the electrical conductivity of the oxide glass reheated at 550 ° C is plotted! / ,! This is probably because the molar ratio of barium oxide to nivanadium pentoxide was increased. By shortening the holding time and reheating at 550 ° C for 0.5 hours, the electrical conductivity at 25 ° C was reduced to about 10 _2 S · cm– 1 without crystallization.
以上のことから、酸ィ匕物ガラス (導電ガラス)を、結晶化温度を超え融点以下の温度 領域に保持する再加熱工程を経ることで、室温 (25°C)における電気伝導度を飛躍 的に高めることができることが明らかになった。また、結晶の析出や溶融が顕著に起 こらない温度範囲であれば、再加熱温度が高いほど電気伝導度が向上することがわ かった。また、再加熱温度が高くなると保持時間は短くてよいこともわ力つた。これら の現象から、結晶化温度を超えて融点以下の再加熱によって電気伝導度が向上す るメカニズムは、電子の活性ィ匕エネルギーに起因していると考えられる。 Based on the above, the electrical conductivity at room temperature (25 ° C) has been greatly improved through a reheating process in which the oxide glass (conductive glass) is kept in the temperature range above the crystallization temperature and below the melting point. It became clear that it can be enhanced. In addition, it was found that the electrical conductivity improves as the reheating temperature increases in the temperature range where crystal precipitation and melting do not occur remarkably. In addition, the retention time can be shortened as the reheating temperature increases. From these phenomena, it is considered that the mechanism by which the electric conductivity is improved by reheating above the crystallization temperature and below the melting point is due to the activity energy of the electrons.
[0051] なお、これらの実験例以外にも、酸化バナジウム (V O )、酸化バリウム(BaO)、酸  [0051] In addition to these experimental examples, vanadium oxide (V 2 O), barium oxide (BaO), acid
2 5  twenty five
化鉄(Fe O )のモル比がそれぞれ 40〜98モル%、 1〜40モル%、 1〜20モル%の  The molar ratio of iron oxide (Fe 2 O 3) is 40 to 98 mol%, 1 to 40 mol%, and 1 to 20 mol%, respectively.
2 3  twenty three
範囲になるように種々の酸ィ匕物ガラスを調製し、各々の結晶化温度と融点を求め、再 加熱工程前後の室温における電気伝導度を測定したところ、これらの実験例と同様 に再加熱工程を経ることによって電気伝導度が上昇することが確認された。  Various oxide glasses were prepared so as to be in the range, the crystallization temperature and melting point of each were determined, and the electrical conductivity at room temperature before and after the reheating process was measured. Reheating as in these experimental examples was performed. It was confirmed that the electrical conductivity increased through the process.
また、酸化バナジウム (V O ) ,酸化バリウム (BaO) ,酸化鉄 (Fe O )の混合物を  A mixture of vanadium oxide (V O), barium oxide (BaO) and iron oxide (Fe O)
2 5 2 3  2 5 2 3
溶融冷却して製造した酸ィ匕物ガラスだけでなぐ酸化バナジウム (V o ) ,五酸化二  Vanadium oxide (V o), dipentaoxide, which can be obtained only by using an oxide glass produced by melting and cooling.
2 5  twenty five
リン (P O ) ,酸化バリウム (BaO)の混合物を溶融冷却して製造した酸ィ匕物ガラス、 An acidic glass produced by melting and cooling a mixture of phosphorus (P 2 O 3) and barium oxide (BaO),
2 5 twenty five
酸化バナジウム (V O ) ,酸化カリウム (K O) ,酸化鉄 (Fe O )の混合物を溶融冷却  Melting and cooling a mixture of vanadium oxide (V O), potassium oxide (K O), and iron oxide (Fe O)
2 5 2 2 3  2 5 2 2 3
して製造した酸ィ匕物ガラスでも、再加熱工程を経ることによって電気伝導度が上昇す ることが確認された。  It was also confirmed that the electrical conductivity of the oxide glass produced in this way increased through the reheating process.
[0052] (再加熱時間と電気伝導度の関係) [0052] (Relationship between reheating time and electrical conductivity)
(実施例 1)  (Example 1)
ガラス転移温度以下に冷却した実験例 2の酸ィ匕物ガラスを大気中、結晶化温度(3 92°C)を超え融点(540°C)以下の温度である 500°Cで再加熱し、炉内から一定時間 毎に取り出して 25°Cにおける電気伝導度を測定した。  Re-heated the oxide glass of Experimental Example 2 cooled to below the glass transition temperature in the atmosphere at 500 ° C, which is a temperature exceeding the crystallization temperature (392 ° C) and below the melting point (540 ° C), The electrical conductivity at 25 ° C was measured after taking out from the furnace at regular intervals.
(実施例 2)  (Example 2)
ガラス転移温度以下に冷却した実験例 2の酸ィ匕物ガラスを大気中、結晶化温度(3 92°C)を超え融点(540°C)以下の温度である 400°Cで再加熱し、炉内から一定時間 毎に取り出して 25°Cにおける電気伝導度を測定した。  Re-heated the oxide glass of Example 2 cooled to below the glass transition temperature in the atmosphere at 400 ° C, which is a temperature exceeding the crystallization temperature (392 ° C) and below the melting point (540 ° C), The electrical conductivity at 25 ° C was measured after taking out from the furnace at regular intervals.
(実施例 3)  (Example 3)
ガラス転移温度以下に冷却した実験例 2の酸ィ匕物ガラスを大気中、ガラス転移温度 (328°C)以上、結晶化温度(392°C)以下の温度である 350°Cで再加熱し、炉内から 一定時間毎に取り出して 25°Cにおける電気伝導度を測定した。 The oxide glass of Experiment 2 cooled to below the glass transition temperature was reheated in the atmosphere at 350 ° C, which is the glass transition temperature (328 ° C) or higher and the crystallization temperature (392 ° C) or lower. From inside the furnace The sample was taken out at regular intervals and the electrical conductivity at 25 ° C was measured.
[0053] 図 7は実験例 2の酸化物ガラスの再加熱温度、再加熱時間と電気伝導度との関係 を示す図である。図 3において、横軸は再加熱温度における保持時間、縦軸は 25°C における電気伝導度 σ (S . cm—1)を示している。 FIG. 7 is a graph showing the relationship between the reheating temperature and reheating time of the oxide glass of Experimental Example 2 and electrical conductivity. In FIG. 3, the horizontal axis represents the holding time at the reheating temperature, and the vertical axis represents the electrical conductivity σ (S.cm- 1 ) at 25 ° C.
ガラス転移温度以下に冷却した実験例 2の酸ィ匕物ガラスを大気中、結晶化温度(3 92°C)を超え融点(540°C)以下の温度で再加熱した実施例 1及び 2では、わずか 30 分間の再加熱で電気伝導度を 3桁以上も向上させることができ、再加熱を続けても電 気伝導度がほとんど変動しないことが確認された。また、実施例 2より再加熱温度の 高い実施例 1の方が、電気伝導度を高くできることが確認された。  In Examples 1 and 2, the acid-containing glass of Experimental Example 2 cooled to below the glass transition temperature was reheated in the atmosphere at a temperature exceeding the crystallization temperature (392 ° C) and below the melting point (540 ° C). It was confirmed that the electrical conductivity could be improved by more than three orders of magnitude by reheating for only 30 minutes, and that the electrical conductivity hardly fluctuated even if reheating was continued. In addition, it was confirmed that Example 1 having a higher reheating temperature than Example 2 can increase the electrical conductivity.
一方、ガラス転移温度(328°C)以上、結晶化温度(392°C)以下の温度で再加熱し た実施例 3では、再加熱温度における保持時間が増加するにつれて電気伝導度が 増加し、 180分以上保持しなければ電気伝導度を一定値にできな 、ことが確認され た。また、実施例 3の電気伝導度は、実施例 1及び 2の電気伝導度より一桁以上低い ことが確認された。  On the other hand, in Example 3, which was reheated at a temperature not lower than the glass transition temperature (328 ° C) and not higher than the crystallization temperature (392 ° C), the electrical conductivity increased as the holding time at the reheating temperature increased. It was confirmed that the electrical conductivity could not be kept constant unless maintained for 180 minutes or longer. In addition, it was confirmed that the electrical conductivity of Example 3 was lower by one digit or more than that of Examples 1 and 2.
以上のことから、本実施例によれば、再加熱温度に応じて再加熱温度に保持する 時間を適正に保つことよって電気伝導度がばらつくことがなぐ特に実施例 1及び 2に よれば、所定の温度領域に 30分程度の短時間保持しただけでも電気伝導度を飛躍 的に高めることができ、さらに保持時間が変動しても電気伝導度の変動が少なく生産 安定性に著しく優れ好ましいことが明らかになった。また、再加熱工程における加熱 時間等を変えることにより、室温におけるバナジン酸塩ガラスの電気伝導度の大きさ を 10_4S'cm_1以上の領域で精度良く設計し制御できることが明らかになった。 このようにして得られた導電ガラスをペルチェ素子の電極として用いたところ、温度 変化が緩やかで細かな温度設定を行うことができ、対象物の温度を精度よく略一定 の範囲に保持することができ、冷却性能の安定性に優れることがわ力つた。 From the above, according to the present embodiment, the electrical conductivity does not vary by keeping the time for maintaining the reheating temperature appropriately according to the reheating temperature. The electrical conductivity can be drastically increased even if it is held in the temperature range for about 30 minutes, and even if the holding time varies, the electrical conductivity does not vary and the production stability is remarkably excellent and preferable. It was revealed. Further, by changing the heating time and the like in the reheating step, it was found that the magnitude of the electrical conductivity of the vanadate glass at room temperature can be precisely designed controlled 10 _4 S'cm _1 or more regions. When the conductive glass obtained in this way is used as an electrode of a Peltier element, the temperature change can be performed slowly and finely, and the temperature of the object can be accurately maintained within a substantially constant range. It was able to be done and was excellent in stability of cooling performance.
産業上の利用可能性  Industrial applicability
[0054] 本発明は、電極としてバナジン酸塩を主成分とする導電ガラスを用いることにより一 定の温度を精度よく保持することができ温度調整が容易で取り扱い性に優れるペル チェ素子の提供、及び容器本体の加工が容易で形状自在性に優れ、微細な空間を 形成して薬液や水溶液などを収容することができ、耐薬品性、保存性に優れると共に 、薬液や水溶液などが収容された微細な空間を効率よく加熱、冷却して任意の温度 に保持して観察や各種の測定などを短時間で効率よく行うことが可能な信頼性、汎 用性、作業性に優れるペルチェ素子を備えた温調容器器の提供を行って、バイオテ クノロジーゃ医薬などの分野における薬液や水溶液などの取り扱い性を向上させるこ とがでさる。 [0054] The present invention provides a Peltier device that can maintain a constant temperature with high accuracy by using a conductive glass mainly composed of vanadate as an electrode, is easy to adjust the temperature, and has excellent handleability. In addition, the container body is easy to process, has excellent shape flexibility, and has a fine space It can be formed to contain chemicals and aqueous solutions, and has excellent chemical resistance and storage stability. In addition, a fine space containing chemicals and aqueous solutions can be efficiently heated and cooled to maintain any temperature. Providing temperature control containers equipped with Peltier elements with excellent reliability, versatility, and workability that enable efficient observation and various measurements in a short time. This improves the handling of chemicals and aqueous solutions.

Claims

請求の範囲 The scope of the claims
[1] 吸熱部と発熱部を有するペルチェ素子であって、少なくとも前記吸熱部の電極が、 バナジン酸塩を主成分とする導電ガラスで形成されていることを特徴とするペルチェ 素子。  [1] A Peltier element having a heat absorption part and a heat generation part, wherein at least the electrode of the heat absorption part is formed of a conductive glass containing vanadate as a main component.
[2] 容器本体と、前記容器本体の底部又は側部に配設された請求項 1に記載のペル チェ素子と、を備えたことを特徴とする温調容器。  [2] A temperature control container comprising: a container main body; and the Peltier element according to claim 1 disposed on a bottom portion or a side portion of the container main body.
[3] 前記容器本体の少なくとも一部が前記導電ガラスで形成されていることを特徴とす る請求項 2に記載の温調容器。 [3] The temperature regulating container according to [2], wherein at least a part of the container body is formed of the conductive glass.
[4] 前記ペルチエ素子の前記吸熱部の前記電極が、前記容器本体の少なくとも一部を 形成する前記導電ガラスであることを特徴とする請求項 3に記載の温調容器。 4. The temperature control container according to claim 3, wherein the electrode of the heat absorption part of the Peltier element is the conductive glass that forms at least a part of the container body.
[5] 前記容器本体の底部又は側部に配設された加熱手段を有することを特徴とする請 求項 2乃至 4の内いずれか 1項に記載の温調容器。 [5] The temperature control container according to any one of claims 2 to 4, further comprising heating means disposed on a bottom portion or a side portion of the container main body.
[6] 前記加熱手段の発熱抵抗体が、前記容器本体の少なくとも一部を形成する前記導 電ガラスであることを特徴とする請求項 5に記載の温調容器。 6. The temperature control container according to claim 5, wherein the heating resistor of the heating means is the conductive glass forming at least a part of the container body.
[7] 前記ペルチェ素子の前記吸熱部の前記電極となる前記導電ガラスと、前記加熱手 段の前記発熱抵抗体となる前記導電ガラスと、を絶縁する絶縁部を有することを特徴 とする請求項 6に記載の温調容器。 [7] The present invention further includes an insulating portion that insulates the conductive glass serving as the electrode of the heat absorbing portion of the Peltier element and the conductive glass serving as the heating resistor of the heating means. 6. The temperature control container according to 6.
[8] 前記導電ガラスが、前記容器本体の外表面に成膜されて形成されて ヽることを特 徴とする請求項 3乃至 7の内いずれ力 1項に記載の温調容器。 8. The temperature regulating container according to any one of claims 3 to 7, wherein the conductive glass is formed by being formed on an outer surface of the container body.
PCT/JP2007/057034 2006-03-31 2007-03-30 Peltier device and temperature regulating container equipped with the peltier device WO2007114317A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/295,598 US20090241554A1 (en) 2006-03-31 2007-03-30 Peltier device and temperature regulating container equipped with the peltier device
JP2008508644A JP5024835B2 (en) 2006-03-31 2007-03-30 Temperature control container with Peltier element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006100959 2006-03-31
JP2006-100959 2006-03-31

Publications (1)

Publication Number Publication Date
WO2007114317A1 true WO2007114317A1 (en) 2007-10-11

Family

ID=38563584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057034 WO2007114317A1 (en) 2006-03-31 2007-03-30 Peltier device and temperature regulating container equipped with the peltier device

Country Status (3)

Country Link
US (1) US20090241554A1 (en)
JP (1) JP5024835B2 (en)
WO (1) WO2007114317A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245541A (en) * 2009-04-09 2010-10-28 Carl Zeiss Smt Ag Mirror for guiding pencil of light rays
WO2014073095A1 (en) * 2012-11-09 2014-05-15 株式会社日立製作所 Thermoelectric conversion module and method for manufacturing same
WO2014155643A1 (en) * 2013-03-29 2014-10-02 株式会社日立製作所 Thermoelectric conversion device
JP2017011166A (en) * 2015-06-24 2017-01-12 リンテック株式会社 Thermoelectric semiconductor composition, and thermoelectric conversion material and method for producing the same
KR20210148727A (en) * 2020-06-01 2021-12-08 한국화학연구원 Thermoelectric material, and thermoelectric device and thermoelectric module comprising the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070283709A1 (en) * 2006-06-09 2007-12-13 Veeco Instruments Inc. Apparatus and methods for managing the temperature of a substrate in a high vacuum processing system
EP2177849A1 (en) * 2008-10-20 2010-04-21 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Container for storing articles at a predetermined temperature
CN102713586A (en) * 2009-11-20 2012-10-03 耐驰-仪器制造有限公司 System and method for thermal analysis
US20110164652A1 (en) * 2010-01-05 2011-07-07 Refalo Lee A Differential Thermoelectric Cooler Calorimeter
US20130126864A1 (en) * 2010-09-24 2013-05-23 Hitachi, Ltd. Semiconductor junction element, semiconductor device using it, and manufacturing method of semiconductor junction element
US10980993B2 (en) * 2018-10-31 2021-04-20 Gachon University Of Industry-Academic Cooperation Foundation Microneedle, apparatus for manufacturing microneedle, and method of manufacturing microneedle using apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122507A (en) * 1995-11-02 1997-05-13 Hideji Tsuchiya Combination heating and cooling device
JPH10259024A (en) * 1997-03-17 1998-09-29 Tech Res & Dev Inst Of Japan Def Agency Thin film of vanadium oxide and its production
JP2003102466A (en) * 2001-09-28 2003-04-08 Hiroshi Takamatsu Method for separating cultured cell by using thermoresponsive high-molecular compound and related device and culture vessel
WO2004105144A1 (en) * 2003-05-20 2004-12-02 Matsushita Electric Industrial Co., Ltd. Thermoelectric material and method for producing same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3159979A (en) * 1963-06-27 1964-12-08 Frank W Anders Thermoelectric system
JP2568732B2 (en) * 1990-05-23 1997-01-08 松下電器産業株式会社 Thermoelectric element
US5918469A (en) * 1996-01-11 1999-07-06 Silicon Thermal, Inc. Cooling system and method of cooling electronic devices
US6073789A (en) * 1997-05-05 2000-06-13 The Coleman Company, Inc. Portable thermal container with reversible door
JP2002062015A (en) * 2000-08-11 2002-02-28 Fujitsu General Ltd Cold and warm storage cabinet
JP4719861B2 (en) * 2001-01-31 2011-07-06 独立行政法人産業技術総合研究所 Thermoelectric element and thermoelectric power generation module
JP4482672B2 (en) * 2002-04-24 2010-06-16 財団法人北九州産業学術推進機構 Conductive vanadate glass and method for producing the same
TWI252512B (en) * 2004-10-20 2006-04-01 Hynix Semiconductor Inc Semiconductor device and method of manufacturing the same
US8789715B2 (en) * 2008-08-29 2014-07-29 Nissan North America, Inc. Collapsible storage container

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122507A (en) * 1995-11-02 1997-05-13 Hideji Tsuchiya Combination heating and cooling device
JPH10259024A (en) * 1997-03-17 1998-09-29 Tech Res & Dev Inst Of Japan Def Agency Thin film of vanadium oxide and its production
JP2003102466A (en) * 2001-09-28 2003-04-08 Hiroshi Takamatsu Method for separating cultured cell by using thermoresponsive high-molecular compound and related device and culture vessel
WO2004105144A1 (en) * 2003-05-20 2004-12-02 Matsushita Electric Industrial Co., Ltd. Thermoelectric material and method for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245541A (en) * 2009-04-09 2010-10-28 Carl Zeiss Smt Ag Mirror for guiding pencil of light rays
US8717531B2 (en) 2009-04-09 2014-05-06 Carl Zeiss Smt Gmbh Mirror for guiding a radiation bundle
WO2014073095A1 (en) * 2012-11-09 2014-05-15 株式会社日立製作所 Thermoelectric conversion module and method for manufacturing same
JPWO2014073095A1 (en) * 2012-11-09 2016-09-08 株式会社日立製作所 Thermoelectric conversion module and manufacturing method thereof
WO2014155643A1 (en) * 2013-03-29 2014-10-02 株式会社日立製作所 Thermoelectric conversion device
JP2017011166A (en) * 2015-06-24 2017-01-12 リンテック株式会社 Thermoelectric semiconductor composition, and thermoelectric conversion material and method for producing the same
KR20210148727A (en) * 2020-06-01 2021-12-08 한국화학연구원 Thermoelectric material, and thermoelectric device and thermoelectric module comprising the same
KR102389983B1 (en) * 2020-06-01 2022-04-22 한국화학연구원 Thermoelectric material, and thermoelectric device and thermoelectric module comprising the same

Also Published As

Publication number Publication date
JP5024835B2 (en) 2012-09-12
US20090241554A1 (en) 2009-10-01
JPWO2007114317A1 (en) 2009-08-20

Similar Documents

Publication Publication Date Title
WO2007114317A1 (en) Peltier device and temperature regulating container equipped with the peltier device
JP5486253B2 (en) Glass and crystallized glass
JP6007909B2 (en) Method for producing lithium ion conductive glass ceramics
CN108314314A (en) Flat panel display glass substrate and its manufacturing method
KR101047417B1 (en) Fuel cell separator and its manufacturing method
US20140248541A1 (en) Solid electrolyte for lithium battery, comprising at least one zone of lithium-containing glass ceramic material and method of production
US20140057162A1 (en) Glass ceramic that conducts lithium ions, and use of said glass ceramic
JP3854985B2 (en) Vanadate glass and method for producing vanadate glass
CN101798115B (en) Preparation method of ternary oxysalt compound micro-nano material
JP4696289B2 (en) Thermocouple temperature sensor and manufacturing method thereof
JP2000026135A (en) Lithium-ionically conductive glass-ceramics and cell and gas sensor, using the same
JP4482672B2 (en) Conductive vanadate glass and method for producing the same
JP2006152391A (en) METAL DOPED TiO2 FILM AND ITS DEPOSITION METHOD
JP5791102B2 (en) Vanadate-tungstate glass with excellent water resistance and chemical durability
De L'Eprevier et al. Flux growth of bismuth tungstate, Bi2WO6
JP2011111364A (en) Glass for anode bonding
JP2012020894A (en) Glass for anodic bonding
CN105541115A (en) Titanic acid and niobic acid compound glass ceramic as well as preparation method and application thereof
JP5164072B2 (en) Manufacturing method of vanadate glass
CN114933415B (en) Microcrystalline glass dielectric material with high energy storage and high temperature stability and preparation method thereof
CN111863526A (en) Temperature control switch
CN109704584B (en) SrNb-containing steel6O16Phase titanate and niobate compounded glass ceramic with low dielectric loss and preparation method thereof
JP2013071862A (en) Low softening point glass powder
EP2639343B1 (en) A method of manufacturing thin layers of eutectic composites
Essi et al. A comparative study of chalcogenide thin films for micro sensor applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740472

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008508644

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12295598

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07740472

Country of ref document: EP

Kind code of ref document: A1