WO2007111185A1 - 移動局、基地局及び方法 - Google Patents

移動局、基地局及び方法 Download PDF

Info

Publication number
WO2007111185A1
WO2007111185A1 PCT/JP2007/055574 JP2007055574W WO2007111185A1 WO 2007111185 A1 WO2007111185 A1 WO 2007111185A1 JP 2007055574 W JP2007055574 W JP 2007055574W WO 2007111185 A1 WO2007111185 A1 WO 2007111185A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile station
operation mode
value
mode
base station
Prior art date
Application number
PCT/JP2007/055574
Other languages
English (en)
French (fr)
Inventor
Mikio Iwamura
Minami Ishii
Original Assignee
Ntt Docomo, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Docomo, Inc. filed Critical Ntt Docomo, Inc.
Priority to CN2007800179965A priority Critical patent/CN101449500B/zh
Priority to US12/293,778 priority patent/US8189521B2/en
Priority to EP07739017.7A priority patent/EP1998577A4/en
Publication of WO2007111185A1 publication Critical patent/WO2007111185A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7083Cell search, e.g. using a three-step approach
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/26Monitoring; Testing of receivers using historical data, averaging values or statistics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • H04W36/142Reselecting a network or an air interface over the same radio air interface technology

Definitions

  • the present invention relates to the technical field of wireless communication, and more particularly to a mobile station, a base station, and a method.
  • a cell base station
  • the mobile station measures the channel conditions of neighboring cells and performs handover based on the measurement results.
  • a frequency carrier different frequency
  • the mobile station can measure different systems during communication (perform cell search using a different frequency system).
  • a mobile station that does not have a single receiver and power cannot simultaneously tune to multiple frequencies and systems. This is mainly because the RF (Radio Frequency) circuit of the receiver cannot be tuned to multiple frequency carriers or systems at the same time. To measure multiple frequency carriers and systems simultaneously, it is necessary to have multiple receivers (RF circuits), which increases the size, power consumption and price of the mobile station. Therefore, many mobile stations currently used consist of a single receiver. When such a mobile station tries to measure a different frequency system, the currently connected communication is interrupted intermittently (DRX: Discontinuous Reception), and the resulting interruption period (G The measurement will be performed using a YAP or a gap period).
  • DRX Discontinuous Reception
  • Tuning to one frequency is interrupted, tuning to another frequency is performed, and a different frequency cell is searched.
  • the base station does not know the DRX gap
  • the mobile station may not be able to receive the signal of its own system during the gap period, and may transmit a signal during that period. The If such transmission is performed, not only will valuable radio resources be wasted, but if the interference power for other communications increases or the delay increases, it may cause adverse effects. Therefore, it is necessary for the base station to accurately grasp the DRX status of the mobile station.
  • DRX control is performed by a wireless protocol without considering the state of the wireless channel.
  • a compressed mode is activated using the RRC protocol (Radio Resource Control Protocol), and a period (gap) for measuring different frequencies is provided.
  • the compressed mode is a mode in which data that is originally transmitted over one frame is transmitted, for example, by doubling the transmission rate in half the time, thereby creating free time.
  • gaps are created according to a certain pattern, so that individual timings at which gaps are provided are prepared regardless of the radio channel conditions. Therefore, even if there is a chance that data can be transmitted efficiently when the corner radio channel state is good, data transmission is prohibited if it falls within the gap timing. The data that could not be transmitted during this time may have to be transmitted at a bad timing in the radio channel state. Therefore, there is a risk that the conventional method may reduce the transmission efficiency.
  • the RRC protocol is described in Non-Patent Document 1, for example.
  • Non-Patent Document 1 3GPP TS25. 331, "Radio Resource Control (RRC) Protocol Sped fication,” v6. 8. 0.
  • RRC Radio Resource Control
  • the present invention has been made to address at least one of the above-mentioned problems, and its problem is to allow a mobile station operating at a certain frequency to perform intermittent reception so that a cell of a different frequency can be obtained. This is also to improve the data transmission efficiency in the wireless communication system that is the subject of the neighbor cell search.
  • the control channel communicates at a predetermined frequency in the first operation mode, and the peripheral cell is tuned to a frequency different from the predetermined frequency in the second operation mode.
  • the mobile station that performs the search is used.
  • the mobile station has a measurement means for obtaining a measurement value of the radio channel state at a certain measurement period, a determination means for comparing the measurement value and a threshold value and determining the operation mode to be either the first or the second operation mode.
  • a signal indicating the operation mode may be transmitted to the mobile station power base station.
  • FIG. 1A is a diagram showing how time scheduling is performed.
  • FIG. 1B is a diagram showing how frequency scheduling is performed.
  • FIG. 2 is a diagram showing the relationship between operation mode, instantaneous CQI, average CQI, threshold, and gap.
  • FIG. 3 shows a block diagram of a mobile station according to an embodiment of the present invention.
  • FIG. 4 is a flowchart showing an operation example of a mobile station.
  • FIG. 5 shows a block diagram of a base station according to an embodiment of the present invention.
  • FIG. 6 shows a block diagram of a mobile station according to an embodiment of the present invention.
  • FIG. 7 shows a block diagram of a mobile station according to an embodiment of the present invention.
  • a mobile station that communicates at a certain frequency and a certain radio access method measures instantaneous CQI at a predetermined measurement frequency, and the instantaneous CQI is measured with a certain threshold (for example, average CQI). I, its correction value or fixed value). If the instantaneous CQI is lower than the threshold, the mobile station creates a gap that is a period that is not tuned to that frequency and its radio access method, During this period, measurements necessary for the peripheral cell search, etc. are performed in accordance with different frequencies and different systems (different wireless access methods). This enables efficient measurement of different frequencies and systems during periods when the radio channel condition is poor. In addition, it is possible to reliably avoid errors that are wastedly transmitted from the base station during different frequency measurement of the mobile station.
  • a certain threshold for example, average CQI
  • I its correction value or fixed value
  • V It may be determined that V is available and data transmission to the mobile station should be avoided.
  • a signal to create a gap may be transmitted from the mobile station to the base station.
  • the base station When the base station receives a signal indicating the gap, the data transmission to the mobile station at the timing may be avoided.
  • the instantaneous CQI may be normalized (by measuring an average value and variance), and a threshold value for gap determination (for example, an average value, a correction value thereof, or a fixed value) may be set for the normal CQI. Normalization of instantaneous CQI is preferred from the viewpoint of controlling the operation of each mobile station.
  • the threshold value and Z or a correction value thereof may be notified on the broadcast channel, or individually on the control channel.
  • the threshold value and Z or a correction value thereof may be controlled according to the traffic amount of the base station.
  • the threshold value and Z or the correction value thereof may be controlled according to the service of the mobile station.
  • the mobile station operates in a normal mode and a measurement mode (non-normal mode), and switching between modes may be controlled by a radio protocol.
  • the mode switching may be performed by the mobile station as a starting point based on the result of the mobile station determining the radio situation or the load situation.
  • the mode switching may be performed by the base station as a starting point based on the result of the base station determining the radio situation or the load situation.
  • the mode switching control in the base station may be determined in consideration of the CQI reported from the mobile station.
  • the threshold for entering the measurement mode (threshold A) and the threshold for returning to the normal mode (threshold B) may be the same or different. In the latter case, provide hysteresis for mode switching. View power is preferable. Specifically, by setting the threshold value A to the threshold value B, it can be set so that it is difficult to enter the measurement mode and return to the normal mode.
  • a gap period of a certain unit length (one gap length) is defined, and the gap period can be appropriately adjusted by repeating the unit-length gap period as necessary. it can.
  • One gap length may be set longer than one frame length or one transmission time interval (TTI), or may be set longer than the CQI reporting period. In any case, there should be enough time for the mobile station to make measurements in sync with different frequencies and systems.
  • the gap length may be set on the broadcast channel, or may be set on the dedicated control channel.
  • the mobile station Since the mobile station is tuned to a different frequency during the gap, it is not possible to measure the CQI for its own system. Therefore, if the gap length of unit length is repeated continuously, the number of unreported CQIs to the mobile station base station will become excessive, and the base station will not be able to fully grasp the situation of the mobile station. From this point of view, there may be some restrictions so that the number of continuous gaps (or the period in which CQI may not be reported continuously) does not become excessively large. Such restrictions may be set on the broadcast channel or on the dedicated control channel (with radio control protocol). In addition, the restriction may be changed according to the service of the mobile station. If the mobile station uses multiple services, the conditions are the strictest and the service limit (smallest value) may be set!
  • a wide range of system frequency bands that can be used in a mobile communication system may be divided into a number of subbands, and communication may be performed using subbands with a mobile station power of ⁇ or more.
  • a subband may be referred to as a resource block.
  • the mobile station measures the measured value (CQI) of the radio channel state for each subband and reports the measured value to the base station.
  • the base station performs time scheduling and frequency scheduling based on the CQI for each subband reported from each mobile station. This is because, in general, radio resources (subbands and time slots) are allocated to mobile stations that report better CQI, and not allocated to mobile stations that report poor CQI.
  • the mobile station does not have to report all measured CQIs for each subband to the base station.
  • the best value may be derived from multiple CQIs measured for each subband, and only the best value may be reported to the base station, or the average of multiple CQIs The value may be reported to the base station.
  • Such a device is also preferable from the viewpoint of saving the number of control bits in the uplink.
  • an object of the present invention is to perform data transmission in a wireless communication system in which a cell operating at a certain frequency performs intermittent reception so that a cell having a different frequency is also subjected to a neighboring cell search. To improve efficiency.
  • a mobile station measures a radio channel state (CQI: Channel Quality Indicator) and uses an average value thereof.
  • CQI Channel Quality Indicator
  • the mobile station operates in the normal mode while the average value is above a certain threshold, and the mobile station operates in the measurement mode (non-normal mode) while the average value is below the threshold.
  • Switching between the normal mode and the measurement mode is performed autonomously in the mobile station using a switching threshold value notified by broadcast information from the base station. In normal mode, the propagation status is good on average, so different frequency * different system measurement is not performed, and communication of the control channel and data channel is performed at that frequency and its radio access method.
  • a gap is created according to the CQI, and different frequencies * different systems (systems with different radio access methods) are measured in the gap.
  • the instantaneous CQI and average CQI are compared, and if the instantaneous value is smaller than the average value (that is, if the instantaneous propagation state is poor), the mobile station autonomously creates a gap, Measured. Similar control is performed using the CQI that reports the mobile station power at the base station as well, so that the gear timing of the mobile station can be grasped and transmission at the gap timing can be avoided.
  • Scheduling may be performed by, for example, Max C / I or Proportional Fairness (PF).
  • AMC adaptive rate control
  • switching between the normal mode and the measurement mode is performed autonomously independently by the mobile station and the base station, so that the CQI is not correctly received by the base station.
  • the mobile station and the base station may be out of mode.
  • gap control in the measurement mode is autonomously performed by the mobile station, the specific gap timing may be shifted between the mobile station and the base station.
  • simply creating a gap when the instantaneous CQI is lower than the average CQI may not provide enough time to measure different frequencies * different systems. This is because, in order to measure different frequencies and systems, the receiver of the mobile station needs to synchronize to the different frequencies and systems to be measured before the start of measurement.
  • One gap length may be set longer than one frame length or one transmission time interval (TTI), or may be set longer than the CQI reporting period.
  • the CQI reported for the mobile station power is used for link adaptation (for example, transmission power control and AMC) following fast fading.
  • CQI is used for packet scheduling.
  • CQI corresponds to Ec / I (received chip energy to interference power density ratio) of the common pilot channel.
  • the index indicating the radio channel status is generally called CQI.
  • CQI the index indicating the radio channel status
  • HSDPA High Speed Downlink Packet Access
  • user packets in the same cell are transmitted in a time-sharing manner using common wireless resources. Multiple user powers
  • the proposed schedulers such as Max C / I, Proportional Fairness (PF), etc. that compare CQIs reported to each other and assign transmissions to users with relatively good CQ I have been proposed.
  • Fig. 1A shows a profile of a certain sub-band, and scheduling in the time direction is performed. For example, CQI is reported once every 2 ms in HSDPA.
  • CQI is reported once every 2 ms in HSDPA.
  • frequency selective fading occurs. Therefore, in order to transmit more efficiently, it is better to use different frequency bands for each user. For this purpose, as shown in Fig.
  • FIG. 1B it is necessary to divide the entire frequency band of the system into several subbands and measure and report CQI for each subband.
  • a subband may be referred to as a resource block.
  • Figure 1B shows a profile at a certain frame time and is intended to explain the concept of frequency scheduling, and does not attempt to accurately represent the ratio of system bandwidth and sub-band.
  • There are various reporting methods for example, the method of reporting the top three subbands with the highest CQI and CQI value, the method of reporting the difference between the average value of all bands and the average value of each subband, and the frequency direction
  • DCT discrete cosine transform
  • the mobile station may avoid transmission allocation to the user during a period when CQI reporting is ineffective to the mobile station base station, or the mobile station may be provided with the period gap.
  • a certain threshold for example, the average value of CQI and its correction value
  • the threshold value may be corrected according to the traffic volume.
  • the mobile station may measure the scheduling frequency (scheduler transmission allocation frequency) to the mobile station, and the threshold value may be corrected according to the measurement result.
  • the base station may avoid transmission allocation to the user during a period when CQI reporting is ineffective to the mobile station base station, or the mobile station may be provided with the period gap.
  • FIG. 2 is a diagram showing CQI measured with a mobile station over time.
  • the mobile station periodically measures the reception quality of the downlink pilot channel and measures the radio channel state (CQI).
  • CQI radio channel state
  • Each measurement is an instantaneous value (instantaneous CQI), averaged over an appropriate number of instantaneous values or an appropriate period, and an average value (average CQI) is calculated.
  • the mobile station switches from normal mode to measurement mode.
  • the control channel and the Z or data channel are communicated with a certain frequency and a certain radio access method.
  • the mode can be switched to a mode for measuring different frequencies and different systems according to the radio channel state.
  • the mobile station When the average CQI exceeds the threshold, the mobile station returns to normal mode.
  • the threshold value when shifting from the normal mode to the measurement mode and the threshold value when shifting from the measurement mode to the normal mode may be set to different values. As a result, hysteresis can be given to the mode transition, which is preferable from the viewpoint of improving the stability of the operation.
  • instantaneous CQI and average CQI are compared, and during the period when instantaneous CQI exceeds average CQI, data is obtained by tuning the mobile station to the current system and frequency as in the normal mode. Can be received. If the instantaneous CQI is below the average CQI, the mobile station interrupts its tuning and moves to a different frequency * different system tuned period (creates a gap) and measures the different frequency / different system.
  • CQI is measured at a predetermined frequency (shown as a CQI measurement period).
  • a CQI measurement period Each measurement corresponds to an instantaneous CQI.
  • the base station is not able to report any instantaneous CQI that exceeds the average CQI! By not reporting the instantaneous CQI, the base station can know that the mobile station is not tuned to its own cell frequency.
  • the power of notifying the operation mode transition more reliably is that when the instantaneous CQI that is not reported to the base station occurs, the operation mode of the mobile station is changed.
  • the indicated signal may be transmitted to the base station. This can effectively cope with the problem that the operation mode shifts between the mobile station and the base station.
  • the mobile station When the mobile station enters a gap period due to unreported instantaneous CQI or transmission of a signal indicating an operation mode, the mobile station performs cell search in synchronization with a different system. When a gap period or unit length gap period (minimum gap period) has elapsed, the mobile station retunes to its own system, measures the instantaneous CQI, compares the instantaneous CQI with the average CQI, and enters the gap period again. It is determined whether or not it is power. Thereafter, the same procedure is repeated. However, if such a procedure is simply repeated, the unit-length gap period may be continuously repeated, resulting in an excessive number of unreported CQIs to the mobile station base station.
  • a gap period or unit length gap period minimum gap period
  • the base station will not be able to fully grasp the situation of the mobile station.
  • data transmission from the base station may be too slow.
  • Such viewpoint power may be limited in terms of the number of unreported cases so that the number of continuous gaps (or the number of CQIs that can be reported continuously is acceptable) is not excessively large.
  • an upper limit value may be provided for the number of times that a signaling signal indicating that a gap period is provided is continuously transmitted to the base station.
  • the normal mode and the measurement mode are switched depending on the magnitude relationship between the average value of CQI and the threshold value.
  • a mode switching control command may be issued by some protocol apart from such a standard, and the mode may be switched based on the command. For example, from the viewpoint of load balance, if the network determines that switching the connection of a mobile station to another frequency or another system can achieve better communication, the mode switching control from the base station You can issue a command.
  • FIG. 3 shows a mobile station according to an embodiment of the present invention.
  • Figure 3 shows the received RF unit, CQI measurement unit, CQI averaging unit, CQI normalization unit, mode switching determination unit, gap determination unit, CQI report signal generation unit, gap signal generation unit, mode switching signal generation unit, A transmission buffer, a different frequency measurement unit, an event determination unit, an event signal creation unit, a transmission signal creation unit, a transmission RF unit, a control information reception unit, and a control unit are depicted.
  • the reception RF unit receives a signal tuned to the system and frequency to be received.
  • the normal mode period and the non-gap period in the measurement mode are tuned to the frequency and radio access method (local system) currently used for communication.
  • Receive RF section is in the gap Operates to tune to the frequency of neighboring cells and the radio access scheme (ie different systems of different frequencies).
  • the CQI measurement unit measures a radio channel state CQI (instantaneous CQI) from a received signal (for example, a common pilot channel) of a currently communicating cell.
  • CQI can be expressed in various quantities, for example, E / I (Symbol energy to interference power ratio).
  • I is not measured during a force gap that is taken at a given measurement interval.
  • the CQI averaging unit averages instantaneous CQI. This makes it impossible to follow high-speed forging, but smoothes it to the extent that it can follow distance fluctuations and shadowing.
  • the CQI normalization unit normalizes CQI.
  • the average value of CQI calculated by the CQI averaging unit may be used for normalization calculation. In normal mode, you can pause.
  • the mode switching determination unit determines the normal mode Z measurement mode by comparing the CQI average value output from the CQI averaging unit with the threshold set by the control unit.
  • the gap determination unit evaluates the normal CQI output from the CQI normal unit based on the condition in which the control unit force is also set, and determines whether or not the subsequent period is a gap. You may pause in normal mode. In this case, since the different frequency cell search cannot be performed if the gap is excessively short, a restriction may be imposed so that the gap continues for a predetermined length. For example, the gap length may be set longer than the CQI measurement period, or may be set longer than about one frame. Alternatively, some limit may be imposed on the number of consecutive repetitions of the gap to prevent the gap from lasting too long.
  • the CQI report signal creation unit creates a signal for performing CQI report. No reports are made during the gap.
  • the gap signal creation unit creates a signal indicating a gap (a signal indicating an operation mode).
  • the signal indicating the gap is expressed by a binary signal of 0/1, for example.
  • the signal to be transmitted (or whether or not to transmit) is controlled according to the determination result of the gap determination unit.
  • the mode switching signal creation unit creates and outputs a signal indicating that the normal mode Z measurement mode is switched.
  • the transmission buffer buffers uplink user data, control information, and the like.
  • the different frequency measurement unit tunes to a different system and performs a senor search in the tuned different frequency or different system.
  • the event determination unit determines whether or not the force at which a specific event has occurred (for example, the reception level exceeds a certain value).
  • the event signal creation unit creates a signal for reporting the event.
  • the transmission signal creation unit creates a transmission signal by multiplexing the CQI signal, gap signal, control signal, user data, and the like.
  • the mobile station may transmit CQI signals, gap signals, control signals, and user data as separate physical channel signals, or piggyback the CQI signals and gap signals to the control signals and user data. You can send it!
  • the transmission RF unit converts the transmission signal into an RF signal and transmits the RF signal.
  • the control information receiving unit receives the control information transmitted from the base station.
  • the control unit uses the control information output from the control information reception unit, the normal Z measurement mode determination result output from the reception mode determination unit, the gap determination result output from the gap determination unit, and the mobile station.
  • the operation of each component of the mobile station is controlled according to the service, transmission allocation frequency, throughput, packet loss rate, etc. Specifically, the control unit
  • A Controls the frequency that the receiving RF unit tunes. During the gap, it is tuned to the different frequency / system, and at other times, it is tuned to the frequency / system currently used for communication. Switching control is performed according to the gap length.
  • B Controls CQI averaging parameters.
  • the averaging parameter is controlled according to the moving speed of the mobile station.
  • the base station may lead the mode switching, and the mode switching determination and the mode switching signal creation in the mobile station are unnecessary. Also, components such as a part for receiving downlink user data are omitted in the figure.
  • FIG. 4 shows an operation flow of the mobile station according to one embodiment of the present invention.
  • the mobile station is communicating in normal mode.
  • the mobile station receives the downlink common pilot channel and measures the radio channel state. This step includes the calculation of average CQI in addition to instantaneous CQI measurement.
  • the average CQI is compared with a predetermined threshold value to determine whether or not the mobile station is in the measurement mode. If the average CQI is above the predetermined threshold, the operating mode is not changed and the flow proceeds to step S4.
  • the measured instantaneous CQI is reported to the base station.
  • the control channel and Z or data channel are communicated, and the process returns to step S2.
  • step S6 the instantaneous CQI and the average CQI are compared to determine whether or not the gap is set. If the instantaneous CQI is above the average CQI, no gap is provided and the flow proceeds to step S4 and the described action is performed. If the instantaneous CQI is not above the average CQI, a gap is established and the flow proceeds to step S7. In step S7, a signal indicating that a gap is provided is generated and notified to the base station.
  • step S8 the tuning for the frequency and radio access scheme used in the normal mode is canceled, and the mobile station tunes to a different radio access scheme and performs a neighbor cell search. Thereafter, the operation returns to the normal mode, and the flow returns to step S2.
  • the flow may proceed to step S5 after step S8 to receive control and Z or data channels.
  • FIG. 5 shows a base station according to one embodiment of the present invention.
  • Figure 4 shows the receiving RF section and CQlZ gearbox.
  • a signal receiver, a CQI averaging unit, a mode switching determination unit, a mode switching signal creation unit, a control signal transmission buffer, a data transmission buffer, a transmission signal creation unit, a scheduler, a transmission RF unit, a monitoring unit, and a parameter monitoring unit are drawn. It is.
  • the elements in the frame shown as “per user” are prepared for each connected user, but for simplicity of illustration, only one user is drawn in detail. Cost.
  • the reception RF unit tunes to and receives the uplink signal from the mobile station.
  • the CQIZ gap signal receiver extracts the received signal strength CQI information.
  • a signal indicating a gap is transmitted from the mobile station, the information is taken out.
  • Information indicating the CQI and gap is communicated to the scheduler.
  • the CQI averaging unit averages the instantaneous CQI reported from the mobile station.
  • the mode switching determination unit compares the CQI average value output from the CQI averaging unit with the threshold set by the parameter control unit, and determines whether the state of the mobile station is the normal mode or the measurement mode. judge. In addition, the instantaneous CQI and the average CQI value are compared to determine whether or not the car synchronizes with the system of different frequency.
  • the mode switching signal creation unit creates and outputs a signal indicating that the normal mode Z measurement mode is switched according to the determination result of the mode switching determination unit.
  • the signal may include parameters such as the gap length specified by the parameter control unit, CQI averaging Z normality parameter, gap judgment threshold Z correction value, and reception mode judgment switching threshold.
  • the control signal transmission buffer performs noffering until a mode switching signal and other downlink control signals are transmitted.
  • the data transmission buffer performs buffering until downlink user data is transmitted.
  • the transmission signal creation unit creates a signal to be transmitted by multiplexing the downlink control signal and the user data.
  • the scheduler controls transmission allocation in consideration of the CQI, gap state, etc. of each mobile station. Schedules may be made taking into account the amount of traffic observed by the monitoring unit, the services used by the mobile station, and the priority of the data Z control signal.
  • the transmission RF unit converts the transmission signal into RF and transmits it.
  • the monitoring unit monitors the service used by the mobile station, the uplink Z downlink traffic volume, etc. The result is transmitted to the parameter control unit and the scheduler.
  • the parameter control unit sets various parameters for control based on parameters set from the outside (for example, by an operator) and observation results output from the monitoring unit.
  • the mobile station is tuned to a different frequency * different system, so it cannot measure the CQI for its own system. Therefore, if the unit length gap period is continuously repeated, the number of unreported CQIs to the base station becomes excessive, and the base station cannot fully grasp the status of the mobile station. .
  • uplink communication is often limited to the gap period. Because many ordinary mobile stations have only one local transmitter, they are shared by the uplink and downlink. Therefore, if you try to tune to a different frequency in a different system on the downlink, you will not be able to tune to your own system even on the uplink, you will not be able to transmit uplink data, and communication may be delayed. Such problems can be fatal, especially for low-latency services such as voice calls.
  • the second embodiment of the present invention can cope with such a problem.
  • FIG. 6 shows a mobile station according to one embodiment of the present invention. Although this mobile station also has the function described in FIG. 3, it should be noted that different forms of block diagrams are drawn due to the difference in function described in this embodiment. Duplicate explanations for already explained elements are omitted.
  • FIG. 6 in addition to the elements already described in FIG. 3, a feedback signal generation unit, a control signal transmission buffer, a data transmission buffer, and a monitoring unit are illustrated.
  • the feedback signal creation unit creates a signal for reporting CQI to the base station and a signal for transmitting the gap. For example, when the determination result of the gap determination unit indicates that a gap should be formed, control may be performed to stop CQI reporting. Alternatively, a signal may be created to convey the gap separately from CQI.
  • the control signal transmission buffer buffers uplink control information.
  • the data transmission buffer buffers uplink user data.
  • the monitoring unit monitors the data retention amount of the data transmission buffer and Z or the control signal transmission buffer.
  • the amount of residence is evaluated according to the specified conditions. For example, a predetermined threshold may be set, and the staying status may be evaluated based on whether or not the amount of staying data (the amount of data stored in the buffer but not transmitted) exceeds the threshold.
  • the predetermined threshold may be the same for the control signal and the user data, or may be different.
  • data urgency may be taken into account.
  • the retention status may be evaluated based on the retention amount of highly urgent data. In any case, according to some criteria, it is determined whether or not the force of the data is retained, and the determination result is notified to the gap determination unit.
  • the control unit sets the monitoring conditions of the monitoring unit (such as how to consider the monitoring cycle and data urgency).
  • the judgment conditions of the gap judgment part (conditions for CQI, conditions for the buffer retention amount reported by the monitoring part, etc.) are set.
  • Control signals and user data to be transmitted to the base station are stored in the transmission buffer as needed. Then, according to some criteria, the monitoring unit determines whether or not the data is stored in each transmission buffer, and the determination result is notified to the gap determination unit.
  • the gap determination unit is a case where an instantaneous CQI that is inferior to a predetermined threshold (average CQI in the above example) is measured, and data remains in the transmission buffer of the control signal and Z or user data. It is determined that the gap period is formed only when the monitoring force is also reported.
  • received user data corresponds to retransmission of Hybrid ARQ (Automatic Repeat Request) method and parallel stop-and-wait method of ARQ.
  • Hybrid ARQ Automatic Repeat Request
  • Until reception of a logical block (packet) that can be interpreted by is buffered in the receive buffer.
  • noffering may be performed.
  • it makes sense It is desirable that the logical block to be received is received early.
  • FIG. 7 shows a mobile station according to an embodiment of the present invention. Duplicate explanations for already explained elements are omitted. In FIG. 7, in addition to the elements already described in FIG. 6, a receive buffer is depicted.
  • the reception buffer buffers received data in accordance with a scheme applied in the radio access scheme, such as Hybrid ARQ, parallel stop-and-wait ARQ, and in-sequence delivery.
  • a scheme applied in the radio access scheme such as Hybrid ARQ, parallel stop-and-wait ARQ, and in-sequence delivery.
  • the monitoring unit monitors the data buffering status of the reception buffer in addition to the function of the second embodiment shown in FIG.
  • the buffering status is evaluated according to the conditions specified by the control unit. For example, it may be evaluated whether there is Hybrid ARQ retransmission wait data, whether the number of retransmission waits exceeds a certain threshold, whether a retransmission waiting time exceeds a certain threshold, or the like.
  • Hybrid ARQ retransmission wait data whether the number of retransmission waits exceeds a certain threshold, whether a retransmission waiting time exceeds a certain threshold, or the like.
  • data that should be passed to the higher-level protocol later in the order has already been received, but data that should be passed before that (may be called young data) May be detected when it has not been received yet and is missing.
  • the receive buffer may be evaluated according to the reception status of the upper protocol in logical block units and the hybrid ARQ retransmission wait status.
  • the buffering status of the data is determined according to some criteria, and the determination result is notified to the gap determination unit.
  • the gap determination unit may consider the monitoring result of the reception buffer in the gap determination in addition to the function of the second embodiment in FIG. For example, if there is hybrid ARQ retransmission waiting data, it may be urged to continue communication without creating a gap. Also, if young data is lost in in-sequence delivery, encourage communication to continue without creating a gap.
  • control signal receiving unit receives both power control signals of the reception buffer and the reception RF unit.
  • this is a signal that should be passed to the control signal receiver after waiting for a meaningful logical block to be buffered in the reception buffer and completed, and without high-speed encoding.
  • This is because there are signals that can be passed directly from the receiving RF unit because they are transmitted. Actually, either one of them may be missing, but it is not directly related to the essential configuration of the present invention.
  • the preferred embodiments of the present invention have been described above, the present invention is not limited to these, and various modifications and changes can be made within the scope of the present invention. For convenience of explanation, the present invention has been described in several embodiments, but one or more embodiments may be used as necessary, as the division of each embodiment is not essential to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Probability & Statistics with Applications (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 移動局は、第1の動作モードでは所定の周波数で少なくとも制御チャネルを通信し、第2の動作モードでは前記所定の周波数とは異なる周波数に同調して周辺セルサーチを行う。移動局は、無線チャネル状態の測定値を或る測定周期で求める測定手段と、測定値及び閾値を比較し、第1又は第2の動作モードの何れかに動作モードを決定する決定手段とを有する。測定値が閾値より劣っていた場合には該測定値の基地局への報告は禁止されることで、基地局で移動局の動作モードが確認されてもよい。或いは動作モードを示す信号が移動局から基地局に送信されてもよい。

Description

移動局、基地局及び方法
技術分野
[0001] 本発明は無線通信の技術分野に関し、特に移動局、基地局及び方法に関する。
背景技術
[0002] セルラシステムでは、ユーザの移動に伴 ヽ接続するセル (基地局)を適宜切り替え るハンドオーバ制御が行われる。適切な隣接セルへハンドオーバするために、移動 局にお 、て周辺セルのチャネル状態が測定され、その測定結果に基づ!/、てハンドォ ーバが行われる。周辺セル (接続中の自セルも)では、現在通信に用いている周波 数キャリアとは異なる周波数キャリア (異周波)を用いて 、る場合もあるし、複数の周 波数キャリアを用いている場合もある。また、異なる無線アクセス方式 (異システム又 は他システム)を用いるセルが周囲に存在し、それらへハンドオーバした方がトラフィ ック量や伝搬状況の観点力もより有利に通信を持続できる場合もある。従ってこのよう な状況では移動局は通信中に異周波ゃ異システムを測定できること (異周波のシス テムでセルサーチを行うこと)が好まし 、。
[0003] ここで注意を要するのは、単一の受信機し力持たない移動局では、同時に複数の 周波数やシステムに同調できないことである。これは主に受信機の RF (Radio Freque ncy)回路が同時に複数の周波数キャリアやシステムに同調できないためである。複 数の周波数キャリアやシステムを同時に測定するには複数の受信機 (RF回路)を備 える必要があり、移動局のサイズ、電力消費量及び価格等は上昇してしまう。故に、 現在使われている多くの移動局は、単一受信機で構成されている。このような移動局 が異周波'異システムを測定しょうとした場合、現在接続中の通信を断続的に中断し て間欠受信(DRX: Discontinuous Reception)を行 、、その結果生じた中断期間(ギ ヤップ又はギャップ期間とも呼ばれる)を用いて測定が行われることとなる。或る周波 数に対する同調が中断され、別の周波数への同調が行われ、異周波セルがサーチ される。このとき、基地局が DRXのギャップを把握していなければ、移動局がギャップ 期間中で自システムの信号を受信できな 、期間に信号を送信してしまうおそれがあ る。このような送信が行われると、貴重な無線リソースが無駄になるだけでなぐ他の 通信に対する干渉電力が増えたり遅延が増大したりするといつた悪影響も生じかね ない。従って基地局においても移動局の DRX状態を正確に把握しておく必要がある
[0004] 従来の通信システムは、このような DRXの制御を、無線チャネルの状態を勘案せず に無線プロトコルにより行っていた。例えば W— CDMAでは RRCプロトコル(Radio Res ource Control Protocol)を用いてコンプレストモード(Compressed Mode)が起動され 、異周波 '異システムを測定するための期間(ギャップ)が設けられていた。概してコン プレストモードは、本来 1フレームかけて送信するデータを、例えば半分の時間で伝 送レートを倍にして送信し、空き時間を作るモードである。しかしながらコンプレストモ ードでは或る決められたパターンに従ってギャップが作成されるため、ギャップが設け られる個々のタイミングは無線チャネル状態に無関係に用意される。従って、折角無 線チャネル状態が良ぐ効率的にデータを送信できるチャンスがあっても、それがギ ヤップを空けるタイミングに該当していたならばデータの送信は禁止される。この間送 信できなかったデータは、無線チャネル状態が悪 ヽタイミングで送信せざるを得なく なるおそれもある。従って従来の手法では伝送効率を低下させてしまうおそれがある 。 RRCプロトコルにつ ヽては例えば非特許文献 1に記載されて 、る。
非特許文献 1 : 3GPP TS25. 331, "Radio Resource Control (RRC) Protocol Sped fication, "v6. 8. 0.
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、上記問題点の少なくとも 1つに対処するためになされたものであり、その 課題は、或る周波数で動作する移動局に間欠受信を行わせることで、異周波のセル も周辺セルサーチの対象にする無線通信システムにおいて、データ伝送効率を向上 させることである。
課題を解決するための手段
[0006] 本発明では、第 1の動作モードでは所定の周波数で少なくとも制御チャネルを通信 し、第 2の動作モードでは前記所定の周波数とは異なる周波数に同調して周辺セル サーチを行う移動局が使用される。移動局は、無線チャネル状態の測定値を或る測 定周期で求める測定手段と、測定値及び閾値を比較し、第 1又は第 2の動作モード の何れかに動作モードを決定する決定手段とを有する。測定値が閾値より劣ってい た場合には該測定値の基地局への報告は禁止されることで、基地局で移動局の動 作モードが確認されてもよい。或いは動作モードを示す信号が移動局力 基地局に 送信されてもよい。
発明の効果
[0007] 本発明によれば、或る周波数で動作する移動局に間欠受信を行わせることで、異 周波のセルも周辺セルサーチの対象にする無線通信システムにおいて、データ伝送 効率を向上させることができる。
図面の簡単な説明
[0008] [図 1A]時間スケジューリングの行われる様子を示す図である。
[図 1B]周波数スケジューリングの行われる様子を示す図である。
[図 2]動作モード、瞬時 CQI、平均 CQI、閾値及びギャップの関係を示す図である。
[図 3]本発明の一実施例による移動局のブロック図を示す。
[図 4]移動局の動作例を示すフローチャートである。
[図 5]本発明の一実施例による基地局のブロック図を示す。
[図 6]本発明の一実施例による移動局のブロック図を示す。
[図 7]本発明の一実施例による移動局のブロック図を示す。
符号の説明
[0009] CQI 無線チャネル状態を示す量
DRX 間欠受信
発明を実施するための最良の形態
[0010] 本発明の一形態によれば、或る周波数及び或る無線アクセス方式で通信を行う移 動局は、所定の測定頻度で瞬時 CQIを測定し、瞬時 CQIをある閾値 (例えば平均 CQ I、その補正値、或いは固定値)と比較する。移動局は、瞬時 CQIが閾値より低い場合 に、その周波数及びその無線アクセス方式に同調しない期間であるギャップを設け、 この期間に異周波や異システム (異なる無線アクセス方式)に合わせ、周辺セルサー チ等に必要な測定を行う。これにより、無線チャネル状態が悪い期間に異周波や異 システムの測定を効率的に実行できる。また、移動局の異周波測定中に基地局から 無駄に送信する誤りを確実に回避できる。
[0011] 瞬時 CQIが閾値より低 、場合に CQIは報告されなくてょ 、。
[0012] 基地局は、 CQIが移動局から報告されな力つた場合に移動局はギャップを設けて
Vヽると判断し、該移動局へのデータ送信を避けてもょ ヽ。
[0013] 瞬時 CQIが閾値より低い場合にギャップを作成する旨の信号が移動局から基地局 に送信されてもよい。
[0014] 基地局はギャップを知らせる旨の信号を移動局力 受信した場合は、該タイミング での該移動局へのデータ送信が回避されてもよい。
[0015] 瞬時 CQIは(平均値、分散を測定して)正規化され、正規 CQIに対してギャップ判定 の閾値 (例えば平均値、その補正値、或いは固定値)が設定されてもよい。瞬時 CQI が正規化されることは、各移動局の動作の統制を図る観点から好まし 、。
[0016] 閾値及び Z又はその補正値は報知チャネルで通知されてもよいし、或いは個別に 制御チャネルで通知されてもょ 、。
[0017] 閾値及び Z又はその補正値は基地局のトラフィック量に応じて制御されてもよい。
[0018] 閾値及び Z又はその補正値は移動局のサービスに応じて制御されてもょ 、。
[0019] 移動局は通常モード及び測定モード (非通常モード)で動作し、モード間の切替は 無線プロトコルによって制御されてもょ 、。
[0020] モード切替は、移動局が無線状況や負荷状況を判断した結果に基づき、移動局が 発端となって行ってもよい。
[0021] モード切替は、基地局が無線状況や負荷状況を判断した結果に基づき、基地局が 発端となって行ってもよい。
[0022] 基地局におけるモード切替制御の判断は、移動局から報告された CQIを勘案して 行ってもよい。
[0023] 測定モードに入る場合の閾値(閾値 A)と通常モードに戻る場合の閾値(閾値 B)は 同じでもよいし、異なっていてもよい。後者の場合はモード切替にヒステリシスを設け る観点力 好ましい。具体的には閾値 Aく閾値 Bとすることで、測定モードに入りにく く、かつ通常モードに戻りにく 、ように設定することができる。
[0024] ギャップの期間に関し、或る単位長さのギャップ期間(1ギャップ長)が定義され、単 位長さのギャップ期間を必要に応じて反復することでギャップ期間を適切に調整する ことができる。 1ギャップ長は 1フレーム長又は 1送信時間間隔 (TTI)より長く設定され てもよいし、 CQI報告周期より長く設定されてもよい。いずれにせよ移動局が異周波 及び異システムに同調して測定を行うのに充分な期間が確保されればょ 、。ギャップ 長は報知チャネルで設定されてもょ 、し、或 、は個別制御チャネルで設定されてもよ い。
[0025] ギャップ期間中、移動局は異周波に同調しているので、自システムに関する CQIを 測定することはできな 、。従って単位長さのギャップ期間が連続的に反復され過ぎる と、移動局力 基地局への CQIの未報告回数が過剰に多くなり、基地局が移動局の 状況を充分に把握できなくなってしまう。このような観点からは、連続ギャップ数 (或い は CQIを連続して報告しないで良い周期)が過剰に大きくならないように、何らかの制 限が設けられてもよ 、。そのような制限は報知チャネルで或いは個別制御チャネルで (無線制御プロトコルで)設定されてもよい。また、その制限は移動局のサービスに応 じて変更されてもよい。移動局が複数のサービスを利用している場合は、一番条件が 厳し 、サービスの制限 (一番小さ 、値)が設定されてもよ!、。
[0026] ところで、移動通信システムで使用可能な広範なシステム周波数帯域が多数のサ ブ帯域に区分けされ、移動局力 ^以上のサブ帯域を使用して通信を行うこともある。 サブ帯域はリソースブロックと呼ばれてもよい。この場合に移動局は無線チャネル状 態の測定値 (CQI)をサブ帯域毎に測定し、測定値を基地局に報告する。基地局は 各移動局から報告されたサブ帯域毎の CQIに基づいて、時間スケジューリング及び 周波数スケジューリングを行う。概してより良い CQIを報告した移動局に無線リソース( サブ帯域及び時間スロット)が割り当てられ、良くない CQIを報告した移動局には割り 当てがなされないからである。従って移動局は測定したサブ帯域毎の CQIの全てを 基地局に報告しなくてもよい。例えば、サブ帯域毎に測定された複数の CQIから最良 値が導出され、その最良値だけが基地局に報告されてもよいし、複数の CQIの平均 値が基地局に報告されてもよい。このような工夫は上りリンクでの制御ビット数を節約 する観点力も好ましい。
実施例 1
[0027] 上述したように本発明の課題は、或る周波数で動作する移動局に間欠受信を行わ せることで、異周波のセルも周辺セルサーチの対象にする無線通信システムにおい て、データ伝送効率を向上させることである。
[0028] この課題に対処するために、移動局(ユーザ装置)にお 、て無線チャネル状態 (CQ I: Channel Quality Indicator)を測定し、その平均値を利用することが考えられる。 平均値がある閾値を上回っている期間、移動局は通常モードで動作し、平均値がそ の閾値を下回っている期間、移動局は測定モード (非通常モード)で動作する。通常 モードと測定モードの切り替えは、基地局から報知情報などで通知される切替閾値を 用いて、移動局において自律的に行われる。通常モードでは伝搬状況が平均的に 良好なため、異周波 *異システム測定は行われず、その周波数及びその無線ァクセ ス方式で制御チャネルやデータチャネルの通信が行われる。測定モードの場合には CQIに応じてギャップが作成され、そのギャップの中で異周波 *異システム(異なる無 線アクセス方式のシステム)の測定が行われる。具体的には、瞬時 CQIと平均 CQIが 比較され、瞬時値が平均値より小さい場合 (即ち瞬時の伝搬状態が悪い場合)には 移動局が自律的にギャップを設け、異周波及び異システムが測定される。基地局に おいても移動局力も報告される CQIを用いて同様な制御を行うことで移動局のギヤッ プタイミングが把握され、ギャップタイミングでの送信を回避することができる。このよう に移動局で測定した CQIが低い期間に移動局でギャップを作成しても、そもそも CQI を勘案したユーザ間のパケットスケジューリングを行う HSDPAのようなシステムでは、 該ユーザがスケジュールされる確率が低 、ため、ユーザスループットなどのデータ伝 送パフォーマンスに与える影響は少なくて済む。スケジューリングは例えば Max C/I や Proportional Fairness (PF)などにより行われてよい。或いは該ユーザがスケジユー ルされた場合であっても、 HSDPAのようなシステムでは CQIに応じた適応レート制御( AMC: Adaptive Modulation and Coding)が適用されるため、ギャップとしたこと〖こよる 劣化は少なくて済む。 [0029] し力しながらこのような手法では、通常モードと測定モードの切替が移動局と基地局 でそれぞれ独立に自律的に行われるので、 CQIが基地局で正しく受信されな力つた 等の場合には移動局と基地局でモードがずれるおそれがある。また、測定モードに おけるギャップ制御が移動局で自律的に行われると、具体的なギャップのタイミング が移動局と基地局でずれてしまうおそれもある。更に、瞬時 CQIが平均 CQIより低い 場合に単純にギャップを作ったのでは、異周波 *異システムを測定するのに充分な時 間が確保されないおそれもある。何故ならば、異周波,異システムを測定するために は、移動局の受信機は測定開始前に測定すべき異周波,異システムに同期する必 要があることにカ卩えて、測定の後(CQI測定のためもあって)元の周波数及びシステム に同期する必要があるからである。これらの同期引込み時間と、測定に必要な時間を 勘案すると、ギャップが短すぎる場合には十分な測定が行えなくなってしまう。製品用 途にも依存するが、例えば 5ms以上の期間が必要になる力もしれない。このような観 点からは、或る単位長さのギャップ期間(1ギャップ長)が定義され、単位長さのギヤッ プ期間を必要に応じて反復することで、最低限必要な期間を確保しつつギャップ全 体の期間を適切に調整することが好ましい。 1ギャップ長は 1フレーム長又は 1送信時 間間隔 (TTI)より長く設定されてもよいし、 CQI報告周期より長く設定されてもよい。
[0030] ところで、移動局力 報告された CQIは、高速フェージングに追従したリンクァダプ テーシヨン (例えば送信電力制御や AMC)を行うために使用される。 HSDPAなどの無 線システムではパケットスケジューリングを行うために CQIが用いられる。 HSDPAでは CQIは共通パイロットチャネルの Ec/I (受信チップエネルギ対干渉電力密度比)に相
0
当するが、本明細書では、 Ec/Iに限らず伝搬損失、受信電力、信号対干渉電力比
0
など、無線チャネルの状態を表す指標を総じて CQIと呼ぶこととする。 HSDPAなどの 無線システムでは同一セル内のユーザのパケットは、共通の無線リソースを用いて時 分割的に送信される。複数のユーザ力 報告される CQIを相互に比較し、比較的 CQ Iが良好なユーザに送信を割り当てる Max C/I, Proportional Fairness (PF)などのスケ ジユーラが提案されている。
[0031] 図 1A及び図 1Bに示されるように、スケジューラが効率的に動作し、マルチユーザ ダイバーシティの効果を高めるためには、各移動局から CQI報告を充分に得る必要 がある。図 1 Aは或るサブ帯域のプロファイルを示し、時間方向のスケジューリングが 行われ、例えば、 HSDPAでは 2 msに一度 CQIが報告される。また、今後の移動通信 システムでは、より高い伝送レート、低遅延、大容量を実現するために、広帯域化さ れることが予想される。しかし、システムが広帯域化された場合、周波数選択性フエ一 ジングが生じるため、より効率的に伝送するためには、ユーザ間でそれぞれ状態のよ い周波数帯を使い分けた方がよい。そのためには、図 1Bに示されるように、システム の全周波数帯域を幾つ力のサブ帯域に分割し、サブ帯域毎に CQIを測定、報告する 必要がある。サブ帯域はリソースブロックと呼ばれてもよい。図 1Bは或るフレーム時刻 のプロファイルを示し、周波数スケジューリングの概念を説明するためのものであり、 システム帯域及びサブ帯域の比率を正確に表現しょうとするものでないことに留意を 要する。報告の仕方は様々であり、例えば最も CQIが高い上位 3つのサブ帯域と CQI 値を報告する方法、全帯域の平均値と各サブ帯域の平均値からの差分を報告する 方法、周波数方向に対して離散コサイン変換(DCT: Discreet Cosine Transform) を用いて符号ィ匕した結果を報告する方法等がある。いずれにしろ、広帯域の周波数 を有効利用するためには、 CQI報告を十分に行う必要がある。しかし、 CQI報告を頻 繁に行うと貴重な無線リソースを消費してしまい、オーバヘッドが増大してしまう問題 点がある。また、移動局のバッテリを早く消耗してしまい、上り干渉量を増してしまう、 といった問題点がある。
このような問題点を解決するために、 CQIが比較的悪い場合に移動局が CQIの報 告を控えるよう制御することが考えられる。測定した CQIをある閾値 (例えば CQIの平 均値やその補正値)と比較し、 CQIが閾値より高力つた場合にのみ CQIを基地局へ報 告することで、報告量を減らすことができる。この場合において、トラフィック量に応じ て閾値が補正されてもよい。或いは、移動局が自局へのスケジューリング頻度 (スケ ジユーラの送信割当頻度)を測定し、測定結果に応じて閾値が補正されてもよい。さ らには、移動局力 基地局へ CQIの報告が無力つた期間、基地局は該ユーザへの送 信割当を回避してもよいし、移動局において該期間ギャップが設けられてもよい。し かし、この場合も連続してギャップが空いてしまうおそれがあり、その場合、通信が滞 つてしまうことが懸念される。 [0033] 以下に説明される実施例は、このような問題点にも対処することができ、ギャップの 継続時間を過剰に長期化せずに伝送効率を向上させることができる。
[0034] 図 2は移動局で測定される CQIを時間経過と共に示す図である。移動局では周期 的に下りパイロットチャネルの受信品質を測定し、無線チャネル状態 (CQI)を測定し ている。個々の測定値は瞬時値 (瞬時 CQI)であり、適切な数の瞬時値又は適切な期 間にわたって平均化され、平均値 (平均 CQI)が算出される。平均 CQIがある閾値 (シ ステムパラメータ)を下回った場合に移動局は通常モードから測定モードに切り替え る。通常モードでは或る周波数及び或る無線アクセス方式で制御チャネル及び Z又 はデータチャネルを通信する。測定モードでは、無線チャネル状態に応じて、異周波 '異システムを測定するモードに切り替えられる。平均 CQIが同閾値を上回った場合 に移動局は通常モードに復帰する。或いは、通常モードから測定モードへ移る際の 閾値と測定モードから通常モードへ移る際の閾値とが異なる値に設定されてもよい。 これによりモード遷移にヒステリシスを持たせることができ、これは動作の安定性を高 める等の観点力 好ましい。測定モード中は瞬時 CQIと平均 CQIが比較され、瞬時 C QIが平均 CQIを上回って 、る期間は通常モードと同様に現在通信に用いて 、るシス テム及び周波数に移動局を同調させてデータを受信可能とする。瞬時 CQIが平均 C QIを下回っていると、移動局はその同調を中断し、異周波 *異システムに同調する期 間に移行し (ギャップを作成し)異周波 ·異システムを測定する。
[0035] 図中、測定モードの部分拡大図に示されているように、所定の頻度 (CQI測定周期 として示されている)で CQIが測定されている。個々の測定値は瞬時 CQIに相当する 。これらの内、平均 CQIを上回るもののみが基地局に報告され、それ以外は報告され ない。ギャップの間は異周波及び異システムに同調するので、その期間内に CQIの 測定周期が訪れたとしても、 CQIの測定は行われない。従って基地局は平均 CQIを 上回る瞬時 CQIにつ!/、ての報告を定期的に受ける力 そうでな 、瞬時 CQIにつ!/ヽて は何ら報告されない。瞬時 CQIが報告されないことで、基地局は移動局が自セルの 周波数に同調していないことを知ることができる。これにより移動局がギャップ期間を 設けて!/、ることを基地局が確認できる。動作モードの遷移をより確実に通知する観点 力 は、基地局に報告されない瞬時 CQIが発生した時点で、移動局の動作モードを 示す信号が基地局に送信されてもよい。これにより移動局及び基地局間で動作モー ドがずれてしまう問題に効果的に対処できる。
[0036] 瞬時 CQIの未報告により又は動作モードを示す信号の送信により移動局がギャップ 期間に入ると、移動局は異周波 '異システムに同調してセルサーチを行う。 1ギャップ 期間又は単位長さのギャップ期間(ギャップの最低期間)が経過すると、移動局は自 システムに再同調し、瞬時 CQIを測定し、瞬時 CQIと平均 CQIを比較し、再びギャップ 期間に入る力否かが判定される。以後同様の手順が反復される。し力しながらこのよ うな手順が反復されるだけでは、単位長さのギャップ期間が連続的に反復され過ぎる おそれがあり、移動局力 基地局への CQIの未報告回数が過剰に多くなり、基地局 が移動局の状況を充分に把握できなくなることが懸念される。また、基地局からのデ ータ送信が滞り過ぎる可能性が懸念される。このような観点力 は、連続ギャップ数( 或いは CQIを連続して報告しな ヽで良 、回数)が過剰に大きくならな 、ように、未報 告回数について制限が設けられてもよい。或いは、ギャップ期間を設けることを示す シグナリング信号を連続して基地局に送信する回数に上限値が設けられてもよい。
[0037] 上記の説明では CQIの平均値と閾値との大小関係で通常モード及び測定モードが 切り替えられた。しかしながら、そのような基準とは別に何らかのプロトコルによりモー ド切替制御コマンドが発行され、それに基づいてモードが切り替えられてもよい。例え ば、負荷バランスの観点で、他の周波数や他のシステムに移動局の接続を切り替え た方が、より好適な通信を実現できるとネットワークが判断した場合に、基地局からモ ード切替制御コマンドを発行してもよ 、。
[0038] 図 3は本発明の一実施例による移動局を示す。図 3には、受信 RF部、 CQI測定部、 CQI平均化部、 CQI正規化部、モード切替判定部、ギャップ判定部、 CQI報告信号作 成部、ギャップ信号作成部、モード切替信号作成部、送信バッファ、異周波測定部、 イベント判定部、イベント信号作成部、送信信号作成部、送信 RF部、制御情報受信 部及び制御部が描かれて 、る。
[0039] 受信 RF部は、受信したいシステム及び周波数に同調して信号を受信する。通常モ ードの期間、および測定モード中のギャップでない期間は、現在通信に使用している 周波数及び無線アクセス方式(自システム)に同調する。受信 RF部は、ギャップ中に は周辺セルの周波数及び無線アクセス方式 (即ち異周波の異システム)に同調する ように動作する。
[0040] CQI測定部は、現在通信中のセルの受信信号 (例えば共通パイロットチャネル)か ら無線チャネル状態 CQI (瞬時 CQI)を測定する。 CQIは様々な量で表現することがで き、例えば E /I (Symbol energy to interference power ratio)で表現されてもよい。 CQ
s 0
Iの測定は原則として所定の測定周期毎に行われる力 ギャップ中には測定は行わ れない。
[0041] CQI平均化部は瞬時 CQIを平均化する。これにより高速フ ージングには追従でき ないが、距離変動やシャドウイングには追従できる程度に平滑化される。
[0042] CQI正規化部は CQIを正規化する。 CQI平均化部で算出した CQIの平均値が正規 化の計算に使用されてもょ 、。通常モードの場合は休止しても良 、。
[0043] モード切替判定部は CQI平均化部から出力された CQI平均値と制御部により設定 された閾値とを比較して通常モード Z測定モードの判定を行う。
[0044] ギャップ判定部は CQI正規ィ匕部から出力される正規 CQIを制御部力も設定される条 件に基づいて評価し、以後の期間をギャップとするか否かを判定する。通常モードで は休止しても良い。この場合において、ギャップが過剰に短すぎると異周波セルサー チを行うことができないので、ギャップが設定される場合は所定長継続するように制限 が課せられてもよい。例えばギャップ長は CQI測定周期より長く設定されてもよいし、 1フレーム程度に長く設定されてもよい。或いは、ギャップが過剰に長く続くことを防 止するために、ギャップの連続的な反復回数につき何らかの制限が課せられてもよ い。
[0045] CQI報告信号作成部は CQI報告を行うための信号を作成する。ギャップ中には報 告はなされない。
[0046] ギャップ信号作成部はギャップを示す信号 (動作モードを示す信号)を作成する。ギ ヤップを示す信号は例えば 0/1の 2値信号で表現される。ギャップ判定部の判定結果 に応じて送信する信号 (或 ヽは送信するか否か)が制御される。
[0047] モード切替信号作成部は通常モード Z測定モードが切り替わることを示す信号を 作成し、出力する。 [0048] 送信バッファは上りユーザデータ、制御情報などをバッファリングする。
[0049] 異周波測定部は、異周波ゃ異システムに同調し、同調した異周波や異システムで のセノレサーチを行う。
[0050] イベント判定部は、異周波ゃ異システムを測定した結果、特定のイベントが発生し た力どうか (例えば受信レベルが一定値を上回った、など)を判定する。
[0051] イベント信号作成部は、イベントが生じた場合に、該イベントを報告するための信号 を作成する。
[0052] 送信信号作成部は、 CQI信号、ギャップ信号、制御信号、ユーザデータ等を多重化 して送信信号を作成する。例えば移動局は CQI信号、ギャップ信号、制御信号、ユー ザデータを別々の物理チャネル信号として送信しても良いし、 CQI信号やギャップ信 号を制御信号やユーザデータにピギーバック (piggy back)して送信しても良!、。
[0053] 送信 RF部は、送信信号を RF信号に変換して送信する。
[0054] 制御情報受信部は、基地局から送信された制御情報を受信する。
[0055] 制御部は、制御情報受信部から出力される制御情報、受信モード判定部から出力 される通常 Z測定モード判定結果、ギャップ判定部から出力されるギャップ判定結果 、及び移動局が利用しているサービス、送信割当頻度、スループット、パケット廃棄率 などに応じて、移動局各構成要素の動作を制御する。具体的には制御部は、
A:受信 RF部が同調する周波数 ·システムを制御する。ギャップ中は異周波 ·異シス テムに同調し、他の時間は現在通信に使っている周波数 ·システムに同調するよう制 御する。ギャップ長に応じて切替制御を行う。
[0056] B : CQI平均化のパラメータを制御する。例えば移動局の移動速度に応じて平均化 のパラメータを制御する。
[0057] C : CQI正規化のパラメータを制御する。
[0058] D:通常 Z測定モードの切替判定を行う際の閾値を設定する。
[0059] E:ギャップ判定の閾値(固定値、或いは平均値に対する補正値)を設定する。連続 ギャップを検出し、連続ギャップ数が予め設定された制限、或いは基地局から指定さ れた (無線制御プロトコルによって設定された)制限を超えな!/、よう、ギャップ判定部 を制御する。この制限は、移動局が利用するサービスに応じて異なる値であっても良 い。
[0060] なお、基地局がモード切替を主導してもよぐこの場合は、移動局におけるモード切 替判定、モード切替信号作成は不要である。また、図中下りユーザデータを受信する 部分などの構成要素は省略されている。
[0061] 図 4は本発明の一実施例による移動局の動作フローを示す。ステップ S1では移動 局は通常モードで通信を行っている。ステップ S2では移動局は下り共通パイロットチ ャネルを受信し、無線チャネル状態を測定する。このステップは瞬時 CQIの測定に加 えて、平均 CQIの算出も含む。ステップ S3では平均 CQIと所定の閾値との大小比較 を行い、移動局の状態を測定モードに変更する力否かの判定を行う。平均 CQIが所 定の閾値を上回っていたならば、動作モードは変更されず、フローはステップ S4に 進む。ステップ S4では測定された瞬時 CQIが基地局に報告される。ステップ S5では 制御チャネル及び Z又はデータチャネルが通信され、ステップ S2に戻る。一方、ステ ップ S3で平均 CQIが所定の閾値を上回っていなかったならば、動作モードは測定モ ードに変更され、フローはステップ S6に進む。ステップ S6では瞬時 CQIと平均 CQIと が比較され、ギャップを設ける力否かが判定される。瞬時 CQIが平均 CQIを上回って いたならば、ギャップは設けられず、フローはステップ S4に進み、説明済みの動作が 行われる。瞬時 CQIが平均 CQIを上回っていなかったならば、ギャップが設けられ、フ ローはステップ S7に進む。ステップ S7ではギャップが設けられることを示す信号が作 成され、それが基地局に通知される。上述したように基地局は瞬時 CQIが報告されな 力つたことで動作モードが遷移したことを知ることができるので、動作モードを示す信 号は必須でな 、かもしれな 、。し力しながらモード遷移動作を確実に通知する観点 力もは信号を用いることが好ましい。ステップ S8では、通常モードで使用される周波 数及び無線アクセス方式に対する同調が解除され、移動局は異なる周波数'異なる 無線アクセス方式に同調し、周辺セルサーチを行う。以後動作は通常モードに戻り、 フローはステップ S2に戻る。異周波 '異システムのセルサーチ後、次回の CQI測定時 点までが比較的長いならば、フローはステップ S8の後にステップ S5に進み、制御及 び Z又はデータチャネルを受信してもよ 、。
[0062] 図 5は本発明の一実施例による基地局を示す。図 4には受信 RF部、 CQlZギヤッ プ信号受信部、 CQI平均化部、モード切替判定部、モード切替信号作成部、制御信 号送信バッファ、データ送信バッファ、送信信号作成部、スケジューラ、送信 RF部、 監視部及びパラメータ監視部が描かれている。図中、「ユーザ毎」として示される枠中 の諸要素は、接続ユーザ毎に用意されているが、図示の簡明化のため、 1ユーザ分 しか詳細に描かれて 、な 、ことに留意を要する。
[0063] 受信 RF部は移動局からの上り信号に同調してそれを受信する。
[0064] CQIZギャップ信号受信部は受信した信号力 CQI情報を取り出す。移動局からギ ヤップを示す信号が送信された場合は、その情報を取り出す。 CQI及びギャップを示 す情報はスケジューラに伝えられる。
[0065] CQI平均化部は移動局から報告された瞬時 CQIを平均化する。
[0066] モード切替判定部は CQI平均化部から出力される CQI平均値とパラメータ制御部か ら設定される閾値を比較し、該移動局の状態が通常モードであるか測定モードである かを判定する。更に、瞬時 CQIと CQI平均値とを比較し、異周波のシステムに同調す るカゝ否カゝも判定される。
[0067] モード切替信号作成部はモード切替判定部の判定結果に応じて通常モード Z測 定モードが切り替わること示す信号を作成し、出力する。信号にはパラメータ制御部 力 指定されるギャップ長、 CQI平均化 Z正規ィ匕パラメータ、ギャップ判定閾値 Z補 正値、受信モード判定切替閾値などのパラメータが含まれてもよ 、。
[0068] 制御信号送信バッファはモード切替信号やその他の下り制御信号を送信するまで ノッファリングする。
[0069] データ送信バッファは下りユーザデータを送信するまでバッファリングする。
[0070] 送信信号作成部は下り制御信号やユーザデータを多重して送信する信号を作成 する。
[0071] スケジューラは各移動局の CQI、ギャップ状態などを勘案して送信割り当てを制御 する。監視部で観測されたトラフィック量や移動局が利用しているサービス、データ Z 制御信号の優先度などを勘案してスケジュールしてもよい。
[0072] 送信 RF部は送信信号を RFに変換して送信する。
[0073] 監視部は移動局が利用しているサービス、上り Z下りトラフィック量などを監視し、結 果をパラメータ制御部とスケジューラに伝える。
[0074] パラメータ制御部は外部から (例えば運用者によって)設定されるパラメータ、監視 部から出力される観測結果に基づき制御の各種パラメータを設定する。
[0075] なお、移動局がモード切替を主導する場合は、基地局におけるモード切替判定、 モード切替信号作成は不要である。また、図中上りユーザデータを受信する部分な ど、本発明と直接関わりのない構成要素は省略している。
実施例 2
[0076] ギャップ期間中、移動局は異周波 *異システムに同調しているので、自システムに 関する CQIを測定することはできない。従って単位長さのギャップ期間が連続的に反 復され過ぎると、移動局力 基地局への CQIの未報告回数が過剰に多くなり、基地局 が移動局の状況を充分に把握できなくなってしまう。それば力りでなく不都合なことに 、下りリンクに関してギャップ期間が形成された場合、上りリンクの通信もギャップ期間 にせざるを得ないことが多い。なぜなら多くの通常の移動局は 1つの局部発信器しか 備えておらず、それを上下リンクで共用している。従って、下りリンクで異システムの異 周波に同調しょうとすると、上りリンクでも自システムに同調できなくなり、上りのデータ 送信ができなくなり、通信が滞ってしまうおそれがある。このような問題は特に音声通 話のような低遅延サービスでは、致命的となりかねない。本発明の第 2実施例はこの ような問題にも対処できる。
[0077] 図 6は本発明の一実施例による移動局を示す。この移動局も図 3で説明された機能 を備えているが、本実施例で説明される機能の相違に起因して、形の異なるブロック 図が描かれていることに留意を要する。説明済みの要素について重複的な説明は省 略される。図 6では、図 3で説明済みの要素に加えて、フィードバック信号作成部、制 御信号送信バッファ、データ送信バッファ、監視部が描かれている。
[0078] フィードバック信号作成部は、 CQIを基地局へ報告するための信号、ギャップを伝 えるための信号を作成する。例えば、ギャップ判定部の判定結果がギャップを形成す べきことを示す場合、 CQI報告を停止するよう制御がなされてもよい。或いは CQIとは 別にギャップを伝えるための信号が作成されてもよい。
[0079] 制御信号送信バッファは、上り制御情報をバッファリングする。 [0080] データ送信バッファは、上りリンクのユーザデータをバッファリングする。
[0081] 監視部は、データ送信バッファ及び Z又は制御信号送信バッファのデータ滞留量 を監視する。滞留量は制御部力 指定された条件に応じて評価される。例えば所定 の閾値が設定され、滞留しているデータ量 (バッファに蓄積されているが未送信のデ ータ量)がその閾値を超える力否かで滞留状況が評価されてもよい。所定の閾値は 制御信号とユーザデータで同一でもよいし、異なっていてもよい。更に、データの緊 急度が考慮されてもよい。例えば緊急性の高いデータの滞留量に基づいて、滞留状 況が評価されてもよい。いずれにせよ、何らかの基準に従って、データが滞留してい る力否かが判定され、判定結果がギャップ判定部に通知される。
[0082] 制御部は、監視部の監視条件 (監視周期、データ緊急度の考慮の仕方など)を設 定する。また、ギャップ判定部の判定条件 (CQIに対する条件、監視部から報告され るバッファ滞留量に対する条件など)を設定する。
[0083] 基地局に送信すべき制御信号及びユーザデータは送信バッファに随時蓄積される 。そして、何らかの基準に従って、各送信バッファにデータが滞留している力否かが 監視部により判定され、判定結果がギャップ判定部に通知される。ギャップ判定部は 、所定の閾値 (上記の例では平均 CQI)より劣った瞬時 CQIが測定された場合であつ て、制御信号及び Z又はユーザデータの送信バッファにデータが滞留して 、な 、こ とが監視部力も報告された場合に限ってギャップ期間が形成されるよう判断する。平 均 CQIより劣った瞬時 CQIが測定された場合であっても、制御信号及び Z又はユー ザデータの送信バッファにデータが滞留して 、たならば、ギャップ期間は形成されず 、送信バッファ中のデータ送信が促される。このため、上記のデータの滞留に関する 懸念は少なくとも軽減される。
実施例 3
[0084] 通常の多くの移動局では、受信されたユーザデータは、 Hybrid ARQ (Automatic R epeat Request)方式の再送や、並列 Stop-and-wait方式の ARQに対応するため、また 、上位プロトコルレイヤが解釈できる論理ブロック (パケット)が受信完了するまで、受 信バッファにバッファリングされる。また、上位プロトコルに対して In-sequence delivery を保障するため、ノ ッファリングする場合もある。上位プロトコルにとっては、意味のあ る論理ブロックが早く受信されることが望ましい。また、 Hybrid ARQの再送データは 遅延を短縮する観点で早く受信することが望ましい。従って、受信バッファの状況と 無関係にギャップ制御を行った場合、下り伝送特性が劣化しかねない問題がある。
[0085] 図 7に本発明の一実施例による移動局を示す。説明済みの要素について重複的な 説明は省略される。図 7では、図 6で説明済みの要素に加えて、受信バッファが描か れている。
[0086] 受信バッファは、 Hybrid ARQ、並列 Stop- and- wait ARQ、 In- sequence deliveryなど 、無線アクセス方式で適用される方式に応じて受信データをバッファリングする。
[0087] 監視部は、図 6の実施例 2の機能に加えて、受信バッファのデータバッファリング状 況を監視する。バッファリング状況は、制御部から指定された条件に応じて評価され る。例えば、 Hybrid ARQ再送待ちデータがあるか否か、再送待ち回数がある閾値を 超えるか否か、再送待ち時間がある閾値を超えるか否かなどを評価してもよい。また 、 In-sequence deliveryを保障するために順序上後で上位プロトコルへ渡すべきデー タが既に受信完了しているにも力かわらず、その前に渡すべきデータ (若番データと 呼んでもよい)が未だ受信できずに抜けている場合を検出してもよい。従って、上位 プロトコルの論理ブロック単位での受信状況や Hybrid ARQ再送待ち状況に応じて受 信バッファを評価してもよい。いずれにせよ、何らかの基準に従って、データのバッフ ァリング状況が判定され、判定結果がギャップ判定部に通知される。
[0088] ギャップ判定部は、図 6の実施例 2の機能にカ卩えて、受信バッファの監視結果をギ ヤップ判定に勘案してもよい。例えば、 Hybrid ARQ再送待ちデータがある場合はギヤ ップを作らずに通信を継続するよう促してもよい。また、 In-sequence deliveryで若番 データが抜けて 、る場合はギャップを作らずに通信を継続するよう促してもょ 、。
[0089] なお、制御信号受信部へは受信バッファ及び受信 RF部の双方力 制御信号を受 信している。これは、制御信号の種類によっては、受信バッファにおいてバッファリン グして意味のある論理ブロックが受信完了されるまで待って制御信号受信部へ渡す べき信号と、符号化などを伴わずに高速に伝送されるため受信 RF部から直接渡すこ とが出来る信号があるためである。実際にはどちらか片方が欠ける場合もあるが、本 発明の必須構成に直接関わるものではない。 [0090] 以上、本発明の好ましい実施例を説明したが、本発明はこれに限定されるわけでは なぐ本発明の要旨の範囲内で種々の変形及び変更が可能である。説明の便宜上、 本発明が幾つかの実施例に分けて説明されてきたが、各実施例の区分けは本発明 に本質的ではなぐ 1以上の実施例が必要に応じて使用されてよい。
[0091] 本国際出願は西暦 2006年 3月 20日に出願した日本国特許出願第 2006-077824 号に基づく優先権を主張するものであり、その全内容を本国際出願に援用する。

Claims

請求の範囲
[1] 第 1の動作モードでは所定の周波数で少なくとも制御チャネルを通信し、第 2の動 作モードでは前記所定の周波数とは異なる周波数に同調して周辺セルサーチを行う 移動局であって、
無線チャネル状態の測定値を或る測定周期で求める測定手段と、
測定値及び閾値を比較し、第 1又は第 2の動作モードの何れかに動作モードを決 定する決定手段と、
測定値が閾値より劣っていた場合には該測定値の基地局への報告を禁止する手 段と、
を有することを特徴とする移動局。
[2] 第 1の動作モードでは所定の周波数で少なくとも制御チャネルを通信し、第 2の動 作モードでは前記所定の周波数とは異なる周波数に同調して周辺セルサーチを行う 移動局であって、
無線チャネル状態の測定値を或る測定周期で求める測定手段と、
測定値及び閾値を比較し、第 1又は第 2の動作モードの何れかに動作モードを決 定する決定手段と、
動作モードを示す信号を基地局に送信する手段と、
を有することを特徴とする移動局。
[3] 瞬時的な測定値が正規化される
ことを特徴とする請求項 1又は 2に記載の移動局。
[4] 前記閾値が、無線チャネル状態の瞬時的な測定値の平均値、時間的に一定の固 定値、又は瞬時的な測定値の平均値に時間的に一定の補正値を加えた値である ことを特徴とする請求項 1又は 2に記載の移動局。
[5] 前記固定値及び前記補正値の少なくとも一方が、基地局から通知される
ことを特徴とする請求項 4に記載の移動局。
[6] 前記閾値が、前記第 1の動作モードで提供されるサービス内容に応じて又は基地 局のトラフィック量に応じて調整される
ことを特徴とする請求項 4記載の移動局。
[7] 前記閾値が、該移動局の送信割当頻度、スループット、パケット廃棄率の少なくとも 一つに応じて調整される
ことを特徴とする請求項 4記載の移動局。
[8] 当該移動局は通常モード又は非通常モードで動作し、
前記通常モードでは前記第 1の動作モードで動作するが、前記非通常モードでは 前記第 1及び第 2の動作モードが無線チャネル状態に応じて切り替えられる
ことを特徴とする請求項 1又は 2に記載の移動局。
[9] 通常モードから非通常モードへの移行は、無線チャネル状態の瞬時的な測定値の 平均値が第 1閾値より劣った場合に行われ、
非通常モード力 通常モードへの移行は、無線チャネル状態の瞬時的な測定値の 平均値が第 2閾値より優れて 、る場合に行われる
ことを特徴とする請求項 8記載の移動局。
[10] 前記第 1閾値より前記第 2閾値が優れている
ことを特徴とする請求項 9記載の移動局。
[11] 前記第 2の動作モードの期間が、前記測定周期より長い所定期間維持される ことを特徴とする請求項 1又は 2に記載の移動局。
[12] 前記所定期間が基地局からの報知情報及び個別制御チャネルの少なくとも一方で 設定されることを特徴とする請求項 11に記載の移動局。
[13] 閾値より劣る測定値の連続的な未報告回数に上限値が設けられる
ことを特徴とする請求項 1記載の移動局。
[14] 第 2の動作モードを示す信号を連続して基地局に送信する回数に上限値が設けら れる
ことを特徴とする請求項 2記載の移動局。
[15] 前記上限値が基地局力 の報知情報及び個別制御チャネルの少なくとも一方で設 定されることを特徴とする請求項 13記載の移動局。
[16] 前記上限値がサービス内容に応じて異なる
ことを特徴とする請求項 13記載の移動局。
[17] 複数のサービスが提供されている場合に、前記連続的な未報告回数は、複数の上 限値の内の最小値以内に抑制される
ことを特徴とする請求項 16記載の移動局。
[18] 移動通信システムで使用可能なシステム周波数帯域が所定数のサブ帯域に区分 けされ、当該移動局力 ^以上のサブ帯域を使用して通信を行い、
無線チャネル状態の測定値はサブ帯域毎に測定される
ことを特徴とする請求項 1又は 2に記載の移動局。
[19] サブ帯域毎に測定された複数の測定値から 1つの値が導出され、導出された値に 基づ 、て動作モードが決定される
ことを特徴とする請求項 18記載の移動局。
[20] 前記導出された値が、複数の測定値の内の最大値又は複数の測定値の平均値で ある
ことを特徴とする請求項 19記載の移動局。
[21] 無線チャネル状態の測定値が閾値より劣っていた場合に、データを蓄積するノ ッフ ァの状態に基づいて動作モードが決定される
ことを特徴とする請求項 1又は 2に記載の移動局。
[22] 無線チャネル状態の測定値が閾値より劣っていた場合であって、送信バッファに蓄 積された未送信データ量が所定量未満であった場合に動作モードが第 2の動作モ ードに決定される
ことを特徴とする請求項 21記載の移動局。
[23] 無線チャネル状態の測定値が閾値より劣っていた場合であって、受信バッファに蓄 積されたデータの再送待ち回数が所定回数未満であること、受信バッファに蓄積され たデータの再送待ち時間が所定値未満であること、データの通信順序保障上途中の データが受信バッファに受信未完了となっていないこと、の少なくとも一つを満たす 場合に、動作モードが第 2の動作モードに決定される
ことを特徴とする請求項 21記載の移動局。
[24] 第 1及び第 2の動作モードを有する移動局と無線通信を行う基地局であって、 下り無線チャネル状態の測定値を 1以上の移動局力 受信する手段と、 1以上の移動局からの測定値に基づいて下りリンクのスケジューリングを行う手段と 前記測定値が受信されたか否かに応じて、移動局の動作モードが第 1又は第 2の 動作モードの何れであるかを決定する決定手段と、
を有し、第 1の動作モードの移動局との間では所定の周波数で少なくとも制御チヤ ネルを通信し、前記所定の周波数とは異なる周波数に同調して周辺セルサーチを行 う第 2の動作モードの移動局に対するスケジューリングは禁止される
ことを特徴とする基地局。
[25] 第 1及び第 2の動作モードを有する移動局と無線通信を行う基地局であって、 下り無線チャネル状態の測定値を 1以上の移動局力 受信する手段と、
1以上の移動局からの測定値に基づいて下りリンクのスケジューリングを行う手段と 移動局力 受信した信号に基づいて、移動局の動作モードが第 1又は第 2の動作 モードの何れであるかを決定する決定手段と、
を有し、第 1の動作モードの移動局との間では所定の周波数で少なくとも制御チヤ ネルを通信し、前記所定の周波数とは異なる周波数に同調して周辺セルサーチを行 う第 2の動作モードの移動局に対するスケジューリングは禁止される
ことを特徴とする基地局。
[26] 前記移動局は、通常モード又は非通常モードで動作し、前記通常モードでは前記 第 1の動作モードで動作するが、前記非通常モードでは前記第 1及び第 2の動作モ ードが無線チャネル状態に応じて切り替えられ、
前記通常モードと非通常モードの切り替えを示す信号を移動局に送信する ことを特徴とする請求項 24又は 25に記載の基地局。
[27] 第 1の動作モードでは所定の周波数で少なくとも制御チャネルを通信し、第 2の動 作モードでは前記所定の周波数とは異なる周波数に同調して周辺セルサーチを行う 移動局で使用される周辺セル測定方法あって、
無線チャネル状態の測定値を或る測定周期で測定するステップと、
測定値及び閾値を比較し、第 1又は第 2の動作モードの何れかに動作モードを決 定するステップと、 を有し、前記移動局は測定値が閾値より劣っていた場合には該測定値の基地局へ の報告を禁止する機能を有する
ことを特徴とする周辺セル測定方法。
[28] 第 1の動作モードでは所定の周波数で少なくとも制御チャネルを通信し、第 2の動 作モードでは前記所定の周波数とは異なる周波数に同調して周辺セルサーチを行う 移動局で使用される周辺セル測定方法あって、
無線チャネル状態の測定値を或る測定周期で測定するステップと、
測定値及び閾値を比較し、第 1又は第 2の動作モードの何れかに動作モードを決 定するステップと、
動作モードを示す信号を基地局に送信するステップと、
を有することを特徴とする周辺セル測定方法。
[29] 第 1及び第 2の動作モードを有する移動局と無線通信を行う基地局で使用される方 法あって、
下り無線チャネル状態の測定値を 1以上の移動局力 受信するステップと、 1以上の移動局からの測定値に基づいて下りリンクのスケジューリングを行うステツ プと、
前記測定値が受信されたか否かに応じて、移動局の動作モードが第 1又は第 2の 動作モードの何れであるかを決定するステップと、
を有し、第 1の動作モードの移動局との間では所定の周波数で少なくとも制御チヤ ネルを通信し、前記所定の周波数とは異なる周波数に同調して周辺セルサーチを行 う第 2の動作モードの移動局に対するスケジューリングは禁止される
ことを特徴とする方法。
[30] 第 1及び第 2の動作モードを有する移動局と無線通信を行う基地局で使用される方 法あって、
下り無線チャネル状態の測定値を 1以上の移動局力 受信するステップと、
1以上の移動局からの測定値に基づいて下りリンクのスケジューリングを行う手段と 移動局力 受信した信号に基づいて、移動局の動作モードが第 1又は第 2の動作 モードの何れであるかを決定するステップと、
を有し、第 1の動作モードの移動局との間では所定の周波数で少なくとも制御チヤ ネルを通信し、前記所定の周波数とは異なる周波数に同調して周辺セルサーチを行 う第 2の動作モードの移動局に対するスケジューリングは禁止される
ことを特徴とする方法。
PCT/JP2007/055574 2006-03-20 2007-03-19 移動局、基地局及び方法 WO2007111185A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800179965A CN101449500B (zh) 2006-03-20 2007-03-19 移动台、基站以及方法
US12/293,778 US8189521B2 (en) 2006-03-20 2007-03-19 Mobile station, base station, and method
EP07739017.7A EP1998577A4 (en) 2006-03-20 2007-03-19 MOBILE STATION, BASE STATION AND PROCEDURE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006077824A JP4812479B2 (ja) 2006-03-20 2006-03-20 移動局及び周辺セル測定方法
JP2006-077824 2006-03-20

Publications (1)

Publication Number Publication Date
WO2007111185A1 true WO2007111185A1 (ja) 2007-10-04

Family

ID=38541105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055574 WO2007111185A1 (ja) 2006-03-20 2007-03-19 移動局、基地局及び方法

Country Status (7)

Country Link
US (1) US8189521B2 (ja)
EP (1) EP1998577A4 (ja)
JP (1) JP4812479B2 (ja)
KR (1) KR20090008221A (ja)
CN (1) CN101449500B (ja)
TW (1) TW200746691A (ja)
WO (1) WO2007111185A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126380A1 (ja) * 2007-03-30 2008-10-23 Panasonic Corporation 無線通信端末装置及び無線通信方法
WO2009104146A1 (en) * 2008-02-19 2009-08-27 Nxp B.V. Uplink feedback in a multimedia broadcast/multicast services (mbms) wireless communications system
EP2219394A1 (en) * 2007-12-04 2010-08-18 NTT DoCoMo, Inc. Mobile communication system, base station apparatus, user equivalent and method
US20100285802A1 (en) * 2007-10-29 2010-11-11 Jagdeep Singh Ahluwalia Communications system
JP2011503928A (ja) * 2007-10-05 2011-01-27 クゥアルコム・インコーポレイテッド Drxモードueの測定動作を管理するための方法および装置
CN102934370A (zh) * 2010-04-12 2013-02-13 Lg电子株式会社 在支持多天线的无线通信系统中的有效反馈的方法和设备
EP2728924A3 (en) * 2008-07-03 2017-09-20 IDTP Holdings, Inc. Method and arrangement in a telecommunication system

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7778159B2 (en) * 2007-09-27 2010-08-17 Honeywell International Inc. High-integrity self-test in a network having a braided-ring topology
CN101911551A (zh) * 2007-10-30 2010-12-08 株式会社Ntt都科摩 用户装置和信号功率测定方法
JP5137547B2 (ja) * 2007-12-07 2013-02-06 パナソニック株式会社 無線通信端末装置及びギャップ割当方法
DK2243246T3 (en) 2008-02-14 2016-06-06 ERICSSON TELEFON AB L M (publ) Practices and devices in a mobile telecommunications system
JP2009232188A (ja) * 2008-03-24 2009-10-08 Oki Electric Ind Co Ltd 無線通信端末及び無線通信システム
EP2271166A1 (en) * 2008-04-25 2011-01-05 Ntt Docomo, Inc. Base station device and method in mobile communication system
JP5179258B2 (ja) 2008-05-22 2013-04-10 株式会社エヌ・ティ・ティ・ドコモ 移動端末及び移動端末で使用される方法
KR20110030609A (ko) * 2008-06-24 2011-03-23 가부시키가이샤 엔티티 도코모 기지국장치 및 통신제어방법
JP5461545B2 (ja) * 2008-06-25 2014-04-02 アップル インコーポレイテッド 無線チャネルの個々のサブバンドに関するフィードバック情報の包含
JP5235778B2 (ja) * 2009-05-15 2013-07-10 キヤノン株式会社 通信装置、通信装置の制御方法
US9204347B2 (en) 2009-06-23 2015-12-01 Google Technology Holdings LLC HARQ adaptation for acquisition of neighbor cell system information
JP2011029952A (ja) * 2009-07-27 2011-02-10 Renesas Electronics Corp 無線通信装置及び無線通信装置の通信方法
CN102076097B (zh) * 2009-11-25 2014-03-05 华为技术有限公司 资源调度方法及基站
US9107227B2 (en) 2010-02-16 2015-08-11 Nokia Technologies Oy Activation and deactivation of component carrier measurements based on thresh-old settings
US9538434B2 (en) * 2010-04-06 2017-01-03 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement in a wireless communication system
WO2011143815A1 (en) * 2010-05-19 2011-11-24 Huawei Technologies Co., Ltd. Multi-band handover via an adaptive handover threshold
JP5437972B2 (ja) * 2010-10-29 2014-03-12 ソフトバンクモバイル株式会社 セルラ移動通信におけるセル選択方式
SG191876A1 (en) * 2011-01-07 2013-08-30 Nokia Siemens Networks Oy Channel quality indicator reporting
CN102624500A (zh) * 2011-01-26 2012-08-01 上海华为技术有限公司 Cqi上报方法、获取cqi的方法、系统、终端及基站
EP2490361B1 (en) 2011-02-18 2013-11-13 BlackBerry Limited Methods and apparatus to report link quality measurements for downlink dual carrier operation
JP5736962B2 (ja) * 2011-05-26 2015-06-17 富士通株式会社 伝送装置および周波数ゆらぎ補償方法
CN102883384A (zh) * 2011-07-15 2013-01-16 华为技术有限公司 用于改变接入小区的方法、用户设备和基站
JP6084971B2 (ja) * 2011-08-12 2017-02-22 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ユーザ装置、ネットワークノード、その中の第2のネットワークノード、および方法
JP5726717B2 (ja) * 2011-12-09 2015-06-03 株式会社Nttドコモ 無線基地局及び無線システム間遷移制御方法
JP5597228B2 (ja) * 2012-07-11 2014-10-01 株式会社Nttドコモ フロントエンド回路、インピーダンス調整方法
CN103702358B (zh) 2012-09-27 2017-12-19 中兴通讯股份有限公司 异频/异系统小区重选的测量发起方法及用户终端
CA2971087C (en) * 2015-04-03 2021-03-23 Ntt Docomo, Inc. User apparatus and base station
WO2018127395A1 (en) * 2017-01-05 2018-07-12 Sony Corporation Terminal device and method
US10411795B2 (en) * 2017-03-14 2019-09-10 Qualcomm Incorporated Coverage enhancement mode switching for wireless communications using shared radio frequency spectrum
EP3395100B1 (en) * 2017-03-17 2020-06-03 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for mobility management

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003199165A (ja) * 2001-12-28 2003-07-11 Matsushita Electric Ind Co Ltd スケジュール作成装置、基地局装置及び通信方法
JP2005064751A (ja) * 2003-08-08 2005-03-10 Matsushita Electric Ind Co Ltd 移動局装置および移動局装置における受信方法
WO2005034555A1 (ja) * 2003-09-30 2005-04-14 Matsushita Electric Industrial Co., Ltd. コンプレストモードでの下り伝搬路品質情報送信方法及び送信装置
JP2005160079A (ja) * 2003-11-20 2005-06-16 Samsung Electronics Co Ltd 直交周波数分割多重システムにおける副搬送波のチャンネル品質情報を送受信する方法及び装置
WO2005096523A1 (ja) * 2004-03-30 2005-10-13 Matsushita Electric Industrial Co., Ltd. 基地局装置、移動局装置およびデータチャネルの割当方法
JP2005294914A (ja) * 2004-03-31 2005-10-20 Fujitsu Ltd 異周波測定方法
JP2006077824A (ja) 2004-09-07 2006-03-23 Kyowa Chin 釈放装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60216269T2 (de) * 2002-08-06 2007-05-10 Mitsubishi Electric Information Technology Centre Europe B.V. Übertragungsqualitätsberichtverfahren
US20050265373A1 (en) * 2004-05-28 2005-12-01 Khan Farooq U Method of reducing overhead in data packet communication
US20060234777A1 (en) * 2005-04-18 2006-10-19 Telefonaktiebolaget Lm Ericsson (Publ) Flexible multi-sector multiple antenna system
US8068427B2 (en) * 2006-09-27 2011-11-29 Qualcomm, Incorporated Dynamic channel quality reporting in a wireless communication system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003199165A (ja) * 2001-12-28 2003-07-11 Matsushita Electric Ind Co Ltd スケジュール作成装置、基地局装置及び通信方法
JP2005064751A (ja) * 2003-08-08 2005-03-10 Matsushita Electric Ind Co Ltd 移動局装置および移動局装置における受信方法
WO2005034555A1 (ja) * 2003-09-30 2005-04-14 Matsushita Electric Industrial Co., Ltd. コンプレストモードでの下り伝搬路品質情報送信方法及び送信装置
JP2005160079A (ja) * 2003-11-20 2005-06-16 Samsung Electronics Co Ltd 直交周波数分割多重システムにおける副搬送波のチャンネル品質情報を送受信する方法及び装置
WO2005096523A1 (ja) * 2004-03-30 2005-10-13 Matsushita Electric Industrial Co., Ltd. 基地局装置、移動局装置およびデータチャネルの割当方法
JP2005294914A (ja) * 2004-03-31 2005-10-20 Fujitsu Ltd 異周波測定方法
JP2006077824A (ja) 2004-09-07 2006-03-23 Kyowa Chin 釈放装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1998577A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126380A1 (ja) * 2007-03-30 2008-10-23 Panasonic Corporation 無線通信端末装置及び無線通信方法
JP2011503928A (ja) * 2007-10-05 2011-01-27 クゥアルコム・インコーポレイテッド Drxモードueの測定動作を管理するための方法および装置
US8451803B2 (en) 2007-10-05 2013-05-28 Qualcomm Incorporated Methods and apparatus for managing measurement behavior of DRX mode UE
US9002365B2 (en) * 2007-10-29 2015-04-07 Lenovo Innovations Limited (Hong Kong) Communications system
US20100285802A1 (en) * 2007-10-29 2010-11-11 Jagdeep Singh Ahluwalia Communications system
CN103249097A (zh) * 2007-10-29 2013-08-14 日本电气株式会社 通信系统
EP2219394A1 (en) * 2007-12-04 2010-08-18 NTT DoCoMo, Inc. Mobile communication system, base station apparatus, user equivalent and method
EP2219394A4 (en) * 2007-12-04 2014-03-19 Ntt Docomo Inc MOBILE COMMUNICATION SYSTEM, BASESTATION DEVICE, USER EQUIVALENT AND METHOD
US8570885B2 (en) 2008-02-19 2013-10-29 Nxp, B.V. Uplink feedback in a multimedia broadcast/multicast services (MBMS) wireless communications system
WO2009104146A1 (en) * 2008-02-19 2009-08-27 Nxp B.V. Uplink feedback in a multimedia broadcast/multicast services (mbms) wireless communications system
EP2728924A3 (en) * 2008-07-03 2017-09-20 IDTP Holdings, Inc. Method and arrangement in a telecommunication system
CN102934370A (zh) * 2010-04-12 2013-02-13 Lg电子株式会社 在支持多天线的无线通信系统中的有效反馈的方法和设备
US8923233B2 (en) 2010-04-12 2014-12-30 Lg Electronics Inc. Method and device for efficient feedback in wireless communication system supporting multiple antennas
CN102934370B (zh) * 2010-04-12 2015-06-03 Lg电子株式会社 在支持多天线的无线通信系统中的有效反馈的方法和设备
CN104935368A (zh) * 2010-04-12 2015-09-23 Lg电子株式会社 在支持多天线的无线通信系统中的有效反馈的方法和设备
US9565008B2 (en) 2010-04-12 2017-02-07 Lg Electronics Inc. Method and device for efficient feedback in wireless communication system supporting multiple antennas
CN104935368B (zh) * 2010-04-12 2018-07-24 Lg电子株式会社 在支持多天线的无线通信系统中的有效反馈的方法和设备

Also Published As

Publication number Publication date
JP4812479B2 (ja) 2011-11-09
JP2007258845A (ja) 2007-10-04
US20100003979A1 (en) 2010-01-07
CN101449500B (zh) 2013-07-31
TW200746691A (en) 2007-12-16
EP1998577A1 (en) 2008-12-03
EP1998577A4 (en) 2014-06-04
CN101449500A (zh) 2009-06-03
KR20090008221A (ko) 2009-01-21
US8189521B2 (en) 2012-05-29

Similar Documents

Publication Publication Date Title
JP4812479B2 (ja) 移動局及び周辺セル測定方法
CN101047944B (zh) 子频带通知方法和终端装置
US8934405B2 (en) Method and apparatus for retransmission scheduling and control in multi-carrier wireless communication networks
EP2656677B1 (en) Interference mitigation in a device having multiple radios
EP2087614B1 (en) Control of radio process
US7826459B2 (en) Coexistence of different network technologies
US9065501B2 (en) Method and arrangement in a wireless communication system
US8103306B2 (en) Mobile station, base station and method of controlling peripheral cell measurement
US8325683B2 (en) Communication device
US7653409B2 (en) Radio base station apparatus and method for transmission power control of an uplink channel
US8149772B2 (en) Channel quality information reporting method, base station apparatus, and communication terminal
EP2120476A1 (en) Base station device and communication control method
RU2610986C2 (ru) Способ, контроллер радиосети, базовая радиостанция и оборудование пользователя для выбора режима нисходящей линии связи
US10219315B2 (en) Method for power management and power management controller for a radio receiver
CN103004254A (zh) 移动台、无线基站以及通信控制方法
US20100002595A1 (en) Mobile station, base station, and method of reporting wireless channel quality
US20070053323A1 (en) Wireless communication apparatus and wireless communication method
US20120099512A1 (en) Radio communication system, radio base station, and radio communication method
WO2007094415A1 (ja) 移動通信システム、移動局装置、基地局装置及び移動通信方法
WO2016206894A1 (en) Method for power saving and power saving circuit for a mobile device
US8433252B2 (en) Method for controlling communication in wireless terminal and wireless terminal
KR20090118098A (ko) 이동통신시스템에서 사용되는 기지국장치 및 방법
WO2010095992A1 (en) A multicarrier transmission method and apparatus
US20040170148A1 (en) Frequency hopping control channel in a radio communication system
EP1855422B1 (en) Receiver feedback and broadcast signaling using busy bursts

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780017996.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739017

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007739017

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087024986

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12293778

Country of ref document: US