WO2007040147A1 - Optical head, optical disc device, computer, and optical disc recorder - Google Patents

Optical head, optical disc device, computer, and optical disc recorder Download PDF

Info

Publication number
WO2007040147A1
WO2007040147A1 PCT/JP2006/319347 JP2006319347W WO2007040147A1 WO 2007040147 A1 WO2007040147 A1 WO 2007040147A1 JP 2006319347 W JP2006319347 W JP 2006319347W WO 2007040147 A1 WO2007040147 A1 WO 2007040147A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
optical
optical disc
reflected
Prior art date
Application number
PCT/JP2006/319347
Other languages
French (fr)
Japanese (ja)
Inventor
Sadao Mizuno
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2007040147A1 publication Critical patent/WO2007040147A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • G11B7/1275Two or more lasers having different wavelengths
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1376Collimator lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD

Definitions

  • the present invention relates to an optical head for recording, reproducing, or erasing information on an optical information medium such as an optical disc, an optical disc apparatus using the optical head, a personal computer to which the apparatus is applied, It relates to systems such as optical disc recorders that record video 'audio signals.
  • CDs compact discs
  • the numerical aperture of the objective lens is in the range of 0.45 to 0.5, and infrared light with a wavelength of 780 nm is used.
  • Protective layer thickness 1 Information is recorded or played back on an optical disk with a thickness of 2 mm (hereinafter referred to as recording Z playback).
  • recording Z playback the protective layer refers to a transparent medium from the surface where the light beam is incident on the optical disk to the information recording surface.
  • the objective lens has a numerical aperture of 0.6 and red light with a wavelength of 655 nm is used to record information on an optical disc with a protective layer thickness of 0.6 mm. Recording Z Playback is in progress.
  • a third-generation Blu-ray disc (hereinafter referred to as BD) information is recorded on an optical disc with a protective layer thickness of 0.1 mm using blue light with a wavelength of 405 nm, with a numerical aperture of the objective lens of 0.85. Playing.
  • the third generation optical disc has a short wavelength, a blue laser, and a large numerical aperture! /,
  • the optical system is used to achieve higher density than before, and future market expansion is expected.
  • BD which is a high-density optical disc
  • succession of assets stored in DVDs and CDs is desired, and a compact and inexpensive optical disc apparatus is required.
  • the optical head which is a key device of the optical disk apparatus, needs to be a streamlined and simple optical system.
  • FIG. Figure 15 shows the schematic configuration of the optical head of the first conventional example. It is a figure.
  • the light having a wavelength of 405 nm emitted from the blue laser 61 has its light intensity distribution corrected by the beam shaper 64, transmitted through the beam splitters 65 and 66, and converted into parallel light by the collimator lens 67. . Thereafter, the light passes through the beam splitter 68 and is converged on the information recording surface of the optical disc 51 by the objective lens 70 through the protective layer having a thickness of 0.1 mm.
  • the object lens 70 has a diffractive element formed on its surface, and can record information on an optical disk 52 with a protective layer thickness of 0.6 mm and an optical disk 53 with a protective layer thickness of 1.2 mm. It is configured as follows.
  • the light reflected from the optical disc 51 follows the original optical path in the reverse direction, is narrowed down by the collimating lens 67, and is reflected by the beam splitter 65.
  • the reflected light is given astigmatism by the cylindrical lens 73, the focal length is extended by the detection lens 74, and enters the photodetector 75.
  • the optical head uses the output signal of the photodetector 75 to obtain a focus signal, a tracking signal, and an information signal.
  • the light emitted from the red laser 62 has its light intensity distribution corrected by the beam shaper 71, transmitted through the beam splitter 72, reflected from the beam splitter 66, and converted into a weakly divergent light beam by the collimator lens 67.
  • the light passes through the beam splitter 68 and is converged on the information recording surface of the optical disc 52 by the objective lens 70 through the protective layer having a thickness of 0.6 mm.
  • the light reflected from the optical disc 52 follows the original optical path in the reverse direction, is narrowed down by the collimating lens 67, and is reflected by the beam splitters 66 and 72.
  • the reflected light is given astigmatism by the cylindrical lens 76, the focal length is extended by the detection lens 77, and enters the photodetector 78. Then, the optical head uses the output signal of the photodetector 78 to obtain a focus signal, tracking signal, and information signal.
  • the light emitted from the infrared laser 63 is divergent light, and this light passes through the hologram element 79, reflects off the beam splitter 68, and is protected to a thickness of 1.2 mm by the objective lens 70. It converges on the information recording surface of the optical disc 53 through the layers.
  • the reflected light from the optical disk 53 is reflected by the beam splitter 68, is branched by the hologram element 79, and enters the photodetector 80. Then, the optical head uses the output signal of the photodetector 80 to obtain a focus signal, a tracking signal, and an information signal (see, for example, Patent Document 1).
  • FIG. 16 is a diagram showing a schematic configuration of the optical head of the second conventional example.
  • light having a wavelength of 405 nm emitted from the blue laser 81 has its light intensity distribution corrected by the beam shaping element 83, reflected by the beam splitter 84, and converted into circularly polarized light by the wave plate 85. Thereafter, the light is condensed into collimated light by the collimating lens 86, reflected by the mirror 87, and reflected by the diffraction element 88 and the objective lens 89 through the protective layer having a thickness of 0.1 mm. Converge to.
  • the diffractive element 88 is configured to converge light with a wavelength of 405 nm onto an optical disk with a protective layer thickness of 0.1 mm, and focus light with a wavelength of 655 ⁇ m onto an optical disk with a protective layer thickness of 0.6 mm.
  • the light reflected from the optical disc 51 follows the original optical path in reverse, is converted into linearly polarized light in a direction perpendicular to the forward path by the wave plate 85, and is reflected by the beam splitter 90. Thereafter, the reflected light is diffracted by the detection hologram 91, the focal length is extended by the detection lens 92, and enters the photodetector 93.
  • the optical head obtains a focus signal, a tracking signal, and an information signal by calculating the output of the photodetector 93.
  • light having a wavelength of 655 nm emitted from the red laser 82 passes through the beam splitter 90 and the beam splitter 84 and is condensed into parallel light by the collimator lens 86. Thereafter, the light is reflected by the mirror 87 and converged on the information recording surface of the optical disc 52 by the diffraction element 88 and the objective lens 89 through the protective layer having a thickness of 0.6 mm.
  • the light reflected from the optical disk 52 follows the original optical path in the opposite direction, is reflected by the beam splitter 90, is diffracted by the detection hologram 91, and is further extended in focal length by the detection lens 92. Incident in 93.
  • the optical head obtains a servo signal, a tracking signal, and an information signal by calculating the output of the photodetector 93 (see, for example, Patent Document 2).
  • the force detection optical system that can set the positional relationship between the laser and the photodetector independently for each wavelength of light consists of two sets of cylindrical lenses, a detection lens, and one It is necessary to provide a hologram element. This complicates the configuration of the optical head, which is not only difficult to reduce in size but also disadvantageous in terms of cost.
  • recording Z playback of BD and DVD is performed by one objective lens.
  • Light with a wavelength of 405 nm uses the second-order diffracted light of diffraction element 88, and light with a wavelength of 655 nm uses the first-order diffracted light of diffraction element 88 to correct spherical aberration due to the difference in protective layer thickness between BD and DVD.
  • light with a wavelength of 780 nm cannot be optimized for the protective layer of the CD, so the CD cannot be recorded and played back.
  • the reflected light of the optical disc 51, which is a BD, and the reflected light of the optical disc 52, which is a DVD, are received by a common photodetector 93, and a servo signal is obtained.
  • the blue laser 81 and the red laser 82 are arranged so that their respective emission points are in an imaging relationship with respect to a common position on the objective lens side. This is to set a laser emission point at a convergence position when light having a wavelength of 405 nm and light having a wavelength of 655 nm are incident as parallel light from the optical disk side. In this case, the two lights cannot be converged in the same manner on the photodetector 93 due to the chromatic aberration of the collimating lens 86.
  • the position of the minimum circle of confusion is shifted between the wavelength of 405 nm and the wavelength of 655 nm, so that a constant offset occurs in the focus signal. For this reason, the range in which focus control can be performed becomes narrow, and force control becomes difficult depending on the configuration.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2005-209325 (pages 17-19, Fig. 6)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-192783 (Page 12-18, Fig. 1)
  • the present invention has been made to solve the above-described problem.
  • a single photodetector can receive light corresponding to a plurality of wavelengths, and the configuration of the optical head can be simplified.
  • An object of the present invention is to provide an optical head, an optical disk device, a computer, and an optical disk recorder that can perform recording.
  • An optical head includes a first light source that emits light of a first wavelength, A second light source that emits light of a second wavelength that is longer than the first wavelength; a third light source that emits light of a third wavelength that is longer than the second wavelength; and A collimating lens that collects the light of the first wavelength, the second wavelength, and the third wavelength; and the light of the first wavelength that is collected by the collimating lens is converged on the first optical disc.
  • the second wavelength light collected by the collimating lens is converged on a second optical disc having a protective layer thickness different from that of the first optical disc, and is collected by the collimating lens.
  • the photodetector that receives the reflected light from the third optical disc and the collimating lens are moved in the optical axis direction, and information is recorded on the first optical disc, the second optical disc, and the third optical disc.
  • a collimating lens moving unit that selectively changes the position of the collimating lens in accordance with the wavelength of light.
  • the position of the collimating lens is selectively changed corresponding to the wavelength of each light emitted from the first light source, the second light source, and the third light source, and light detection that occurs due to a difference in wavelength is detected. Since the deviation of the convergence position of the system can be corrected, light corresponding to a plurality of wavelengths can be received by one photodetector, and the configuration of the optical head can be simplified.
  • FIG. 1 is a diagram showing a basic configuration of an optical head and a state of light propagation in Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of an objective lens according to Embodiment 1 of the present invention.
  • FIG. 3 is a plan view of the diffraction element according to the first embodiment of the present invention.
  • FIG. 4A is a cross-sectional view of the detection optical system according to Embodiment 1 of the present invention, showing a state of propagation of convergent light
  • FIG. 4B is a detection optical system shown in FIG. 4A. It is sectional drawing of the orthogonal direction of these.
  • FIG. 5A shows a pattern of a light receiving element and a focus signal in Embodiment 1 of the present invention.
  • FIG. 5B is a diagram for explaining the pattern of the light receiving element and the tracking signal detection.
  • FIG. 6 is a diagram showing a focus signal in the first embodiment of the present invention.
  • FIG. 7A is a diagram showing a collimating lens position when detecting light of wavelength ⁇ 1 in Embodiment 1 of the present invention
  • FIG. 7A is a diagram of detecting light of wavelength 2
  • FIG. 7C is a diagram showing a collimating lens position
  • FIG. 7C is a diagram showing a collimating lens position when detecting light of wavelength 3.
  • FIG. 8 is an enlarged view of the beam splitter in the first embodiment of the present invention.
  • Fig. 9 is a graph showing the relationship between the wavelength and transmittance characteristics in the optical multilayer film.
  • Fig. 9 is a diagram showing the relationship between the incident angle of the light beam with wavelength ⁇ 1 and the transmittance characteristics
  • Fig. 9C is a diagram showing the relationship between the incident angle of the light beam with wavelength 2 and the transmittance characteristics
  • FIG. 9D is a diagram showing the relationship between the incident angle of the light beam having the wavelength ⁇ 3 and the transmittance characteristic.
  • FIG. 10 is a diagram showing a basic configuration of an optical head and a state of light propagation in Embodiment 2 of the present invention.
  • FIG. 11 is a diagram showing a pattern of a light receiving element in the second embodiment of the present invention.
  • FIG. 12 is a schematic configuration diagram of an optical disc device in a third embodiment of the present invention.
  • FIG. 13 is a schematic perspective view of a computer according to Embodiment 4 of the present invention.
  • FIG. 14 is a schematic perspective view of an optical disc recorder according to Embodiment 5 of the present invention.
  • FIG. 15 is a diagram showing a schematic configuration of a first conventional example of an optical head.
  • FIG. 16 is a diagram showing a schematic configuration of a second conventional example of an optical head.
  • FIG. 1 is a diagram showing the configuration of the optical head according to Embodiment 1 of the present invention.
  • the optical head consists of blue laser 1, red laser 2, infrared laser 3, diffraction gratings 7, 8, 9, dichroic prisms 10, 11, beam splitter 12, collimating lens 13, and wave plate. 14, mirror 1, objective lens 16, detection lens 19 and photodetector 20.
  • the blue laser 1 emits light having a wavelength ⁇ 1 (approximately 405 nm).
  • Red laser 2 has wavelength 2 Light (approximately 655nm) is emitted.
  • the infrared laser 3 emits light having a wavelength of 3 (approximately 780 nm).
  • the optical disc 51 is an optical disc having a protective layer thickness tl of about 0.1 mm, and is an optical information medium that is recorded and reproduced by an optical beam having a wavelength ⁇ 1, for example, an optical disc for BD.
  • the optical disk 52 is an optical disk having a protective layer thickness t2 of about 0.6 mm, and is an optical information medium that is recorded and reproduced by a light beam having a wavelength of 2, for example, an optical disk for DVD.
  • the optical disc 53 is an optical disc having a protective layer thickness t3 of about 1.2 mm, and is an optical information medium that is recorded and reproduced by a light beam having a wavelength of 3, for example, an optical disc for CD.
  • a protective layer thickness tl of about 0.1 mm
  • t2 of about 0.6 mm
  • the optical disc 53 is an optical disc having a protective layer thickness t3 of about 1.2 mm, and is an optical information medium that is recorded and reproduced by a light beam having a wavelength of 3, for example, an optical
  • the optical disc 51 is indicated by a solid line
  • the optical disc 52 is indicated by a dotted line
  • the optical disc 53 is indicated by a one-dot chain line
  • the surface force on which the light beam is incident also indicates only the protective layer up to the information recording surface.
  • the optical disks 51, 52, and 53 are bonded to each other in order to ensure the mechanical strength and to make the outer shape the same as that of CD, 1.2 mm.
  • the optical disc 52 has a thickness of 0.6 mm
  • the optical disc 51 has a thickness of 1.1 mm.
  • the substrate is omitted in the drawings of the present invention for simplicity. .
  • the objective lens 16 converges the light beam on the information recording surface of the optical discs 51, 52, and 53 in order to record and reproduce information on the optical discs 51, 52, and 53.
  • the objective lens 16 has a diffractive element 16a on the lens surface, and corrects spherical aberration due to the difference in the protective layer thickness of the optical disks 51, 52, and 53 by utilizing the wavelength dependence of diffraction generated by the diffractive element 16a. .
  • the blue laser 1 When recording and reproducing information on a high-density optical disk 51, the blue laser 1 emits a light beam 4 of wavelength ⁇ 1.
  • the light beam 4 having a wavelength ⁇ 1 emitted from the blue laser 1 is divided into a main beam and two sub beams by the diffraction grating 7, passes through the dichroic prism 10 and the dichroic prism 11, and is transmitted to the beam splitter.
  • the dichroic prism 10 is configured to transmit light having a wavelength ⁇ 1 and reflect light having a wavelength ⁇ 2.
  • the dichroic prism 11 transmits light having a wavelength ⁇ 1 and light having a wavelength ⁇ 2. It is configured to transmit and reflect light of wavelength ⁇ 3.
  • the beam splitter 12 reflects the linearly polarized light in the horizontal direction (hereinafter referred to as S-polarized light) on the incident surface for the light of wavelengths ⁇ 1 and ⁇ 2, and the straight line in the direction orthogonal thereto.
  • Polarized light separation characteristic that transmits polarized light (hereinafter referred to as ⁇ polarized light '')
  • This is an optical path branching element that has the property of reflecting part of S-polarized light and transmitting part of S-polarized light for wavelength 3 light.
  • the light beam 4 emitted from the blue laser 1 is set so as to be incident on the beam splitter 12 as S-polarized light.
  • the light beam 4 is reflected and condensed by the collimator lens 13 to become substantially parallel light. Converted from linearly polarized light to circularly polarized light.
  • the collimating lens 13 is attached to a transfer table 24 that moves along the guide shafts 25 and 26.
  • the transfer table 24 is configured to be moved in the direction of the arrow by the feed screw 23 directly connected by the rotation of the stepping motor 22.
  • the wave plate 14 is designed to act as a 1Z4 wave plate for light of wavelengths ⁇ 1 and ⁇ 2 and not as a wave plate for light of wavelength 3.
  • the light beam 4 is reflected by the mirror 15 and enters the objective lens 16.
  • the light beam 4 is diffracted by the diffraction element 16a formed on the lens surface of the objective lens 16, is refracted by the object lens 16, and passes through the protective layer having the protective layer thickness tl to the information recording surface of the optical disc 51. Convergence with numerical aperture NA1.
  • the light beam 4 reflected on the information recording surface of the optical disc 51 becomes circularly polarized light opposite to the forward path, and is converted into P-polarized light by following the original optical path in reverse.
  • the light beam 4 converted to P-polarized light is narrowed by the collimating lens 13 and passes through the beam splitter 12.
  • the converged light beam 4 is given astigmatism by the detection lens 19, enters the photodetector 20, and is photoelectrically converted by the light receiving element 20a.
  • the detection lens 19 is constituted by a cylindrical lens having a lens action in a direction inclined by 45 ° with respect to the incident surface of the beam splitter 12.
  • the optical head can obtain a focus signal by the astigmatism method by giving astigmatism to the light beam 4.
  • the optical head can obtain a tracking signal based on the three beams formed by the diffraction grating 7 by a differential push-pull method (hereinafter referred to as DPP). Further, the optical head can obtain an information signal from the output of the photodetector 20.
  • DPP differential push-pull method
  • the red laser 2 emits the light beam 5 having the wavelength ⁇ 2.
  • the light beam 5 of wavelength 2 emitted from the red laser 2 is divided into a main beam and two sub beams by the diffraction grating 8, and is reflected by the dichroic prism 10. Then, the light passes through the dichroic prism 11 and enters the beam splitter 12.
  • the light beam 5 from which the red laser 2 has also been emitted is set to be incident on the beam splitter 12 as S-polarized light.
  • the light beam 5 is reflected and condensed by the collimating lens 13 to become substantially parallel light. Is converted from linearly polarized light to circularly polarized light.
  • the light beam 5 is reflected by the mirror 15 and enters the objective lens 16.
  • the light beam 5 is diffracted by the diffractive element 16a formed on the surface of the objective lens 16, is refracted by the objective lens 16, and opens on the information recording surface of the optical disc 52 through the protective layer having the protective layer thickness t2. Convergence with number NA2.
  • the light beam 5 reflected by the information recording surface of the optical disc 52 becomes circularly polarized light opposite to the forward path, and is converted into P-polarized light by following the original optical path in reverse.
  • the light beam 5 converted to P-polarized light is narrowed by the collimating lens 13 and passes through the beam splitter 12.
  • the converged light beam 5 is given astigmatism by the detection lens 19, enters the photodetector 20, and is photoelectrically converted by the light receiving element 20a.
  • the optical head obtains a focus signal, tracking signal, and information signal in the same manner as described above by calculating the output of the photodetector 20.
  • the light beam 6 having the wavelength ⁇ 3 is emitted from the infrared laser 3.
  • the light beam 6 having a wavelength of 3 emitted from the infrared laser 3 is divided into a main beam and two sub beams by a diffraction grating 9, reflected by a dichroic prism 11, and incident on a beam splitter 12.
  • the light beam 6 emitted from the infrared laser 3 is set so as to be incident on the beam splitter 12 as S-polarized light, and a part of the S-polarized light is reflected here and is condensed by the collimating lens 13 to be substantially parallel light. become.
  • the light beam 6 passes through the wave plate 14, is reflected by the mirror 15, and enters the objective lens 16.
  • the light beam 6 is diffracted by the diffraction element 16a, refracted by the objective lens 16, and converges on the information recording surface of the optical disc 53 with a numerical aperture NA3 through the protective layer having the protective layer thickness t3.
  • the light beam 6 reflected by the information recording surface of the optical disc 53 follows the original optical path in reverse, passes through the wave plate 14, is narrowed down by the collimator lens 13, and enters the beam splitter 12 with S-polarized light. To do. A part of the S-polarized light of the light beam 6 passes therethrough, is given astigmatism by the detection lens 19, enters the photodetector 20, and is photoelectrically converted by the light receiving element 20a. As described above, the optical head calculates the output of the light detector 20 to produce a focus signal, A tracking signal and an information signal are obtained.
  • Some optical discs for CDs have large birefringence, and if the optical path is branched by polarization separation as in the case of the light beams 4 and 5, light may not propagate to the photodetector 20. For this reason, it is desirable that the beam splitter 12 branch the optical path so as to reflect constant light and transmit constant light regardless of the polarization direction of the light beam 6.
  • the wavelength ⁇ 1 corresponds to an example of the first wavelength
  • the blue laser 1 corresponds to an example of the first light source
  • the wavelength 2 corresponds to an example of the second wavelength
  • wavelength 3 is equivalent to an example of the third wavelength
  • infrared laser 3 is equivalent to an example of the third light source
  • optical disc 51 is an example of the first optical disc.
  • the optical disk 52 corresponds to an example of the second optical disk
  • the optical disk 53 corresponds to an example of the third optical disk
  • the stepping motor 22 corresponds to an example of the collimating lens moving unit
  • the beam splitter 12 branches the optical path. It corresponds to an example of a member.
  • FIG. 2 is a cross-sectional view of the objective lens 16 and shows the propagation of light that converges on the optical disk.
  • FIG. 3 is a front view of the diffraction element 16a. As shown in FIG. 3, the diffraction grating of the diffraction element 16a has a concentric shape, and the inner peripheral portion 16al, the intermediate peripheral portion 16a2, and the outer peripheral portion 16a3 have different configurations.
  • the inner peripheral portion 16al is a portion having a numerical aperture equivalent to NA3, and generates the third-order diffracted light most strongly with respect to the light beam 4 with the wavelength ⁇ 1, and with respect to the light beam 5 with the wavelength 2 It is designed to generate the second-order diffracted light most strongly, and to generate the second-order diffracted light most strongly for the light beam 6 of wavelength 3. Then, the objective lens 16 converges the third-order diffracted light of the light beam 4 onto the optical disc 51, converges the second-order diffracted light of the light beam 5 onto the optical disc 52, and converges the second-order diffracted light of the light beam 6 onto the optical disc 53.
  • the middle peripheral portion 16a2 is a portion corresponding to a numerical aperture of NA3 to NA2, and the 6th-order diffracted light is most strongly generated in the light beam 4 having the wavelength ⁇ 1, and the light beam having the wavelength 2 It is designed so that the fourth-order diffracted light is generated most strongly for 5, and the third-order diffracted light is generated most strongly for the light beam 6 of wavelength ⁇ 3 and the fourth-order diffracted light is hardly generated.
  • the objective lens 16 converges the 6th-order diffracted light of the light beam 4 in the same Cf position as the 3rd-order diffracted light of the inner peripheral portion 16al, so that the fourth-order diffracted light of the light beam 5 becomes the second-order diffracted light of the inner peripheral portion 16al. And converge to the same position as the light
  • the third-order diffracted light of the beam 6 is not converged to the same position as the second-order diffracted light of the inner peripheral portion 16al, and the numerical aperture of the optical beam 6 can be restricted to NA3.
  • the outer peripheral portion 16a3 is a portion having a numerical aperture corresponding to NA2 to NA1, and is designed to generate the second-order diffracted light most strongly with respect to the light beam 4 having the wavelength ⁇ 1.
  • the objective lens 16 converges the second-order diffracted light of the light beam 4 to the same position as the third-order diffracted light of the inner peripheral portion 16al, so that the light beams 5 and 6 are the same as the second-order diffracted light of the inner peripheral portion 16al. There is no diffracted light converging at the position, the numerical aperture of the light beam 5 is restricted to NA2, and the light beam 6 can be restricted with the middle portion 16a2.
  • the light beam 4 is converged on the optical disc 51 with the numerical aperture N A1 by the third order diffracted light of the inner peripheral portion 16al, the sixth order diffracted light of the inner peripheral portion 16a2, and the second order diffracted light power of the outer peripheral portion 16a3.
  • Second-order diffracted light of peripheral part 16al and fourth-order diffracted light of middle part 16a2 Optical power Converged to optical disk 52 with numerical aperture NA2, and light beam 6 converged to inner peripheral part 16al 2 diffracted light 1S optical disk 53 with numerical aperture NA3 To do.
  • FIG. 4 is a diagram showing how reflected light from an optical disk is converged by the collimating lens 13.
  • the collimating lens 13 is made of glass or resin, and the refractive index has wavelength dependence (dispersion).
  • the detection lens 19 is constituted by a cylindrical concave lens, and the convergence position is different between a direction having a lens action and a direction having no lens action.
  • Figure 4A shows the propagation of light in a direction that has a lens effect.
  • FIG. 4 (b) shows the propagation of light in the direction without the concave lens action.
  • light beam 4 with wavelength ⁇ 1 converges at position P1 '
  • light beam 5 with wavelength ⁇ 2 converges at position P2'
  • light beam 6 with wavelength ⁇ 3 converges at position P3 '.
  • the distance between the position P1 and the position P1 ′, the distance between the position ⁇ 2 and the position P2 ′, and the distance force between the position ⁇ 3 and the position P3 ′ are the astigmatic differences between the light beams 4, 5, and 6, respectively. This is the detection range of a single signal.
  • FIG. 5B is a diagram for explaining the pattern of the light receiving element 20a and the focus signal detection method.
  • This detection method is a so-called astigmatism method, which is caused by a focus shift.
  • the deformation of the generated light spot is detected by the four-divided element 20a2.
  • FIG. 5B is a diagram for explaining the pattern of the light receiving element 20a and the tracking signal detection method.
  • This detection method is a so-called DPP method, in which the element 20a2 detects the push-pull signal of the main beam and the elements 20al and 20a3 detect the push-pull signal of the sub beam.
  • Push-pull signal force of the secondary beam The secondary beam is arranged with respect to the recording track so that it has the opposite phase to the primary beam, and the tracking signal is obtained by taking the difference between the push-pull signals of the primary beam and the secondary beam.
  • the light beam is set so as to form a minimum circle of confusion on the light receiving element 20a.
  • the light spot 4a in Fig. 5A is the minimum circle of confusion formed by the light beam 4, and when it is out of focus, it becomes an ellipse in the 45 ° direction with respect to the dividing line of the element 20a2.
  • a focus signal can be obtained.
  • the optical spot 4a is received by the four-divided element 20a2, and the output of the element is configured as shown.
  • the light receiving element 21a is set at the approximate center between the position P1 and the position P1 ′.
  • the light receiving element 21a is set at a substantially center between the position P2 and the position P2 ′. Further, in order to make the light spot of the light beam 6 have a minimum circle of confusion on the light receiving element 21a, it is desirable that the light receiving element 21a is set at substantially the center between the position P3 and the position P3 ′.
  • the position where the light beam converges changes according to the wavelength due to the dispersion of the collimating lens 13 as described above, if the light receiving element 21a is set to be the minimum circle of confusion for light of one wavelength. For light of other wavelengths, the position of the minimum circle of confusion shifts.
  • the focal length of the collimating lens 13 is determined by the light uptake rate of each of the light beams 4, 5, 6, and the light uptake rate ensures the necessary light amount and the central portion of the light converged by the objective lens 16.
  • the ratio of the light intensity at the periphery to the light intensity of the optical disc is designed to be within the range of values standardized as the evaluation criteria for optical discs.
  • the light capture rate is a light amount ratio between light emitted from the light source and light converged on the optical disc through the objective lens 16.
  • the astigmatic difference is determined by the focus control range and focus sensitivity (output for focus deviation).
  • the focal length of the objective lens 16 is 1.3 mm
  • the focal length of the collimating lens 13 is 17 mm
  • the astigmatic difference is 1.3 mm
  • the collimating lens 13 Even if BK7 glass with relatively small dispersion is used, the focal length of the light beam 5 with the wavelength 2 is 17.53 mm, and the focal length of the light beam 6 with the wavelength 3 is 17.64 mm. Even if BK7 glass with relatively small dispersion is used for the detection lens 19, the astigmatic difference of the light beam 5 with a wavelength of 2 is 1.4 mm, and the astigmatic difference of the light beam 6 with a wavelength of 3 is 1.42 mm. It becomes.
  • the distance from the collimating lens 13 to the minimum circle of confusion of the light beam 4 is 17.65 mm
  • the distance from the collimating lens 13 to the minimum circle of confusion of the light beam 5 is 18. 23 mm
  • the force of the collimating lens 13 is also the light beam 6
  • the distance to the minimum circle of confusion is 18.35mm.
  • Focus by the astigmatism difference of the light beam 4 1.3 mm and the vertical magnification of the light beam 4 detection system (the square of the ratio of the distance from the collimating lens 13 to the minimum circle of confusion and the focal length of the objective lens 16)
  • the possible detection range is ⁇ 1.76 m as shown in Fig. 6. Since the focus ranges of the light beam 5 and the light beam 6 are almost the same, if the position of the minimum circle of confusion is shifted by 0.70 mm as in the light beam 6, the focus is shifted by 1.89 m, and the force detection range is reduced. This will exceed the focus control.
  • the collimator lens 13 is moved in the optical axis direction so that the minimum circle of confusion of the light beams 4, 5, 6 is formed on the light receiving element 20a of the photodetector 20. .
  • the collimator lens 13 is set at a distance S1 from the light receiving element 20a as shown in FIG.
  • the collimating lens 13 is set at a distance S2 from the light receiving element 20a, and for the light beam 6 of wavelength 3, the distance from the light receiving element 20a is shown in Fig. 7C. Collimate at position S3 Set lens 13.
  • the distances SI, S2, and S3 are distances for forming a light spot having a minimum circle of confusion on the light beams 4, 5, and 6 light receiving element 20a, respectively.
  • the exemptions are a separation S1 force of 17.65 mm, a separation S2 force of 18.23 mm, and a separation S3 force of 18.35 mm.
  • the optical disc 51 has a standard with two information recording surfaces, and the protective layer thicknesses are tl and tl-Atl.
  • the collimating lens 13 In order to converge the light beam 4 having the wavelength ⁇ 1 on the information recording surface having the protective layer thickness tl, the collimating lens 13 is moved in the direction approaching the light emitting point and set to a position where the spherical aberration is reduced.
  • the collimating lens 13 is moved in the direction in which the light emitting point force is also moved away, and the spherical aberration is reduced. Set to position.
  • the light emitted from the collimating lens 13 has been described as substantially parallel light, but naturally the light emitted from the collimating lens 13 is weakly diverging light as in the conventional example. Even so, the same function can be achieved by moving the position of the collimating lens 13 in the optical axis direction.
  • a force using a stepping motor and a feed screw or another driving unit may be used as a mechanism for moving the position of the collimating lens 13 in the optical axis direction.
  • the collimating train 13 can be supported by four wires and moved in the optical axis direction by electromagnetic drive.
  • the beam splitter 12 has an optical multilayer film 12a formed between two prisms.
  • the optical multilayer film 12a is formed by alternately laminating high-refractive index dielectrics and low-refractive index dielectrics, and for the wavelengths ⁇ 1 and ⁇ 2, the polarization separation characteristic that reflects S-polarized light and transmits ⁇ -polarized light.
  • wavelength 3 one of the light It has a half mirror characteristic of reflecting a part and transmitting a part thereof.
  • the conventional polarizing beam splitter mirror has a limited wavelength band, but in this embodiment, in order to simplify the optical system, it supports a relatively wide wavelength band up to 400 nm and 800 nm, and further diverges. It was necessary to branch the optical path with light, and it was difficult to realize.
  • the refractive index of the prism of the beam splitter 12 is set to 1.64 (for example, FD2 of HOYA) at a wavelength of 655 ⁇ m, and the range in which the objective lens 16 moves by tracking control is 0.15 mm.
  • the incident angle of the effective light beam to the optical multilayer film 12a is the light beam 4 force S45 ⁇ 2.6 °, the light beam 5 force 45 ⁇ 1.9 °, and the light beam 6 force 45 ⁇ 1. 7 °.
  • the polarization direction of the light beam 6 is set to the radial direction of the optical disk 53 or the orthogonal direction thereof as a half mirror characteristic of only S-polarized light, and is affected by the birefringence of the optical disk. Do not.
  • the light beam 6 emitted from the beam splitter 12 with S polarization is reflected by the optical disk 53 and is incident on the beam splitter 12 with S polarization.
  • the optical disk 53 has birefringence, its optical axis is formed along the flow of the resin during molding, and therefore linearly polarized light in a direction parallel or orthogonal to this is not affected by birefringence. Therefore, the light beam 6 can satisfy the characteristics even if it is a half mirror that transmits or reflects part of the S-polarized light.
  • the optical multilayer film 12a having such characteristics is a TaO having a refractive index of 2.25 as a high refractive index film.
  • a multilayer film can be used.
  • the first central wavelength is assumed to be m
  • the second central wavelength is assumed to be ⁇ ⁇
  • It consists of alternating films of high and low refractive index films with an optical thickness of 1Z4.
  • the central wavelength is a reference wavelength when the film is formed
  • the optical film thickness is a product of the physical film thickness and the refractive index.
  • the first central wavelength m is 635 nm
  • the second central wavelength ⁇ ⁇ is 1.2 times m
  • the optical thickness of the first layer is ⁇ mZ8.
  • FIG. 9A is a diagram showing the relationship between the wavelength and the transmittance characteristic in the optical multilayer film 12a
  • FIG. 9B is a diagram showing the relationship between the incident angle of the light beam 4 and the transmittance characteristic
  • 9C is a diagram showing the relationship between the incident angle of the optical beam 5 and the transmittance characteristic
  • FIG. 9D is a diagram showing the relationship between the incident angle of the light beam 6 and the transmittance characteristic.
  • the optical multilayer film 12a is a dielectric, and the reflectance is a value obtained by subtracting the transmittance from 100.
  • a transmittance of 0% means a reflectance of 100%.
  • the transmittance of P-polarized light is 90% or more
  • the light beam 4 has a polarization splitting characteristic from 37 ° to 54 °
  • the light beam 5 has an incident angle of 38 °.
  • ° Force also has polarization separation characteristics of 55 ° or more.
  • the transmittance of S-polarized light is 60 ⁇ 5%
  • the light beam 6 has noise mirror characteristics up to an incident angle of 39 ° and a force of 50 °.
  • optical multilayer film configuration necessary characteristics can be obtained in an angle range sufficiently larger than the angle at which the light beams 4, 5, and 6 are incident on the optical multilayer film 12a as diverging light.
  • This optical multilayer film is an example, and the number of layers can be further increased or decreased.
  • TaO is used for the high refractive index film, but the same can be achieved using TiO.
  • the second optical film thickness can be designed from 1.1 to 1.3 times the first optical film thickness, and the total number of layers corresponding to the first central wavelength is 50 layers. In this case, it is possible to design from 25 to 38 layers.
  • the power when the light from the light source is incident on the beam splitter 12 as S-polarized light is described as the light having the wavelengths ⁇ 1 and ⁇ 2 from the light source as the polarized light.
  • the light of ⁇ 3 is converted to S-polarized light
  • the side force of the photodetector 20 in FIG. 1 is also incident
  • the reflected light from the optical disk is converted to S-polarized light, reflected by the beam splitter 12,
  • the same function can be achieved even in a configuration with a photodetector.
  • the astigmatism method has been described as an example of focus detection and the DPP method has been described as an example of tracking detection, it is a matter of course that other methods can similarly set collimating lenses to solve the chromatic aberration problem. I can do it.
  • one optical detector is configured in an optical head that records and reproduces information on a plurality of optical disks using a plurality of light beams having different wavelengths.
  • a collimating lens that collects the light from the light source by splitting the light path of the multiple light beams with diverging light, and a lens that converges the reflected light from the optical disk onto the photodetector. Can also be used. As a result, an inexpensive and practical optical head can be supplied.
  • Embodiment 2 of the present invention will be described with reference to the drawings.
  • the present embodiment is different from the first embodiment in the light source, the coupling lens, the detection lens, and the photodetector, and the other configurations are the same as those in the first embodiment. Therefore, in the present embodiment, the structural members given the same reference numerals as those in the first embodiment have the same functions as those in the first embodiment unless otherwise specified.
  • FIG. 10 is a diagram showing a configuration of the optical head in the second embodiment of the present invention.
  • the dual wavelength laser 30 emits light of wavelength ⁇ 2 and light of wavelength ⁇ 3
  • the coupling lens 34 has a convex lens action
  • the detection lens 36 converts the detection magnification to astigmatism. give. The operation of the thus configured optical head will be described.
  • a light beam 4 having a wavelength ⁇ 1 is emitted from the blue laser 1.
  • the light beam 4 having the wavelength ⁇ 1 emitted from the blue laser 1 is divided into three beams by the diffraction grating 7, passes through the dichroic prism 35, and enters the beam splitter 12 with S polarization.
  • the dichroic prism 35 is configured to transmit light having a wavelength of ⁇ 1 and reflect light having a wavelength of 2, ⁇ 3.
  • the light beam 4 is reflected by the beam splitter 12, condensed by the collimator lens 13, becomes substantially parallel light, and is converted from linearly polarized light to circularly polarized light by the wave plate 14.
  • the light beam 4 converted to circularly polarized light is reflected by the mirror 15 and enters the objective lens 16.
  • the light beam 4 is diffracted by the diffraction element 16a, refracted by the objective lens 16, and converges on the information recording surface of the optical disk 51 with a numerical aperture NA1 through the protective layer having the protective layer thickness tl.
  • the light beam 4 reflected by the information recording surface of the optical disc 51 becomes circularly polarized light opposite to the forward path, and is converted into P-polarized light by following the original optical path in reverse.
  • the light beam 4 converted to P-polarized light is narrowed by the collimating lens 13 and passes through the beam splitter 12.
  • the converged light beam 4 is extended in focal length and given astigmatism by a detection lens 36 consisting of a cylindrical concave lens on one side and an aspherical lens on the other side.
  • photoelectric conversion is performed by the light receiving element 37a.
  • the cylindrical surface of the detection lens 36 is rotated 45 ° with respect to the incident surface of the beam splitter 12 as in the first embodiment. It is rolling.
  • the optical head obtains a focus signal, a tracking signal, and an information signal by calculating the output of the photodetector 37.
  • the light beam 31 having the wavelength ⁇ 2 is emitted from the two-wavelength laser 30.
  • the light beam 31 having a wavelength of 2 emitted from the two-wavelength laser 30 is divided into a main beam and two sub-beams by the diffraction grating 33, receives a convex lens action by the coupling lens 34, and is reflected by the dichroic prism 35. Then, it enters the beam splitter 12 with S polarization.
  • the coupling lens 34 is a lens for increasing the light capture rate of the light beam 31 and the light beam 32.
  • the emission point of the two-wavelength laser 30 is provided inside the focal length of the collimating lens 13, and the two-wavelength laser 30 is provided.
  • the degree of divergence of the light emitted from the light beam is converted, and the collimator lens 13 is configured to be substantially parallel light.
  • the light beam 31 reflected from the beam splitter 12 is condensed by the collimating lens 13 to become substantially parallel light, and the linear polarization power is also converted into circularly polarized light by the wave plate 14.
  • the light beam 31 converted into circularly polarized light is reflected by the mirror 15 and enters the objective lens 16.
  • the light beam 31 is diffracted by the diffraction element 16a, refracted by the objective lens 16, and converges on the information recording surface of the optical disc 52 with a numerical aperture NA2 through the protective layer having the protective layer thickness t2.
  • the light beam 31 reflected by the information recording surface of the optical disk 52 follows the original optical path and is converted to P-polarized light by the wave plate 14.
  • the light beam 31 converted to P-polarized light is narrowed down by the collimating lens 13 and transmitted through the beam splitter 12. Furthermore, the focal length of the light beam 31 is extended by the detection lens 36, astigmatism is given, the light beam 31 enters the photodetector 37, and is photoelectrically converted by the light receiving element 37a.
  • the optical head obtains a focus signal, a tracking signal, and an information signal by calculating the output of the photodetector 37.
  • the light beam 32 having the wavelength ⁇ 3 is emitted from the two-wavelength laser 30.
  • the light beam 32 having a wavelength of 3 emitted from the two-wavelength laser 30 is divided into three beams by the diffraction grating 33, is subjected to a convex lens action by the coupling lens 34, is reflected by the dichroic prism 35, and is reflected to the beam splitter 12 by S. Incident with polarized light. A part of the S-polarized light is reflected by the beam splitter 12, condensed by the collimating lens 13, becomes substantially parallel light, and passes through the wave plate 14.
  • the light beam 32 transmitted through the wave plate 14 is reflected by the mirror 15 and enters the objective lens 16.
  • the light beam 32 is diffracted by the diffraction element 16a, It is refracted by the objective lens 16 and converges on the information recording surface of the optical disc 53 with a numerical aperture NA3 through a protective layer with a protective layer thickness t3.
  • the light beam 32 reflected by the information recording surface of the optical disc 53 follows the original optical path in reverse, passes through the wave plate 14, is narrowed by the collimator lens 13, and enters the beam splitter 12 with S-polarized light. . Part of the S-polarized light passes through the beam splitter 12. Further, the focal length of the light beam 32 is extended by the detection lens 36, astigmatism is given, the light beam 32 enters the photodetector 37, and is photoelectrically converted by the light receiving element 37a.
  • the optical head obtains a focus signal, a tracking signal, and an information signal by calculating the output of the photodetector 37.
  • the force light-emitting element in which the light source having the wavelength ⁇ 2 and the light source having the wavelength ⁇ 3 of the two-wavelength laser 30 are arranged in parallel to the incident surface of the beam splitter 12 is monolithic.
  • the light beams 31 and 32 are incident on the beam splitter 12 with negative polarization.
  • the light source force is also the force to provide a 1Z2 wavelength plate between the dichroic prism 35, and the two-wavelength laser is rotated 90 ° to place the two light sources perpendicularly to the incident surface of the beam splitter 12 It can respond by.
  • the focus sensitivity of the collimating lens 13 is changed by changing the focal length of the detection system in which the collimating lens 13 and the detection lens 36 are combined with the focal length of the collimating lens 13. It can be set arbitrarily. However, both the detection lens 36 and the collimating lens 13 have dispersion, and the refractive index changes depending on the wavelength. For this reason, when the wavelength changes, the focal length of the detection system changes, and as in the first embodiment, the light beam 4 of wavelength ⁇ 1, the light beam 31 of wavelength ⁇ 2, and the light beam 32 of wavelength ⁇ 3 converge. The position will shift. Although a slight chromatic aberration can be corrected by providing the detection lens 36 with a concave lens action, a practical improvement cannot be expected.
  • the focal length of the light beam 4 having the wavelength ⁇ 1 is extended to 22 mm, and the Abbe number 20.
  • Use 88 FDSl (HOYA) HOYA
  • the focal length of the light beam 31 with the wavelength ⁇ 2 is 22.52 mm
  • the focal length of the light beam 32 with the wavelength ⁇ 3 is 22.65 mm.
  • the collimating lens corresponds to the wavelength.
  • FIG. 11 is a diagram showing a pattern of the light receiving element 37a of the photodetector 37.
  • the element 37a2 detects the focus signals of the light beam 4 and the light beam 31, and the element 37a5 detects the focus signal of the light beam 32.
  • the tracking signals of the element 37al, 37a2, 37a3 force light beam 4 and the light beam 31 are detected, and the tracking signal of the element 37a4, 37a5, 37a6 force light beam 32 is detected.
  • the emission point at wavelength 2 and the emission point at wavelength 3 are shifted by about 100 to 120 m.
  • the collimating lens 13 in the present embodiment can match the convergence position of the light beam 4 having the wavelength ⁇ 1 with the convergence position of the light beam 31 or the light beam 32. Therefore, for example, the focus signal, tracking signal, and information signal of the light beam 4 and the light beam 31 are detected by the elements 37al, 37a2, and 37a3, and the focus signal and tracking of the optical beam 32 are detected by the elements 37a4, 37a5, and 37a6. Signals and information signals are detected. In this way, the number of light receiving elements 37a can be reduced, and the number of amplifiers that amplify the signals obtained here can be reduced.
  • the numerical aperture for each optical disk is NA1>NA2> NA3, and the effective diameter of the light beam converged on each optical disk is light beam 4> light beam 31> light beam 32.
  • the coupling lens 34 is a lens for increasing the light capture rate, and converts the wavefront of divergent light from the two-wavelength laser 30.
  • the numerical apertures of the three light beams are different as in the present embodiment, the light capture rates of all the light beams 4, 31, 32 cannot be adjusted simultaneously.
  • the focal length of the collimating lens 13 is designed according to the optimum light capture rate for the light beam 4, and the focal length of the optical system combining the coupling lens 34 and the collimating lens 13 is optimized for the light beam 31.
  • the divergence angles of blue laser, red laser, and infrared laser are the same, the focal length of each wavelength of the object lens 16 is also equivalent, the focal length of the collimating lens 13 is fcl, If the focal length of the optical system combining the collimating lens 13 and the coupling lens 34 is fc2, it is desirable that the specific power of fcl and fc2 is equal to the ratio of NA1 and (NA2 + NA3) Z2.
  • the force when the light from the light source is incident on the beam splitter 12 as S-polarized light is converted into light having wavelengths ⁇ 1 and ⁇ 2 from the light source as polarized light.
  • the light of ⁇ 3 is changed to S-polarized light, and the side force of the photo detector shown in FIG. 10 is also incident.
  • the same function can be achieved even with a structure provided with a vessel. In that case, since the polarization direction of the light of wavelength 2 is orthogonal to the polarization direction of the light of wavelength ⁇ 3, it is necessary to provide a 1 ⁇ 2 wavelength plate that acts only on the light of one wavelength.
  • a plurality of light beams are diverged from an optical head that records and reproduces information on a plurality of optical disks using a plurality of light beams having different wavelengths.
  • the collimating lens that condenses the light from the light source is also used as a lens that converges the reflected light from the optical disk to the photodetector, and suppresses the decrease in the light capture rate due to the difference in numerical aperture. It is possible to set the light capture rate suitable for 3 wavelengths. As a result, an inexpensive and practical optical head can be supplied. [Embodiment 3]
  • FIG. 12 is a schematic configuration diagram of an optical disc apparatus using the optical head of the first embodiment or the second embodiment.
  • the optical disk device 107 includes a drive device 101, an optical head 102, an electric circuit 103, a motor 104, and a turntable 105.
  • an optical disc 100 is mounted on a turn table 105 and rotated by a motor 104.
  • the optical head 102 shown in the first and second embodiments is transported by the driving device 101 to the track on the optical disc 100 where desired information exists.
  • the optical head 102 sends a focus error signal and a tracking error signal to the electric circuit 103 in accordance with the positional relationship with the optical disc 100.
  • the electric circuit 103 sends a signal for driving the objective lens to the optical head 102.
  • the optical head 102 performs focus control and tracking control on the optical disc 100, and reads, writes, or erases information.
  • the optical disc 100 mounted on the optical disc apparatus 107 is an optical disc having any one of the protective layer thicknesses Stl, t2, and t3. Since the optical disk device 107 according to the present embodiment uses the optical head according to the first embodiment or the second embodiment, the single optical head can support a plurality of optical disks having different recording densities.
  • FIG. 13 is a schematic perspective view of a computer according to the present embodiment.
  • a computer 109 shown in FIG. 13 includes an optical disc device 107 according to the third embodiment, an input device 116 such as a keyboard 111 and a mouse 112 for inputting information, and information input from the input device 116.
  • An arithmetic unit 108 such as a CPU that performs calculations based on information read from the optical disc device 107, and an output unit 110 such as a cathode ray tube or a liquid crystal display unit that displays information on the results calculated by the arithmetic unit 108.
  • an output unit 110 such as a cathode ray tube or a liquid crystal display unit that displays information on the results calculated by the arithmetic unit 108.
  • the computer 109 may be configured to include only the optical disk device 107 and the arithmetic device 108 without including the input device 116 and the output device 110. Further, the computer 109 may be equipped with a wired or wireless input / output terminal that takes in information to be recorded on the optical disc device 107 or outputs information read out by the optical disc device 107 to the outside.
  • the computer 109 according to the present embodiment includes the optical disc device 107 according to the third embodiment, and can record or reproduce different types of optical discs stably, so that it can be used for a wide range of purposes.
  • the present embodiment is an embodiment of an optical disc recorder provided with the optical disc device 107 according to the third embodiment.
  • FIG. 14 is a schematic perspective view of the optical disc recorder according to the present embodiment.
  • An optical disk recorder 115 shown in FIG. 14 includes an optical disk device 107 according to Embodiment 3, and a recording signal processing circuit 113 that converts an image signal into an information signal to be recorded on an optical disk by the optical disk device 107. ing.
  • the optical disc recorder 115 also includes a reproduction signal processing circuit 114 that converts an information signal obtained from the optical disc device 107 into an image signal. According to this configuration, it is possible to reproduce the already recorded portion. Furthermore, the optical disk recorder 115 may include an output device 110 such as a cathode ray tube or a liquid crystal display device for displaying information.
  • the optical disc recorder 115 includes the optical disc device 107 according to the third embodiment, and can record or play back different types of optical discs stably, so that it can be used for a wide range of applications.
  • An optical head includes a first light source that emits light having a first wavelength, and a second light that emits light having a second wavelength that is longer than the first wavelength.
  • the collimating lens for condensing the light having the first wavelength condensed by the collimating lens is converged on the first optical disc, and the light having the second wavelength condensed by the collimating lens is The first optical disc is converged on a second optical disc having a different protective layer thickness, and the light of the third wavelength condensed by the collimating lens is a protective layer between the first optical disc and the second optical disc.
  • Thickness An objective lens that converges on a different third optical disc, a photodetector that receives reflected light from the first optical disc, the second optical disc, and the third optical disc bundled by the collimating lens;
  • the collimating lens is moved in the optical axis direction, and information is recorded on the first optical disc, the second optical disc, and the third optical disc, or the first optical disc, the second optical disc, and the third optical disc.
  • the position of the collimating lens is selectively changed according to the wavelength of each light emitted from the first light source, the second light source, and the third light source.
  • a collimating lens moving unit A collimating lens moving unit.
  • the first light source power of the first wavelength is emitted, the second light source power of the second wavelength longer than the first wavelength is emitted, and the third light source power
  • the light source power of the third wavelength light having a wavelength longer than the second wavelength is emitted.
  • the collimating lens has the first wavelength light emitted from the first light source, the second wavelength light emitted from the second light source, and the third wavelength light emitted from the third light source. Collect the light.
  • the objective lens converges the light having the first wavelength collected by the collimating lens onto the first optical disc, and the light having the second wavelength collected by the collimating lens is converged on the first optical disc.
  • the photodetector receives the reflected light from the first optical disk, the second optical disk, and the third optical disk converged by the collimating lens.
  • the collimating lens moving unit moves the collimating lens in the optical axis direction and records information on the first optical disc, the second optical disc, and the third optical disc, or the first optical disc, the second optical disc, and When reproducing information from the third optical disk, the position of the collimating lens is selectively changed according to the wavelength of each light emitted from the first light source, the second light source, and the third light source.
  • the position of the collimating lens is selectively changed corresponding to the wavelength of each light emitted from the first light source, the second light source, and the third light source, and light detection that occurs due to the difference in wavelength. Since the deviation of the convergence position of the system can be corrected, light corresponding to a plurality of wavelengths can be received by one photodetector, and the configuration of the optical head can be simplified.
  • the collimating lens moving unit may include the first optical device.
  • the light from the first light source converges on the first optical disk, and the reflected light is focused on the photodetector.
  • the second light source When the position of the collimating lens is set so as to form a light spot suitable for detection and information is recorded on the second optical disc or information is reproduced from the second optical disc, the second light source The position of the collimating lens is set so that the light from the light beam converges on the second optical disk and the reflected light forms a light spot suitable for focus detection on the photodetector, and the third optical disk When recording information or reproducing information from the third optical disc, the light from the third light source converges on the third optical disc, and the reflected light is used for focus detection on the photodetector. Suitable It preferred to set the position of the collimating lens to form a light spot.
  • the light from the first light source converges on the first optical disc and the reflected light thereof
  • the position of the collimating lens is set so that a light spot suitable for focus detection is formed on the photodetector.
  • the light of the second light source power converges on the second optical disk, and the reflected light is focused on the photodetector.
  • the collimating lens position is set so as to form a light spot suitable for detection.
  • the light from the third light source converges on the third optical disk, and the reflected light is reflected on the photodetector.
  • the collimating lens position is set to form a light spot suitable for focus detection.
  • the position of the collimating lens is set so that the light from each light source converges on the optical disc and the reflected light forms a light spot suitable for focus detection on the photodetector.
  • the light receiving position of the photodetector can be arranged in an imaging relationship
  • the reflected light reflected by is branched.
  • the collimating lens condenses light having the first wavelength, the second wavelength, and the third wavelength branched by the optical path branching member.
  • the optical detector receives the reflected light of the first optical disk, the second optical disk, and the third optical disk, which is converged by the collimating lens and branched by the optical path branching member.
  • the optical path branching member transmits light in the vertical direction to the incident surface and reflects light in the horizontal direction on the incident surface.
  • the optical path branching member reflects a part of the light in the horizontal direction on the incident surface and transmits a part of the light in the horizontal direction on the incident surface.
  • light of three wavelengths from each light source can be branched, a collimating lens that collects light of three wavelengths, and light that receives light reflected by the optical disk of light of three wavelengths It can also be used as a stop lens for the detection system, and a compact and inexpensive optical head can be realized.
  • the light of the first wavelength and the light of the second wavelength have polarization separation characteristics
  • the light of the third wavelength that easily generates birefringence has a half mirror characteristic.
  • An optical path branching member corresponding to each of the three wavelengths of light is not necessary, and even one optical path branching member can support three wavelengths of light.
  • An optical head emits light of a first light source that emits light of a first wavelength and light of a second wavelength that is longer than the first wavelength.
  • a collimating lens that collects the light, and the collimator lens The light of the first wavelength collected by the laser beam is converged on the first optical disk, and the light of the second wavelength collected by the collimator lens is the protective layer thickness of the first optical disk.
  • the first light source power emits light of the first wavelength
  • the second light source power emits light of the second wavelength longer than the first wavelength
  • the third light source power Light with a third wavelength that is longer than the second wavelength is emitted.
  • the collimating lens has the first wavelength light emitted from the first light source, the second wavelength light emitted from the second light source, and the third wavelength light emitted from the third light source. Collect the light.
  • the objective lens converges the light having the first wavelength collected by the collimating lens onto the first optical disc, and the light having the second wavelength collected by the collimating lens is converged on the first optical disc.
  • the optical path branching member branches the light emitted from the first light source, the second light source, and the third light source, and the reflected light reflected by the first optical disc, the second optical disc, and the third optical disc.
  • the photodetector receives the reflected light from the first optical disc, the second optical disc, and the third optical disc that is converged by the collimating lens and branched by the optical path branching member.
  • the optical path branching member transmits light in the vertical direction to the incident surface, reflects light in the horizontal direction to the incident surface, and When light having a wavelength of is incident, part of the light in the horizontal direction is reflected on the incident surface and part of the light in the horizontal direction is transmitted to the incident surface.
  • light of three wavelengths from each light source can be branched, a collimating lens that collects light of three wavelengths, and light that receives light reflected by the optical disk of light of three wavelengths It can also be used as a stop lens for the detection system, and a compact and inexpensive optical head can be realized.
  • the light of the first wavelength and the light of the second wavelength have polarization separation characteristics
  • the light of the third wavelength that easily generates birefringence has a half mirror characteristic.
  • An optical path branching member corresponding to each of the three wavelengths of light is not necessary, and even one optical path branching member can support three wavelengths of light.
  • the optical path branching member includes an optical multilayer film and two prisms having a predetermined refractive index sandwiching the optical multilayer film
  • the optical multilayer film includes: It consists of an alternating film of a high refractive index film with a refractive index of 2.25 ⁇ 0.1 and a low refractive index film with a refractive index of 1.46 ⁇ 0.1, where the first central wavelength is ⁇ m.
  • the optical thickness of the first layer is ⁇ mZ4 to ⁇ mZlO
  • the optical thickness of the second to jth layers is ⁇ mZ4
  • j + The optical thickness of the first to j + k layers is ⁇ ⁇ 4
  • the second center wavelength ⁇ ⁇ is 1.1 to 1.3 times the first center wavelength m
  • the number of layers j is preferably larger than the number of layers k.
  • the optical path branching member includes the optical multilayer film and the two prisms having a predetermined refractive index sandwiching the optical multilayer film.
  • the optical multilayer film is composed of alternating films of a high refractive index film having a refractive index of 2.25 ⁇ 0.1 and a low refractive index film having a refractive index of 1.46 ⁇ 0.1.
  • the optical thickness of the first layer is ⁇ mZ4 to ⁇ mZlO
  • the second layer is j layer
  • the optical film thickness of the eye is ⁇ m / 4
  • the optical film thickness of the j + 1 to j + k layers is ⁇ ⁇ 4
  • the second center wavelength ⁇ ⁇ is the first center wavelength. From 1.1 times to 1.3 times m, the number of layers j is larger than the number of layers k.
  • the optical path branching member transmits light in the vertical direction to the incident surface and reflects light in the horizontal direction on the incident surface.
  • the refractive index of the prism is 1.65 ⁇ 0.1
  • the first central wavelength m is 635 ⁇ 10 nm.
  • the refractive index of the prism of the optical path branching member is 1.65 ⁇ 0.1 and the first central wavelength m is 635 ⁇ 10 nm
  • the first wavelength and the second wavelength This light has polarization separation characteristics
  • the third light has half mirror characteristics.
  • the second light source and the third light source are integrally configured, and the photodetector has a plurality of light receiving elements for detecting a focus signal, and Among the plurality of light receiving elements, the light receiving element for detecting the reflected light force force signal reflected by the first optical disk includes a light receiving element for detecting a focus signal from the reflected light reflected by the second optical disk, and The reflected light reflected by the third optical disk is preferably used also as one of the light receiving elements for detecting the focus signal.
  • the second light source and the third light source are configured as a single body, and the photodetector has a plurality of light receiving elements for detecting a focus signal.
  • the light receiving element that detects the focus signal from the reflected light reflected by the first optical disk includes the light receiving element that detects the reflected light force focus signal reflected by the second optical disk, and Reflected light force reflected by the third optical disk Also serves as one of the light receiving elements that detect the focus signal. Therefore, in the photodetector, the number of light receiving elements that detect the force signal can be reduced, and the number of amplifiers that amplify the signal that can also obtain the light receiving element force can be reduced.
  • the second light source and the third light source are integrally formed, and the photodetector includes a plurality of light receiving elements for detecting a tracking signal, and Among the plurality of light receiving elements, the light receiving element that detects the tracking signal from the reflected light reflected by the first optical disk includes: a light receiving element that detects a tracking signal from the reflected light reflected by the second optical disk; and It is preferable to also use one of the light receiving elements for detecting the tracking signal from the reflected light reflected by the third optical disk.
  • the second light source and the third light source are configured in a single body, and the photodetector is a It has a plurality of light receiving elements for detecting a knocking signal.
  • the light receiving element that detects the tracking signal from the reflected light reflected by the first optical disk has the reflected light power reflected by the second optical disk that also detects the tracking signal. It is also used as one of the light receiving elements that detect the tracking signal from the reflected light reflected by the optical disk. Therefore, in the photodetector, the number of light receiving elements for detecting the tracking signal can be reduced, and a small and inexpensive optical head can be realized.
  • the objective lens converges the light of the first wavelength with respect to the first optical disc with a numerical aperture NA1, and causes the light of the second wavelength to converge to the second optical disk.
  • the third optical disc is converged with a numerical aperture NA3 larger than the numerical aperture NA2 with respect to the third optical disc. Is preferred.
  • the objective lens converges the light of the first wavelength with respect to the first optical disc with the numerical aperture NA1, and opens the light of the second wavelength with respect to the second optical disc.
  • Convergence is performed with a numerical aperture NA2 larger than the numerical aperture NA1
  • light of the third wavelength is converged with respect to the third optical disc with a numerical aperture NA3 larger than the numerical aperture NA2.
  • the numerical apertures NA1, NA2, and NA3 of the first light, the second light, and the third light are NA1> NA2> NA3, and the effective diameter of the light that converges on each optical disk is set to the first light>
  • the second light can be the third light.
  • the optical head further includes a coupling lens that converts a divergence degree of the light of the second wavelength and the light of the third wavelength
  • the degree of divergence between the second wavelength light and the third wavelength light is converted by the coupling lens, and the first wavelength light and the coupling lens are converted by the collimating lens.
  • the light of the second wavelength and the light of the third wavelength whose degree of divergence is converted by It is.
  • the focal length of the collimating lens is fcl
  • the focal length of the optical system combining the coupling lens and the collimating lens is fc2
  • 0.7 to 1.3
  • fc l / fc2 The relationship of ⁇ X 2 X NA1Z (NA2 + NA3) is satisfied. Therefore, the position of the collimating lens is moved so as to satisfy this relationship, so the efficiency of light capture due to the difference between the numerical apertures NA1, NA2, and NA3 of the first light, the second light, and the third light. The difference can be corrected.
  • the numerical aperture NA1 is 0.85, the numerical aperture NA2 is 0.6 force and 0.65, and the numerical aperture NA3 is 0.45 force and 0. A power of 5 is preferred.
  • the numerical aperture NA1 is 0.85, the numerical aperture NA2 is 0.6 force to 0.65, and the numerical aperture NA3 is 0.45 force to 0.5.
  • the difference in light capture efficiency due to the difference between the numbers NA1, NA2 and NA3 can be corrected.
  • the protective layer thickness tl of the first optical disc is smaller than the protective layer thickness t2 of the second optical disc.
  • the protective layer thickness t2 of the second optical disc is It is preferable that the protective layer thickness t3 of the third optical disk is smaller.
  • the protective layer thickness tl of the first optical disc is smaller than the protective layer thickness t2 of the second optical disc.
  • the protective layer thickness t2 of the second optical disc is the protective layer of the third optical disc. Since the thickness is smaller than t3, information can be recorded and reproduced on optical disks having different protective layer thicknesses.
  • the protective layer thickness tl is approximately 0.1 mm
  • the protective layer thickness t2 is approximately 0.6 mm
  • the protective layer thickness t3 is approximately 1.2 mm.
  • the protective layer thickness tl is approximately 0.1 mm
  • the protective layer thickness t2 is approximately 0.6 mm
  • the protective layer thickness t3 is approximately 1.2 mm.
  • Information can be recorded and played back on DVD and CD optical discs.
  • the first wavelength is near 405 nm
  • the second wavelength is around 655 nm
  • the third wavelength is around 780 nm.
  • the first wavelength is around 405 nm
  • the second wavelength is around 655 nm
  • the third wavelength is around 780 nm. Therefore, for BD, DVD, and CD having different wavelengths, Information can be recorded on an optical disk and played back.
  • An optical disc device includes an optical head according to any one of the above, A motor for rotating the first optical disc, the second optical disc, and the third optical disc; an optical lens used for the optical head; and the optical head based on a signal obtained from the optical head And an electric circuit for controlling and driving at least one of the light sources used in the above.
  • the first optical disc, the second optical disc, and the third optical disc are rotated by the motor, and the motor, the optical head based on the signal obtained from the optical head by the electric circuit Since at least one of the optical lens used in the above and the light source used in the optical head is controlled and driven, the above optical head can be applied to an optical disc apparatus.
  • a computer provides the above optical disc device, an input device or an input terminal for inputting information, information input from the input device or the input terminal, and the optical disc.
  • Device power An arithmetic device that performs an operation based on at least one of the reproduced information, information input from the input device or the input terminal, information reproduced from the optical disk device, and an arithmetic device.
  • An output device or an output terminal for outputting at least one of the results.
  • the arithmetic device performs an operation based on at least a deviation between the information input from the input device or the input terminal and the information reproduced from the optical disc device, and the output device or Since the output terminal outputs at least one of the information input from the input device or the input terminal, the information reproduced from the optical disk device, and the result calculated by the arithmetic device, the optical disk device including the optical head is configured. It can be applied to computers.
  • An optical disc recorder includes the above optical disc device, a recording signal processing circuit for converting image information into a signal to be recorded on the optical disc device, and a signal obtained by the optical disc device power. And a reproduction signal processing circuit for converting the image data into image information.
  • the recording signal processing circuit converts the image information into a signal to be recorded on the optical disc apparatus, and the reproduction signal processing circuit converts the signal obtained from the optical disc apparatus into the image information. Therefore, the optical disk device provided with the above optical head can be applied to the optical disk recorder. Industrial applicability
  • the optical head according to the present invention realizes compatible reproduction and compatible recording of different types of optical discs by using one objective lens, and can ensure light transmission efficiency even when the optical discs are different, and can stably reproduce or record information. It is useful as an optical head for recording, reproducing, or erasing information on an optical information medium such as an optical disk. Further, the present invention is also useful as an optical disk device equipped with such an optical head, a computer equipped with this optical disk device, and an optical disk recorder.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)

Abstract

It is possible to simplify configuration of an optical head by receiving light corresponding to a plurality of wavelengths by a single photo-detector. A blue laser (1) emits light of wavelength λ1, a red laser (2) emits light of wavelength λ2, and an infrared laser (3) emits light of wavelength λ3. A collimator lens (13) collects the lights of wavelengths λ1, λ2, and λ3. An objective lens (16) causes optical discs (51, 52, 53) to converge the lights of wavelengths λ1, λ2, and λ3. A photo-detector (20) receives reflected lights from the optical discs (51, 52, 53) converged by the collimator lens (13). A stepping motor (22) moves the collimator lens (13) in the optical axis direction and records information in the optical discs (51, 52, 53). Alternatively, when reproducing the information from the optical discs (51, 52, 53), the stepping motor (22) selectively changes the position of the collimator lens (13) according to the respective wavelengths of the lights emitted from the lasers (1, 2, 3).

Description

明 細 書  Specification
光ヘッド、光ディスク装置、コンピュータ及び光ディスクレコーダ  Optical head, optical disc apparatus, computer and optical disc recorder
技術分野  Technical field
[0001] 本発明は、光ディスクなどの光情報媒体上に、情報を記録や再生、あるいは消去を 行う光ヘッドと、この光ヘッドを用いた光ディスク装置と、その装置を応用したパーソ ナルコンピュータと、ビデオ'オーディオ信号を記録する光ディスクレコーダ等のシス テムに関するものである。  [0001] The present invention relates to an optical head for recording, reproducing, or erasing information on an optical information medium such as an optical disc, an optical disc apparatus using the optical head, a personal computer to which the apparatus is applied, It relates to systems such as optical disc recorders that record video 'audio signals.
背景技術  Background art
[0002] 光ディスクの第 1世代といえるコンパクトディスク(以下、 CDと記す)では、対物レン ズの開口数を 0. 45から 0. 5までの範囲とし、波長 780nmの赤外光を用いて、保護 層厚 1. 2mmの光ディスクに情報を記録または再生(以下、記録 Z再生と記す)して いる。なお、本明細書中において、保護層とは光ディスクに光ビームが入射する面か ら情報記録面までの透明な媒体を指す。また、第 2世代のデジタルバーサタイルディ スク(以下、 DVDと記す)では、対物レンズの開口数を 0. 6とし、波長 655nmの赤色 光を用いて、保護層厚 0. 6mmの光ディスクに情報を記録 Z再生している。そして、 第 3世代のブルーレイディスク(以下、 BDと記す)では、対物レンズの開口数を 0. 85 とし、波長 405nmの青色光を用いて、保護層厚 0. 1mmの光ディスクに情報を記録 Z再生している。  [0002] In compact discs (hereinafter referred to as CDs) that can be said to be the first generation of optical discs, the numerical aperture of the objective lens is in the range of 0.45 to 0.5, and infrared light with a wavelength of 780 nm is used. Protective layer thickness 1. Information is recorded or played back on an optical disk with a thickness of 2 mm (hereinafter referred to as recording Z playback). In this specification, the protective layer refers to a transparent medium from the surface where the light beam is incident on the optical disk to the information recording surface. In the second-generation digital versatile disc (hereinafter referred to as DVD), the objective lens has a numerical aperture of 0.6 and red light with a wavelength of 655 nm is used to record information on an optical disc with a protective layer thickness of 0.6 mm. Recording Z Playback is in progress. In a third-generation Blu-ray disc (hereinafter referred to as BD), information is recorded on an optical disc with a protective layer thickness of 0.1 mm using blue light with a wavelength of 405 nm, with a numerical aperture of the objective lens of 0.85. Playing.
[0003] このように、第 3世代の光ディスクは、波長の短!、青色光レーザと、開口数の大き!/、 光学系を用いて、従来以上に高密度化を図っており、今後の市場の拡大が期待され ている。し力し、高密度光ディスクである BDにおいても、 DVDや CDで蓄積された資 産の継承が望まれ、小型で安価な光ディスク装置が求められている。このためには、 光ディスク装置のキーデバイスである光ヘッドを、合理化された簡素な光学系にする 必要がある。  [0003] In this way, the third generation optical disc has a short wavelength, a blue laser, and a large numerical aperture! /, The optical system is used to achieve higher density than before, and future market expansion is expected. However, even for BD, which is a high-density optical disc, succession of assets stored in DVDs and CDs is desired, and a compact and inexpensive optical disc apparatus is required. For this purpose, the optical head, which is a key device of the optical disk apparatus, needs to be a streamlined and simple optical system.
[0004] 従来より、異なる種類の光ディスクに情報を、複数の波長の光ビームを用いて記録 Z再生することを目的とした構成が開示されている。ここで、光ヘッドの第 1の従来例 について図 15を用いて説明する。図 15は、第 1の従来例の光ヘッドの概略構成を示 す図である。 [0004] Conventionally, there has been disclosed a configuration for recording and reproducing information on different types of optical disks by using light beams having a plurality of wavelengths. Here, a first conventional example of an optical head will be described with reference to FIG. Figure 15 shows the schematic configuration of the optical head of the first conventional example. It is a figure.
[0005] 図 15において、青色レーザ 61から出射した波長 405nmの光は、ビームシエーパ 6 4により光強度分布が補正され、ビームスプリッタ 65、 66を透過して、コリメートレンズ 67で平行光に変換される。その後、光は、ビームスプリッタ 68を透過し、対物レンズ 7 0により、厚さ 0. 1mmの保護層を介して光ディスク 51の情報記録面に収束する。対 物レンズ 70はその表面に回折素子が形成され、保護層の厚さが 0. 6mmの光デイス ク 52と、保護層の厚さが 1. 2mmの光ディスク 53とに情報を記録 Z再生できるように 構成されている。光ディスク 51から反射した光は、もとの光路を逆にたどり、コリメート レンズ 67で絞られ、ビームスプリッタ 65を反射する。反射した光は、シリンドリカルレン ズ 73で非点収差が与えられ、検出レンズ 74で焦点距離が伸ばされて、光検出器 75 へ入射する。そして、光ヘッドは、光検出器 75の出力信号を用いて、フォーカス信号 、トラッキング信号及び情報信号を得る。  In FIG. 15, the light having a wavelength of 405 nm emitted from the blue laser 61 has its light intensity distribution corrected by the beam shaper 64, transmitted through the beam splitters 65 and 66, and converted into parallel light by the collimator lens 67. . Thereafter, the light passes through the beam splitter 68 and is converged on the information recording surface of the optical disc 51 by the objective lens 70 through the protective layer having a thickness of 0.1 mm. The object lens 70 has a diffractive element formed on its surface, and can record information on an optical disk 52 with a protective layer thickness of 0.6 mm and an optical disk 53 with a protective layer thickness of 1.2 mm. It is configured as follows. The light reflected from the optical disc 51 follows the original optical path in the reverse direction, is narrowed down by the collimating lens 67, and is reflected by the beam splitter 65. The reflected light is given astigmatism by the cylindrical lens 73, the focal length is extended by the detection lens 74, and enters the photodetector 75. Then, the optical head uses the output signal of the photodetector 75 to obtain a focus signal, a tracking signal, and an information signal.
[0006] 一方、赤色レーザ 62から出射した光は、ビームシエーパ 71により光強度分布が補 正され、ビームスプリッタ 72を透過し、ビームスプリッタ 66を反射して、コリメートレンズ 67で弱発散光束に変換される。その後、光は、ビームスプリッタ 68を透過し、対物レ ンズ 70により、厚さ 0. 6mmの保護層を介して光ディスク 52の情報記録面に収束す る。光ディスク 52から反射した光は、もとの光路を逆にたどり、コリメートレンズ 67で絞 られ、ビームスプリッタ 66、 72を反射する。反射した光は、シリンドリカルレンズ 76で 非点収差が与えられ、検出レンズ 77で焦点距離が伸ばされて、光検出器 78へ入射 する。そして、光ヘッドは、光検出器 78の出力信号を用いて、フォーカス信号、トラッ キング信号及び情報信号を得る。  On the other hand, the light emitted from the red laser 62 has its light intensity distribution corrected by the beam shaper 71, transmitted through the beam splitter 72, reflected from the beam splitter 66, and converted into a weakly divergent light beam by the collimator lens 67. The Thereafter, the light passes through the beam splitter 68 and is converged on the information recording surface of the optical disc 52 by the objective lens 70 through the protective layer having a thickness of 0.6 mm. The light reflected from the optical disc 52 follows the original optical path in the reverse direction, is narrowed down by the collimating lens 67, and is reflected by the beam splitters 66 and 72. The reflected light is given astigmatism by the cylindrical lens 76, the focal length is extended by the detection lens 77, and enters the photodetector 78. Then, the optical head uses the output signal of the photodetector 78 to obtain a focus signal, tracking signal, and information signal.
[0007] また、赤外レーザ 63から出射した光は発散光であり、この光は、ホログラム素子 79 を透過し、ビームスプリッタ 68を反射して、対物レンズ 70により、厚さ 1. 2mmの保護 層を介して光ディスク 53の情報記録面に収束する。光ディスク 53からの反射光は、 ビームスプリッタ 68を反射して、ホログラム素子 79により光路分岐され、光検出器 80 へ入射する。そして、光ヘッドは、光検出器 80の出力信号を用いて、フォーカス信号 、トラッキング信号及び情報信号を得る (例えば、特許文献 1参照)。  [0007] The light emitted from the infrared laser 63 is divergent light, and this light passes through the hologram element 79, reflects off the beam splitter 68, and is protected to a thickness of 1.2 mm by the objective lens 70. It converges on the information recording surface of the optical disc 53 through the layers. The reflected light from the optical disk 53 is reflected by the beam splitter 68, is branched by the hologram element 79, and enters the photodetector 80. Then, the optical head uses the output signal of the photodetector 80 to obtain a focus signal, a tracking signal, and an information signal (see, for example, Patent Document 1).
[0008] 第 2の従来例としては、保護層厚 0. 1mmの光ディスクと、保護層厚 0. 6mmの光 ディスクとに情報を記録 Z再生する互換光ヘッドの構成が開示されている。図 16は、 第 2の従来例の光ヘッドの概略構成を示す図である。 [0008] As a second conventional example, there are an optical disc having a protective layer thickness of 0.1 mm and an optical disc having a protective layer thickness of 0.6 mm. A configuration of a compatible optical head that records and reproduces information on a disk is disclosed. FIG. 16 is a diagram showing a schematic configuration of the optical head of the second conventional example.
[0009] 図 16において、青色レーザ 81から出射した波長 405nmの光は、ビーム整形素子 83により光強度分布が補正され、ビームスプリッタ 84を反射し、波長板 85によって円 偏光に変換される。その後、光は、コリメートレンズ 86で平行光に集光され、ミラー 87 を反射し、回折素子 88と対物レンズ 89とによって、厚さ 0. 1mmの保護層を介して光 ディスク 51の情報記録面に収束する。回折素子 88は対物レンズ 89と組み合わせる ことにより、波長 405nmの光を保護層厚 0. 1mmの光ディスクに収束し、波長 655η mの光を保護層厚 0. 6mmの光ディスクに収束するよう構成されている。光ディスク 5 1から反射した光は、もとの光路を逆にたどって、波長板 85で往路と直角方向の直線 偏光に変換され、ビームスプリッタ 90を反射する。その後、反射した光は、検出ホログ ラム 91により回折され、検出レンズ 92によって焦点距離が伸ばされて、光検出器 93 に入射する。光ヘッドは、光検出器 93の出力を演算することによって、フォーカス信 号、トラッキング信号及び情報信号を得る。  In FIG. 16, light having a wavelength of 405 nm emitted from the blue laser 81 has its light intensity distribution corrected by the beam shaping element 83, reflected by the beam splitter 84, and converted into circularly polarized light by the wave plate 85. Thereafter, the light is condensed into collimated light by the collimating lens 86, reflected by the mirror 87, and reflected by the diffraction element 88 and the objective lens 89 through the protective layer having a thickness of 0.1 mm. Converge to. In combination with the objective lens 89, the diffractive element 88 is configured to converge light with a wavelength of 405 nm onto an optical disk with a protective layer thickness of 0.1 mm, and focus light with a wavelength of 655 ηm onto an optical disk with a protective layer thickness of 0.6 mm. Yes. The light reflected from the optical disc 51 follows the original optical path in reverse, is converted into linearly polarized light in a direction perpendicular to the forward path by the wave plate 85, and is reflected by the beam splitter 90. Thereafter, the reflected light is diffracted by the detection hologram 91, the focal length is extended by the detection lens 92, and enters the photodetector 93. The optical head obtains a focus signal, a tracking signal, and an information signal by calculating the output of the photodetector 93.
[0010] 次に、赤色レーザ 82から出射した波長 655nmの光は、ビームスプリッタ 90とビーム スプリッタ 84とを透過し、コリメートレンズ 86によって平行光に集光される。その後、光 は、ミラー 87を反射し、回折素子 88と対物レンズ 89とによって、厚さ 0. 6mmの保護 層を介して光ディスク 52の情報記録面に収束される。光ディスク 52から反射した光は 、もとの光路を逆にたどって、ビームスプリッタ 90を反射して、検出ホログラム 91によ つて回折され、さらに検出レンズ 92によって焦点距離が伸ばされて、光検出器 93に 入射する。光ヘッドは、光検出器 93の出力を演算することによって、サーボ信号、トラ ッキング信号及び情報信号を得る (例えば、特許文献 2参照)。  Next, light having a wavelength of 655 nm emitted from the red laser 82 passes through the beam splitter 90 and the beam splitter 84 and is condensed into parallel light by the collimator lens 86. Thereafter, the light is reflected by the mirror 87 and converged on the information recording surface of the optical disc 52 by the diffraction element 88 and the objective lens 89 through the protective layer having a thickness of 0.6 mm. The light reflected from the optical disk 52 follows the original optical path in the opposite direction, is reflected by the beam splitter 90, is diffracted by the detection hologram 91, and is further extended in focal length by the detection lens 92. Incident in 93. The optical head obtains a servo signal, a tracking signal, and an information signal by calculating the output of the photodetector 93 (see, for example, Patent Document 2).
[0011] 第 1の従来例では、 1つの対物レンズにより、 BD、 DVD及び CDの記録 Z再生を 行っている。互換の方法については詳細な説明はないが、平行光と発散光を用いる ため、検出光学系が複雑になっている。青色レーザ 61からの発散光はコリメートレン ズ 67によって平行光に集光され、赤色レーザ 62からの発散光はコリメートレンズ 67 で弱発散光に集光され、赤外レーザ 63からの発散光はそのまま集光されずに、対物 レンズ 70に入射する。このため、光ディスクを反射した光を、 1つの光検出器により検 出することは困難であり、各レーザに対応して、 3つの光検出器 75、 78、 80が設けら れている。 3つの光検出器を設けることにより、レーザと光検出器の位置関係を、各波 長の光で独立に設定することができる力 検出光学系は、 2組のシリンドリカルレンズ 、検出レンズ及び 1つのホログラム素子を設ける必要がある。これでは、光ヘッドの構 成が複雑になり、小型化が難しくなるだけではなぐコスト面でも不利になる。 [0011] In the first conventional example, recording Z reproduction of BD, DVD, and CD is performed by one objective lens. Although there is no detailed explanation of the compatibility method, the detection optical system is complicated because it uses parallel light and divergent light. The divergent light from the blue laser 61 is condensed into parallel light by the collimating lens 67, the divergent light from the red laser 62 is condensed into weakly divergent light by the collimating lens 67, and the divergent light from the infrared laser 63 remains as it is. The light is incident on the objective lens 70 without being condensed. For this reason, the light reflected from the optical disk is detected by a single photodetector. It is difficult to emit, and three photodetectors 75, 78, and 80 are provided for each laser. By providing three photodetectors, the force detection optical system that can set the positional relationship between the laser and the photodetector independently for each wavelength of light consists of two sets of cylindrical lenses, a detection lens, and one It is necessary to provide a hologram element. This complicates the configuration of the optical head, which is not only difficult to reduce in size but also disadvantageous in terms of cost.
[0012] 第 2の従来例では、 1つの対物レンズにより BD及び DVDの記録 Z再生を行ってい る。波長 405nmの光は回折素子 88の 2次回折光を利用し、波長 655nmの光は回 折素子 88の 1次回折光を利用して、 BDと DVDとの保護層厚の差による球面収差を 補正している。この場合、波長 780nmの光を CDの保護層に最適化することができな いため、 CDを記録 Z再生することができない。 BDである光ディスク 51の反射光と D VDである光ディスク 52の反射光とは、共通の光検出器 93により受光され、サーボ信 号が得られる。そのため、青色レーザ 81と赤色レーザ 82とは、それぞれの発光点が 対物レンズ側の共通の位置に対して結像関係にあるように配置されている。これは、 波長 405nmの光と波長 655nmの光とを、光ディスク側カゝら平行光で入射させたとき 、その収束位置にレーザの発光点を設定することである。この場合、コリメートレンズ 8 6の色収差により、光検出器 93上では 2つの光を同じように収束させることができない 。例えば、フォーカス検出を非点収差法で行う場合、最小錯乱円の位置は、波長 40 5nmと波長 655nmとではずれてしまうので、フォーカス信号に一定のオフセットが発 生する。このため、フォーカス制御のできる範囲が狭くなり、構成によっては、フォー力 ス制御が困難となる。 [0012] In the second conventional example, recording Z playback of BD and DVD is performed by one objective lens. Light with a wavelength of 405 nm uses the second-order diffracted light of diffraction element 88, and light with a wavelength of 655 nm uses the first-order diffracted light of diffraction element 88 to correct spherical aberration due to the difference in protective layer thickness between BD and DVD. ing. In this case, light with a wavelength of 780 nm cannot be optimized for the protective layer of the CD, so the CD cannot be recorded and played back. The reflected light of the optical disc 51, which is a BD, and the reflected light of the optical disc 52, which is a DVD, are received by a common photodetector 93, and a servo signal is obtained. For this reason, the blue laser 81 and the red laser 82 are arranged so that their respective emission points are in an imaging relationship with respect to a common position on the objective lens side. This is to set a laser emission point at a convergence position when light having a wavelength of 405 nm and light having a wavelength of 655 nm are incident as parallel light from the optical disk side. In this case, the two lights cannot be converged in the same manner on the photodetector 93 due to the chromatic aberration of the collimating lens 86. For example, when focus detection is performed by the astigmatism method, the position of the minimum circle of confusion is shifted between the wavelength of 405 nm and the wavelength of 655 nm, so that a constant offset occurs in the focus signal. For this reason, the range in which focus control can be performed becomes narrow, and force control becomes difficult depending on the configuration.
特許文献 1 :特開 2005— 209325号公報 (第 17— 19頁、図 6)  Patent Document 1: Japanese Unexamined Patent Publication No. 2005-209325 (pages 17-19, Fig. 6)
特許文献 2 :特開 2004— 192783号公報 (第 12— 18頁、図 1)  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-192783 (Page 12-18, Fig. 1)
発明の開示  Disclosure of the invention
[0013] 本発明は、上記の問題を解決するためになされたもので、 1つの光検出器で複数 の波長に対応する光を受光することができ、光ヘッドの構成を簡略ィ匕することができ る光ヘッド、光ディスク装置、コンピュータ及び光ディスクレコーダを提供することを目 的とするものである。  [0013] The present invention has been made to solve the above-described problem. A single photodetector can receive light corresponding to a plurality of wavelengths, and the configuration of the optical head can be simplified. An object of the present invention is to provide an optical head, an optical disk device, a computer, and an optical disk recorder that can perform recording.
[0014] 本発明の一局面に係る光ヘッドは、第 1の波長の光を出射する第 1の光源と、前記 第 1の波長よりも波長の長い第 2の波長の光を出射する第 2の光源と、前記第 2の波 長よりも波長の長い第 3の波長の光を出射する第 3の光源と、前記第 1の波長、前記 第 2の波長及び前記第 3の波長の光を集光するコリメートレンズと、前記コリメートレン ズによって集光された前記第 1の波長の光を第 1の光ディスクに収束させ、前記コリメ 一トレンズによって集光された前記第 2の波長の光を前記第 1の光ディスクとは保護 層厚の異なる第 2の光ディスクに収束させ、前記コリメートレンズによって集光された 前記第 3の波長の光を前記第 1の光ディスク及び前記第 2の光ディスクとは保護層厚 の異なる第 3の光ディスクに収束させる対物レンズと、前記コリメートレンズによって収 束された前記第 1の光ディスク、前記第 2の光ディスク及び前記第 3の光ディスクから の反射光を受光する光検出器と、前記コリメートレンズを光軸方向に移動させ、前記 第 1の光ディスク、前記第 2の光ディスク及び前記第 3の光ディスクに情報を記録する 、又は前記第 1の光ディスク、前記第 2の光ディスク及び前記第 3の光ディスクから情 報を再生する際に、前記第 1の光源、前記第 2の光源及び前記第 3の光源から出射 される各光の波長に対応して選択的に前記コリメートレンズの位置を変えるコリメート レンズ移動部とを備える。 [0014] An optical head according to one aspect of the present invention includes a first light source that emits light of a first wavelength, A second light source that emits light of a second wavelength that is longer than the first wavelength; a third light source that emits light of a third wavelength that is longer than the second wavelength; and A collimating lens that collects the light of the first wavelength, the second wavelength, and the third wavelength; and the light of the first wavelength that is collected by the collimating lens is converged on the first optical disc. The second wavelength light collected by the collimating lens is converged on a second optical disc having a protective layer thickness different from that of the first optical disc, and is collected by the collimating lens. An objective lens for converging light having a wavelength of 3 to a third optical disc having a protective layer thickness different from that of the first optical disc and the second optical disc, the first optical disc bundled by the collimator lens, and the first optical disc 2 optical discs and The photodetector that receives the reflected light from the third optical disc and the collimating lens are moved in the optical axis direction, and information is recorded on the first optical disc, the second optical disc, and the third optical disc. Or each of the light emitted from the first light source, the second light source, and the third light source when reproducing information from the first optical disc, the second optical disc, and the third optical disc. A collimating lens moving unit that selectively changes the position of the collimating lens in accordance with the wavelength of light.
[0015] したがって、第 1の光源、第 2の光源及び第 3の光源から出射される各光の波長に 対応して選択的にコリメートレンズの位置が変えられ、波長の違いで発生する光検出 系の収束位置のずれを補正することができるので、 1つの光検出器で複数の波長に 対応する光を受光することができ、光ヘッドの構成を簡略ィ匕することができる。 Accordingly, the position of the collimating lens is selectively changed corresponding to the wavelength of each light emitted from the first light source, the second light source, and the third light source, and light detection that occurs due to a difference in wavelength is detected. Since the deviation of the convergence position of the system can be corrected, light corresponding to a plurality of wavelengths can be received by one photodetector, and the configuration of the optical head can be simplified.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]本発明の実施の形態 1における光ヘッドの基本構成と光の伝搬の様子とを示す 図である。  FIG. 1 is a diagram showing a basic configuration of an optical head and a state of light propagation in Embodiment 1 of the present invention.
[図 2]本発明の実施の形態 1における対物レンズの断面図である。  FIG. 2 is a cross-sectional view of an objective lens according to Embodiment 1 of the present invention.
[図 3]本発明の実施の形態 1における回折素子の平面図である。  FIG. 3 is a plan view of the diffraction element according to the first embodiment of the present invention.
[図 4]図 4Aは、本発明の実施の形態 1における検出光学系の断面図であり、収束す る光の伝搬の様子を示す図であり、図 4Bは、図 4Aに示す検出光学系の直交方向の 断面図である。  FIG. 4A is a cross-sectional view of the detection optical system according to Embodiment 1 of the present invention, showing a state of propagation of convergent light, and FIG. 4B is a detection optical system shown in FIG. 4A. It is sectional drawing of the orthogonal direction of these.
[図 5]図 5Aは、本発明の実施の形態 1における受光素子のパターンとフォーカス信 号検出とを説明するための図であり、図 5Bは、受光素子のパターンとトラッキング信 号検出とを説明するための図である。 FIG. 5A shows a pattern of a light receiving element and a focus signal in Embodiment 1 of the present invention. FIG. 5B is a diagram for explaining the pattern of the light receiving element and the tracking signal detection.
[図 6]本発明の実施の形態 1におけるフォーカス信号を示す図である。  FIG. 6 is a diagram showing a focus signal in the first embodiment of the present invention.
[図 7]図 7Aは、本発明の実施の形態 1における波長 λ 1の光を検出するときのコリメ 一トレンズ位置を示す図であり、図 7Βは、波長え 2の光を検出するときのコリメ一トレ ンズ位置を示す図であり、図 7Cは、波長え 3の光を検出するときのコリメートレンズ位 置を示す図である。  FIG. 7A is a diagram showing a collimating lens position when detecting light of wavelength λ 1 in Embodiment 1 of the present invention, and FIG. 7A is a diagram of detecting light of wavelength 2 FIG. 7C is a diagram showing a collimating lens position, and FIG. 7C is a diagram showing a collimating lens position when detecting light of wavelength 3. FIG.
[図 8]本発明の実施の形態 1におけるビームスプリッタの拡大図である。  FIG. 8 is an enlarged view of the beam splitter in the first embodiment of the present invention.
[図 9]図 9Αは、光学多層膜における波長と透過率特性との関係を示す図であり、図 9 [Fig. 9] Fig. 9 (b) is a graph showing the relationship between the wavelength and transmittance characteristics in the optical multilayer film.
Βは、波長 λ 1の光ビームの入射角と透過率特性との関係を示す図であり、図 9Cは、 波長え 2の光ビームの入射角と透過率特性との関係を示す図であり、図 9Dは、波長 λ 3の光ビームの入射角と透過率特性との関係を示す図である。 Fig. 9 is a diagram showing the relationship between the incident angle of the light beam with wavelength λ 1 and the transmittance characteristics, and Fig. 9C is a diagram showing the relationship between the incident angle of the light beam with wavelength 2 and the transmittance characteristics. FIG. 9D is a diagram showing the relationship between the incident angle of the light beam having the wavelength λ 3 and the transmittance characteristic.
[図 10]本発明の実施の形態 2における光ヘッドの基本構成と光の伝搬の様子とを示 す図である。  FIG. 10 is a diagram showing a basic configuration of an optical head and a state of light propagation in Embodiment 2 of the present invention.
[図 11]本発明の実施の形態 2における受光素子のパターンを示す図である。  FIG. 11 is a diagram showing a pattern of a light receiving element in the second embodiment of the present invention.
[図 12]本発明の実施の形態 3における光ディスク装置の概略構成図である。  FIG. 12 is a schematic configuration diagram of an optical disc device in a third embodiment of the present invention.
[図 13]本発明の実施の形態 4におけるコンピュータの概略斜視図である。  FIG. 13 is a schematic perspective view of a computer according to Embodiment 4 of the present invention.
[図 14]本発明の実施の形態 5における光ディスクレコーダの概略斜視図である。  FIG. 14 is a schematic perspective view of an optical disc recorder according to Embodiment 5 of the present invention.
[図 15]光ヘッドの第 1の従来例の概略構成を示す図である。  FIG. 15 is a diagram showing a schematic configuration of a first conventional example of an optical head.
[図 16]光ヘッドの第 2の従来例の概略構成を示す図である。  FIG. 16 is a diagram showing a schematic configuration of a second conventional example of an optical head.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明の実施の形態について図面を参照しながら説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018] (実施の形態 1)  [0018] (Embodiment 1)
図 1は、本発明の実施の形態 1における光ヘッドの構成を示す図である。図 1にお いて、光ヘッドは、青色レーザ 1、赤色レーザ 2、赤外レーザ 3、回折格子 7, 8, 9、ダ ィクロイツクプリズム 10, 11、ビームスプリッタ 12、コリメートレンズ 13、波長板 14、ミラ 一 15、対物レンズ 16、検出レンズ 19及び光検出器 20を備える。  FIG. 1 is a diagram showing the configuration of the optical head according to Embodiment 1 of the present invention. In Fig. 1, the optical head consists of blue laser 1, red laser 2, infrared laser 3, diffraction gratings 7, 8, 9, dichroic prisms 10, 11, beam splitter 12, collimating lens 13, and wave plate. 14, mirror 1, objective lens 16, detection lens 19 and photodetector 20.
[0019] 青色レーザ 1は、波長 λ 1 (略 405nm)の光を出射する。赤色レーザ 2は、波長え 2 (略 655nm)の光を出射する。赤外レーザ 3は、波長え 3 (略 780nm)の光を出射す る。 The blue laser 1 emits light having a wavelength λ 1 (approximately 405 nm). Red laser 2 has wavelength 2 Light (approximately 655nm) is emitted. The infrared laser 3 emits light having a wavelength of 3 (approximately 780 nm).
[0020] 光ディスク 51は、保護層厚 tlが約 0. 1mmの光ディスクであり、波長 λ 1の光ビー ムによって記録 Ζ再生される光情報媒体、例えば BD用の光ディスクである。光デイス ク 52は、保護層厚 t2が約 0. 6mmの光ディスクであり、波長え 2の光ビームによって 記録 Z再生される光情報媒体、例えば DVD用の光ディスクである。光ディスク 53は 、保護層厚 t3が約 1. 2mmの光ディスクであり、波長え 3の光ビームによって記録 Z 再生される光情報媒体、例えば CD用の光ディスクである。図 1では、光ディスク 51を 実線で示し、光ディスク 52を点線で示し、光ディスク 53を一点鎖線で示し、光ビーム が入射する面力も情報記録面までの保護層のみを示している。実際には、光ディスク 51, 52, 53は、機械的強度を確保し、かつ外形を CDと同じ 1. 2mmにするため、基 材を張り合わせている。光ディスク 52は、厚み 0. 6mmの基材を張り合わせ、光ディ スク 51は厚み 1. 1mmの基材を張り合わせている力 本発明の図面では、簡単にす るため、基材は省略している。  The optical disc 51 is an optical disc having a protective layer thickness tl of about 0.1 mm, and is an optical information medium that is recorded and reproduced by an optical beam having a wavelength λ1, for example, an optical disc for BD. The optical disk 52 is an optical disk having a protective layer thickness t2 of about 0.6 mm, and is an optical information medium that is recorded and reproduced by a light beam having a wavelength of 2, for example, an optical disk for DVD. The optical disc 53 is an optical disc having a protective layer thickness t3 of about 1.2 mm, and is an optical information medium that is recorded and reproduced by a light beam having a wavelength of 3, for example, an optical disc for CD. In FIG. 1, the optical disc 51 is indicated by a solid line, the optical disc 52 is indicated by a dotted line, the optical disc 53 is indicated by a one-dot chain line, and the surface force on which the light beam is incident also indicates only the protective layer up to the information recording surface. Actually, the optical disks 51, 52, and 53 are bonded to each other in order to ensure the mechanical strength and to make the outer shape the same as that of CD, 1.2 mm. The optical disc 52 has a thickness of 0.6 mm, and the optical disc 51 has a thickness of 1.1 mm. The substrate is omitted in the drawings of the present invention for simplicity. .
[0021] 対物レンズ 16は、光ディスク 51, 52, 53に情報を記録 Z再生するため、光ディスク 51, 52, 53の情報記録面に光ビームを収束させる。対物レンズ 16は、レンズ表面に 回折素子 16aを有し、回折素子 16aで生じる回折の波長依存性を利用して、光ディ スク 51, 52, 53の保護層厚の違いによる球面収差を補正する。  The objective lens 16 converges the light beam on the information recording surface of the optical discs 51, 52, and 53 in order to record and reproduce information on the optical discs 51, 52, and 53. The objective lens 16 has a diffractive element 16a on the lens surface, and corrects spherical aberration due to the difference in the protective layer thickness of the optical disks 51, 52, and 53 by utilizing the wavelength dependence of diffraction generated by the diffractive element 16a. .
[0022] このように構成された光ヘッドの動作につ!ヽて説明する。記録密度の高!ヽ光デイス ク 51に情報を記録 Z再生する際には、青色レーザ 1から波長 λ 1の光ビーム 4が出 射される。青色レーザ 1から出射した波長 λ 1の光ビーム 4は、回折格子 7により主ビ ームと 2つの副ビームとに分けられ、ダイクロイツクプリズム 10とダイクロイツクプリズム 11とを透過して、ビームスプリッタ 12に入射する。  [0022] The operation of the thus configured optical head will be described. When recording and reproducing information on a high-density optical disk 51, the blue laser 1 emits a light beam 4 of wavelength λ1. The light beam 4 having a wavelength λ 1 emitted from the blue laser 1 is divided into a main beam and two sub beams by the diffraction grating 7, passes through the dichroic prism 10 and the dichroic prism 11, and is transmitted to the beam splitter. Incident on 12
[0023] ダイクロイツクプリズム 10は、波長 λ 1の光を透過し、波長 λ 2の光を反射するよう構 成され、ダイクロイツクプリズム 11は、波長 λ 1の光と波長 λ 2の光とを透過し、波長 λ 3の光を反射するよう構成されている。また、ビームスプリッタ 12は、波長 λ 1, λ 2の 光に対しては、偏光面が入射面に水平方向の直線偏光 (以下、 S偏光と記す)を反 射し、それと直交する方向の直線偏光 (以下、 Ρ偏光と記す)を透過する偏光分離特 性を持ち、波長え 3の光に対しては S偏光の一部を反射し、 S偏光の一部を透過する 特性を持った光路分岐素子である。青色レーザ 1から出射した光ビーム 4は、 S偏光 でビームスプリッタ 12に入射するよう設定されており、ここを反射して、コリメートレンズ 13により集光され略平行光になって、波長板 14で直線偏光から円偏光に変換され る。 The dichroic prism 10 is configured to transmit light having a wavelength λ 1 and reflect light having a wavelength λ 2. The dichroic prism 11 transmits light having a wavelength λ 1 and light having a wavelength λ 2. It is configured to transmit and reflect light of wavelength λ3. In addition, the beam splitter 12 reflects the linearly polarized light in the horizontal direction (hereinafter referred to as S-polarized light) on the incident surface for the light of wavelengths λ1 and λ2, and the straight line in the direction orthogonal thereto. Polarized light separation characteristic that transmits polarized light (hereinafter referred to as `` polarized light '') This is an optical path branching element that has the property of reflecting part of S-polarized light and transmitting part of S-polarized light for wavelength 3 light. The light beam 4 emitted from the blue laser 1 is set so as to be incident on the beam splitter 12 as S-polarized light. The light beam 4 is reflected and condensed by the collimator lens 13 to become substantially parallel light. Converted from linearly polarized light to circularly polarized light.
[0024] コリメートレンズ 13は、ガイド軸 25, 26に沿って移動する移送台 24に取り付けられ ている。移送台 24は、ステッピングモータ 22の回転により、直結された送りねじ 23で 矢印方向に移動できるよう構成されている。波長板 14は、波長 λ 1, λ 2の光に対し ては、 1Z4波長板として作用し、波長え 3の光に対しては、波長板として作用しない よう設計されている。  The collimating lens 13 is attached to a transfer table 24 that moves along the guide shafts 25 and 26. The transfer table 24 is configured to be moved in the direction of the arrow by the feed screw 23 directly connected by the rotation of the stepping motor 22. The wave plate 14 is designed to act as a 1Z4 wave plate for light of wavelengths λ 1 and λ 2 and not as a wave plate for light of wavelength 3.
[0025] さらに、光ビーム 4は、ミラー 15によって反射され、対物レンズ 16に入射する。ここ で、光ビーム 4は、対物レンズ 16のレンズ面に形成された回折素子 16aで回折し、対 物レンズ 16の屈折作用を受け、保護層厚 tlの保護層を通して光ディスク 51の情報 記録面に開口数 NA1で収束する。  Furthermore, the light beam 4 is reflected by the mirror 15 and enters the objective lens 16. Here, the light beam 4 is diffracted by the diffraction element 16a formed on the lens surface of the objective lens 16, is refracted by the object lens 16, and passes through the protective layer having the protective layer thickness tl to the information recording surface of the optical disc 51. Convergence with numerical aperture NA1.
[0026] 光ディスク 51の情報記録面で反射した光ビーム 4は、往路と反対回りの円偏光とな り、もとの光路を逆にたどって、波長板 14により P偏光に変換される。そして、 P偏光 に変換された光ビーム 4は、コリメートレンズ 13により絞られ、ビームスプリッタ 12を透 過する。収束光となった光ビーム 4は、検出レンズ 19によって非点収差が与えられ、 光検出器 20に入射し、受光素子 20aにより光電変換される。検出レンズ 19は、ビー ムスプリッタ 12の入射面に対して 45° 傾いた方向にレンズ作用をもつシリンドリカル レンズにより構成されている。光ヘッドは、光ビーム 4に非点収差が与えられることによ り、非点差法によるフォーカス信号を得ることができる。また、光ヘッドは、回折格子 7 によって形成された 3つのビームに基づ!/、てデフアレンシャルプッシュプル法(以下、 DPPと記す)によるトラッキング信号を得ることができる。さらに、光ヘッドは、光検出 器 20の出力より情報信号を得ることができる。  The light beam 4 reflected on the information recording surface of the optical disc 51 becomes circularly polarized light opposite to the forward path, and is converted into P-polarized light by following the original optical path in reverse. The light beam 4 converted to P-polarized light is narrowed by the collimating lens 13 and passes through the beam splitter 12. The converged light beam 4 is given astigmatism by the detection lens 19, enters the photodetector 20, and is photoelectrically converted by the light receiving element 20a. The detection lens 19 is constituted by a cylindrical lens having a lens action in a direction inclined by 45 ° with respect to the incident surface of the beam splitter 12. The optical head can obtain a focus signal by the astigmatism method by giving astigmatism to the light beam 4. Further, the optical head can obtain a tracking signal based on the three beams formed by the diffraction grating 7 by a differential push-pull method (hereinafter referred to as DPP). Further, the optical head can obtain an information signal from the output of the photodetector 20.
[0027] 次に、光ディスク 52に情報を記録 Z再生する際には、赤色レーザ 2から波長 λ 2の 光ビーム 5が出射される。赤色レーザ 2から出射した波長え 2の光ビーム 5は、回折格 子 8により主ビームと 2つの副ビームとに分けられ、ダイクロイツクプリズム 10を反射し 、ダイクロイツクプリズム 11を透過して、ビームスプリッタ 12に入射する。赤色レーザ 2 力も出射した光ビーム 5は、 S偏光でビームスプリッタ 12に入射するよう設定されてお り、ここを反射して、コリメートレンズ 13により集光され略平行光になって、波長板 14 で直線偏光から円偏光に変換される。さらに光ビーム 5は、ミラー 15によって反射さ れ、対物レンズ 16に入射する。ここで、光ビーム 5は、対物レンズ 16の表面に形成さ れた回折素子 16aで回折し、対物レンズ 16の屈折作用を受け、保護層厚 t2の保護 層を通して光ディスク 52の情報記録面に開口数 NA2で収束する。 Next, when recording information on the optical disc 52 and reproducing it, the red laser 2 emits the light beam 5 having the wavelength λ 2. The light beam 5 of wavelength 2 emitted from the red laser 2 is divided into a main beam and two sub beams by the diffraction grating 8, and is reflected by the dichroic prism 10. Then, the light passes through the dichroic prism 11 and enters the beam splitter 12. The light beam 5 from which the red laser 2 has also been emitted is set to be incident on the beam splitter 12 as S-polarized light. The light beam 5 is reflected and condensed by the collimating lens 13 to become substantially parallel light. Is converted from linearly polarized light to circularly polarized light. Further, the light beam 5 is reflected by the mirror 15 and enters the objective lens 16. Here, the light beam 5 is diffracted by the diffractive element 16a formed on the surface of the objective lens 16, is refracted by the objective lens 16, and opens on the information recording surface of the optical disc 52 through the protective layer having the protective layer thickness t2. Convergence with number NA2.
[0028] 光ディスク 52の情報記録面で反射した光ビーム 5は、往路と反対回りの円偏光とな り、もとの光路を逆にたどって、波長板 14により P偏光に変換される。そして、 P偏光 に変換された光ビーム 5は、コリメートレンズ 13により絞られ、ビームスプリッタ 12を透 過する。収束光となった光ビーム 5は、検出レンズ 19によって非点収差が与えられ、 光検出器 20に入射し、受光素子 20aにより光電変換される。光ヘッドは、光検出器 2 0の出力を演算することによって、前記同様にフォーカス信号、トラッキング信号及び 情報信号を得る。 [0028] The light beam 5 reflected by the information recording surface of the optical disc 52 becomes circularly polarized light opposite to the forward path, and is converted into P-polarized light by following the original optical path in reverse. The light beam 5 converted to P-polarized light is narrowed by the collimating lens 13 and passes through the beam splitter 12. The converged light beam 5 is given astigmatism by the detection lens 19, enters the photodetector 20, and is photoelectrically converted by the light receiving element 20a. The optical head obtains a focus signal, tracking signal, and information signal in the same manner as described above by calculating the output of the photodetector 20.
[0029] また、光ディスク 53に情報を記録 Z再生する際には、赤外レーザ 3から波長 λ 3の 光ビーム 6が出射される。赤外レーザ 3から出射した波長え 3の光ビーム 6は、回折格 子 9により主ビームと 2つの副ビームとに分けられ、ダイクロイツクプリズム 11によって 反射され、ビームスプリッタ 12に入射する。赤外レーザ 3から出射した光ビーム 6は、 S偏光でビームスプリッタ 12に入射するよう設定されており、 S偏光の一部がここを反 射して、コリメートレンズ 13により集光され略平行光になる。さらに、光ビーム 6は波長 板 14を透過し、ミラー 15によって反射されて、対物レンズ 16に入射する。ここで、光 ビーム 6は、回折素子 16aで回折し、対物レンズ 16の屈折作用を受け、保護層厚 t3 の保護層を通して光ディスク 53の情報記録面に開口数 NA3で収束する。  In addition, when recording information on the optical disk 53 and reproducing it, the light beam 6 having the wavelength λ 3 is emitted from the infrared laser 3. The light beam 6 having a wavelength of 3 emitted from the infrared laser 3 is divided into a main beam and two sub beams by a diffraction grating 9, reflected by a dichroic prism 11, and incident on a beam splitter 12. The light beam 6 emitted from the infrared laser 3 is set so as to be incident on the beam splitter 12 as S-polarized light, and a part of the S-polarized light is reflected here and is condensed by the collimating lens 13 to be substantially parallel light. become. Further, the light beam 6 passes through the wave plate 14, is reflected by the mirror 15, and enters the objective lens 16. Here, the light beam 6 is diffracted by the diffraction element 16a, refracted by the objective lens 16, and converges on the information recording surface of the optical disc 53 with a numerical aperture NA3 through the protective layer having the protective layer thickness t3.
[0030] 光ディスク 53の情報記録面で反射した光ビーム 6は、もとの光路を逆にたどって、 波長板 14を透過して、コリメートレンズ 13により絞られ、ビームスプリッタ 12に S偏光 で入射する。光ビーム 6の S偏光の一部は、ここを透過し、検出レンズ 19によって非 点収差が与えられ、光検出器 20に入射し、受光素子 20aにより光電変換される。光 ヘッドは、光検出器 20の出力を演算することによって、前記同様にフォーカス信号、 トラッキング信号及び情報信号を得る。 CD用の光ディスクには複屈折の大きなもの があり、光ビーム 4, 5のように、偏光分離による光路分岐を行うと、光検出器 20に光 が伝搬しないことがある。このため、ビームスプリッタ 12は、光ビーム 6の偏光方向に よらず、一定の光を反射し、一定の光を透過するよう光路分岐することが望ましい。 [0030] The light beam 6 reflected by the information recording surface of the optical disc 53 follows the original optical path in reverse, passes through the wave plate 14, is narrowed down by the collimator lens 13, and enters the beam splitter 12 with S-polarized light. To do. A part of the S-polarized light of the light beam 6 passes therethrough, is given astigmatism by the detection lens 19, enters the photodetector 20, and is photoelectrically converted by the light receiving element 20a. As described above, the optical head calculates the output of the light detector 20 to produce a focus signal, A tracking signal and an information signal are obtained. Some optical discs for CDs have large birefringence, and if the optical path is branched by polarization separation as in the case of the light beams 4 and 5, light may not propagate to the photodetector 20. For this reason, it is desirable that the beam splitter 12 branch the optical path so as to reflect constant light and transmit constant light regardless of the polarization direction of the light beam 6.
[0031] なお、波長 λ 1が第 1の波長の一例に相当し、青色レーザ 1が第 1の光源の一例に 相当し、波長え 2が第 2の波長の一例に相当し、赤色レーザ 2が第 2の光源の一例に 相当し、波長え 3が第 3の波長の一例に相当し、赤外レーザ 3が第 3の光源の一例に 相当し、光ディスク 51が第 1の光ディスクの一例に相当し、光ディスク 52が第 2の光 ディスクの一例に相当し、光ディスク 53が第 3の光ディスクの一例に相当し、ステツピ ングモータ 22がコリメートレンズ移動部の一例に相当し、ビームスプリッタ 12が光路 分岐部材の一例に相当する。  Note that the wavelength λ 1 corresponds to an example of the first wavelength, the blue laser 1 corresponds to an example of the first light source, the wavelength 2 corresponds to an example of the second wavelength, and the red laser 2 Is equivalent to an example of the second light source, wavelength 3 is equivalent to an example of the third wavelength, infrared laser 3 is equivalent to an example of the third light source, and optical disc 51 is an example of the first optical disc. The optical disk 52 corresponds to an example of the second optical disk, the optical disk 53 corresponds to an example of the third optical disk, the stepping motor 22 corresponds to an example of the collimating lens moving unit, and the beam splitter 12 branches the optical path. It corresponds to an example of a member.
[0032] 次に、図 2及び図 3を用いて対物レンズ 16及び回折素子 16aの働きと構成とを説明 する。図 2は、対物レンズ 16の断面図であり、光ディスクに収束する光の伝搬を示し ている。図 3は回折素子 16aの正面図である。図 3に示すように、回折素子 16aの回 折格子は同心円状をなし、内周部 16al、中周部 16a2及び外周部 16a3はそれぞれ 構成が異なっている。  Next, the function and configuration of the objective lens 16 and the diffraction element 16a will be described with reference to FIGS. 2 and 3. FIG. FIG. 2 is a cross-sectional view of the objective lens 16 and shows the propagation of light that converges on the optical disk. FIG. 3 is a front view of the diffraction element 16a. As shown in FIG. 3, the diffraction grating of the diffraction element 16a has a concentric shape, and the inner peripheral portion 16al, the intermediate peripheral portion 16a2, and the outer peripheral portion 16a3 have different configurations.
[0033] 内周部 16alは、開口数が NA3に相当する部分であり、波長 λ 1の光ビーム 4に対 しては 3次回折光を最も強く発生し、波長え 2の光ビーム 5に対しては 2次回折光を最 も強く発生し、波長え 3の光ビーム 6に対しては 2次回折光を最も強く発生するように 設計されている。そして、対物レンズ 16は、光ビーム 4の 3次回折光を光ディスク 51 に収束させ、光ビーム 5の 2次回折光を光ディスク 52に収束させ、光ビーム 6の 2次回 折光を光ディスク 53に収束させる。  [0033] The inner peripheral portion 16al is a portion having a numerical aperture equivalent to NA3, and generates the third-order diffracted light most strongly with respect to the light beam 4 with the wavelength λ1, and with respect to the light beam 5 with the wavelength 2 It is designed to generate the second-order diffracted light most strongly, and to generate the second-order diffracted light most strongly for the light beam 6 of wavelength 3. Then, the objective lens 16 converges the third-order diffracted light of the light beam 4 onto the optical disc 51, converges the second-order diffracted light of the light beam 5 onto the optical disc 52, and converges the second-order diffracted light of the light beam 6 onto the optical disc 53.
[0034] 中周部 16a2は、開口数が NA3から NA2に相当する部分であり、波長 λ 1の光ビ ーム 4に対しては 6次回折光を最も強く発生し、波長え 2の光ビーム 5に対しては 4次 回折光を最も強く発生し、波長 λ 3の光ビーム 6に対しては 3次回折光を最も強く発 生して 4次回折光をほとんど発生しないように設計されている。そして、対物レンズ 16 は、光ビーム 4の 6次回折光を内周部 16alの 3次回折光と同 Cf立置に収束させること で、光ビーム 5の 4次回折光を内周部 16alの 2次回折光と同じ位置に収束させ、光 ビーム 6の 3次回折光を内周部 16alの 2次回折光と同じ位置に収束させず、光ビー ム 6の開口数を NA3に開口制限することができる。 [0034] The middle peripheral portion 16a2 is a portion corresponding to a numerical aperture of NA3 to NA2, and the 6th-order diffracted light is most strongly generated in the light beam 4 having the wavelength λ1, and the light beam having the wavelength 2 It is designed so that the fourth-order diffracted light is generated most strongly for 5, and the third-order diffracted light is generated most strongly for the light beam 6 of wavelength λ3 and the fourth-order diffracted light is hardly generated. Then, the objective lens 16 converges the 6th-order diffracted light of the light beam 4 in the same Cf position as the 3rd-order diffracted light of the inner peripheral portion 16al, so that the fourth-order diffracted light of the light beam 5 becomes the second-order diffracted light of the inner peripheral portion 16al. And converge to the same position as the light The third-order diffracted light of the beam 6 is not converged to the same position as the second-order diffracted light of the inner peripheral portion 16al, and the numerical aperture of the optical beam 6 can be restricted to NA3.
[0035] 外周部 16a3は、開口数が NA2から NA1に相当する部分であり、波長 λ 1の光ビ ーム 4に対して、 2次回折光を最も強く発生するよう設計されている。そして、対物レン ズ 16は、光ビーム 4の 2次回折光を内周部 16alの 3次回折光と同じ位置に収束させ ることで、光ビーム 5, 6は内周部 16alの 2次回折光と同じ位置に収束する回折光が 存在せず、光ビーム 5の開口数を NA2に開口制限し、光ビーム 6も中周部 16a2とと もに開口制限することができる。よって、光ビーム 4は、内周部 16alの 3次回折光、中 周部 16a2の 6次回折光及び外周部 16a3の 2次回折光力 光ディスク 51に開口数 N A1で収束し、光ビーム 5は、内周部 16alの 2次回折光及び中周部 16a2の 4次回折 光力 光ディスク 52に開口数 NA2で収束し、光ビーム 6は、内周部 16alの 2回折光 1S 光ディスク 53に開口数 NA3で収束する。  [0035] The outer peripheral portion 16a3 is a portion having a numerical aperture corresponding to NA2 to NA1, and is designed to generate the second-order diffracted light most strongly with respect to the light beam 4 having the wavelength λ1. The objective lens 16 converges the second-order diffracted light of the light beam 4 to the same position as the third-order diffracted light of the inner peripheral portion 16al, so that the light beams 5 and 6 are the same as the second-order diffracted light of the inner peripheral portion 16al. There is no diffracted light converging at the position, the numerical aperture of the light beam 5 is restricted to NA2, and the light beam 6 can be restricted with the middle portion 16a2. Therefore, the light beam 4 is converged on the optical disc 51 with the numerical aperture N A1 by the third order diffracted light of the inner peripheral portion 16al, the sixth order diffracted light of the inner peripheral portion 16a2, and the second order diffracted light power of the outer peripheral portion 16a3. Second-order diffracted light of peripheral part 16al and fourth-order diffracted light of middle part 16a2 Optical power Converged to optical disk 52 with numerical aperture NA2, and light beam 6 converged to inner peripheral part 16al 2 diffracted light 1S optical disk 53 with numerical aperture NA3 To do.
[0036] 次に、図 4から図 7を用いて光検出器 20への光の伝搬を説明する。図 4は、光ディ スクカもの反射光がコリメートレンズ 13により収束される様子を示す図である。コリメ一 トレンズ 13はガラスまたは榭脂で作られ、屈折率には波長依存性 (分散)があり、波 長が変化すると、コリメートレンズ 13の焦点距離が変化する。また、検出レンズ 19は シリンドリカルの凹レンズで構成され、レンズ作用をもつ方向と、レンズ作用をもたな い方向とでは収束位置が異なる。図 4Aは、レンズ作用を有する方向の光の伝搬を示 している。コリメートレンズ 13に光ディスク力ゝらの反射光が平行光束で入射した場合、 波長 λ 1の光ビーム 4は位置 PIに収束し、波長 λ 2の光ビーム 5は位置 Ρ2に収束し 、波長え 3の光ビーム 6は位置 Ρ3に収束する。図 4Βは、凹レンズ作用をもたない方 向の光の伝搬を示している。図 4Βにおいて、波長 λ 1の光ビーム 4は位置 P1 'に収 束し、波長 λ 2の光ビーム 5は位置 P2'に収束し、波長 λ 3の光ビーム 6は位置 P3' に収束する。ここで、位置 P1と位置 P1 'との間隔、位置 Ρ2と位置 P2'との間隔及び 位置 Ρ3と位置 P3'との間隔力 それぞれ、光ビーム 4, 5, 6の非点隔差であり、フォ 一カス信号の検出範囲になる。  Next, the propagation of light to the photodetector 20 will be described with reference to FIGS. 4 to 7. FIG. 4 is a diagram showing how reflected light from an optical disk is converged by the collimating lens 13. The collimating lens 13 is made of glass or resin, and the refractive index has wavelength dependence (dispersion). When the wavelength changes, the focal length of the collimating lens 13 changes. Further, the detection lens 19 is constituted by a cylindrical concave lens, and the convergence position is different between a direction having a lens action and a direction having no lens action. Figure 4A shows the propagation of light in a direction that has a lens effect. When the reflected light from the optical disk force enters the collimating lens 13 as a parallel light beam, the light beam 4 with the wavelength λ 1 converges at the position PI, and the light beam 5 with the wavelength λ 2 converges at the position Ρ2, and the wavelength 3 The light beam 6 converges to position Ρ3. Figure 4 (b) shows the propagation of light in the direction without the concave lens action. In Fig. 4 (b), light beam 4 with wavelength λ 1 converges at position P1 ', light beam 5 with wavelength λ 2 converges at position P2', and light beam 6 with wavelength λ 3 converges at position P3 '. Here, the distance between the position P1 and the position P1 ′, the distance between the position Ρ2 and the position P2 ′, and the distance force between the position Ρ3 and the position P3 ′ are the astigmatic differences between the light beams 4, 5, and 6, respectively. This is the detection range of a single signal.
[0037] 図 5Αは、受光素子 20aのパターンとフォーカス信号の検出方法とを説明するため の図である。この検出方法は、いわゆる非点収差法であり、フォーカスのずれにより 発生する光スポットの変形を、 4分割の素子 20a2により検出する。図 5Bは、受光素 子 20aのパターンとトラッキング信号の検出方法とを説明するための図である。この検 出方法は、いわゆる DPP法であり、素子 20a2で主ビームのプッシュプル信号を検出 し、素子 20alと 20a3とで副ビームのプッシュプル信号を検出する。副ビームのプッ シュプル信号力 主ビームに対し逆位相になるように、記録トラックに対して副ビーム を配置し、主ビームと副ビームとのプッシュプル信号の差をとつて、トラッキング信号を 得る。 FIG. 5B is a diagram for explaining the pattern of the light receiving element 20a and the focus signal detection method. This detection method is a so-called astigmatism method, which is caused by a focus shift. The deformation of the generated light spot is detected by the four-divided element 20a2. FIG. 5B is a diagram for explaining the pattern of the light receiving element 20a and the tracking signal detection method. This detection method is a so-called DPP method, in which the element 20a2 detects the push-pull signal of the main beam and the elements 20al and 20a3 detect the push-pull signal of the sub beam. Push-pull signal force of the secondary beam The secondary beam is arranged with respect to the recording track so that it has the opposite phase to the primary beam, and the tracking signal is obtained by taking the difference between the push-pull signals of the primary beam and the secondary beam.
[0038] フォーカス信号を得るため、光ビームは受光素子 20a上に最小錯乱円を形成する ように設定される。図 5Aの光スポット 4aは、光ビーム 4によって形成された最小錯乱 円であり、フォーカスがずれると、素子 20a2の分割線に対して 45° 方向の楕円にな るため、その変化を検出して、フォーカス信号を得ることができる。このため、光スポッ ト 4aを 4分割の素子 20a2で受光し、図示するように素子の出力を構成している。光ビ ーム 4の光スポットを受光素子 21a上で最小錯乱円にするには、受光素子 21aが位 置 P1と位置 P1 'との略中央に設定されることが望ましい。また、光ビーム 5の光スポッ トを受光素子 21a上で最小錯乱円にするには、受光素子 21aが位置 P2と位置 P2'と の略中央に設定されることが望ましい。さらに、光ビーム 6の光スポットを受光素子 21 a上で最小錯乱円にするには、受光素子 21aが位置 P3と位置 P3 'との略中央に設定 されることが望ましい。しかし、前記のようにコリメートレンズ 13の分散により、光ビーム の収束する位置がその波長に応じて変化するため、 1つの波長の光に対して受光素 子 21aを最小錯乱円になるよう設定すると、他の波長の光においては、最小錯乱円 の位置がずれてしまう。  [0038] In order to obtain a focus signal, the light beam is set so as to form a minimum circle of confusion on the light receiving element 20a. The light spot 4a in Fig. 5A is the minimum circle of confusion formed by the light beam 4, and when it is out of focus, it becomes an ellipse in the 45 ° direction with respect to the dividing line of the element 20a2. A focus signal can be obtained. For this reason, the optical spot 4a is received by the four-divided element 20a2, and the output of the element is configured as shown. In order to make the light spot of the optical beam 4 into the minimum circle of confusion on the light receiving element 21a, it is desirable that the light receiving element 21a is set at the approximate center between the position P1 and the position P1 ′. Further, in order to make the light spot of the light beam 5 have a minimum circle of confusion on the light receiving element 21a, it is desirable that the light receiving element 21a is set at a substantially center between the position P2 and the position P2 ′. Further, in order to make the light spot of the light beam 6 have a minimum circle of confusion on the light receiving element 21a, it is desirable that the light receiving element 21a is set at substantially the center between the position P3 and the position P3 ′. However, since the position where the light beam converges changes according to the wavelength due to the dispersion of the collimating lens 13 as described above, if the light receiving element 21a is set to be the minimum circle of confusion for light of one wavelength. For light of other wavelengths, the position of the minimum circle of confusion shifts.
[0039] 一方、コリメートレンズ 13の焦点距離は、各光ビーム 4, 5, 6の光取込み率によって 決められ、光取込み率が必要光量を確保するとともに、対物レンズ 16で収束する光 の中心部の光強度に対して周辺部の光強度の比率が、光ディスクの評価基準として 規格化された値の範囲になるよう設計される。なお、光取込み率とは、光源が出射す る光と、対物レンズ 16を通して光ディスクに収束する光との光量比率である。また、非 点隔差は、フォーカス制御の範囲とフォーカス感度 (フォーカスのずれに対する出力 )とにより決められる。 [0040] 一例として、波長 λ 1に対して、対物レンズ 16の焦点距離を 1. 3mm、コリメートレン ズ 13の焦点距離を 17mmとし、非点隔差を 1. 3mmとした場合、コリメートレンズ 13 に比較的分散の小さい BK7ガラスを用いても、波長え 2の光ビーム 5の焦点距離は 1 7. 53mmとなり、波長え 3の光ビーム 6の焦点距離は 17. 64mmになる。また、検出 レンズ 19に比較的分散の小さい BK7ガラスを用いても、波長え 2の光ビーム 5の非 点隔差は 1. 4mmとなり、波長え 3の光ビーム 6の非点隔差は 1. 42mmとなる。よつ て、コリメートレンズ 13から光ビーム 4の最小錯乱円までの距離は 17. 65mm,コリメ 一トレンズ 13から光ビーム 5の最小錯乱円までの距離は 18. 23mm,コリメートレンズ 13力も光ビーム 6の最小錯乱円までの距離は 18. 35mmとなる。このため、受光素 子 20aの位置を光ビーム 4に対して最小錯乱円になるように設定しても、光ビーム 5 及び光ビーム 6に対しては最小錯乱円の位置から、それぞれ 0. 58mm及び 0. 70m mずれることになる。光ビーム 4の非点隔差 1. 3mmと、光ビーム 4の検出系の縦倍率 (コリメートレンズ 13から最小錯乱円までの距離と対物レンズ 16の焦点距離との比の 2乗)とにより、フォーカス検出の可能な範囲は、図 6に示すように ± 1. 76 mとなる 。光ビーム 5及び光ビーム 6のフォーカス範囲もほぼ同等であるから、光ビーム 6のよ うに最小錯乱円の位置が 0. 70mmずれると、フォーカスは 1. 89 mずれ、フォー力 ス検出の範囲を超えてしまい、フォーカス制御がかからなくなる。 On the other hand, the focal length of the collimating lens 13 is determined by the light uptake rate of each of the light beams 4, 5, 6, and the light uptake rate ensures the necessary light amount and the central portion of the light converged by the objective lens 16. The ratio of the light intensity at the periphery to the light intensity of the optical disc is designed to be within the range of values standardized as the evaluation criteria for optical discs. The light capture rate is a light amount ratio between light emitted from the light source and light converged on the optical disc through the objective lens 16. Also, the astigmatic difference is determined by the focus control range and focus sensitivity (output for focus deviation). [0040] As an example, when the focal length of the objective lens 16 is 1.3 mm, the focal length of the collimating lens 13 is 17 mm, and the astigmatic difference is 1.3 mm, the collimating lens 13 Even if BK7 glass with relatively small dispersion is used, the focal length of the light beam 5 with the wavelength 2 is 17.53 mm, and the focal length of the light beam 6 with the wavelength 3 is 17.64 mm. Even if BK7 glass with relatively small dispersion is used for the detection lens 19, the astigmatic difference of the light beam 5 with a wavelength of 2 is 1.4 mm, and the astigmatic difference of the light beam 6 with a wavelength of 3 is 1.42 mm. It becomes. Therefore, the distance from the collimating lens 13 to the minimum circle of confusion of the light beam 4 is 17.65 mm, the distance from the collimating lens 13 to the minimum circle of confusion of the light beam 5 is 18. 23 mm, and the force of the collimating lens 13 is also the light beam 6 The distance to the minimum circle of confusion is 18.35mm. For this reason, even if the position of the light receiving element 20a is set to be the minimum circle of confusion with respect to the light beam 4, the positions of the light beam 5 and the light beam 6 are each 0.5 mm from the position of the minimum circle of confusion. And 0.70 mm. Focus by the astigmatism difference of the light beam 4 1.3 mm and the vertical magnification of the light beam 4 detection system (the square of the ratio of the distance from the collimating lens 13 to the minimum circle of confusion and the focal length of the objective lens 16) The possible detection range is ± 1.76 m as shown in Fig. 6. Since the focus ranges of the light beam 5 and the light beam 6 are almost the same, if the position of the minimum circle of confusion is shifted by 0.70 mm as in the light beam 6, the focus is shifted by 1.89 m, and the force detection range is reduced. This will exceed the focus control.
[0041] これに対応するには、コリメートレンズ 13を凹レンズと凸レンズを接合したァクロマー トレンズにして、色収差を補正する方法がある。色補正したコリメートレンズを用いれ ば、光源からの光を平行光に集光し、光ディスクからの反射した平行光束を、同一位 置〖こ収束させることができる。しかし、接合レンズは価格が高ぐ安価な光ヘッドには 適さない。  [0041] To cope with this, there is a method of correcting chromatic aberration by using a collimating lens 13 as an achromatic lens in which a concave lens and a convex lens are cemented. If a color-corrected collimating lens is used, the light from the light source can be condensed into parallel light, and the parallel light beam reflected from the optical disk can be converged at the same position. However, cemented lenses are not suitable for expensive and inexpensive optical heads.
[0042] そこで、図 7に示すように、コリメートレンズ 13を光軸方向に動かし、光ビーム 4, 5, 6の最小錯乱円が光検出器 20の受光素子 20a上に形成されるようにする。つまり、波 長 λ 1の光ビーム 4に対しては、図 7Αに示すように、受光素子 20aから距離 S1の位 置にコリメートレンズ 13を設定し、波長え 2の光ビーム 5に対しては、図 7Bに示すよう に、受光素子 20aから距離 S2の位置にコリメートレンズ 13を設定し、波長え 3の光ビ ーム 6に対しては、図 7Cに示すように、受光素子 20aから距離 S3の位置にコリメート レンズ 13を設定する。この距離 SI, S2, S3は、各々光ビーム 4, 5, 6力受光素子 20 a上に最小錯乱円の光スポットを形成するための距離である。本実施の形態では、例 免は、、 離 S1力 17. 65mmであり、 離 S2力 18. 23mmであり、 離 S3力 18. 35 mmである。これにより、対物レンズ 16に略平行光が入射し、光ディスクからの各波長 の反射光も略平行光でコリメートレンズ 13に入射して、それぞれ同じ位置に最小錯 乱円の光スポットを作ることができる。 Therefore, as shown in FIG. 7, the collimator lens 13 is moved in the optical axis direction so that the minimum circle of confusion of the light beams 4, 5, 6 is formed on the light receiving element 20a of the photodetector 20. . In other words, for the light beam 4 with the wavelength λ 1, the collimator lens 13 is set at a distance S1 from the light receiving element 20a as shown in FIG. As shown in Fig. 7B, the collimating lens 13 is set at a distance S2 from the light receiving element 20a, and for the light beam 6 of wavelength 3, the distance from the light receiving element 20a is shown in Fig. 7C. Collimate at position S3 Set lens 13. The distances SI, S2, and S3 are distances for forming a light spot having a minimum circle of confusion on the light beams 4, 5, and 6 light receiving element 20a, respectively. In the present embodiment, the exemptions are a separation S1 force of 17.65 mm, a separation S2 force of 18.23 mm, and a separation S3 force of 18.35 mm. As a result, substantially parallel light is incident on the objective lens 16, and reflected light of each wavelength from the optical disk is also incident on the collimator lens 13 as substantially parallel light, thereby creating a light spot with the least circle of confusion at the same position. it can.
[0043] さらに、光ディスク 51は情報記録面が 2層の規格があり、保護層厚は tlと tl— A tl とがある。波長 λ 1の光ビーム 4を保護層厚が tlの情報記録面に収束させるためには 、コリメートレンズ 13を発光点に近づく方向に移動させて、球面収差が少なくなる位 置に設定する。また、波長 λ 1の光ビーム 4を保護層厚が tl A tlの情報記録面に 収束させるためには、コリメートレンズ 13を発光点力も遠ざ力る方向に移動させ、球 面収差が少なくなる位置に設定する。これにより、 2層の光ディスク 51に対応すること ができる。このため、前記のように、コリメートレンズ 13の分散によって発生する各光ビ ームの最小錯乱円の位置を、コリメートレンズ 13の移動により補正する機構は、 2層 の光ディスク 51のために設けられた球面収差補正の機構と兼用できるため、光ヘッド の価格が上がることはない。  [0043] Further, the optical disc 51 has a standard with two information recording surfaces, and the protective layer thicknesses are tl and tl-Atl. In order to converge the light beam 4 having the wavelength λ1 on the information recording surface having the protective layer thickness tl, the collimating lens 13 is moved in the direction approaching the light emitting point and set to a position where the spherical aberration is reduced. In addition, in order to focus the light beam 4 having the wavelength λ 1 on the information recording surface with the protective layer thickness of tl A tl, the collimating lens 13 is moved in the direction in which the light emitting point force is also moved away, and the spherical aberration is reduced. Set to position. Thereby, it is possible to deal with the two-layer optical disc 51. Therefore, as described above, a mechanism for correcting the position of the minimum circle of confusion of each light beam generated by the dispersion of the collimating lens 13 by the movement of the collimating lens 13 is provided for the two-layer optical disc 51. Therefore, the optical head price will not increase.
[0044] なお、本実施の形態では、コリメートレンズ 13からの出射光はいずれも略平行光と して説明したが、当然、従来例のように、コリメートレンズ 13からの出射光が弱発散光 であっても、コリメートレンズ 13の位置を光軸方向に動かすことにより、同様の働きを させることがでさる。  In the present embodiment, the light emitted from the collimating lens 13 has been described as substantially parallel light, but naturally the light emitted from the collimating lens 13 is weakly diverging light as in the conventional example. Even so, the same function can be achieved by moving the position of the collimating lens 13 in the optical axis direction.
[0045] さらに、コリメートレンズ 13の位置を光軸方向に動かす機構として、ステッピングモ ータと送りねじを用いた力 他の駆動部であっても差し支えない。例えば、コリメ一トレ ンズ 13を 4本ワイヤーで支持し、電磁駆動により光軸方向に動かすこともできる。  [0045] Further, as a mechanism for moving the position of the collimating lens 13 in the optical axis direction, a force using a stepping motor and a feed screw or another driving unit may be used. For example, the collimating train 13 can be supported by four wires and moved in the optical axis direction by electromagnetic drive.
[0046] 次に、ビームスプリッタ 12の構成について図 8と図 9とを用いて説明する。図 8は、ビ 一ムスプリッタ 12の拡大図である。図 8に示すように、ビームスプリッタ 12は、 2つのプ リズムに挟まれて光学多層膜 12aが成膜されている。光学多層膜 12aは、高屈折率 の誘電体と低屈折率の誘電体とが交互に積層され、波長 λ 1, λ 2については、 S偏 光を反射して Ρ偏光を透過する偏光分離特性を有し、波長え 3については、光の一 部を反射して一部を透過するハーフミラー特性を有して 、る。従来の偏光ビームスプ リツタゃノヽーフミラーは、対応する波長帯域が限定されていたが、本実施の形態では 光学系を簡素化するため、 400nm力 800nmまでの比較的広い波長帯域に対応 し、さらに発散光で光路分岐する必要があり、実現が難し力つた。 Next, the configuration of the beam splitter 12 will be described with reference to FIG. 8 and FIG. FIG. 8 is an enlarged view of the beam splitter 12. As shown in FIG. 8, the beam splitter 12 has an optical multilayer film 12a formed between two prisms. The optical multilayer film 12a is formed by alternately laminating high-refractive index dielectrics and low-refractive index dielectrics, and for the wavelengths λ1 and λ2, the polarization separation characteristic that reflects S-polarized light and transmits Ρ-polarized light. For wavelength 3, one of the light It has a half mirror characteristic of reflecting a part and transmitting a part thereof. The conventional polarizing beam splitter mirror has a limited wavelength band, but in this embodiment, in order to simplify the optical system, it supports a relatively wide wavelength band up to 400 nm and 800 nm, and further diverges. It was necessary to branch the optical path with light, and it was difficult to realize.
[0047] 前記の光学系の場合、まず、ビームスプリッタ 12のプリズムの屈折率を波長 655η mで 1. 64 (例えば HOYAの FD2)とし、トラッキング制御により対物レンズ 16が動く 範囲を 0. 15mmとすると、有効な光ビームの光学多層膜 12aへの入射角は、光ビー ム 4力 S45± 2. 6° となり、光ビーム 5力45± 1. 9° となり、光ビーム 6力45± 1. 7° となる。波長 λ 1, λ 2の発散光を偏光分離特性とし、波長 λ 3の発散光をノ、ーフミラ 一特性とするには、単純に高屈折率の誘電体と低屈折率の誘電体とを積層するだけ では特性を満足できない。そこで、波長え 3の光ビーム 6については、 S偏光のみの ハーフミラー特性として、光ビーム 6の偏光方向を、光ディスク 53の半径方向または その直交方向に設定し、光ディスクの複屈折の影響を受けないようにする。 S偏光で ビームスプリッタ 12を出射した光ビーム 6は、光ディスク 53で反射して、 S偏光でビー ムスプリッタ 12に入射する。これは、光ディスク 53に複屈折がある場合、その光学軸 は成形時の樹脂の流れに沿って形成されるため、これに平行または直交方向の直線 偏光は、複屈折の影響を受けない。このため、光ビーム 6は、 S偏光の一部を透過、 または反射するハーフミラーであっても特性を満たすことができる。  In the case of the optical system described above, first, the refractive index of the prism of the beam splitter 12 is set to 1.64 (for example, FD2 of HOYA) at a wavelength of 655 ηm, and the range in which the objective lens 16 moves by tracking control is 0.15 mm. Then, the incident angle of the effective light beam to the optical multilayer film 12a is the light beam 4 force S45 ± 2.6 °, the light beam 5 force 45 ± 1.9 °, and the light beam 6 force 45 ± 1. 7 °. In order to make the divergent light of wavelengths λ 1 and λ 2 have polarization separation characteristics and the divergent light of wavelength λ 3 to be uniform, it is simply laminated with a high refractive index dielectric and a low refractive index dielectric. Doing so will not satisfy the characteristics. Therefore, for the light beam 6 of wavelength 3, the polarization direction of the light beam 6 is set to the radial direction of the optical disk 53 or the orthogonal direction thereof as a half mirror characteristic of only S-polarized light, and is affected by the birefringence of the optical disk. Do not. The light beam 6 emitted from the beam splitter 12 with S polarization is reflected by the optical disk 53 and is incident on the beam splitter 12 with S polarization. This is because, when the optical disk 53 has birefringence, its optical axis is formed along the flow of the resin during molding, and therefore linearly polarized light in a direction parallel or orthogonal to this is not affected by birefringence. Therefore, the light beam 6 can satisfy the characteristics even if it is a half mirror that transmits or reflects part of the S-polarized light.
[0048] このような特性をもつ光学多層膜 12aは、高屈折率膜として屈折率 2. 25の Ta O  [0048] The optical multilayer film 12a having such characteristics is a TaO having a refractive index of 2.25 as a high refractive index film.
2 5 を用い、低屈折率膜として屈折率 1. 46の SiOを用いて、中心波長の異なる 2群の  2 5 and using SiO with a refractive index of 1.46 as the low refractive index film,
2  2
多層膜により構成できる。 2群の多層膜として、第 1の中心波長をえ mとし、その 1Z4 の光学膜厚をもつ高屈折率膜と低屈折率膜との交互膜と、第 2の中心波長を λ ηとし 、その 1Z4の光学膜厚をもつ高屈折率膜と低屈折率膜との交互膜からなる。なお、 中心波長とは成膜するときの基準波長であり、光学膜厚とは物理的な膜厚と屈折率 との積である。具体的な光学多層膜としては、第 1の中心波長え mを 635nmとし、第 2の中心波長 λ ηをえ mの 1. 2倍として、 1層目の光学膜厚が λ mZ8であり、 2層目 力も 33層目の光学膜厚が λ mZ4であり、 34層目から 50層目の光学膜厚が λ η/4 である光学多層膜によって、図 9Α〜図 9Dのような特性を得ることができる。 [0049] 図 9Aは、光学多層膜 12aにおける波長と透過率特性との関係を示す図であり、図 9Bは、光ビーム 4の入射角と透過率特性との関係を示す図であり、図 9Cは、光ビー ム 5の入射角と透過率特性との関係を示す図であり、図 9Dは、光ビーム 6の入射角と 透過率特性との関係を示す図である。図 8において、光学多層膜 12aは誘電体であ り、反射率は 100から透過率を引いた値になる。つまり、透過率 0%は反射率 100% を意味する。 P偏光の透過率として 90%以上を実用範囲とすると、光ビーム 4に対し ては、入射角 37° カゝら 54° まで偏光分離特性をもち、光ビーム 5に対しては、入射 角 38° 力も 55° 以上の偏光分離特性をもつ。また、 S偏光の透過率として 60 ± 5% を許容範囲とすると、光ビーム 6に対しては、入射角 39° 力 50° までノヽーフミラー 特性をもつ。よって、この光学多層膜構成により、光ビーム 4, 5, 6が発散光として光 学多層膜 12aに入射する角度より、十分大きい角度範囲において必要な特性を得る ことができる。なお、この光学多層膜は一例であって、層数をさらに増やすことも、減 らすことも可能である。また、高屈折率膜に Ta Oを用いたが、 TiO等を用いても同 A multilayer film can be used. As the two groups of multilayer films, the first central wavelength is assumed to be m, the alternating film of the high refractive index film and the low refractive index film having an optical thickness of 1Z4, and the second central wavelength is assumed to be λ η, It consists of alternating films of high and low refractive index films with an optical thickness of 1Z4. The central wavelength is a reference wavelength when the film is formed, and the optical film thickness is a product of the physical film thickness and the refractive index. As a specific optical multilayer film, the first central wavelength m is 635 nm, the second central wavelength λ η is 1.2 times m, and the optical thickness of the first layer is λ mZ8. For the second layer, the optical film thickness of the 33rd layer is λ mZ4, and the optical film thickness of the 34th to 50th layers is λ η / 4. Obtainable. FIG. 9A is a diagram showing the relationship between the wavelength and the transmittance characteristic in the optical multilayer film 12a, and FIG. 9B is a diagram showing the relationship between the incident angle of the light beam 4 and the transmittance characteristic. 9C is a diagram showing the relationship between the incident angle of the optical beam 5 and the transmittance characteristic, and FIG. 9D is a diagram showing the relationship between the incident angle of the light beam 6 and the transmittance characteristic. In FIG. 8, the optical multilayer film 12a is a dielectric, and the reflectance is a value obtained by subtracting the transmittance from 100. In other words, a transmittance of 0% means a reflectance of 100%. If the transmittance of P-polarized light is 90% or more, the light beam 4 has a polarization splitting characteristic from 37 ° to 54 °, and the light beam 5 has an incident angle of 38 °. ° Force also has polarization separation characteristics of 55 ° or more. Also, assuming that the transmittance of S-polarized light is 60 ± 5%, the light beam 6 has noise mirror characteristics up to an incident angle of 39 ° and a force of 50 °. Therefore, with this optical multilayer film configuration, necessary characteristics can be obtained in an angle range sufficiently larger than the angle at which the light beams 4, 5, and 6 are incident on the optical multilayer film 12a as diverging light. This optical multilayer film is an example, and the number of layers can be further increased or decreased. In addition, TaO is used for the high refractive index film, but the same can be achieved using TiO.
2 5 2  2 5 2
様の結果が得られる。さらに、第 2の光学膜厚を第 1の光学膜厚の 1. 1から 1. 3倍ま で設計可能であり、第 1の中心波長に対応した層数は、全層数を 50層としたとき、 25 層から 38層程度まで設計可能である。  The following results are obtained. Furthermore, the second optical film thickness can be designed from 1.1 to 1.3 times the first optical film thickness, and the total number of layers corresponding to the first central wavelength is 50 layers. In this case, it is possible to design from 25 to 38 layers.
[0050] 本実施の形態では、ビームスプリッタ 12に、光源からの光を S偏光で入射させた場 合の構成を説明した力 光源からの波長 λ 1, λ 2の光を Ρ偏光とし、波長 λ 3の光を S偏光にして、図 1の光検出器 20側力も入射させ、光ディスクからの反射光を S偏光 にして、ビームスプリッタ 12で反射させ、図 1の光源側に検出レンズと、光検出器を設 けた構成にしても、同じ働きをさせることができる。  [0050] In the present embodiment, the power when the light from the light source is incident on the beam splitter 12 as S-polarized light is described as the light having the wavelengths λ1 and λ2 from the light source as the polarized light. The light of λ 3 is converted to S-polarized light, the side force of the photodetector 20 in FIG. 1 is also incident, the reflected light from the optical disk is converted to S-polarized light, reflected by the beam splitter 12, The same function can be achieved even in a configuration with a photodetector.
[0051] また、フォーカス検出として非点収差法を、トラッキング検出として DPP法を例に説 明したが、当然、その他の方法でも同様にコリメートレンズを設定して、色収差の問題 を解決することが出来る。  [0051] Although the astigmatism method has been described as an example of focus detection and the DPP method has been described as an example of tracking detection, it is a matter of course that other methods can similarly set collimating lenses to solve the chromatic aberration problem. I can do it.
[0052] 以上のように、本実施の形態によれば、波長の異なる複数の光ビームを用いて複 数の光ディスクに情報を記録 Ζ再生する光ヘッドにおいて、光検出器を 1つで構成 することができ、複数の光ビームを発散光で光路分岐することにより、光源の光を集 光するコリメートレンズを、光ディスクからの反射光を光検出器に収束させるレンズと 兼用することができる。この結果、安価で実用的な光ヘッドを供給することができる。 [0052] As described above, according to the present embodiment, one optical detector is configured in an optical head that records and reproduces information on a plurality of optical disks using a plurality of light beams having different wavelengths. A collimating lens that collects the light from the light source by splitting the light path of the multiple light beams with diverging light, and a lens that converges the reflected light from the optical disk onto the photodetector. Can also be used. As a result, an inexpensive and practical optical head can be supplied.
[0053] (実施の形態 2)  [0053] (Embodiment 2)
次に、本発明の実施の形態 2について図面を参照して説明する。本実施の形態が 実施の形態 1と異なるのは、光源、カップリングレンズ、検出レンズ及び光検出器であ り、それ以外の構成は、実施の形態 1と同様である。従って、本実施の形態において 、実施の形態 1と同一符号を付与している構成部材については、特に説明のない限 り、実施の形態 1と同様の機能を持つものとする。  Next, Embodiment 2 of the present invention will be described with reference to the drawings. The present embodiment is different from the first embodiment in the light source, the coupling lens, the detection lens, and the photodetector, and the other configurations are the same as those in the first embodiment. Therefore, in the present embodiment, the structural members given the same reference numerals as those in the first embodiment have the same functions as those in the first embodiment unless otherwise specified.
[0054] 図 10は、本発明の実施の形態 2における光ヘッドの構成を示す図である。図 10に おいて、 2波長レーザ 30は波長 λ 2の光と波長 λ 3の光とを出射し、カップリングレン ズ 34は凸レンズ作用をもち、検出レンズ 36は検出倍率を変換し非点収差を与える。 このように構成された光ヘッドの動作にっ 、て説明する。  FIG. 10 is a diagram showing a configuration of the optical head in the second embodiment of the present invention. In FIG. 10, the dual wavelength laser 30 emits light of wavelength λ 2 and light of wavelength λ 3, the coupling lens 34 has a convex lens action, and the detection lens 36 converts the detection magnification to astigmatism. give. The operation of the thus configured optical head will be described.
[0055] 記録密度の高い光ディスク 51に情報を記録 Ζ再生する際には、青色レーザ 1から 波長 λ 1の光ビーム 4が出射される。青色レーザ 1から出射した波長 λ 1の光ビーム 4 は、回折格子 7により 3ビームに分けられ、ダイクロイツクプリズム 35を透過して、ビー ムスプリッタ 12に S偏光で入射する。ダイクロイツクプリズム 35は波長 λ 1の光を透過 し、波長え 2, λ 3の光を反射するよう構成されている。光ビーム 4は、ビームスプリツ タ 12によって反射されて、コリメートレンズ 13により集光され略平行光となり、波長板 14により直線偏光から円偏光に変換される。円偏光に変換された光ビーム 4は、ミラ 一 15によって反射され、対物レンズ 16に入射する。ここで、光ビーム 4は、回折素子 16aで回折し、対物レンズ 16の屈折作用を受け、保護層厚 tlの保護層を通して光デ イスク 51の情報記録面に開口数 NA1で収束する。  When recording / reproducing information on / from the optical disc 51 having a high recording density, a light beam 4 having a wavelength λ 1 is emitted from the blue laser 1. The light beam 4 having the wavelength λ 1 emitted from the blue laser 1 is divided into three beams by the diffraction grating 7, passes through the dichroic prism 35, and enters the beam splitter 12 with S polarization. The dichroic prism 35 is configured to transmit light having a wavelength of λ 1 and reflect light having a wavelength of 2, λ 3. The light beam 4 is reflected by the beam splitter 12, condensed by the collimator lens 13, becomes substantially parallel light, and is converted from linearly polarized light to circularly polarized light by the wave plate 14. The light beam 4 converted to circularly polarized light is reflected by the mirror 15 and enters the objective lens 16. Here, the light beam 4 is diffracted by the diffraction element 16a, refracted by the objective lens 16, and converges on the information recording surface of the optical disk 51 with a numerical aperture NA1 through the protective layer having the protective layer thickness tl.
[0056] 光ディスク 51の情報記録面で反射した光ビーム 4は、往路と反対回りの円偏光とな り、もとの光路を逆にたどって、波長板 14により P偏光に変換される。そして、 P偏光 に変換された光ビーム 4は、コリメートレンズ 13により絞られ、ビームスプリッタ 12を透 過する。収束光となった光ビーム 4は、一面がシリンドリカルの凹レンズで、他面が非 球面レンズから成る検出レンズ 36により、焦点距離を伸ばされ、非点収差が与えられ て、光検出器 37に入射し、受光素子 37aにより光電変換される。検出レンズ 36のシリ ンドリカル面は、実施の形態 1と同様にビームスプリッタ 12の入射面に対して 45° 回 転している。光ヘッドは、光検出器 37の出力を演算することによって、フォーカス信号 、トラッキング信号及び情報信号を得る。 The light beam 4 reflected by the information recording surface of the optical disc 51 becomes circularly polarized light opposite to the forward path, and is converted into P-polarized light by following the original optical path in reverse. The light beam 4 converted to P-polarized light is narrowed by the collimating lens 13 and passes through the beam splitter 12. The converged light beam 4 is extended in focal length and given astigmatism by a detection lens 36 consisting of a cylindrical concave lens on one side and an aspherical lens on the other side. Then, photoelectric conversion is performed by the light receiving element 37a. The cylindrical surface of the detection lens 36 is rotated 45 ° with respect to the incident surface of the beam splitter 12 as in the first embodiment. It is rolling. The optical head obtains a focus signal, a tracking signal, and an information signal by calculating the output of the photodetector 37.
[0057] 次に、光ディスク 52に情報を記録 Z再生する際には、 2波長レーザ 30から波長 λ 2 の光ビーム 31が出射される。 2波長レーザ 30から出射した波長え 2の光ビーム 31は 、回折格子 33により主ビームと 2つの副ビームとに分けられ、カップリングレンズ 34で 凸レンズ作用を受けて、ダイクロイツクプリズム 35で反射し、ビームスプリッタ 12に S偏 光で入射する。カップリングレンズ 34は、光ビーム 31及び光ビーム 32の光取込み率 を大きくするためのレンズであり、 2波長レーザ 30の発光点を、コリメートレンズ 13の 焦点距離より内側に設け、 2波長レーザ 30から出射した光の発散度合いを変換して 、コリメートレンズ 13により略平行光になるよう構成している。ビームスプリッタ 12を反 射した光ビーム 31は、コリメートレンズ 13より集光され略平行光になり、波長板 14に より直線偏光力も円偏光に変換される。円偏光に変換された光ビーム 31は、ミラー 1 5を反射して、対物レンズ 16に入射する。ここで、光ビーム 31は、回折素子 16aで回 折し、対物レンズ 16の屈折作用を受け、保護層厚 t2の保護層を通して光ディスク 52 の情報記録面に開口数 NA2で収束する。  Next, when information is recorded on the optical disk 52 and reproduced, the light beam 31 having the wavelength λ 2 is emitted from the two-wavelength laser 30. The light beam 31 having a wavelength of 2 emitted from the two-wavelength laser 30 is divided into a main beam and two sub-beams by the diffraction grating 33, receives a convex lens action by the coupling lens 34, and is reflected by the dichroic prism 35. Then, it enters the beam splitter 12 with S polarization. The coupling lens 34 is a lens for increasing the light capture rate of the light beam 31 and the light beam 32. The emission point of the two-wavelength laser 30 is provided inside the focal length of the collimating lens 13, and the two-wavelength laser 30 is provided. The degree of divergence of the light emitted from the light beam is converted, and the collimator lens 13 is configured to be substantially parallel light. The light beam 31 reflected from the beam splitter 12 is condensed by the collimating lens 13 to become substantially parallel light, and the linear polarization power is also converted into circularly polarized light by the wave plate 14. The light beam 31 converted into circularly polarized light is reflected by the mirror 15 and enters the objective lens 16. Here, the light beam 31 is diffracted by the diffraction element 16a, refracted by the objective lens 16, and converges on the information recording surface of the optical disc 52 with a numerical aperture NA2 through the protective layer having the protective layer thickness t2.
[0058] 光ディスク 52の情報記録面で反射した光ビーム 31は、もとの光路を逆にたどって、 波長板 14により P偏光に変換される。 P偏光に変換された光ビーム 31は、コリメ一トレ ンズ 13により絞られ、ビームスプリッタ 12を透過する。さらに、光ビーム 31は、検出レ ンズ 36によって焦点距離が伸ばされ、非点収差が与えられて、光検出器 37に入射 し、受光素子 37aにより光電変換される。光ヘッドは、光検出器 37の出力を演算する こと〖こよって、フォーカス信号、トラッキング信号及び情報信号を得る。  The light beam 31 reflected by the information recording surface of the optical disk 52 follows the original optical path and is converted to P-polarized light by the wave plate 14. The light beam 31 converted to P-polarized light is narrowed down by the collimating lens 13 and transmitted through the beam splitter 12. Furthermore, the focal length of the light beam 31 is extended by the detection lens 36, astigmatism is given, the light beam 31 enters the photodetector 37, and is photoelectrically converted by the light receiving element 37a. The optical head obtains a focus signal, a tracking signal, and an information signal by calculating the output of the photodetector 37.
[0059] また、光ディスク 53に情報を記録 Z再生する際には、 2波長レーザ 30から波長 λ 3 の光ビーム 32が出射される。 2波長レーザ 30から出射した波長え 3の光ビーム 32は 、回折格子 33により 3ビームに分けられ、カップリングレンズ 34で凸レンズ作用を受け て、ダイクロイツクプリズム 35で反射し、ビームスプリッタ 12に S偏光で入射する。 S偏 光の一部がビームスプリッタ 12で反射して、コリメートレンズ 13により集光され略平行 光になり、波長板 14を透過する。波長板 14を透過した光ビーム 32は、ミラー 15で反 射して、対物レンズ 16に入射する。ここで、光ビーム 32は、回折素子 16aで回折し、 対物レンズ 16の屈折作用を受け、保護層厚 t3の保護層を通して光ディスク 53の情 報記録面に開口数 NA3で収束する。 In addition, when information is recorded on the optical disc 53 and reproduced, the light beam 32 having the wavelength λ 3 is emitted from the two-wavelength laser 30. The light beam 32 having a wavelength of 3 emitted from the two-wavelength laser 30 is divided into three beams by the diffraction grating 33, is subjected to a convex lens action by the coupling lens 34, is reflected by the dichroic prism 35, and is reflected to the beam splitter 12 by S. Incident with polarized light. A part of the S-polarized light is reflected by the beam splitter 12, condensed by the collimating lens 13, becomes substantially parallel light, and passes through the wave plate 14. The light beam 32 transmitted through the wave plate 14 is reflected by the mirror 15 and enters the objective lens 16. Here, the light beam 32 is diffracted by the diffraction element 16a, It is refracted by the objective lens 16 and converges on the information recording surface of the optical disc 53 with a numerical aperture NA3 through a protective layer with a protective layer thickness t3.
[0060] 光ディスク 53の情報記録面で反射した光ビーム 32は、もとの光路を逆にたどって、 波長板 14を透過し、コリメートレンズ 13により絞られ、ビームスプリッタ 12に S偏光で 入射する。 S偏光の一部がビームスプリッタ 12を透過する。さらに、光ビーム 32は、検 出レンズ 36によって焦点距離が伸ばされ、非点収差が与えられて、光検出器 37に 入射し、受光素子 37aにより光電変換される。光ヘッドは、光検出器 37の出力を演算 すること〖こよって、フォーカス信号、トラッキング信号及び情報信号を得る。  [0060] The light beam 32 reflected by the information recording surface of the optical disc 53 follows the original optical path in reverse, passes through the wave plate 14, is narrowed by the collimator lens 13, and enters the beam splitter 12 with S-polarized light. . Part of the S-polarized light passes through the beam splitter 12. Further, the focal length of the light beam 32 is extended by the detection lens 36, astigmatism is given, the light beam 32 enters the photodetector 37, and is photoelectrically converted by the light receiving element 37a. The optical head obtains a focus signal, a tracking signal, and an information signal by calculating the output of the photodetector 37.
[0061] なお、説明を分力り易くするため、 2波長レーザ 30の波長 λ 2の光源と波長 λ 3の 光源とを、ビームスプリッタ 12の入射面に平行方向に配置した力 発光素子がモノリ シック構造の 2波長レーザでは、この配置にすると、光ビーム 31, 32は Ρ偏光でビー ムスプリッタ 12に入射することになる。この場合は、光源力もダイクロイツクプリズム 35 の間に 1Z2波長板を設ける力、 2波長レーザを 90° 回転させて、 2つの光源をビー ムスプリッタ 12の入射面に対して、垂直方向に配置することにより対応できる。  [0061] For ease of explanation, the force light-emitting element in which the light source having the wavelength λ 2 and the light source having the wavelength λ 3 of the two-wavelength laser 30 are arranged in parallel to the incident surface of the beam splitter 12 is monolithic. In this arrangement, the light beams 31 and 32 are incident on the beam splitter 12 with negative polarization. In this case, the light source force is also the force to provide a 1Z2 wavelength plate between the dichroic prism 35, and the two-wavelength laser is rotated 90 ° to place the two light sources perpendicularly to the incident surface of the beam splitter 12 It can respond by.
[0062] 本実施の形態では、コリメートレンズ 13と検出レンズ 36とを組み合わせた検出系の 焦点距離を、コリメートレンズ 13の焦点距離と変えることにより、フォーカス感度をコリ メートレンズ 13の焦点距離によらず、任意に設定することができる。しかし、検出レン ズ 36及びコリメートレンズ 13はともに分散をもっており、波長により屈折率が変化する 。このため、波長が変わると検出系の焦点距離が変化し、実施の形態 1同様に、波長 λ 1の光ビーム 4、波長 λ 2の光ビーム 31及び波長 λ 3の光ビーム 32の収束する位 置がずれてしまう。検出レンズ 36に凹レンズ作用をもたせることにより、若干の色収差 補正は可能であるが、実用的な改善は期待できない。  [0062] In the present embodiment, the focus sensitivity of the collimating lens 13 is changed by changing the focal length of the detection system in which the collimating lens 13 and the detection lens 36 are combined with the focal length of the collimating lens 13. It can be set arbitrarily. However, both the detection lens 36 and the collimating lens 13 have dispersion, and the refractive index changes depending on the wavelength. For this reason, when the wavelength changes, the focal length of the detection system changes, and as in the first embodiment, the light beam 4 of wavelength λ1, the light beam 31 of wavelength λ2, and the light beam 32 of wavelength λ3 converge. The position will shift. Although a slight chromatic aberration can be corrected by providing the detection lens 36 with a concave lens action, a practical improvement cannot be expected.
[0063] 例えば、検出レンズ 36とコリメートレンズ 13とを組み合わせて、波長 λ 1の光ビーム 4の焦点距離を 22mmまで伸ばし、色収差補正のため検出レンズ 36に分散の大きな 硝材として、アッベ数 20. 88の FDSl (HOYA)を用いる。しかしながら、この場合、 波長 λ 2の光ビーム 31の焦点距離は 22. 52mm,波長 λ 3の光ビーム 32の焦点距 離は 22. 65mmとなり、コリメートレンズ 13を固定にすると、色収差によってフォー力 ス制御が困難になる。よって、実施の形態 1のように、波長に対応してコリメートレンズ 13を光軸方向に移動させ、光ディスクからの反射光が、受光素子 37a上に最小錯乱 円を形成するよう設定することで、 3波長の光ビームに対して、最適にフォーカス制御 をかけることができる。 [0063] For example, by combining the detection lens 36 and the collimating lens 13, the focal length of the light beam 4 having the wavelength λ 1 is extended to 22 mm, and the Abbe number 20. Use 88 FDSl (HOYA). However, in this case, the focal length of the light beam 31 with the wavelength λ 2 is 22.52 mm, and the focal length of the light beam 32 with the wavelength λ 3 is 22.65 mm. Control becomes difficult. Therefore, as in the first embodiment, the collimating lens corresponds to the wavelength. By moving 13 in the direction of the optical axis and setting the reflected light from the optical disc to form a circle of minimal confusion on the light receiving element 37a, optimal focus control can be applied to the three-wavelength light beam. it can.
[0064] 次に、光検出器 37の構成について図 11を用いて説明する。図 11は、光検出器 37 の受光素子 37aのパターンを示す図である。実施の形態 2では、実施の形態 1同様 に、素子 37a2が光ビーム 4及び光ビーム 31のフォーカス信号を検出し、素子 37a5 が光ビーム 32のフォーカス信号を検出する。また、素子 37al, 37a2, 37a3力 光ビ ーム 4及び光ビーム 31のトラッキング信号を検出し、素子 37a4, 37a5, 37a6力 光 ビーム 32のトラッキング信号を検出する。 2波長レーザを用いた光学系では、波長え 2の発光点と波長え 3の発光点とが 100〜 120 m程度ずれている。そのため、受光 素子 37a上の光スポットもずれてしまい、受光素子を兼用することが困難になる。しか し、本実施の形態におけるコリメートレンズ 13は、波長 λ 1の光ビーム 4の収束位置を 、光ビーム 31又は光ビーム 32の収束位置に合わせることができる。したがって、例え ば、素子 37al, 37a2, 37a3により、光ビーム 4及び光ビーム 31のフォーカス信号、 トラッキング信号及び情報信号が検出され、素子 37a4, 37a5, 37a6により、光ビー ム 32のフォーカス信号、トラッキング信号及び情報信号が検出される。このようするこ とにより、受光素子 37aの素子数を減らし、ここ力 得られる信号を増幅する増幅器の 数ち減らすことができる。  Next, the configuration of the photodetector 37 will be described with reference to FIG. FIG. 11 is a diagram showing a pattern of the light receiving element 37a of the photodetector 37. As shown in FIG. In the second embodiment, as in the first embodiment, the element 37a2 detects the focus signals of the light beam 4 and the light beam 31, and the element 37a5 detects the focus signal of the light beam 32. In addition, the tracking signals of the element 37al, 37a2, 37a3 force light beam 4 and the light beam 31 are detected, and the tracking signal of the element 37a4, 37a5, 37a6 force light beam 32 is detected. In an optical system using a two-wavelength laser, the emission point at wavelength 2 and the emission point at wavelength 3 are shifted by about 100 to 120 m. For this reason, the light spot on the light receiving element 37a is also shifted, and it becomes difficult to also use the light receiving element. However, the collimating lens 13 in the present embodiment can match the convergence position of the light beam 4 having the wavelength λ 1 with the convergence position of the light beam 31 or the light beam 32. Therefore, for example, the focus signal, tracking signal, and information signal of the light beam 4 and the light beam 31 are detected by the elements 37al, 37a2, and 37a3, and the focus signal and tracking of the optical beam 32 are detected by the elements 37a4, 37a5, and 37a6. Signals and information signals are detected. In this way, the number of light receiving elements 37a can be reduced, and the number of amplifiers that amplify the signals obtained here can be reduced.
[0065] また、各光ディスクに対する開口数は、 NA1 >NA2 >NA3であり、各光ディスクに 収束する光ビームの有効径は、光ビーム 4 >光ビーム 31 >光ビーム 32となる。この 場合、実施の形態 1のようにカップリングレンズを設けず、コリメートレンズ 13の焦点距 離を光ビーム 4に合わせて設計すると、光ビーム 5, 6の光取込み率が低下してしまう 。カップリングレンズ 34は、この光取込み率を上げるためのレンズであり、 2波長レー ザ 30からの発散光の波面を変換するものである。しかし、本実施の形態のように 3波 長の各光ビームの開口数がそれぞれ異なる場合、全ての光ビーム 4, 31, 32の光取 込み率を同時に合わせることができない。そこで、コリメートレンズ 13の焦点距離を、 光ビーム 4に最適な光取込み率に合わせて設計し、カップリングレンズ 34とコリメート レンズ 13とを組み合わせた光学系の焦点距離を、光ビーム 31に最適な光取込み率 と光ビーム 32に最適な光取込み率との中間に合わせることにより、 3波長の開口数に 対応させる。 [0065] The numerical aperture for each optical disk is NA1>NA2> NA3, and the effective diameter of the light beam converged on each optical disk is light beam 4> light beam 31> light beam 32. In this case, if no coupling lens is provided as in the first embodiment and the focal length of the collimating lens 13 is designed in accordance with the light beam 4, the light capture rate of the light beams 5 and 6 is reduced. The coupling lens 34 is a lens for increasing the light capture rate, and converts the wavefront of divergent light from the two-wavelength laser 30. However, when the numerical apertures of the three light beams are different as in the present embodiment, the light capture rates of all the light beams 4, 31, 32 cannot be adjusted simultaneously. Therefore, the focal length of the collimating lens 13 is designed according to the optimum light capture rate for the light beam 4, and the focal length of the optical system combining the coupling lens 34 and the collimating lens 13 is optimized for the light beam 31. Light uptake rate And a numerical aperture of 3 wavelengths by adjusting to the midpoint between the optimal light capture rate for the light beam 32.
[0066] 具体的には、青色レーザ、赤色レーザ及び赤外レーザの光の発散角が同等で、対 物レンズ 16の各波長に対する焦点距離も同等とし、コリメートレンズ 13の焦点距離を fclとし、コリメートレンズ 13とカップリングレンズ 34とを組み合わせた光学系の焦点 距離を fc2とすると、 fclと fc2との比力 開口数 NA1と(NA2+NA3)Z2との比と等 しくなることが望ましい。しかし、開口の中心の光強度と周辺部の光強度との比は、光 ディスク 51, 52, 53で 10%程度異なり、青色レーザ、赤色レーザ及び赤外レーザの 光の発散角の差違、対物レンズ 16の焦点距離の波長による差違が、それぞれ 10% 程度あるため、実用上 30%程度のばらつきを含む。このため、 αを 1 ±0. 3とすると、 fcl/fc2= α X 2 X NA1Z (NA2+NA2)を満足するよう、カップリングレンズ 34を 設計することで、 3波長光学系を最適化できる。  Specifically, the divergence angles of blue laser, red laser, and infrared laser are the same, the focal length of each wavelength of the object lens 16 is also equivalent, the focal length of the collimating lens 13 is fcl, If the focal length of the optical system combining the collimating lens 13 and the coupling lens 34 is fc2, it is desirable that the specific power of fcl and fc2 is equal to the ratio of NA1 and (NA2 + NA3) Z2. However, the ratio of the light intensity at the center of the aperture to the light intensity at the periphery differs by about 10% for the optical disks 51, 52, and 53, and the difference in the divergence angles of the blue, red, and infrared lasers, the objective Since the difference in the focal length of the lens 16 depending on the wavelength is about 10%, it includes a variation of about 30% practically. Therefore, if α is set to 1 ± 0.3, the three-wavelength optical system can be optimized by designing the coupling lens 34 so that fcl / fc2 = α X 2 X NA1Z (NA2 + NA2) is satisfied. .
[0067] なお、本実施の形態では、フォーカス検出として非点収差法を、トラッキング検出と して DPP法を例に説明した力 当然、その他の方法でも同様にコリメートレンズを設 定することにより、色収差の問題を解決することができる。  [0067] In the present embodiment, the force described with the astigmatism method as the focus detection and the DPP method as the tracking detection has been described as an example. The problem of chromatic aberration can be solved.
[0068] 本実施の形態では、ビームスプリッタ 12に、光源からの光を S偏光で入射させた場 合の構成を説明した力 光源からの波長 λ 1, λ 2の光を Ρ偏光にし、波長 λ 3の光 を S偏光にして、図 10の光検出器側力も入射させ、光ディスクからの反射光を S偏光 にして、ビームスプリッタ 12で反射させ、図 10の光源側に検出レンズと光検出器とを 設けた構成にしても同じ働きをさせることができる。その場合、波長え 2の光の偏光方 向と波長 λ 3の光の偏光方向とが直交するため、一方の波長の光のみに作用する 1 Ζ2波長板を設ける必要がある。  [0068] In the present embodiment, the force when the light from the light source is incident on the beam splitter 12 as S-polarized light is converted into light having wavelengths λ1 and λ2 from the light source as polarized light. The light of λ 3 is changed to S-polarized light, and the side force of the photo detector shown in FIG. 10 is also incident. The same function can be achieved even with a structure provided with a vessel. In that case, since the polarization direction of the light of wavelength 2 is orthogonal to the polarization direction of the light of wavelength λ3, it is necessary to provide a 1 × 2 wavelength plate that acts only on the light of one wavelength.
[0069] 以上のように、実施の形態 2によれば、波長の異なる複数の光ビームを用いて複数 の光ディスクに情報を記録 Ζ再生する光ヘッドにぉ 、て、複数の光ビームを発散光 中で光路分岐することにより、光源の光を集光するコリメートレンズを、光ディスクから の反射光を光検出器に収束するレンズとして兼用するとともに、開口数の違いによる 光取込み率の低下を抑えて、 3波長に適した光取込み率に設定することができる。こ の結果、安価で実用的な光ヘッドを供給することができる。 [0070] (実施の形態 3) [0069] As described above, according to the second embodiment, a plurality of light beams are diverged from an optical head that records and reproduces information on a plurality of optical disks using a plurality of light beams having different wavelengths. The collimating lens that condenses the light from the light source is also used as a lens that converges the reflected light from the optical disk to the photodetector, and suppresses the decrease in the light capture rate due to the difference in numerical aperture. It is possible to set the light capture rate suitable for 3 wavelengths. As a result, an inexpensive and practical optical head can be supplied. [Embodiment 3]
図 12は、実施の形態 1又は実施の形態 2の光ヘッドを用いた光ディスク装置の概略 構成図である。光ディスク装置 107は、駆動装置 101、光ヘッド 102、電気回路 103 、モータ 104及びターンテーブル 105を備える。図 12において光ディスク 100は、タ ーンテーブル 105に搭載され、モータ 104によって回転される。実施の形態 1, 2に 示した光ヘッド 102は、光ディスク 100の所望の情報の存在するトラックのところまで、 駆動装置 101によって移送される。  FIG. 12 is a schematic configuration diagram of an optical disc apparatus using the optical head of the first embodiment or the second embodiment. The optical disk device 107 includes a drive device 101, an optical head 102, an electric circuit 103, a motor 104, and a turntable 105. In FIG. 12, an optical disc 100 is mounted on a turn table 105 and rotated by a motor 104. The optical head 102 shown in the first and second embodiments is transported by the driving device 101 to the track on the optical disc 100 where desired information exists.
[0071] 光ヘッド 102は、光ディスク 100との位置関係に対応して、フォーカスエラー信号や トラッキングエラー信号を電気回路 103へ送る。電気回路 103は、この信号に対応し て、対物レンズを駆動させるための信号を光ヘッド 102へ送る。この信号によって、光 ヘッド 102は、光ディスク 100に対してフォーカス制御とトラッキング制御とを行い、情 報の読み出し、書き込み又は消去を行う。  The optical head 102 sends a focus error signal and a tracking error signal to the electric circuit 103 in accordance with the positional relationship with the optical disc 100. In response to this signal, the electric circuit 103 sends a signal for driving the objective lens to the optical head 102. With this signal, the optical head 102 performs focus control and tracking control on the optical disc 100, and reads, writes, or erases information.
[0072] 以上の説明において、光ディスク装置 107に搭載する光ディスク 100は、保護層厚 力 Stl、 t2、 t3のいずれかの光ディスクである。本実施の形態の光ディスク装置 107は 、実施の形態 1又は実施の形態 2の光ヘッドを用いるので、 1つの光ヘッドにより、記 録密度の異なる複数の光ディスクに対応することができる。  In the above description, the optical disc 100 mounted on the optical disc apparatus 107 is an optical disc having any one of the protective layer thicknesses Stl, t2, and t3. Since the optical disk device 107 according to the present embodiment uses the optical head according to the first embodiment or the second embodiment, the single optical head can support a plurality of optical disks having different recording densities.
[0073] (実施の形態 4)  [0073] (Embodiment 4)
本実施の形態は、実施の形態 3に係る光ディスク装置 107を具備したコンピュータ の実施の形態である。図 13は、本実施の形態に係るコンピュータの概略斜視図であ る。図 13に示したコンピュータ 109は、実施の形態 3に係る光ディスク装置 107と、情 報の入力を行うためのキーボード 111及びマウス 112などの入力装置 116と、入力装 置 116から入力された情報や、光ディスク装置 107から読み出した情報などに基づ いて演算を行う CPUなどの演算装置 108と、演算装置 108によって演算された結果 の情報を表示するブラウン管や液晶表示装置などの出力装置 110とを備えて 、る。  The present embodiment is an embodiment of a computer provided with the optical disk device 107 according to the third embodiment. FIG. 13 is a schematic perspective view of a computer according to the present embodiment. A computer 109 shown in FIG. 13 includes an optical disc device 107 according to the third embodiment, an input device 116 such as a keyboard 111 and a mouse 112 for inputting information, and information input from the input device 116. , An arithmetic unit 108 such as a CPU that performs calculations based on information read from the optical disc device 107, and an output unit 110 such as a cathode ray tube or a liquid crystal display unit that displays information on the results calculated by the arithmetic unit 108. And
[0074] なお、コンピュータ 109は、入力装置 116及び出力装置 110を備えず、光ディスク 装置 107及び演算装置 108のみを備える構成であってもよい。また、コンピュータ 10 9は、光ディスク装置 107に記録する情報を取り込んだり、光ディスク装置 107によつ て読み出した情報を外部に出力する有線または無線の入出力端子を搭載してもよい [0075] 本実施の形態に係るコンピュータ 109は、実施の形態 3に係る光ディスク装置 107 を具備しており、異なる種類の光ディスクを安定に記録又は再生できるので、広い用 途に使用できる。 Note that the computer 109 may be configured to include only the optical disk device 107 and the arithmetic device 108 without including the input device 116 and the output device 110. Further, the computer 109 may be equipped with a wired or wireless input / output terminal that takes in information to be recorded on the optical disc device 107 or outputs information read out by the optical disc device 107 to the outside. The computer 109 according to the present embodiment includes the optical disc device 107 according to the third embodiment, and can record or reproduce different types of optical discs stably, so that it can be used for a wide range of purposes.
[0076] (実施の形態 5)  [Embodiment 5]
本実施の形態は、実施の形態 3に係る光ディスク装置 107を具備した光ディスクレ コーダの実施の形態である。図 14は、本実施の形態に係る光ディスクレコーダの概 略斜視図である。図 14に示した光ディスクレコーダ 115は、実施の形態 3に係る光デ イスク装置 107と、画像信号を光ディスク装置 107によって、光ディスクへ記録する情 報信号に変換する記録用信号処理回路 113とを備えている。  The present embodiment is an embodiment of an optical disc recorder provided with the optical disc device 107 according to the third embodiment. FIG. 14 is a schematic perspective view of the optical disc recorder according to the present embodiment. An optical disk recorder 115 shown in FIG. 14 includes an optical disk device 107 according to Embodiment 3, and a recording signal processing circuit 113 that converts an image signal into an information signal to be recorded on an optical disk by the optical disk device 107. ing.
[0077] なお、光ディスクレコーダ 115は、光ディスク装置 107から得られる情報信号を、画 像信号に変換する再生用信号処理回路 114も有することが望ましい。この構成によ れば、既に記録した部分を再生することも可能となる。さらに、光ディスクレコーダ 11 5は、情報を表示するブラウン管又は液晶表示装置などの出力装置 110を備えても よい。  [0077] It is desirable that the optical disc recorder 115 also includes a reproduction signal processing circuit 114 that converts an information signal obtained from the optical disc device 107 into an image signal. According to this configuration, it is possible to reproduce the already recorded portion. Furthermore, the optical disk recorder 115 may include an output device 110 such as a cathode ray tube or a liquid crystal display device for displaying information.
[0078] 本実施の形態に係る光ディスクレコーダ 115は、実施の形態 3に係る光ディスク装 置 107を具備しており、異なる種類の光ディスクを安定に記録又は再生できるので、 広い用途に使用できる。  The optical disc recorder 115 according to the present embodiment includes the optical disc device 107 according to the third embodiment, and can record or play back different types of optical discs stably, so that it can be used for a wide range of applications.
[0079] なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている  [0079] The specific embodiments described above mainly include inventions having the following configurations.
[0080] 本発明の一局面に係る光ヘッドは、第 1の波長の光を出射する第 1の光源と、前記 第 1の波長よりも波長の長い第 2の波長の光を出射する第 2の光源と、前記第 2の波 長よりも波長の長い第 3の波長の光を出射する第 3の光源と、前記第 1の波長、前記 第 2の波長及び前記第 3の波長の光を集光するコリメートレンズと、前記コリメートレン ズによって集光された前記第 1の波長の光を第 1の光ディスクに収束させ、前記コリメ 一トレンズによって集光された前記第 2の波長の光を前記第 1の光ディスクとは保護 層厚の異なる第 2の光ディスクに収束させ、前記コリメートレンズによって集光された 前記第 3の波長の光を前記第 1の光ディスク及び前記第 2の光ディスクとは保護層厚 の異なる第 3の光ディスクに収束させる対物レンズと、前記コリメートレンズによって収 束された前記第 1の光ディスク、前記第 2の光ディスク及び前記第 3の光ディスクから の反射光を受光する光検出器と、前記コリメートレンズを光軸方向に移動させ、前記 第 1の光ディスク、前記第 2の光ディスク及び前記第 3の光ディスクに情報を記録する 、又は前記第 1の光ディスク、前記第 2の光ディスク及び前記第 3の光ディスクから情 報を再生する際に、前記第 1の光源、前記第 2の光源及び前記第 3の光源から出射 される各光の波長に対応して選択的に前記コリメートレンズの位置を変えるコリメート レンズ移動部とを備える。 An optical head according to one aspect of the present invention includes a first light source that emits light having a first wavelength, and a second light that emits light having a second wavelength that is longer than the first wavelength. The light source, the third light source that emits light having a third wavelength longer than the second wavelength, the light having the first wavelength, the second wavelength, and the third wavelength. The collimating lens for condensing the light having the first wavelength condensed by the collimating lens is converged on the first optical disc, and the light having the second wavelength condensed by the collimating lens is The first optical disc is converged on a second optical disc having a different protective layer thickness, and the light of the third wavelength condensed by the collimating lens is a protective layer between the first optical disc and the second optical disc. Thickness An objective lens that converges on a different third optical disc, a photodetector that receives reflected light from the first optical disc, the second optical disc, and the third optical disc bundled by the collimating lens; The collimating lens is moved in the optical axis direction, and information is recorded on the first optical disc, the second optical disc, and the third optical disc, or the first optical disc, the second optical disc, and the third optical disc. When reproducing information from the optical disc, the position of the collimating lens is selectively changed according to the wavelength of each light emitted from the first light source, the second light source, and the third light source. A collimating lens moving unit.
[0081] この構成によれば、第 1の光源力 第 1の波長の光が出射され、第 2の光源力 第 1 の波長よりも波長の長い第 2の波長の光が出射され、第 3の光源力 第 2の波長よりも 波長の長い第 3の波長の光が出射される。そして、コリメートレンズは、第 1の光源か ら出射された第 1の波長の光、第 2の光源から出射された第 2の波長の光及び第 3の 光源から出射された第 3の波長の光を集光する。続いて、対物レンズは、コリメ一トレ ンズによって集光された第 1の波長の光を第 1の光ディスクに収束させ、コリメートレン ズによって集光された第 2の波長の光を第 1の光ディスクとは保護層厚の異なる第 2 の光ディスクに収束させ、コリメートレンズによって集光された第 3の波長の光を第 1の 光ディスク及び第 2の光ディスクとは保護層厚の異なる第 3の光ディスクに収束させる 。光検出器は、コリメートレンズによって収束された第 1の光ディスク、第 2の光デイス ク及び第 3の光ディスクからの反射光を受光する。コリメートレンズ移動部は、コリメ一 トレンズを光軸方向に移動させ、第 1の光ディスク、第 2の光ディスク及び第 3の光ディ スクに情報を記録する、又は第 1の光ディスク、第 2の光ディスク及び第 3の光ディスク から情報を再生する際に、第 1の光源、第 2の光源及び第 3の光源から出射される各 光の波長に対応して選択的にコリメートレンズの位置を変える。  [0081] According to this configuration, the first light source power of the first wavelength is emitted, the second light source power of the second wavelength longer than the first wavelength is emitted, and the third light source power The light source power of the third wavelength light having a wavelength longer than the second wavelength is emitted. Then, the collimating lens has the first wavelength light emitted from the first light source, the second wavelength light emitted from the second light source, and the third wavelength light emitted from the third light source. Collect the light. Subsequently, the objective lens converges the light having the first wavelength collected by the collimating lens onto the first optical disc, and the light having the second wavelength collected by the collimating lens is converged on the first optical disc. Is converged on a second optical disc having a different protective layer thickness, and the light of the third wavelength condensed by the collimating lens is applied to the third optical disc having a different protective layer thickness from the first optical disc and the second optical disc. Converge. The photodetector receives the reflected light from the first optical disk, the second optical disk, and the third optical disk converged by the collimating lens. The collimating lens moving unit moves the collimating lens in the optical axis direction and records information on the first optical disc, the second optical disc, and the third optical disc, or the first optical disc, the second optical disc, and When reproducing information from the third optical disk, the position of the collimating lens is selectively changed according to the wavelength of each light emitted from the first light source, the second light source, and the third light source.
[0082] したがって、第 1の光源、第 2の光源及び第 3の光源から出射される各光の波長に 対応して選択的にコリメートレンズの位置が変えられ、波長の違いで発生する光検出 系の収束位置のずれを補正することができるので、 1つの光検出器で複数の波長に 対応する光を受光することができ、光ヘッドの構成を簡略ィ匕することができる。  Accordingly, the position of the collimating lens is selectively changed corresponding to the wavelength of each light emitted from the first light source, the second light source, and the third light source, and light detection that occurs due to the difference in wavelength. Since the deviation of the convergence position of the system can be corrected, light corresponding to a plurality of wavelengths can be received by one photodetector, and the configuration of the optical head can be simplified.
[0083] また、上記の光ヘッドにおいて、前記コリメートレンズ移動部は、前記第 1の光デイス クに情報を記録する、又は前記第 1の光ディスクから情報を再生する際、前記第 1の 光源からの光が前記第 1の光ディスクに収束し、その反射光が前記光検出器上にフ オーカス検出に適した光スポットを形成するように前記コリメートレンズの位置を設定 し、前記第 2の光ディスクに情報を記録する、又は前記第 2の光ディスクから情報を再 生する際、前記第 2の光源からの光が前記第 2の光ディスクに収束し、その反射光が 前記光検出器上にフォーカス検出に適した光スポットを形成するように前記コリメート レンズの位置を設定し、前記第 3の光ディスクに情報を記録する、又は前記第 3の光 ディスクから情報を再生する際、前記第 3の光源からの光が前記第 3の光ディスクに 収束し、その反射光が前記光検出器上にフォーカス検出に適した光スポットを形成 するように前記コリメートレンズの位置を設定することが好ま 、。 [0083] In the optical head described above, the collimating lens moving unit may include the first optical device. When information is recorded on the disk or when information is reproduced from the first optical disk, the light from the first light source converges on the first optical disk, and the reflected light is focused on the photodetector. When the position of the collimating lens is set so as to form a light spot suitable for detection and information is recorded on the second optical disc or information is reproduced from the second optical disc, the second light source The position of the collimating lens is set so that the light from the light beam converges on the second optical disk and the reflected light forms a light spot suitable for focus detection on the photodetector, and the third optical disk When recording information or reproducing information from the third optical disc, the light from the third light source converges on the third optical disc, and the reflected light is used for focus detection on the photodetector. Suitable It preferred to set the position of the collimating lens to form a light spot.
[0084] この構成によれば、第 1の光ディスクに情報を記録する、又は第 1の光ディスクから 情報を再生する際、第 1の光源からの光が第 1の光ディスクに収束し、その反射光が 光検出器上にフォーカス検出に適した光スポットを形成するようにコリメートレンズの 位置が設定される。また、第 2の光ディスクに情報を記録する、又は第 2の光ディスク から情報を再生する際、第 2の光源力 の光が第 2の光ディスクに収束し、その反射 光が光検出器上にフォーカス検出に適した光スポットを形成するようにコリメートレン ズの位置が設定される。さらに、第 3の光ディスクに情報を記録する、又は第 3の光デ イスクから情報を再生する際、第 3の光源からの光が第 3の光ディスクに収束し、その 反射光が光検出器上にフォーカス検出に適した光スポットを形成するようにコリメート レンズの位置が設定される。  [0084] According to this configuration, when recording information on the first optical disc or reproducing information from the first optical disc, the light from the first light source converges on the first optical disc and the reflected light thereof The position of the collimating lens is set so that a light spot suitable for focus detection is formed on the photodetector. In addition, when recording information on the second optical disk or reproducing information from the second optical disk, the light of the second light source power converges on the second optical disk, and the reflected light is focused on the photodetector. The collimating lens position is set so as to form a light spot suitable for detection. Furthermore, when recording information on the third optical disk or reproducing information from the third optical disk, the light from the third light source converges on the third optical disk, and the reflected light is reflected on the photodetector. The collimating lens position is set to form a light spot suitable for focus detection.
[0085] したがって、各光源からの光が光ディスクに収束し、その反射光が光検出器上にフ オーカス検出に適した光スポットを形成するようにコリメートレンズの位置が設定される ので、各光源と光検出器の受光位置とが結像関係にあるように配置することができる  Accordingly, the position of the collimating lens is set so that the light from each light source converges on the optical disc and the reflected light forms a light spot suitable for focus detection on the photodetector. And the light receiving position of the photodetector can be arranged in an imaging relationship
[0086] また、上記の光ヘッドにおいて、前記第 1の光源、前記第 2の光源及び前記第 3の 光源によって出射された光と、前記第 1の光ディスク、前記第 2の光ディスク及び前記 第 3の光ディスクによって反射された反射光とを分岐する光路分岐部材をさらに備え 、前記コリメートレンズは、前記光路分岐部材によって分岐された前記第 1の波長、前 記第 2の波長及び前記第 3の波長の光を集光し、前記光検出器は、前記コリメ一トレ ンズによって収束されるとともに前記光路分岐部材によって分岐された前記第 1の光 ディスク、前記第 2の光ディスク及び前記第 3の光ディスクからの反射光を受光し、前 記光路分岐部材は、前記第 1の波長及び前記第 2の波長の光が入射した場合、入 射面に垂直方向の光を透過し、入射面に水平方向の光を反射し、前記第 3の波長の 光が入射した場合、入射面に水平方向の光の一部を反射し、入射面に水平方向の 光の一部を透過することが好ま 、。 [0086] In the above optical head, the light emitted from the first light source, the second light source, and the third light source, the first optical disc, the second optical disc, and the third optical source. An optical path branching member for branching the reflected light reflected by the optical disc, wherein the collimating lens has the first wavelength branched by the optical path branching member The first and second optical disks, which collect the light of the second wavelength and the third wavelength, and are converged by the collimating lens and branched by the optical path branching member, The reflected light from the second optical disk and the third optical disk is received, and the optical path branching member is perpendicular to the incident surface when light having the first wavelength and the second wavelength is incident. Transmits light, reflects light in the horizontal direction on the incident surface, and when light of the third wavelength is incident, reflects part of the light in the horizontal direction on the incident surface, and reflects light in the horizontal direction on the incident surface. Preferable to penetrate part.
[0087] この構成によれば、光路分岐部材によって、第 1の光源、第 2の光源及び第 3の光 源によって出射された光と、第 1の光ディスク、第 2の光ディスク及び第 3の光ディスク によって反射された反射光とが分岐される。そして、コリメートレンズは、光路分岐部 材によって分岐された第 1の波長、第 2の波長及び第 3の波長の光を集光する。光検 出器は、コリメートレンズによって収束されるとともに光路分岐部材によって分岐され た第 1の光ディスク、第 2の光ディスク及び第 3の光ディスク力もの反射光を受光する。 光路分岐部材は、第 1の波長及び第 2の波長の光が入射した場合、入射面に垂直 方向の光を透過し、入射面に水平方向の光を反射する。また、光路分岐部材は、第 3の波長の光が入射した場合、入射面に水平方向の光の一部を反射し、入射面に水 平方向の光の一部を透過する。  According to this configuration, the light emitted from the first light source, the second light source, and the third light source by the optical path branching member, and the first optical disc, the second optical disc, and the third optical disc. The reflected light reflected by is branched. The collimating lens condenses light having the first wavelength, the second wavelength, and the third wavelength branched by the optical path branching member. The optical detector receives the reflected light of the first optical disk, the second optical disk, and the third optical disk, which is converged by the collimating lens and branched by the optical path branching member. When light having the first wavelength and the second wavelength is incident, the optical path branching member transmits light in the vertical direction to the incident surface and reflects light in the horizontal direction on the incident surface. In addition, when light having the third wavelength is incident, the optical path branching member reflects a part of the light in the horizontal direction on the incident surface and transmits a part of the light in the horizontal direction on the incident surface.
[0088] したがって、各光源からの 3つの波長の光を光路分岐することができ、 3つの波長の 光を集光するコリメートレンズと、 3つの波長の光の光ディスクによる反射光を受光す る光検出系の絞りレンズとを兼用することができ、小型で廉価な光ヘッドを実現するこ とができる。また、第 1の波長の光及び第 2の波長の光については、偏光分離特性を 有し、複屈折が発生しやすい第 3の波長の光については、ハーフミラー特性を有して いるので、 3つの波長の光それぞれに対応する光路分岐部材が不要となり、 1つの光 路分岐部材であっても 3つの波長の光に対応することができる。  [0088] Accordingly, light of three wavelengths from each light source can be branched, a collimating lens that collects light of three wavelengths, and light that receives light reflected by the optical disk of light of three wavelengths It can also be used as a stop lens for the detection system, and a compact and inexpensive optical head can be realized. In addition, the light of the first wavelength and the light of the second wavelength have polarization separation characteristics, and the light of the third wavelength that easily generates birefringence has a half mirror characteristic. An optical path branching member corresponding to each of the three wavelengths of light is not necessary, and even one optical path branching member can support three wavelengths of light.
[0089] 本発明の他の局面に係る光ヘッドは、第 1の波長の光を出射する第 1の光源と、前 記第 1の波長よりも波長の長い第 2の波長の光を出射する第 2の光源と、前記第 2の 波長よりも波長の長い第 3の波長の光を出射する第 3の光源と、前記第 1の波長、前 記第 2の波長及び前記第 3の波長の光を集光するコリメートレンズと、前記コリメ一トレ ンズによって集光された前記第 1の波長の光を第 1の光ディスクに収束させ、前記コリ メートレンズによって集光された前記第 2の波長の光を前記第 1の光ディスクとは保護 層厚の異なる第 2の光ディスクに収束させ、前記コリメートレンズによって集光された 前記第 3の波長の光を前記第 1の光ディスク及び前記第 2の光ディスクとは保護層厚 の異なる第 3の光ディスクに収束させる対物レンズと、前記第 1の光源、前記第 2の光 源及び前記第 3の光源によって出射された光と、前記第 1の光ディスク、前記第 2の 光ディスク及び前記第 3の光ディスクによって反射された反射光とを分岐する光路分 岐部材と、前記コリメートレンズによって収束されるとともに前記光路分岐部材によつ て分岐された前記第 1の光ディスク、前記第 2の光ディスク及び前記第 3の光ディスク からの反射光を受光する光検出器とを備え、前記光路分岐部材は、前記第 1の波長 及び前記第 2の波長の光が入射した場合、入射面に垂直方向の光を透過し、入射 面に水平方向の光を反射し、前記第 3の波長の光が入射した場合、入射面に水平方 向の光の一部を反射し、入射面に水平方向の光の一部を透過する。 [0089] An optical head according to another aspect of the present invention emits light of a first light source that emits light of a first wavelength and light of a second wavelength that is longer than the first wavelength. A second light source, a third light source that emits light having a third wavelength longer than the second wavelength, the first wavelength, the second wavelength, and the third wavelength. A collimating lens that collects the light, and the collimator lens The light of the first wavelength collected by the laser beam is converged on the first optical disk, and the light of the second wavelength collected by the collimator lens is the protective layer thickness of the first optical disk. Converging to a different second optical disc, and converging the light of the third wavelength condensed by the collimating lens to a third optical disc having a protective layer thickness different from that of the first optical disc and the second optical disc Reflected by the objective lens, the light emitted by the first light source, the second light source, and the third light source, and the first optical disc, the second optical disc, and the third optical disc An optical path branching member for branching the reflected light, and the first optical disc and the second optical disc converged by the collimating lens and branched by the optical path branching member And a photodetector for receiving the reflected light from the third optical disc, and the optical path branching member is perpendicular to the incident surface when the light of the first wavelength and the second wavelength is incident. When light is transmitted, reflects light in the horizontal direction on the incident surface, and light of the third wavelength is incident, part of the light in the horizontal direction is reflected on the incident surface, and light in the horizontal direction is reflected on the incident surface. Part of.
この構成によれば、第 1の光源力 第 1の波長の光が出射され、第 2の光源力 第 1 の波長よりも波長の長い第 2の波長の光が出射され、第 3の光源力 第 2の波長よりも 波長の長い第 3の波長の光が出射される。そして、コリメートレンズは、第 1の光源か ら出射された第 1の波長の光、第 2の光源から出射された第 2の波長の光及び第 3の 光源から出射された第 3の波長の光を集光する。続いて、対物レンズは、コリメ一トレ ンズによって集光された第 1の波長の光を第 1の光ディスクに収束させ、コリメートレン ズによって集光された第 2の波長の光を第 1の光ディスクとは保護層厚の異なる第 2 の光ディスクに収束させ、コリメートレンズによって集光された第 3の波長の光を第 1の 光ディスク及び第 2の光ディスクとは保護層厚の異なる第 3の光ディスクに収束させる 。光路分岐部材は、第 1の光源、第 2の光源及び第 3の光源によって出射された光と 、第 1の光ディスク、第 2の光ディスク及び第 3の光ディスクによって反射された反射光 とを分岐する。光検出器は、コリメートレンズによって収束されるとともに光路分岐部 材によって分岐された第 1の光ディスク、第 2の光ディスク及び第 3の光ディスクからの 反射光を受光する。また、光路分岐部材は、第 1の波長及び第 2の波長の光が入射 した場合、入射面に垂直方向の光を透過し、入射面に水平方向の光を反射し、第 3 の波長の光が入射した場合、入射面に水平方向の光の一部を反射し、入射面に水 平方向の光の一部を透過する。 According to this configuration, the first light source power emits light of the first wavelength, the second light source power emits light of the second wavelength longer than the first wavelength, and the third light source power. Light with a third wavelength that is longer than the second wavelength is emitted. Then, the collimating lens has the first wavelength light emitted from the first light source, the second wavelength light emitted from the second light source, and the third wavelength light emitted from the third light source. Collect the light. Subsequently, the objective lens converges the light having the first wavelength collected by the collimating lens onto the first optical disc, and the light having the second wavelength collected by the collimating lens is converged on the first optical disc. Is converged on a second optical disc having a different protective layer thickness, and the light of the third wavelength condensed by the collimating lens is applied to the third optical disc having a different protective layer thickness from the first optical disc and the second optical disc. Converge. The optical path branching member branches the light emitted from the first light source, the second light source, and the third light source, and the reflected light reflected by the first optical disc, the second optical disc, and the third optical disc. . The photodetector receives the reflected light from the first optical disc, the second optical disc, and the third optical disc that is converged by the collimating lens and branched by the optical path branching member. In addition, when light of the first wavelength and the second wavelength is incident, the optical path branching member transmits light in the vertical direction to the incident surface, reflects light in the horizontal direction to the incident surface, and When light having a wavelength of is incident, part of the light in the horizontal direction is reflected on the incident surface and part of the light in the horizontal direction is transmitted to the incident surface.
[0091] したがって、各光源からの 3つの波長の光を光路分岐することができ、 3つの波長の 光を集光するコリメートレンズと、 3つの波長の光の光ディスクによる反射光を受光す る光検出系の絞りレンズとを兼用することができ、小型で廉価な光ヘッドを実現するこ とができる。また、第 1の波長の光及び第 2の波長の光については、偏光分離特性を 有し、複屈折が発生しやすい第 3の波長の光については、ハーフミラー特性を有して いるので、 3つの波長の光それぞれに対応する光路分岐部材が不要となり、 1つの光 路分岐部材であっても 3つの波長の光に対応することができる。  [0091] Accordingly, light of three wavelengths from each light source can be branched, a collimating lens that collects light of three wavelengths, and light that receives light reflected by the optical disk of light of three wavelengths It can also be used as a stop lens for the detection system, and a compact and inexpensive optical head can be realized. In addition, the light of the first wavelength and the light of the second wavelength have polarization separation characteristics, and the light of the third wavelength that easily generates birefringence has a half mirror characteristic. An optical path branching member corresponding to each of the three wavelengths of light is not necessary, and even one optical path branching member can support three wavelengths of light.
[0092] また、上記の光ヘッドにお!、て、前記光路分岐部材は、光学多層膜と、前記光学多 層膜を挟む所定の屈折率の 2つのプリズムとを含み、前記光学多層膜は、屈折率が 2. 25±0. 1の高屈折率膜と屈折率が 1. 46±0. 1の低屈折率膜との交互膜で構 成され、第 1の中心波長を λ mとし、第 2の中心波長を λ ηとするとき、 1層目の光学 的膜厚は λ mZ4から λ mZlOであり、 2層目から j層目の光学的膜厚は λ mZ4で あり、 j + 1層目から j +k層目の光学的膜厚は λ ηΖ4であり、第 2の中心波長 λ ηは 第 1の中心波長え mの 1. 1倍から 1. 3倍であり、層数 jは層数 kより大きいことが好ま しい。  [0092] In the above optical head, the optical path branching member includes an optical multilayer film and two prisms having a predetermined refractive index sandwiching the optical multilayer film, and the optical multilayer film includes: It consists of an alternating film of a high refractive index film with a refractive index of 2.25 ± 0.1 and a low refractive index film with a refractive index of 1.46 ± 0.1, where the first central wavelength is λm. When the second central wavelength is λη, the optical thickness of the first layer is λmZ4 to λmZlO, the optical thickness of the second to jth layers is λmZ4, and j + The optical thickness of the first to j + k layers is λ ηΖ4, the second center wavelength λ η is 1.1 to 1.3 times the first center wavelength m, and the number of layers j is preferably larger than the number of layers k.
[0093] この構成によれば、光路分岐部材は、光学多層膜と、光学多層膜を挟む所定の屈 折率の 2つのプリズムとを含んでいる。そして、光学多層膜は、屈折率が 2. 25±0. 1の高屈折率膜と屈折率が 1. 46±0. 1の低屈折率膜との交互膜で構成される。光 学多層膜の第 1の中心波長を mとし、第 2の中心波長を λ ηとするとき、 1層目の光 学的膜厚は λ mZ4から λ mZlOであり、 2層目から j層目の光学的膜厚は λ m/4 であり、 j + 1層目から j +k層目の光学的膜厚は λ ηΖ4であり、第 2の中心波長 λ η は第 1の中心波長え mの 1. 1倍から 1. 3倍であり、層数 jは層数 kより大きい。  According to this configuration, the optical path branching member includes the optical multilayer film and the two prisms having a predetermined refractive index sandwiching the optical multilayer film. The optical multilayer film is composed of alternating films of a high refractive index film having a refractive index of 2.25 ± 0.1 and a low refractive index film having a refractive index of 1.46 ± 0.1. When the first central wavelength of the optical multilayer film is m and the second central wavelength is λη, the optical thickness of the first layer is λmZ4 to λmZlO, and the second layer is j layer The optical film thickness of the eye is λ m / 4, the optical film thickness of the j + 1 to j + k layers is λ ηΖ4, and the second center wavelength λ η is the first center wavelength. From 1.1 times to 1.3 times m, the number of layers j is larger than the number of layers k.
[0094] したがって、光路分岐部材は、第 1の波長及び第 2の波長の光が入射した場合、入 射面に垂直方向の光を透過し、入射面に水平方向の光を反射し、第 3の波長の光が 入射した場合、入射面に水平方向の光の一部を反射し、入射面に水平方向の光の 一部を透過する特性を得ることができる。 [0095] また、上記の光ヘッドにおいて、前記プリズムの屈折率は 1. 65±0. 1であり、第 1 の中心波長え mは 635 ± 10nmであることが好ましい。この構成によれば、光路分岐 部材のプリズムの屈折率が 1. 65±0. 1であり、第 1の中心波長え mが 635± 10nm である場合に、第 1の波長及び第 2の波長の光に対しては偏光分離特性を有し、第 3 の光に対してはハーフミラー特性を有することとなる。 Therefore, when light having the first wavelength and the second wavelength is incident, the optical path branching member transmits light in the vertical direction to the incident surface and reflects light in the horizontal direction on the incident surface. When light of wavelength 3 is incident, it is possible to obtain a characteristic that a part of the horizontal light is reflected on the incident surface and a part of the horizontal light is transmitted to the incident surface. In the optical head described above, it is preferable that the refractive index of the prism is 1.65 ± 0.1, and the first central wavelength m is 635 ± 10 nm. According to this configuration, when the refractive index of the prism of the optical path branching member is 1.65 ± 0.1 and the first central wavelength m is 635 ± 10 nm, the first wavelength and the second wavelength This light has polarization separation characteristics, and the third light has half mirror characteristics.
[0096] また、上記の光ヘッドにおいて、前記第 2の光源と前記第 3の光源とは一体に構成 され、前記光検出器は、フォーカス信号を検出する複数の受光素子を有し、前記複 数の受光素子のうち、前記第 1の光ディスクによって反射された反射光力 フォー力 ス信号を検出する受光素子は、前記第 2の光ディスクによって反射された反射光から フォーカス信号を検出する受光素子及び前記第 3の光ディスクによって反射された反 射光力 フォーカス信号を検出する受光素子のいずれか一方と兼用されることが好 ましい。  [0096] Further, in the above optical head, the second light source and the third light source are integrally configured, and the photodetector has a plurality of light receiving elements for detecting a focus signal, and Among the plurality of light receiving elements, the light receiving element for detecting the reflected light force force signal reflected by the first optical disk includes a light receiving element for detecting a focus signal from the reflected light reflected by the second optical disk, and The reflected light reflected by the third optical disk is preferably used also as one of the light receiving elements for detecting the focus signal.
[0097] この構成によれば、第 2の光源と第 3の光源とがー体に構成され、光検出器は、フォ 一カス信号を検出する複数の受光素子を有している。そして、複数の受光素子のうち 、第 1の光ディスクによって反射された反射光からフォーカス信号を検出する受光素 子は、第 2の光ディスクによって反射された反射光力 フォーカス信号を検出する受 光素子及び第 3の光ディスクによって反射された反射光力 フォーカス信号を検出す る受光素子のいずれか一方と兼用される。したがって、光検出器において、フォー力 ス信号を検出する受光素子の数を削減することができ、かつ受光素子力も得られる 信号を増幅する増幅器の数も削減することができる。  According to this configuration, the second light source and the third light source are configured as a single body, and the photodetector has a plurality of light receiving elements for detecting a focus signal. Among the plurality of light receiving elements, the light receiving element that detects the focus signal from the reflected light reflected by the first optical disk includes the light receiving element that detects the reflected light force focus signal reflected by the second optical disk, and Reflected light force reflected by the third optical disk Also serves as one of the light receiving elements that detect the focus signal. Therefore, in the photodetector, the number of light receiving elements that detect the force signal can be reduced, and the number of amplifiers that amplify the signal that can also obtain the light receiving element force can be reduced.
[0098] また、上記の光ヘッドにおいて、前記第 2の光源と前記第 3の光源とは一体に構成 され、前記光検出器は、トラッキング信号を検出する複数の受光素子を有し、前記複 数の受光素子のうち、前記第 1の光ディスクによって反射された反射光からトラツキン グ信号を検出する受光素子は、前記第 2の光ディスクによって反射された反射光から トラッキング信号を検出する受光素子及び前記第 3の光ディスクによって反射された 反射光からトラッキング信号を検出する受光素子のいずれか一方と兼用されることが 好ましい。  [0098] Further, in the above optical head, the second light source and the third light source are integrally formed, and the photodetector includes a plurality of light receiving elements for detecting a tracking signal, and Among the plurality of light receiving elements, the light receiving element that detects the tracking signal from the reflected light reflected by the first optical disk includes: a light receiving element that detects a tracking signal from the reflected light reflected by the second optical disk; and It is preferable to also use one of the light receiving elements for detecting the tracking signal from the reflected light reflected by the third optical disk.
[0099] この構成によれば、第 2の光源と第 3の光源とがー体に構成され、光検出器は、トラ ッキング信号を検出する複数の受光素子を有している。そして、複数の受光素子のう ち、第 1の光ディスクによって反射された反射光からトラッキング信号を検出する受光 素子は、第 2の光ディスクによって反射された反射光力もトラッキング信号を検出する 受光素子及び第 3の光ディスクによって反射された反射光からトラッキング信号を検 出する受光素子のいずれか一方と兼用される。したがって、光検出器において、トラ ッキング信号を検出する受光素子の数を削減することができ、小型で廉価な光ヘッド を実現することができる。 [0099] According to this configuration, the second light source and the third light source are configured in a single body, and the photodetector is a It has a plurality of light receiving elements for detecting a knocking signal. Among the plurality of light receiving elements, the light receiving element that detects the tracking signal from the reflected light reflected by the first optical disk has the reflected light power reflected by the second optical disk that also detects the tracking signal. It is also used as one of the light receiving elements that detect the tracking signal from the reflected light reflected by the optical disk. Therefore, in the photodetector, the number of light receiving elements for detecting the tracking signal can be reduced, and a small and inexpensive optical head can be realized.
[0100] また、上記の光ヘッドにおいて、前記対物レンズは、前記第 1の波長の光を前記第 1の光ディスクに対して開口数 NA1で収束させ、前記第 2の波長の光を前記第 2の 光ディスクに対して前記開口数 NA1よりも大きい開口数 NA2で収束させ、前記第 3 の波長の光を前記第 3の光ディスクに対して前記開口数 NA2よりも大きい開口数 N A3で収束させることが好まし 、。  [0100] In the optical head, the objective lens converges the light of the first wavelength with respect to the first optical disc with a numerical aperture NA1, and causes the light of the second wavelength to converge to the second optical disk. The third optical disc is converged with a numerical aperture NA3 larger than the numerical aperture NA2 with respect to the third optical disc. Is preferred.
[0101] この構成によれば、対物レンズは、第 1の波長の光を前記第 1の光ディスクに対して 開口数 NA1で収束させ、第 2の波長の光を第 2の光ディスクに対して開口数 NA1よ りも大きい開口数 NA2で収束させ、第 3の波長の光を第 3の光ディスクに対して開口 数 NA2よりも大きい開口数 NA3で収束させる。したがって、第 1の光、第 2の光及び 第 3の光の開口数 NA1, NA2, NA3は、 NA1 >NA2>NA3となり、各光ディスク に収束する光の有効径を、第 1の光〉第 2の光〉第 3の光とすることができる。  [0101] According to this configuration, the objective lens converges the light of the first wavelength with respect to the first optical disc with the numerical aperture NA1, and opens the light of the second wavelength with respect to the second optical disc. Convergence is performed with a numerical aperture NA2 larger than the numerical aperture NA1, and light of the third wavelength is converged with respect to the third optical disc with a numerical aperture NA3 larger than the numerical aperture NA2. Therefore, the numerical apertures NA1, NA2, and NA3 of the first light, the second light, and the third light are NA1> NA2> NA3, and the effective diameter of the light that converges on each optical disk is set to the first light> The second light can be the third light.
[0102] また、上記の光ヘッドにおいて、前記第 2の波長の光と前記第 3の波長の光との発 散度合いを変換するカップリングレンズをさらに備え、前記コリメートレンズは、前記第 1の波長の光と、前記カップリングレンズによって発散度合いが変換された前記第 2 の波長の光及び前記第 3の波長の光とを集光し、前記コリメートレンズの焦点距離を f clとし、前記カップリングレンズと前記コリメートレンズとを組み合わせた光学系の焦 点距離を fc2とし、 αを 0. 7力ら 1. 3とするとき、 fclZfc2= α Χ 2 Χ ΝΑ1Ζ (ΝΑ2 +ΝΑ3)の関係を満たすことが好ま U、。  [0102] Further, in the above optical head, the optical head further includes a coupling lens that converts a divergence degree of the light of the second wavelength and the light of the third wavelength, and the collimating lens includes the first collimating lens. Condensing the light of the wavelength, the light of the second wavelength and the light of the third wavelength whose degree of divergence is converted by the coupling lens, and the focal length of the collimating lens is f cl, When the focal length of the optical system combining the ring lens and the collimating lens is fc2 and α is 0.7 force and 1.3, the relationship fclZfc2 = α Χ 2 Χ Ζ1Ζ (ΝΑ2 + ΝΑ3) is satisfied. U prefer that.
[0103] この構成によれば、カップリングレンズによって、第 2の波長の光と第 3の波長の光と の発散度合いが変換され、コリメートレンズによって、第 1の波長の光と、カップリング レンズにより発散度合いが変換された第 2の波長の光及び第 3の波長の光とが集光さ れる。そして、コリメートレンズの焦点距離を fclとし、カップリングレンズとコリメ一トレ ンズとを組み合わせた光学系の焦点距離を fc2とし、 αを 0. 7から 1. 3とするとき、 fc l/fc2= α X 2 X NA1Z (NA2+NA3)の関係を満たす。したがって、この関係を 満たすように、コリメートレンズの位置が移動されるので、第 1の光、第 2の光及び第 3 の光の開口数 NA1, NA2, NA3の差による光の取込効率の差を補正することがで きる。 [0103] According to this configuration, the degree of divergence between the second wavelength light and the third wavelength light is converted by the coupling lens, and the first wavelength light and the coupling lens are converted by the collimating lens. The light of the second wavelength and the light of the third wavelength whose degree of divergence is converted by It is. When the focal length of the collimating lens is fcl, the focal length of the optical system combining the coupling lens and the collimating lens is fc2, and α is 0.7 to 1.3, fc l / fc2 = The relationship of α X 2 X NA1Z (NA2 + NA3) is satisfied. Therefore, the position of the collimating lens is moved so as to satisfy this relationship, so the efficiency of light capture due to the difference between the numerical apertures NA1, NA2, and NA3 of the first light, the second light, and the third light. The difference can be corrected.
[0104] また、上記の光ヘッドにおいて、前記開口数 NA1は 0. 85であり、前記開口数 NA 2は 0. 6力ら 0. 65であり、前記開口数 NA3は 0. 45力ら 0. 5であること力 ^好ましい。 この構成によれば、開口数 NA1は 0. 85であり、開口数 NA2は 0. 6力ら 0. 65であり 、開口数 NA3は 0. 45力ら 0. 5であるので、これらの開口数 NA1, NA2, NA3の差 による光の取込効率の差を補正することができる。  In the optical head, the numerical aperture NA1 is 0.85, the numerical aperture NA2 is 0.6 force and 0.65, and the numerical aperture NA3 is 0.45 force and 0. A power of 5 is preferred. According to this configuration, the numerical aperture NA1 is 0.85, the numerical aperture NA2 is 0.6 force to 0.65, and the numerical aperture NA3 is 0.45 force to 0.5. The difference in light capture efficiency due to the difference between the numbers NA1, NA2 and NA3 can be corrected.
[0105] また、上記の光ヘッドにおいて、前記第 1の光ディスクの保護層厚 tlは、前記第 2の 光ディスクの保護層厚 t2よりも小さぐ前記第 2の光ディスクの保護層厚 t2は、前記第 3の光ディスクの保護層厚 t3よりも小さ 、ことが好ま 、。  [0105] In the optical head, the protective layer thickness tl of the first optical disc is smaller than the protective layer thickness t2 of the second optical disc. The protective layer thickness t2 of the second optical disc is It is preferable that the protective layer thickness t3 of the third optical disk is smaller.
[0106] この構成によれば、第 1の光ディスクの保護層厚 tlは、第 2の光ディスクの保護層厚 t2よりも小さぐ第 2の光ディスクの保護層厚 t2は、第 3の光ディスクの保護層厚 t3より も小さいので、保護層厚の異なる光ディスクに情報を記録 Z再生することができる。  According to this configuration, the protective layer thickness tl of the first optical disc is smaller than the protective layer thickness t2 of the second optical disc. The protective layer thickness t2 of the second optical disc is the protective layer of the third optical disc. Since the thickness is smaller than t3, information can be recorded and reproduced on optical disks having different protective layer thicknesses.
[0107] また、上記の光ヘッドにおいて、前記保護層厚 tlは略 0. 1mmであり、前記保護層 厚 t2は略 0. 6mmであり、前記保護層厚 t3は略 1. 2mmであることが好ましい。この 構成によれば、保護層厚 tlは略 0. 1mmであり、保護層厚 t2は略 0. 6mmであり、 保護層厚 t3は略 1. 2mmであるので、保護層厚の異なる BD、 DVD及び CD用の光 ディスクに情報を記録 Z再生することができる。  [0107] In the above optical head, the protective layer thickness tl is approximately 0.1 mm, the protective layer thickness t2 is approximately 0.6 mm, and the protective layer thickness t3 is approximately 1.2 mm. Is preferred. According to this configuration, the protective layer thickness tl is approximately 0.1 mm, the protective layer thickness t2 is approximately 0.6 mm, and the protective layer thickness t3 is approximately 1.2 mm. Information can be recorded and played back on DVD and CD optical discs.
[0108] また、上記の光ヘッドにおいて、前記第 1の波長は 405nm近傍であり、前記第 2の 波長は 655nm近傍であり、前記第 3の波長は 780nm近傍であることが好ましい。  In the optical head described above, it is preferable that the first wavelength is near 405 nm, the second wavelength is around 655 nm, and the third wavelength is around 780 nm.
[0109] この構成によれば、第 1の波長は 405nm近傍であり、第 2の波長は 655nm近傍で あり、第 3の波長は 780nm近傍であるので、波長の異なる BD、 DVD及び CD用の 光ディスクに情報を記録 Z再生することができる。  [0109] According to this configuration, the first wavelength is around 405 nm, the second wavelength is around 655 nm, and the third wavelength is around 780 nm. Therefore, for BD, DVD, and CD having different wavelengths, Information can be recorded on an optical disk and played back.
[0110] 本発明の他の局面に係る光ディスク装置は、上記のいずれかに記載の光ヘッドと、 前記第 1の光ディスク、前記第 2の光ディスク及び前記第 3の光ディスクを回転させる モータと、前記光ヘッドから得られる信号に基づいて、前記モータ、前記光ヘッドに 用いた光学レンズ、及び前記光ヘッドに用いた前記光源の少なくとも 1つを制御及び 駆動する電気回路とを備える。 [0110] An optical disc device according to another aspect of the present invention includes an optical head according to any one of the above, A motor for rotating the first optical disc, the second optical disc, and the third optical disc; an optical lens used for the optical head; and the optical head based on a signal obtained from the optical head And an electric circuit for controlling and driving at least one of the light sources used in the above.
[0111] この構成によれば、モータによって、第 1の光ディスク、第 2の光ディスク及び第 3の 光ディスクが回転され、電気回路によって、光ヘッドから得られる信号に基づいて、モ ータ、光ヘッドに用いた光学レンズ、及び光ヘッドに用いた光源の少なくとも 1つが制 御及び駆動されるので、上記の光ヘッドを光ディスク装置に適用することができる。  [0111] According to this configuration, the first optical disc, the second optical disc, and the third optical disc are rotated by the motor, and the motor, the optical head based on the signal obtained from the optical head by the electric circuit Since at least one of the optical lens used in the above and the light source used in the optical head is controlled and driven, the above optical head can be applied to an optical disc apparatus.
[0112] 本発明の他の局面に係るコンピュータは、上記の光ディスク装置と、情報を入力す るための入力装置又は入力端子と、前記入力装置又は前記入力端子から入力され た情報、及び前記光ディスク装置力 再生された情報の少なくともいずれかに基づい て演算を行う演算装置と、前記入力装置又は前記入力端子から入力された情報、前 記光ディスク装置から再生された情報、及び前記演算装置によって演算された結果 の少なくともいずれかを出力する出力装置又は出力端子とを備える。  [0112] A computer according to another aspect of the present invention provides the above optical disc device, an input device or an input terminal for inputting information, information input from the input device or the input terminal, and the optical disc. Device power An arithmetic device that performs an operation based on at least one of the reproduced information, information input from the input device or the input terminal, information reproduced from the optical disk device, and an arithmetic device. An output device or an output terminal for outputting at least one of the results.
[0113] この構成によれば、演算装置によって、入力装置又は入力端子から入力された情 報及び光ディスク装置から再生された情報の少なくとも 、ずれかに基づ 、て演算が 行われ、出力装置又は出力端子によって、入力装置又は入力端子から入力された 情報、光ディスク装置から再生された情報及び演算装置によって演算された結果の 少なくともいずれかが出力されるので、上記の光ヘッドを備える光ディスク装置をコン ピュータに適用することができる。  [0113] According to this configuration, the arithmetic device performs an operation based on at least a deviation between the information input from the input device or the input terminal and the information reproduced from the optical disc device, and the output device or Since the output terminal outputs at least one of the information input from the input device or the input terminal, the information reproduced from the optical disk device, and the result calculated by the arithmetic device, the optical disk device including the optical head is configured. It can be applied to computers.
[0114] 本発明の他の局面に係る光ディスクレコーダは、上記の光ディスク装置と、画像情 報を前記光ディスク装置に記録する信号に変換する記録用信号処理回路と、前記光 ディスク装置力 得られる信号を画像情報に変換する再生用信号処理回路とを備え る。  [0114] An optical disc recorder according to another aspect of the present invention includes the above optical disc device, a recording signal processing circuit for converting image information into a signal to be recorded on the optical disc device, and a signal obtained by the optical disc device power. And a reproduction signal processing circuit for converting the image data into image information.
[0115] この構成によれば、記録用信号処理回路によって、画像情報が光ディスク装置に 記録する信号に変換され、再生用信号処理回路によって、光ディスク装置から得ら れる信号が画像情報に変換されるので、上記の光ヘッドを備える光ディスク装置を光 ディスクレコーダに適用することができる。 産業上の利用可能性 According to this configuration, the recording signal processing circuit converts the image information into a signal to be recorded on the optical disc apparatus, and the reproduction signal processing circuit converts the signal obtained from the optical disc apparatus into the image information. Therefore, the optical disk device provided with the above optical head can be applied to the optical disk recorder. Industrial applicability
本発明に係る光ヘッドは、異なる種類の光ディスクの互換再生や互換記録を 1つの 対物レンズを用いて実現し、光ディスクが異なっても光の伝達効率が確保でき、安定 した情報の再生又は記録ができ、光ディスクなどの光情報媒体上に、情報を記録や 再生、あるいは消去を行う光ヘッド等として有用である。また、このような光ヘッドを備 える光ディスク装置、この光ディスク装置を備えるコンピュータ及び光ディスクレコーダ 等としても有用である。  The optical head according to the present invention realizes compatible reproduction and compatible recording of different types of optical discs by using one objective lens, and can ensure light transmission efficiency even when the optical discs are different, and can stably reproduce or record information. It is useful as an optical head for recording, reproducing, or erasing information on an optical information medium such as an optical disk. Further, the present invention is also useful as an optical disk device equipped with such an optical head, a computer equipped with this optical disk device, and an optical disk recorder.

Claims

請求の範囲 The scope of the claims
[1] 第 1の波長の光を出射する第 1の光源と、  [1] a first light source that emits light of a first wavelength;
前記第 1の波長よりも波長の長い第 2の波長の光を出射する第 2の光源と、 前記第 2の波長よりも波長の長い第 3の波長の光を出射する第 3の光源と、 前記第 1の波長、前記第 2の波長及び前記第 3の波長の光を集光するコリメ一トレ ンズと、  A second light source that emits light of a second wavelength that is longer than the first wavelength; a third light source that emits light of a third wavelength that is longer than the second wavelength; A collimating lens for condensing the light of the first wavelength, the second wavelength, and the third wavelength;
前記コリメートレンズによって集光された前記第 1の波長の光を第 1の光ディスクに 収束させ、前記コリメートレンズによって集光された前記第 2の波長の光を前記第 1の 光ディスクとは保護層厚の異なる第 2の光ディスクに収束させ、前記コリメートレンズに よって集光された前記第 3の波長の光を前記第 1の光ディスク及び前記第 2の光ディ スクとは保護層厚の異なる第 3の光ディスクに収束させる対物レンズと、  The light of the first wavelength condensed by the collimating lens is converged on a first optical disc, and the light of the second wavelength condensed by the collimating lens is a protective layer thickness. The third wavelength light focused by the collimating lens is converged on a second optical disc having a different protective layer thickness from that of the first optical disc and the second optical disc. An objective lens for focusing on the optical disc;
前記コリメートレンズによって収束された前記第 1の光ディスク、前記第 2の光デイス ク及び前記第 3の光ディスクからの反射光を受光する光検出器と、  A photodetector for receiving reflected light from the first optical disc, the second optical disc, and the third optical disc converged by the collimating lens;
前記コリメートレンズを光軸方向に移動させ、前記第 1の光ディスク、前記第 2の光 ディスク及び前記第 3の光ディスクに情報を記録する、又は前記第 1の光ディスク、前 記第 2の光ディスク及び前記第 3の光ディスクから情報を再生する際に、前記第 1の 光源、前記第 2の光源及び前記第 3の光源から出射される各光の波長に対応して選 択的に前記コリメートレンズの位置を変えるコリメートレンズ移動部とを備えることを特 徴とする光ヘッド。  The collimating lens is moved in the optical axis direction to record information on the first optical disc, the second optical disc, and the third optical disc, or the first optical disc, the second optical disc, and the When reproducing information from the third optical disc, the position of the collimating lens is selectively selected according to the wavelength of each light emitted from the first light source, the second light source, and the third light source. An optical head characterized by comprising a collimating lens moving part for changing the position.
[2] 前記コリメートレンズ移動部は、 [2] The collimating lens moving unit is
前記第 1の光ディスクに情報を記録する、又は前記第 1の光ディスク力 情報を再 生する際、前記第 1の光源からの光が前記第 1の光ディスクに収束し、その反射光が 前記光検出器上にフォーカス検出に適した光スポットを形成するように前記コリメート レンズの位置を設定し、  When information is recorded on the first optical disc or when the first optical disc force information is reproduced, light from the first light source converges on the first optical disc, and reflected light thereof is detected by the light detection. Set the position of the collimating lens to form a light spot suitable for focus detection on the instrument,
前記第 2の光ディスクに情報を記録する、又は前記第 2の光ディスク力 情報を再 生する際、前記第 2の光源からの光が前記第 2の光ディスクに収束し、その反射光が 前記光検出器上にフォーカス検出に適した光スポットを形成するように前記コリメート レンズの位置を設定し、 前記第 3の光ディスクに情報を記録する、又は前記第 3の光ディスク力 情報を再 生する際、前記第 3の光源からの光が前記第 3の光ディスクに収束し、その反射光が 前記光検出器上にフォーカス検出に適した光スポットを形成するように前記コリメート レンズの位置を設定することを特徴とする請求項 1記載の光ヘッド。 When recording information on the second optical disc or reproducing the second optical disc force information, the light from the second light source converges on the second optical disc, and the reflected light becomes the light detection Set the position of the collimating lens to form a light spot suitable for focus detection on the instrument, When recording information on the third optical disc or reproducing the third optical disc force information, the light from the third light source converges on the third optical disc, and the reflected light is the light detection 2. The optical head according to claim 1, wherein a position of the collimating lens is set so as to form a light spot suitable for focus detection on the vessel.
[3] 前記第 1の光源、前記第 2の光源及び前記第 3の光源によって出射された光と、前 記第 1の光ディスク、前記第 2の光ディスク及び前記第 3の光ディスクによって反射さ れた反射光とを分岐する光路分岐部材をさらに備え、 [3] Light emitted by the first light source, the second light source, and the third light source, and reflected by the first optical disc, the second optical disc, and the third optical disc It further comprises an optical path branching member that branches the reflected light,
前記コリメートレンズは、前記光路分岐部材によって分岐された前記第 1の波長、前 記第 2の波長及び前記第 3の波長の光を集光し、  The collimating lens condenses the light of the first wavelength, the second wavelength, and the third wavelength branched by the optical path branching member;
前記光検出器は、前記コリメートレンズによって収束されるとともに前記光路分岐部 材によって分岐された前記第 1の光ディスク、前記第 2の光ディスク及び前記第 3の 光ディスクからの反射光を受光し、  The photodetector receives reflected light from the first optical disc, the second optical disc, and the third optical disc that is converged by the collimating lens and branched by the optical path branching member;
前記光路分岐部材は、前記第 1の波長及び前記第 2の波長の光が入射した場合、 入射面に垂直方向の光を透過し、入射面に水平方向の光を反射し、前記第 3の波長 の光が入射した場合、入射面に水平方向の光の一部を反射し、入射面に水平方向 の光の一部を透過することを特徴とする請求項 1又は 2記載の光ヘッド。  When the light having the first wavelength and the second wavelength is incident, the optical path branching member transmits light in a vertical direction to the incident surface, reflects light in the horizontal direction on the incident surface, and transmits the third light. 3. The optical head according to claim 1, wherein when light having a wavelength is incident, a part of the horizontal light is reflected on the incident surface and a part of the horizontal light is transmitted to the incident surface.
[4] 前記光路分岐部材は、光学多層膜と、前記光学多層膜を挟む所定の屈折率の 2 つのプリズムとを含み、 [4] The optical path branching member includes an optical multilayer film and two prisms having a predetermined refractive index sandwiching the optical multilayer film,
前記光学多層膜は、屈折率が 2. 25±0. 1の高屈折率膜と屈折率が 1. 46±0. 1 の低屈折率膜との交互膜で構成され、  The optical multilayer film is composed of alternating films of a high refractive index film having a refractive index of 2.25 ± 0.1 and a low refractive index film having a refractive index of 1.46 ± 0.1.
第 1の中心波長を λ mとし、第 2の中心波長を λ ηとするとき、 1層目の光学的膜厚 は λ mZ4から λ mZlOであり、 2層目から j層目の光学的膜厚は λ mZ4であり、 j + 1層目から j +k層目の光学的膜厚は λ ηΖ4であり、第 2の中心波長 λ ηは第 1の中 心波長え mの 1. 1倍から 1. 3倍であり、層数 jは層数 kより大きいことを特徴とする請 求項 3記載の光ヘッド。  When the first central wavelength is λ m and the second central wavelength is λ η, the optical thickness of the first layer is λ mZ4 to λ mZlO, and the optical film of the second to jth layers The thickness is λ mZ4, the optical thickness of the j + 1 to j + k layers is λ ηΖ4, and the second central wavelength λ η is 1.1 times the first center wavelength m 1. The optical head according to claim 3, wherein the optical head is 1.3 times and the number of layers j is larger than the number of layers k.
[5] 前記プリズムの屈折率は 1. 65±0. 1であり、第 1の中心波長え mは 635 ± 10nm であることを特徴とする請求項 4記載の光ヘッド。  5. The optical head according to claim 4, wherein the refractive index of the prism is 1.65 ± 0.1, and the first central wavelength m is 635 ± 10 nm.
[6] 前記第 2の光源と前記第 3の光源とは一体に構成され、 前記光検出器は、フォーカス信号を検出する複数の受光素子を有し、 前記複数の受光素子のうち、前記第 1の光ディスクによって反射された反射光から フォーカス信号を検出する受光素子は、前記第 2の光ディスクによって反射された反 射光力 フォーカス信号を検出する受光素子及び前記第 3の光ディスクによって反 射された反射光力 フォーカス信号を検出する受光素子のいずれか一方と兼用され ることを特徴とする請求項 1〜5のいずれかに記載の光ヘッド。 [6] The second light source and the third light source are configured integrally, The photodetector has a plurality of light receiving elements for detecting a focus signal, and the light receiving element for detecting a focus signal from reflected light reflected by the first optical disc is the first light receiving element. The reflected light force reflected by the optical disk of No. 2 and the reflected light force reflected by the third optical disk and the light receiving element that detects the focus signal are combined. The optical head according to any one of claims 1 to 5.
[7] 前記第 2の光源と前記第 3の光源とは一体に構成され、  [7] The second light source and the third light source are integrally formed,
前記光検出器は、トラッキング信号を検出する複数の受光素子を有し、  The photodetector has a plurality of light receiving elements for detecting a tracking signal,
前記複数の受光素子のうち、前記第 1の光ディスクによって反射された反射光から トラッキング信号を検出する受光素子は、前記第 2の光ディスクによって反射された反 射光力 トラッキング信号を検出する受光素子及び前記第 3の光ディスクによって反 射された反射光からトラッキング信号を検出する受光素子のいずれか一方と兼用さ れることを特徴とする請求項 1〜6のいずれかに記載の光ヘッド。  Among the plurality of light receiving elements, a light receiving element that detects a tracking signal from reflected light reflected by the first optical disk includes a light receiving element that detects a reflected light tracking signal reflected by the second optical disk, and 7. The optical head according to claim 1, wherein the optical head is also used as one of light receiving elements that detect a tracking signal from reflected light reflected by the third optical disk.
[8] 前記対物レンズは、前記第 1の波長の光を前記第 1の光ディスクに対して開口数 N A1で収束させ、前記第 2の波長の光を前記第 2の光ディスクに対して前記開口数 N A1よりも大きい開口数 NA2で収束させ、前記第 3の波長の光を前記第 3の光デイス クに対して前記開口数 NA2よりも大きい開口数 NA3で収束させることを特徴とする 請求項 1〜7のいずれかに記載の光ヘッド。  [8] The objective lens converges the light having the first wavelength with respect to the first optical disc with a numerical aperture NA1, and the light having the second wavelength with respect to the second optical disc. The light beam having the third wavelength is converged with a numerical aperture NA3 larger than the numerical aperture NA2 with respect to the third optical disk, and converged with a numerical aperture NA2 larger than the numerical value NA1. Item 8. The optical head according to any one of Items 1 to 7.
[9] 前記第 2の波長の光と前記第 3の波長の光との発散度合いを変換するカップリング レンズをさらに備え、  [9] a coupling lens that converts a divergence degree between the light of the second wavelength and the light of the third wavelength;
前記コリメートレンズは、前記第 1の波長の光と、前記カップリングレンズによって発 散度合いが変換された前記第 2の波長の光及び前記第 3の波長の光とを集光し、 前記コリメートレンズの焦点距離を fclとし、前記カップリングレンズと前記コリメート レンズとを組み合わせた光学系の焦点距離を fc2とし、 αを 0. 7から 1. 3とするとき、 f cl/fc2= α X 2 X NA1Z (NA2+NA3)の関係を満たすことを特徴とする請求項 8記載の光ヘッド。  The collimating lens condenses the light of the first wavelength, the light of the second wavelength and the light of the third wavelength whose degree of divergence has been converted by the coupling lens, and the collimating lens Fcl / fc2 = α X 2 X where fcl is the focal length of the optical system combining the coupling lens and the collimating lens, and fc2 is α. 9. The optical head according to claim 8, wherein the relationship NA1Z (NA2 + NA3) is satisfied.
[10] 前記開口数 NA1は 0. 85であり、前記開口数 NA2は 0. 6から 0. 65であり、前記 開口数 NA3は 0. 45から 0. 5であることを特徴とする請求項 8又は 9記載の光ヘッド [10] The numerical aperture NA1 is 0.85, the numerical aperture NA2 is 0.6 to 0.65, and the numerical aperture NA3 is 0.45 to 0.5. 8 or 9 optical head
[11] 前記第 1の光ディスクの保護層厚 tlは、前記第 2の光ディスクの保護層厚 t2よりも 小さぐ前記第 2の光ディスクの保護層厚 t2は、前記第 3の光ディスクの保護層厚 t3 よりも小さいことを特徴とする請求項 1〜10のいずれかに記載の光ヘッド。 [11] The protective layer thickness tl of the first optical disc is smaller than the protective layer thickness t2 of the second optical disc. The protective layer thickness t2 of the second optical disc is the protective layer thickness of the third optical disc. 11. The optical head according to claim 1, wherein the optical head is smaller than t3.
[12] 前記保護層厚 tlは略 0. 1mmであり、前記保護層厚 t2は略 0. 6mmであり、前記 保護層厚 t3は略 1. 2mmであることを特徴とする請求項 11記載の光ヘッド。  12. The protective layer thickness tl is about 0.1 mm, the protective layer thickness t2 is about 0.6 mm, and the protective layer thickness t3 is about 1.2 mm. Light head.
[13] 前記第 1の波長は 405nm近傍であり、前記第 2の波長は 655nm近傍であり、前記 第 3の波長は 780nm近傍であることを特徴とする請求項 1〜12のいずれかに記載の 光ヘッド。  13. The first wavelength according to any one of claims 1 to 12, wherein the first wavelength is near 405 nm, the second wavelength is near 655 nm, and the third wavelength is near 780 nm. The light head.
[14] 請求項 1〜13のいずれかに記載の光ヘッドと、  [14] The optical head according to any one of claims 1 to 13,
前記第 1の光ディスク、前記第 2の光ディスク及び前記第 3の光ディスクを回転させ るモータと、  A motor for rotating the first optical disc, the second optical disc, and the third optical disc;
前記光ヘッドから得られる信号に基づいて、前記モータ、前記光ヘッドに用いた光 学レンズ、及び前記光ヘッドに用いた前記光源の少なくとも 1つを制御及び駆動する 電気回路とを備えることを特徴とする光ディスク装置。  And an electric circuit that controls and drives at least one of the motor, an optical lens used in the optical head, and the light source used in the optical head based on a signal obtained from the optical head. An optical disk device.
[15] 請求項 14に記載の光ディスク装置と、 [15] The optical disc device according to claim 14,
情報を入力するための入力装置又は入力端子と、  An input device or input terminal for inputting information;
前記入力装置又は前記入力端子から入力された情報、及び前記光ディスク装置か ら再生された情報の少なくともいずれかに基づいて演算を行う演算装置と、  An arithmetic device that performs an operation based on at least one of information input from the input device or the input terminal and information reproduced from the optical disc device;
前記入力装置又は前記入力端子から入力された情報、前記光ディスク装置から再 生された情報、及び前記演算装置によって演算された結果の少なくともいずれかを 出力する出力装置又は出力端子とを備えることを特徴とするコンピュータ。  And an output device or an output terminal for outputting at least one of information input from the input device or the input terminal, information reproduced from the optical disc device, and a result calculated by the arithmetic device. And computer.
[16] 請求項 14に記載の光ディスク装置と、 [16] The optical disc device according to claim 14,
画像情報を前記光ディスク装置に記録する信号に変換する記録用信号処理回路と 前記光ディスク装置力 得られる信号を画像情報に変換する再生用信号処理回路 とを備えることを特徴とする光ディスクレコーダ。  An optical disc recorder comprising: a recording signal processing circuit for converting image information into a signal to be recorded on the optical disc device; and a reproduction signal processing circuit for converting a signal obtained by the optical disc device power into image information.
PCT/JP2006/319347 2005-09-30 2006-09-28 Optical head, optical disc device, computer, and optical disc recorder WO2007040147A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-288072 2005-09-30
JP2005288072A JP2008310838A (en) 2005-09-30 2005-09-30 Optical head and optical disk device

Publications (1)

Publication Number Publication Date
WO2007040147A1 true WO2007040147A1 (en) 2007-04-12

Family

ID=37906189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319347 WO2007040147A1 (en) 2005-09-30 2006-09-28 Optical head, optical disc device, computer, and optical disc recorder

Country Status (2)

Country Link
JP (1) JP2008310838A (en)
WO (1) WO2007040147A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129502A (en) * 2007-11-22 2009-06-11 Sony Corp Optical pickup and optical disk drive
JP2009176391A (en) * 2008-01-28 2009-08-06 Sony Corp Optical pickup and optical disk device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071505A (en) * 2003-08-26 2005-03-17 Sony Corp Optical pickup and optical disk device
JP2005141872A (en) * 2003-11-10 2005-06-02 Konica Minolta Opto Inc Optical pickup device
JP2005158217A (en) * 2003-04-24 2005-06-16 Konica Minolta Opto Inc Diffractive optical element and optical pickup device using the same
JP2005209325A (en) * 2003-12-25 2005-08-04 Konica Minolta Opto Inc Optical pickup device
JP2005222601A (en) * 2004-02-05 2005-08-18 Hitachi Ltd Optical pickup, and optical information reproducing device or optical information recording/reproducing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158217A (en) * 2003-04-24 2005-06-16 Konica Minolta Opto Inc Diffractive optical element and optical pickup device using the same
JP2005071505A (en) * 2003-08-26 2005-03-17 Sony Corp Optical pickup and optical disk device
JP2005141872A (en) * 2003-11-10 2005-06-02 Konica Minolta Opto Inc Optical pickup device
JP2005209325A (en) * 2003-12-25 2005-08-04 Konica Minolta Opto Inc Optical pickup device
JP2005222601A (en) * 2004-02-05 2005-08-18 Hitachi Ltd Optical pickup, and optical information reproducing device or optical information recording/reproducing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129502A (en) * 2007-11-22 2009-06-11 Sony Corp Optical pickup and optical disk drive
JP2009176391A (en) * 2008-01-28 2009-08-06 Sony Corp Optical pickup and optical disk device

Also Published As

Publication number Publication date
JP2008310838A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP5053090B2 (en) Optical head and optical disk apparatus
JPWO2005101393A1 (en) Objective optical system for optical pickup device, optical pickup device, drive device for optical information recording medium, condensing lens, and optical path synthesis element
JP2001093179A (en) Optical pickup
EP1587090B1 (en) Optical pickup apparatus
JP4954892B2 (en) Optical pickup, optical disc apparatus, computer and optical disc recorder
US7986595B2 (en) Optical pickup and optical device for three different types of optical discs
WO2006115081A1 (en) Objective optical element for optical pickup device, optical element for optical pickup device, objective optical element unit for optical pickup device and optical pickup device
WO2001095317A1 (en) Optical pickup device
JP4336222B2 (en) Optical head device, optical information device using the same, computer, optical disk player, car navigation system, optical disk recorder, and optical disk server
JP4362068B2 (en) OPTICAL ELEMENT, OPTICAL HEAD DEVICE USING SAME, OPTICAL INFORMATION DEVICE USING THE OPTICAL HEAD DEVICE, COMPUTER, OPTICAL PLAYER, CAR NAVIGATION SYSTEM, OPTICAL DISC RECORDER, AND OPTICAL DISK SERVER USING THE OPTICAL INFORMATION DEVICE
WO2009147827A1 (en) Optical pickup and optical disc disk device, computer, optical disc disk player, optical disc disk recorder
KR20050046575A (en) Optical pickup device and optical system used for the same
WO2007040147A1 (en) Optical head, optical disc device, computer, and optical disc recorder
JP2006172605A (en) Optical pickup device
JPWO2004088648A1 (en) Condensing optical system
JP4400326B2 (en) Optical pickup optical system, optical pickup device, and optical disk drive device
JP2000028917A (en) Pickup device for recording and reproducing of optical information recording medium, objective lens, and design method for objective lens
JP2006244656A (en) Objective lens, optical pickup device, and optical disk device
JP4294460B2 (en) Objective lens, optical pickup device and optical disk device
JP2009266359A (en) Optical head, optical disk device and information recording and/or reproducing device
US20100214891A1 (en) Optical pickup device, optical disc device, computer, optical disc player, and optical disc recorder
JP4742159B2 (en) Optical information reproduction method
JP2007242116A (en) Optical pickup
WO2007113995A1 (en) Optical pickup device
JP2006228368A (en) Objective lens, optical pickup apparatus, and optical disk apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP