WO2007114046A1 - Optical head device - Google Patents

Optical head device Download PDF

Info

Publication number
WO2007114046A1
WO2007114046A1 PCT/JP2007/055644 JP2007055644W WO2007114046A1 WO 2007114046 A1 WO2007114046 A1 WO 2007114046A1 JP 2007055644 W JP2007055644 W JP 2007055644W WO 2007114046 A1 WO2007114046 A1 WO 2007114046A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
head device
polarization
objective lens
Prior art date
Application number
PCT/JP2007/055644
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Kouno
Makoto Kawamura
Shinichi Nagahara
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Publication of WO2007114046A1 publication Critical patent/WO2007114046A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • G11B7/1275Two or more lasers having different wavelengths
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1356Double or multiple prisms, i.e. having two or more prisms in cooperation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD

Definitions

  • the present invention relates to the technical field of an optical head device such as an optical pickup that can handle a plurality of types of optical discs that require different light sources such as a BD (Blu-ray Disc) and a DVD. .
  • an optical head device such as an optical pickup that can handle a plurality of types of optical discs that require different light sources such as a BD (Blu-ray Disc) and a DVD.
  • This type of optical head device has a plurality of types of laser light sources so that different types of laser light can be emitted depending on the type of optical disc set in an optical disc player or recorder.
  • the laser beam is configured to irradiate the optical disk through a common objective lens as a laser beam on a single optical path by passing through a beam splitter or a mirror mirror (see Patent Documents 1 and 2).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-149689
  • Patent Document 2 JP-A-2004-234818
  • the present invention has been made in view of, for example, the above-described problems, and is compatible with a plurality of types of optical discs that are relatively reliable with respect to signal light and whose optical configuration is simplified. It is an object to provide a possible optical head device.
  • the optical head device of the present invention is an optical head device that can handle a plurality of types of optical disks, and can emit laser light for each of the plurality of types of optical disks.
  • a second objective lens for condensing the laser beam emitted from the light source means on the recording surface of another type of optical disc set to the optical head device among the plurality of types of optical discs;
  • One light receiving element for receiving the signal light from the recording surface based on the laser light condensed on the recording surface via the first or second objective lens, the laser light and the signal At least with light
  • one of the polarization treatment that is at least one of photosynthesis and light separation depending on the polarization state
  • the non-polarization treatment that is at least one of photosynthesis and light separation independent of the polarization state
  • the optical head device of the present invention when the optical head device is set to the optical head device, for example, one of the two or more types of optical discs, for example, blue, for example, blue Laser light power for the set optical disk such as laser is emitted from light source means such as a semiconductor laser device.
  • This laser beam is condensed on the recording surface of the one type of optical disc by the first objective lens via the optical system.
  • the signal light based on the laser light irradiated on the recording surface by optical actions such as reflection, transmission, diffraction, refraction, and scattering on the recording surface passes through the first objective lens and the optical system, and passes through a single light. Guided to the light receiving element.
  • optical discs when set against another type of optical disc (eg, DVD or CD) optical head device, for example, a red laser or infrared laser Laser light power for the set optical disk such as one laser is emitted from a light source means such as a semiconductor laser device. This laser beam is condensed on the recording surface of the other type of optical disc by the second objective lens via the optical system. Then, due to the optical action on the recording surface, the signal light based on the laser light irradiated on the recording surface is guided to one light receiving element via the second objective lens and the optical system.
  • a red laser or infrared laser Laser light power for the set optical disk such as one laser is emitted from a light source means such as a semiconductor laser device. This laser beam is condensed on the recording surface of the other type of optical disc by the second objective lens via the optical system. Then, due to the optical action on the recording surface, the signal light based on the laser light irradiated on the recording surface is guided to one light receiving element via the second objective
  • polarization processing that depends on the polarization state of laser light or signal light and non-dependence on the polarization state. It is applied to laser light and signal light according to the processing power S of polarization processing and the type of optical disc set.
  • laser light for one type of optical disk for example, BD
  • polarization processing such as selective reflection and transmission according to the polarization state in the polarization beam splitter.
  • the corresponding signal light is guided to the light receiving element.
  • laser light for other types of optical discs is guided to the second objective lens by non-polarization processing such as reflection and transmission independent of the polarization state in the dichroic mirror or half mirror.
  • non-polarization processing such as reflection and transmission independent of the polarization state in the dichroic mirror or half mirror.
  • the corresponding signal light is guided to the light receiving element.
  • the light source means includes a plurality of laser light sources that emit laser light for each of the plurality of types of optical disks.
  • the light source means laser light for one type of optical disk and laser light for another type of optical disk are separately emitted from the initial stage.
  • the light source means laser light for one type of optical disk and laser light for another type of optical disk are separately emitted from the initial stage.
  • a blue laser light source and a red laser light source may be included.
  • the light source means separates the laser light for one type of optical disk and the laser light for another type of optical disk after generating one light source force, so that they are separated toward the optical system.
  • emits may be taken. That is, the light source means may have, for example, one laser light source and a device for performing light separation, or the optical system is configured to separate the laser light from one laser light source. You can do it.
  • the optical system performs reflection and transmission depending on the polarization state on a polarization beam splitter surface as at least a part of the polarization treatment, and As at least a part of the non-polarization treatment, reflection and transmission independent of the polarization state on the dichroic mirror surface or the first mirror surface are performed.
  • laser light for one type of optical disc is selectively reflected or transmitted according to the polarization state of a special mirror or prism including a polarization beam splitter surface.
  • a special mirror or prism including a polarization beam splitter surface.
  • the light is guided to the first objective lens and the corresponding signal light is guided to the light receiving element.
  • an optical member such as a ⁇ / 2 plate or a ⁇ / 4 plate may be arranged in the optical path so that the polarization state changes between the optical path of the laser light (outward path) and the optical path of the signal light (return path). .
  • laser light for other types of optical discs for example, DVD, CD
  • the light source means the first and second objective lenses, the one light receiving element, and the optical system are provided. It is possible to handle a plurality of types of optical discs while increasing the optical configuration and simplifying the optical configuration.
  • FIG. 1 is a perspective view showing a basic configuration of an optical head device according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing a basic configuration of an optical head device according to an example.
  • FIG. 3 is a plan view showing a state where the optical head device according to the example records or reproduces information on a DVD.
  • FIG. 4 is a plan view showing a state where the optical head device according to the example records or reproduces information on a CD.
  • FIG. 5 is a plan view showing a state where the optical head device according to the example records information on a BD.
  • FIG. 6 is a plan view showing a state in which the optical head device according to the example reproduces information from a BD or HD-DVD.
  • FIG. 7 is a plan view showing correction of aberrations in the optical head device according to the example.
  • FIG. 8 is a schematic plan view showing a first embodiment relating to the arrangement of each surface.
  • FIG. 9 is a schematic plan view showing the basic arrangement of each surface.
  • FIG. 10 is a schematic plan view showing a state of polarization switching on the polarization beam splitter surface.
  • FIG. 11 is a schematic plan view showing an optical system of a second embodiment relating to the arrangement of each surface.
  • FIG. 12 is a schematic plan view showing an optical system of a third example according to the arrangement of each surface.
  • FIG. 13 is a schematic plan view showing an optical system of a fourth example relating to the arrangement of each surface.
  • FIG. 14 is a schematic plan view showing an optical system of a fifth example according to the arrangement of each surface.
  • FIG. 15 is a schematic plan view showing the optical system of Example 6 according to the arrangement of each surface.
  • FIG. 16 is a schematic plan view showing the optical system of the first example relating to the number of reflections.
  • FIG. 17 is a schematic plan view showing an optical system of a second example according to the number of reflections.
  • FIG. 18 is a schematic plan view showing an optical system of a third example relating to the number of reflections.
  • FIG. 19 is a schematic plan view showing an optical system of a fourth example according to the number of reflections.
  • FIG. 20 is a schematic plan view showing an optical system of a fifth example relating to the number of reflections.
  • FIG. 1 is a perspective view showing the basic configuration of the optical head apparatus according to the embodiment of the present invention.
  • FIG. 2 is a plan view showing the basic configuration of the optical head apparatus according to the embodiment.
  • the optical head device 1 mainly includes a laser diode 601, a laser diode 602, and a laser diode 603 as examples of “light source means” according to the present invention.
  • BD objective lens 743 as an example of “first objective lens” according to the present invention
  • DVDZCDZHD—DVD objective lens 740 as an example of “second objective lens” according to the present invention
  • An OEIC (Opto-Electron Integrated Circuit) 760 as an example of the “light receiving element” and a prism P01 and a prism P02 as examples of the “optical system” according to the present invention are provided.
  • It constitutes a so-called multi-drive, V, which can read and write information to and from optical discs such as CD, BD or HD—DVD.
  • the laser diode 601 includes, for example, a semiconductor laser.
  • a laser beam having a wavelength of 650 nm that is, a so-called red laser beam (ie, a non-dedicated laser beam dedicated to DVD).
  • Common laser light is emitted as forward light (hereinafter, laser light from each laser diode to the optical disk is also referred to as “forward light” as appropriate).
  • the laser diode 602 includes a semiconductor laser, for example, and as an example of the “non-common laser beam” according to the present invention, a laser beam having a wavelength of 780 nm (that is, a non-common laser beam dedicated to CD) is forwarded. Emits as light.
  • the laser diode 603 includes a semiconductor laser, for example.
  • a so-called blue laser beam having a wavelength of 405 nm ie, for BD and HD DVD
  • Common laser light is emitted as forward light.
  • the DVD coupling lens 501 is a lens for supplying forward light emitted from the laser diode 601 to the prism P01.
  • the CD coupling lens 502 is a lens for supplying forward light emitted from the laser diode 602 to the prism P01.
  • the shaping element 613 is a lens that enlarges and shapes the common laser light emitted from the laser diode 603.
  • the liquid crystal SW (Switch) element 623 can be switched between ON (ON) and ZOFF (OFF). For example, when ON, incident common laser light (linearly polarized light) is emitted as it is, and when OFF, incident common laser light (linearly polarized light) is converted into circularly polarized light and emitted. If it is not necessary to support HD-D VD, the liquid crystal SW element 623 may be omitted.
  • the Dyke mouth prism 630 is disposed on the intersection of the optical path of the laser light emitted from the laser diode 601 and the optical path of the laser light emitted from the laser diode 602, and is emitted from the laser diode 601.
  • the laser beam is transmitted and reflected by the laser beam emitted from the laser diode 602, so that the optical paths of both laser beams are aligned.
  • Polarizing grating 640 for DVDZCD is a laminated structure of wavelength selective grating 6402 (CD), wavelength selective grating 6403 (DVD), and polarizing filter 6401 (return light countermeasure) (see enlarged view in Fig. 2) ) To generate a sub beam for tracking error, and reduce the amount of light returning to each laser diode by combining with the broadband 1Z4 wavelength plate 730.
  • CD wavelength selective grating 6402
  • DVD wavelength selective grating 6403
  • polarizing filter 6401 return light countermeasure
  • the polarization grating 643 generates a sub beam for tracking error by diffracting the incident laser beam (common laser beam) and returns to the laser diode in combination with the broadband 1Z4 wavelength plate 730. Reduce the amount of light.
  • the reflection mirror M01 and the reflection mirror M03 appropriately change the optical path of the laser beam by reflecting the irradiated laser beam.
  • the prism P01 includes a half mirror surface P01H and a first dichroic mirror surface P01D.
  • the half mirror surface P01H is disposed in the optical path of the non-common laser beam, and transmits a part of the non-common laser beam to the DVDZCDZHD—DVD objective lens 740 and DVDZCDZHD—DVD.
  • the signal light returning from the objective lens 740 (hereinafter, the laser light reflected by the optical disk and reaching the OEIC 760 is also referred to as “return light” as appropriate)
  • the first dichroic mirror surface P01D reflects the common laser light (outward light) and the signal light related thereto (return light), and the non-common laser light (outward light) and the related signal light ( This is the surface that transmits the return light.
  • the polarization beam splitter surface P0 It is the optical path of the part that transmits 2P (for example, P-polarized light) and is disposed in the optical path of a part of the non-common laser light.
  • the prism P02 includes a polarization beam splitter surface P02P and a second dichroic mirror surface P0 2D.
  • the polarization beam splitter surface P02P is disposed in the optical path of the common laser light (outward light).
  • the electric field component of the common laser light reflects S-polarized light that is perpendicular to the incident surface.
  • the electric field component transmits P-polarized light parallel to the incident surface to guide it to the DVDZCDZHD—DVD objective lens 740.
  • the signal light returning from the BD objective lens 740 (return light) is transmitted, and the signal light returning from the DVDZCDZHD—D VD objective lens 740 is reflected.
  • the second dichroic mirror surface P02D is a surface that transmits the signal light (forward light) related to the common laser light and reflects the signal light (return light) related to the non-common laser light. And it is an optical path of the signal light related to the common laser light (forward light), and is arranged in the optical path of the part reflected by the half mirror surface P01H among the signal light (return light) related to the non-common laser light.
  • DVD / CD / HD—DVD collimator 660 and BD collimator 663 convert incident laser light into parallel light.
  • the 1Z2 wave plate 673 converts the incident linearly polarized light into linearly polarized light orthogonal to the incident linearly polarized light and emits it.
  • the BD hologram 703 is configured to correct the spherical aberration of three beams (0th order diffracted light and first order diffracted light) included in the BD laser light.
  • the rising mirror 710 converts the laser light made into parallel light into the BD objective lens 743 or D
  • VDZCDZHD configured to force the DVD objective lens 740 up.
  • the liquid crystal aberration correction element 720 includes a liquid crystal, for example, and adjusts the optical path of each laser beam by utilizing the dielectric constant and the anisotropy of the refractive index of the liquid crystal, thereby coma aberration (tangential direction and Configured to correct for radial) and astigmatism (0 and 45 degrees).
  • the broadband 1Z4 wavelength plate 730 includes, for example, a crystal, and converts a wide-range laser beam such as a raised non-common laser beam or a common laser beam from linearly polarized light to circularly polarized light. Thus, the circularly polarized light is converted to linearly polarized light.
  • the BD objective lens 743 focuses incident laser light (outgoing light) on the recording surface of the optical disc (BD), and signal light (return light) from the recording surface based on the collected laser light. To the OE IC760.
  • DVDZCDZHD—DVD objective lens 740 condenses incident laser light (outgoing light) on the recording surface of an optical disc (DVDZCDZHD—DVD), and a signal from the recording surface based on the condensed laser light. Configured to transmit light (return light) to OEIC760
  • FM (Front Monitor: FM) mirror FM0 and FM mirror FM3 are common laser light, non-common laser light, or signal light when recording or reproducing optical discs (DVD, CD, BD or HD-DVD). It is configured to guide a part of this to a front monitor (not shown).
  • the multi-lens 750 is configured to condense the signal light (return light) from the recording surface of the optical disc (DVD, CD, BD or HD-DVD) onto the OEIC 760 with a relatively high light collection rate. .
  • the OEIC 760 includes, for example, a photodiode, and receives the signal light (return light) from the recording surface of the DVD, CD, BD, or HD-DVD collected by the multi-lens 750 to receive the optical disc. It is configured to be used for recording or playback (DVDZCDZHD—DVD).
  • the optical head device 1 includes the laser diode 601, the laser diode 602, and the laser diode 603 as examples of the “light source unit” according to the present invention, and the “ BD objective lens 743 as an example of the “first objective lens”, DVDZCDZHD—DVD objective lens 740 as an example of the “second objective lens” according to the present invention, and an example of the “light receiving element” according to the present invention
  • the prism P01 and the prism P02 as an example of the “optical system” according to the present invention, it is possible to deal with a plurality of types of optical disks.
  • FIGS. 7 the operations when recording or reproducing various optical disks using the optical head device 1 according to the present embodiment configured as described above are illustrated in FIGS. 7 It explains using.
  • FIG. 3 is a plan view showing how the optical head device according to the embodiment records or reproduces information on the DVD.
  • the laser diode 601 when recording or reproducing information on a DVD, first, the laser diode 601 is driven to, for example, a laser beam having a wavelength of 650 nm (ie, a non-common laser dedicated to DVD). Light). The emitted laser light (outgoing light) is transmitted through the Dyke mouth prism 630, generates a sub-beam when passing through the wavelength selective grating 6403 (DV D) of the polarization grating 640 for DVDZCD, and is reflected by the reflecting mirror M01. Is done.
  • a laser beam having a wavelength of 650 nm ie, a non-common laser dedicated to DVD.
  • the emitted laser light (outgoing light) is transmitted through the Dyke mouth prism 630, generates a sub-beam when passing through the wavelength selective grating 6403 (DV D) of the polarization grating 640 for DVDZCD, and is reflected by the reflecting mirror M01. Is done.
  • the DVDZCDZHD—DVD collimator 660 makes the beam parallel, and the rising mirror 710 raises the DVDZCDZHD—DVD objective lens 740.
  • the outgoing forward light is corrected for coma (tangential and radial) and astigmatism (0 and 45 degrees) by the liquid crystal aberration correction element 720, and is converted from linearly polarized light by the broadband 1Z4 wavelength plate 730.
  • the DVDZCD ZHD—DVD objective lens 740 irradiates the DVD recording surface.
  • the signal light from the recording surface (return light) based on the laser light irradiated to DV D is the force that reverses the forward path to the first dichroic mirror surface P01D. Is different. That is, of the return light that passes through the first dichroic mirror surface P01D, the light that passes through the half mirror surface P01H is reduced in light amount by the polarization filter 6401 in the DVDZCD polarization grating 640. The return light reflected by the dichroic mirror surface P02D is received by the OEIC 760 via the multi lens 750.
  • information recording or reproduction is suitably performed on a DVD.
  • FIG. 4 is a plan view showing how the optical head device according to the embodiment records or reproduces information on the CD.
  • the main differences from the DVD described above are mainly the type of optical disk used (CD, not DVD), the wavelength of the laser beam (780 nm compared to 650 nm), and the laser diode (laser diode 601) that emits it. Not only the laser diode 602), but also the optical path from the emitted light to the half mirror surface P01H. Other than that, it is basically the same as the case of the above-described DVD, so that the description will be omitted as appropriate.
  • the laser diode 602 is driven to, for example, a laser beam having a wavelength of 780 nm (ie, a non-common laser beam dedicated to CD). ).
  • the emitted laser light (outgoing light) is reflected by the Dyke mouth prism 630 and reaches the half mirror surface P01H.
  • the recording surface of the optical disc (CD) is irradiated in the same way as in the case of DVD.
  • signal light (return light) from the recording surface based on the collected laser light is received by the OEIC 760 in the same manner as in the case of DVD.
  • information recording or reproduction is suitably performed on a CD.
  • FIG. 5 is a plan view showing how the optical head device according to the embodiment records information on the BD.
  • the main differences from the DVD described above are mainly the type of optical disk used (BD instead of DVD), the wavelength of the laser beam (405 nm compared to 650 nm), and the laser diode (Laser Diode 601) that emits it. Laser diode 603), objective lens (DVDZCDZHD—BD objective lens 743 instead of DVD objective lens 740), and the associated optical path. Other than that, it is basically the same as the case of the DVD described above, so the description will be omitted as appropriate.
  • the laser diode 603 is driven, for example, with a laser beam having a wavelength of 405 nm (that is, for BD and HD-DVD). Common laser beam).
  • the emitted laser light (outgoing light) is converted into S-polarized light perpendicular to the incident surface when it is incident on the polarization beam splitter surface P02P by the shaping element 613. It passes through the liquid crystal SW element 623 that has been enlarged and is switched on, and a sub-beam is generated when it passes through the polarization grating 643 and enters the prism P02.
  • the incoming forward light is S-polarized light whose electric field component is perpendicular to the incident surface
  • the reflected S-polarized light is reflected by the polarization beam splitter surface P02P and collimated by the BD collimator 663, and the 1Z2 wavelength plate It is converted into linearly polarized light by 673, guided to the BD hologram 703 by the reflecting mirror M03, and the spherical aberration of the three beams (0th order diffracted light and ⁇ 1st order diffracted light) contained in itself is corrected by the BD hologram 703. Then, it is raised toward the object lens 743 for BD by the raising mirror 710.
  • the outgoing forward light is corrected for coma (tangential and radial) and astigmatism (0 and 45 degrees) by the liquid crystal aberration correction element 720, and is converted from linearly polarized light to circularly polarized light by the broadband 1Z4 wavelength plate 730.
  • the recording surface of the optical disc (BD) is irradiated by the objective lens 743 for BD.
  • the signal light (return light) from the recording surface based on the laser light irradiated on the BD travels in the reverse direction up to the second dichroic mirror surface P02D.
  • the light reflected by the polarization beam splitter surface P02P is a force that reduces the amount of light by the polarization grating 643.
  • the return path light transmitted through the second dichroic mirror surface P02D passes through the multi lens 750. And received by the OEIC760.
  • information recording is preferably performed on a BD.
  • FIG. 6 is a plan view showing how the optical head device according to the embodiment reproduces information from a BD or HD-DVD.
  • the main difference from the case of the recording related to the BD described above is that the liquid crystal SW element 623 is turned OFF and the optical path of the polarized light associated therewith is different.
  • the rest is basically the same as in the case of the recording related to the BD described above, and the description is omitted as appropriate.
  • the laser diode 603 when information is reproduced from a BD or HD-DVD, the laser diode 603 is driven in the same manner as in the case of recording related to the BD, for example, at a wavelength of 405 nm.
  • the light that is, common laser light common to BD and HD-DVD
  • the laser beam forward light
  • the shaping element 613 is enlarged and shaped by the shaping element 613 as S-polarized light perpendicular to the incident surface when entering the polarization beam splitter surface P02P.
  • this circularly polarized light includes elliptical polarized light.
  • this circularly polarized light is s-polarized light that is perpendicular to the incident surface when incident on the polarized beam splitter surface P02P, and incident on the polarized beam splitter surface P02P. Contains P-polarized light parallel to the plane of incidence.
  • the S-polarized light component of the forward light is reflected by the polarization beam splitter P02P, and after that, the same optical path as in the case of BD recording described above is taken, and the BD is passed through the BD objective lens 743 to the BD. Information reproduction is preferably performed.
  • the P-polarized component of the forward light passes through the polarization beam splitter surface P02P and is reflected by the first dichroic mirror surface P01D, the same as in the above-described DVD or CD recording.
  • the optical path is taken, and the DVD-CD / HD DVD objective lens 740 irradiates the HD-DVD recording surface.
  • the signal light (return light) from the recording surface based on the laser light applied to the HD-DVD is reflected by the first dichroic mirror surface P01D, unlike DVD or CD.
  • the reflected return light is further reflected by the polarized beam splitter surface P02P, and is transmitted through the first dichroic mirror surface P01D and received by the OEIC 760 via the multi lens 750, unlike the case of the force DVD or CD.
  • information is preferably reproduced from a BD or HD-DVD.
  • FIG. 7 is a plan view showing aberration correction in the optical head device according to the example.
  • the optical head device 1 particularly has a collimator slider 665 for simultaneously sliding the collimators 660 and 663 along the optical path of the laser beam, and a mechanism for moving the collimator slider 665.
  • a collimator moving stepping motor 666 and various aberrations e.g. coma, astigmatism and spherical aberration
  • various aberrations e.g. coma, astigmatism and spherical aberration
  • the tangential and radial coma aberrations are corrected using the liquid crystal aberration correction element 720.
  • Astigmatism of 0 degrees and 45 degrees is also corrected using the liquid crystal aberration correction element 720.
  • correction is performed by appropriately moving the collimator slider 665 by the collimator moving stepping motor 666.
  • the optical head device 1 of this embodiment it is possible to realize a so-called multi-drive that can handle a plurality of types of optical disks.
  • FIG. 8 is a schematic plan view showing the first embodiment relating to the arrangement of each surface
  • FIG. 9 is a schematic plan view showing the basic arrangement of each surface
  • FIG. FIG. 5 is a schematic plan view showing a state of polarization switching on a beam splitter surface P02 P.
  • an optical head device 1 has a plurality of laser drivers that emit a plurality of laser beams having different wavelengths, and is a half mirror surface P 01H that is suitable for a plurality of types of optical disks. Arrange the presetter plane P02P, the first dichroic mirror plane P01D, and the second dichroic mirror plane P02D while paying attention to the following (1) to (5).
  • the first dichroic mirror surface P01D and the second dichroic mirror surface P02D are arranged so that their logics are reversed with respect to wavelength selection and are positioned diagonally to each other.
  • a light separation / synthesis film (a first mirror surface P01H and a first polarization beam splitter surface P02P) having different functions is disposed on the other diagonal.
  • “logic inversion” for wavelength selection means transmission or reflection for one wavelength and transmission or reflection for another wavelength. Says that is reversed.
  • the second dichroic mirror surface P02D transmits the short-wavelength laser light along the round-trip path and reflects the long-wavelength laser light along the round-trip path (see Fig. 9). ). If each surface is arranged in such a relationship, the optical path of the laser beam can be appropriately separated and combined according to the wavelength.
  • the first dichroic mirror surface P01D synthesizes the respective optical paths by reflecting the short-wavelength forward light and transmitting the long-wavelength laser light in the forward path. Both laser beams are guided to one objective lens. Furthermore, since the first dichroic mirror surface P01D reflects the short-wavelength return light and transmits the long-wavelength laser light even in the return path, each optical path is separated this time. After that, the second dichroic mirror surface P02D, whose logic is inverted with respect to the first dichroic mirror surface P01D in terms of wavelength selection, returns the short wavelength return light and reflects the long wavelength laser light in the return path. Then, the respective optical paths are combined, and finally, both the return path lights are received by one light receiving element.
  • non-polarized light is applied to the long-wavelength laser light to reduce the amount of return light and birefringence is reduced.
  • the line segments (ml + m2) and (nl + n2) should be equal.
  • ml is the optical path length between the half mirror surface P01H and the second dichroic mirror surface P02D on the laser light path
  • m2 is the half mirror surface P01H and the first dichroic mirror surface on the laser light path
  • Nl is the optical path length between the plane of the polarization beam splitter P02P on the optical path of the laser beam P02P and the first dichroic mirror plane P01D
  • n2 is the polarization beam path on the optical path of the laser beam.
  • the optical path length between the presetter surface P02P and the second dichroic mirror surface PO 2D is shown. That is, the first dichroic mirror surface P01D and the second dichroic mouth It may be arranged so as to eliminate the optical path difference between a plurality of laser beams separated from the optical mirror surface P02D and passing through different optical paths. When arranged in this way, the laser beams can maintain a conjugate relationship with each other.
  • (4) m2 and n2 should be as small as possible. This allows for a multilayer structure, which promotes miniaturization and reduces costs. However, it is difficult to make both the polarization system for blue and the non-polarization system for red with one film configuration by setting m2 and n2 to 0, respectively. If a single film configuration is used, phase disturbance or the like may occur in each of the short wavelength range (for example, a wavelength range including 405 nm) and the long wavelength range (for example, a wavelength range including 660 nm and 785 nm). Because.
  • the values of m2 and n2 are based on experimental, empirical, simulation, etc., and the trade-off problem of phase disturbance and miniaturization is found. What is necessary is just to predetermine, for example according to the kind or solid of a film
  • Outgoing light is transmitted through the outgoing path and separated into DVDZCDZHD—DVD objective lens 740, which is separated into optical path 2 respectively, and the returned S-polarized light (return light) and P-polarized light (return light) are combined 1
  • Light can be received by one light receiving element OEIC760. Therefore, it is possible to suitably cope with a plurality of types of optical disks.
  • the half mirror surface P01H, the polarization beam splitter surface P02P, the first dichroic mirror surface P01D, and the second dichroic mirror surface PO 2D are arranged.
  • polarization and non-polarization are appropriately performed, and the laser beam (outgoing light) is condensed separately by two types of objective lenses with relative ease. This makes it possible to guide the signal light (return light) to one light receiving element OEIC760.
  • FIG. 11 is a schematic plan view showing the optical system of the second embodiment relating to the arrangement of each surface.
  • the optical head device 1 according to the present embodiment differs from the optical head device 1 according to the first embodiment relating to the arrangement of each surface described above in the number of prisms. Specifically, instead of the prisms P01 and P02 that are two prisms, the prism P03 that is one prism is provided, and other configurations are common. Thus, even if the number of prisms changes, the arrangement of the half mirror surface P01H, the polarization beam splitter surface P02P, the first dichroic mirror surface P01D, and the second dichroic mirror surface P02 D in each prism If they are the same, a plurality of types of optical discs can be suitably handled as in the first embodiment described above. At this time, two prisms are not necessarily required.
  • FIG. 12 is a schematic plan view showing the optical system of the third example relating to the arrangement of the surfaces.
  • the optical head device 1 differs from the optical head device 1 according to the first embodiment regarding the arrangement of each surface described above in the presence / absence of a prim and the number of surfaces.
  • the number of the faces The number of laser diodes and objective lenses associated with the difference.
  • the prisms P01 and P02 which are the two prisms, are not! /
  • the third dichroic mirror surface P03 D and the half mirror surface P03H are further provided, and the waves toward the half mirror surface P03H are provided.
  • the arrangement of the half mirror surface P01H, the polarization beam splitter surface P02P, the first dichroic mirror surface P01D, and the second dichroic mirror surface P02D in each prism is the same as described above.
  • the logic for wavelength selection of the third dichroic mirror surface P03D is inverted compared to the second dichroic mirror surface P02D and arranged so as to be diagonally opposite each other, the wavelength ⁇ 3
  • This laser beam is also focused by the CD objective lens 745 in the same manner as the laser beam of wavelength ⁇ 2.
  • the signal light return light
  • one light receiving element OEIC 760 it is possible to guide the signal light (return light) to one light receiving element OEIC 760 while adopting a form that condenses laser light (forward light) separately by three types of objective lenses with relative ease.
  • the number of objective lenses and surfaces that do not necessarily require the prism itself can be increased to 8, 10, and so on.
  • FIG. 13 is a schematic plan view showing the optical system of the fourth example according to the arrangement of the surfaces.
  • the optical head device 1 according to the present embodiment is mainly different from the optical head device 1 according to the first embodiment relating to the arrangement of the surfaces described above in that the optical head between the surfaces is different. It is a distance. Specifically, it is not (nl + n2)-(ml + m2) force ⁇ ). In this case, the interval between the light receiving parts provided in the OEIC 760 should be the same length as (nl + n2) ⁇ (ml + m2). Or, conversely, if the intervals between the light receiving parts of the OEIC 760 are large, the distance between the surfaces is such that (nl + n2)-(ml + m2) is the same length as the distance between the light receiving parts. It is good to adjust.
  • each laser beam (return light) in the OEIC 760 has a conjugate function. The person in charge is kept.
  • FIG. 14 is a schematic plan view showing the optical system of the fifth example according to the arrangement of the surfaces.
  • the optical head device 1 according to the present embodiment is mainly different from the optical head device 1 according to the first embodiment relating to the arrangement of each surface described above in the configuration of the optical system. is there. Specifically, a DVD / CD / HD—DVD collimator 660, a BD collimator 663, and a cylinder lens 755 are provided, and other configurations are common. Thus, even if the configuration of the optical system changes, the half mirror surface P01H, the polarization beam splitter surface P02P, the first dichroic mirror surface P01D, and the second dichroic mirror surface P02D in each prism If the arrangement is the same, a plurality of types of optical disks can be suitably handled as in the first embodiment.
  • FIG. 15 is a schematic plan view showing the optical system of the sixth example according to the arrangement of the surfaces.
  • the optical head device 1 according to the present embodiment is mainly different from the optical head device 1 according to the first embodiment relating to the arrangement of each surface described above in that the laser having the wavelength ⁇ 1 This is the optical path of light (outgoing light).
  • the laser beam having the wavelength ⁇ 1 incident on the polarizing beam splitter surface ⁇ 02 ⁇ ⁇ ⁇ is converted into linearly polarized light consisting of only S-polarized light, or the polarized beam splitter.
  • the surface P02P it can be realized by using a half mirror (ie, changing the polarization processing performed on the polarization beam splitter surface P02P to non-polarization processing). Other configurations are common.
  • the optical path of the other (specifically, the laser beam having the wavelength 2 or 3) is the same as in the first embodiment described above.
  • the first embodiment not only the first embodiment but also the other embodiments described above can be suitably adapted to, for example, DVD, CD, and BD by changing the optical path of the laser light having the wavelength ⁇ 1 as in this embodiment. Become.
  • each surface is arranged as shown in FIGS. 8 to 15, it is possible to suitably cope with a plurality of types of optical disks.
  • the condition regarding the number of times of reflection is imposed because a plurality of objective lenses are used to support a plurality of types of optical disks.
  • a plurality of objective lenses for example, DVD ZCDZHD—DVD objective lens 740 and BD objective lens 743 corresponding to a plurality of types of optical discs (eg, DVD, CD, BD, HD-DVD),
  • An optical head device 1 having a single light receiving element (for example, OEIC760) capable of receiving signal light (return path light), and receiving each one of a plurality of types of signal light passing through optical paths having different objective lens strengths.
  • FIG. 16 is a schematic plan view showing the optical system of the first example relating to the number of reflections.
  • the optical head device 1 includes two objective lenses (DVDZCDZ HD—DVD objective lens 740 and BD objective lens 743), four mirrors (mirror Ml, mirror M2). , Mirror M3, mirror M4, of which mirror M4 also functions as a half mirror) and one light-receiving element OEIC760, and each mirror has an incident angle of 45 degrees.
  • the mirror Ml and the mirror M2 are, for example, the reflecting mirror M03 shown in FIG. 2
  • the mirror M3 is, for example, the first dichroic mirror surface P01D shown in FIG. 2
  • the mirror M 4 is the polarization beam splitter surface P02P shown in FIG. Correspond to each.
  • FIG. 17 is a schematic plan view showing the optical system of the second example relating to the number of reflections.
  • the optical head device 1 according to the present embodiment is mainly different from the optical head device 1 according to the first embodiment regarding the number of reflections described above in the number of mirrors.
  • two mirrors mirror M2, mirror M4, of which mirror M4 also functions as a half mirror
  • each mirror has an incident angle of 45 degrees.
  • FIG. 18 is a schematic plan view showing the optical system of the third example relating to the number of reflections.
  • the optical head device 1 according to the present embodiment is mainly different from the optical head device 1 according to the first embodiment relating to the number of reflections described above in the incident angle.
  • the incident angle from DVDZCDZHD—DVD objective lens 740 to mirror Ml and the incident angle from BD objective lens 743 to mirror M3 are not 45 degrees.
  • the images do not have to be reversed, and the optical paths are finally aligned when reaching the OEIC 760, so it can be said that it can cope with a plurality of types of optical disks.
  • the incident angle does not have to be limited to 45 degrees, the degree of freedom in designing the optical system is improved. For example, even if the beam is not shaped, it is extremely advantageous in practice because it prevents the loss of accuracy to the extreme and improves the reliability of the optical adjustment of the three beams for tracking errors.
  • FIG. 19 is a schematic plan view showing the optical system of the fourth example according to the number of reflections.
  • the optical head device 1 according to the present embodiment is mainly different from the optical head device 1 according to the first embodiment relating to the number of reflections described above only in the return path from each optical disk.
  • the outbound route is also considered.
  • two objective lenses DVDZCDZH D—DVD objective lens 740 and BD objective lens 743
  • four mirrors mirror Ml, mirror M2, mirror M3, mirror M4, of which mirror M4 is a polarized beam It also functions as a presetter
  • the incident angle is 45 degrees.
  • the mirror M4 also functions as a polarization beam splitter, the laser light (outgoing light) emitted from the laser diode 603 is divided into, for example, S-polarized light and P-polarized light according to the polarization state, and the two objective lenses are separated.
  • the OEIC 760 can receive light with the highest light receiving sensitivity regardless of which type of optical disk is set.
  • FIG. 20 is a schematic plan view showing the optical system of the fifth example relating to the number of reflections.
  • the optical head device 1 according to the present embodiment is mainly different from the optical head device 1 according to the first embodiment relating to the number of reflections described above in the number of objective lenses and the number of mirrors. is there. Specifically, three objective lenses (DVDZCDZHD—DVD objective lens 740, BD objective lens 743, and third objective lens 744), three mirrors (mirror M2, mirror M4, mirror M5, of which mirrors M4 and mirror M5 also function as a half mirror) and one light-receiving element OEIC760, and each mirror has an incident angle of 45 degrees.
  • three objective lenses DVDZCDZHD—DVD objective lens 740, BD objective lens 743, and third objective lens 744
  • three mirrors mirror M2, mirror M4, mirror M5, of which mirrors M4 and mirror M5 also function as a half mirror
  • OEIC760 one light-receiving element
  • the OEIC 760 can receive light with the highest light receiving sensitivity regardless of which type of optical disk is set. This makes it possible to correctly obtain the tracking error, which is positional information in the radial direction, in each optical disc, and in addition, it is possible to properly align the lens deviation direction in each optical disc, which is very advantageous in practice. .
  • the optical head device is an optical head device such as an optical pickup capable of dealing with a plurality of types of optical disks that require different light source light such as BD (Blu-ray Disc) and DVD. Is available.
  • BD Blu-ray Disc

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)

Abstract

An optical head device includes: light source means for emitting a laser beam for each of a plurality of types of optical discs; a first objective lens for collecting the laser beam emitted from the light source means onto a recording surface of one type of optical disc and a second objective lens for collecting the laser beam onto a recording surface of the other type of optical disc; one light reception element for receiving a signal light from the recording surface; and an optical system for performing a polarization process or non-polarization process on the laser beam or the signal light according to the optical disc type so as to introduce the laser beam into the first or the second objective lens in accordance with the optical disc type and introduce the signal light into the light reception element. The polarization process is a light synthesis or light separation depending on the polarization state and the non-polarization process is light synthesis or light separation not depending on the polarization state.

Description

明 細 書  Specification
光ヘッド装置  Optical head device
技術分野  Technical field
[0001] 本発明は、例えば BD(Blu-ray Disc)と DVDとなど、相異なる光源光が必要となる複 数種類の光ディスクに対応可能な光ピックアップ等の、光ヘッド装置の技術分野に関 する。  TECHNICAL FIELD [0001] The present invention relates to the technical field of an optical head device such as an optical pickup that can handle a plurality of types of optical discs that require different light sources such as a BD (Blu-ray Disc) and a DVD. .
背景技術  Background art
[0002] この種の光ヘッド装置は、光ディスクプレーヤやレコーダにセットされた光ディスクの 種類に応じて異なるレーザ光を照射できるように、複数種類のレーザ光源を有し、こ れらから出射されたレーザ光を、ビームスプリッタゃノヽーフミラーを介することで、単一 光路上にあるレーザ光として共通の対物レンズを介して光ディスクに照射するように 構成されている (特許文献 1、 2参照)。  [0002] This type of optical head device has a plurality of types of laser light sources so that different types of laser light can be emitted depending on the type of optical disc set in an optical disc player or recorder. The laser beam is configured to irradiate the optical disk through a common objective lens as a laser beam on a single optical path by passing through a beam splitter or a mirror mirror (see Patent Documents 1 and 2).
[0003] 特許文献 1 :特開 2005— 149689号公報  [0003] Patent Document 1: Japanese Patent Application Laid-Open No. 2005-149689
特許文献 2 :特開 2004— 234818号公報  Patent Document 2: JP-A-2004-234818
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力しながら、例えば背景技術に開示されている技術によれば、共通の対物レンズ を用いるので、各光ディスクを再生するのに適した光学条件で該各光ディスクを再生 することが基本的に困難となり、最終的には、信号光の信頼性がいずれの種類の光 ディスクに対しても高いという状態を構築することは実際上殆ど不可能であるという技 術的問題点がある。 However, for example, according to the technology disclosed in the background art, since a common objective lens is used, it is fundamental to reproduce each optical disc under optical conditions suitable for reproducing each optical disc. Finally, there is a technical problem that it is practically impossible to construct a state in which the reliability of the signal light is high for any type of optical disk.
[0005] これに対して、仮に複数の対物レンズを用いる場合には、各光ディスクを再生する のに適した光学条件で該各光ディスクを再生することが可能或いは容易となるであろ う。しかしなら力 この場合には、複数のレーザ光源にカ卩えて、複数の対物レンズや 複数の受光素子なども必要となり、結局、光学構成の複雑高度化を招き、複数種類 の光ディスクに対応可能な、即ちコンパチブルな光ヘッド装置としての本質的な意義 が消滅しかねないという実践上の問題点が生じるものと予想される。 [0006] 本発明は、例えば上述した問題点に鑑みてなされたものであり、信号光に係る信頼 性が比較的高く且つ光学構成の簡易化が図られている、複数種類の光ディスクに対 応可能な光ヘッド装置を提供することを課題とする。 On the other hand, if a plurality of objective lenses are used, it will be possible or easy to reproduce each optical disk under optical conditions suitable for reproducing each optical disk. However, in this case, in addition to multiple laser light sources, multiple objective lenses and multiple light-receiving elements are also required. Eventually, the optical configuration becomes complex and sophisticated, and multiple types of optical disks can be handled. In other words, it is expected that there will be a practical problem that the essential significance as a compatible optical head device may disappear. The present invention has been made in view of, for example, the above-described problems, and is compatible with a plurality of types of optical discs that are relatively reliable with respect to signal light and whose optical configuration is simplified. It is an object to provide a possible optical head device.
課題を解決するための手段  Means for solving the problem
[0007] 本発明の光ヘッド装置は上記課題を解決するために、複数種類の光ディスクに対 応可能な光ヘッド装置であって、前記複数種類の光ディスクの各々用のレーザ光を 出射可能である光源手段と、該光源手段力 出射されたレーザ光を、前記複数種類 の光ディスクのうち当該光ヘッド装置に対してセットされた一の種類の光ディスクの記 録面に集光するための第 1対物レンズと、前記光源手段から出射されたレーザ光を、 前記複数種類の光ディスクのうち当該光ヘッド装置に対してセットされた他の種類の 光ディスクの記録面に集光するための第 2対物レンズと、前記記録面に集光されたレ 一ザ光に基く前記記録面からの信号光を、前記第 1又は第 2対物レンズを介して受 光する一つの受光素子と、前記レーザ光及び前記信号光の少なくとも一つに対して 、偏光状態に依存する光合成及び光分離の少なくとも一方である偏光処理と偏光状 態に依存しない光合成及び光分離の少なくとも一方である非偏光処理とのうち一方 の処理を、前記光ディスクの種類に応じて施すことによって、前記レーザ光を前記光 ディスクの種類に応じた前記第 1又は第 2対物レンズに導くと共に前記信号光を前記 受光素子に導く光学系とを備える。  In order to solve the above problems, the optical head device of the present invention is an optical head device that can handle a plurality of types of optical disks, and can emit laser light for each of the plurality of types of optical disks. Light source means and a first objective for condensing the emitted laser light on the recording surface of one type of optical disk set with respect to the optical head device among the plurality of types of optical disks A second objective lens for condensing the laser beam emitted from the light source means on the recording surface of another type of optical disc set to the optical head device among the plurality of types of optical discs; One light receiving element for receiving the signal light from the recording surface based on the laser light condensed on the recording surface via the first or second objective lens, the laser light and the signal At least with light On the other hand, one of the polarization treatment that is at least one of photosynthesis and light separation depending on the polarization state and the non-polarization treatment that is at least one of photosynthesis and light separation independent of the polarization state, And an optical system that guides the laser light to the first or second objective lens according to the type of the optical disc and guides the signal light to the light receiving element.
[0008] 本発明の光ヘッド装置によれば、その動作時には、二種類以上の光ディスクのうち 、例えば一の種類の光ディスク(例えば、 BD)力 光ヘッド装置に対してセットされると 、例えば青色レーザなどのこのセットされた光ディスク用のレーザ光力 半導体レー ザ装置等の光源手段から出射される。このレーザ光は、光学系を経由して、第 1対物 レンズによって、該一の種類の光ディスクの記録面に集光される。すると、記録面に おける反射、透過、回折、屈折、散乱などの光学的作用によって、記録面に照射され たレーザ光に基く信号光は、第 1対物レンズ及び光学系を経由して、一つの受光素 子へと導かれる。  [0008] According to the optical head device of the present invention, when the optical head device is set to the optical head device, for example, one of the two or more types of optical discs, for example, blue, for example, blue Laser light power for the set optical disk such as laser is emitted from light source means such as a semiconductor laser device. This laser beam is condensed on the recording surface of the one type of optical disc by the first objective lens via the optical system. Then, the signal light based on the laser light irradiated on the recording surface by optical actions such as reflection, transmission, diffraction, refraction, and scattering on the recording surface passes through the first objective lens and the optical system, and passes through a single light. Guided to the light receiving element.
[0009] 他方で、二種類以上の光ディスクのうち、例えば、他の種類の光ディスク(例えば、 DVDや CD)力 光ヘッド装置に対してセットされると、例えば赤色レーザや赤外線レ 一ザなどのこのセットされた光ディスク用のレーザ光力 半導体レーザ装置等の光源 手段から出射される。このレーザ光は、光学系を経由して、第 2対物レンズによって、 該他の種類の光ディスクの記録面に集光される。すると、記録面における光学的作 用によって、記録面に照射されたレーザ光に基く信号光は、第 2対物レンズ及び光 学系を経由して、一つの受光素子へと導かれる。 On the other hand, among two or more types of optical discs, for example, when set against another type of optical disc (eg, DVD or CD) optical head device, for example, a red laser or infrared laser Laser light power for the set optical disk such as one laser is emitted from a light source means such as a semiconductor laser device. This laser beam is condensed on the recording surface of the other type of optical disc by the second objective lens via the optical system. Then, due to the optical action on the recording surface, the signal light based on the laser light irradiated on the recording surface is guided to one light receiving element via the second objective lens and the optical system.
[0010] ここで特に、光源手段と第 1又は第 2対物レンズとの間に介在する光学系では、レ 一ザ光や信号光の偏光状態に依存する偏光処理と該偏光状態に依存しない非偏光 処理とのうち一方の処理力 S、セットされた光ディスクの種類に応じてレーザ光や信号 光に対して施される。例えば一の種類の光ディスク (例えば BD)用のレーザ光は、偏 光ビームスプリツターにおける偏光状態に応じた選択的な反射、透過などの偏光処 理によって、第 1対物レンズに導かれると共にこれに応じた信号光が受光素子に導か れる。或いは、例えば他の種類の光ディスク(例えば、 DVD)用のレーザ光は、ダイク 口イツクミラー或いはハーフミラーにおける偏光状態によらない反射、透過などの非偏 光処理によって、第 2対物レンズに導かれると共にこれに応じた信号光が受光素子 に導かれる。  [0010] Here, in particular, in an optical system interposed between the light source means and the first or second objective lens, polarization processing that depends on the polarization state of laser light or signal light and non-dependence on the polarization state. It is applied to laser light and signal light according to the processing power S of polarization processing and the type of optical disc set. For example, laser light for one type of optical disk (for example, BD) is guided to the first objective lens by polarization processing such as selective reflection and transmission according to the polarization state in the polarization beam splitter. The corresponding signal light is guided to the light receiving element. Alternatively, for example, laser light for other types of optical discs (eg, DVD) is guided to the second objective lens by non-polarization processing such as reflection and transmission independent of the polarization state in the dichroic mirror or half mirror. The corresponding signal light is guided to the light receiving element.
[0011] このように、光ディスクの種類に応じて偏光処理と非偏光処理とを適宜に利用するこ とで、比較的容易にして二種類の対物レンズでレーザ光を別々に集光する形式を採 りつつ、一つの (即ち、共通の)受光素子へ信号光を導くことが可能となる。この際、 二種類の対物レンズを用いるので、異なる種類の光ディスクに対して夫々相応し ヽ光 学条件で、信号光を得ることが可能となり、信号光に係る信頼性と光学構成に係る簡 易性との両者を、非常に効率良く高めることが可能となる。  [0011] In this manner, by appropriately using polarization processing and non-polarization processing according to the type of optical disc, a method of condensing laser light with two types of objective lenses can be made relatively easily. In this way, the signal light can be guided to one (ie, common) light receiving element. At this time, since two types of objective lenses are used, it becomes possible to obtain signal light under different optical conditions for different types of optical discs, and it is easy to relate to the reliability and optical configuration related to signal light. It is possible to increase both the efficiency and the efficiency very efficiently.
[0012] 本発明の光ヘッド装置の一態様では、前記光源手段は、前記複数種類の光デイス クの各々用のレーザ光を出射する複数のレーザ光源を有する。  In one aspect of the optical head device of the present invention, the light source means includes a plurality of laser light sources that emit laser light for each of the plurality of types of optical disks.
[0013] この態様によれば、光源手段において、一の種類の光ディスク用のレーザ光と他の 種類の光ディスク用のレーザ光とが当初カゝら別々〖こ出射される。例えば、光源手段は[0013] According to this aspect, in the light source means, laser light for one type of optical disk and laser light for another type of optical disk are separately emitted from the initial stage. For example, the light source means
、青色レーザ光源と赤色レーザ光源とを有してもよい。 A blue laser light source and a red laser light source may be included.
[0014] 但し、光源手段は、一の種類の光ディスク用のレーザ光と他の種類の光ディスク用 のレーザ光とを、一つの光源力 発生した後に分離することで、光学系に向けて別々 に出射する構成を採ってもよい。即ち、光源手段は、例えば一つのレーザ光源と、光 分離を行う装置とを有してもよいし、或いは、光学系が、一つのレーザ光源からのレ 一ザ光を光分離するように構成してもよ ヽ。 [0014] However, the light source means separates the laser light for one type of optical disk and the laser light for another type of optical disk after generating one light source force, so that they are separated toward the optical system. The structure which radiates | emits may be taken. That is, the light source means may have, for example, one laser light source and a device for performing light separation, or the optical system is configured to separate the laser light from one laser light source. You can do it.
[0015] 本発明の光ヘッド装置の他の態様では、前記光学系は、前記偏光処理の少なくと も一部として、偏光ビームスプリツター面における前記偏光状態に依存する反射及び 透過を施し、前記非偏光処理の少なくとも一部として、ダイクロイツクミラー面又はノヽ 一フミラー面における前記偏光状態に依存しない反射及び透過を施す。  In another aspect of the optical head device of the present invention, the optical system performs reflection and transmission depending on the polarization state on a polarization beam splitter surface as at least a part of the polarization treatment, and As at least a part of the non-polarization treatment, reflection and transmission independent of the polarization state on the dichroic mirror surface or the first mirror surface are performed.
[0016] この態様によれば、例えば一の種類の光ディスク(例えば BD)用のレーザ光は、偏 光ビームスプリツター面を含む特殊ミラーやプリズムにおける偏光状態に応じた選択 的な反射、透過などの偏光処理によって、第 1対物レンズに導かれると共にこれに応 じた信号光が受光素子に導かれる。この際、例えばレーザ光の光路 (往路)と信号光 の光路 (復路)とで、偏光状態が変化するように λ /2板、 λ /4板等の光学部材が光路 に配置されてもよい。他方、例えば他の種類の光ディスク(例えば、 DVD、 CD)用のレ 一ザ光は、ダイクロイツクミラー面やノヽーフミラー面を含む特殊ミラーやプリズムにお ける偏光状態によらない反射、透過などの非偏光処理によって、第 2対物レンズに導 かれると共にこれに応じた信号光が受光素子に導かれる。  [0016] According to this aspect, for example, laser light for one type of optical disc (for example, BD) is selectively reflected or transmitted according to the polarization state of a special mirror or prism including a polarization beam splitter surface. Through this polarization process, the light is guided to the first objective lens and the corresponding signal light is guided to the light receiving element. In this case, for example, an optical member such as a λ / 2 plate or a λ / 4 plate may be arranged in the optical path so that the polarization state changes between the optical path of the laser light (outward path) and the optical path of the signal light (return path). . On the other hand, laser light for other types of optical discs (for example, DVD, CD), such as reflection and transmission independent of the polarization state of special mirrors and prisms including dichroic mirror surfaces and noise mirror surfaces, etc. By the non-polarization process, the light is guided to the second objective lens and the corresponding signal light is guided to the light receiving element.
[0017] 以上詳細に説明したように、本発明の光ヘッド装置によれば、光源手段、第 1及び 第 2対物レンズ、一つの受光素子及び光学系を備えるので、信号光に係る信頼性を 高めつつ且つ光学構成の簡易化を図りつつ、複数種類の光ディスクに対応可能とな る。  As described in detail above, according to the optical head device of the present invention, the light source means, the first and second objective lenses, the one light receiving element, and the optical system are provided. It is possible to handle a plurality of types of optical discs while increasing the optical configuration and simplifying the optical configuration.
[0018] 本発明の作用及び他の利得は次に説明する実施例力 明らかにされよう。  [0018] The operation and other advantages of the present invention will be clarified in the embodiment described below.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]本発明の実施例に係る光ヘッド装置の基本構成を示す斜視図である。 FIG. 1 is a perspective view showing a basic configuration of an optical head device according to an embodiment of the present invention.
[図 2]実施例に係る光ヘッド装置の基本構成を示す平面図である。  FIG. 2 is a plan view showing a basic configuration of an optical head device according to an example.
[図 3]実施例に係る光ヘッド装置が DVDに対して情報の記録又は再生を行う様子を 示す平面図である。  FIG. 3 is a plan view showing a state where the optical head device according to the example records or reproduces information on a DVD.
[図 4]実施例に係る光ヘッド装置が CDに対して情報の記録又は再生を行う様子を示 す平面図である。 [図 5]実施例に係る光ヘッド装置が BDに対して情報の記録を行う様子を示す平面図 である。 FIG. 4 is a plan view showing a state where the optical head device according to the example records or reproduces information on a CD. FIG. 5 is a plan view showing a state where the optical head device according to the example records information on a BD.
[図 6]実施例に係る光ヘッド装置が BD又は HD— DVDに対して情報の再生を行う様 子を示す平面図である。  FIG. 6 is a plan view showing a state in which the optical head device according to the example reproduces information from a BD or HD-DVD.
[図 7]実施例に係る光ヘッド装置における収差の補正を示す平面図である。  FIG. 7 is a plan view showing correction of aberrations in the optical head device according to the example.
[図 8]各面の配置に係る第 1実施例を示す模式的平面図である。 FIG. 8 is a schematic plan view showing a first embodiment relating to the arrangement of each surface.
[図 9]各面の基本配置を示す模式的平面図である。 FIG. 9 is a schematic plan view showing the basic arrangement of each surface.
[図 10]偏光ビームスプリツター面における偏光切り換えの様子を示す模式的平面図 である。  FIG. 10 is a schematic plan view showing a state of polarization switching on the polarization beam splitter surface.
[図 11]各面の配置に係る第 2実施例の光学系を示す模式的平面図である。  FIG. 11 is a schematic plan view showing an optical system of a second embodiment relating to the arrangement of each surface.
[図 12]各面の配置に係る第 3実施例の光学系を示す模式的平面図である。 FIG. 12 is a schematic plan view showing an optical system of a third example according to the arrangement of each surface.
[図 13]各面の配置に係る第 4実施例の光学系を示す模式的平面図である。 FIG. 13 is a schematic plan view showing an optical system of a fourth example relating to the arrangement of each surface.
[図 14]各面の配置に係る第 5実施例の光学系を示す模式的平面図である。 FIG. 14 is a schematic plan view showing an optical system of a fifth example according to the arrangement of each surface.
[図 15]各面の配置に係る第 6実施例の光学系を示す模式的平面図である。 FIG. 15 is a schematic plan view showing the optical system of Example 6 according to the arrangement of each surface.
[図 16]反射の回数に係る第 1実施例の光学系を示す模式的平面図である。 FIG. 16 is a schematic plan view showing the optical system of the first example relating to the number of reflections.
[図 17]反射の回数に係る第 2実施例の光学系を示す模式的平面図である。 FIG. 17 is a schematic plan view showing an optical system of a second example according to the number of reflections.
[図 18]反射の回数に係る第 3実施例の光学系を示す模式的平面図である。 FIG. 18 is a schematic plan view showing an optical system of a third example relating to the number of reflections.
[図 19]反射の回数に係る第 4実施例の光学系を示す模式的平面図である。 FIG. 19 is a schematic plan view showing an optical system of a fourth example according to the number of reflections.
[図 20]反射の回数に係る第 5実施例の光学系を示す模式的平面図である。 FIG. 20 is a schematic plan view showing an optical system of a fifth example relating to the number of reflections.
符号の説明 Explanation of symbols
1 光ヘッド装置  1 Optical head device
601 レーザダイオード  601 laser diode
602 レーザダイオード  602 laser diode
603 レーザダイオード  603 laser diode
501 DVDカップリングレンズ  501 DVD coupling lens
502 CDカップリングレンズ  502 CD coupling lens
613 整形素子  613 shaping element
623 液晶 SW素子 630 ダイク口プリズム 623 Liquid crystal SW element 630 Dyke mouth prism
640 DVDZCD用偏光グレーティング  640 DVDZCD polarization grating
643 偏光グレーティング  643 Polarization grating
M01 反射ミラー  M01 Reflection mirror
M03 反射ミラー  M03 Reflective mirror
P01 プリズム  P01 Prism
P01H ハーフミラー面  P01H Half mirror surface
P01D 第 1ダイクロイツクミラー面  P01D 1st dichroic mirror surface
P02 プリズム  P02 Prism
P02P 偏光ビームスプリツター面  P02P Polarized beam splitter surface
P02D 第 2ダイクロイツクミラー面  P02D 2nd dichroic mirror surface
660 DVD/CD/HD— DVD用コリメータ  660 DVD / CD / HD—DVD collimator
663 BD用コリメータ  663 Collimator for BD
673 1Z2波長板  673 1Z2 wave plate
703 BD用ホログラム  703 BD hologram
710 立ち上げミラー  710 Launch mirror
720 液晶収差補正素子  720 Liquid crystal aberration correction element
730 広帯域 1Z4波長板  730 broadband 1Z4 wave plate
743 BD用対物レンズ  743 BD objective lens
740 DVDZCDZHD— DVD用対物レンズ  740 DVDZCDZHD— DVD objective lens
FMO FM用ミラー  Mirror for FMO FM
FM3 FM用ミラー  FM3 FM mirror
750 マルチレンズ  750 multi lens
760 OEIC  760 OEIC
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明を実施するための最良の形態について実施形態毎に順に図面に基 づいて説明する。  Hereinafter, the best mode for carrying out the present invention will be described in order for each embodiment based on the drawings.
<光ヘッド装置の構成 > 実施例に係る光ヘッド装置の基本的な構成を図 1及び図 2を参照して説明する。こ こに、図 1は、本発明の実施例に係る光ヘッド装置の基本構成を示す斜視図であり、 図 2は、実施例に係る光ヘッド装置の基本構成を示す平面図である。 <Configuration of optical head device> A basic configuration of the optical head device according to the embodiment will be described with reference to FIG. 1 and FIG. FIG. 1 is a perspective view showing the basic configuration of the optical head apparatus according to the embodiment of the present invention. FIG. 2 is a plan view showing the basic configuration of the optical head apparatus according to the embodiment.
[0022] 図 1及び図 2に示すように、本実施例に係る光ヘッド装置 1は、主に本発明に係る「 光源手段」の一例としてのレーザダイオード 601、レーザダイオード 602及びレーザ ダイオード 603と、本発明に係る「第 1対物レンズ」の一例としての BD用対物レンズ 7 43と、本発明に係る「第 2対物レンズ」の一例としての DVDZCDZHD— DVD用対 物レンズ 740と、本発明に係る「受光素子」の一例としての OEIC (Opto- Electronic In tegrated Circuit) 760と、本発明に係る「光学系」の一例としてのプリズム P01及びプ リズム P02とを備え、複数種類(例えば、 DVD、 CD、 BD或いは HD— DVD)の光デ イスクに対して情報の読み書きが可能な、 V、わゆるマルチドライブを構成する。  As shown in FIG. 1 and FIG. 2, the optical head device 1 according to the present embodiment mainly includes a laser diode 601, a laser diode 602, and a laser diode 603 as examples of “light source means” according to the present invention. , BD objective lens 743 as an example of “first objective lens” according to the present invention, DVDZCDZHD—DVD objective lens 740 as an example of “second objective lens” according to the present invention, and An OEIC (Opto-Electron Integrated Circuit) 760 as an example of the “light receiving element” and a prism P01 and a prism P02 as examples of the “optical system” according to the present invention are provided. It constitutes a so-called multi-drive, V, which can read and write information to and from optical discs such as CD, BD or HD—DVD.
[0023] レーザダイオード 601は、例えば半導体レーザを備えて成り、本発明に係る「非共 通レーザ光」の一例として、所謂赤色レーザ光である、波長 650nmのレーザ光 (即ち 、 DVD専用の非共通レーザ光)を、往路光(以下、各レーザダイオードから光デイス クまでのレーザ光を適宜「往路光」とも言う)として出射する。  The laser diode 601 includes, for example, a semiconductor laser. As an example of the “non-common laser beam” according to the present invention, a laser beam having a wavelength of 650 nm, that is, a so-called red laser beam (ie, a non-dedicated laser beam dedicated to DVD). Common laser light) is emitted as forward light (hereinafter, laser light from each laser diode to the optical disk is also referred to as “forward light” as appropriate).
[0024] レーザダイオード 602は、例えば半導体レーザを備えて成り、本発明に係る「非共 通レーザ光」の一例として、波長 780nmのレーザ光(即ち、 CD専用の非共通レーザ 光)を、往路光として出射する。  The laser diode 602 includes a semiconductor laser, for example, and as an example of the “non-common laser beam” according to the present invention, a laser beam having a wavelength of 780 nm (that is, a non-common laser beam dedicated to CD) is forwarded. Emits as light.
[0025] レーザダイオード 603は、例えば半導体レーザを備えて成り、本発明に係る「共通 レーザ光」の一例として、所謂青色レーザ光である、波長 405nmのレーザ光 (即ち、 BD用と HD— DVD用とで共通の共通レーザ光)を、往路光として出射する。  The laser diode 603 includes a semiconductor laser, for example. As an example of the “common laser beam” according to the present invention, a so-called blue laser beam having a wavelength of 405 nm (ie, for BD and HD DVD) Common laser light) is emitted as forward light.
[0026] DVDカップリングレンズ 501は、レーザダイオード 601から出射された往路光をプリ ズム P01に供給するためのレンズである。  [0026] The DVD coupling lens 501 is a lens for supplying forward light emitted from the laser diode 601 to the prism P01.
[0027] CDカップリングレンズ 502は、レーザダイオード 602から出射された往路光をプリズ ム P01に供給するためのレンズである。  [0027] The CD coupling lens 502 is a lens for supplying forward light emitted from the laser diode 602 to the prism P01.
[0028] 整形素子 613は、レーザダイオード 603から出射された共通レーザ光を、拡大整形 するレンズである。  The shaping element 613 is a lens that enlarges and shapes the common laser light emitted from the laser diode 603.
[0029] 液晶 SW (Switch)素子 623は、スィッチの ON (オン) ZOFF (オフ)が切り換えられ 、例えば ONの際は入射する共通レーザ光(直線偏光)をそのまま出射し、 OFFの際 は、入射する共通レーザ光(直線偏光)を円偏光に変換して出射する。尚、 HD-D VDに対応する必要がない場合には、液晶 SW素子 623はなくてもよい。 [0029] The liquid crystal SW (Switch) element 623 can be switched between ON (ON) and ZOFF (OFF). For example, when ON, incident common laser light (linearly polarized light) is emitted as it is, and when OFF, incident common laser light (linearly polarized light) is converted into circularly polarized light and emitted. If it is not necessary to support HD-D VD, the liquid crystal SW element 623 may be omitted.
[0030] ダイク口プリズム 630は、レーザダイオード 601から出射されたレーザ光の光路と、 レーザダイオード 602から出射されたレーザ光の光路との交点上に配置されており、 レーザダイオード 601から出射されたレーザ光を透過し、レーザダイオード 602から 出射されたレーザ光を反射することで、両レーザ光の光路を揃えるように構成される The Dyke mouth prism 630 is disposed on the intersection of the optical path of the laser light emitted from the laser diode 601 and the optical path of the laser light emitted from the laser diode 602, and is emitted from the laser diode 601. The laser beam is transmitted and reflected by the laser beam emitted from the laser diode 602, so that the optical paths of both laser beams are aligned.
[0031] DVDZCD用偏光グレーティング 640は、波長選択性グレーティング 6402 (CD) 及び波長選択性グレーティング 6403 (DVD)、並びに偏光フィルタ 6401 (戻り光対 策)の積層構造(図 2中の拡大図を参照)を採り、トラッキングエラー用のサブビームを 発生させると共に、広帯域 1Z4波長板 730との組み合わせにより各レーザダイォー ドへの戻り光量を低減する。 [0031] Polarizing grating 640 for DVDZCD is a laminated structure of wavelength selective grating 6402 (CD), wavelength selective grating 6403 (DVD), and polarizing filter 6401 (return light countermeasure) (see enlarged view in Fig. 2) ) To generate a sub beam for tracking error, and reduce the amount of light returning to each laser diode by combining with the broadband 1Z4 wavelength plate 730.
[0032] 偏光グレーティング 643は、入射されるレーザ光(共通レーザ光)を回折することでト ラッキングエラー用のサブビームを発生させると共に、広帯域 1Z4波長板 730との組 み合わせによりレーザダイオードへの戻り光量を低減する。  [0032] The polarization grating 643 generates a sub beam for tracking error by diffracting the incident laser beam (common laser beam) and returns to the laser diode in combination with the broadband 1Z4 wavelength plate 730. Reduce the amount of light.
[0033] 反射ミラー M01及び反射ミラー M03は、照射されるレーザ光を反射することで、レ 一ザ光の光路を適宜変更する。  [0033] The reflection mirror M01 and the reflection mirror M03 appropriately change the optical path of the laser beam by reflecting the irradiated laser beam.
[0034] プリズム P01は、ハーフミラー面 P01H及び第 1ダイクロイツクミラー面 P01Dを備え る。  The prism P01 includes a half mirror surface P01H and a first dichroic mirror surface P01D.
[0035] ここに、ハーフミラー面 P01Hは、非共通レーザ光の光路に配置されており、非共 通レーザ光の一部を DVDZCDZHD— DVD用対物レンズ 740へ向けて透過する と共に、 DVDZCDZHD— DVD用対物レンズ 740から戻る信号光(以下、光デイス クに反射されて OEIC760へ至るレーザ光を適宜「復路光」とも言う)部分を反射する  [0035] Here, the half mirror surface P01H is disposed in the optical path of the non-common laser beam, and transmits a part of the non-common laser beam to the DVDZCDZHD—DVD objective lens 740 and DVDZCDZHD—DVD. The signal light returning from the objective lens 740 (hereinafter, the laser light reflected by the optical disk and reaching the OEIC 760 is also referred to as “return light” as appropriate)
[0036] ここに、第 1ダイクロイツクミラー面 P01Dは、共通レーザ光 (往路光)及びそれに係 る信号光 (復路光)を反射し、非共通レーザ光 (往路光)及びそれに係る信号光 (復 路光)を透過する面である。そして、共通レーザ光のうち偏光ビームスプリツター面 P0 2Pを透過する部分 (例えば、 P偏光)の光路であり、且つ非共通レーザ光の一部の光 路に配置される。 Here, the first dichroic mirror surface P01D reflects the common laser light (outward light) and the signal light related thereto (return light), and the non-common laser light (outward light) and the related signal light ( This is the surface that transmits the return light. Of the common laser light, the polarization beam splitter surface P0 It is the optical path of the part that transmits 2P (for example, P-polarized light) and is disposed in the optical path of a part of the non-common laser light.
[0037] プリズム P02は、偏光ビームスプリツター面 P02P及び第 2ダイクロイツクミラー面 P0 2Dを備える。  [0037] The prism P02 includes a polarization beam splitter surface P02P and a second dichroic mirror surface P0 2D.
[0038] ここに、偏光ビームスプリツター面 P02Pは、共通レーザ光 (往路光)の光路に配置 されており、例えば共通レーザ光のうち電界成分が入射面に垂直な S偏光を反射し て BD用対物レンズ 740へと誘導すると共に、電界成分が入射面に平行な P偏光を 透過して DVDZCDZHD— DVD用対物レンズ 740へと誘導する。加えて、 BD用 対物レンズ 740から戻る信号光 (復路光)を透過すると共に、 DVDZCDZHD— D VD用対物レンズ 740から戻る信号光を反射する。  [0038] Here, the polarization beam splitter surface P02P is disposed in the optical path of the common laser light (outward light). For example, the electric field component of the common laser light reflects S-polarized light that is perpendicular to the incident surface. In addition to guiding to the objective lens 740 for DVD, the electric field component transmits P-polarized light parallel to the incident surface to guide it to the DVDZCDZHD—DVD objective lens 740. In addition, the signal light returning from the BD objective lens 740 (return light) is transmitted, and the signal light returning from the DVDZCDZHD—D VD objective lens 740 is reflected.
[0039] ここに、第 2ダイクロイツクミラー面 P02Dは、共通レーザ光に係る信号光 (往路光) を透過し、非共通レーザ光に係る信号光 (復路光)を反射する面である。そして、共 通レーザ光 (往路光)に係る信号光の光路であり、且つ非共通レーザ光に係る信号 光 (復路光)のうちハーフミラー面 P01Hに反射される部分の光路に配置される。  Here, the second dichroic mirror surface P02D is a surface that transmits the signal light (forward light) related to the common laser light and reflects the signal light (return light) related to the non-common laser light. And it is an optical path of the signal light related to the common laser light (forward light), and is arranged in the optical path of the part reflected by the half mirror surface P01H among the signal light (return light) related to the non-common laser light.
[0040] DVD/CD/HD— DVD用コリメータ 660及び BD用コリメータ 663は、入射される レーザ光を平行光にする。  [0040] DVD / CD / HD—DVD collimator 660 and BD collimator 663 convert incident laser light into parallel light.
[0041] 1Z2波長板 673は、入射する直線偏光を,それと直交する直線偏光に変換して出 射する。  [0041] The 1Z2 wave plate 673 converts the incident linearly polarized light into linearly polarized light orthogonal to the incident linearly polarized light and emits it.
[0042] BD用ホログラム 703は、 BD用のレーザ光に含まれる 3ビーム(0次回折光、士 1次 回折光)の球面収差を補正するように構成される。  The BD hologram 703 is configured to correct the spherical aberration of three beams (0th order diffracted light and first order diffracted light) included in the BD laser light.
[0043] 立ち上げミラー 710は、平行光にされたレーザ光を BD用対物レンズ 743或いは D[0043] The rising mirror 710 converts the laser light made into parallel light into the BD objective lens 743 or D
VDZCDZHD— DVD用対物レンズ 740へ向力つて立ち上げるように構成される。 VDZCDZHD—configured to force the DVD objective lens 740 up.
[0044] 液晶収差補正素子 720は、例えば液晶を備えて成り、液晶の持つ誘電率及び屈 折率の異方性を利用して、各レーザ光の光路を調整し、コマ収差 (接線方向及び径 方向)及び非点収差 (0度及び 45度)を補正するように構成される。 The liquid crystal aberration correction element 720 includes a liquid crystal, for example, and adjusts the optical path of each laser beam by utilizing the dielectric constant and the anisotropy of the refractive index of the liquid crystal, thereby coma aberration (tangential direction and Configured to correct for radial) and astigmatism (0 and 45 degrees).
[0045] 広帯域 1Z4波長板 730は、例えば水晶を備えて成り、立ち上げられた非共通レー ザ光或いは共通レーザ光のように広帯域にわたるレーザ光を、直線偏光から円偏光 へと変換し、他方で、円偏光から直線偏光へと変換する。 [0046] BD用対物レンズ 743は、入射するレーザ光 (往路光)を光ディスク (BD)の記録面 に集光すると共に、集光されたレーザ光に基く記録面からの信号光 (復路光)を、 OE IC760へと伝達するように構成される。 [0045] The broadband 1Z4 wavelength plate 730 includes, for example, a crystal, and converts a wide-range laser beam such as a raised non-common laser beam or a common laser beam from linearly polarized light to circularly polarized light. Thus, the circularly polarized light is converted to linearly polarized light. [0046] The BD objective lens 743 focuses incident laser light (outgoing light) on the recording surface of the optical disc (BD), and signal light (return light) from the recording surface based on the collected laser light. To the OE IC760.
[0047] DVDZCDZHD— DVD用対物レンズ 740は、入射するレーザ光(往路光)を光 ディスク(DVDZCDZHD— DVD)の記録面に集光すると共に、集光されたレーザ 光に基く記録面からの信号光 (復路光)を、 OEIC760へと伝達するように構成される  [0047] DVDZCDZHD—DVD objective lens 740 condenses incident laser light (outgoing light) on the recording surface of an optical disc (DVDZCDZHD—DVD), and a signal from the recording surface based on the condensed laser light. Configured to transmit light (return light) to OEIC760
[0048] FM (Front Monitor:FM)用ミラー FM0及び FM用ミラー FM3は、光ディスク( DVD、 CD、 BD或いは HD— DVD)の記録又は再生時に、共通レーザ光、非共通 レーザ光、若しくは信号光の一部を、不図示のフロントモニタへと誘導するように構成 される。 [0048] FM (Front Monitor: FM) mirror FM0 and FM mirror FM3 are common laser light, non-common laser light, or signal light when recording or reproducing optical discs (DVD, CD, BD or HD-DVD). It is configured to guide a part of this to a front monitor (not shown).
[0049] マルチレンズ 750は、光ディスク(DVD、 CD、 BD或いは HD— DVD)の記録面か らの信号光 (復路光)を、 OEIC760へと比較的高集光率で集光するように構成され る。  [0049] The multi-lens 750 is configured to condense the signal light (return light) from the recording surface of the optical disc (DVD, CD, BD or HD-DVD) onto the OEIC 760 with a relatively high light collection rate. .
[0050] OEIC760は、例えばフォトダイオードを備えて成り、マルチレンズ 750によって集 光された、 DVD、 CD、 BD或いは HD— DVDの記録面からの信号光(復路光)を、 受光することで光ディスク(DVDZCDZHD— DVD)の記録又は再生に供するよう に構成される。  [0050] The OEIC 760 includes, for example, a photodiode, and receives the signal light (return light) from the recording surface of the DVD, CD, BD, or HD-DVD collected by the multi-lens 750 to receive the optical disc. It is configured to be used for recording or playback (DVDZCDZHD—DVD).
[0051] 以上のように本実施例に係る光ヘッド装置 1は、本発明に係る「光源手段」の一例と してのレーザダイオード 601、レーザダイオード 602及びレーザダイオード 603と、本 発明に係る「第 1対物レンズ」の一例としての BD用対物レンズ 743と、本発明に係る「 第 2対物レンズ」の一例としての DVDZCDZHD— DVD用対物レンズ 740と、本発 明に係る「受光素子」の一例としての OEIC760と、本発明に係る「光学系」の一例と してのプリズム P01及びプリズム P02とを備えて構成されているので、複数種類の光 ディスクに対応可能となる。  As described above, the optical head device 1 according to this example includes the laser diode 601, the laser diode 602, and the laser diode 603 as examples of the “light source unit” according to the present invention, and the “ BD objective lens 743 as an example of the “first objective lens”, DVDZCDZHD—DVD objective lens 740 as an example of the “second objective lens” according to the present invention, and an example of the “light receiving element” according to the present invention And the prism P01 and the prism P02 as an example of the “optical system” according to the present invention, it is possible to deal with a plurality of types of optical disks.
<各種光ディスクの記録又は再生に係る動作 >  <Operations related to recording or playback of various optical disks>
次に、以上のように構成された本実施例に係る光ヘッド装置 1を用いて各種光ディ スクの記録又は再生を行う際の動作について、図 1及び図 2に加えて、図 3から図 7を 用いて説明する。 Next, in addition to FIGS. 1 and 2, the operations when recording or reproducing various optical disks using the optical head device 1 according to the present embodiment configured as described above are illustrated in FIGS. 7 It explains using.
< < DVDに対して情報の記録又は再生を行う際の動作 > >  <<Operation when recording or playing back information on DVD>>
先ず、図 3を用いて、本実施例に係る光ヘッド装置 1が DVDに対して情報の記録 又は再生を行う際の動作を説明する。ここに、図 3は、実施例に係る光ヘッド装置が DVDに対して情報の記録又は再生を行う様子を示す平面図である。  First, the operation when the optical head device 1 according to this embodiment records or reproduces information on a DVD will be described with reference to FIG. FIG. 3 is a plan view showing how the optical head device according to the embodiment records or reproduces information on the DVD.
[0052] 図 3に示すように DVDに対して情報の記録又は再生を行う際には、先ず、レーザダ ィオード 601が駆動されて、例えば波長 650nmのレーザ光(即ち、 DVD専用の非共 通レーザ光)を出射する。出射されたレーザ光 (往路光)は、ダイク口プリズム 630を透 過し、 DVDZCD用偏光グレーティング 640の波長選択性グレーティング 6403 (DV D)を通過する際にサブビームを発生し、反射ミラー M01に反射される。反射された 往路光の一部はハーフミラー面 P01Hに反射されて FM用ミラー FM01を介してフロ ントモニタに導かれ、残りはプリズム P01内のハーフミラー面 P01H及び第 1ダイク口 イツクミラー面 P01Dを透過し、 DVDZCDZHD— DVD用コリメータ 660によって平 行光にされ、立ち上げミラー 710により DVDZCDZHD— DVD用対物レンズ 740 へ向かって立ち上げられる。立ち上げられた往路光は、液晶収差補正素子 720によ つてコマ収差 (接線方向及び径方向)及び非点収差 (0度及び 45度)が補正され、広 帯域 1Z4波長板 730によって直線偏光から円偏光へと変換された後、 DVDZCD ZHD— DVD用対物レンズ 740によって DVDの記録面に照射される。加えて、 DV Dに照射されたレーザ光に基く記録面からの信号光 (復路光)は、第 1ダイクロイツクミ ラー面 P01Dまでは往路を逆に迪る力 それ以降の経路は、往路とは異なる。即ち、 第 1ダイクロイツクミラー面 P01Dを透過する復路光のうち、ハーフミラー面 P01Hを透 過するものは、 DVDZCD用偏光グレーティング 640内の偏光フィルタ 6401によつ て光量が低減されるが、第 2ダイクロイツクミラー面 P02Dによって反射された復路光 は、マルチレンズ 750を介して、 OEIC760によって受光される。  As shown in FIG. 3, when recording or reproducing information on a DVD, first, the laser diode 601 is driven to, for example, a laser beam having a wavelength of 650 nm (ie, a non-common laser dedicated to DVD). Light). The emitted laser light (outgoing light) is transmitted through the Dyke mouth prism 630, generates a sub-beam when passing through the wavelength selective grating 6403 (DV D) of the polarization grating 640 for DVDZCD, and is reflected by the reflecting mirror M01. Is done. Part of the reflected forward light is reflected by the half mirror surface P01H and guided to the front monitor via the FM mirror FM01, and the rest is transmitted through the half mirror surface P01H and the first dichroic aperture mirror surface P01D in the prism P01. The DVDZCDZHD—DVD collimator 660 makes the beam parallel, and the rising mirror 710 raises the DVDZCDZHD—DVD objective lens 740. The outgoing forward light is corrected for coma (tangential and radial) and astigmatism (0 and 45 degrees) by the liquid crystal aberration correction element 720, and is converted from linearly polarized light by the broadband 1Z4 wavelength plate 730. After being converted into circularly polarized light, the DVDZCD ZHD—DVD objective lens 740 irradiates the DVD recording surface. In addition, the signal light from the recording surface (return light) based on the laser light irradiated to DV D is the force that reverses the forward path to the first dichroic mirror surface P01D. Is different. That is, of the return light that passes through the first dichroic mirror surface P01D, the light that passes through the half mirror surface P01H is reduced in light amount by the polarization filter 6401 in the DVDZCD polarization grating 640. The return light reflected by the dichroic mirror surface P02D is received by the OEIC 760 via the multi lens 750.
[0053] 以上、図 3を用いて示したように、本実施例に係る光ヘッド装置 1によると、 DVDに 対して情報の記録又は再生が好適に行われることとなる。  As described above with reference to FIG. 3, according to the optical head device 1 of the present embodiment, information recording or reproduction is suitably performed on a DVD.
< < CDに対して情報の記録又は再生を行う際の動作 > >  <<Operation when recording or playing back information on a CD>>
続いて、図 4を用いて、本実施例に係る光ヘッド装置 1が CDに対して情報の記録 又は再生を行う際の動作を説明する。ここに、図 4は、実施例に係る光ヘッド装置が CDに対して情報の記録又は再生を行う様子を示す平面図である。この際、上述した DVDの場合と異なるのは主に、使用される光ディスクの種類 (DVDでなく CD)、レー ザ光の波長(650nmでなぐ 780nm)、それを出射するレーザダイオード(レーザダ ィオード 601でなくレーザダイオード 602)、及び出射されて力もハーフミラー面 P01 Hに至るまでの光路である。それ以外は基本的に上述した DVDの場合と同様である ため、適宜説明を省略する。 Subsequently, referring to FIG. 4, the optical head device 1 according to this example records information on the CD. Or the operation | movement at the time of reproducing | regenerating is demonstrated. FIG. 4 is a plan view showing how the optical head device according to the embodiment records or reproduces information on the CD. In this case, the main differences from the DVD described above are mainly the type of optical disk used (CD, not DVD), the wavelength of the laser beam (780 nm compared to 650 nm), and the laser diode (laser diode 601) that emits it. Not only the laser diode 602), but also the optical path from the emitted light to the half mirror surface P01H. Other than that, it is basically the same as the case of the above-described DVD, so that the description will be omitted as appropriate.
[0054] 図 4に示すように CDに対して情報の記録又は再生を行う際には、先ず、レーザダイ オード 602が駆動されて、例えば波長 780nmのレーザ光(即ち、 CD専用の非共通 レーザ光)を出射する。出射されたレーザ光 (往路光)は、ダイク口プリズム 630に反 射され、ハーフミラー面 P01Hに至る。それ以降は、 DVDの場合と同様にして、光デ イスク (CD)の記録面に照射される。加えて、集光されたレーザ光に基く記録面から の信号光 (復路光)は、 DVDの場合と同様にして、 OEIC760によって受光される。  As shown in FIG. 4, when information is recorded on or reproduced from a CD, first, the laser diode 602 is driven to, for example, a laser beam having a wavelength of 780 nm (ie, a non-common laser beam dedicated to CD). ). The emitted laser light (outgoing light) is reflected by the Dyke mouth prism 630 and reaches the half mirror surface P01H. After that, the recording surface of the optical disc (CD) is irradiated in the same way as in the case of DVD. In addition, signal light (return light) from the recording surface based on the collected laser light is received by the OEIC 760 in the same manner as in the case of DVD.
[0055] 以上、図 4を用いて示したように、本実施例に係る光ヘッド装置 1によると、 CDに対 して情報の記録又は再生が好適に行われることとなる。  As described above with reference to FIG. 4, according to the optical head device 1 of the present embodiment, information recording or reproduction is suitably performed on a CD.
< < BDに対して情報の記録を行う際の動作 > >  <<Operation when recording information on BD>>
続いて、図 5を用いて、本実施例に係る光ヘッド装置 1が BDに対して情報の記録を 行う際の動作を説明する。ここに、図 5は、実施例に係る光ヘッド装置が BDに対して 情報の記録を行う様子を示す平面図である。この際、上述した DVDの場合と異なる のは主に、使用される光ディスクの種類(DVDでなく BD)、レーザ光の波長(650nm でなぐ 405nm)、それを出射するレーザダイオード(レーザダイオード 601でなくレ 一ザダイオード 603)、対物レンズ(DVDZCDZHD— DVD用対物レンズ 740でな く BD用対物レンズ 743)、及びそれに伴う光路である。それ以外は基本的に上述し た DVDの場合と同様であるため、適宜説明を省略する。  Next, the operation when the optical head device 1 according to the present embodiment records information on a BD will be described with reference to FIG. FIG. 5 is a plan view showing how the optical head device according to the embodiment records information on the BD. At this time, the main differences from the DVD described above are mainly the type of optical disk used (BD instead of DVD), the wavelength of the laser beam (405 nm compared to 650 nm), and the laser diode (Laser Diode 601) that emits it. Laser diode 603), objective lens (DVDZCDZHD—BD objective lens 743 instead of DVD objective lens 740), and the associated optical path. Other than that, it is basically the same as the case of the DVD described above, so the description will be omitted as appropriate.
[0056] 図 5に示すように BDに対して情報の記録を行う際には、先ず、レーザダイオード 60 3が駆動されて、例えば波長 405nmのレーザ光(即ち、 BD用と HD— DVD用とで共 通の共通レーザ光)を出射する。出射されたレーザ光 (往路光)は、整形素子 613に よって偏光ビームスプリツター面 P02Pに入射する際の入射面に垂直な S偏光として 拡大整形され、スィッチが ONの液晶 SW素子 623をそのまま通過し、偏光グレーティ ング 643通過する際にサブビームを発生し、プリズム P02内へ侵入する。この際、進 入する往路光は電界成分が入射面に垂直な S偏光なので、偏光ビームスプリツター 面 P02Pで反射され、反射された S偏光は BD用コリメータ 663によって平行光にされ 、 1Z2波長板 673によって直線偏光に変換され、反射ミラー M03によって BD用ホロ グラム 703へと誘導され、 BD用ホログラム 703によって自身に含まれる 3ビーム(0次 回折光、 ± 1次回折光)の球面収差が補正され、立ち上げミラー 710により BD用対 物レンズ 743へ向かって立ち上げられる。立ち上げられた往路光は、液晶収差補正 素子 720によってコマ収差 (接線方向及び径方向)及び非点収差 (0度及び 45度)が 補正され、広帯域 1Z4波長板 730によって直線偏光から円偏光へと変換され、 BD 用対物レンズ 743によって光ディスク(BD)の記録面に照射される。カロえて、 BDに照 射されたレーザ光に基く記録面からの信号光 (復路光)は、第 2ダイクロイツクミラー面 P02Dまでは往路を逆に迪るが、その後の経路は、往路とは異なる。即ち、復路光の うち、偏光ビームスプリツター面 P02Pに反射されるものは、偏光グレーティング 643 によって光量が低減される力 第 2ダイクロイツクミラー面 P02Dを透過した復路光は、 マルチレンズ 750を介して、 OEIC760によって受光される。 As shown in FIG. 5, when recording information on a BD, first, the laser diode 603 is driven, for example, with a laser beam having a wavelength of 405 nm (that is, for BD and HD-DVD). Common laser beam). The emitted laser light (outgoing light) is converted into S-polarized light perpendicular to the incident surface when it is incident on the polarization beam splitter surface P02P by the shaping element 613. It passes through the liquid crystal SW element 623 that has been enlarged and is switched on, and a sub-beam is generated when it passes through the polarization grating 643 and enters the prism P02. At this time, since the incoming forward light is S-polarized light whose electric field component is perpendicular to the incident surface, the reflected S-polarized light is reflected by the polarization beam splitter surface P02P and collimated by the BD collimator 663, and the 1Z2 wavelength plate It is converted into linearly polarized light by 673, guided to the BD hologram 703 by the reflecting mirror M03, and the spherical aberration of the three beams (0th order diffracted light and ± 1st order diffracted light) contained in itself is corrected by the BD hologram 703. Then, it is raised toward the object lens 743 for BD by the raising mirror 710. The outgoing forward light is corrected for coma (tangential and radial) and astigmatism (0 and 45 degrees) by the liquid crystal aberration correction element 720, and is converted from linearly polarized light to circularly polarized light by the broadband 1Z4 wavelength plate 730. And the recording surface of the optical disc (BD) is irradiated by the objective lens 743 for BD. The signal light (return light) from the recording surface based on the laser light irradiated on the BD travels in the reverse direction up to the second dichroic mirror surface P02D. Different. That is, of the return path light, the light reflected by the polarization beam splitter surface P02P is a force that reduces the amount of light by the polarization grating 643. The return path light transmitted through the second dichroic mirror surface P02D passes through the multi lens 750. And received by the OEIC760.
[0057] 以上、図 5を用いて示したように、本実施例に係る光ヘッド装置 1によると、 BDに対 して情報の記録が好適に行われることとなる。  As described above with reference to FIG. 5, according to the optical head device 1 of the present embodiment, information recording is preferably performed on a BD.
< < BD又は HD— DVDに対して情報の再生を行う際の動作 > >  <<BD or HD—Operation when playing back information on DVD>>
続いて、図 6を用いて、本実施例に係る光ヘッド装置 1が BD又は HD— DVDに対 して情報の再生を行う際の動作を説明する。ここに、図 6は、実施例に係る光ヘッド装 置が BD又は HD— DVDに対して情報の再生を行う様子を示す平面図である。この 際、上述した BDに係る記録の場合と異なるのは主に、液晶 SW素子 623を OFFに する点及びそれに伴う偏光の光路の違いである。それ以外は基本的に上述した BD に係る記録の場合と同様であるため、適宜説明を省略する。  Next, the operation when the optical head device 1 according to this embodiment reproduces information from a BD or HD-DVD will be described with reference to FIG. FIG. 6 is a plan view showing how the optical head device according to the embodiment reproduces information from a BD or HD-DVD. In this case, the main difference from the case of the recording related to the BD described above is that the liquid crystal SW element 623 is turned OFF and the optical path of the polarized light associated therewith is different. The rest is basically the same as in the case of the recording related to the BD described above, and the description is omitted as appropriate.
[0058] 図 6に示すように BD又は HD— DVDに対して情報の再生を行う際には、 BDに係 る記録の場合と同様にレーザダイオード 603が駆動されて、例えば波長 405nmのレ 一ザ光 (即ち、 BD用と HD— DVD用とで共通の共通レーザ光)を出射する。出射さ れたレーザ光 (往路光)は、整形素子 613によって偏光ビームスプリツター面 P02Pに 入射する際の入射面に垂直な S偏光として拡大整形される。ここで特に、 BDに係る 記録の場合とは異なり、液晶 SW素子 623のスィッチが OFFであるため、出射された 往路光は、直線偏光力 円偏光へと変換される。この円偏光は、広義には楕円偏光 も含む趣旨である力 いずれにせよ、偏光ビームスプリツター面 P02Pに入射する際 の入射面に垂直な S偏光と、偏光ビームスプリツター面 P02Pに入射する際の入射面 に平行な P偏光とを含有する。故に、往路光のうち S偏光の成分は偏光ビームスプリ ッタ一面 P02Pに反射され、その後は上述した BDの記録の場合と同様の光路を採り 、 BD用対物レンズ 743を介して BDに対して情報の再生が好適に行われる。他方で 、往路光のうち P偏光の成分は偏光ビームスプリツター面 P02Pを透過して、第 1ダイ クロイツクミラー面 P01Dによって反射されると、その後は上述した DVD或いは CDの 記録時と同様の光路を採り、 DVD/CD/HD DVD用対物レンズ 740によって H D— DVDの記録面に照射される。加えて、 HD— DVDに照射されたレーザ光に基く 記録面からの信号光 (復路光)は、 DVD或いは CDの場合と異なり、第 1ダイクロイツ クミラー面 P01Dによって反射される。反射された復路光は、更に偏光ビームスプリツ ター面 P02Pによって反射される力 DVD或いは CDの場合と異なり、第 1ダイクロイ ックミラー面 P01Dを透過して、マルチレンズ 750を介して、 OEIC760によって受光 される。 [0058] As shown in FIG. 6, when information is reproduced from a BD or HD-DVD, the laser diode 603 is driven in the same manner as in the case of recording related to the BD, for example, at a wavelength of 405 nm. The light (that is, common laser light common to BD and HD-DVD) is emitted. Emitted The laser beam (forward light) is enlarged and shaped by the shaping element 613 as S-polarized light perpendicular to the incident surface when entering the polarization beam splitter surface P02P. Here, in particular, unlike in the case of recording according to BD, since the switch of the liquid crystal SW element 623 is OFF, the emitted outgoing light is converted into linearly polarized light and circularly polarized light. In any case, this circularly polarized light includes elliptical polarized light. In any case, this circularly polarized light is s-polarized light that is perpendicular to the incident surface when incident on the polarized beam splitter surface P02P, and incident on the polarized beam splitter surface P02P. Contains P-polarized light parallel to the plane of incidence. Therefore, the S-polarized light component of the forward light is reflected by the polarization beam splitter P02P, and after that, the same optical path as in the case of BD recording described above is taken, and the BD is passed through the BD objective lens 743 to the BD. Information reproduction is preferably performed. On the other hand, when the P-polarized component of the forward light passes through the polarization beam splitter surface P02P and is reflected by the first dichroic mirror surface P01D, the same as in the above-described DVD or CD recording. The optical path is taken, and the DVD-CD / HD DVD objective lens 740 irradiates the HD-DVD recording surface. In addition, the signal light (return light) from the recording surface based on the laser light applied to the HD-DVD is reflected by the first dichroic mirror surface P01D, unlike DVD or CD. The reflected return light is further reflected by the polarized beam splitter surface P02P, and is transmitted through the first dichroic mirror surface P01D and received by the OEIC 760 via the multi lens 750, unlike the case of the force DVD or CD.
[0059] 以上、図 6を用いて示したように、本実施例に係る光ヘッド装置 1によると、 BD又は HD— DVDに対して情報の再生が好適に行われることとなる。  As described above with reference to FIG. 6, according to the optical head device 1 of the present embodiment, information is preferably reproduced from a BD or HD-DVD.
< <光ヘッド装置 1における収差の補正 > >  <<Aberration correction in optical head device 1>
続いて、図 7を用いて、本実施例に係る光ヘッド装置 1における収差の補正につい て説明を加える。ここに、図 7は、実施例に係る光ヘッド装置における収差の補正を 示す平面図である。  Next, correction of aberration in the optical head device 1 according to the present embodiment will be described with reference to FIG. FIG. 7 is a plan view showing aberration correction in the optical head device according to the example.
[0060] 図 7において、本実施例に係る光ヘッド装置 1は特に、レーザ光の光路に沿って各 コリメータ 660, 663を同時にスライドさせるコリメータスライダ 665と、該コリメータスラ イダ 665を移動するためのコリメータ移動用ステッピングモータ 666とを更に備え、液 晶収差補正素子 720と併せて各種収差 (例えば、コマ収差、非点収差及び球面収差 )を補正するよう構成されて 、る。 In FIG. 7, the optical head device 1 according to the present embodiment particularly has a collimator slider 665 for simultaneously sliding the collimators 660 and 663 along the optical path of the laser beam, and a mechanism for moving the collimator slider 665. A collimator moving stepping motor 666 and various aberrations (e.g. coma, astigmatism and spherical aberration) together with the liquid crystal aberration correction element 720. ) Is configured to correct.
[0061] 接線方向及び径方向のコマ収差は、液晶収差補正素子 720を用いて補正される。  The tangential and radial coma aberrations are corrected using the liquid crystal aberration correction element 720.
[0062] 0度及び 45度の非点収差も、液晶収差補正素子 720を用いて補正される。 [0062] Astigmatism of 0 degrees and 45 degrees is also corrected using the liquid crystal aberration correction element 720.
[0063] 球面収差を補正する際には、コリメータスライダ 665をコリメータ移動用ステッピング モータ 666によって適宜移動させることで補正される。 When correcting the spherical aberration, correction is performed by appropriately moving the collimator slider 665 by the collimator moving stepping motor 666.
[0064] 以上、図 7を用いて示したように、複数種類の光ディスクに対応する上で生じ得る各 種収差が好適に補正されることとなる。 As described above with reference to FIG. 7, various types of aberration that may occur when dealing with a plurality of types of optical disks are preferably corrected.
[0065] 以上、図 3から図 7を用いて示したように、本実施例に係る光ヘッド装置 1によると、 複数種類の光ディスクに対応可能ないわゆるマルチドライブを実現可能となる。As described above with reference to FIGS. 3 to 7, according to the optical head device 1 of this embodiment, it is possible to realize a so-called multi-drive that can handle a plurality of types of optical disks.
<各面の配置について > <About the arrangement of each side>
次に、上述した光ヘッド装置 1の中でも特に、ハーフミラー面 P01H、偏光ビームス プリッタ一面 P02P、第 1ダイクロイツクミラー面 P01D及び第 2ダイクロイツクミラー面 P Next, among the optical head devices 1 described above, in particular, the half mirror surface P01H, the polarization beam splitter surface P02P, the first dichroic mirror surface P01D, and the second dichroic mirror surface P
02Dの各面の配置の基本的な考え方について、図 8から図 15を用いて説明をカロえ る。 The basic concept of the arrangement of each surface of 02D will be explained using Figs.
< <各面の配置に係る第 1実施例 > >  <<First example concerning the arrangement of each surface>>
先ず、図 8から図 10を用いて、各面の配置に係る第 1実施例について説明する。こ こに、図 8は、各面の配置に係る第 1実施例を示す模式的平面図であり、図 9は、各 面の基本配置を示す模式的平面図であり、図 10は、偏光ビームスプリツター面 P02 Pにおける偏光切り換えの様子を示す模式的平面図である。  First, the first embodiment relating to the arrangement of each surface will be described with reference to FIGS. FIG. 8 is a schematic plan view showing the first embodiment relating to the arrangement of each surface, FIG. 9 is a schematic plan view showing the basic arrangement of each surface, and FIG. FIG. 5 is a schematic plan view showing a state of polarization switching on a beam splitter surface P02 P.
[0066] 図 8において、光ヘッド装置 1は、複数の波長の異なるレーザ光を出射する複数の レーザドライバを有し、複数種類の光ディスクに好適に対応すベぐハーフミラー面 P 01H、偏光ビームスプリツター面 P02P、第 1ダイクロイツクミラー面 P01D及び第 2ダ ィクロイツクミラー面 P02Dを以下の(1)から (5)に留意して配置する。  In FIG. 8, an optical head device 1 has a plurality of laser drivers that emit a plurality of laser beams having different wavelengths, and is a half mirror surface P 01H that is suitable for a plurality of types of optical disks. Arrange the presetter plane P02P, the first dichroic mirror plane P01D, and the second dichroic mirror plane P02D while paying attention to the following (1) to (5).
[0067] (1)第 1ダイクロイツクミラー面 P01D及び第 2ダイクロイツクミラー面 P02Dは、波長 選択について論理が反転し、且つ互いに対角に位置するように配置する。加えて、 他の対角には、機能の異なる、光分離合成膜 (ノヽ一フミラー面 P01H及び偏光ビー ムスプリッタ一面 P02P)を配置する。ここで、波長選択について「論理が反転」してい るとは、ある波長についての透過又は反射と、他の波長についての透過又は反射と が反転していることを言う。具体的には、第 1ダイクロイツクミラー面 P01Dが短波長( 例えば λ l =405nm)のレーザ光を往復路共に反射し、且つ長波長(例えば λ 2 = 660或いはえ 3 = 785nm)のレーザ光を往復路共に透過させる場合には、第 2ダイ クロイツクミラー面 P02Dが短波長レーザ光を往復路共に透過し、且つ長波長レーザ 光を往復路共に反射させるような関係を指す (図 9参照)。このような関係で各面を配 置すれば、波長に応じてレーザ光の光路を適宜分離 Z合成できる。例えば、第 1ダイ クロイツクミラー面 P01Dは、往路で、短波長の往路光を反射し長波長のレーザ光を 透過することで各々の光路を合成する。そして、両レーザ光は共に一つの対物レン ズに導かれる。更に、第 1ダイクロイツクミラー面 P01Dは、復路でも、短波長の復路 光を反射し長波長のレーザ光を透過するので、今度は各々の光路を分離する。その 後、波長選択について第 1ダイクロイツクミラー面 P01Dとは論理が反転している第 2 ダイクロイツクミラー面 P02Dは、復路で、短波長の復路光を透過し長波長のレーザ 光を反射するので、各々の光路が合成され、最終的に一つの受光素子によって、両 復路光ともが受光されることとなる。尚、本実施例によると、上述の如き波長依存性の あるレーザ光の光路の分離 Z合成に加えて、偏光依存性のある偏光ビームスプリツ ター面 P02Pによる偏光処理、及び偏光依存性のな!、ノヽ一フミラー面 P01Hによる非 偏光処理も施されるので、短波長のレーザ光には偏光処理を施して偏光光とするこ とで、 SZNが好適に確保できるうえに、各対物レンズでの光利用効率が向上する。 他方で、長波長のレーザ光には非偏光処理を施して非偏光光とすることで、戻り光 量の変動が抑制され複屈折も軽減される。 [0067] (1) The first dichroic mirror surface P01D and the second dichroic mirror surface P02D are arranged so that their logics are reversed with respect to wavelength selection and are positioned diagonally to each other. In addition, a light separation / synthesis film (a first mirror surface P01H and a first polarization beam splitter surface P02P) having different functions is disposed on the other diagonal. Here, “logic inversion” for wavelength selection means transmission or reflection for one wavelength and transmission or reflection for another wavelength. Says that is reversed. Specifically, the first dichroic mirror surface P01D reflects a laser beam having a short wavelength (for example, λ l = 405 nm) along the round trip path, and a laser beam having a long wavelength (for example, λ 2 = 660 or 3 = 785 nm). Is transmitted through the round-trip path, the second dichroic mirror surface P02D transmits the short-wavelength laser light along the round-trip path and reflects the long-wavelength laser light along the round-trip path (see Fig. 9). ). If each surface is arranged in such a relationship, the optical path of the laser beam can be appropriately separated and combined according to the wavelength. For example, the first dichroic mirror surface P01D synthesizes the respective optical paths by reflecting the short-wavelength forward light and transmitting the long-wavelength laser light in the forward path. Both laser beams are guided to one objective lens. Furthermore, since the first dichroic mirror surface P01D reflects the short-wavelength return light and transmits the long-wavelength laser light even in the return path, each optical path is separated this time. After that, the second dichroic mirror surface P02D, whose logic is inverted with respect to the first dichroic mirror surface P01D in terms of wavelength selection, returns the short wavelength return light and reflects the long wavelength laser light in the return path. Then, the respective optical paths are combined, and finally, both the return path lights are received by one light receiving element. In addition, according to the present embodiment, in addition to the wavelength-dependent laser beam optical path separation Z synthesis as described above, the polarization treatment by the polarization beam splitter surface P02P having polarization dependence, and the polarization dependence! Since the non-polarization treatment by the mirror surface P01H is also applied, SZN can be suitably secured by applying polarization treatment to the short-wavelength laser light and the light from each objective lens. Use efficiency improves. On the other hand, non-polarized light is applied to the long-wavelength laser light to reduce the amount of return light and birefringence is reduced.
(2)この際、線分 (ml +m2)と (nl +n2)とを等しくするとよ 、。即ち、(ml +m2) - (nl +n2) =0となるように、各面の間の光学的な距離 (即ち、光路長)を設定すると よい。ここに、 mlはレーザ光の光路上のハーフミラー面 P01Hと第 2ダイクロイツクミラ 一面 P02Dとの間の光路長を、 m2はレーザ光の光路上のハーフミラー面 P01Hと第 1ダイクロイツクミラー面 P01Dとの間の光路長を、 nlはレーザ光の光路上の偏光ビ 一ムスプリッタ一面 P02Pと第 1ダイクロイツクミラー面 P01Dとの間の光路長を、 n2は レーザ光の光路上の偏光ビームスプリツター面 P02Pと第 2ダイクロイツクミラー面 PO 2Dとの間の光路長を夫々示す。即ち、第 1ダイクロイツクミラー面 P01Dと第 2ダイク口 イツクミラー面 P02Dとの間で分離され互いに異なる光路を迪る複数のレーザ光の間 で、光路差を解消するよう配置するとよい。このように配置されると、各レーザ光が互 いに共役な関係を保持できる。 (2) At this time, the line segments (ml + m2) and (nl + n2) should be equal. In other words, the optical distance (ie, optical path length) between the surfaces should be set so that (ml + m2)-(nl + n2) = 0. Where ml is the optical path length between the half mirror surface P01H and the second dichroic mirror surface P02D on the laser light path, and m2 is the half mirror surface P01H and the first dichroic mirror surface on the laser light path. Nl is the optical path length between the plane of the polarization beam splitter P02P on the optical path of the laser beam P02P and the first dichroic mirror plane P01D, and n2 is the polarization beam path on the optical path of the laser beam. The optical path length between the presetter surface P02P and the second dichroic mirror surface PO 2D is shown. That is, the first dichroic mirror surface P01D and the second dichroic mouth It may be arranged so as to eliminate the optical path difference between a plurality of laser beams separated from the optical mirror surface P02D and passing through different optical paths. When arranged in this way, the laser beams can maintain a conjugate relationship with each other.
[0069] (3)レーザ光が複数種類使われても、複数の信号光は 1つの OEIC760で受光す ることが望ましい。システム構成の簡素化からの要請である。この要請に対しては、上 述した各面の配置によって光路を合成することで応えることができる。  [0069] (3) Even if a plurality of types of laser beams are used, it is desirable that a plurality of signal beams be received by one OEIC 760. This is a request from the simplification of the system configuration. This requirement can be met by combining the optical paths according to the arrangement of the surfaces described above.
[0070] (4) m2及び n2 (図 8参照)は極力小さくするとよい。これにより、多層構造が可能と なり、小型化が促進され、コストが削減される。ただし、 m2及び n2を夫々 0にして、 1 つの膜構成により青に対する偏光系と赤に対する非偏光系とを両立させることは困 難である。仮に、 1つの膜構成にすると、短波長域 (例えば 405nmを含む波長域)及 び長波長域 (例えば 660nm及び 785nmを含む波長域)の各々の波長域において、 位相の乱れ等が発生し得るからである。従って、 m2及び n2の値は、予め実験的、経 験的、シミュレーション等により、位相の乱れと、小型化というトレードオフの問題を、 実際の光ヘッド装置 1に要求される性能や装置仕様が満足されるように、例えば膜の 種類別又は固体別に予め定めればよい。このようにして、偏光系と非偏光系とでは別 の膜構成とし、且つ、上述したようにダイク口面を論理反転させることで、成膜の難易 度が下がると共に、短〜長波長域にて、所望の特性が安定して得られる。  [0070] (4) m2 and n2 (see FIG. 8) should be as small as possible. This allows for a multilayer structure, which promotes miniaturization and reduces costs. However, it is difficult to make both the polarization system for blue and the non-polarization system for red with one film configuration by setting m2 and n2 to 0, respectively. If a single film configuration is used, phase disturbance or the like may occur in each of the short wavelength range (for example, a wavelength range including 405 nm) and the long wavelength range (for example, a wavelength range including 660 nm and 785 nm). Because. Therefore, the values of m2 and n2 are based on experimental, empirical, simulation, etc., and the trade-off problem of phase disturbance and miniaturization is found. What is necessary is just to predetermine, for example according to the kind or solid of a film | membrane so that it may be satisfied. In this way, the polarization system and the non-polarization system have different film configurations, and by logically inverting the dike mouth surface as described above, the difficulty of film formation is reduced, and the short to long wavelength range is achieved. Thus, the desired characteristics can be stably obtained.
[0071] (5)例えば同一波長( λ 1 =405nm)のレーザ光であっても、状況によって光路を 切り替えたい場合は、液晶 SW素子 623のような、偏光状態 (直線偏光、円偏光)を 切り換える素子を備えるとよい(図 10参照)。この液晶 SW素子 623によって偏光状態 が切り換えられると、それに伴い、偏光ビームスプリツター面 P02Pにおける反射或い は透過のされ方も切り換わる。例えば、偏光ビームスプリツター面 P02Pで、 S偏光は 、往路で反射され復路で透過するようにし、 P偏光は往路で透過し復路で反射するよ うにすることができる。この場合、例えば同一波長のレーザ光であっても、 S偏光のみ 力もなる直線偏光であれば、往路で透過することはなくなる。他方で、このレーザ光 が液晶 SW素子 623によって直線偏光から、 S偏光及び P偏光を共に含む円偏光へ と切り換えられると、図 10に示すように偏光ビームスプリツター面 P02Pによって、 S偏 光 (往路光)は往路で反射されて BD用対物レンズ 743へとつづく光路 1に、 P偏光( 往路光)は往路で透過して DVDZCDZHD— DVD用対物レンズ 740へとつづく光 路 2に夫々分離され、更に戻ってきた S偏光 (復路光)及び P偏光 (復路光)は合成さ れて 1つの受光素子 OEIC760によって受光可能となる。それゆえ、複数種類の光デ イスクにも好適に対応可能となる。 [0071] (5) For example, even in the case of laser light having the same wavelength (λ 1 = 405 nm), when it is desired to switch the optical path depending on the situation, the polarization state (linearly polarized light, circularly polarized light) as in the liquid crystal SW element 623 is changed. It is advisable to provide a switching element (see Figure 10). When the polarization state is switched by the liquid crystal SW element 623, the reflection or transmission of the polarization beam splitter surface P02P is switched accordingly. For example, on the polarization beam splitter surface P02P, S-polarized light can be reflected on the forward path and transmitted on the return path, and P-polarized light can be transmitted on the forward path and reflected on the return path. In this case, for example, even laser light of the same wavelength is not transmitted in the forward path if it is linearly polarized light having only S-polarized light. On the other hand, when this laser light is switched from linearly polarized light to circularly polarized light including both S-polarized light and P-polarized light by the liquid crystal SW element 623, as shown in FIG. 10, the polarized light beam splitter surface P02P causes S-polarized light ( Outgoing light) is reflected on the outgoing path to the optical path 1 that leads to the BD objective lens 743. Outgoing light) is transmitted through the outgoing path and separated into DVDZCDZHD—DVD objective lens 740, which is separated into optical path 2 respectively, and the returned S-polarized light (return light) and P-polarized light (return light) are combined 1 Light can be received by one light receiving element OEIC760. Therefore, it is possible to suitably cope with a plurality of types of optical disks.
[0072] 以上、図 8から図 10を用いて示したように、ハーフミラー面 P01H、偏光ビームスプ リツター面 P02P、第 1ダイクロイツクミラー面 P01D及び第 2ダイクロイツクミラー面 PO 2Dが配置されるので、光ディスクの種類或いはレーザ光の波長域に応じて、偏光処 理と非偏光処理とが適宜に施され、比較的容易にして二種類の対物レンズでレーザ 光 (往路光)を別々に集光する形式を採りつつ、一つの受光素子 OEIC760へ信号 光 (復路光)を導くことが可能となる。 [0072] As described above with reference to FIGS. 8 to 10, the half mirror surface P01H, the polarization beam splitter surface P02P, the first dichroic mirror surface P01D, and the second dichroic mirror surface PO 2D are arranged. Depending on the type of optical disk or the wavelength range of the laser beam, polarization and non-polarization are appropriately performed, and the laser beam (outgoing light) is condensed separately by two types of objective lenses with relative ease. This makes it possible to guide the signal light (return light) to one light receiving element OEIC760.
< <各面の配置に係る第 2実施例 > >  <<2nd example concerning arrangement of each side>>
続いて、図 8から図 10に加えて図 11を用いて、各面の配置に係る第 2実施例につ いて説明する。ここに、図 11は、各面の配置に係る第 2実施例の光学系を示す模式 的平面図である。  Next, a second embodiment relating to the arrangement of each surface will be described with reference to FIG. 11 in addition to FIG. 8 to FIG. FIG. 11 is a schematic plan view showing the optical system of the second embodiment relating to the arrangement of each surface.
[0073] 図 11において、本実施例に係る光ヘッド装置 1が、上述した各面の配置に係る第 1 実施例に係る光ヘッド装置 1と比べて異なるのは、プリズムの数である。具体的には、 2つのプリズムであるプリズム P01及びプリズム P02に代えて、 1つのプリズムであるプ リズム P03を備えることであり、その他の構成は共通である。このように、たとえプリズ ムの数が変化したとしても、各プリズム内のハーフミラー面 P01H、偏光ビームスプリ ッタ一面 P02P、第 1ダイクロイツクミラー面 P01D及び第 2ダイクロイツクミラー面 P02 Dの配置が同じであれば、上述した第 1実施例と同様に、複数種類の光ディスクに好 適に対応可能となる。この際、必ずしも 2つのプリズムは必要でない。  In FIG. 11, the optical head device 1 according to the present embodiment differs from the optical head device 1 according to the first embodiment relating to the arrangement of each surface described above in the number of prisms. Specifically, instead of the prisms P01 and P02 that are two prisms, the prism P03 that is one prism is provided, and other configurations are common. Thus, even if the number of prisms changes, the arrangement of the half mirror surface P01H, the polarization beam splitter surface P02P, the first dichroic mirror surface P01D, and the second dichroic mirror surface P02 D in each prism If they are the same, a plurality of types of optical discs can be suitably handled as in the first embodiment described above. At this time, two prisms are not necessarily required.
< <各面の配置に係る第 3実施例 > >  <<Third example of arrangement of each surface>>
続いて、図 8から図 10に加えて図 12を用いて、各面の配置に係る第 3実施例につ いて説明する。ここに、図 12は、各面の配置に係る第 3実施例の光学系を示す模式 的平面図である。  Subsequently, a third embodiment relating to the arrangement of each surface will be described with reference to FIG. 12 in addition to FIG. 8 to FIG. FIG. 12 is a schematic plan view showing the optical system of the third example relating to the arrangement of the surfaces.
[0074] 図 12において、本実施例に係る光ヘッド装置 1が、上述した各面の配置に係る第 1 実施例に係る光ヘッド装置 1と比べて異なるのは、プリムの有無、面の数、該面の数 の違いに伴うレーザダイオード及び対物レンズの数である。具体的には、 2つのプリ ズムであるプリズム P01及びプリズム P02がな!/、こと、第 3ダイクロイツクミラー面 P03 D及びハーフミラー面 P03Hを更に備えること、該ハーフミラー面 P03Hに向けて波 長 λ 3のレーザ光が照射されること、及びそのレーザ光が照射される CD用対物レン ズ 745であり、その他の構成は共通である。このように、たとえプリズムが無くとも、各 プリズム内のハーフミラー面 P01H、偏光ビームスプリツター面 P02P、第 1ダイクロイ ックミラー面 P01D及び第 2ダイクロイツクミラー面 P02Dの配置が同じであれば、上述 した第 1実施例と同様に、複数種類の光ディスクに好適に対応可能となる。加えて、 第 3ダイクロイツクミラー面 P03Dの波長選択についての論理が第 2ダイクロイツクミラ 一面 P02Dに比べて反転し、且つ互いに対角〖こ位置するように配置されて 、れば、 波長 λ 3のレーザ光も、波長 λ 2のレーザ光と同様にして、 CD用対物レンズ 745で 集光される。即ち、比較的容易にして三種類の対物レンズでレーザ光 (往路光)を別 々に集光する形式を採りつつ、一つの受光素子 OEIC760へ信号光 (復路光)を導く ことが可能となる。この際、必ずしもプリズム自体は必要でなぐ対物レンズ及び面の 数は、 8面、 10面 · · ·と増やすことも可能である。 In FIG. 12, the optical head device 1 according to the present embodiment differs from the optical head device 1 according to the first embodiment regarding the arrangement of each surface described above in the presence / absence of a prim and the number of surfaces. The number of the faces The number of laser diodes and objective lenses associated with the difference. Specifically, the prisms P01 and P02, which are the two prisms, are not! /, The third dichroic mirror surface P03 D and the half mirror surface P03H are further provided, and the waves toward the half mirror surface P03H are provided. This is the CD objective lens 745 irradiated with the laser beam having the length λ3 and the laser beam, and other configurations are common. As described above, even if there is no prism, the arrangement of the half mirror surface P01H, the polarization beam splitter surface P02P, the first dichroic mirror surface P01D, and the second dichroic mirror surface P02D in each prism is the same as described above. As in the first embodiment, it is possible to suitably cope with a plurality of types of optical disks. In addition, if the logic for wavelength selection of the third dichroic mirror surface P03D is inverted compared to the second dichroic mirror surface P02D and arranged so as to be diagonally opposite each other, the wavelength λ 3 This laser beam is also focused by the CD objective lens 745 in the same manner as the laser beam of wavelength λ2. That is, it is possible to guide the signal light (return light) to one light receiving element OEIC 760 while adopting a form that condenses laser light (forward light) separately by three types of objective lenses with relative ease. . In this case, the number of objective lenses and surfaces that do not necessarily require the prism itself can be increased to 8, 10, and so on.
< <各面の配置に係る第 4実施例 > > <<Fourth embodiment related to the arrangement of each surface>>
続いて、図 8から図 10に加えて図 13を用いて、各面の配置に係る第 4実施例につ いて説明する。ここに、図 13は、各面の配置に係る第 4実施例の光学系を示す模式 的平面図である。  Next, a fourth embodiment relating to the arrangement of each surface will be described with reference to FIG. 13 in addition to FIG. 8 to FIG. FIG. 13 is a schematic plan view showing the optical system of the fourth example according to the arrangement of the surfaces.
図 13において、本実施例に係る光ヘッド装置 1が、上述した各面の配置に係る第 1 実施例に係る光ヘッド装置 1と比べて主に異なるのは、各面の間の光学的な距離で ある。具体的には、(nl +n2) - (ml +m2)力^)ではない。この場合、 OEIC760に 備わる各受光部の間隔を、(nl +n2)— (ml +m2)と同じ長さにするとよい。或いは 逆に、 OEIC760に備わる各受光部の間隔が空いているならば、(nl +n2) - (ml +m2)がこの各受光部の間隔と同じ長さになるように、各面の間隔を調整するとよい 。その他の構成は共通であれば、このように、たとえ各面の間隔或いは各受光部の 間隔が変化したとしても、上述した第 1実施例と同様に、複数種類の光ディスクに好 適に対応可能となる。この際、 OEIC760における各レーザ光 (復路光)は、共役な関 係が保たれる。 In FIG. 13, the optical head device 1 according to the present embodiment is mainly different from the optical head device 1 according to the first embodiment relating to the arrangement of the surfaces described above in that the optical head between the surfaces is different. It is a distance. Specifically, it is not (nl + n2)-(ml + m2) force ^). In this case, the interval between the light receiving parts provided in the OEIC 760 should be the same length as (nl + n2) − (ml + m2). Or, conversely, if the intervals between the light receiving parts of the OEIC 760 are large, the distance between the surfaces is such that (nl + n2)-(ml + m2) is the same length as the distance between the light receiving parts. It is good to adjust. If the other configurations are common, even if the spacing between the surfaces or the spacing between the light receiving parts changes in this way, it is possible to cope with a plurality of types of optical discs, as in the first embodiment. It becomes. At this time, each laser beam (return light) in the OEIC 760 has a conjugate function. The person in charge is kept.
< <各面の配置に係る第 5実施例 > >  <<5th Example concerning arrangement of each side>>
続いて、図 8から図 10に加えて図 14を用いて、各面の配置に係る第 5実施例につ いて説明する。ここに、図 14は、各面の配置に係る第 5実施例の光学系を示す模式 的平面図である。  Next, a fifth embodiment relating to the arrangement of each surface will be described with reference to FIG. 14 in addition to FIG. 8 to FIG. FIG. 14 is a schematic plan view showing the optical system of the fifth example according to the arrangement of the surfaces.
[0076] 図 14において、本実施例に係る光ヘッド装置 1が、上述した各面の配置に係る第 1 実施例に係る光ヘッド装置 1と比べて主に異なるのは、光学系の構成である。具体的 には、 DVD/CD/HD— DVD用コリメータ 660及び BD用コリメータ 663、並びに シリンダーレンズ 755を備えることであり、その他の構成は共通である。このように、た とえ光学系の構成が変化したとしても、各プリズム内のハーフミラー面 P01H、偏光ビ 一ムスプリッタ一面 P02P、第 1ダイクロイツクミラー面 P01D及び第 2ダイクロイツクミラ 一面 P02Dの配置が同じであれば、上述した第 1実施例と同様に、複数種類の光デ イスクに好適に対応可能となる。特に、波長 λ 1のレーザ光 (往路光)を、例えば BDと HD— DVDとで異なる 2つのレンズ系へと夫々導くことが可能であり、この際、各レン ズ系において DVDZCDZHD— DVD用コリメータ 660の倍率及び BD用コリメータ 663の倍率が夫々独立に設定可能である。即ち、所望の RIM値及び Coupling強度 を各レンズ系において夫々独立に設定可能である。その結果、非点収差を補正する 際においても、 S字レンジ及び、 OEIC760上の Beam径を独立に設定可能である。 尚、第 1実施例のみならず、上述した他の実施例においても、本実施例のようにコリメ ータ及びシリンダーレンズを設けることが可能である。  In FIG. 14, the optical head device 1 according to the present embodiment is mainly different from the optical head device 1 according to the first embodiment relating to the arrangement of each surface described above in the configuration of the optical system. is there. Specifically, a DVD / CD / HD—DVD collimator 660, a BD collimator 663, and a cylinder lens 755 are provided, and other configurations are common. Thus, even if the configuration of the optical system changes, the half mirror surface P01H, the polarization beam splitter surface P02P, the first dichroic mirror surface P01D, and the second dichroic mirror surface P02D in each prism If the arrangement is the same, a plurality of types of optical disks can be suitably handled as in the first embodiment. In particular, it is possible to guide laser light (outgoing light) of wavelength λ 1 to two different lens systems, for example, BD and HD—DVD. At this time, DVDZCDZHD—DVD collimator in each lens system. The magnification of 660 and the magnification of BD collimator 663 can be set independently. That is, a desired RIM value and coupling intensity can be set independently for each lens system. As a result, even when correcting astigmatism, the S-shaped range and the beam diameter on the OEIC 760 can be set independently. Not only the first embodiment but also the other embodiments described above can be provided with a collimator and a cylinder lens as in this embodiment.
< <各面の配置に係る第 6実施例 > >  <<Sixth embodiment related to the layout of each surface>>
続いて、図 8から図 10に加えて図 15を用いて、各面の配置に係る第 6実施例につ いて説明する。ここに、図 15は、各面の配置に係る第 6実施例の光学系を示す模式 的平面図である。  Next, a sixth embodiment relating to the arrangement of each surface will be described with reference to FIG. 15 in addition to FIG. 8 to FIG. FIG. 15 is a schematic plan view showing the optical system of the sixth example according to the arrangement of the surfaces.
[0077] 図 15において、本実施例に係る光ヘッド装置 1が、上述した各面の配置に係る第 1 実施例に係る光ヘッド装置 1と比べて主に異なるのは、波長 λ 1のレーザ光 (往路光 )の光路である。これは、例えば偏光ビームスプリツター面 Ρ02Ρへ入射する波長 λ 1 のレーザ光を S偏光のみからなる直線偏光とすること、或いは偏光ビームスプリツター 面 P02Pに代えて、ハーフミラーを用いること(即ち、偏光ビームスプリツター面 P02P で行われる偏光処理を非偏光処理に変えること)によって実現され得る。その他の構 成は共通である。このように、たとえ波長 λ 1のレーザ光の光路が変化したとしても、 それ以外 (具体的には、波長え 2或いはえ 3のレーザ光)の光路は、上述した第 1実 施例と同様であり、複数種類の光ディスク、例えば DVD、 CD、及び BDに好適に対 応可能となる。尚、第 1実施例のみならず、上述した他の実施例においても、本実施 例のように波長 λ 1のレーザ光の光路を変えることで例えば DVD、 CD、及び BDに 好適に対応可能となる。 In FIG. 15, the optical head device 1 according to the present embodiment is mainly different from the optical head device 1 according to the first embodiment relating to the arrangement of each surface described above in that the laser having the wavelength λ 1 This is the optical path of light (outgoing light). This is because, for example, the laser beam having the wavelength λ 1 incident on the polarizing beam splitter surface Ρ02 と す る is converted into linearly polarized light consisting of only S-polarized light, or the polarized beam splitter. Instead of the surface P02P, it can be realized by using a half mirror (ie, changing the polarization processing performed on the polarization beam splitter surface P02P to non-polarization processing). Other configurations are common. In this way, even if the optical path of the laser beam having the wavelength λ 1 is changed, the optical path of the other (specifically, the laser beam having the wavelength 2 or 3) is the same as in the first embodiment described above. Thus, it is possible to suitably cope with a plurality of types of optical discs such as DVD, CD, and BD. In addition to the first embodiment, not only the first embodiment but also the other embodiments described above can be suitably adapted to, for example, DVD, CD, and BD by changing the optical path of the laser light having the wavelength λ 1 as in this embodiment. Become.
[0078] 以上、図 8から図 15を用いて示したように各面を配置すると、複数種類の光ディスク に好適に対応可能となる。  As described above, when each surface is arranged as shown in FIGS. 8 to 15, it is possible to suitably cope with a plurality of types of optical disks.
<反射の回数に関する条件にっ 、て >  <Conditions regarding the number of reflections>
次に、ハーフミラー面 P01H、偏光ビームスプリツター面 P02P、第 1ダイクロイツクミ ラー面 P01D及び第 2ダイクロイツクミラー面 P02D等における反射の回数に関する 条件について、図 16から図 20を用いて説明をカ卩える。  Next, the conditions regarding the number of reflections on the half mirror surface P01H, the polarization beam splitter surface P02P, the first dichroic mirror surface P01D, the second dichroic mirror surface P02D, etc. will be described with reference to FIGS. I can see you.
[0079] 上記反射の回数に関する条件が課されるのは、複数種類の光ディスクに対応する ために、複数の対物レンズを使うためである。具体的には、複数種類の光ディスク (例 えば DVD、 CD、 BD、 HD-DVD)に対応する複数個の対物レンズ(例えば、 DVD ZCDZHD— DVD用対物レンズ 740及び BD用対物レンズ 743)と、信号光 (復路 光)を受光可能な一つの受光素子 (例えば、 OEIC760)とを備える光ヘッド装置 1で あって、各対物レンズ力 異な光路を迪つてくる複数種類の信号光を夫々一つの受 光素子で受光する際には、各光ディスクの径方向及び接線方向の 2軸を受光素子上 において同一の座標軸となるように投影する必要があるためである。これは、各光デ イスクにおいて、径方向の位置情報であるトラッキングエラーを正しく得るためでもあり 、加えて各光ディスクにおけるレンズ偏倚方向を揃える必要があるためでもある。そし て、上述の軸に関する条件を満たすには、受光素子に至る際に光路が最終的に揃う ことは勿論のこと、各光ディスクからの像の向きを考慮すると、光ディスクと水平方向 に立ち上げ若しくは立ち下げられて力 受光素子に至るまでの反射回数が所定の条 件を更に満たす必要がある。即ち、各光ディスク (各対物レンズ)からの反射回数を N f回、 Mf回とすると I Nf— Mf Iは 0又は偶数となる必要がある。 The condition regarding the number of times of reflection is imposed because a plurality of objective lenses are used to support a plurality of types of optical disks. Specifically, a plurality of objective lenses (for example, DVD ZCDZHD—DVD objective lens 740 and BD objective lens 743) corresponding to a plurality of types of optical discs (eg, DVD, CD, BD, HD-DVD), An optical head device 1 having a single light receiving element (for example, OEIC760) capable of receiving signal light (return path light), and receiving each one of a plurality of types of signal light passing through optical paths having different objective lens strengths. This is because when receiving light with an optical element, it is necessary to project the two axes of the radial direction and the tangential direction of each optical disc so that they are the same coordinate axis on the light receiving element. This is because the tracking error, which is positional information in the radial direction, is correctly obtained in each optical disk, and in addition, the lens deflection direction in each optical disk needs to be aligned. And in order to satisfy the above-mentioned conditions regarding the axis, the optical paths are finally aligned when reaching the light receiving element, and in consideration of the direction of the image from each optical disk, The number of reflections from falling down to the force light receiving element must further satisfy the prescribed condition. That is, the number of reflections from each optical disk (each objective lens) is N If f times and Mf times, I Nf-Mf I must be 0 or even.
[0080] 従って、この条件、即ち I Nf—Mf Iは 0又は偶数となる必要があるという反射の回 数に関する条件を満たせば、像が互いに反転せずに済み、上述の軸に関する条件 を満たし、複数種類の光ディスクに対応可能となる。その具体的態様は、以下に示す 反射の回数に係る実施例により明らかになるであろう。 Therefore, if this condition, that is, the condition regarding the number of reflections that I Nf−Mf I needs to be 0 or an even number is satisfied, the images do not invert each other, and the above-described condition regarding the axis is satisfied. It becomes possible to deal with a plurality of types of optical discs. The specific aspect will be clarified by the following examples relating to the number of reflections.
< <反射の回数に係る第 1実施例 > >  <<First example concerning the number of reflections>>
先ず、図 16を用いて、反射の回数に係る第 1実施例について説明する。ここに、図 16は、反射の回数に係る第 1実施例の光学系を示す模式的平面図である。  First, the first embodiment relating to the number of reflections will be described with reference to FIG. FIG. 16 is a schematic plan view showing the optical system of the first example relating to the number of reflections.
[0081] 図 16によると、本実施例に係る光ヘッド装置 1は、 2つの対物レンズ (DVDZCDZ HD— DVD用対物レンズ 740及び BD用対物レンズ 743)、 4枚のミラー(ミラー Ml、 ミラー M2、ミラー M3、ミラー M4、うちミラー M4はハーフミラーとしても機能する)、及 び一つの受光素子 OEIC760を備え、各ミラーにおける入射角が夫々 45度となるよう に構成されている。尚、上記ミラー Ml及びミラー M2は例えば図 2に示す反射ミラー M03に、ミラー M3は例えば図 2に示す第 1ダイクロイツクミラー面 P01Dに、ミラー M 4は図 2に示す偏光ビームスプリツター面 P02Pに夫々対応する。このような構成にお いて、反射の回数を計算すると、 I Nf—Mf I = 2— 2 = 0となる。即ち、上述の反射 の回数に関する条件を満たす。従って、図 16の構成によれば、像が互いに反転せず に済み、加えて OEIC760に至る際に光路が最終的に揃うので、複数種類の光ディ スクに対応可能であるといえる。 According to FIG. 16, the optical head device 1 according to this example includes two objective lenses (DVDZCDZ HD—DVD objective lens 740 and BD objective lens 743), four mirrors (mirror Ml, mirror M2). , Mirror M3, mirror M4, of which mirror M4 also functions as a half mirror) and one light-receiving element OEIC760, and each mirror has an incident angle of 45 degrees. The mirror Ml and the mirror M2 are, for example, the reflecting mirror M03 shown in FIG. 2, the mirror M3 is, for example, the first dichroic mirror surface P01D shown in FIG. 2, and the mirror M 4 is the polarization beam splitter surface P02P shown in FIG. Correspond to each. In such a configuration, if the number of reflections is calculated, I Nf – Mf I = 2 – 2 = 0. In other words, the above-mentioned condition regarding the number of reflections is satisfied. Therefore, according to the configuration of FIG. 16, the images do not have to be inverted, and the optical paths are finally aligned when reaching the OEIC 760, so that it can be said that it can cope with a plurality of types of optical disks.
< <反射の回数に係る第 2実施例 > >  <<Second example of the number of reflections>>
続いて、図 16に加えて図 17を用いて、反射の回数に係る第 2実施例について説明 する。ここに、図 17は、反射の回数に係る第 2実施例の光学系を示す模式的平面図 である。  Next, a second embodiment relating to the number of reflections will be described with reference to FIG. 17 in addition to FIG. FIG. 17 is a schematic plan view showing the optical system of the second example relating to the number of reflections.
[0082] 図 17において、本実施例に係る光ヘッド装置 1が、上述した反射の回数に係る第 1 実施例に係る光ヘッド装置 1と比べて主に異なるのは、ミラーの数である。具体的に は、ミラーを 2枚 (ミラー M2、ミラー M4、うちミラー M4はハーフミラーとしても機能する )を備え、各ミラーにおける入射角が夫々 45度となるように構成されている。このような 構成において、反射の回数を計算すると、 I Nf-Mf I = 1— 1 = 0となる。即ち、上 述の反射の回数に関する条件を満たす。従って、図 17の構成によれば、像が互いに 反転せずに済み、加えて OEIC760に至る際に光路が最終的に揃うので、複数種類 の光ディスクに対応可能であるといえる。 In FIG. 17, the optical head device 1 according to the present embodiment is mainly different from the optical head device 1 according to the first embodiment regarding the number of reflections described above in the number of mirrors. Specifically, two mirrors (mirror M2, mirror M4, of which mirror M4 also functions as a half mirror) are provided, and each mirror has an incident angle of 45 degrees. In such a configuration, if the number of reflections is calculated, I Nf-Mf I = 1–1 = 0. That is, on Satisfy the condition regarding the number of reflections described above. Therefore, according to the configuration of FIG. 17, the images do not have to be inverted, and the optical paths are finally aligned when reaching the OEIC 760. Therefore, it can be said that it can be used for a plurality of types of optical disks.
< <反射の回数に係る第 3実施例 > >  <<Third example of the number of reflections>>
続いて、図 16に加えて図 18を用いて、反射の回数に係る第 3実施例について説明 する。ここに、図 18は、反射の回数に係る第 3実施例の光学系を示す模式的平面図 である。  Next, a third embodiment relating to the number of reflections will be described with reference to FIG. 18 in addition to FIG. FIG. 18 is a schematic plan view showing the optical system of the third example relating to the number of reflections.
[0083] 図 18において、本実施例に係る光ヘッド装置 1が、上述した反射の回数に係る第 1 実施例に係る光ヘッド装置 1と比べて主に異なるのは、入射角である。具体的には、 DVDZCDZHD— DVD用対物レンズ 740からミラー Mlへの入射角は、及び BD 用対物レンズ 743からミラー M3への入射角は、夫々 45度ではない。このような構成 において、反射の回数を計算すると、 I Nf-Mf I = 2— 2 = 0となる。即ち、上述の 反射の回数に関する条件を満たす。従って、図 18の構成によれば、像が互いに反転 せずに済み、加えて OEIC760に至る際に光路が最終的に揃うので、複数種類の光 ディスクに対応可能であるといえる。本実施例によれば、入射角が 45度に限られなく てもよいので、光学系の設計の自由度が向上する。例えば、ビームが整形されない 場合にも極端までの精度の低下を防ぎ、力!]えて、トラッキングエラー用の 3ビームに関 する、光学調整の信頼性も向上するので実践上大変有利である。  In FIG. 18, the optical head device 1 according to the present embodiment is mainly different from the optical head device 1 according to the first embodiment relating to the number of reflections described above in the incident angle. Specifically, the incident angle from DVDZCDZHD—DVD objective lens 740 to mirror Ml and the incident angle from BD objective lens 743 to mirror M3 are not 45 degrees. In such a configuration, if the number of reflections is calculated, I Nf -Mf I = 2-2 = 0. That is, the above-mentioned condition regarding the number of reflections is satisfied. Therefore, according to the configuration of FIG. 18, the images do not have to be reversed, and the optical paths are finally aligned when reaching the OEIC 760, so it can be said that it can cope with a plurality of types of optical disks. According to the present embodiment, since the incident angle does not have to be limited to 45 degrees, the degree of freedom in designing the optical system is improved. For example, even if the beam is not shaped, it is extremely advantageous in practice because it prevents the loss of accuracy to the extreme and improves the reliability of the optical adjustment of the three beams for tracking errors.
< <反射の回数に係る第 4実施例 > >  <<Fourth embodiment related to the number of reflections>>
続いて、図 16に加えて図 19を用いて、反射の回数に係る第 4実施例について説明 する。ここに、図 19は、反射の回数に係る第 4実施例の光学系を示す模式的平面図 である。  Next, a fourth embodiment relating to the number of reflections will be described with reference to FIG. 19 in addition to FIG. FIG. 19 is a schematic plan view showing the optical system of the fourth example according to the number of reflections.
[0084] 図 19において、本実施例に係る光ヘッド装置 1が、上述した反射の回数に係る第 1 実施例に係る光ヘッド装置 1と比べて主に異なるのは、各光ディスクからの復路のみ ならず往路も考慮されることである。具体的には、 2つの対物レンズ (DVDZCDZH D— DVD用対物レンズ 740及び BD用対物レンズ 743)、 4枚のミラー(ミラー Ml、ミ ラー M2、ミラー M3、ミラー M4、うちミラー M4は偏光ビームスプリツターとしても機能 する)、一つの受光素子 OEIC760、及びレーザダイオード 603を備え、各ミラーにお ける入射角が夫々 45度となるように構成されている。ここで、ミラー M4が偏光ビーム スプリツターとしても機能するので、レーザダイオード 603から出射されたレーザ光( 往路光)は、その偏光状態によって例えば S偏光と P偏光とに 2分され、 2つの対物レ ンズへと夫々導かれる。このような構成において、反射の回数を計算すると、往路に 関しては I Nf— Mf I = 2— 2 = 0、復路に関しても I Nf— Mf I = 2— 2 = 0となる。 即ち、往路及び復路共に上述の反射の回数に関する条件を満たす。従って、図 19 の構成によれば、像が互いに反転せずに済み、加えて OEIC760に至る際に光路が 最終的に揃うので、複数種類の光ディスクに対応可能であるといえる。即ち、同一の 光源に起因する、信号光 (復路光)を構成する光の像が、 DVD/CD/HD-DVD 用対物レンズ 740を用いた場合と BD用対物レンズ 743を用いた場合とで、相互に反 転することを確実且つ効果的に回避できる。これにより、 OEIC760では、いずれの 種類の光ディスクがセットされて 、ても、最も受光感度の高 、状態で受光することが 可能となる。 In FIG. 19, the optical head device 1 according to the present embodiment is mainly different from the optical head device 1 according to the first embodiment relating to the number of reflections described above only in the return path from each optical disk. In other words, the outbound route is also considered. Specifically, two objective lenses (DVDZCDZH D—DVD objective lens 740 and BD objective lens 743), four mirrors (mirror Ml, mirror M2, mirror M3, mirror M4, of which mirror M4 is a polarized beam It also functions as a presetter), and has one light receiving element OEIC760 and laser diode 603. The incident angle is 45 degrees. Here, since the mirror M4 also functions as a polarization beam splitter, the laser light (outgoing light) emitted from the laser diode 603 is divided into, for example, S-polarized light and P-polarized light according to the polarization state, and the two objective lenses are separated. Each led to In such a configuration, when the number of reflections is calculated, I Nf-Mf I = 2-2 = 0 for the forward path and I Nf-Mf I = 2-2 = 0 for the return path. That is, the conditions regarding the number of reflections described above are satisfied for both the forward path and the return path. Therefore, according to the configuration shown in FIG. 19, the images do not have to be inverted, and the optical paths are finally aligned when reaching the OEIC 760. Therefore, it can be said that it can be used for a plurality of types of optical disks. That is, the image of the light that constitutes the signal light (return light) caused by the same light source is different when the objective lens 740 for DVD / CD / HD-DVD is used and when the objective lens 743 for BD is used. Thus, it is possible to avoid reversing each other reliably and effectively. As a result, the OEIC 760 can receive light with the highest light receiving sensitivity regardless of which type of optical disk is set.
< <反射の回数に係る第 5実施例 > >  <<5th example concerning the number of reflections>>
続いて、図 16に加えて図 20を用いて、反射の回数に係る第 5実施例について説明 する。ここに、図 20は、反射の回数に係る第 5実施例の光学系を示す模式的平面図 である。  Next, a fifth embodiment relating to the number of reflections will be described with reference to FIG. 20 in addition to FIG. FIG. 20 is a schematic plan view showing the optical system of the fifth example relating to the number of reflections.
図 20において、本実施例に係る光ヘッド装置 1が、上述した反射の回数に係る第 1 実施例に係る光ヘッド装置 1と比べて主に異なるのは、対物レンズの数及びミラーの 数である。具体的には、 3つの対物レンズ(DVDZCDZHD— DVD用対物レンズ 7 40、 BD用対物レンズ 743、及び第 3対物レンズ 744)、 3枚のミラー(ミラー M2、ミラ 一 M4、ミラー M5、うちミラー M4及びミラー M5はハーフミラーとしても機能する)、及 び一つの受光素子 OEIC760を備え、各ミラーにおける入射角が夫々 45度となるよう に構成されている。このような構成において、先ず DVDZCDZHD— DVD用対物 レンズ 740と BD用対物レンズ 743とに関して反射の回数を計算すると、 | Nf— Mf I = 2— 2 = 0となる。即ち、上述の反射の回数に関する条件を満たす。従って、図 2 0の構成によれば、 DVDZCDZHD— DVD用対物レンズ 740と BD用対物レンズ 7 43とに関しては像が互いに反転せずに済み、加えて OEIC760に至る際に光路が 最終的に揃うので、複数種類の光ディスクに対応可能であるといえる。ただし、 DVD ZCDZHD— DVD用対物レンズ 740と第 3対物レンズ 744とに関して或いは、 BD 用対物レンズ 743と第 3対物レンズ 744とに関して反射の回数を計算すると、いずれ の組み合わせでも I Nf-Mf I = 2— 1 = 1となる。即ち、上述の反射の回数に関す る条件を満たさず、このままだと反転してしまう。係る場合でも、上述の反射の回数に 関する条件を加味した光学系を再設計し、例えば、第 3対物レンズ 744からミラー M 4へ至る光路上に、反射用のミラー奇数枚追加することで、上述の反射の回数に関 する条件を満たし、複数種類の光ディスクに対応可能となる。 In FIG. 20, the optical head device 1 according to the present embodiment is mainly different from the optical head device 1 according to the first embodiment relating to the number of reflections described above in the number of objective lenses and the number of mirrors. is there. Specifically, three objective lenses (DVDZCDZHD—DVD objective lens 740, BD objective lens 743, and third objective lens 744), three mirrors (mirror M2, mirror M4, mirror M5, of which mirrors M4 and mirror M5 also function as a half mirror) and one light-receiving element OEIC760, and each mirror has an incident angle of 45 degrees. In such a configuration, when the number of reflections is first calculated for the DVDZCDZHD—DVD objective lens 740 and the BD objective lens 743, | Nf—Mf I = 2−2 = 0. That is, the above-described condition regarding the number of reflections is satisfied. Therefore, according to the configuration shown in FIG. 20, the DVDZCDZHD—DVD objective lens 740 and the BD objective lens 743 do not have to be reversed with respect to each other. Since it finally comes together, it can be said that it can cope with a plurality of types of optical disks. However, if the number of reflections is calculated for DVD ZCDZHD—DVD objective lens 740 and third objective lens 744 or for BD objective lens 743 and third objective lens 744, I Nf-Mf I = 2— 1 = 1. In other words, the condition regarding the number of reflections described above is not satisfied, and the situation is reversed. Even in such a case, the optical system taking into account the above-mentioned conditions regarding the number of reflections is redesigned.For example, by adding an odd number of reflection mirrors on the optical path from the third objective lens 744 to the mirror M4, The above-mentioned conditions regarding the number of reflections are satisfied, and a plurality of types of optical disks can be handled.
[0086] 以上、図 16から図 20用いて示したように、上述の反射の回数に関する条件を満た すように各ミラーを配置することで、同一の光源に起因する、信号光 (復路光)を構成 する光の像が、異なる対物レンズを用いた場合において、相互に反転することを確実 且つ効果的に回避できる。これ〖こより、 OEIC760では、いずれの種類の光ディスク がセットされていても、最も受光感度の高い状態で受光することが可能となる。これに より、各光ディスクにおいて、径方向の位置情報であるトラッキングエラーを正しく得ら れ、加えて各光ディスクにおけるレンズ偏倚方向を好適に揃えることが可能となるの で、実践上非常に有利となる。  [0086] As described above with reference to Figs. 16 to 20, by arranging each mirror so as to satisfy the above-described conditions regarding the number of reflections, signal light (return light) caused by the same light source In the case where different objective lenses are used, it is possible to reliably and effectively avoid reversing the image of the light that constitutes. Thus, the OEIC 760 can receive light with the highest light receiving sensitivity regardless of which type of optical disk is set. This makes it possible to correctly obtain the tracking error, which is positional information in the radial direction, in each optical disc, and in addition, it is possible to properly align the lens deviation direction in each optical disc, which is very advantageous in practice. .
[0087] 尚、本発明は、上述した実施例に限られるものではなぐ請求の範囲及び明細書全 体力も読み取れる発明の要旨、或いは思想に反しない範囲で適宜変更可能であり、 そのような変更を伴う光ヘッド装置もまた、本発明の技術的範囲に含まれるものであ る。  It should be noted that the present invention is not limited to the above-described embodiments, and can be appropriately changed within the scope of the invention and the gist of the invention which can also read the entire specification of the claims or the spirit of the invention. An optical head device with the above is also included in the technical scope of the present invention.
産業上の利用可能性  Industrial applicability
[0088] 本発明に係る光ヘッド装置は、例えば BD(Blu-ray Disc)と DVDとなど、相異なる光 源光が必要となる複数種類の光ディスクに対応可能な光ピックアップ等の、光ヘッド 装置に利用可能である。 The optical head device according to the present invention is an optical head device such as an optical pickup capable of dealing with a plurality of types of optical disks that require different light source light such as BD (Blu-ray Disc) and DVD. Is available.

Claims

請求の範囲 The scope of the claims
[1] 複数種類の光ディスクに対応可能な光ヘッド装置であって、  [1] An optical head device capable of supporting a plurality of types of optical disks,
前記複数種類の光ディスクの各々用のレーザ光を出射可能である光源手段と、 該光源手段力 出射されたレーザ光を、前記複数種類の光ディスクのうち当該光 ヘッド装置に対してセットされた一の種類の光ディスクの記録面に集光するための第 Light source means capable of emitting laser light for each of the plurality of types of optical discs, and the light source means power of the laser light emitted from the plurality of types of optical discs set to the optical head device No. for focusing on the recording surface of different types of optical discs
1対物レンズと、 1 objective lens,
前記光源手段から出射されたレーザ光を、前記複数種類の光ディスクのうち当該 光ヘッド装置に対してセットされた他の種類の光ディスクの記録面に集光するための 第 2対物レンズと、  A second objective lens for condensing the laser light emitted from the light source means on a recording surface of another type of optical disc set to the optical head device among the plurality of types of optical discs;
前記記録面に集光されたレーザ光に基く前記記録面からの信号光を、前記第 1又 は第 2対物レンズを介して受光する一つの受光素子と、  One light receiving element for receiving the signal light from the recording surface based on the laser light condensed on the recording surface via the first or second objective lens;
前記レーザ光及び前記信号光の少なくとも一つに対して、偏光状態に依存する光 合成及び光分離の少なくとも一方である偏光処理と偏光状態に依存しない光合成及 び光分離の少なくとも一方である非偏光処理とのうち一方の処理を、前記光ディスク の種類に応じて施すことによって、前記レーザ光を前記光ディスクの種類に応じた前 記第 1又は第 2対物レンズに導くと共に前記信号光を前記受光素子に導く光学系と を備えることを特徴とする光ヘッド装置。  For at least one of the laser light and the signal light, polarization treatment that is at least one of light synthesis and light separation depending on the polarization state and non-polarization that is at least one of light synthesis and light separation independent of the polarization state One of the processes is performed according to the type of the optical disc, whereby the laser light is guided to the first or second objective lens according to the type of the optical disc and the signal light is transmitted to the light receiving element. An optical head device comprising: an optical system that leads to
[2] 前記光源手段は、前記複数種類の光ディスクの各々用のレーザ光を出射する複数 のレーザ光源を有することを特徴とする請求の範囲第 1項に記載の光ヘッド装置。 2. The optical head device according to claim 1, wherein the light source means includes a plurality of laser light sources that emit laser light for each of the plurality of types of optical disks.
[3] 前記光学系は、前記偏光処理の少なくとも一部として、偏光ビームスプリツター面に おける前記偏光状態に依存する反射及び透過を施し、前記非偏光処理の少なくとも 一部として、ダイクロイツクミラー面又はハーフミラー面における前記偏光状態に依存 しない反射及び透過を施すことを特徴とする請求の範囲第 1項に記載の光ヘッド装 置。 [3] The optical system performs reflection and transmission depending on the polarization state on a polarization beam splitter surface as at least a part of the polarization process, and a dichroic mirror surface as at least a part of the non-polarization process. 2. The optical head device according to claim 1, wherein reflection and transmission independent of the polarization state on the half mirror surface are performed.
PCT/JP2007/055644 2006-03-31 2007-03-20 Optical head device WO2007114046A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006099270 2006-03-31
JP2006-099270 2006-03-31

Publications (1)

Publication Number Publication Date
WO2007114046A1 true WO2007114046A1 (en) 2007-10-11

Family

ID=38563315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055644 WO2007114046A1 (en) 2006-03-31 2007-03-20 Optical head device

Country Status (1)

Country Link
WO (1) WO2007114046A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0917003A (en) * 1995-06-30 1997-01-17 Sharp Corp Optical pickup
JPH09153229A (en) * 1995-11-30 1997-06-10 Nec Corp Optical head device
JPH09212905A (en) * 1996-02-06 1997-08-15 Nec Corp Optical head device
JP2004295983A (en) * 2003-03-26 2004-10-21 Tdk Corp Optical head, and optical recording/reproducing device using the same
JP2005353261A (en) * 2004-05-10 2005-12-22 Konica Minolta Opto Inc Optical pickup device
JP2006024351A (en) * 2004-07-05 2006-01-26 Samsung Electronics Co Ltd Optical pickup and optical recording and/or reproduction equipment which adopts the same
JP2006024333A (en) * 2004-07-09 2006-01-26 Sony Corp Optical pickup device, and recording and/or reproducing device
JP2006040411A (en) * 2004-07-27 2006-02-09 Sony Corp Optical pickup, recording and/or reproducing apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0917003A (en) * 1995-06-30 1997-01-17 Sharp Corp Optical pickup
JPH09153229A (en) * 1995-11-30 1997-06-10 Nec Corp Optical head device
JPH09212905A (en) * 1996-02-06 1997-08-15 Nec Corp Optical head device
JP2004295983A (en) * 2003-03-26 2004-10-21 Tdk Corp Optical head, and optical recording/reproducing device using the same
JP2005353261A (en) * 2004-05-10 2005-12-22 Konica Minolta Opto Inc Optical pickup device
JP2006024351A (en) * 2004-07-05 2006-01-26 Samsung Electronics Co Ltd Optical pickup and optical recording and/or reproduction equipment which adopts the same
JP2006024333A (en) * 2004-07-09 2006-01-26 Sony Corp Optical pickup device, and recording and/or reproducing device
JP2006040411A (en) * 2004-07-27 2006-02-09 Sony Corp Optical pickup, recording and/or reproducing apparatus

Similar Documents

Publication Publication Date Title
JP4841401B2 (en) Optical pickup device
US7804747B2 (en) Optical pickup which is compatible with multiple types of media
US20090168629A1 (en) Holographic information recording and/or reproducing apparatus
TW200401279A (en) Optical pickup
US7218598B2 (en) Optical pickup using two-wavelength light source module
JP4608545B2 (en) Optical pickup device and information recording / reproducing device
JP2003091863A (en) Optical head device
KR100803592B1 (en) Compatible optical pickup and optical recording and/or reproducing apparatus employing the same
WO2001095317A1 (en) Optical pickup device
WO2007114047A1 (en) Optical head device
US20080055734A1 (en) Optical pickup and optical disc device
WO2007114046A1 (en) Optical head device
JP2008181626A (en) Optical pickup
WO2007114045A1 (en) Optical head device
JP3471960B2 (en) Pickup device
US8165003B2 (en) Optical pickup device
KR20060066962A (en) Optical pick-up device comprising a phase-shift mirror
WO2007040147A1 (en) Optical head, optical disc device, computer, and optical disc recorder
KR100712896B1 (en) Optical pickup unit for compensating spherical aberration and optical recording/reproducing apparatus
JPH08153336A (en) Optical head device
JP2008243257A (en) Optical pickup
JP2008021358A (en) Optical pickup device
JP2003123305A (en) Optical head device
JP2005222601A (en) Optical pickup, and optical information reproducing device or optical information recording/reproducing device
US20080031118A1 (en) Combined hologram optical element, compatible optical pickup and optical information storage medium system employing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07739087

Country of ref document: EP

Kind code of ref document: A1