WO2007113149A1 - Leitschaufel für eine strömungsmaschine, insbesondere für eine dampfturbine - Google Patents

Leitschaufel für eine strömungsmaschine, insbesondere für eine dampfturbine Download PDF

Info

Publication number
WO2007113149A1
WO2007113149A1 PCT/EP2007/052828 EP2007052828W WO2007113149A1 WO 2007113149 A1 WO2007113149 A1 WO 2007113149A1 EP 2007052828 W EP2007052828 W EP 2007052828W WO 2007113149 A1 WO2007113149 A1 WO 2007113149A1
Authority
WO
WIPO (PCT)
Prior art keywords
vane
blade
curvature
angle
hub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2007/052828
Other languages
German (de)
English (en)
French (fr)
Inventor
Ralf Greim
Said Havakechian
Mourad Lakehel
Carsten Mumm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Vernova GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Priority to DE112007000717T priority Critical patent/DE112007000717A5/de
Priority to JP2009502049A priority patent/JP2009531593A/ja
Priority to CN200780020163.4A priority patent/CN101460706B/zh
Publication of WO2007113149A1 publication Critical patent/WO2007113149A1/de
Priority to US12/241,825 priority patent/US20090257866A1/en
Anticipated expiration legal-status Critical
Priority to US12/929,047 priority patent/US20110164970A1/en
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/301Cross-sectional characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved

Definitions

  • the present invention relates to a guide vane for a turbomachine, in particular for a steam turbine with at least one row of guide vanes.
  • curved blades are used as an embodiment of turbine blades, in particular when strong three-dimensional flows occur, which show pronounced radial differences in the static pressure curve between the rotor side and the stator side, and which arise due to the deflection in the guide vanes.
  • the flow of a flow medium in a last stage of a low-pressure turbine with a large inflow cross-section leads, in particular with a large ratio between blade length and hub, to a radial reaction distribution having a negative effect on the efficiency of the steam turbine.
  • the reaction distribution here is different in the radial direction, being low at the hub and high at a housing of the turbine, which is generally considered disadvantageous.
  • a high response in the hub area reduces the gap losses in the vane ring and thus leads to improved efficiency.
  • curved guide vanes are used.
  • Turbines with curved in the axial direction and in the circumferential direction vanes are known for example from DE 42 28 879 A1.
  • the blades Upstream of a playpen a fixed guide grid is arranged, the blades are optimized in terms of number and in terms of their ratio chord to pitch fluidically for full load. They give the flow required for the entry into the playpen swirl.
  • the curvature of the blades is perpendicular to the chord, which is achieved by a displacement of the profile cross sections both in the circumferential direction and in the axial direction. The curvature of the vanes is against the
  • a turbine blade is known, which is negatively swept in the flow direction at its rotor-side end and at its stator end and inclined in a radial direction with respect to the flow direction at its rotor-side end and at its stator end against the pressure side , This is thus a turbine with both in the circumferential direction and in the axial direction curved turbine blades.
  • EP 0 916 812 B1 discloses an output stage of an axially flow-through turbine with a large channel divergence and with a series of curved guide vanes and a row of tapered and twisted blades, wherein the guide vanes are positively swept in the axial direction at their rotor-side end and their stator end negative are, in each case with respect to the course of the rotor-side channel boundary.
  • the positive sweep of the vane extends over two-thirds of the blade height and then passes into the negative sweep, wherein in the positive sweep the vane trailing edge is parallel to the vane leading edge and in the negative sweep between the guide and blade against the wall continuously spreading axial diffuser forms with increasing delay of the axial component of the fluid.
  • the invention is based on the general idea, in a turbomachine, of at least the guide vanes of a vane row having a lean curve, a sweep curve, a torsion, a chord length that varies over the radial extent of the guide vane, and a cross-sectional profile that varies over the radial extension of the guide vane Mistake.
  • the guide vane row has a hub-side circumferential step, which falls back in the flow direction radially to the axis of rotation of the turbomachine inward. This can combine several advantages. On the one hand, a radial distribution of a through the
  • Turbine flowing mass flow and a radial pressure gradient is reduced, while on the other hand, a larger mass flow, that is mass flow, is excited in the region of the hub.
  • the impact energy of water droplets is reduced, whereby the erosion behavior is favorably influenced.
  • the reduced impact energy can be used to reduce the degree of reaction at the blade tip, whereby lower absolute speeds can be realized at a Leitschaufelabströmkante, so that lower leakage losses will occur.
  • FIG. 1 shows a cross section through a turbomachine according to the invention in the region of a guide blade
  • FIG. 3 is a plan view in the radial direction of a vane
  • Fig. 5 is a highly schematic representation for explaining a
  • Fig. 6 is a representation as in Fig. 5, but for explanation of a
  • a sectional guide blade 4 is shown by way of example in a flow space 1, which is arranged between a rotor hub 2 and a radial outer wall 3, the housing.
  • a vane 4 is not to be construed restrictively, so that the invention also includes other blades arranged in turbomachines, such as e.g. Blades that should be included.
  • the vane 4 has a so-called lean curve, which is directed in the circumferential direction and wherein a bending angle ⁇ varies along the radial blade length, ie from the hub 2 to the radial outer wall 3.
  • the lean curve of the vane 4 decreases along the radial
  • the lean curvature of the vane 4 is a positive lean curvature, i. the curvature extends in the direction of rotation 5 of the guide blade 4.
  • the shape of the curved guide blade 4 preferably represents a generally continuous arc, which forms an acute angle ⁇ with the hub 2 or the outer wall 3.
  • the angle of curvature ⁇ lies between a tangent 7 resting against a trailing edge 12 or leading edge 16 of the vane 4 on a blade surface 6 and a jet 9 orthogonal to the axis of rotation 8 of the turbomachine and preferably in a range of 0 ° ⁇ ⁇ 15 °.
  • a so-called sweep curvature of the vanes 4 is shown, including a curvature in the axial direction, ie parallel to the chord 10 of the Guide vanes 4 is understood.
  • the sweep curvature is described here by a curvature angle ⁇ , which varies along the radial blade length and has a positive value at the hub 2 and a negative value at the housing 3.
  • a positive value is defined according to FIG. 2 in that the chord 10 extends above an intersection point 11 with the jet 9 extending orthogonally to the axis of rotation 8 of the turbomachine to the right of the jet 9, while at a negative angle of curvature ⁇ above the intersection point 11 to the left of Beam 9 runs.
  • the angle of curvature ⁇ is thus located between a meridional tangent 7 resting against a leading edge 16 or at an outflow edge 12 on the blade surface 6 and the jet 9 extending orthogonally to the axis of rotation 8 of the turbomachine and usually has a value of 15 ° ⁇ ⁇ -20 ° on.
  • the guide vane 4 also has a torsion in the radial direction
  • the torsion or the rotation is defined by a metal angle CC 2 , which on the one hand between a circumferentially of the turbomachine the respective trailing edges 12 of the respective vanes 4 connecting circumferential line 21 and on the other hand, the tangent of the curvature centerline 13 at the leading edge 16 and the trailing edge 12 respectively is.
  • the metal angle CC2 Similar to the sweep curve or the lean curve, the metal angle CC2 also varies along the radial blade length, wherein it is greater in the region of the hub 2 than on the housing 3.
  • a region of the metal angle CC2 that is favorable for the aerodynamic conditions of the turbomachine is usually located here at 25 ° ⁇ 2 ⁇ 10 °.
  • FIG. 4 shows a longitudinal section in the region of the guide blade 4 through the turbomachine, with a hub-side circumferential step 14 too is recognizable, which falls back in the flow direction 15 radially to the axis of rotation 8 of the turbomachine inward.
  • the circumferential step 14 has an S-shaped profile between the leading edge 16 and the trailing edge 12. However, this is not mandatory, it may alternatively have a linear course between the leading edge 16 and the trailing edge 12. Due to the peripheral stage 14, a hub diameter at the leading edge 16 is greater than at the trailing edge 12, which also positively affects the aerodynamic properties.
  • a height of the peripheral stage 14 is determined by the angle ßi and ß2, which are each determined between a tangent 7 on the peripheral level 14 on the one hand and the axis of rotation 8 of the turbomachine or a parallel thereto on the other hand and usually in a range of - 20 ° ⁇ ßi, 2 ⁇ 20 ° lie.
  • the tangent 7 to the peripheral stage 14 at an intersection 17, in which the said tangent 7, a center of gravity line 18 and the peripheral step 14 intersect their largest slope.
  • the inflection point is usually also located.
  • chord length s and the blade spacing t are recorded as linear variables and can be determined by the radial extent of the
  • Guide vane 4 vary, wherein usually the pitch ratio t / s at the blade root 2 is smaller than at the blade tip 3.
  • Fig. 6 are two other features of the guide vanes 4 according to the invention, namely shown on the one hand over the radial blade length of the guide vane 4 varying angle of incidence cci and a wedge angle WE, which between a surface tangent 7a a pressure side 19 and a surface tangent 7b a suction side 20 varies at the trailing edge 12 of the vane 4 over the radial blade length.
  • the inflow-side incident angle cci of the curvature center line 13 on the blade root 2 is smaller than the blade tip 3 and is, for example, in a range of 55 ° ⁇ cci ⁇ 110 °.
  • the angle of incidence cci thus increases from the blade root 2 to the blade tip 3.
  • the wedge angle WE at the blade root 2 is greater than at the blade tip 3 and preferably decreases continuously from the blade root 2 in the direction of the blade tip 3.
  • the wedge angle WE is usually in a range of 15 ° ⁇ WE ⁇ 0 °.
  • the guide vanes 4 are formed such that at least the curvature angle ⁇ of the lean curve and / or the curvature angle ⁇ of the sweep curve do not change along the radial blade length, provided they are with respect to the curvature centerline 13 or with respect to the leading edge 16 be measured.
  • a narrowest flow cross-section q is defined between two adjacent guide vanes 4, which shifts between hub 2 and housing 3 counter to the flow direction 15.
  • An angle ⁇ is bounded on the one hand by the tangent T and on the other hand by the tangent 7 "on the tangent T.
  • the tangent T lies on the suction side 20 of the trailing edge 12, while the tangent 7" bears against the suction side 20 of the guide vane 4 and simultaneously orthogonal to the flow bottleneck q is aligned.
  • the angle ⁇ decreases from the hub 2 to the housing 3 and is variable along the radial blade length.
  • a typical range for the angle ⁇ is between - 5 ° ⁇ ⁇ 15 °.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
PCT/EP2007/052828 2006-03-31 2007-03-23 Leitschaufel für eine strömungsmaschine, insbesondere für eine dampfturbine Ceased WO2007113149A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112007000717T DE112007000717A5 (de) 2006-03-31 2007-03-23 Leitschaufel für eine Strömungsmaschine, insbesondere für eine Dampfturbine
JP2009502049A JP2009531593A (ja) 2006-03-31 2007-03-23 流体機械、特に蒸気タービンの案内ブレード
CN200780020163.4A CN101460706B (zh) 2006-03-31 2007-03-23 用于流体机械、尤其是用于蒸汽涡轮机的导向叶片
US12/241,825 US20090257866A1 (en) 2006-03-31 2008-09-30 Stator blade for a turbomachine, especially a steam turbine
US12/929,047 US20110164970A1 (en) 2006-03-31 2010-12-23 Stator blade for a turbomachine, especially a stream turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006015532.7 2006-03-31
DE102006015532 2006-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/241,825 Continuation US20090257866A1 (en) 2006-03-31 2008-09-30 Stator blade for a turbomachine, especially a steam turbine

Publications (1)

Publication Number Publication Date
WO2007113149A1 true WO2007113149A1 (de) 2007-10-11

Family

ID=38055104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/052828 Ceased WO2007113149A1 (de) 2006-03-31 2007-03-23 Leitschaufel für eine strömungsmaschine, insbesondere für eine dampfturbine

Country Status (5)

Country Link
US (2) US20090257866A1 (enExample)
JP (2) JP2009531593A (enExample)
CN (1) CN101460706B (enExample)
DE (1) DE112007000717A5 (enExample)
WO (1) WO2007113149A1 (enExample)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2075408A3 (en) * 2007-12-28 2013-03-06 Ansaldo Energia S.P.A. Last stage stator blade of a steam turbine low-pressure section
EP3108112A4 (en) * 2014-02-19 2017-02-22 United Technologies Corporation Gas turbine engine airfoil
WO2019110573A1 (en) * 2017-12-06 2019-06-13 Technische Universität München Guide vane for an axial turbine
US12270315B2 (en) 2019-07-19 2025-04-08 MTU Aero Engines AG Rotor blade for a turbomachine, associated turbine module, and use thereof

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008055824B4 (de) * 2007-11-09 2016-08-11 Alstom Technology Ltd. Dampfturbine
USD678837S1 (en) * 2009-11-03 2013-03-26 Aeroblade, S.A. Shovel for eolic generator
US8137062B2 (en) * 2010-05-11 2012-03-20 General Electric Company Turbomachine nozzle
ITMI20101447A1 (it) * 2010-07-30 2012-01-30 Alstom Technology Ltd "turbina a vapore a bassa pressione e metodo per il funzionamento della stessa"
US9011084B2 (en) * 2010-09-28 2015-04-21 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine stator vane and steam turbine using the same
US20140064951A1 (en) * 2012-09-05 2014-03-06 Renee J. Jurek Root bow geometry for airfoil shaped vane
US9581034B2 (en) * 2013-03-14 2017-02-28 Elliott Company Turbomachinery stationary vane arrangement for disk and blade excitation reduction and phase cancellation
WO2014200673A1 (en) 2013-06-14 2014-12-18 United Technologies Corporation Turbine vane with variable trailing edge inner radius
US10584715B2 (en) 2014-02-19 2020-03-10 United Technologies Corporation Gas turbine engine airfoil
EP3108106B1 (en) 2014-02-19 2022-05-04 Raytheon Technologies Corporation Gas turbine engine airfoil
US10570916B2 (en) 2014-02-19 2020-02-25 United Technologies Corporation Gas turbine engine airfoil
EP3108113A4 (en) 2014-02-19 2017-03-15 United Technologies Corporation Gas turbine engine airfoil
EP3114321B1 (en) 2014-02-19 2019-04-17 United Technologies Corporation Gas turbine engine airfoil
US10502229B2 (en) 2014-02-19 2019-12-10 United Technologies Corporation Gas turbine engine airfoil
WO2015127032A1 (en) 2014-02-19 2015-08-27 United Technologies Corporation Gas turbine engine airfoil
WO2015175058A2 (en) 2014-02-19 2015-11-19 United Technologies Corporation Gas turbine engine airfoil
US9567858B2 (en) 2014-02-19 2017-02-14 United Technologies Corporation Gas turbine engine airfoil
WO2015126451A1 (en) 2014-02-19 2015-08-27 United Technologies Corporation Gas turbine engine airfoil
EP3108104B1 (en) 2014-02-19 2019-06-12 United Technologies Corporation Gas turbine engine airfoil
EP3108122B1 (en) 2014-02-19 2023-09-20 Raytheon Technologies Corporation Turbofan engine with geared architecture and lpc airfoils
EP3108120B1 (en) 2014-02-19 2021-03-31 Raytheon Technologies Corporation Gas turbine engine having a geared architecture and a specific fixed airfoil structure
US9163517B2 (en) 2014-02-19 2015-10-20 United Technologies Corporation Gas turbine engine airfoil
WO2015126450A1 (en) 2014-02-19 2015-08-27 United Technologies Corporation Gas turbine engine airfoil
WO2015126824A1 (en) 2014-02-19 2015-08-27 United Technologies Corporation Gas turbine engine airfoil
EP3108118B1 (en) 2014-02-19 2019-09-18 United Technologies Corporation Gas turbine engine airfoil
WO2015175044A2 (en) 2014-02-19 2015-11-19 United Technologies Corporation Gas turbine engine airfoil
EP3108117B2 (en) 2014-02-19 2023-10-11 Raytheon Technologies Corporation Gas turbine engine airfoil
EP3108123B1 (en) 2014-02-19 2023-10-04 Raytheon Technologies Corporation Turbofan engine with geared architecture and lpc airfoils
EP3108101B1 (en) 2014-02-19 2022-04-20 Raytheon Technologies Corporation Gas turbine engine airfoil
WO2015126453A1 (en) 2014-02-19 2015-08-27 United Technologies Corporation Gas turbine engine airfoil
JP6396093B2 (ja) * 2014-06-26 2018-09-26 三菱重工業株式会社 タービン動翼列、タービン段落及び軸流タービン
JP6468414B2 (ja) * 2014-08-12 2019-02-13 株式会社Ihi 圧縮機静翼、軸流圧縮機、及びガスタービン
CN107208486B (zh) * 2015-02-10 2019-08-06 三菱日立电力系统株式会社 涡轮、燃气轮机以及涡轮动叶
JP6421091B2 (ja) * 2015-07-30 2018-11-07 三菱日立パワーシステムズ株式会社 軸流圧縮機、それを備えたガスタービン、及び軸流圧縮機の静翼
CN105090123B (zh) * 2015-08-25 2017-05-24 浙江理工大学 一种离心压缩机模型级
DE102016115868A1 (de) * 2016-08-26 2018-03-01 Rolls-Royce Deutschland Ltd & Co Kg Strömungsarbeitsmaschine mit hohem Ausnutzungsgrad
US10392961B2 (en) * 2017-05-18 2019-08-27 Ford Global Technologies, Llc Nozzle blade design for a variable nozzle turbine
GB201818687D0 (en) * 2018-11-16 2019-01-02 Rolls Royce Plc Boundary layer ingestion fan system
SI3735529T1 (sl) 2019-03-13 2023-01-31 Natel Energy, Inc. Hidravlična turbina
US11629599B2 (en) 2019-11-26 2023-04-18 General Electric Company Turbomachine nozzle with an airfoil having a curvilinear trailing edge
US11566530B2 (en) * 2019-11-26 2023-01-31 General Electric Company Turbomachine nozzle with an airfoil having a circular trailing edge
USD926133S1 (en) * 2020-03-13 2021-07-27 Natel Energy, Inc. Turbine runner
CN111636928B (zh) * 2020-05-29 2022-06-21 浙江燃创透平机械股份有限公司 一种控制反动度分布的高效燃气轮机末级导叶
FR3115321B1 (fr) * 2020-10-20 2023-03-03 Safran Aircraft Engines étage de redressement d’un flux d’air pour une turbomachine
US11713679B1 (en) * 2022-01-27 2023-08-01 Raytheon Technologies Corporation Tangentially bowed airfoil
DE102022103319A1 (de) * 2022-02-11 2023-08-17 MTU Aero Engines AG Leitschaufel für eine Strömungsmaschine
USD1038028S1 (en) 2022-04-29 2024-08-06 Natel Energy Holdings, Inc. Turbine runner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735102A (en) * 1980-08-07 1982-02-25 Toshiba Corp Turbine
GB2162587A (en) * 1984-07-30 1986-02-05 Gen Electric Steam turbines
GB2164098A (en) * 1984-09-07 1986-03-12 Rolls Royce Improvements in or relating to aerofoil section members for turbine engines
US4832567A (en) * 1981-01-05 1989-05-23 Alsthom-Atlantique Turbine stage
JPH03267506A (ja) * 1990-03-19 1991-11-28 Hitachi Ltd 軸流タービンの静翼
DE4228879A1 (de) * 1992-08-29 1994-03-03 Asea Brown Boveri Axialdurchströmte Turbine
US6195983B1 (en) * 1999-02-12 2001-03-06 General Electric Company Leaned and swept fan outlet guide vanes
US20030086788A1 (en) * 2001-06-27 2003-05-08 Chandraker A. L. Three dimensional blade

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3610262A (en) * 1969-10-07 1971-10-05 Boeing Co Stowable vane sonic throat inlet for jet aircraft noise suppression
US4835958A (en) * 1978-10-26 1989-06-06 Rice Ivan G Process for directing a combustion gas stream onto rotatable blades of a gas turbine
FR2505399A1 (fr) * 1981-05-05 1982-11-12 Alsthom Atlantique Aubage directeur pour veines divergentes de turbine a vapeur
FR2523642A1 (fr) * 1982-03-19 1983-09-23 Alsthom Atlantique Aubage directeur pour veines divergentes de turbine a vapeur
DE3434072A1 (de) * 1984-09-17 1986-03-27 Braun Ag, 6000 Frankfurt Haarbehandlungseinrichtung
US4717407A (en) * 1984-12-21 1988-01-05 Air Products And Chemicals, Inc. Process for recovering helium from a multi-component gas stream
EP0417433B1 (de) * 1989-09-12 1993-06-09 Asea Brown Boveri Ag Axialdurchströmte Turbine
JP2753382B2 (ja) * 1990-09-17 1998-05-20 株式会社日立製作所 軸流タービン静翼装置及び軸流タービン
US5211703A (en) * 1990-10-24 1993-05-18 Westinghouse Electric Corp. Stationary blade design for L-OC row
US5192190A (en) * 1990-12-06 1993-03-09 Westinghouse Electric Corp. Envelope forged stationary blade for L-2C row
DE59204947D1 (de) * 1992-08-03 1996-02-15 Asea Brown Boveri Mehrzoniger Diffusor für Turbomaschine
US5480285A (en) * 1993-08-23 1996-01-02 Westinghouse Electric Corporation Steam turbine blade
US5326221A (en) * 1993-08-27 1994-07-05 General Electric Company Over-cambered stage design for steam turbines
JP3773565B2 (ja) * 1995-10-16 2006-05-10 株式会社東芝 タービンノズル
US5842829A (en) * 1996-09-26 1998-12-01 General Electric Co. Cooling circuits for trailing edge cavities in airfoils
JP3621216B2 (ja) * 1996-12-05 2005-02-16 株式会社東芝 タービンノズル
DE59709447D1 (de) * 1997-11-17 2003-04-10 Alstom Switzerland Ltd Endstufe für axialdurchströmte Turbine
JP3626899B2 (ja) * 2000-08-10 2005-03-09 三菱重工業株式会社 タービン翼間の端壁構造
US6508630B2 (en) * 2001-03-30 2003-01-21 General Electric Company Twisted stator vane
US6461109B1 (en) * 2001-07-13 2002-10-08 General Electric Company Third-stage turbine nozzle airfoil
JP4373629B2 (ja) * 2001-08-31 2009-11-25 株式会社東芝 軸流タービン
GB2384276A (en) * 2002-01-18 2003-07-23 Alstom Gas turbine low pressure stage
DE10233033A1 (de) * 2002-07-20 2004-01-29 Rolls-Royce Deutschland Ltd & Co Kg Strömungs-Arbeits-Maschine mit überhöhtem Rotor-Stator-Kontraktionsverhältnis
US7195456B2 (en) * 2004-12-21 2007-03-27 United Technologies Corporation Turbine engine guide vane and arrays thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735102A (en) * 1980-08-07 1982-02-25 Toshiba Corp Turbine
US4832567A (en) * 1981-01-05 1989-05-23 Alsthom-Atlantique Turbine stage
GB2162587A (en) * 1984-07-30 1986-02-05 Gen Electric Steam turbines
GB2164098A (en) * 1984-09-07 1986-03-12 Rolls Royce Improvements in or relating to aerofoil section members for turbine engines
JPH03267506A (ja) * 1990-03-19 1991-11-28 Hitachi Ltd 軸流タービンの静翼
DE4228879A1 (de) * 1992-08-29 1994-03-03 Asea Brown Boveri Axialdurchströmte Turbine
US6195983B1 (en) * 1999-02-12 2001-03-06 General Electric Company Leaned and swept fan outlet guide vanes
US20030086788A1 (en) * 2001-06-27 2003-05-08 Chandraker A. L. Three dimensional blade

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2075408A3 (en) * 2007-12-28 2013-03-06 Ansaldo Energia S.P.A. Last stage stator blade of a steam turbine low-pressure section
EP3108112A4 (en) * 2014-02-19 2017-02-22 United Technologies Corporation Gas turbine engine airfoil
WO2019110573A1 (en) * 2017-12-06 2019-06-13 Technische Universität München Guide vane for an axial turbine
US12270315B2 (en) 2019-07-19 2025-04-08 MTU Aero Engines AG Rotor blade for a turbomachine, associated turbine module, and use thereof

Also Published As

Publication number Publication date
CN101460706B (zh) 2012-02-08
JP3174736U (ja) 2012-04-05
CN101460706A (zh) 2009-06-17
US20090257866A1 (en) 2009-10-15
US20110164970A1 (en) 2011-07-07
DE112007000717A5 (de) 2009-02-19
JP2009531593A (ja) 2009-09-03

Similar Documents

Publication Publication Date Title
WO2007113149A1 (de) Leitschaufel für eine strömungsmaschine, insbesondere für eine dampfturbine
EP0916812B1 (de) Endstufe für axialdurchströmte Turbine
DE102008055824B4 (de) Dampfturbine
EP2473743B1 (de) Verdichterlaufschaufel für einen axialverdichter
DE602004001531T2 (de) Statorschaufel mit Doppelkrümmung
EP2378072B1 (de) Nebenstromkanal eines Turbofantriebwerkes
DE69601283T2 (de) Strömungsleitenden Vorrichtung für ein Gasturbinentriebwerk
DE112006002658B4 (de) Turbomaschinenschaufel
EP2696029B1 (de) Schaufelgitter mit Seitenwandkonturierung und Strömungsmaschine
EP0799973B1 (de) Wandkontur für eine axiale Strömungsmaschine
EP2746533B1 (de) Schaufelgitter und Strömungsmaschine
CH688867A5 (de) Axialdurchstroemte Turbine.
WO1998044240A1 (de) Oberflächenstruktur für die wand eines strömungskanals oder einer turbinenschaufel
DE102007020025A1 (de) Form eines Gaskanals in einer Axialströmungs-Gasturbinenmaschine
CH617493A5 (enExample)
DE112006001614B4 (de) Turbomaschinenschaufel
DE102010002044A1 (de) Brennstoffdüse mit aerodynamisch geformten, spiralförmigen Umlenkschaufeln
EP3564483A1 (de) Schaufelblatt für eine turbinenschaufel
EP2558685B1 (de) Leitschaufel
EP3324002B1 (de) Dichtungssystem für eine turbinenstufe und axiale strömungsmaschine
EP3066337B1 (de) Rotorblatt einer windenergieanlage und windenergieanlage
EP3078804A1 (de) Deckbandanordnung einer schaufelreihe von stator- oder rotorschaufeln und zugehörige turbine
EP2805017B1 (de) Leitschaufelkranz für eine axialströmungsmaschine und verfahren zum auslegen des leitschaufelkranzes
WO2005116404A1 (de) Schaufelblatt mit übergangszone
EP1632648B1 (de) Gasturbine mit Übergangskanal

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780020163.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07727302

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009502049

Country of ref document: JP

REF Corresponds to

Ref document number: 112007000717

Country of ref document: DE

Date of ref document: 20090219

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07727302

Country of ref document: EP

Kind code of ref document: A1