WO2007111152A1 - Fuel composition - Google Patents

Fuel composition Download PDF

Info

Publication number
WO2007111152A1
WO2007111152A1 PCT/JP2007/055307 JP2007055307W WO2007111152A1 WO 2007111152 A1 WO2007111152 A1 WO 2007111152A1 JP 2007055307 W JP2007055307 W JP 2007055307W WO 2007111152 A1 WO2007111152 A1 WO 2007111152A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
mass
content
hydrocarbon
volume
Prior art date
Application number
PCT/JP2007/055307
Other languages
French (fr)
Japanese (ja)
Inventor
Hideaki Sugano
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006086375A external-priority patent/JP4847171B2/en
Priority claimed from JP2006086374A external-priority patent/JP4847170B2/en
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Publication of WO2007111152A1 publication Critical patent/WO2007111152A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/08Use of additives to fuels or fires for particular purposes for improving lubricity; for reducing wear
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil

Definitions

  • diesel fuel used in low-temperature areas in winter the current JI s standard focuses on ensuring fluidity according to the usage environment, and is No. 2 diesel oil (pour point 1 7.5 ° C or less) as diesel fuel.
  • Three grades are set: No. 3 light oil (same 20 ° C or less) and Special 3 light oil (same 30 ° C or less).
  • These diesel oils are obtained by applying hydrorefining or hydrodesulfurization treatment to straight-run gas oil obtained from crude oil atmospheric distillation equipment, and hydrogen to straight-run kerosene obtained from crude oil atmospheric distillation equipment. It is manufactured by blending one or more hydrorefining or hydrodesulfurized ones.
  • the blending ratio of the above kerosene base and light oil base is often controlled, and cetane number improvers, detergents, low temperature fluidity improvers, etc. as necessary Are added (for example, see Non-Patent Document 1).
  • Patent Document 1 discloses a diesel light oil composition mainly containing a desulfurized and desulfurized base material. According to this document, it is possible to achieve both excellent low-temperature performance, fuel efficiency, and acceleration performance for diesel engine applications.
  • the diesel gas oil composition shown in this document mainly decomposes linear saturated hydrocarbon compounds, which are low-temperature fluidity inhibiting factors, by dewaxing into saturated hydrocarbon compounds having side chains. Since it is mainly made of chemically converted base materials, it continues to have concerns about exhaust gas performance due to the heavy and aromatic residues in the feedstock. Furthermore, a fuel containing a large amount of aromatic components and a small amount of linear saturated hydrocarbon compounds has a problem that the ignition performance becomes unstable because the cetane number becomes low. From the above, it can be said that such a fuel is not suitable as an environmentally friendly fuel.
  • FT synthetic light oil produced using natural gas or coal as a raw material is attracting attention as an environmentally friendly fuel, but FT synthetic fuel has a lot of normal paraffin in the fuel due to its production method, and may precipitate as wax at low temperatures High nature.
  • FT synthetic gas oils generally have a high cetane index and cetane number, and are excellent in self-ignitability, so that startability at low temperatures can be improved.
  • fuel with an excessively high cetane index and cetane number will self-ignite before the air and fuel are sufficiently mixed in the engine, so a large amount of soot will be generated when the vehicle accelerates. It will generate.
  • a method of designing a fuel with an increased blending ratio of kerosene fraction to ensure low-temperature fluidity can be considered, but if it is lightened, there is a concern about adverse effects on fuel consumption and output, so avoid excessive lightening. There must be.
  • the current JIS standard prescribes product performance in Japan, so the standard that can cope with the lowest temperature is a special grade 3 diesel oil (pour point 1 30) for diesel engines. ° C or below), and kerosene for heating.
  • these fuels are likely to lose their fluidity in extremely cold regions such as the inland region of Heilongjiang, China, the Russian Siberian region, the Alaska region of the United States, the Arctic region and Antarctica.
  • environmental measures have been demanded even in areas that are not restricted by exhaust gas regulations, and the application of environmentally friendly fuels is becoming more common as a social requirement.
  • Patent Document 1 discloses a diesel light oil composition mainly containing a desulfurization and desulfurization base material, but the diesel light oil composition can be applied to a plurality of uses with one kind of fuel. It lacks flexibility as a fuel and is not suitable as a fuel for heating. Furthermore, in general, fuel in such a cryogenic region is not in a situation where it can be arbitrarily refilled whenever it is used, so it is often forced to store for a relatively long period of time at a cryogenic temperature. Various performances should never deteriorate.
  • the low temperature fluidity in the cryogenic region the flexibility that can be used for multiple applications, and the performance as an environmentally friendly fuel, as well as the ability to maintain fuel performance at extremely low temperatures, meet these requirements at a high level. It is very difficult to design a high-quality fuel that can be achieved simultaneously with the above, and it will satisfy the performance required for other fuel oils. Does not exist.
  • Patent Document 1 Japanese Patent No. 3 7 2 9 2 1 1
  • Non-patent document 1 Seiichi Konishi, “Introduction to Fuel Engineering”, Suikabo, March 1991, p.136-144
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a diesel combustion composition for use in winter having excellent low-temperature fluidity, fuel efficiency, and environmental performance. Another object of the present invention is to provide a fuel composition for a cryogenic region satisfying all of the low-temperature fluidity in a cryogenic region, the flexibility to cope with a plurality of uses, and the performance as an environment-friendly fuel.
  • the present invention provides: [I] 10% distillation temperature of distillation properties is not less than 140 ° C and not more than 200 ° C. Below, 90% by volume distillation temperature is 240 ° C or more and 350 ° C or less, aromatic content is 1% by volume or less, naphthene compound content is 5% by mass or less, sulfur content is 10% by mass or less, carbon number Hydrocarbon mixture X consisting of FT synthetic base material with a linear saturated hydrocarbon content of 16 to 25 from 5% to 70% by weight, or [ii] Initial boiling point of 140 ° C or higher 2% 0 Below 90 ° C, 90 volumes with distillation properties.
  • Hydrodesulfurization treatment with a catalyst containing any one of 1—W, Ni—Mo, Co—Mo, Co—W, or Ni—Co—Mo gives hydrocarbon mixture B, ( 2)
  • the hydrocarbon mixture C obtained by removing the light portion of the hydrocarbon mixture B in the range of 1% by volume to 40% by volume is used as the feedstock, and the reaction temperature is from 150 ° C to 250 ° C, pressure
  • Omn ⁇ Zs or less relates to a fuel composition characterized in that the residual carbon content of 10% residual oil is 0.1% by mass or less.
  • the distillation property is 10 ° /.
  • Distillation temperature is 140 ° C or more and 200 ° C or less
  • 90 vol% Distillation temperature is 240 ° C or more and 350 ° C or less
  • Aromatic content is 1 vol% or less
  • Naphthene compound content is 5 mass% or less
  • Sulfur content is 10 mass ppm or less
  • linear saturated hydrocarbon content of carbon number 16 to 25 is 5 mass% or more and 70 mass% or less.
  • the fuel composition according to the above which is a diesel fuel composition, characterized by having a HFRR wear scar diameter (WS 1.4) of 400 / zm or less.
  • Step 3 The hydrocarbon mixture C is subjected to a reaction temperature of 150 ° C to 25 ° C, pressure IMP a to 5 MPa 10 volumes of linear saturated hydrocarbons by zeolite.
  • the present invention also has an initial boiling point of 140 ° C to 200 ° C, a distillation property of 90% by volume, a distillation temperature of 200 ° C to 300 ° C, an aromatic content of 20% by volume, and linear saturation.
  • Hydrocarbon mixture A with a hydrocarbon content of 25% by mass or more, a linear saturated hydrocarbon content of 10 to 15 carbon atoms, a content of 20% by mass or more, and a sulfur content of 300% by mass or less is A feedstock (Step 1)
  • the hydrocarbon mixture A is reacted at a reaction temperature of 250 ° C. or higher and 3 10 ° C.
  • a hydrocarbon mixture B is obtained by hydrodesulfurization treatment using a catalyst containing orally, and a hydrocarbon mixture B is obtained.
  • Step 2 A light portion of the hydrocarbon mixture B is removed within a range of 1% by volume to 40% by volume.
  • C (Step 3) The hydrocarbon mixture C is removed at a reaction temperature of 150 ° C.
  • diesel fuel manufactured by the above manufacturing method, fraction regulation, etc. By using the fuel composition, it is possible to provide a diesel combustion composition that has excellent low-temperature fluidity, fuel efficiency, and environment-friendly performance that are difficult to realize with conventional fuel compositions. Further, according to the present invention, by using the fuel composition for cryogenic regions produced by the above production method, fraction regulation, etc., it has been difficult to realize by using the conventional fuel composition. It is possible to provide a fuel composition for an extremely low temperature region that satisfies all of the low temperature fluidity in the region, the flexibility that can be used for multiple applications, and the performance as an environmentally friendly fuel.
  • the feedstock of the fuel composition of the present invention comprises: [I] 10% distillation temperature of distillation property is 140 ° C to 200 ° C, 90% by volume distillation temperature is 240 ° C to 350 ° C, aroma Group content is 1% by volume or less, naphthene compound content is 5% by mass or less, sulfur content is 10 mass ppm or less, and linear saturated hydrocarbon content of 16 to 25 carbon atoms is 5% by mass or more 70 Hydrocarbon mixture X consisting of FT synthetic substrate with mass% or less, or [ ⁇ ] Initial boiling point is 140 ° C or higher and 200 ° C or lower, 90% distillation temperature of distillation property is 200 ° C or higher and 300 ° C or higher In the following, the aromatic content is 20% by volume or less, and the linear saturated hydrocarbon content is 25 mass.
  • the hydrocarbon mixture X composed of the above FT synthetic substrate has a distillation property of 10% distillation temperature of 140 ° C to 200 ° C, 90% by volume distillation temperature of 240 ° C to 350 ° C, aromatic The content is 1 vol% or less, the naphthene compound content is 5 mass% or less, the sulfur content is 10 mass ppm or less, and the linear saturated hydrocarbon content of 16 to 25 carbon atoms is 5 mass. It is a hydrocarbon mixture comprising an FT synthesis base material of / o or more and 70% by mass or less, and preferably 10% distillation temperature of distillation property is 150 ° C or more and 1 95 ° C or less and 90 volumes.
  • Distillation temperature is 245 ° C or more and 340 b C or less, and aromatic content is 1 volume. /.
  • FT synthetic base material is equivalent to naphtha, kerosene, and light oil obtained by applying Fischer-Tropsch (FT) reaction to a mixed gas containing hydrogen and carbon monoxide as main components (sometimes referred to as synthesis gas). Liquid fractions, and hydrocarbon mixtures obtained by hydrotreating, hydrocracking them, and obtained by FT reaction It indicates a base material made of a hydrocarbon mixture obtained by refining FT wax, hydrotreating and hydrocracking it.
  • FT Fischer-Tropsch
  • Carbon-containing substances include natural gas, petroleum liquefied gas, methane gas, etc., gas components composed of hydrocarbons that are gaseous at normal temperature, waste such as petroleum asphalt, biomass, coal, building materials and garbage, Generally, mixed gas obtained by exposing sludge and heavy crude oil, unconventional petroleum resources, etc., which are difficult to process by ordinary methods, to high temperatures, is mainly composed of hydrogen and carbon monoxide. As long as the mixed gas to be obtained is obtained, the present invention does not limit the raw material.
  • the Fischer-Tropsch reaction requires a metal catalyst.
  • the method uses a group 8 metal of the periodic table, for example, cobalt, ruthenium, rhodium, palladium, nickel, iron, etc., more preferably a group 8 group 4 metal as an active catalyst component. .
  • the metal group which mixed these metals in an appropriate amount can also be used.
  • These active metals are generally used in the form of a catalyst obtained by being supported on a support such as silica, alumina, titania or silica alumina.
  • the catalyst performance can be improved by using a second metal in combination with the active metal in addition to the above-mentioned active metal.
  • the Fischer-Tropsch reaction is a synthesis method that uses a mixed gas as a raw material to produce a liquid fraction and FT wax.
  • it is generally preferable to control the ratio of hydrogen to carbon monoxide in the mixed gas.
  • the molar mixing ratio of hydrogen to carbon monoxide is preferably 1.2 or more, more preferably 1.5 or more, and even more preferably 1.8 or more. I like it. Further, this ratio is preferably 3 or less, more preferably 2.6 or less, and even more preferably 2.2 or less.
  • the reaction temperature is preferably 180 ° C. or higher and 320 ° C. or lower, and preferably 20 ° C.
  • reaction temperature is less than 180 ° C, carbon monoxide hardly reacts and the hydrocarbon yield tends to be low.
  • reaction temperature exceeds 3220 ° C, the amount of methane and other gases produced increases, and the production efficiency of liquid fractions and FT batteries decreases.
  • the gas space velocity with respect to the catalyst is not particularly limited, but is preferably 5 0 0 h— 1 or more and 4 0 0 0 h— 1 or less, and more preferably 1 0 0 0 h— 1 or more and 3 0 0 0 h— 1 or less. If the gas space velocity is less than 1 000 h, the productivity of liquid fuel tends to decrease, and if it exceeds 4 000 h- 1 , the reaction temperature must be increased and gas generation is large. The yield of the target product decreases. '
  • reaction pressure partial pressure of synthesis gas consisting of carbon monoxide and hydrogen
  • reaction pressure is not particularly limited
  • reaction pressure is less than 0.5 M Pa, the yield of the solid fuel tends to decrease, and if it exceeds 7 M Pa, the capital investment tends to be large, which is uneconomical.
  • the FT synthesis substrate can be obtained by hydrorefining or hydrocracking the liquid fraction or FT wax produced by the above FT reaction by any method and adjusting it to the distillation properties, composition, etc. that meet the purpose.
  • Hydrorefining and hydrocracking may be selected in accordance with the purpose, and selection of either one or a combination of both methods is not limited in any way as long as the fuel composition of the present invention can be produced. .
  • the catalyst used for hydrorefining is generally a catalyst in which a hydrogenation active metal is supported on a porous carrier, but the present invention does not limit the form of the catalyst as long as the same effect can be obtained.
  • An inorganic oxide is preferably used as the porous carrier.
  • Specific examples include alumina, titaure, zirconia, polya, silica, and zeolite.
  • active metal A type active metal A type
  • active metal B Type active metal B
  • the active metal type A is at least one metal selected from Group 8 metals of the Periodic Table. Preferably, at least one selected from Ru, Rh; Ir, Pd and Pt, more preferably Pd or Z and Pt.
  • the active metal may be a combination of these metals. For example, P t—P d, P t—Rh, P t ⁇ R u, I r ⁇ P d, I r ⁇ R h, I r and Ru , Pt-Pd-Rh, Pt_Rh-Ru, Ir-Pd-Rh, Ir-Rh-Ru.
  • a noble metal catalyst composed of these metals, it can be used after pre-reduction treatment in a hydrogen stream. In general, when a gas containing hydrogen is circulated and heat of 200 ° C. or higher is applied according to a predetermined procedure, the active metal on the catalyst is reduced, and hydrogenation activity is exhibited.
  • the active metal B type it contains at least one kind of metal selected from Group 6A and Group 8 metal of the periodic table, and preferably two or more kinds selected from Group 6A and Group 8 Those containing these metals can also be used.
  • metals selected from Group 6A and Group 8 metal of the periodic table, and preferably two or more kinds selected from Group 6A and Group 8 Those containing these metals can also be used.
  • Co-Mo, Ni-Mo, Ni-Co-Mo, and Ni-W can be mentioned.
  • a metal sulfide catalyst composed of these metals it is necessary to include a preliminary sulfidation step.
  • a general inorganic salt or a complex salt compound can be used, and as the supporting method, any of the supporting methods used in ordinary hydrogenation catalysts such as impregnation method and ion exchange method can be used. be able to.
  • the metal solution may be an aqueous solution or an organic solvent.
  • the reaction temperature when hydrorefining using an active metal A type catalyst is preferably 180 ° C or higher and 400 ° C or lower, more preferably 200 ° C or higher and 370 ° C or lower, More preferably 250 ° C or more and 350 ° C or less,
  • reaction temperature in hydrorefining is 280 ° C or higher and 350 ° C or lower.
  • a temperature exceeding 370 ° C is not preferable because side reactions that decompose into a naphtha fraction increase and the yield of the middle fraction extremely decreases.
  • the reaction temperature is lower than 270 ° C., the alcohol content cannot be completely removed, which is not preferable.
  • the reaction temperature when hydrorefining using a catalyst comprising an active metal type B is preferably 1 70 ° C or higher and 320 ° C or lower, and 1 75 ° C or higher and 300 ° C or lower. More preferably, it is 180 ° C or higher and 280 ° C or lower. If the reaction temperature in hydrorefining exceeds 320 ° C, the side reaction that decomposes into the naphtha fraction increases and the yield of the middle fraction is extremely reduced. Also, if the reaction temperature is below 170 ° C, the alcohol content cannot be completely removed, which is preferable.
  • the hydrogen pressure when hydrotreating using an active metal type A catalyst is preferably 0.5 MPa or more and 1 2 MPa or less, and 1.0 MPa or more and 5. OMP a or less. It is more preferable that The higher the hydrogen pressure, the more hydrogenation reaction is promoted, but generally there is an optimal point economically.
  • the hydrogen pressure when hydrotreating using a catalyst comprising an active metal type B is preferably 2 MPa to 10 MPa, more preferably 2.5 MPa to 8 MPa. Preferably, it is 3 MPa or more and 7 MPa or less. The higher the hydrogen pressure, the more hydrogenation reaction is promoted, but generally there is an optimal point economically. .
  • the liquid hourly space velocity which hydrorefining is carried out using a catalyst composed of the active metal A type (LHS V) is preferably 0. lh 1 or 10. It 0 h 1 less, 0. 3 h- 1 or more 3. More preferably 5 h 1 or less.
  • LHS V active metal A type
  • the ratio of hydrogen oil when hydrorefining using an active metal A type catalyst is 5. ! : More than 000 NLZL, more preferably more than 70 NLZL and less than 800 NL / L. The higher the hydrogen / oil ratio, the faster the hydrogenation reaction, but generally there is an optimal point economically.
  • the catalyst used for hydrocracking is generally a catalyst in which a hydrogenation active metal is supported on a carrier having a solid acid property, but the present invention is not limited in any way as long as the catalyst can achieve the same effect. is not.
  • Supports having solid acid properties include amorphous and crystalline zeolites. Specifically, there are amorphous silica-alumina, silica-magnesia, silica gel, silica-titania and zeolite, faujasite type, beta type, MFI type, and mordenite type. Preferred are faujasite type, beta type, MFI type and mordenite type zeolite, more preferred are Y type and beta type. The Y type is preferably ultra-stabilized.
  • the active metal A type is mainly at least one metal selected from Group 6A and Group 8 metals of the Periodic Table. Preferably, it is at least one metal selected from Ni, Co, Mo, Pt, Pd and W.
  • a precious metal catalyst composed of these metals it can be used after pre-reduction treatment in a hydrogen stream. In general, when a gas containing hydrogen is circulated and heat of 200 ° C. or higher is applied according to a predetermined procedure, the active metal on the catalyst is reduced, and hydrogenation activity is exhibited.
  • the active metal B type may be a combination of these metals. Examples include Pt—Pd, Co—Mo, Ni—Mo, Ni—W, and Ni—Co—Mo. Can be mentioned. In addition, when using a catalyst made of these metals, it is preferable to use it after preliminary sulfidation.
  • a general inorganic salt or a complex salt compound can be used, and as a loading method, any of the loading methods used in ordinary hydrogenation catalysts such as impregnation method and ion exchange method should be used. Can do.
  • a plurality of metals When a plurality of metals are supported, they may be supported simultaneously using a mixed solution, or may be sequentially supported using a single solution.
  • the metal solution may be an aqueous solution or an organic solvent.
  • the hydrogen pressure when hydrocracking using a catalyst composed of active metal A type and active metal B type is preferably IMP a or more and 2 OMP a or less, and 4 MPa or more and 16 MPa or less. Is more preferably 6 MPa or more and 13 MPa or less.
  • the higher the hydrogen pressure the more the hydrogenation reaction is promoted.
  • the decomposition reaction rather slows down and the progress of the reaction needs to be adjusted by increasing the reaction temperature, leading to a decrease in catalyst life. Therefore, there is generally an economic optimal point for the reaction temperature.
  • the liquid hourly space velocity which hydrocracking is carried out using a catalyst composed of the active metal A type (LHS V) is preferably 0. 1 h- 1 or more 10 h- 1 or less, 0. 3 h one 1 More preferably, it is not more than 3.5 h to 1 .
  • LHS V active metal A type
  • the liquid hourly space velocity which hydrocracking is carried out using a catalyst composed of the active metal B type (LHS V) is preferably 0. 1 h- 1 or more 2 h- 1 or less, 0. 2 h one 1 or 1. more preferably 7 h one 1 or less, and further preferably 0.1 311- 1 or 1. a lower S h- 1 or more.
  • LHS V active metal B type
  • the hydrogen Z oil ratio when hydrocracking using an active metal type A catalyst is preferably 50 NL L or more and 1000 NL / L or less, more preferably 70 NL / L or more and 800 NLZL or less. Preferably 40. More preferably, it is 500 NL / L or less. Higher hydrogen / oil ratio promotes hydrogenation reaction In general, there is an optimum point economically.
  • the hydrogen oil ratio is preferably 150 NL / L or more and 2000 NLL or less, and 300 NL / L or more and 1 700 NL / L or less. Is more preferably 400 NL / L or more and 1 500 NLZL or less. A higher hydrogen / oil ratio promotes the hydrogenation reaction, but generally there is an optimal point in the economy.
  • the apparatus for hydrotreating may have any configuration, the reaction towers may be used alone or in combination, and hydrogen may be additionally injected between the reaction towers, gas-liquid separation operation, hydrogen sulfide removal equipment, It may have a distillation column to fractionate the hydrogenation product and obtain the desired fraction.
  • the reaction format of the hydrotreating apparatus can take a fixed bed system.
  • Hydrogen can take either a countercurrent or cocurrent flow format with respect to the feedstock, or it can have a plurality of reaction towers and a combination of countercurrent and cocurrent flow.
  • the general format is downflow, and there is a gas-liquid co-current format.
  • Hydrogen gas may be injected into the middle stage of the reaction tower as a tent to remove reaction heat or increase the hydrogen partial pressure.
  • the hydrocarbon mixture A used as the feedstock for the fuel composition for the cryogenic region of the present invention has an initial boiling point of 140 ° C or higher and 200 ° C or lower and a distillation capacity of 90 volumes. /.
  • Distillation temperature is 220 ° C or more and 290 ° C or less, aromatics content is 17% by volume or less, linear saturated hydrocarbon content is 28% by mass or more, carbon number is 10 to 15 and linear saturated carbonization
  • Distillation temperature is 230 ° C or more and 285 ° C or less, aromatic content is 15% by volume or less, and linear saturated hydrocarbon content is 30 mass. /.
  • the linear saturated hydrocarbon content of 10 to 15 carbon atoms is 25 mass% or more, and the sulfur content is 50 mass ppm or less. If the properties of the hydrocarbon mixture A deviate from the above range, the reaction efficiency in the subsequent processing is lowered, making it difficult to obtain the fuel composition for the cryogenic region of the present invention. It is not preferable.
  • the first boiling point, 90% by volume distillation temperature is JISK 2254 “Petroleum product one distillation test method one atmospheric pressure distillation test method”
  • the aromatic content is JISK 2536 “Petroleum product one hydrocarbon” Value measured by the fluorescent indicator adsorption method of “Type test method”
  • linear saturated hydrocarbon content normal paraffin content
  • linear saturated hydrocarbon content of 10 to 15 carbon atoms is a value measured using a GC-FID (mass 0/0).
  • Sulfur content is the value measured by J I S K 2541 “Crude oil and petroleum products – Sulfur content test method”.
  • the hydrocarbon mixture A is not particularly limited other than having the above-mentioned specified properties, but for reasons of improving exhaust gas performance as an environmentally friendly fuel in addition to petroleum-based substrates, FT synthesis substrates, animals and plants It is preferable that it is processing oil derived from oil.
  • Petroleum base material is a hydrocarbon base material obtained by processing crude oil.
  • straight base material obtained from atmospheric distillation equipment, straight-run heavy oil obtained from atmospheric distillation equipment.
  • non-conventional petroleum resources such as oil shells, oil sands, orinocotal, etc., are treated appropriately and the base materials finished to the same performance as the above base materials are also petroleum-based. Can be used according to the substrate.
  • the FT synthetic substrate is as described above.
  • Processed oil derived from animals and plants is obtained by applying the chemical reaction process applied when obtaining the above-mentioned petroleum base material to the oils and fats produced and produced from animal and plant raw materials. It is the base material comprised with the hydrocarbon. More specifically, it has at least one metal selected from Group 6A and Group 8 of the Periodic Table and acid properties using a hydrocarbon fraction containing components derived from animal and vegetable oils and animal fats as raw material oil.
  • a hydrocarbon-containing mixed base material which is brought into contact with a hydrocracking catalyst containing an inorganic oxide under hydrogen pressure.
  • the raw material oil for the processed oil derived from animals and plants must be derived from animals and plants oils and animal oils.
  • animal / vegetable fat / oil / opin / vegetable fat / oil-derived component refers to a natural or artificially produced or manufactured animal / vegetable.
  • Animal fats and oils include beef tallow, milk lipids (butter), pork tallow, sheep fat, whale oil, fish oil, liver oil, etc.
  • Vegetable oils and vegetable oil ingredients include coconut palm, olive palm, olives, Rapeseed (rapeseed), rice bran, sunflower, cottonseed, corn, soybean, sesame seeds, and other parts, but other fats and oils can be used without problems. .
  • These raw oils may be solid or liquid, but it is preferable to use vegetable oils and vegetable oils as raw materials because of ease of handling, carbon dioxide absorption capacity and low productivity.
  • waste oils obtained by using these animal oils and vegetable oils for consumer use, industrial use, food use, etc. can be used as raw materials after adding a step of removing impurities.
  • Typical compositions of the fatty acid part of the glyceride compounds contained in these raw materials include butyric acid (C 3 H 7 COOH) and caproic acid, which are fatty acids having no unsaturated bonds in the molecular structure called saturated fatty acids.
  • CsHnCOOH Forced prillic acid C?”
  • a structure having a side chain that is, The position of the unsaturated bond in the molecule of the unsaturated fatty acid is generally confirmed in nature as long as it satisfies the properties defined in the present invention. Not only what you have, Those set at an arbitrary position by chemical synthesis can also be used.
  • the above-mentioned raw material oils have one or more of these fatty acids, and the fatty acids they have vary depending on the raw materials.
  • coconut oil has a relatively large amount of saturated fatty acids such as lauric acid and myristic acid
  • soybean oil has a large amount of unsaturated fatty acids such as oleic acid and linoleic acid.
  • the feedstock preferably contains a fraction at 250 ° C or higher, more preferably contains a fraction at 300 ° C or higher, and contains a fraction at 360 ° C or higher. More preferably. If it does not contain a fraction with a boiling point of 230 ° C or higher, the production of gas will increase during production, which may reduce the yield of liquid products and increase life cycle carbon dioxide.
  • the ratio of the petroleum hydrocarbon fraction is preferably 10 to 99% by volume, more preferably 30 to 99% by volume, and more preferably 60 to 98% by volume based on the total volume of the feedstock. If the proportion of petroleum-based hydrocarbon fraction is less than 10% by volume, it may be necessary to install equipment required to treat by-product water, and the proportion of petroleum-based hydrocarbon fraction is 99 volume. When it exceeds%, it is not preferable from the viewpoint of reducing the life cycle carbon dioxide.
  • the hydrocracking conditions in the hydrotreating are as follows: hydrogen pressure 6-2 OMPa, liquid space velocity (LHSV) 0.1-1.5 h— 1 , hydrogen / oil ratio 200-2000 NL / L. . it is desirable to take place, the hydrogen pressure 8 to 1 7MP a, liquid hourly space velocity 0. 2 to 1 1 h- 1, and more preferably conditions such hydrogen / oil ratio 300 ⁇ 1 800 NLZL, hydrogen pressure. 10 to: I 6MP a, liquid hourly space velocity 0. 3 ⁇ 0. 9 h _1, hydrogen / oil ratio 350 conditions such 160 ON L / L is even more desirable.
  • the hydrocarbon mixture A which is a raw material oil, is treated in the following steps (1) and (2) to obtain a hydrocarbon mixture C. '
  • the hydrocarbon composition A is mixed with a reaction temperature of 250 ° C. or higher and 30 ° C. or lower, a hydrogen pressure of 5 MPa or higher and 1 OMP a or lower, LHSVO 5 h— 1 or higher, 3. O h— 1 below, under conditions where the hydrogen hydrocarbon capacity ratio (hydrogen / oil ratio) is 0.15 or more and 0.6 or less, N i— W, N i— Mo, C o— Mo, C o— W, or N i — Hydrodesulfurization treatment is performed with a catalyst containing any of C o— M o to obtain hydrocarbon mixture B.
  • the reaction temperature of the hydrodesulfurization treatment is 250 ° C or higher and 310 ° C or lower, preferably 280 ° C or higher and 305 ° C or lower.
  • the reaction temperature is less than 250 ° C, a sufficient hydrodesulfurization reaction rate cannot be obtained.
  • the reaction temperature exceeds 310 ° C, the hydrodesulfurization reaction becomes insufficient in terms of reaction equilibrium.
  • the hydrogen pressure in the hydrodesulfurization treatment is 5 MPa or more and 10 MPa or less, and preferably 7 MPa or more and 9 MPa or less.
  • LHSV in the hydrodesulfurization treatment is 0. 5 h- 1 or more 3. 0 h- 1 or less, preferably 1 h- 1 or more 2 h one 1 below.
  • the hydrogen / hydrocarbon volume ratio is 0.15 or more and 0.6 or less, preferably 0.2 or more and 0.4 or less.
  • the hydrogen pressure is less than 5 MPa, and when the hydrogen hydrocarbon volume ratio is less than 0.15, the effect of promoting desulfurization reaction or hydrogenation reaction is insufficient.
  • the hydrogen pressure exceeds 1 OMPa and the hydrogen / hydrocarbon capacity ratio exceeds 0.6, the equipment cost increases and becomes inefficient.
  • the catalyst used for hydrodesulfurization treatment must contain any of Ni 1 W, Ni i-Mo, Co—Mo, Co—W, and Ni—Co—Mo as the active metal of the catalyst. It is.
  • An inorganic oxide is preferably used as the porous carrier. Specific examples of the inorganic oxide include alumina, titania, zirconia, boria, silica, and zeolite. Among these, at least one of titaure, zircoair, polya, silica, and zeolite is composed of alumina. Are preferably used in the present invention.
  • the amount of the active metal supported is not particularly limited, but the total amount of metal oxides relative to the catalyst mass is preferably 20% by mass or more and 35% by mass or less.
  • the catalyst is preferably used after presulfiding with hydrogen and sulfur compounds.
  • a gas containing hydrogen and a sulfur compound is circulated, and the active metal on the catalyst is presulfided by applying heat of 200 ° C or higher according to a predetermined procedure, and hydrogenation and desulfurization activity is expressed. become.
  • step (2) light mixture (generally boiling point 200 ° C or less) is stripped (removed) from hydrocarbon mixture B obtained in step (1) to obtain hydrocarbon mixture C.
  • the amount of strip is from 1% by volume to 40% by volume, preferably from 10% by volume to 37% by volume, more preferably from 20% by volume to 35% by volume, based on hydrodesulfurized oil. It is as follows. When stripping is not performed or when the strip amount is not sufficient, the load of the removal device for linear saturated hydrocarbon (normal paraffin) in the subsequent stage increases and the removal efficiency decreases. In addition, if the strip amount is excessive (over 40% by volume), the time required for the strip process increases and the energy consumption during production increases.
  • the fuel composition of the present invention comprises a feedstock comprising the above-mentioned hydrocarbon mixture X or hydrocarbon mixture C under the conditions of a temperature of 150 ° C. to 250 ° C. and a pressure of 1 MPa to 5 MPa. It can be obtained by delinearization saturated hydrocarbon treatment with zeolite.
  • the reaction temperature for the removal of the straight chain saturated hydrocarbon is 150 ° C or higher and 250 ° C or lower, preferably 180 ° C or higher and 200 ° C or lower. When the reaction temperature is less than 150 ° C, a sufficient removal rate of linear saturated hydrocarbons cannot be obtained. On the other hand, if the temperature exceeds 250 ° C, the removal efficiency of straight chain saturated hydrocarbons decreases.
  • the pressure at this time is IMP a or more and 5 MPa or less, preferably 1.5 MPa or more and 3 MPa or less. If the pressure is less than 1 MPa, a sufficient removal rate of linear saturated hydrocarbons cannot be obtained. On the other hand, if it exceeds 5M Pa, a sufficient removal rate of linear saturated hydrocarbons cannot be obtained.
  • the zeolite used for the removal of the linear saturated hydrocarbon is not particularly limited, but generally, A-type zeolite is used, and among these, molecular sieve 5A is preferable.
  • hydrocarbon mixture X consisting of FT synthetic base material is used as raw material oil, and reaction temperature 1 50 ° C or more and 250 ° C or less, pressure IMP a or more and 5MPa or less by zeolite Distilled saturated hydrocarbons obtained by performing de-linear saturated hydrocarbon treatment, density of +28 or higher, density at 15 ° C of 760 kg / m 3 or higher, 8 30 k gZm 3 or lower, distillation property of 10% Temperature is 1 ⁇ 0 ° C to 220 ° C, 50% distillation temperature is 210 ° C to 280 ° C, 90% distillation temperature is 240 ° C to 3'25 ° C, Cetane index 5 5 or more and 75 or less, Cetane number 5 5 or more and 70 or less, Flash point 50 ° C or more, Peroxide value after accelerated oxidation test is 10 mass p pm or less, Cloudy point — 10 0 ° C or less, Clogging point 1 10 ° C or less
  • the initial boiling point is 140 ° C. or higher and 200 ° C. or lower
  • the 90% by volume distillation temperature of the distillation property is 200 ° C. or higher and 300 ° C. or lower
  • the aromatic content Is 20 vol% or less
  • linear saturated hydrocarbon content is 25 mass% or more
  • linear saturated hydrocarbon content of 10 to 15 carbon atoms is 20 mass% or more
  • sulfur content is 300 mass p.
  • the hydrocarbon mixture A is reacted at a reaction temperature of 250 ° C or higher and 30 ° C or lower, and a hydrogen pressure of 5 MPa or higher and 1 OMPa or lower. Lower, LHSVO.
  • Step 2 Light weight of hydrocarbon mixture B 1 capacity for the part. /. Removal of hydrocarbon mixture C in the range of 40% by volume or less to obtain hydrocarbon mixture C, (Step 3) The hydrocarbon mixture C is subjected to a reaction temperature of 150 ° C to 250 ° C and a pressure of IMP a to 5 MPa.
  • the hydrocarbon mixture D obtained by removing 10% or more of linear saturated hydrocarbons by zeolite in 80% by volume or more of the total fuel composition, and the color at the color of +28 or more, 15 ° C 740 kg / m 3 or more and 840 k gZm 3 or less, 10% distillation temperature of distillation property is 1 70 ° C or more and 220 ° C or less, 90% distillation temperature is 220 ° C or more and 300 ° C or less, cetane index 45 'Or more, cetane number 48 or more, flash point 45 ° C or more, reaction test result is neutral, copper plate corrosion is 1 or less, peroxide value after accelerated oxidation test is 10 mass p pm or less, pour point is 60 ° C or less, sulfur content 10 mass p pm or less, kinematic viscosity at 30 ° C 1.
  • a preferred embodiment of the present invention is an initial boiling point of 140 ° C. or higher and 200 ° C. or lower and a distillation property of 90 volumes. /.
  • Distillation temperature of 200 to 300 ° C, aromatic content of 20% by volume or less, linear saturated hydrocarbon content of 25% by mass or more, carbon number of 10 to 15 and linear saturated hydrocarbon content of 15 or less Is a hydrocarbon mixture A having a sulfur content of not less than 20 mass% and a sulfur content of not more than 300 mass ppm, (Step 1) using the hydrocarbon mixture A as a reaction temperature of 250 ° C to 3 10 ° C, hydrogen pressure 5 MP a more 10MP a less, LHSVO. 5 h- 1 or more 3.
  • Hydrocarbon mixture D is 80 to 100% by volume with respect to the total fuel composition, and the total content of linear saturated hydrocarbon compounds having 16 to 20 carbon atoms is 10 masses. /. 0 to 2.0 volumes of an FT synthetic base material, the total of which is 2% by mass or less, and the total content of straight chain saturated hydrocarbon compounds having 21 to 25 carbon atoms.
  • the fuel composition for the cryogenic region of the present invention is obtained through the steps (1) to (3) from the viewpoint of ensuring the low temperature fluidity and good exhaust gas performance required for the environment-friendly fuel. Containing 80 to 100% by volume of the hydrocarbon mixture D with respect to the total fuel composition, and more than 0% by volume and less than 20% by volume of the FT synthetic base material having specific properties with respect to the total fuel composition Can be blended.
  • the FT synthetic base material that can be blended has a total content of linear saturated hydrocarbon compounds of 16 to 20 carbon atoms in a total of 10% by mass or less, and linear saturated carbonization of 21 to 25 carbon atoms.
  • FT synthesis base material characterized in that the total content of hydrogen compounds is 2% by mass or less, more preferably the total content of linear saturated hydrocarbon compounds having 16 to 20 carbon atoms is 8% by mass %, And the total content of linear saturated hydrocarbon compounds having 2 to 1 and 25 or less carbon atoms is 1.8% by mass or less, and more preferably 16 to 20 carbon atoms.
  • FT synthetic base material with a total content of hydrocarbon compounds of 6 mass% or less and a total content of linear saturated hydrocarbon compounds with 21 to 25 carbon atoms of 1.5 mass% or less More preferably, the total content of straight chain saturated hydrocarbon compounds having 16 to 20 carbon atoms is 5 quality. The total content of straight-chain saturated hydrocarbon compounds with a carbon content of 21 or less and 25 or less is 1 mass. »The following are FT synthetic substrates. When blending FT synthetic substrates and other substrates outside this range, it is difficult to achieve both low-temperature fluidity and environmental performance. Become.
  • the FT synthetic substrate here refers to a hydrocarbon substrate obtained by the above-mentioned production method.
  • the linear saturated hydrocarbon compound content (mass.
  • the fuel composition of the present invention has the following specific properties obtained through the above treatment.
  • the fuel color of the fuel composition of the present invention is +28 or more, preferably from +29 or more, and more preferably from +30 or more, from the viewpoint of removing oxidation stability inhibitors.
  • “Saebold color” means a value measured according to JIS 2580 “One-color test method for petroleum products—Saebold color test method”.
  • Density at 15 ° C of the diesel fuel composition of the present invention, in terms of calorific value ensuring is a 760 k gZm 3 or more, preferably 765 kg / m 3 or more, more preferably 770 kg Zm 3 or more.
  • the density, NOx, from the viewpoint of reducing the emission of PM it is 830 k gZm 3 or less, preferably 825 kg / m 3 or less, 820 k gZm 3 or less is more preferable.
  • the density of the fuel composition for cryogenic regions of the present invention at 15 ° C is 740 kg / m 3 or more, preferably 750 kg / m 3 or more, and 755 kg / m 3 from the viewpoint of securing a calorific value.
  • the above is more preferable.
  • the density is 840 kg / m 3 or less, preferably 830 kg / m 3 or less, and more preferably 820 kg / m 3 or less from the viewpoint of reducing NOx and PM emissions.
  • the density here means the density measured according to JISK 22.49 “Density test method and density / mass / capacity conversion table for crude oil and petroleum products”.
  • the distillation properties of the diesel fuel composition of the present invention are as follows: 10% distillation temperature is 170 ° C to 220 ° C, 50% distillation temperature is 210 ° C to 280 ° C, 90% distillation temperature is 240 ° C or more and 325 ° C or less. If the 10% distillation temperature is less than 1 70 ° C, engine output and startability at low temperatures tend to deteriorate, so preferably 173 ° C or more, more preferably 1 78 ° C or more, more preferably 180 ° C or higher.
  • the 10% distillation temperature exceeds 220 ° C
  • the exhaust gas performance tends to deteriorate. Therefore, it is preferably 215 ° C or lower, more preferably 210 ° C or lower, and even more preferably 205. C or less.
  • the 50% distillation temperature does not reach 210 ° C, engine output and startability at low temperatures tend to deteriorate. It is preferably 220 ° C or higher, more preferably 225 ° C or higher.
  • the 50% distillation temperature exceeds 280 ° C
  • the exhaust gas performance tends to deteriorate. Therefore, it is preferably 275 ° C or less, more preferably 270 ° C or less, and further preferably 265 ° C or less.
  • the 90% distillation temperature does not reach 240 ° C, the fuel efficiency improvement effect will be insufficient and the engine output will tend to decrease. Therefore, it is preferably 24'5 ° C or higher, more preferably 250 ° C or higher, more preferably 255 ° C or higher.
  • the 90% distillation temperature exceeds 325 ° C, the emission of PM and fine particles tends to increase. Therefore, it is preferably 320 ° C or less, more preferably 315 ° C or less, more preferably 31 0 ° C or less.
  • the 90% distillation temperature is less than 220 ° C, the fuel efficiency improvement effect will be insufficient, and the engine output tends to decrease. Therefore, it is preferably 225 ° C or higher, more preferably 230 ° C or higher, more preferably Is above 235 ° C.
  • the 90% distillation temperature exceeds 300 ° C, the emission of PM and fine particles tends to increase, so it is preferably 295 ° C or less, more preferably 290 ° C or less, and even more preferably 285 It is below ° C.
  • the 10% distillation temperature, 50% distillation temperature, and 90% distillation temperature mentioned here all mean values measured according to JIS K 2254 “Petroleum product one distillation test method one atmospheric pressure method”.
  • the diesel fuel composition of the present invention has a cetane index of 55 or more.
  • the cetane index is preferably 57 or more, more preferably 60 or more.
  • the cetane index must be 75 or less, preferably 74 or less, and 73 or less Is more preferable.
  • the cetane index of the fuel composition for cryogenic regions of the present invention is 45 or more.
  • the cetane index is preferably 46 or more, more preferably 47 or more.
  • the cetane index referred to in the present invention is the calculation of the cetane index using the 8.4 variable equation of JISK 2280 “Petroleum products / fuels / octane number / cetane number test method and cetane index calculation method”. Value calculated by “method”.
  • the cetane index in the above JIS standard is generally applied to light oil to which no cetane number improver is added.
  • the cetane index is also applied to a fuel composition to which a cetane number improver is added. Applying the above “8.4 Calculation method of cetane index using variable equation”, the value calculated by this calculation method is expressed as cetane index.
  • the cetane number in the diesel fuel composition of the present invention is 55 or more.
  • the concentration of N0x, PM and aldehydes in the exhaust gas tends to be high, so it is preferably 56 or more, more preferably 57 or more.
  • the cetane number needs to be 70 or less, preferably 68 or less, and more preferably 66 or less.
  • an appropriate amount of a cetane number improver can be blended to improve the cetane number of the resulting fuel composition.
  • the cetane number in the fuel composition for the cryogenic region of the present invention is 48 or more.
  • the concentration of NOx, PM and aldehydes in the exhaust gas tends to be high, so it is preferably 48.5 or more, more preferably 49 or more. is there.
  • the cetane number is preferably 90 or less, more preferably 85 or less, and further preferably 80 or less.
  • an appropriate amount of a cetane number improver can be blended to improve the cetane number of the resulting fuel composition.
  • the cetane number here is measured in accordance with “7. Cetane number test method” of “JISK 2 28 0“ Petroleum products / Fuel oil / Octane number and cetane number test method and cetane index calculation method ”. Means cetane number.
  • the flash point of the diesel fuel composition of the present invention is 50 ° C or higher. Flash point is 50 ° C If the temperature is less than 5, it is not preferable from the viewpoint of safety, so the flash point is preferably 52 ° C or higher, more preferably 54 ° C or higher.
  • the flash point of the fuel assembly for a cryogenic region of the present invention is 45 ° C. or higher.
  • the flash point is preferably 47 ° C or higher, more preferably 49 ° C or higher.
  • the flash point in the present invention is a value measured by J I S K 2 2 6 5 “Crude oil and petroleum product flash point test method”.
  • the result of the reaction test of the fuel composition for the cryogenic region of the present invention shows neutrality. If the result of the reaction test is not neutral, it is not preferable because the possibility that the corrosion effect on the metal member by the fuel becomes obvious will increase. In addition, the result of the reaction test as used in the field of this invention shows the value measured by JI S K 2 2 5 2 “Petroleum product one reaction test method”.
  • the copper plate corrosion of the fuel composition for the cryogenic region of the present invention is 1 or less, and is preferably la. If the corrosion of the copper plate is not less than 1, the possibility of the corrosion effect on the metal parts due to the fuel increases, resulting in problems in stability and long-term storage.
  • the copper plate corrosion referred to in the present invention is a value measured by JI S K 2 5 1 3 “Petroleum product-copper plate corrosion test method”.
  • the peroxide value of the fuel composition of the present invention after the accelerated oxidation test is 10 ⁇ mass p.pm or less.
  • the peroxide value after the accelerated oxidation test is preferably 8 mass ppm or less, more preferably 6 mass pp ⁇ or less, and even more preferably 4 mass ppm or less from the viewpoints of storage stability and compatibility with parts. .
  • the peroxide value after the accelerated oxidation test here refers to the accelerated oxidation test under the conditions of 95 ° C, oxygen publishing and 16 hours in accordance with AS TM D 2 2 7 4-94. This means the value of the peroxide value measured in accordance with the Petroleum Institute Standard JPI-5S-4 6-6 96 after implementation.
  • an additive such as an antioxidant or a metal deactivator can be appropriately added to the fuel composition for cryogenic regions of the present invention.
  • the cloud point of the diesel fuel composition of the present invention is 110 ° C. or less.
  • the clogging point of the diesel fuel composition of the present invention is 1 1 ° C or less. Further, from the viewpoint of preventing the pre-filter closing of the diesel vehicle and maintaining the injection performance in the electronically controlled fuel injection pump, it is preferably 1 12 ° C. or less, and 1 15 or less. Is more preferable.
  • the clogging point means the clogging point measured by JISK 2 2 8 8 “Test method for one clogging point of light oil”.
  • the pour point of the diesel fuel composition of the present invention is 115 ° C. or less. Furthermore, from the viewpoint of ensuring low temperature startability or low temperature drivability, and maintaining the injection performance of the electronically controlled fuel injection pump, it is preferably 118 ° C or less, and preferably 120 ° C or less. It is more preferable.
  • the pour point of the fuel composition for the cryogenic region of the present invention is 160 ° C. or lower. Furthermore, from the viewpoint of low-temperature startability or low-temperature operability at extremely low temperatures, and from the viewpoint of maintaining the injection performance of the electronically controlled fuel injection pump, it is preferable that the temperature is 162 ° C or lower. .
  • the pour point means the pour point measured according to J I S K 2 2 6 9 “Pour point of crude oil and petroleum products and cloud point test method of petroleum products”.
  • the aromatic content of the diesel fuel composition of the present invention is 1% by volume or less, preferably 0.8% by volume or less, and 0.5% by volume. /. It is more preferable that When the aromatic content is 1% by volume or less, production of soot and the like can be suppressed and environmental performance can be exhibited, and the properties specified in the fuel composition of the present invention can be more easily achieved. And it can be achieved reliably.
  • the aromatic content here is based on the JPI-5 S-4 9 1 9 7 “Hydrocarbon type test method—High performance liquid chromatographic method” published by the Japan Petroleum Institute. It means the volume percentage (volume%) of the aromatic content measured.
  • the naphthene content of the diesel fuel composition of the present invention is 5 mass. /.
  • the content is preferably 3% by mass or less, and 1% by mass. /. The following is more preferable.
  • the naphthene content is AS TM D 2 4 2 5 "Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass. Means naphthene content of mass percentage is measured according to Spectrometry "(mass 0/0).
  • the sulfur content of the diesel fuel composition of the present invention is 1.0 mass p pm or less, preferably 8 mass p pm or less, from the viewpoint of reducing harmful exhaust components discharged from the engine and improving the performance of the exhaust gas aftertreatment device. Preferably it is 5 mass p pm or less, more preferably 3 mass p pm or less, even more preferably 1 mass p pm or less.
  • the sulfur content here means the mass content of the sulfur content based on the total amount of the light oil composition measured by JISK2541 “Sulfur content test method”.
  • Kinematic viscosity at 30 ° C of the diesel fuel composition of the present invention 1. is a 7 mm 2 / s or more, 1. is preferably 75 mm 2 / s or more, the 1. 8 mm 2 / s or less It is more preferable. If the kinematic viscosity is less than 1.7 mm 2 Z s, it tends to be difficult to control the fuel injection timing on the fuel injection bump side, and the lubricity of each part of the fuel injection pump mounted on the engine is impaired. There is a fear. Hand, the kinematic viscosity at 30 ° C is required to be 4. It Omm 2 / s or less, preferably 3 is 9 mm 2 Roh s or less, that 3.
  • kinematic viscosity exceeds 4.0 mm 2 / s, the resistance inside the fuel injection system increases, the injection system becomes unstable, and the concentrations of NO x and PM in the exhaust gas increase, which is not preferable.
  • Kinematic viscosity at 30 ° C for cryogenic locations for fuel compositions of the present invention 1. is a 6 mm 2 / s or more, preferably 1. at 6 5 mm 2 / s or more, 1. 7 mm 2 / More preferably, it is s or more.
  • the kinematic viscosity is less than 1.6 mm 2 / s, it tends to be difficult to control the fuel injection timing on the fuel injection pump side, and the lubricity of each part of the fuel injection pump mounted on the engine is low. There is a risk of damage.
  • the upper limit of kinematic viscosity at 30 ° C must be 5.0 mm 2 / s, preferably 4 mm 2 // s or less, more preferably Srnni 2 / s or less. That's right. If the kinematic viscosity exceeds 5.0 mm 2 // s, the resistance inside the fuel injection system increases, the injection system becomes unstable, and the concentrations of NO x and PM in the exhaust gas increase, which is not preferable.
  • the kinematic viscosity here means the kinematic viscosity measured according to JISK2283 “Crude oil and petroleum products kinematic viscosity test method and viscosity index calculation method”.
  • the kinematic viscosity in an 30 ° C cryogenic locations for fuel compositions of the present invention is less 30 mm 2 / s, preferably not more than 28 mm 2 / s, not more than 26 mm 2 / s More preferred.
  • kinematic viscosity exceeds 3 Omm 2 / s, workability is impaired at extremely low temperatures, which is not preferable.
  • kinematic viscosity here means kinematic viscosity measured according to JISK 2283 “Crude oil and petroleum product single kinematic viscosity test method and viscosity index calculation method”.
  • the water content of the fuel composition of the present invention is preferably 100 capacity p pm or less, more preferably 50 capacity p pm or less, and still more preferably 20 capacity from the viewpoint of preventing freezing at low temperatures. ppm or less.
  • the moisture content here means a value measured according to JIS K 22 75 “Crude oil and petroleum products – One moisture test method – Karl Fischer-type coulometric titration method”.
  • the residual carbon content of 10% residual oil of the diesel fuel composition of the present invention is 0.05% by mass or less, and preferably 0.04% by mass or less from the viewpoint of preventing filter clogging by sludge. 03 mass% or less is more preferable.
  • the residual carbon content of the residual oil is 0.1% by mass or less, and from the viewpoint of preventing filter clogging by sludge, it is preferably 0.08% by mass or less, and more preferably 0.05% by mass or less.
  • the residual carbon content of 10% residual oil here means the value measured by J ISK 2270 “Testing method for residual carbon content of crude oil and petroleum products”.
  • the HFRR wear scar diameter (WS 1.4) referred to in the present invention is the Petroleum Institute Standard JPI-5 S-50-98 “Diesel Oil-Lubricity Test” issued by the Japan Petroleum Institute. Means the value measured by
  • a lubricity improver to the fuel composition of the present invention.
  • the addition amount is preferably 20 mg / L or more and 20 OmgZL or less, more preferably 50 mgZL or more and 180 mg / L or less in terms of active ingredient concentration.
  • the added amount of the lubricity improver is within the above range, the effect of the added lubricity improver can be effectively extracted.
  • a diesel engine equipped with a distributed injection pump It is possible to suppress the increase in driving torque and reduce pump wear.
  • the type of the lubricity improver is not particularly limited.
  • one or more of the carboxylic acid-based, ester-based, and alcohol-based opiphenol-based lubricity improvers can be used arbitrarily. It is. Among these, carboxylic acid-based and ester-based lubricity improvers are preferable. .
  • carboxylic acid-based lubricity improver examples include linoleic acid, oleic acid, salicylic acid, palmitic acid, myristic acid, hexadecenoic acid and a mixture of two or more of the above carboxylic acids.
  • Ester-based lubricity improvers include glycerin carboxylic acid esters.
  • the carboxylic acid constituting the carboxylic acid ester may be one kind or two or more kinds. Specific examples thereof include linoleic acid, oleic acid, salicylic acid, palmitic acid, myristic acid, hexadecenoic acid, etc. There is.
  • the fatty acid structure of these lubricity improvers is preferably one having an unsaturated bond from the viewpoint of securing low-temperature fluidity.
  • an antifreezing agent to the fuel composition of the present invention from the viewpoint of preventing the inconvenience of the fuel filter and the fuel injection system due to freezing of water in the oil.
  • the addition amount is preferably 100 mass ppm or less and 500 mass ppm or less, more preferably 200 mass ppm or more and 400 mass ppm or less.
  • the type of antifreezing agent is not particularly limited, but various compounds having an antifreezing function can be arbitrarily used, such as 2-methoxyethanol, isopropyl alcohol. Examples thereof include coal and polydaryl alcohol, but from the viewpoint of securing low temperature fluidity, the melting point or pour point of these antifreeze agents is preferably 160 ° C. or lower.
  • cryoprotectants may be used singly or in combination of two or more, but more than those in which the purity of each antifreeze-containing main compound is 98% or more. It can be preferably used. .
  • a low temperature fluidity improver to the fuel composition of the present invention from the viewpoint of preventing filter blockage of a diesel vehicle.
  • the amount added is preferably 2 OO mg / L or more and 100 O mg / L or less in terms of the active ingredient concentration, and is preferably 300 mg or more and 80 O mg / L or less. More preferred.
  • the type of the low temperature fluidity improver is not particularly limited.
  • linear compounds such as oxalic acid amide, dibehenate of polyethylene glycol, acid such as phthalic acid, ethylenediammine tetraacetic acid, utlyloacetic acid and its hydrohydric acid
  • acid such as phthalic acid, ethylenediammine tetraacetic acid, utlyloacetic acid and its hydrohydric acid
  • low-temperature fluidity improvers such as comb polymers made of polar nitrogen compounds, alkyl fumarate or alkyltaconate monounsaturated ester copolymers may be used.
  • a copolymer of ethylene and methyl methacrylate a copolymer of ethylene and ⁇ -olefin, a chlorinated methylene monoacetic acid butyl copolymer, an alkyl ester polymer of unsaturated carboxylic acid, and a hydroxyl group
  • Esters or salts thereof synthesized from nitrogen-containing compounds and saturated fatty acids, esters and amide derivatives synthesized from polyhydric alcohols and saturated fatty acids, esters synthesized from polyoxyalkylene glycols and saturated fatty acids, polyhydric alcohols or One or two kinds selected from an alkylene oxide adduct of the partial ester and an ester synthesized from a saturated fatty acid, a chlorinated paraffin / naphthalene condensate, an alkenyl succinic acid amide, an amine salt of sulfobenzoic acid, etc.
  • a low temperature fluidity improver combining the above can also be used.
  • an ethylene monoacetate butyl copolymer additive can be preferably used.
  • the active ingredient (active ingredient) contributing to the low temperature fluidity is diluted with an appropriate solvent. Therefore, when such a commercial product is added to the light oil composition of the present invention, the above addition amount means the addition amount (active ingredient concentration) as an active ingredient.
  • other known fuel oil additives hereinafter referred to as “other additives” for convenience
  • other additives may be added alone or in combination of several kinds. it can.
  • cetane number improvers such as nitrate esters represented by alkyl nitrates having 6 to 8 carbon atoms and organic peroxides; imido compounds, alkenyl succinic acid imides, and succinic acids.
  • Detergents such as esters, copolymer polymers, and ashless detergents; Antioxidants such as phenols and amines; Metal deactivators such as salicylidene derivatives; Corrosion inhibitors such as aliphatic amines and alkellesuccinates
  • An antistatic agent such as an ionic, cationic or amphoteric surfactant; a coloring agent such as an azo dye; an antifoaming agent such as a silicon.
  • the addition amount of other additives can be arbitrarily determined.
  • the addition amount of each additive is preferably not more than 0.5% by mass, more preferably not more than 0.5% by mass, based on the total amount of the fuel composition for cryogenic regions. 2 mass. / 0 or less.
  • the present invention by using the diesel fuel composition manufactured by the above-described manufacturing method, fraction regulation, etc., it is possible to achieve an excellent low temperature that is difficult to realize with a conventional fuel composition. It is possible to provide a diesel combustion composition having fluidity, fuel efficiency, and environmental performance at the same time. In addition, by using a fuel composition for cryogenic regions produced by the above production method, fraction regulation, etc., low temperature fluidity in a cryogenic region, which was difficult to achieve with conventional fuel compositions, is achieved. It is possible to provide a fuel composition for extremely low temperatures that satisfies all the flexibility required for multiple applications and the performance as an environmentally friendly fuel.
  • the fuel composition of the present invention has excellent low-temperature fluidity, fuel efficiency, and environment-friendly performance at the same time, so that it can be used as a diesel fuel in winter, and has low-temperature fluidity in a cryogenic region and flexibility that can be used for multiple applications.
  • it is suitably used as a fuel composition for cryogenic regions satisfying all the performance as an environmentally friendly fuel.
  • the properties of the feedstock oil and fuel oil were measured by the following method.
  • Density refers to the density measured by J I S K 2 2 4 9 “Density test method for crude oil and petroleum products and density 'mass, volume conversion table”.
  • Flash point indicates the value measured by J I S K 2 2 6 5 “Crude oil and petroleum product flash point test method”.
  • the sulfur content refers to the mass content of the sulfur content based on the total amount of the diesel fuel composition measured by JI S K 2 5 4 1 “Sulfur content test method”.
  • Aromatic content is measured according to the Petroleum Institute Method JPI-5S-4 9-9 7 "Hydrocarbon Type Test Method-High Performance Liquid Chromatograph Method" published by the Japan Petroleum Institute. Means the volume percentage of the content (capacity. / 0 ).
  • Linear saturated hydrocarbon content 0 1 0—. 1 5 1 1? (Linear saturated hydrocarbon content with carbon number of 10 or more and 15 or less), C ll—C 15 n P, C 1 6—C 2 0 n P, C 1 6—C 2 5 n P Means the value (% by mass) measured using the above-mentioned GC-FID.
  • Cloudy point means the cloud point measured according to JISK 2 26 9 “Pour point of crude oil and petroleum products and cloud point test method of petroleum products”.
  • the clogging point means the clogging point measured by JI S K 2 2 8 8 “Test method for light oil clogging point”. ⁇
  • Pour point means the pour point measured according to J I S K 2 26 9 “Pour point of crude oil and petroleum products and cloud point test method of petroleum products”.
  • the cetane index is the value calculated by ⁇ Calculation method of cetane index using 8.4 variable equations '' in JISK 2 28 ⁇ Petroleum products / fuel oil / octane number and cetane number test method and cetane index calculation method ''. Point to. Note that the cetane index in the above JIS standard does not apply to the cetane number improver added, but in the present invention, the cetane index of the cetane number improver added also has the above 8.4 variable equation. It shall represent the value calculated by “Calculation method of cetane index used”.
  • Cetane number means the cetane number measured in accordance with “7. Cetane number test method” of JISK 2 28 0 “Petroleum products / Fuel oil / Octane number and cetane number test method and cetane index calculation method”. .
  • Reaction test refers to the reaction measured by JI S K 2 2 5 2 “Petroleum products—Reaction test method”.
  • Residual carbon content of 10% residual oil means the residual carbon content of 10% residual oil as measured by JIS K 2 27 0 “Testing method for residual carbon content of crude oil and petroleum products”.
  • Conductivity means a value measured according to JI S K 2276 “Petroleum products – Aviation fuel oil test method”. '
  • Lubrication performance and HFRR wear scar diameter are the lubrication performance measured by the Petroleum Institute Standard JPI-5 S-50-98 “Diesel Oil-Lubricity Test Method” published by the Japan Petroleum Institute Point to.
  • Comparative Example 1 the reaction pressure is 3 MPa, the reaction temperature is 380 ° C, and the liquid space velocity is 0.8 h under a catalyst in which a metal group selected from metals of Group 6A and Group 8 is supported on zeolite.
  • Comparative Examples 2 and 3 show no treatment required by the present invention for an FT synthetic base material.
  • Comparative Example 4 light oil and kerosene fractions were produced by a general hydrorefining process, and they were mixed in appropriate amounts to have low temperature performance equivalent to JIS No. 3 diesel oil. It is a composition.
  • the additives used in this example are as follows.
  • Lubricant improver Carboxylic acid mixture based on linoleic acid
  • Low temperature fluidity improver ethylene monoacetate butyl copolymer
  • Cetane improver 2-Ethylhexyl nitrate
  • the fuel compositions used in the examples are prepared by preparing a hydrocarbon base material obtained through a specific process using a FT synthetic base material as a raw material oil.
  • a fuel composition satisfying the specified properties was easily obtained. I was able to get it reliably and reliably.
  • Comparative Examples 1 to 4 in which the fuel composition was prepared without using the specific fuel substrate, the target fuel composition of the present invention was not necessarily obtained.
  • a diesel engine-equipped vehicle shown below, on a chassis dynamometer capable of controlling the ring temperature, at room temperature, (1) flushing (cleaning) the fuel system of the test diesel vehicle with the evaluation fuel ), (2;) Pull out the flushing fuel, (3) Replace the main filter with a new one, (4) Fill the fuel tank with the prescribed amount of fuel to be evaluated (1/2 of the fuel tank capacity of the test vehicle) . Then, (5) rapidly cool the ambient temperature from room temperature to 110 ° C, hold it at (6) —10 ° C for 1 hour, and then (7) set the specified temperature (at a cooling rate of 1 ° C / h) (8) Hold the engine at the specified temperature for 1 hour, and then start the engine. If it does not start after repeating 10 seconds of cranking twice at intervals of 30 seconds, measurement is impossible. If it can be started, leave it idle for 30 seconds, and then perform the following tests in order.
  • Vehicle specifications Vehicle 1
  • Example 5 The raw material oil having the properties shown in Table 5 was reacted and processed under the conditions for each process shown in Table 6 to prepare fuel compositions for extreme fridges shown in Table 7.
  • Examples 3, 4, and 5 were obtained by subjecting different raw material oils to respective process treatments under different conditions.
  • Example 3 a fourth embodiment performs a high degree of hydrorefining process including a ring-opening reaction of aromatic content with respect to petroleum coal hydrocarbons are those the resulting et hydrocarbons as a raw material oil Hydrocarbons obtained by subjecting natural gas to wax and middle distillation by FT reaction and hydrotreating it are used as feedstock.
  • Example 5 the oil obtained from palm palm (not separated for each fraction, used in the hall state) was hydrorefined and carbonized after removing unnecessary alcohol.
  • Example 6 is obtained by blending the synthetic fuel base material shown in Table 5 after the fuel oil composition of Example 3 was produced.
  • the blended synthetic fuel base material consists of a hydrocarbon mixture obtained by subjecting natural gas to wax and middle distillate by FT reaction and hydrotreating it, and the isomerization reaction has progressed relatively. It contains a saturated hydrocarbon compound having a side chain.
  • Comparative Example 5 shows a reaction pressure of 3 MPa, a reaction temperature of 3800 ° C, and a liquid space velocity under a catalyst in which a metal group selected from metals of Group 6A and Group 8 of the periodic table is supported on zeolite.
  • the additives used in this example are as follows.
  • Antifreeze 2-methoxetanol Lubricant improver: Carboxylic acid mixture based on linoleic acid
  • Low temperature fluidity improver ethylene monoacetate butyl copolymer
  • Cetane improver 2-Ethinorehexinolenate
  • Formulation ratio of prepared fuel composition, and density at 15 ° C, kinematic viscosity at 30 ° C, kinematic viscosity at 30 ° C, flash point, sulfur content for this prepared fuel composition Amount, distillation properties, aromatic content, cetane index, cetane number, pour point, hue, residual carbon content of 10% residual oil, results of reaction test, copper plate corrosion, moisture, total failure after oxidation stability test
  • Table 7 shows the results of measurement of dissolved content, peroxide value, conductivity, and wear scar diameter.
  • the fuel compositions used in the examples and comparative examples were prepared by blending hydrocarbon base materials obtained through specific processes and FT synthetic base materials having specific properties at specific ratios. '
  • Fuel consumption was measured using the aforementioned diesel engine-equipped vehicle (vehicle 1).
  • the test mode was a transient operation mode simulating actual driving shown in Fig. 1.
  • the smoke measurement uses a transmission type measuring instrument.
  • the test result in Comparative Example 5 was set to 100, and each result was relatively compared and quantified.
  • the test methods related to vehicle tests are in accordance with Appendix 27 “Technical Standards for Diesel Vehicles 10-15 Mode Emission Measurements”, attached to the new standards for new automobile examinations supervised by the former Ministry of Transport.
  • the target fuel composition is stored in a freezer that can be controlled at a constant temperature of 30 ° C for 1 month. After the storage, the appearance is checked. If sediment or turbidity occurs, it is judged as (X). Sampling the fuel composition supernatant (within 1 cm from the liquid level) after storage and measuring the pour point, and if the same performance as before storage is obtained (Yes) .
  • Table 5
  • Fig. 1 is a diagram showing a transient operation mode that simulates actual driving.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

A fuel composition for the winter season which has all of excellent low-temperature flowability, mileage performance, and environmental preservation performance. The fuel composition is obtained by subjecting a hydrocarbon mixture having specific properties as a feed oil to a treatment for linear-saturated-hydrocarbon elimination with a zeolite under the conditions of a reaction temperature of 150-250°C and a pressure of 1-5 MPa. The composition has a Saybolt color of +28 or above, density at 15°C of 740-840 kg/m3, 10% running temperature, as a distillation property, of 170-220°C, cetane index of 45 or higher, cetane number of 48 or larger, flash point of 45°C or higher, peroxide value after an accelerated oxidation test of 10 mass ppm or less, pour point of -15°C or lower, sulfur content of 10 mass ppm or lower, dynamic viscosity at 30°C of 1.6-5.0 mm2/s, and residual carbon content in 10% residual oil of 0.1 mass% or lower.

Description

燃' 料 組 成 物  Fuel composition
[技術分野] [Technical field]
本発明は、 冬季に使用する燃料組成物に関するものである。 特に、 優れた低温 流動性と燃費性能、 環境対応性能を同時に有する冬季に使用するディーゼル燃料 組成物に関するものである。また明本発明は、北極、南極等の極低温地域での暖房、 発電用途及び自動車、 雪上車、 船舶、 ヘリコプター等移動源用途に用いられる燃 料組成物に関するものであり、 より詳し田くは優れた低温流動性と燃料フレキシビ リティさ、 環境対応性能を同時に有する極'低温地向け燃料組成物に関するもので のる。  The present invention relates to a fuel composition used in winter. In particular, the present invention relates to a diesel fuel composition for use in winter that has excellent low-temperature fluidity, fuel efficiency, and environmental performance. The present invention also relates to a fuel composition used in heating, power generation applications, and mobile source applications such as automobiles, snow vehicles, ships, and helicopters in cryogenic regions such as the North Pole and Antarctica. It relates to a fuel composition for cryogenic regions that has excellent low-temperature fluidity, fuel flexibility, and environmental performance.
[背景技術] . [Background technology].
冬季の低温地で使用するディーゼル燃料に関して、 現行の J I s規格において は使用環境に応じた流動性の確保を主眼において、 ディーゼル燃料として 2号軽 油 (流動点一 7 . 5 °C以下)、 3号軽油 (同一 2 0 °C以下)、 特 3号軽油 (同一 3 0 °C以下) の 3グレードが設定されている。 これらの軽油は、 基材として、 原油 の常圧蒸留装置から得られる直留軽油に水素化精製処理や水素化脱硫処理を施し たもの、 原油の常圧蒸留装置から得られる直留灯油に水素化精製処理や水素化脱 硫処理を施したものを 1種または 2種以上配合することにより製造されている。 特に、 低温流動性を確保するためには、 上記灯油基材と軽油基材の配合比を制御 している場合が多く、 必要に応じてセタン価向上剤や清浄剤、 低温流動性向上剤 等の添加剤が、配合される (例えば、 非特許文献 1参照。)。  With regard to diesel fuel used in low-temperature areas in winter, the current JI s standard focuses on ensuring fluidity according to the usage environment, and is No. 2 diesel oil (pour point 1 7.5 ° C or less) as diesel fuel. Three grades are set: No. 3 light oil (same 20 ° C or less) and Special 3 light oil (same 30 ° C or less). These diesel oils are obtained by applying hydrorefining or hydrodesulfurization treatment to straight-run gas oil obtained from crude oil atmospheric distillation equipment, and hydrogen to straight-run kerosene obtained from crude oil atmospheric distillation equipment. It is manufactured by blending one or more hydrorefining or hydrodesulfurized ones. In particular, in order to ensure low temperature fluidity, the blending ratio of the above kerosene base and light oil base is often controlled, and cetane number improvers, detergents, low temperature fluidity improvers, etc. as necessary Are added (for example, see Non-Patent Document 1).
ところで、 近'年、 大気環境改善及び環境負荷低減を目指して、 内燃機関用燃料 であるディーゼル燃料組成物中の硫黄分含有量及び芳香族分含有量の低減が求め られていると共に、 地球温暖化問題に'対応するため、 一層の燃費向上に貢献する 燃料性状が求められている。 低温地向け燃料として、 例えば特許文献 1に脱硫脱 口ゥ基材を主として配合したディーゼル軽油組成物が開示されている。 本文献に よればディーゼルエンジン用途として優れた低温性能と燃費、 加速性能を両立で きると記載されているが、 本文献に示されたディーゼル軽油組成物は脱ロウによ り低温流動性阻害要因である直鎖飽和炭化水素化合物を主として分解して側鎖を 有する飽和炭化水素化合物に化学変換させた基材を主としているため、 重質であ りかつ原料油中の芳香族分が多く残留することによる排ガス性能に対する懸念を 継続して有している。 さらには、 芳香族分を多く含有しかつ直鎖飽和炭化水素化 合物が少ない燃料ではセタン価が低くなるため、 着火性能が安定しなくなる問題 も有している。 以上のことから、 このような燃料では環境対応燃料としては不適 であるといえる。 By the way, in recent years, with the aim of improving the atmospheric environment and reducing the environmental burden, there has been a demand for a reduction in the sulfur content and aromatic content in diesel fuel compositions that are fuels for internal combustion engines. Fuel properties that contribute to further improvements in fuel efficiency are required to respond to the problem of fuel conversion. As a fuel for low-temperature areas, for example, Patent Document 1 discloses a diesel light oil composition mainly containing a desulfurized and desulfurized base material. According to this document, it is possible to achieve both excellent low-temperature performance, fuel efficiency, and acceleration performance for diesel engine applications. However, the diesel gas oil composition shown in this document mainly decomposes linear saturated hydrocarbon compounds, which are low-temperature fluidity inhibiting factors, by dewaxing into saturated hydrocarbon compounds having side chains. Since it is mainly made of chemically converted base materials, it continues to have concerns about exhaust gas performance due to the heavy and aromatic residues in the feedstock. Furthermore, a fuel containing a large amount of aromatic components and a small amount of linear saturated hydrocarbon compounds has a problem that the ignition performance becomes unstable because the cetane number becomes low. From the above, it can be said that such a fuel is not suitable as an environmentally friendly fuel.
天然ガスや石炭を原料として製造される F T合成軽油が環境対応型燃料として 着目されているが、 F T合成燃料はその製法上燃料中のノルマルパラフィンが多 く、 低温時にワックスとして析出してしまう可能性が高い。 また、 F T合成軽油 は一般的にセタン指数及ぴセタン価が高く自己着火性に優れるため、 低温下での 始動性を向上させることができる。 しかしながら、 過度に高いセタン指数、 セタ ン価を有する燃料は、 エンジン内で十分に空気と燃料との混合が行われないうち に自己着火してしまうため、 車両が加速した際に大量のすすを生成してしまう。 低温流動性を確保するため灯油留分の配合比を高めた燃料設計を行う手法も考 えられるが、 軽質化した場合は燃費や出力への悪影響が懸念されるため、 過度の 軽質化は避けなければならない。  FT synthetic light oil produced using natural gas or coal as a raw material is attracting attention as an environmentally friendly fuel, but FT synthetic fuel has a lot of normal paraffin in the fuel due to its production method, and may precipitate as wax at low temperatures High nature. In addition, FT synthetic gas oils generally have a high cetane index and cetane number, and are excellent in self-ignitability, so that startability at low temperatures can be improved. However, fuel with an excessively high cetane index and cetane number will self-ignite before the air and fuel are sufficiently mixed in the engine, so a large amount of soot will be generated when the vehicle accelerates. It will generate. A method of designing a fuel with an increased blending ratio of kerosene fraction to ensure low-temperature fluidity can be considered, but if it is lightened, there is a concern about adverse effects on fuel consumption and output, so avoid excessive lightening. There must be.
すなわち、 優れた低温流動性と燃費性能、 環境対応性能を同時に有するディー ゼル燃焼組成物に求められる要件を高水準で同時に達成できる高品質の燃料を設 計することは非常に困難であり、 これ以外の燃料油として求められている諸性能 を十分満たし、 また現実的な製造方法の検討を踏まえた例、 知見は存在していな レ、。  In other words, it is very difficult to design a high-quality fuel that can simultaneously achieve the requirements required for a diesel combustion composition having excellent low-temperature fluidity, fuel efficiency, and environmental performance at the same time. There are no examples or knowledge based on the study of realistic manufacturing methods that satisfy the various performance requirements of other fuel oils.
一方、 現行の J I S規格においては日本国内での製品性能を前提として規定し ているため、 最も低い気温に対応できる規格としてはディーゼルエンジン用とし ては特 3号グレードの軽油(流動点一 3 0 °C以下)、暖房用としては灯油がこれに 該当する。 しかしながら、 これらの燃料では極めて低温な地域、 例として中国黒 竜江省内陸部やロシアシベリア地域、 米国アラスカ地域、 北極圏及び南極大陸等 では流動性が失われてしまう可能性が大きい。 また、 特にこのような地域では供 給路の確保の問題から用途別に燃料を複数用意することは困難であり、 1種類の 燃料で複数の用途に適用できるだけの燃料としてのフレキシビリティが同時に求 められている。 さらに、 最近は排出ガス規制等による制限のない地域においても 環境対応が求められており、 環境に優しい燃料を適用させることが社会要請とし て一般化しつつある。 On the other hand, the current JIS standard prescribes product performance in Japan, so the standard that can cope with the lowest temperature is a special grade 3 diesel oil (pour point 1 30) for diesel engines. ° C or below), and kerosene for heating. However, these fuels are likely to lose their fluidity in extremely cold regions such as the inland region of Heilongjiang, China, the Russian Siberian region, the Alaska region of the United States, the Arctic region and Antarctica. In particular, it is difficult to prepare multiple fuels for different applications due to the problem of securing supply channels. Fuel flexibility that can be applied to multiple applications is required at the same time. Furthermore, recently, environmental measures have been demanded even in areas that are not restricted by exhaust gas regulations, and the application of environmentally friendly fuels is becoming more common as a social requirement.
極低温地向け燃料として、 特許文献 1には脱硫脱口ゥ基材を主として配合した ディーゼル軽油組成物が開示されているが、 該ディーゼル軽油組成物では 1種類 の燃料で複数の用途に適用できるだけの燃料としてのフレキシビリティに欠けて おり、 暖房用燃料としては不向きである。 さらに、 一般にこのような極低温地域 における燃料は使用するたびに随時任意に補給できるような状況にないため、 極 低温下での比較的長期な保管を強いられる場合が多く、 その期間において燃料の 諸性能が悪化することが決してあってはならない。  As a fuel for cryogenic regions, Patent Document 1 discloses a diesel light oil composition mainly containing a desulfurization and desulfurization base material, but the diesel light oil composition can be applied to a plurality of uses with one kind of fuel. It lacks flexibility as a fuel and is not suitable as a fuel for heating. Furthermore, in general, fuel in such a cryogenic region is not in a situation where it can be arbitrarily refilled whenever it is used, so it is often forced to store for a relatively long period of time at a cryogenic temperature. Various performances should never deteriorate.
すなわち、 極低温地域における低温流動性と複数の用途に対^できるフレキシ ピリティさ並びに環境対応型燃料としての性能を全て満たすこと、 かつ極低温下 での燃料性能を保持できること、 これら 要件を高水準で同時に達成できる高品 質の燃料を設計することは非常に困難で り、 これ以外の燃料油として求められ ている諸性能を十分満たし、 また現実的な製造方法の検討を踏まえた例、 知見は 存在していない。  In other words, the low temperature fluidity in the cryogenic region, the flexibility that can be used for multiple applications, and the performance as an environmentally friendly fuel, as well as the ability to maintain fuel performance at extremely low temperatures, meet these requirements at a high level. It is very difficult to design a high-quality fuel that can be achieved simultaneously with the above, and it will satisfy the performance required for other fuel oils. Does not exist.
( 1 ) 特許文献 1 :特許第 3 7 2 9 2 1 1号公報  (1) Patent Document 1: Japanese Patent No. 3 7 2 9 2 1 1
( 2 ) 非特許文献 1 :小西誠一著, 「燃料工学概論」, 裳華房, 1991年 3月, p.136-144  (2) Non-patent document 1: Seiichi Konishi, “Introduction to Fuel Engineering”, Suikabo, March 1991, p.136-144
[発明の開示] [Disclosure of the Invention]
本発明は、 かかる実状に鑑みてなされたものであり、 その目的は、 優れた低温 流動性と燃費性能、 環境対応性能を同時に有する冬季に使用するディーゼル燃焼 組成物を提供することにある。 また本発明は、 極低温地域における低温流動性と 複数の用途に対応できるフレキシビリティさ並びに環境対応型燃料としての性能 を全て満足させた極低温地向け燃料組成物を提供することにある。  The present invention has been made in view of such a situation, and an object of the present invention is to provide a diesel combustion composition for use in winter having excellent low-temperature fluidity, fuel efficiency, and environmental performance. Another object of the present invention is to provide a fuel composition for a cryogenic region satisfying all of the low-temperature fluidity in a cryogenic region, the flexibility to cope with a plurality of uses, and the performance as an environment-friendly fuel.
本発明者らは、 上記課題を解決するために鋭意研究した結果、 本発明を完成す るに至った。  As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
すなわち、本発明は、 〔I〕蒸留性状の 1 0 %留出温度が 1 4 0 °C以上 2 0 0 °C 以下、 90容量%留出温度が 240°C以上 350°C以下、芳香族含有量が 1容量% 以下、ナフテン化合物含有量が 5質量%以下、硫黄含有量が 10質量 p pm以下、 炭素数 16から 25までの直鎖飽和炭化水素含有量が 5質量%以上 70質量%以 下である FT合成基材からなる炭化水素混合物 X、または〔Π〕初留点が 140°C 以上 2ひ 0°C以下、蒸留性状の 90容量。ん留出温度が 200°C以上 300°C以下、 芳香族含有量が 20容量%以下、 直鎖飽和炭化水素含有量が 25質量%以上、 炭 素数 10以上 1 5以下の直鎖飽和炭化水素含有量が 20質量。/。.以上、 硫黄含有量 が 300質量 p pm以下である炭化水素混合物 Aを、 (1)反応温度 250°C以上 3 10°C以下、 水素圧力 5 MP a以上 1 OMP a以下、 LH S V 0. 5 h— 1以上 3. 0 h—1以下、 水素 炭化水素容量比が 0. 1 5以上 0. 6以下の条件で、 NThat is, the present invention provides: [I] 10% distillation temperature of distillation properties is not less than 140 ° C and not more than 200 ° C. Below, 90% by volume distillation temperature is 240 ° C or more and 350 ° C or less, aromatic content is 1% by volume or less, naphthene compound content is 5% by mass or less, sulfur content is 10% by mass or less, carbon number Hydrocarbon mixture X consisting of FT synthetic base material with a linear saturated hydrocarbon content of 16 to 25 from 5% to 70% by weight, or [ii] Initial boiling point of 140 ° C or higher 2% 0 Below 90 ° C, 90 volumes with distillation properties. Straight chain saturated hydrocarbons with a distillation temperature of 200 ° C to 300 ° C, aromatic content of 20% by volume or less, linear saturated hydrocarbon content of 25% by mass or more, and carbon number of 10 to 15 Content is 20 mass. /. Hydrocarbon mixture A with a sulfur content of 300 mass p pm or less (1) Reaction temperature 250 ° C or higher 3 10 ° C or lower, hydrogen pressure 5MPa or higher 1 OMPa or lower, LH SV 0. 5 h— 1 or more 3.0 h— 1 or less, Hydrogen Hydrocarbon capacity ratio is 0.1 5 or more and 0.6 or less, N
1—W、 N i— Mo、 C o—Mo、 C o— W、 または N i— C o— M oのいずれ かを含有する触媒により水素化脱硫処理して炭化水素混合物 Bを得、 (2)該炭化 水素混合物 Bの軽質な部分を 1容量%以上 40容量%以下の範囲で除去して得ら れる炭化水素混合物 Cを原料油とし、 反応温度 1 50°C以上 250°C以下、 圧力Hydrodesulfurization treatment with a catalyst containing any one of 1—W, Ni—Mo, Co—Mo, Co—W, or Ni—Co—Mo gives hydrocarbon mixture B, ( 2) The hydrocarbon mixture C obtained by removing the light portion of the hydrocarbon mixture B in the range of 1% by volume to 40% by volume is used as the feedstock, and the reaction temperature is from 150 ° C to 250 ° C, pressure
IMP a以上 5 MP a以下の条件下でゼォライ トにより脱直鎖飽和炭化水素処理 を行うことによって得られる、 セーボルト色 +28以上、 1 5°Cにおける密度がSavort color +28 or higher, density at 15 ° C obtained by de-linear saturated hydrocarbon treatment with zeolite under conditions of IMP a or more and 5 MPa or less
740 k g/m3以上 840 k gZm3以下、 蒸留性状の 1 0%留出温度が 1 7740 kg / m 3 or more 840 k gZm 3 or less, 10% distillation temperature of distillation property is 17
0°C以上 220°C以下、 セタン指数 45以上、 セタン価 48以上、 引火点 45 °C 以上、加速酸化試験後の過酸化物価が 1◦質量 p pm以下、流動点一 1 5°C以下、 硫黄分 10質量 p pm以下、 30°Cにおける動粘度が 1. 6 mm2/ s以上 5.0 ° C or more and 220 ° C or less, cetane index of 45 or more, cetane number of 48 or more, flash point of 45 ° C or more, peroxide value after accelerated oxidation test is 1 ◦ mass p pm or less, pour point is 1 15 ° C or less Sulfur content 10 mass p pm or less, kinematic viscosity at 30 ° C 1.6 mm 2 / s or more 5.
Omn^Zs以下、 1 0%残油の残留炭素分が 0. 1質量%以下であることを特 徴とする燃料組成物に関する。 Omn ^ Zs or less, and relates to a fuel composition characterized in that the residual carbon content of 10% residual oil is 0.1% by mass or less.
また本発明は、 蒸留性状の 10°/。留出温度が 140°C以上 200°C以下、 90 容量%留出温度が 240°C以上 350°C以下、 芳香族含有量が 1容量%以下、 ナ フテン化合物含有量が 5質量%以下、 硫黄含有量が 10質量 p pm以下、 炭素数 16から 25までの直鎖飽和炭化水素含有量が 5質量%以上 70質量%以下であ る FT合成基材からなる炭化水素混合物 Xを原料油とし、 反応温度 1 50°C以上 In the present invention, the distillation property is 10 ° /. Distillation temperature is 140 ° C or more and 200 ° C or less, 90 vol% Distillation temperature is 240 ° C or more and 350 ° C or less, Aromatic content is 1 vol% or less, Naphthene compound content is 5 mass% or less, Sulfur content is 10 mass ppm or less, and linear saturated hydrocarbon content of carbon number 16 to 25 is 5 mass% or more and 70 mass% or less. , Reaction temperature 1 50 ° C or more
250°C以下、 圧力 IMP a以上 5 MP a以下の条件下でゼォライトにより脱直 鎖飽和炭化水素処理を行うことによって得られる、 セーボルト色 + 28以上、 1 5 °Cにおける密度が 760 k g_ m3以上 830 k g/m 3以下、 蒸留性状の 1 0%留出温度が 1 70°C以上 220°C以下、 50%留出温度が 210°C以上 28 0°C以下、 90%留出温度が 240°C以上 325°C以下、 セタン指数 55以上 7 5以下、 セタン価 55以上 70以下、 引火点 50°C以上、 加速酸化試験後の過酸 化物価が 10質量 p p m以下、くもり点一 10°C以下、目詰まり点— 10°C以下、 流動点一 1 5°C以下、 芳香族含有量が 1容量。/。以下、 ナフテン化合物含有量が 5 質量%以下、 硫黄分 1質量 p pm以下、 30°Cにおける動粘度が 1. Ymm2/ s以上 4. Omn^Z s以下、 10%残油の残留炭素分が 0. 05質量%以下、 HFRR摩耗痕径 (WS 1. 4) が 400 /zm以下であることを特徴とするディ ーゼル燃料組成物である前記記載の燃料組成物に関する。 250 ° C or less, pressure IMP a or more, 5MPa or less, obtained by performing dechained saturated hydrocarbon treatment with zeolite, Saybolt color + 28 or more, density at 15 ° C is 760 k g_ m 3 or more 830 kg / m 3 or less, 1 0% distillation temperature 1 70 ° C to 220 ° C, 50% distillation temperature 210 ° C to 28 ° C, 90% distillation temperature 240 ° C to 325 ° C, cetane index 55 7 5 or less, Cetane number 55 or more and 70 or less, Flash point 50 ° C or more, Peroxide value after accelerated oxidation test 10 mass ppm or less, Cloudy point 1 10 ° C or less, Clogging point 10 ° C or less Pour point 1 15 ° C or less, aromatic content 1 volume. /. Below, naphthene compound content is 5 mass% or less, sulfur content is 1 mass ppm or less, kinematic viscosity at 30 ° C is 1. Ymm 2 / s or more 4. Omn ^ Z s or less, 10% residual carbon content of residual oil The fuel composition according to the above, which is a diesel fuel composition, characterized by having a HFRR wear scar diameter (WS 1.4) of 400 / zm or less.
また本発明は、 初留点が 140°C以上 200°C以下、 蒸留性状の 90容量%留 出温度が 200°C以上 300°C以下、 芳香族含有量が 20容量%以下、 直鎖飽和 炭化水素含有量が 25質量%以上、 炭素数 10以上 15以下の直鎖飽和炭化水素 含有量が 20質量%以上、 硫黄含有量が 300質量 p pm以下である炭化水素混 合物 Aを原料油として、 (工程 1)該炭化水素混合物 Aを反応温度 250°C以上 3 10°C以下、水素圧力 5 MP a以上 1 OMP a以下、 LH S V 0. 5 h— 1以上 3. 0 h—1以下、 水素 Z炭化水素容量比が 0. 15以上 0. 6以下の条件で、 N i— W、 N i— Mo、 C o— Mo、 C o— W、 または N i— C o— M oのいずれかを 含有する触媒により水素化脱硫処理して炭化水素混合物 Bを得、 (工程 2)該炭化 水素混合物 Bの軽質な部分を 1容量。 /。以上 40容量。 /0以下の範囲で除去して炭化 水素混合物 Cを得、 (工程 3) 該炭化水素混合物 Cを反応温度 1 50°C以上 25 0°C以下、 圧力 IMP a以上 5 MP a以下の条件下でゼォライ トにより直鎖飽和 炭化水素を 10容量。 /0以上除去して得られる炭化水素混合物 Dを全燃料組成物に 対して 80容量%以上含有し、 セーボルト色 +28以上、 15°Cにおける密度が 740 k g/m3以上 840 k g/m3以下、 蒸留性状の 1 0%留出温度が 1 7 0°C以上 220°C以下、 90%留出温度が 220°C以上 300°C以下、 セタン指 数 45以上、 セタン価 48以上、 引火点 45°C以上、 反応試験の結果が中性、 銅 板腐食が 1以下、 加速酸化試験後の過酸化物価が 10質量 p pm以下、 流動点一 60°C以下、 硫黄分 10質量 p p m以下、 30°Cにおける動粘度が 1 · 6mm2 以上 5. 0mm2Zs以下、 一 30 °Cにおける動粘度が 30 mm2, s以下、 水分含有量が 0. 01容量%以下、 10%残油の残留炭素分が 0. 1質量。/。以下 07055307 であることを特徴とする極低温地向け燃料組成物である前記記載の燃料組成物に 関する。 The present invention also has an initial boiling point of 140 ° C to 200 ° C, a distillation property of 90% by volume, a distillation temperature of 200 ° C to 300 ° C, an aromatic content of 20% by volume, and linear saturation. Hydrocarbon mixture A with a hydrocarbon content of 25% by mass or more, a linear saturated hydrocarbon content of 10 to 15 carbon atoms, a content of 20% by mass or more, and a sulfur content of 300% by mass or less is A feedstock (Step 1) The hydrocarbon mixture A is reacted at a reaction temperature of 250 ° C. to 3 10 ° C., a hydrogen pressure of 5 MP a to 1 OMP a, LH SV 0.5 h— 1 to 3.0 h— 1 Below, under the condition that the hydrogen Z hydrocarbon capacity ratio is 0.15 or more and 0.6 or less, N i— W, N i— Mo, C o— Mo, C o— W, or N i— C o— M o Hydrodesulfurization treatment with a catalyst containing any of the above to obtain hydrocarbon mixture B, (Step 2) 1 volume of the light portion of the hydrocarbon mixture B. /. More than 40 capacity. To remove hydrocarbon mixture C within a range of 0 or less, and (Step 3) The hydrocarbon mixture C is subjected to a reaction temperature of 150 ° C to 25 ° C, pressure IMP a to 5 MPa 10 volumes of linear saturated hydrocarbons by zeolite. / 0 or removing the hydrocarbon mixture D obtained for the total fuel composition containing 80 volume% or more, Saybolt color +28 or higher, density at 15 ° C is 740 kg / m 3 or more 840 kg / m 3 Below, 10% distillation temperature of distillation property is 170 ° C or more and 220 ° C or less, 90% distillation temperature is 220 ° C or more and 300 ° C or less, cetane index is 45 or more, cetane number is 48 or more, ignition Point 45 ° C or higher, reaction test result is neutral, copper plate corrosion is 1 or less, peroxide value after accelerated oxidation test is 10 mass ppm or less, pour point is 60 ° C or less, sulfur content is 10 mass ppm or less , Kinematic viscosity at 30 ° C is 1.6 mm 2 or more, 5.0 mm 2 Zs or less, kinematic viscosity at 30 ° C is 30 mm 2 s or less, moisture content is 0.01 volume% or less, 10% residual oil Residual carbon content of 0.1 mass. /. Less than The fuel composition as described above, which is a fuel composition for cryogenic regions, which is 07055307.
また本発明は、 初留点が 140°C以上 200°C以下、 蒸留性状の 90容量%留 出温度が 200°C以上 300°C以下、 芳香族含有量が 20容量%以下、 直鎖飽和 炭化水素含有量が 25質量%以上、 炭素数 10以上 15以下の直鎖飽和炭化水素 含有量が 20質量%以上、 硫黄含有量が 300質量 p pm以下である炭化水素混 合物 Aを原料油として、 (工程 1)該炭化水素混合物 Aを反応温度 250°C以上 3 10°C以下、水素圧力 5 MP a以上 1 OMP a以下、 LHSV0. 5 h— 1以上 3. 0 h—1以下、 水素ノ炭化水素容量比が 0. 15以上 0. 6以下の条件で、 N i— W、 N i— Mo、 C o—Mo、 C o— W、 または N i— C o— M oのいずれかを 含有する触媒により水素化脱硫処理して炭化水素混合物 Bを得、 (工程 2)該炭化 水素混合物 Bの軽質な部分を 1容量%以上 40容量%以下の範囲で除去して炭化 水素混合物 Cを得、 (工程 3) 該炭化水素混合物 Cを反応温度 1 50°C以上 25 0°C以下、 圧力 IMP a以上 5 MP a以下の条件下でゼォライ トにより直鎖飽和 炭化水素を 10容量%以上除去して得られる炭化水素混合物 Dを全燃料組成物に 対して 80〜 100容量%、 炭素数 16以上 20以下の直鎖飽和炭化水素化合物 含有量の総和が 10質量%以下であり、 かつ炭素数 21以上 2· 5以下の直鎖飽和 炭化水素化合物含有量の総和が 2質量%以下である F T合成基材を 0〜 20容 量。 /0含有し、 セーボルト色 + 28以上、 1 5°Cにおける密度が 740 k gZm3 以上 840 k gZm3以下、 蒸留性状の 10%胬出温度が 1 70°C以上 220 °C 以下、 90%留出温度が 220°C以上 300。C以下、 セタン指数 45以上、 セタ ン価 48以上、 引火点 45°C以上、 反応試験の結果が中性、 銅板腐食が 1以下、 加速酸化試験後の過酸化物価が 10質量 p pm以下、 流動点一 60°C以下、 硫黄 分 10質量 p pm以下、 30°Cにおける動粘度が 1. 6mm2Zs以上 5. 0 m m2/s以下、 — 30°Cにおける動粘度が 30 mm2/ s以下、 水分含有量が 0. 0 1容量%以下、 10%残油の残留炭素分が 0. 1質量。 /0以下であることを特徴 とする極低温地向け燃料組成物である前記記載の燃料組成物に関する。 The present invention also has an initial boiling point of 140 ° C to 200 ° C, a distillation property of 90% by volume, a distillation temperature of 200 ° C to 300 ° C, an aromatic content of 20% by volume, and linear saturation. Hydrocarbon mixture A with a hydrocarbon content of 25% by mass or more, a linear saturated hydrocarbon content of 10 to 15 carbon atoms, a content of 20% by mass or more, and a sulfur content of 300% by mass or less is A feedstock (Step 1) The hydrocarbon mixture A is reacted at a reaction temperature of 250 ° C. or higher and 3 10 ° C. or lower, a hydrogen pressure of 5 MP a or higher and 1 OMP a or lower, LHSV 0.5 h or higher and 1 to 3.0 h or lower 1 or lower, N i—W, N i—Mo, C o—Mo, C o—W, or N i—C o—M o under the condition where the hydrogen-hydrocarbon capacity ratio is 0.15 or more and 0.6 or less. A hydrocarbon mixture B is obtained by hydrodesulfurization treatment using a catalyst containing orally, and a hydrocarbon mixture B is obtained. (Step 2) A light portion of the hydrocarbon mixture B is removed within a range of 1% by volume to 40% by volume. C (Step 3) The hydrocarbon mixture C is removed at a reaction temperature of 150 ° C. or more and 25 ° C. or less and pressure of IMP a or more and 5 MPa or less of linear saturated hydrocarbons by 10% or more by zeolite. The hydrocarbon mixture D obtained in this way is 80 to 100% by volume of the total fuel composition, and the total content of linear saturated hydrocarbon compounds having 16 to 20 carbon atoms is 10% by mass or less, and 21 carbon atoms. 0 to 20 volumes of FT synthetic base material in which the total content of linear saturated hydrocarbon compounds of 2 · 5 or less is 2% by mass or less. / 0 content, Saybolt color + 28 or higher, 15 750 k gZm 3 or higher density 840 k gZm 3 or lower, 10% distillation temperature of distillation property 1 70 ° C or higher 220 ° C or lower, 90% Distillation temperature is 220 ° C or more 300. C or lower, cetane index 45 or higher, cetane number 48 or higher, flash point 45 ° C or higher, reaction test result is neutral, copper plate corrosion is 1 or lower, peroxide value after accelerated oxidation test is 10 mass p pm or lower, Pour point 1 60 ° C or less, Sulfur content 10 mass p pm or less, Kinematic viscosity at 30 ° C 1.6 mm 2 Zs or more 5.0 mm 2 / s or less — Kinematic viscosity at 30 ° C 30 mm 2 / s or less, moisture content is 0.01% by volume or less, and 10% residual carbon has a residual carbon content of 0.1 mass. The fuel composition according to the above, which is a fuel composition for cryogenic regions, which is / 0 or less.
[発明の効果] [The invention's effect]
本発明によれば、 上記の製造方法、 留分規定等により製造されたディーゼル燃 料組成物を使用することにより、 従来の燃料組成物では実現が困難であった優れ た低温流動性と燃費性能、 環境対応性能を同時に有するディーゼル燃焼組成物を 提供することができる。 また本 ¾明によれば、 上記の製造方法、 留分規定等によ り製造された極低温地向け燃料組成物を使用することにより、 従来の燃料組成物 では実現が困難であつた極低温地域における低温流動性と複数の用途に対応でき るフレキシビリティさ並びに環境対応型燃料としての性能を全て満足させた極低 温地向け燃料組成物を提供することができる。 According to the present invention, diesel fuel manufactured by the above manufacturing method, fraction regulation, etc. By using the fuel composition, it is possible to provide a diesel combustion composition that has excellent low-temperature fluidity, fuel efficiency, and environment-friendly performance that are difficult to realize with conventional fuel compositions. Further, according to the present invention, by using the fuel composition for cryogenic regions produced by the above production method, fraction regulation, etc., it has been difficult to realize by using the conventional fuel composition. It is possible to provide a fuel composition for an extremely low temperature region that satisfies all of the low temperature fluidity in the region, the flexibility that can be used for multiple applications, and the performance as an environmentally friendly fuel.
[発明を実施するための最良の形態] [Best Mode for Carrying Out the Invention]
以下、 本発明について詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明の燃料組成物の原料油は、 〔 I〕蒸留性状の 10%留出温度が 140°C以 上 200°C以下、 90容量%留出温度が 240°C以上 350°C以下、 芳香族含有 量が 1容量%以下、 ナフテン化合物含有量が 5質量%以下、 硫黄含有量が 10質 量 p p m以下、 炭素数 16から 25までの直鎖飽和炭化水素含有量が 5質量%以 上 70質量%以下である FT合成基材からなる炭化水素混合物 X、 または 〔Π〕 初留点が 140°C以上 200°C以下、 蒸留性状の 90容量%留出温度が 200 °C 以上 300°C以下、 芳香族含有量が 20容量%以下、 直鎖飽和炭化水素含有量が 25質量。/。以上、 炭素数 1 0以上 1 5以下の直鎖飽和炭化水素含有量が 20質 量%以上、 硫黄含有量が 300質量 p pm以下である炭化水素混合物 Aを、 (1) 反応温度 250 °C以上 310 °C以下、 水素圧力 5MP a以上 l OMP a以下、 L HS V0. 5 h— 1以上 3. 0 h—1以下、水素 炭化水素容量比が 0. 15以上 0. 6以下の条件で、 N i—W、 N i -M o C o—Mo、 C o— W、 または N i _ C o一 Moのいずれか.を含有する触媒により水素化脱硫処理して炭化水素混合物 Bを得、 (2)該炭化水素混合物 Bの軽質な部分を 1容量%以上 40容量。/。以下の 範囲で除去して得られる炭化水素混合物 Cである。 上記の FT合成基材からなる炭化水素混合物 Xは、 蒸留性状の 10%留出温度 が 140°C以上 200°C以下、 90容量%留出温度が 240°C以上 350°C以下、 芳香族含有量が 1容量%以下、 ナフテン化合物含有量が 5質量%以下、 硫黄含有 量が 10質量 p pm以下、 炭素数 16から 25までの直鎖飽和炭化水素含有量が 5質量。 /o以上 70質量%以下である FT合成基材からなる炭化水素混合物であり、 好ましくは、蒸留性状の 10%留出温度が 150°C以上 1 95°C以下、 90容量。 /0 留出温度が 245°C以上 340bC以下、 芳香族含有量が 1容量。/。以下、 ナフテン 化合物含有量が 3質量%以下、 硫黄含有量が 5質量 p pm以下、 炭素数 1 6から 25までの直鎖飽和炭化水素含有量が 10質量%以上 65質量%以下である FT 合成基材からなる炭化水素混合物であり、 さらに好ましぐは、 蒸留性状の 10% 留出温度が 155°C以上 190°C以下、 90容量。/。留出温度が 250°C以上 33 0 °C以下、芳香族含有量が 1容量%以下、ナフテン化合物含有量が 1質量%以下、 硫黄含有量が 1質量 p p m以下、 炭素数 16から 25までの直鎖飽和炭化水素含 有量が 1 5質量%以上 60質量。 /0以下である FT合成基材からなる炭化水素混合 物である。 The feedstock of the fuel composition of the present invention comprises: [I] 10% distillation temperature of distillation property is 140 ° C to 200 ° C, 90% by volume distillation temperature is 240 ° C to 350 ° C, aroma Group content is 1% by volume or less, naphthene compound content is 5% by mass or less, sulfur content is 10 mass ppm or less, and linear saturated hydrocarbon content of 16 to 25 carbon atoms is 5% by mass or more 70 Hydrocarbon mixture X consisting of FT synthetic substrate with mass% or less, or [Π] Initial boiling point is 140 ° C or higher and 200 ° C or lower, 90% distillation temperature of distillation property is 200 ° C or higher and 300 ° C or higher In the following, the aromatic content is 20% by volume or less, and the linear saturated hydrocarbon content is 25 mass. /. The hydrocarbon mixture A having a straight chain saturated hydrocarbon content of 10 to 15 carbon atoms of 20 mass% or more and a sulfur content of 300 mass ppm or less is as follows: (1) Reaction temperature 250 ° C More than 310 ° C, hydrogen pressure 5MPa or more l OMPa or less, L HS V0.5 h- 1 or more 3.0 h- 1 or less, hydrogen hydrocarbon capacity ratio 0.15 or more 0.6 or less , Ni i-W, Ni i-M o Co o-Mo, Co o- W, or Ni i Co o Mo. (2) The light portion of the hydrocarbon mixture B is 1 volume% or more and 40 volumes. /. Hydrocarbon mixture C obtained by removing within the following range. The hydrocarbon mixture X composed of the above FT synthetic substrate has a distillation property of 10% distillation temperature of 140 ° C to 200 ° C, 90% by volume distillation temperature of 240 ° C to 350 ° C, aromatic The content is 1 vol% or less, the naphthene compound content is 5 mass% or less, the sulfur content is 10 mass ppm or less, and the linear saturated hydrocarbon content of 16 to 25 carbon atoms is 5 mass. It is a hydrocarbon mixture comprising an FT synthesis base material of / o or more and 70% by mass or less, and preferably 10% distillation temperature of distillation property is 150 ° C or more and 1 95 ° C or less and 90 volumes. / 0 Distillation temperature is 245 ° C or more and 340 b C or less, and aromatic content is 1 volume. /. FT synthesis with a naphthene compound content of 3 mass% or less, a sulfur content of 5 mass ppm or less, and a linear saturated hydrocarbon content of 16 to 25 carbon atoms of 10 mass% or more and 65 mass% or less It is a hydrocarbon mixture consisting of a base material, and more preferable is a distillation property of 10% distillation temperature of 155 ° C to 190 ° C and 90 volumes. /. Distillation temperature is 250 ° C or more and 330 ° C or less, aromatic content is 1% by volume or less, naphthene compound content is 1% by mass or less, sulfur content is 1% by mass or less, carbon number is 16 to 25 Linear saturated hydrocarbon content is 15 mass% or more and 60 mass%. This is a hydrocarbon mixture composed of an FT synthetic substrate that is / 0 or less.
原料油の性状が上述の範囲を外れると、 後段の処理における反応効率が低下し 本発明のディーゼル燃料組成物を得にくくなるため好ましくない。  If the properties of the feedstock are outside the above range, the reaction efficiency in the subsequent processing is lowered, and it becomes difficult to obtain the diesel fuel composition of the present invention, which is not preferable.
ここでいう、 初留点、. 90容量%留出温度は、 J I S K 2254 「石油製 品—蒸留試験方法一常圧法蒸留試験方法」 により、 芳香族含有量は、 J I S K 2536 「石油製品一炭化水素タイプ試験方法」 の蛍光指示薬吸着法により測定 される値、 ナフテン化合物含有量は、 ASTM D 2786 「質量分析法」 に準 拠して測定される値、 硫黄含有量は、 J I S K 2541 「原油及び石油製品 一硫黄分試験方法」 により測定される値、 炭素数 16〜25の直鎖飽和炭化水素 含有量(C 16— C 25の nP)は、 GC— F I Dを用いて測定される値(質量%) である。 すなわち、 カラムにはメチルシリコンのキヤビラリ一力ラム (ULTR AALLOY— 1)、 キヤリァガスにはヘリゥムを、検出器には水素イオン検出器 (F I D) を用い、 カラム長 30m、 キャリアガス流量 1. OmL/m i n、 分 割比 1 : 79、 試料注入温度 360°C、 カラム昇温条件 140°C→ ( 8 °C/m i n) →355°C、 検出器温度 360 °Cの条件で測定された値である。  Here, the first boiling point, 90% by volume distillation temperature is JISK 2254 "Petroleum products-Distillation test method one atmospheric pressure distillation test method", the aromatic content is JISK 2536 "Petroleum product one hydrocarbon" The value measured by the fluorescent indicator adsorption method of `` Type Test Method '', the naphthene compound content is the value measured according to ASTM D 2786 `` Mass Spectrometry '', and the sulfur content is JISK 2541 `` Crude oil and petroleum Product Measured by “Sulfur Content Test Method”, linear saturated hydrocarbon content of 16 to 25 carbon atoms (nP of C16—C25) is the value measured by GC—FID (mass% ). That is, the column uses a methyl silicon chiral ram (ULTR AALLOY-1), the carrier gas uses a helium, the detector uses a hydrogen ion detector (FID), a column length of 30 m, and a carrier gas flow rate of 1. OmL / min, split ratio 1: 79, sample injection temperature 360 ° C, column temperature rise condition 140 ° C → (8 ° C / min) → 355 ° C, detector temperature 360 ° C is there.
FT合成基材とは、 水素及び一酸化炭素を主成分とする混合ガス (合成ガスと 称する場合もある) に対してフィッシャートロプシュ (FT) 反応を適用させて 得られるナフサ、 灯油、 軽油相当の液体留分、 およびこれらを水素化精製、 水素 化分解することによって得られる炭化水素混合物、 および F T反応により得られ た F Tワックスを精製し、 これを水素化精製、 水素化分解することにより得られ る炭化水素混合物からなる基材のことを示す。 FT synthetic base material is equivalent to naphtha, kerosene, and light oil obtained by applying Fischer-Tropsch (FT) reaction to a mixed gas containing hydrogen and carbon monoxide as main components (sometimes referred to as synthesis gas). Liquid fractions, and hydrocarbon mixtures obtained by hydrotreating, hydrocracking them, and obtained by FT reaction It indicates a base material made of a hydrocarbon mixture obtained by refining FT wax, hydrotreating and hydrocracking it.
F T合成基材の原料となる混合ガスは、 炭素を含有する物質を、 酸素および/ または水および Zまたは二酸化炭素を酸化剤に用いて酸化し、 更に必要に応じて 水を用いたシフト反応により所定の水素および一酸化炭素濃度に調整して得られ る。  The mixed gas used as the raw material for the FT synthesis substrate is obtained by oxidizing a carbon-containing substance using oxygen and / or water and Z or carbon dioxide as an oxidant and, if necessary, a shift reaction using water. It is obtained by adjusting to a predetermined hydrogen and carbon monoxide concentration.
' 炭素を含有する物質としては、 天然ガス、 石油液化ガス、 メタンガス等の常温 で気体となっている炭化水素からなるガス成分や、 石油アスファルト、 バイオマ ス、 石炭、 建材ゃゴミ等の廃棄物、 汚泥、 及び通常の方法では処理しがたい重質 な原油、 非在来型石油資源等を高温に晒すことで得られる混合ガスが一般的であ るが、 水素及び一酸化炭素を主成分とする混合ガスが得られる限りにおいては、 本発明はその原料を限定するものではない。  '' Carbon-containing substances include natural gas, petroleum liquefied gas, methane gas, etc., gas components composed of hydrocarbons that are gaseous at normal temperature, waste such as petroleum asphalt, biomass, coal, building materials and garbage, Generally, mixed gas obtained by exposing sludge and heavy crude oil, unconventional petroleum resources, etc., which are difficult to process by ordinary methods, to high temperatures, is mainly composed of hydrogen and carbon monoxide. As long as the mixed gas to be obtained is obtained, the present invention does not limit the raw material.
フィッシヤートロプシュ反応には金属触媒が必要である。 好ましくは周期律表 第 8族の金属、 例えば、 コバルト、 ルテ^ウム、 ロジウム、 パラジウム、 エッケ ル、 鉄等、 更に好ましくは第 8族第 4周期の金属を活性触媒成分として利用する 方法である。 また、 これらの金属を適量混合した金属群を用いることもできる。 これらの活性金属はシリカやアルミナ、 チタニア、 シリカアルミナなどの担体上 に担持して得られる触媒の形態で使用することが一般的である。 また、 これら蝕 媒に上記活性金属に加えて第 2金属を組合せて使用することにより、 触媒性能を 向上させることもできる。 第 2金属としては、 ナトリウム、 リチウム、 マグネシ ゥムなどのアル力リ金属やアル力リ土類金属の他に、ジルコニウム、ハフニウム、 チタニウムなどが挙げられ、 一酸化炭素の転化率向上やワックス生成量の指標と なる連鎖成長確率(α )の増加など、 目的に応じて適宜使用されている。  The Fischer-Tropsch reaction requires a metal catalyst. Preferably, the method uses a group 8 metal of the periodic table, for example, cobalt, ruthenium, rhodium, palladium, nickel, iron, etc., more preferably a group 8 group 4 metal as an active catalyst component. . Moreover, the metal group which mixed these metals in an appropriate amount can also be used. These active metals are generally used in the form of a catalyst obtained by being supported on a support such as silica, alumina, titania or silica alumina. In addition, the catalyst performance can be improved by using a second metal in combination with the active metal in addition to the above-mentioned active metal. Examples of secondary metals include zirconium, hafnium, titanium, etc., in addition to aluminum and lithium metals such as sodium, lithium, and magnesium. It is used as appropriate according to the purpose, such as an increase in chain growth probability (α), which is an indicator of quantity.
フィッシャートロプシュ反応は、 混合ガスを原料として、 液体留分および F T ワックスを生成する合成法である。 この合成法を効率的に行うために、 一般には 混合ガス中の水素と一酸化炭素の比を制御することが好ましい。 一酸化炭素に対 する水素のモル混合比(水素 Z—酸化炭素)は 1 . 2以上であることが好ましく、 1 . 5以上であることがより好ましく、 1 . 8以上であることが更により好まし レ、。 また、 この比率は 3以下であることが好ましく、 2 . 6以下であることがよ り好ましく、 2 . 2以下であることが更により好ましい。 上記触媒を用いてフィッシャートロプシュ反応を行う場合の反応温度は、 1 8 0 °C以上 3 2 0 °C以下であることが好ましく、 2 0 0 °C以上 3 0 0 °C以下である ことがより好ましい。 反応温度が 1 8 0 °C未満では一酸化炭素がほとんど反応せ ず、 炭化水素収率が低い傾向にある。 また、 反応温度が 3 2 0 °Cを超えると、 メ タンなどのガス生成量が増加し、 液体留分および F Tヮッタスの生成効率が低下 してしまう。 The Fischer-Tropsch reaction is a synthesis method that uses a mixed gas as a raw material to produce a liquid fraction and FT wax. In order to efficiently perform this synthesis method, it is generally preferable to control the ratio of hydrogen to carbon monoxide in the mixed gas. The molar mixing ratio of hydrogen to carbon monoxide (hydrogen Z-carbon oxide) is preferably 1.2 or more, more preferably 1.5 or more, and even more preferably 1.8 or more. I like it. Further, this ratio is preferably 3 or less, more preferably 2.6 or less, and even more preferably 2.2 or less. When performing the Fischer-Tropsch reaction using the above catalyst, the reaction temperature is preferably 180 ° C. or higher and 320 ° C. or lower, and preferably 20 ° C. or higher and 30 ° C. or lower. More preferred. When the reaction temperature is less than 180 ° C, carbon monoxide hardly reacts and the hydrocarbon yield tends to be low. In addition, when the reaction temperature exceeds 3220 ° C, the amount of methane and other gases produced increases, and the production efficiency of liquid fractions and FT batteries decreases.
触媒に対するガス空間速度に特に制限は無いが、 5 0 0 h—1以上 4 0 0 0 h— 1以下が好ましく、 1 0 0 0 h— 1以上 3 0 0 0 h— 1以下がより好ましい。 ガス空 間速度が 5 0 0 h一1未満では液体燃料の生産性が低下する傾向にあり、 また 4 0 0 0 h—1を超えると反応温度を高くせざるを得なくなると共にガス生成が大き くなり、 目的物の収率が低下してしまう。 ' The gas space velocity with respect to the catalyst is not particularly limited, but is preferably 5 0 0 h— 1 or more and 4 0 0 0 h— 1 or less, and more preferably 1 0 0 0 h— 1 or more and 3 0 0 0 h— 1 or less. If the gas space velocity is less than 1 000 h, the productivity of liquid fuel tends to decrease, and if it exceeds 4 000 h- 1 , the reaction temperature must be increased and gas generation is large. The yield of the target product decreases. '
反応圧力 (一酸化炭素と水素からなる合成ガスの分圧) は特に'制限が無いが、 The reaction pressure (partial pressure of synthesis gas consisting of carbon monoxide and hydrogen) is not particularly limited,
0 . 5 M P a以上 7 M P a以下が好ましく、 2 M P a以上 4 M P a以下がより好 ましい。反応圧力が 0 . 5 M P a未満では裤体燃料の収率が低下する傾向にあり、 また 7 M P aを超えると設備投資額が大き'くなる傾向にあり、 非経済的になる。 0.5 M Pa or more and 7 M Pa or less are preferable, and 2 M Pa or more and 4 M Pa or less are more preferable. If the reaction pressure is less than 0.5 M Pa, the yield of the solid fuel tends to decrease, and if it exceeds 7 M Pa, the capital investment tends to be large, which is uneconomical.
F T合成基材は上記 F T反応により生成された液体留分おょぴ F Tワックスを 任意の方法で水素化精製または水素化分解し、 目的にあった蒸留性状、 組成等に 調整することで得られる。 水素化精製及び水素化分解は目的に即して選択すれば よく、 どちらか一方のみまたは両方法の組み合わせ等の選択も本発明の燃料組成 物を製造しうる範囲において何ら限定されるものではない。  The FT synthesis substrate can be obtained by hydrorefining or hydrocracking the liquid fraction or FT wax produced by the above FT reaction by any method and adjusting it to the distillation properties, composition, etc. that meet the purpose. . Hydrorefining and hydrocracking may be selected in accordance with the purpose, and selection of either one or a combination of both methods is not limited in any way as long as the fuel composition of the present invention can be produced. .
水素化精製に用いる触媒は水素化活性金属を多孔質担体に担持したものが一般 的であるが、 同様の効果が得られる触媒であれば本発明はその形態を何ら限定す るものではない。  The catalyst used for hydrorefining is generally a catalyst in which a hydrogenation active metal is supported on a porous carrier, but the present invention does not limit the form of the catalyst as long as the same effect can be obtained.
多孔質担体としては無機酸化物が好ましく用いられる。具体的には、アルミナ、 チタユア、 ジルコニァ、 ポリア、 シリカ、 ゼォライトなどが挙げられる。  An inorganic oxide is preferably used as the porous carrier. Specific examples include alumina, titaure, zirconia, polya, silica, and zeolite.
ゼォライ トは結晶性アルミノシリケートであり、 フォージャサイ ト、 ペンタシ ル、 モルデナィ トなどが挙げられ、 好ましくはフォージャサイ ト、 ベータ、 モル デナイ ト、 特に好ましくは Y型、 ベータ型が用いられる。 なかでも、 Y型は超安 定化したものが好ましい。  Zeolite is a crystalline aluminosilicate, and examples thereof include faujasite, pentasil, mordenite, etc., preferably faujasite, beta, and mordenite, particularly preferably Y type and beta type. Among them, the Y type is preferably ultra-stabilized.
活性金属としては以下に示す 2つの種類 (活性金属 Aタイプおよび活性金属 B タイプ) が好ましく用いられる。 The following two types of active metals (active metal A type and active metal B Type) is preferably used.
活性金属 Aタイプは周期律表第 8族金属から選ばれる少なくとも 1種類の金属 である。 好ましくは Ru, Rh; I r , P dおよび P tから選ばれる少なく とも 1種類であり、 さらに好ましくは P dまたは Zおよび P tである。 活性金属とし てはこれらの金属を組み合わせたものでよく、例えば、 P t— P d, P t— Rh, P t - R u , I r - P d , I r -R h, I r一 Ru, P t -P d— Rh, P t _ Rh-Ru, I r -P d-Rh, I r一 R h— R uなどがある。 これらの金属か らなる貴金属系触媒を使う際には、 水素気流下において予備還元処理を施した後 に用いることができる。 一般的には水素を含むガスを流通し、 200°C以上の熱 を所定の手順に従って与えることにより触媒上の活性金属が還元され、 水素化活 性を発現することになる。  The active metal type A is at least one metal selected from Group 8 metals of the Periodic Table. Preferably, at least one selected from Ru, Rh; Ir, Pd and Pt, more preferably Pd or Z and Pt. The active metal may be a combination of these metals. For example, P t—P d, P t—Rh, P t −R u, I r −P d, I r −R h, I r and Ru , Pt-Pd-Rh, Pt_Rh-Ru, Ir-Pd-Rh, Ir-Rh-Ru. When using a noble metal catalyst composed of these metals, it can be used after pre-reduction treatment in a hydrogen stream. In general, when a gas containing hydrogen is circulated and heat of 200 ° C. or higher is applied according to a predetermined procedure, the active metal on the catalyst is reduced, and hydrogenation activity is exhibited.
また活性金属 Bタイプとして、 周期律表第 6 A族および第 8族金属から選ばれ る少なく とも一種類の金属を含有し、 望ましくは第 6 A族および第 8族から選択 される二種類以上の金属を含有しているものも使用することができる。 例えば C o—Mo, N i—Mo, N i -C o -Mo , N i— Wが挙げられ、 これらの金属 からなる金属硫化物触媒を使う際には予備硫化工程を含む必要がある。  In addition, as the active metal B type, it contains at least one kind of metal selected from Group 6A and Group 8 metal of the periodic table, and preferably two or more kinds selected from Group 6A and Group 8 Those containing these metals can also be used. For example, Co-Mo, Ni-Mo, Ni-Co-Mo, and Ni-W can be mentioned. When using a metal sulfide catalyst composed of these metals, it is necessary to include a preliminary sulfidation step.
金属源としては一般的な無機塩、 錯塩化合物を用いることができ、 .担持方法と しては含浸法、 イオン交換法など通常の水素化触媒で用いられる担持方法のいず れの方法も用いることができる。 また、 複数の金属を担持する場合には混合溶液 を用いて同時に担持してもよく、 または単独溶液を用いて逐次担持してもよい。 金属溶液は水溶液でもよく有機溶剤を用いてもよい。  As the metal source, a general inorganic salt or a complex salt compound can be used, and as the supporting method, any of the supporting methods used in ordinary hydrogenation catalysts such as impregnation method and ion exchange method can be used. be able to. When a plurality of metals are supported, they may be supported simultaneously using a mixed solution, or may be sequentially supported using a single solution. The metal solution may be an aqueous solution or an organic solvent.
活性金属 Aタイプからなる触媒を用いて水素化精製を行う場合の反応温度は、 180°C以上 400°C以下であることが好ましく、 200°C以上 370°C以下で あることがより好ましく、 250°C以上 350°C以下であることが更に好ましく、 The reaction temperature when hydrorefining using an active metal A type catalyst is preferably 180 ° C or higher and 400 ° C or lower, more preferably 200 ° C or higher and 370 ° C or lower, More preferably 250 ° C or more and 350 ° C or less,
280°C以上 350°C以下が更により好ましい。 水素化精製における反応温度がEven more preferably, it is 280 ° C or higher and 350 ° C or lower. The reaction temperature in hydrorefining is
370°Cを超えると、 ナフサ留分へ分解する副反応が増えて中間留分の収率が極 度に減少するため好ましくない。 また、 反応温度が 270°Cを下回ると、 アルコ ール分が除去しきれずに残存するため好ましくない。 A temperature exceeding 370 ° C is not preferable because side reactions that decompose into a naphtha fraction increase and the yield of the middle fraction extremely decreases. On the other hand, if the reaction temperature is lower than 270 ° C., the alcohol content cannot be completely removed, which is not preferable.
活性金属 Bタイプからなる触媒を用いて水素化精製を行う場合の反応温度は、 1 70°C以上 320°C以下であることが好ましく、 1 75°C以上 300°C以下で あることがより好ましく、 180°C以上 280°C以下であることが更に好ましい。 水素化精製における反応温度が 320°Cを超えると、 ナフサ留分へ分解する副反 応が増えて中間留分の収率が極度に減少するため好ましくない。 また、 反応温度 が 1 70°Cを下回ると、 アルコール分が除去しきれずに残存するため好ましくな レ、。 The reaction temperature when hydrorefining using a catalyst comprising an active metal type B is preferably 1 70 ° C or higher and 320 ° C or lower, and 1 75 ° C or higher and 300 ° C or lower. More preferably, it is 180 ° C or higher and 280 ° C or lower. If the reaction temperature in hydrorefining exceeds 320 ° C, the side reaction that decomposes into the naphtha fraction increases and the yield of the middle fraction is extremely reduced. Also, if the reaction temperature is below 170 ° C, the alcohol content cannot be completely removed, which is preferable.
活性金属 Aタイプからなる触媒を用いて水素化精製を行う場合の水素圧力は、 0. 5 MP a以上 1 2 MP a以下であることが好ましく、 1. .0 MP a以上 5. OMP a以下であることがより好ましい。 水素圧力は高いほど水素化反応が促進 されるが、 一般には経済的に最適点が存在する。  The hydrogen pressure when hydrotreating using an active metal type A catalyst is preferably 0.5 MPa or more and 1 2 MPa or less, and 1.0 MPa or more and 5. OMP a or less. It is more preferable that The higher the hydrogen pressure, the more hydrogenation reaction is promoted, but generally there is an optimal point economically.
活性金属 Bタイプからなる触媒を用いて水素化精製を行う場合の水素圧力は、 2 MP a以上 10 MP a以下であることが好ましく、 2. 5 MP a以上 8 MP a 以下であることがより好ましく、 3 MP a以上 7 MP a以下であることが更に好 ましい。 水素圧力は高いほど水素化反応が促進されるが、 一般には経済的に最適 点が存在する。 .  The hydrogen pressure when hydrotreating using a catalyst comprising an active metal type B is preferably 2 MPa to 10 MPa, more preferably 2.5 MPa to 8 MPa. Preferably, it is 3 MPa or more and 7 MPa or less. The higher the hydrogen pressure, the more hydrogenation reaction is promoted, but generally there is an optimal point economically. .
活性金属 Aタイプからなる触媒を用いて水素化精製を行う場合の液空間速度 (LHS V) は、 0. l h 1以上 10. 0 h 1以下であることが好ましく、 0. 3 h— 1以上 3. 5 h 1以下であることがより好ましい。 LHSVは低いほど反応 に有利であるが、 低すぎる場合には極めて大きな反応塔容積が必要となり過大な 設備投資となるので経済的に好ましくない。 ' The liquid hourly space velocity which hydrorefining is carried out using a catalyst composed of the active metal A type (LHS V) is preferably 0. lh 1 or 10. It 0 h 1 less, 0. 3 h- 1 or more 3. More preferably 5 h 1 or less. The lower LHSV is, the better the reaction is. However, if it is too low, an extremely large reaction column volume is required, which is an excessively large capital investment, which is not economically preferable. '
活性金属 Bタイプからなる触媒を用いて水素化精製を行う場合の液空間速度 (LHS V) は、 0. 1 h 1以上 2 h 1以下であることが好ましく、 0. 2 h— 1以上 1. 5 h 1以下であることがより好ましく、 0. 3 h 1以上 1. 2 h 1以 下であることが更に好ましい。 LHSVは低いほど反応に有利であるが、 低すぎ る場合には極めて大きな反応塔容積が必要となり過大な設備投資となるので経済 的に好ましくない。 The liquid hourly space velocity which hydrorefining is carried out using a catalyst composed of the active metal B type (LHS V) is preferably 0.1 at 1 h 1 more 2 h 1 below, 0.1 2 h- 1 or more 1 . more preferably 5 h 1 less, more preferably 0. 3 h 1 more 1. a 2 h 1 hereinafter. The lower the LHSV, the better the reaction. However, if the LHSV is too low, an extremely large reaction tower volume is required, resulting in excessive capital investment, which is not economically preferable.
活性金属 Aタイプからなる触媒を用いて水素化精製を行う場合の水素ノ油比は、 5。 !:以上 000 NLZL以下であることが好ましく、 70NLZL以 上 800 NL/L以下であることがより好ましい。 水素/油比は高いほど水素化 反応が促進されるが、 一般には経済的に最適点が存在する。  The ratio of hydrogen oil when hydrorefining using an active metal A type catalyst is 5. ! : More than 000 NLZL, more preferably more than 70 NLZL and less than 800 NL / L. The higher the hydrogen / oil ratio, the faster the hydrogenation reaction, but generally there is an optimal point economically.
活性金属 Bタイプからなる触媒を用いて水素化精製を行う場合の水素/油比は、 1 00 NL/L以上 800 NL/L以下であることが好ましく、 120 NL/L 以上 600 NLZL以下であることがより好ましく、 15 ONLZL以上 500 NL/L以下であることが更に好ましい。 水素 Z油比は高いほど水素化反応が促 進されるが、 一般には経済的.に最適点が存在する。 . The hydrogen / oil ratio when hydrotreating using a catalyst consisting of active metal B type is It is preferably 100 NL / L or more and 800 NL / L or less, more preferably 120 NL / L or more and 600 NLZL or less, and further preferably 15 ONLZL or more and 500 NL / L or less. The higher the hydrogen Z oil ratio, the more hydrogenation reaction is promoted, but generally there is an optimal point in terms of economy. .
水素化分解に用いる触媒は水素化活性金属を固体酸性質を有する担体に担持し たものが一般的であるが、 同様の効果が得られる触媒であれば本発明はその形態 を何ら限定するものではない。  The catalyst used for hydrocracking is generally a catalyst in which a hydrogenation active metal is supported on a carrier having a solid acid property, but the present invention is not limited in any way as long as the catalyst can achieve the same effect. is not.
固体酸性質を有する担体にはアモルファス系と結晶系のゼォライ トがある。 具 体的にはアモルファス系のシリカ一アルミナ、 シリカ一マグネシア、 シリカージ ルコユア、 シリカーチタニアとゼォライ トのフォージャサイ ト型、 ベータ型、 M F I型、モルデナィ ト型などがある。好ましくはフォージャサイ ト型、ベータ型、 MF I型、モルデナィ ト型のゼォライト、より好ましくは Y型、ベータ型である。 Y型は超安定化したものが好ましい。  Supports having solid acid properties include amorphous and crystalline zeolites. Specifically, there are amorphous silica-alumina, silica-magnesia, silica gel, silica-titania and zeolite, faujasite type, beta type, MFI type, and mordenite type. Preferred are faujasite type, beta type, MFI type and mordenite type zeolite, more preferred are Y type and beta type. The Y type is preferably ultra-stabilized.
活性金属としては以下に示す 2つの種類 (活性金属 Aタイプおよび活性金属 B タイプ) が好ましく用いられる。  The following two types of active metals (active metal A type and active metal B type) are preferably used.
活性金属 Aタイプとしては主に周期律表第 6 A族および第 8族金属から選ばれ る少なくとも 1種類の金属である。 好ましくは N i、 C o、 Mo、 P. t、 P dお ょぴ Wから選ばれる少なくとも 1種類の金属である。 これらの金属からなる貴金 属系触媒を使う際には、 水素気流下において予備還元処理を施した後に用いるこ とができる。 一般的には水素を含むガスを流通し、 200°C以上の熱を所定の手 順に従って与えることにより触媒上の活性金属が還元され、 水素化活性を発現す ることになる。  The active metal A type is mainly at least one metal selected from Group 6A and Group 8 metals of the Periodic Table. Preferably, it is at least one metal selected from Ni, Co, Mo, Pt, Pd and W. When using a precious metal catalyst composed of these metals, it can be used after pre-reduction treatment in a hydrogen stream. In general, when a gas containing hydrogen is circulated and heat of 200 ° C. or higher is applied according to a predetermined procedure, the active metal on the catalyst is reduced, and hydrogenation activity is exhibited.
また活性金属 Bタイプとしてはこれらの金属を組み合わせたものでよく、 例え ば、 P t—P d、 C o— Mo、 N i— Mo、 N i— W、 N i— C o— Moなどが 挙げられる。 また、 これらの金属からなる触媒を使う際には、 予備硫化したのち 使用するのが好ましい。  The active metal B type may be a combination of these metals. Examples include Pt—Pd, Co—Mo, Ni—Mo, Ni—W, and Ni—Co—Mo. Can be mentioned. In addition, when using a catalyst made of these metals, it is preferable to use it after preliminary sulfidation.
金属源としては一般的な無機塩、 錯塩化合物を用いることができ、 担持方法と しては含浸法、 イオン交換法など通常の水素化触媒で用いられる担持方法のいず れの方法も用いることができる。 また、 複数の金属を担持する場合には混合溶液 を用いて同時に担持してもよく、 または単独溶液を用いて逐次担持してもよい。 金属溶液は水溶液でもよく有機溶剤を用いてもよい。 As the metal source, a general inorganic salt or a complex salt compound can be used, and as a loading method, any of the loading methods used in ordinary hydrogenation catalysts such as impregnation method and ion exchange method should be used. Can do. When a plurality of metals are supported, they may be supported simultaneously using a mixed solution, or may be sequentially supported using a single solution. The metal solution may be an aqueous solution or an organic solvent.
活性金属 Aタイプおよび活性金属 Bタイプからなる触媒を用いて水素化分解を 行う場合の反応温度は、 2000C以上 450°C以下であることが好ましく、 25 0°C以上 430°C以下であることがより好ましく、 300°C以上 400°C以下で あることが更に好ましい。 水素化分解における反応温度が 370°Cを超えると、 ナフサ留分へ分解する副反応が増えて中間留分の収率が極度に減少するため好ま しくない。 一方、 200°C未満の場合は触媒の活性が著しく低下するので好まし くない。 The reaction temperature in which hydrocracking is carried out using a catalyst composed of the active metal A type and active metal B type 200 0 preferably C or more and 450 ° C or less, in the following 25 0 ° C or 430 ° C More preferably, it is 300 ° C or more and 400 ° C or less. When the reaction temperature in hydrocracking exceeds 370 ° C, side reactions that decompose into naphtha fractions increase and the yield of middle fractions is extremely unfavorable. On the other hand, when the temperature is lower than 200 ° C, the activity of the catalyst is remarkably lowered.
活性金属 Aタイプおよび活性金属 Bタイプからなる触媒を用いて水素化分解を 行う場合の水素圧力は、 IMP a以上 2 OMP a以下であることが好ましく、 4 MP a以上 16 MP a以下であることがより好ましく、 6 MP a以上 1 3 MP a 以下であることが更に好ましい。水素圧力は高いほど水素化反応が促進されるが、 分解反応はむしろ進行が鈍化し反応温度の上昇で進行を調整する必要が生じるた め、 転じて触媒寿命の低下に繋がってしまう。 そのため、 一般に反応温度には経 済的な最適点が存在する。  The hydrogen pressure when hydrocracking using a catalyst composed of active metal A type and active metal B type is preferably IMP a or more and 2 OMP a or less, and 4 MPa or more and 16 MPa or less. Is more preferably 6 MPa or more and 13 MPa or less. The higher the hydrogen pressure, the more the hydrogenation reaction is promoted. However, the decomposition reaction rather slows down and the progress of the reaction needs to be adjusted by increasing the reaction temperature, leading to a decrease in catalyst life. Therefore, there is generally an economic optimal point for the reaction temperature.
活性金属 Aタイプからなる触媒を用いて水素化分解を行う場合の液空間速度 (LHS V) は、 0. 1 h— 1以上 10 h— 1以下であることが好ましく、 0. 3 h 一1以上 3. 5 h一1以下であることがより好ましい。 LHS Vは低いほど反応に有 利であるが、 低すぎる場合には極めて大きな反応塔容積が必要となり過大な設備 投資となるので経済的に好ましくない。 The liquid hourly space velocity which hydrocracking is carried out using a catalyst composed of the active metal A type (LHS V) is preferably 0. 1 h- 1 or more 10 h- 1 or less, 0. 3 h one 1 More preferably, it is not more than 3.5 h to 1 . The lower LHS V is, the more advantageous it is for the reaction. However, if it is too low, an extremely large reaction tower volume is required, resulting in excessive capital investment, which is not economical.
活性金属 Bタイプからなる触媒を用いて水素化分解を行う場合の液空間速度 (LHS V) は、 0. 1 h—1以上 2 h—1以下であることが好ましく、 0. 2 h一 1以上 1. 7 h一1以下であることがより好ましく、 0. 311-1以上 1. S h— 1以 下であることが更に好ましい。 LHSVは低いほど反応に有利であるが、 低すぎ る場合には極めて大きな反応塔容積が必要となり過大な設備投資となるので経済 的に好ましくない。 The liquid hourly space velocity which hydrocracking is carried out using a catalyst composed of the active metal B type (LHS V) is preferably 0. 1 h- 1 or more 2 h- 1 or less, 0. 2 h one 1 or 1. more preferably 7 h one 1 or less, and further preferably 0.1 311- 1 or 1. a lower S h- 1 or more. The lower the LHSV, the better the reaction. However, if the LHSV is too low, an extremely large reaction tower volume is required, resulting in excessive capital investment, which is not economically preferable.
活性金属 Aタイプからなる触媒を用いて水素化分解を行う場合の水素 Z油比は、 50NL L以上1000 NL/L以下であることが好ましく、 70NL/L以 上 800 NLZL以下であることがより好ましく、 40。 以上 500 NL/L以下であることが更に好ましい。 水素/油比は高いほど水素化反応が促 進されるが、 一般には経済的に最適点が存在する。 The hydrogen Z oil ratio when hydrocracking using an active metal type A catalyst is preferably 50 NL L or more and 1000 NL / L or less, more preferably 70 NL / L or more and 800 NLZL or less. Preferably 40. More preferably, it is 500 NL / L or less. Higher hydrogen / oil ratio promotes hydrogenation reaction In general, there is an optimum point economically.
活性金属 Bタイプからなる触媒を用いて水素化分解を行う場合の水素 油比は、 1 50NL/L以上 2000 N L L以下であることが好ましく、 300 N L/ L以上 1 700 NL/L以下であることがより好ましく、 400 NL/L以上 1 500 NLZL以下であることが更に好ましい。 水素/油比は高いほど水素化反 応が促進されるが、 一般には経済的に最適点が存在する。  When hydrocracking using an active metal type B catalyst, the hydrogen oil ratio is preferably 150 NL / L or more and 2000 NLL or less, and 300 NL / L or more and 1 700 NL / L or less. Is more preferably 400 NL / L or more and 1 500 NLZL or less. A higher hydrogen / oil ratio promotes the hydrogenation reaction, but generally there is an optimal point in the economy.
水素化処理する装置はいかなる構成でもよく、 反応塔は単独または複数を組み 合わせてもよく、 複数の反応塔の間に水素を追加注入してもよく、 気液分離操作 や硫化水素除去設備、 水素化生成物を分留し、 所望の留分を得るための蒸留塔を 有していてもよレ、。  The apparatus for hydrotreating may have any configuration, the reaction towers may be used alone or in combination, and hydrogen may be additionally injected between the reaction towers, gas-liquid separation operation, hydrogen sulfide removal equipment, It may have a distillation column to fractionate the hydrogenation product and obtain the desired fraction.
水素化処理装置の反応形式は、固定床方式をとりうる。水素は原料油に対して、 向流または並流のいずれの形式をとることもでき、 また、 複数の反応塔を有し向 流、 並流を組み合わせた形式のものでもよい。 一般的な形式としてはダウンフロ 一であり、 気液双並流形式がある。 反応塔の中段には反応熱の除去、 あるいは水 素分圧を上げる目的で水素ガスをタエンチとして注入してもよい。 本発明の極低温地向け燃料組成物の原料油となる炭化水素混合物 Aは、 初留点 が 140°C以上 200°C以下、 蒸留性状の 90容量。/。留出温度が 200°C以上 3 00°C以下、 芳香族含有量が 20容量%以下、 直鎖飽和炭化水素含有量が 25質 量%以上、炭素数 10以上 15以下の直鎖飽和炭化水素含有量が 20質量%以上、 硫黄含有量が 300質量 p pm以下であり、 好ましくは、 初留点が 145°C以上 1 90°C以下、 蒸留性状の 90容量。/。留出温度が 220°C以上 290°C以下、 芳 香族含有量が 1 7容量%以下、 直鎖飽和炭化水素含有量が 28質量%以上、 炭素 数 10以上 1 5以下の直鎖飽和炭化水素含有量が 23質量%以上、 硫黄含有量が 100質量 p p m以下であり、さらに好ましくは、初留点が 150°C以上 1 80 °C 以下、 蒸留性状の 90容量。/。留出温度が 230°C以上 285°C以下、 芳香族含有 量が 1 5容量%以下、 直鎖飽和炭化水素含有量が 30質量。/。以上、 炭素数 10以 上 15以下の直鎖飽和炭化水素含有量が 25質量%以上、 硫黄含有量が 50質量 p pm以下である。 炭化水素混合物 Aの性状が上述の範囲を外れると、 後段の処 理における反応効率が低下し本発明の極低温地向け燃料組成物を得にくくなるた め好ましくない。 The reaction format of the hydrotreating apparatus can take a fixed bed system. Hydrogen can take either a countercurrent or cocurrent flow format with respect to the feedstock, or it can have a plurality of reaction towers and a combination of countercurrent and cocurrent flow. The general format is downflow, and there is a gas-liquid co-current format. Hydrogen gas may be injected into the middle stage of the reaction tower as a tent to remove reaction heat or increase the hydrogen partial pressure. The hydrocarbon mixture A used as the feedstock for the fuel composition for the cryogenic region of the present invention has an initial boiling point of 140 ° C or higher and 200 ° C or lower and a distillation capacity of 90 volumes. /. Straight chain saturated hydrocarbons with distillation temperature of 200 ° C to 300 ° C, aromatic content of 20% by volume or less, linear saturated hydrocarbon content of 25% by mass, carbon number of 10 to 15 The content is 20 mass% or more, the sulfur content is 300 mass ppm or less, preferably the initial boiling point is 145 ° C or more and 1 90 ° C or less, and 90 volumes of distillation properties. /. Distillation temperature is 220 ° C or more and 290 ° C or less, aromatics content is 17% by volume or less, linear saturated hydrocarbon content is 28% by mass or more, carbon number is 10 to 15 and linear saturated carbonization A hydrogen content of 23% by mass or more, a sulfur content of 100% by mass or less, and more preferably an initial boiling point of 150 ° C. or more and 1 80 ° C. or less and a distillation property of 90 volumes. /. Distillation temperature is 230 ° C or more and 285 ° C or less, aromatic content is 15% by volume or less, and linear saturated hydrocarbon content is 30 mass. /. As described above, the linear saturated hydrocarbon content of 10 to 15 carbon atoms is 25 mass% or more, and the sulfur content is 50 mass ppm or less. If the properties of the hydrocarbon mixture A deviate from the above range, the reaction efficiency in the subsequent processing is lowered, making it difficult to obtain the fuel composition for the cryogenic region of the present invention. It is not preferable.
ここでいう、 初留点、 90容量%留出温度は、 J I S K 2254 「石油製 品一蒸留試験方法一常圧法蒸留^験方法」 により、 芳香族含有量は、 J I S K 2536 「石油製品一炭化水素タイプ試験方法」 の蛍光指示薬吸着法により測定 される値、 直鎖飽和炭化水素含有量 (ノルマルパラフィン分)、炭素数 10〜1 5 の直鎖飽和炭化水素含有量 (C 10— 15の nP分) は、 GC— F I Dを用いて 測定される値 (質量0 /0) である。 すなわち、 カラムにはメチルシリコンのキヤピ ラリーカラム (ULTRAALLOY— 1)、 キヤリァガスにはヘリゥムを、 検出 器には水素イオン検出器 (F I D) を用い、 カラム長 30m、 キャリアガス流量 1. 0mL/m i n、 分割比 1 : 79、 試料注入温度 360°C、 カラム昇温条件 140°C→ ( 8 °C/m i n) →355°C、 検出器温度 360°Cの条件で測定され た値である。 Here, the first boiling point, 90% by volume distillation temperature is JISK 2254 “Petroleum product one distillation test method one atmospheric pressure distillation test method”, the aromatic content is JISK 2536 “Petroleum product one hydrocarbon” Value measured by the fluorescent indicator adsorption method of “Type test method”, linear saturated hydrocarbon content (normal paraffin content), linear saturated hydrocarbon content of 10 to 15 carbon atoms (nP content of C 10-15) ) is a value measured using a GC-FID (mass 0/0). That is, a methylsilicon capillary column (ULTRAALLOY-1) is used for the column, a helium is used for the carrier gas, a hydrogen ion detector (FID) is used for the detector, the column length is 30 m, the carrier gas flow rate is 1.0 mL / min, This is the value measured under the following conditions: split ratio 1:79, sample injection temperature 360 ° C, column temperature rise condition 140 ° C → (8 ° C / min) → 355 ° C, detector temperature 360 ° C.
硫黄含有量は、 J I S K 2541 「原油及ぴ石油製品一硫黄分試験方法」 により測定される値である。 . 炭化水素混合物 Aは上述の所定の性状を有する以外に特に限定は無いが、 石油 系基材の他に、 環境対応型燃料としての排出ガス性能向上の理由から.、 FT合成 基材、 動植物油由来の処理油であることが好ましい。  Sulfur content is the value measured by J I S K 2541 “Crude oil and petroleum products – Sulfur content test method”. The hydrocarbon mixture A is not particularly limited other than having the above-mentioned specified properties, but for reasons of improving exhaust gas performance as an environmentally friendly fuel in addition to petroleum-based substrates, FT synthesis substrates, animals and plants It is preferable that it is processing oil derived from oil.
石油系基材とは、 原油を処理することにより得られる炭化水素基材であり、 一 般には常圧蒸留装置から得られる直留基材、 常圧蒸留装置から得られる直留重質 油や残查油を減圧蒸留装置で処理して得られる減圧基材、 減圧重質基材あるいは 脱硫重油を接触分解または水素化分解して得られる接触分解基材または水素化分 解基材、 これらの石油系炭化水素を水素化精製して得られる水素化精製基材若し くは水素化脱硫基材等が挙げられる。 また、 原油以外に非在来型石油資源と称さ れる資源、 例えばオイルシェル、 オイルサンド、 オリノコタール等に適切な処理 を施し、 上述の基材と同等の性能にまで仕上げた基材も石油系基材に準じて使用 することができる。  Petroleum base material is a hydrocarbon base material obtained by processing crude oil. Generally, straight base material obtained from atmospheric distillation equipment, straight-run heavy oil obtained from atmospheric distillation equipment. Or base material obtained by treating cracked oil and residual oil with a vacuum distillation apparatus, heavy base material under reduced pressure, catalytic cracking base material or hydrocracking base material obtained by catalytic cracking or hydrocracking desulfurized heavy oil, these petroleum Examples thereof include hydrorefining base materials obtained by hydrorefining hydrocarbons or hydrodesulfurization base materials. In addition to crude oil, non-conventional petroleum resources, such as oil shells, oil sands, orinocotal, etc., are treated appropriately and the base materials finished to the same performance as the above base materials are also petroleum-based. Can be used according to the substrate.
F T合成基材は前述したとおりである。  The FT synthetic substrate is as described above.
動植物由来の処理油とは、 上述の石油系基材を得る際に適用する化学反応処理 を動植物原料から産出、 生成される油及ぴ油脂に対して適用することで得られる 炭化水素で構成された基材である。 より具体的には、 動植物油脂および動物油脂 由来成分を含有した炭化水素留分を原料油として、 周期律表第 6 A族および第 8 族から選ばれる少なくとも一種類以上の金属と酸性質を有する無機酸化物を含有 する水素化分解触媒と水素加圧下で接触させることを特徴とする含炭化水素混合 基材である。 動植物由来の処理油の原料油としては、 動植物油脂および動物油脂 由来成分であることが必要である。 本発明における動植物油脂おょぴ動植物油脂 由来成分とは、 天然もしくは人工的に生産、 製造される動植物.油脂および動植物 油脂由来成分を示している。 動物油脂および動物油の原料としては、 牛脂、 牛乳 脂質 (バター)、 豚脂、 羊脂、 鯨油、 魚油、 肝油等、 植物油脂および植物油原料と しては、 ココヤシ、 パームヤシ、 ォリーブ、 べにばな、 菜種 (菜の花)、 米ぬか、 ひまわり、 綿実、 とうもろこし、 大豆、 ごま、 アマ二等の種子部及びその他の部 分が挙げられるが、 これ以外の油脂、 油であっても使用に問題はない。 これらの 原料油に関してはその状態が固体、 液体であることは問わないが、 取り扱いの容 易さおよび二酸化炭素吸収能や生産性の髙さから植物油脂、 植物油を原料とする 方が好ましい。 また、 本発明においては、 これらの動物油、 植物油を民生用、 産 業用、 食用等で使用した廃油も雑物等の除去工程を加えた後に原料とすることが できる。 Processed oil derived from animals and plants is obtained by applying the chemical reaction process applied when obtaining the above-mentioned petroleum base material to the oils and fats produced and produced from animal and plant raw materials. It is the base material comprised with the hydrocarbon. More specifically, it has at least one metal selected from Group 6A and Group 8 of the Periodic Table and acid properties using a hydrocarbon fraction containing components derived from animal and vegetable oils and animal fats as raw material oil. A hydrocarbon-containing mixed base material, which is brought into contact with a hydrocracking catalyst containing an inorganic oxide under hydrogen pressure. The raw material oil for the processed oil derived from animals and plants must be derived from animals and plants oils and animal oils. In the present invention, the term “animal / vegetable fat / oil / opin / vegetable fat / oil-derived component” refers to a natural or artificially produced or manufactured animal / vegetable. Animal fats and oils include beef tallow, milk lipids (butter), pork tallow, sheep fat, whale oil, fish oil, liver oil, etc. Vegetable oils and vegetable oil ingredients include coconut palm, olive palm, olives, Rapeseed (rapeseed), rice bran, sunflower, cottonseed, corn, soybean, sesame seeds, and other parts, but other fats and oils can be used without problems. . These raw oils may be solid or liquid, but it is preferable to use vegetable oils and vegetable oils as raw materials because of ease of handling, carbon dioxide absorption capacity and low productivity. In the present invention, waste oils obtained by using these animal oils and vegetable oils for consumer use, industrial use, food use, etc. can be used as raw materials after adding a step of removing impurities.
これらの原料中に含有されるグリセライ ド化合物の脂肪酸部分の代表的な組成 としては、 飽和脂肪酸と称する分子構造中に不飽和結合を有しない脂肪酸である 酪酸 (C3H7COOH)、 カプロン酸 (CsHnCOOH 力プリル酸 (C?!^ 5CO〇H)、力プリン酸(C9H19COOH)、ラウリン酸(CnH COOH) ミ リスチン酸 (C13H27COOH)、 パルミチン酸 (C 15H3 COOH)、 ステ アリン酸 (C17H35COOH)、 及び不飽和結合を 1つもしくは複数有する不飽 和脂肪酸であるォレイン酸 (C17H33COOH)、 リノール酸 (C17H31COO H)、 リ ノ レン酸 (C17H29COOH)、 リシノ レン酸 (C17H32 (OH) CO OH) 等が挙げられる。 自然界の物質におけるこれら脂肪酸の炭化水素部は一般 に直鎖であることが多いが、 本発明において本発明で規定する性状を満たす限り で、側鎖を有する構造、すなわち異性体であっても使用することができる。また、 不飽和脂肪酸における分子中の不飽和結合の位置も、 本発明において本発明で規 定する性状を満たす限りで、自然界で一般に存在確認されているものだけでなく、 化学合成によつて任意の位置に設定されたものも使用することができる。 Typical compositions of the fatty acid part of the glyceride compounds contained in these raw materials include butyric acid (C 3 H 7 COOH) and caproic acid, which are fatty acids having no unsaturated bonds in the molecular structure called saturated fatty acids. (CsHnCOOH Forced prillic acid (C?! ^ 5 CO ○ H), Forced puric acid (C 9 H 19 COOH), Lauric acid (CnH COOH) Myristic acid (C 13 H 27 COOH), Palmitic acid (C 15 H 3 COOH), stearic acid (C 17 H 35 COOH), and oleic acid (C 17 H 33 COOH), an unsaturated fatty acid having one or more unsaturated bonds, linoleic acid (C 17 H 31 COO) H), linolenic acid (C 17 H 29 COOH), ricinoleic acid (C 17 H 32 (OH) CO OH), etc. The hydrocarbon part of these fatty acids in natural substances is generally linear. In many cases, as long as the properties defined in the present invention are satisfied, a structure having a side chain, that is, The position of the unsaturated bond in the molecule of the unsaturated fatty acid is generally confirmed in nature as long as it satisfies the properties defined in the present invention. Not only what you have, Those set at an arbitrary position by chemical synthesis can also be used.
上述の原料油 (動植物油脂および動植物油脂由来成分) はこれらの脂肪酸を 1 種または複数種有しており、 原科によってその有する脂肪酸類は異なっている。 例えば、 ココヤシ油はラウリン酸、 ミリスチン酸等の飽和脂肪酸を比較的多く有 しているが、 大豆油はォレイン酸、 リノール酸等の不飽和脂肪酸を多く有してい る。  The above-mentioned raw material oils (animal and vegetable oils and fats and components derived from animal and vegetable oils and fats) have one or more of these fatty acids, and the fatty acids they have vary depending on the raw materials. For example, coconut oil has a relatively large amount of saturated fatty acids such as lauric acid and myristic acid, while soybean oil has a large amount of unsaturated fatty acids such as oleic acid and linoleic acid.
また、 原料油としては 250°C以上の留分を含有していることが好ましく、 3 00°C以上の留分を含有していることがより好ましく、 360°C以上の留分を含 有していることが更に好ましい。 沸点が 230°C以上の留分を含有していない場 合には、 製造時にガス分の生成が増加するため液生成物の収率が減少し、 ライフ サイクル二酸化炭素が増加する恐れがある。  The feedstock preferably contains a fraction at 250 ° C or higher, more preferably contains a fraction at 300 ° C or higher, and contains a fraction at 360 ° C or higher. More preferably. If it does not contain a fraction with a boiling point of 230 ° C or higher, the production of gas will increase during production, which may reduce the yield of liquid products and increase life cycle carbon dioxide.
また、 動植物由来の処理油の原料油としては、 動植物油脂および動植物油脂由 来成分に石油系炭化水素留分を混合しているものを用いてもよい。 この場合、 石 油系炭化水素留分の比率は原料油全体の容量に対して 10〜99容量%が望まし く、 30〜 99容量%がより望ましく、 60〜 98容量%がきらにより望ましい。 石油系炭化水素留分の比率が 10容量%に満たない場合には、 副生する水の処理 に要する設備が必要となる可能性があり、 石油系炭化水素留分の比率が 9 9容 量%を超える場合にはライフサイクル二酸化炭素削減の観点からは好ましくない。 水素化処理における水素化分解条件としては、 水素圧力 6〜2 OMP a、 液空 間速度 (LHSV) 0. 1〜1. 5 h— 1、 水素/油比 200〜2000 NL/L といった条件で行われることが望ましく、 水素圧力 8〜1 7MP a、 液空間速度 0. 2〜1. 1 h— 1、 水素/油比 300〜 1 800 NLZLといった条件がより 望ましく、 水素圧力 10〜: I 6MP a、 液空間速度 0. 3〜0. 9 h_1、 水素/ 油比 350〜 160 ON L/Lといった条件がさらにより望ましい。 これらの条 件はいずれも反応活性を左右する因子であり、 例えば、 水素圧力および水素油比 が前記下限値に満たない場合には反応性の低下や急速な活性低下を招く恐れがあ り、 水素圧力および水素油比が前記上限値を超える場合には圧縮機等の過大な設 備投資を要する恐れがある。 液空間速度は低いほど反応に有利な傾向にあるが、 0. 1 h一1未満の場合は極めて大きな反応塔容積が必要となり過大な設備投資と なる傾向にあり、 他方、 1. 5 h一1を超えている場合は反応が十分進行しなくな る傾向にある。 In addition, as the raw material oil for the treatment oil derived from animals and plants, oils and fats and components derived from animals and plants and fats and oils may be used. In this case, the ratio of the petroleum hydrocarbon fraction is preferably 10 to 99% by volume, more preferably 30 to 99% by volume, and more preferably 60 to 98% by volume based on the total volume of the feedstock. If the proportion of petroleum-based hydrocarbon fraction is less than 10% by volume, it may be necessary to install equipment required to treat by-product water, and the proportion of petroleum-based hydrocarbon fraction is 99 volume. When it exceeds%, it is not preferable from the viewpoint of reducing the life cycle carbon dioxide. The hydrocracking conditions in the hydrotreating are as follows: hydrogen pressure 6-2 OMPa, liquid space velocity (LHSV) 0.1-1.5 h— 1 , hydrogen / oil ratio 200-2000 NL / L. . it is desirable to take place, the hydrogen pressure 8 to 1 7MP a, liquid hourly space velocity 0. 2 to 1 1 h- 1, and more preferably conditions such hydrogen / oil ratio 300~ 1 800 NLZL, hydrogen pressure. 10 to: I 6MP a, liquid hourly space velocity 0. 3~0. 9 h _1, hydrogen / oil ratio 350 conditions such 160 ON L / L is even more desirable. These conditions are all factors that influence the reaction activity.For example, if the hydrogen pressure and hydrogen oil ratio are less than the lower limit values, there is a risk of causing a decrease in reactivity or a rapid decrease in activity. If the hydrogen pressure and hydrogen oil ratio exceed the above upper limit values, excessive equipment investment such as a compressor may be required. Liquid hourly space velocity tends to be more advantageous for the lower the reaction, if it is less than 0. 1 h one 1 tends to become extremely large reactor volume is required excessive capital investment, while, 1. 5 h one If it exceeds 1 , the reaction will not proceed sufficiently Tend to.
原料油である炭化水素混合物 Aは、 以下の工程 (1) および (2) にて処理さ れて炭化水素混合物 Cを得る。 '  The hydrocarbon mixture A, which is a raw material oil, is treated in the following steps (1) and (2) to obtain a hydrocarbon mixture C. '
工程 (1) においては、 前記炭化水素組成物 Aを、 反応温度 250°C以上 3 1 0°C以下、 水素圧力 5MP a以上 1 OMP a以下、 LHSVO 5 h— 1以上 3. O h— 1以下、 水素 炭化水素容量比 (水素/油比) が 0. 1 5以上0. 6以下の 条件で、 N i— W、 N i— Mo、 C o— Mo、 C o— W、 または N i— C o— M oのいずれかを含有する触媒により水素化脱硫処理を行い、 炭化水素混合物 Bを 得る。 In the step (1), the hydrocarbon composition A is mixed with a reaction temperature of 250 ° C. or higher and 30 ° C. or lower, a hydrogen pressure of 5 MPa or higher and 1 OMP a or lower, LHSVO 5 h— 1 or higher, 3. O h— 1 Below, under conditions where the hydrogen hydrocarbon capacity ratio (hydrogen / oil ratio) is 0.15 or more and 0.6 or less, N i— W, N i— Mo, C o— Mo, C o— W, or N i — Hydrodesulfurization treatment is performed with a catalyst containing any of C o— M o to obtain hydrocarbon mixture B.
水素化脱硫処理の反応温度は、 250°C以上 310°C以下であり、 好ましくは 280°C以上 305 °C以下である。 反応温度が 250 °C未満であると十分な水素 化脱硫反応速度が得られず、 一方、 310°Cを超えると水素化脱硫反応が反応平 衡の点で不十分となる。 水素化脱硫処理における水素圧力は、 5MP a以上 10 MP a以下であり、 好ま.しくは 7MP a以上 9 MP a以下である。 水素化脱硫処 理における LHSVは 0. 5 h— 1以上 3. 0 h—1以下であり、 好ましくは 1 h— 1以上 2 h一1以下である。 LHS Vは低いほど反応に有利であるが、 0. 5 h一1 未満の場合には、 極めて大きな反応塔容積が必要となる。 また、 水素/炭化水素 容量比は、 0. 1 5以上 0. 6以下であり、 好ましくは 0. 2以上 0. 4以下で ある。 水素圧力が 5MP a未満の場合、 及び水素 炭化水素容量比が 0. 1 5未 満の場合には、 脱硫反応又は水素化反 の促進効果が不十分となる。 また、 水素 圧力が 1 OMP aを超える場合、 及び水素/炭化水素容量比が 0. 6を超える場 合には、 装置コストが増大し非効率となってしまう。 The reaction temperature of the hydrodesulfurization treatment is 250 ° C or higher and 310 ° C or lower, preferably 280 ° C or higher and 305 ° C or lower. When the reaction temperature is less than 250 ° C, a sufficient hydrodesulfurization reaction rate cannot be obtained. On the other hand, when the reaction temperature exceeds 310 ° C, the hydrodesulfurization reaction becomes insufficient in terms of reaction equilibrium. The hydrogen pressure in the hydrodesulfurization treatment is 5 MPa or more and 10 MPa or less, and preferably 7 MPa or more and 9 MPa or less. LHSV in the hydrodesulfurization treatment is 0. 5 h- 1 or more 3. 0 h- 1 or less, preferably 1 h- 1 or more 2 h one 1 below. LHS V but is preferably as low reaction, in the case of less than 0. 5 h one 1, it is necessary to extremely large reactor volume. Further, the hydrogen / hydrocarbon volume ratio is 0.15 or more and 0.6 or less, preferably 0.2 or more and 0.4 or less. When the hydrogen pressure is less than 5 MPa, and when the hydrogen hydrocarbon volume ratio is less than 0.15, the effect of promoting desulfurization reaction or hydrogenation reaction is insufficient. In addition, when the hydrogen pressure exceeds 1 OMPa and the hydrogen / hydrocarbon capacity ratio exceeds 0.6, the equipment cost increases and becomes inefficient.
水素化脱硫処理に用いる触媒は、触媒の活性金属として N i一 W、N i -Mo, C o— Mo、 C o— W、 N i—C o—Moのいずれかを含有することが必要であ る。 多孔質担体としては無機酸化物が好ましく用いられる。 具体的な無機酸化物 としては、 アルミナ、 チタニア、 ジルコニァ、 ボリア、 シリカ、 あるいはゼオラ ィ トが挙げられ、 このうちチタユア、 ジルコエア、 ポリア、 シリカ、 ゼォライ ト のうち少なくとも 1種類とアルミナによって構成されているものが本発明におい て好適に用いられる。 上述の活性金属の担持量は特に限定されないが、 触媒質量 に対し金属酸化物量合計で 20質量%以上 35質量%以下であることが望ましい。 触媒は水素および硫黄化合物により予備硫化処理を施した後に用いるのが好まし い。 一般的には水素および硫黄化合物を含むガスを流通し、 200°C以上の熱を 所定の手順に従って与えることにより触媒上の活性金属を予備硫化し、 水素化お ょぴ脱硫活性を発現することになる。 The catalyst used for hydrodesulfurization treatment must contain any of Ni 1 W, Ni i-Mo, Co—Mo, Co—W, and Ni—Co—Mo as the active metal of the catalyst. It is. An inorganic oxide is preferably used as the porous carrier. Specific examples of the inorganic oxide include alumina, titania, zirconia, boria, silica, and zeolite. Among these, at least one of titaure, zircoair, polya, silica, and zeolite is composed of alumina. Are preferably used in the present invention. The amount of the active metal supported is not particularly limited, but the total amount of metal oxides relative to the catalyst mass is preferably 20% by mass or more and 35% by mass or less. The catalyst is preferably used after presulfiding with hydrogen and sulfur compounds. Generally, a gas containing hydrogen and a sulfur compound is circulated, and the active metal on the catalyst is presulfided by applying heat of 200 ° C or higher according to a predetermined procedure, and hydrogenation and desulfurization activity is expressed. become.
工程 (2) では、 工程 (1) で得られた炭化水素混合物 Bから軽質分 (一般的 には沸点 200°C以下) をストリップ (除去) して炭化水素混合物 Cを得る。 ス トリップ量は、 水素化脱硫処理油を基準として、 1容量%以上.40容量%以下で あり、 好ましくは 10容量%以上 37容量%以下であり、 より好ましくは 20容 量%以上 35容量%以下である。 ストリップを行わない場合、 またはストリップ 量が十分でない場合、 後段の直鎖飽和炭化水素 (ノルマルパラフィン) の除去装 置の負荷が上がり、除去効率が低下する。また、ストリップ量が過大(40容量% 超) な場合、 ス トリ ップ処理に要する時間が増加し、 製造時のエネルギー消費量 が増大してしまう。 本発明の燃料組成物は、 前述の炭化水素混合物 Xまた炭化水素混合物 Cからな る原料油を、 温度 1 50°C以上 250°C以下、 圧力 1 MP a以上 5 MP a以下の 条件下でゼォライ トにより脱直鎖飽和炭化水素処理することによって得られる。 直鎖飽和炭化水素の除去の反応温度は 150°C以上 250°C以下であり、 好ま しくは 180°C以上 200°C以下である。 反応温度が 1 50°C未満の場合、 十分 な直鎖飽和炭化水素の除去速度が得られない。 一方、 250°Cを超えると、 直鎖 飽和炭化水素の除去効率が低下する。 また、 この時の圧力は、 IMP a以上 5M P a以下であり、 好ましくは 1. 5MP a以上 3MP a以下である。 圧力が 1M P a未満であると十分な直鎖飽和炭化水素の除去速度が得られない。 一方、 5M P aを超えると十分な直鎖飽和炭化水素の除去速度が得られない。 直鎖飽和炭化 水素の除去に使用するゼォライ トは特には限定されないが一般的には A型ゼオラ ィトが使用され、 その中でもモレキュラーシーブ 5 Aが好ましい。  In step (2), light mixture (generally boiling point 200 ° C or less) is stripped (removed) from hydrocarbon mixture B obtained in step (1) to obtain hydrocarbon mixture C. The amount of strip is from 1% by volume to 40% by volume, preferably from 10% by volume to 37% by volume, more preferably from 20% by volume to 35% by volume, based on hydrodesulfurized oil. It is as follows. When stripping is not performed or when the strip amount is not sufficient, the load of the removal device for linear saturated hydrocarbon (normal paraffin) in the subsequent stage increases and the removal efficiency decreases. In addition, if the strip amount is excessive (over 40% by volume), the time required for the strip process increases and the energy consumption during production increases. The fuel composition of the present invention comprises a feedstock comprising the above-mentioned hydrocarbon mixture X or hydrocarbon mixture C under the conditions of a temperature of 150 ° C. to 250 ° C. and a pressure of 1 MPa to 5 MPa. It can be obtained by delinearization saturated hydrocarbon treatment with zeolite. The reaction temperature for the removal of the straight chain saturated hydrocarbon is 150 ° C or higher and 250 ° C or lower, preferably 180 ° C or higher and 200 ° C or lower. When the reaction temperature is less than 150 ° C, a sufficient removal rate of linear saturated hydrocarbons cannot be obtained. On the other hand, if the temperature exceeds 250 ° C, the removal efficiency of straight chain saturated hydrocarbons decreases. The pressure at this time is IMP a or more and 5 MPa or less, preferably 1.5 MPa or more and 3 MPa or less. If the pressure is less than 1 MPa, a sufficient removal rate of linear saturated hydrocarbons cannot be obtained. On the other hand, if it exceeds 5M Pa, a sufficient removal rate of linear saturated hydrocarbons cannot be obtained. The zeolite used for the removal of the linear saturated hydrocarbon is not particularly limited, but generally, A-type zeolite is used, and among these, molecular sieve 5A is preferable.
以上の条件で、 直鎖飽和炭化水素を 10容量。 /0以上、 好ましくは 20質量%以 上抽出除去することが好ましい。 かかる処理により、 セーボルト色 + 28以上、 1 5°Cにおける密度が 740 k g/m3以上 840 k g/m3以下、蒸留性状の 1 0%留出温度が 1 70°C以上 2 20°C以下、 セタン指数 45以上、 セタン価 48以上、 引火点 45°C以上、 加速 酸化試験後の過酸化物価が 1 0質量 p pm以下、 流動点— 1 5°C以下、 硫黄分 1 0質量 p pm以下、 30°Cにおける動粘度が 1. 6 mm2/ s以上 5. 0 mm2/ s以下、 1 0%残油の残留炭素分が 0. 1質量%以下である本発明の燃料組成物 が得られる。 本発明の好ましい実施態様の例は、 蒸留性状の 1 0%留出温度が 140°C以上 200 °C以下、 90容量。/。留出温度が 240 °C以上 3 50 °C以下、 芳香族含有量 が 1容量。/。以下、 ナフテン化合物含有量が 5質量%以下、 硫黄含有量が 1 0質量 p pm以下、 炭素数 1 6から 25までの直鎖飽和炭化水素含有量が 5質量。 /。以上 70質量%以下である FT合成基材からなる炭化水素混合物 Xを原料油とし、 反 応温度 1 50°C以上 250°C以下、 圧力 IMP a以上 5 MP a以下の条件下でゼ ォライトにより脱直鎖飽和炭化水素処理を行うことによって得られる、 セーボル ト色 + 28以上、 1 5°Cにおける密度が 760 k g/m3以上 8 30 k gZm3以 下、 蒸留性状の 1 0 %留出温度が 1 Ί 0°C以上 220°C以下、 50%留出温度が 2 1 0°C以上 280°C以下、 90%留出温度が 240°C以上 3'25°C以下、 セタ ン指数 5 5以上 75以下、 セタン価 5 5以上 70以下、 引火点 50 °C以上、 加速 酸化試験後の過酸化物価が 1 0質量 p pm以下、 くもり点— 1 0 °C以下、 目詰ま り点一 1 0°C以下、 流動点一 1 5°C以下、 芳香族含有量が 1容量%以下、 ナフテ ン化合物含有量が 5質量%以下、 硫黄分 1質量 p pm以下、 30°Cにおける動粘 度が 1. 7mmV s以上 4. Omm2/^以下、 1 0 %残油の残留炭素分が 0. 05質量0 /0以下、 HFRR摩耗痕径 (WS 1. 4) が 400 μ m以下であること を特徴とするディーゼル燃料組成物である。 Under the above conditions, 10 volumes of linear saturated hydrocarbons. It is preferable to extract and remove / 0 or more, preferably 20% by mass or more. Such a treatment gives a Saybolt color of +28 or higher and a density at 15 ° C of 740 k. g / m 3 or more 840 kg / m 3 or less, 10% distillation temperature of distillation property 1 70 ° C or more 2 20 ° C or less, cetane index 45 or more, cetane number 48 or more, flash point 45 ° C or more, Peroxide value after accelerated oxidation test is 10 mass p pm or less, pour point—15 ° C. or less, sulfur content 10 mass p pm or less, kinematic viscosity at 30 ° C. 1.6 mm 2 / s or more 5 A fuel composition of the present invention is obtained in which the residual carbon content of 10 mm 2 / s or less and 10% residual oil is 0.1 mass% or less. An example of a preferred embodiment of the present invention is a distillation property with a 10% distillation temperature of 140 ° C. or higher and 200 ° C. or lower and 90 volumes. /. Distillation temperature is 240 ° C or more and 350 ° C or less, and aromatic content is 1 volume. /. Hereinafter, the naphthene compound content is 5 mass% or less, the sulfur content is 10 mass ppm or less, and the linear saturated hydrocarbon content of 16 to 25 carbon atoms is 5 mass. /. 70% by mass or less of hydrocarbon mixture X consisting of FT synthetic base material is used as raw material oil, and reaction temperature 1 50 ° C or more and 250 ° C or less, pressure IMP a or more and 5MPa or less by zeolite Distilled saturated hydrocarbons obtained by performing de-linear saturated hydrocarbon treatment, density of +28 or higher, density at 15 ° C of 760 kg / m 3 or higher, 8 30 k gZm 3 or lower, distillation property of 10% Temperature is 1 Ί 0 ° C to 220 ° C, 50% distillation temperature is 210 ° C to 280 ° C, 90% distillation temperature is 240 ° C to 3'25 ° C, Cetane index 5 5 or more and 75 or less, Cetane number 5 5 or more and 70 or less, Flash point 50 ° C or more, Peroxide value after accelerated oxidation test is 10 mass p pm or less, Cloudy point — 10 0 ° C or less, Clogging point 1 10 ° C or less, pour point 1 15 ° C or less, aromatic content 1% or less, naphthenic compound content 5% or less, sulfur content 1 mass p pm or less, dynamics at 30 ° C Viscosity is 1.7mmV s or more 4. Omm 2 / ^ or less, 1 0% carbon residue of the residual oil is 0.05 mass 0/0 or less, and wherein the HFRR wear scar diameter (WS 1. 4) is equal to or less than 400 mu m A diesel fuel composition.
また、 本発明の好ましい実施態様の他の例は、 初留点が 140°C以上 200°C 以下、 蒸留性状の 90容量%留出温度が 200°C以上 300°C以下、 芳香族含有 量が 20容量%以下、 直鎖飽和炭化水素含有量が 25質量%以上、 炭素数 1 0以 上 1 5以下の直鎖飽和炭化水素含有量が 20質量%以上、 硫黄含有量が 300質 量 p pm以下である炭化水素混合物 Aを原料油として、 (工程 1)該炭化水素混合 物 Aを反応温度 250°C以上 3 1 0°C以下、 水素圧力 5 MP a以上 1 OMP a以 下、 LHSVO. 5 h— 1以上 3. 0 h—1以下、 水素/炭化水素容量比が 0. 1 5 以上 0. 6以下の条件で、 N i— W、 N i— Mo、 C o— Mo、 C o— W、 また は N i— C o—Moのいずれかを含有する触媒により水素化脱硫処理して炭化水 素混合物 Bを得、 (工程 2)該炭化水素混合物 Bの軽質な部分を 1容量。/。以上 40 容量%以下の範囲で除去して炭化水素混合物 Cを得、 (工程 3)該炭化水素混合物 Cを反応温度 150°C以上 250°C以下、 圧力 IMP a以上 5 MP a以下の条件 下でゼォライ トにより直鎖飽和炭化水素を 10容量%以上除去レて得られる炭化 水素混合物 Dを全燃料組成物に対して 80容量%以上含有し、 セーポルト色 + 2 8以上、 15°Cにおける密度が 740 k g/m3以上 840 k gZm3以下、 蒸留 性状の 10 %留出温度が 1 70 °C以上 220 °C以下、 90 %留出温度が 220 °C 以上 300°C以下、セタン指数 45'以上、セタン価 48以上、引火点 45 °C以上、 反応試験の結果が中性、 銅板腐食が 1以下、 加速酸化試験後の過酸化物価が 1 0 質量 p pm以下、 流動点一 60 °C以下、 硫黄分 10質量 p pm以下、 30°Cにお ける動粘度が 1. δπιπι2/ s以上 5. O.mm2/ s以下、 一 30°Cにおける動粘 度が 30 mm2/ s以下、 水分含有量が 0.' 01容量。/。以下、 1 0 %残油の残留 炭素分が 0. 1質量%以下であることを特徴とする極低温地向け燃料組成物であ る。 Another example of a preferred embodiment of the present invention is that the initial boiling point is 140 ° C. or higher and 200 ° C. or lower, the 90% by volume distillation temperature of the distillation property is 200 ° C. or higher and 300 ° C. or lower, the aromatic content Is 20 vol% or less, linear saturated hydrocarbon content is 25 mass% or more, linear saturated hydrocarbon content of 10 to 15 carbon atoms is 20 mass% or more, and sulfur content is 300 mass p. (Process 1) The hydrocarbon mixture A is reacted at a reaction temperature of 250 ° C or higher and 30 ° C or lower, and a hydrogen pressure of 5 MPa or higher and 1 OMPa or lower. Lower, LHSVO. 5 h— 1 or more, 3.0 h— 1 or less, and hydrogen / hydrocarbon capacity ratio of 0.1 5 or more and 0.6 or less, N i— W, N i— Mo, C o— Hydrodesulfurization treatment is performed with a catalyst containing either Mo, Co—W, or Ni—Co—Mo to obtain hydrocarbon mixture B. (Step 2) Light weight of hydrocarbon mixture B 1 capacity for the part. /. Removal of hydrocarbon mixture C in the range of 40% by volume or less to obtain hydrocarbon mixture C, (Step 3) The hydrocarbon mixture C is subjected to a reaction temperature of 150 ° C to 250 ° C and a pressure of IMP a to 5 MPa. The hydrocarbon mixture D obtained by removing 10% or more of linear saturated hydrocarbons by zeolite in 80% by volume or more of the total fuel composition, and the color at the color of +28 or more, 15 ° C 740 kg / m 3 or more and 840 k gZm 3 or less, 10% distillation temperature of distillation property is 1 70 ° C or more and 220 ° C or less, 90% distillation temperature is 220 ° C or more and 300 ° C or less, cetane index 45 'Or more, cetane number 48 or more, flash point 45 ° C or more, reaction test result is neutral, copper plate corrosion is 1 or less, peroxide value after accelerated oxidation test is 10 mass p pm or less, pour point is 60 ° C or less, sulfur content 10 mass p pm or less, kinematic viscosity at 30 ° C 1. δπιπι 2 / s or more 5. O.mm 2 / s or less, kinematic viscosity at 30 ° C 30 m m 2 / s or less, moisture content 0.'01 capacity. /. The following is a fuel composition for cryogenic regions, characterized in that the residual carbon content of 10% residual oil is 0.1% by mass or less.
さらにまた、 本発明の好ましい実施態様の他の例は初留点が 140°C以上 20 0°C以下、 蒸留性状の 90容量。/。留出温度が 200 以上 300°C以下、 芳香族 含有量が 20容量%以下、 直鎖飽和炭化水素含有量が 25質量%以上、 炭素数 1 0以上 1 5以下の直鎖飽和炭化水素含有量が 20質量%以上、 硫黄含有量が 30 0質量 p pm以下である炭化水素混合物 Aを原料油として、 (工程 1)該炭化水素 混合物 Aを反応温度 250°C以上 3 10°C以下、 水素圧力 5 MP a以上 10MP a以下、 LHSVO. 5 h— 1以上 3. 0 h— 1以下、 水素 Z炭化水素容量比が 0. 1 5以上 0. 6以下の条件で、 N i— W、 N i— Mo、 C o— Mo、 C o— W、 または N i -C o一 Moのいずれかを含有する触媒により水素化脱硫処理して炭 化水素混合物 Bを得、 (工程 2)該炭化水素混合物 Bの軽質な部分を 1容量%以上 40容量。 /。以下の範囲で除去して炭化水素混合物 Cを得、 (工程 3)該炭化水素混 合物 Cを反応温度 150°C以上 250°C以下、 圧力 IMP a以上 5MP a以下の 条件下でゼォライ トにより直鎖飽和炭化水素を 10容量。 /0以上除去して得られる 炭化水素混合物 Dを全燃料組成物に対して 80〜1 00容量%、 炭素数 1 6以上 20以下の直鎖飽和炭化水素化合物含有量の総和が 1 0質量。 /。以下であり、 かつ 炭素数 2 1以上 25以下の直鎖鉋和炭化水素化合物含有量の総和が 2質量%以下 である FT合成基材を 0〜 2.0容量。 /0含有し、 セーボルト色 + 28以上、 1 5°C における密度が 740 k g /m 3以上 840 k g/m3以下、蒸留性状の 1 0 %留 出温度が 1 70°C以上 220°C以下、 90%留出温度が 220°C以上 300°C以 下、 セタン指数 45以上、 セタン価 48以上、 引火点 45°C以上、 反応試験の結 果が中性、 銅板腐食が 1以下、 加速酸化試験後の過酸化物価が 1 0質量 p pm以 下、 流動点一 6 0°C以下、 硫黄分 1 0質量 p pm以下、 30°Cにおける動粘度が 1. 6mm2/s以上 5. 0 mm2/ s以下、 _ 30 °Cにおける動粘度が 30 mm 2Zs以下、 水分含有量が 0. 0 1容量%以下、 1 0%残油の残留炭素分が 0. 1質量%以下であることを特徴とする極低温地向け燃料組成物である。 本発明の極低温地向け燃料組成物は、 低温流動性と環境対応型燃料に必要とさ れる良好な排出ガス性能を確保する観点から、 上記 (1) 〜 (3) の工程を経て 得られる炭化水素混合物 Dを全燃料組成物に対して 80〜1 00容量%含有し、 更に特定の性状を有する FT合成基材を全燃料組成物に対して '0容量%を超え 2 0容量%以下配合することができる。 配合できる FT合成基材は、 炭素数 1 6以 上 20以下の直鎖飽和炭化水素化合物含有量の総和が 1 0質量%以下であり、 か つ炭素数 2 1以上 25以下の直鎖飽和炭化水素化合物含有量の総和が 2質量%以 下であることを特徴とする FT合成基材であり、 より好ましくは炭素数 1 6以上 20以下の直鎖飽和炭化水素化合物含有量の総和が 8質量%以下であり、 かつ炭 素数 2 1以上 2 5以下の直鎖飽和炭化水素化合物含有量の総和が 1. 8質量%以 下であり、 さらに好ましくは炭素数 1 6以上 20以下の直鎖飽和炭化水素化合物 含有量の総和が 6質量%以下であり、 かつ炭素数 2 1以上 25以下の直鎖飽和炭 化水素化合物含有量の総和が 1. 5質量%以下である FT合成基材であり、 さら により好ましくは炭素数 1 6以上 20以下の直鎖飽和炭化水素化合物含有量の総 和が 5質量%以下であり、 かつ炭素数 2 1以上 25以下の直鎖飽和炭化水素化合 物含有量の総和が 1質量。»以下である FT合成基材である。 この範囲以外の FT 合成基材及ぴ他の基材を配合すると、 低温流動性と環境対応性能の両立が困難と なる。 ここでいう F T合成基材とは前述の製法で得られる炭化水素基材であるこ とを指す。 なお、 炭素数 16以上 20以下 (C 16— C 20の η Ρ) および炭素 数 21以上 25以下 (C 21— C 25の ηΡ) の直鎖飽和炭化水素化合物含有量 (質量。 /0) は、 前述の GC— F I Dを用いて測定することができる。 Furthermore, another example of a preferred embodiment of the present invention is an initial boiling point of 140 ° C. or higher and 200 ° C. or lower and a distillation property of 90 volumes. /. Distillation temperature of 200 to 300 ° C, aromatic content of 20% by volume or less, linear saturated hydrocarbon content of 25% by mass or more, carbon number of 10 to 15 and linear saturated hydrocarbon content of 15 or less Is a hydrocarbon mixture A having a sulfur content of not less than 20 mass% and a sulfur content of not more than 300 mass ppm, (Step 1) using the hydrocarbon mixture A as a reaction temperature of 250 ° C to 3 10 ° C, hydrogen pressure 5 MP a more 10MP a less, LHSVO. 5 h- 1 or more 3. 0 h- 1 or less, hydrogen Z hydrocarbon volume ratio is 0.1 5 or 0.6 following conditions, N i-W, N Hydrodesulfurization treatment is performed with a catalyst containing any of i—Mo, Co—Mo, Co—W, or Ni—Co o Mo to obtain a hydrocarbon mixture B, (Step 2) 1% by volume to 40% of the light part of hydrogen mixture B. /. The hydrocarbon mixture C is obtained by removing within the following ranges. (Step 3) The hydrocarbon mixture C is zeolite under conditions of a reaction temperature of 150 ° C to 250 ° C and a pressure of IMP a to 5 MPa. 10 volumes of linear saturated hydrocarbons. / 0 or more obtained by removing Hydrocarbon mixture D is 80 to 100% by volume with respect to the total fuel composition, and the total content of linear saturated hydrocarbon compounds having 16 to 20 carbon atoms is 10 masses. /. 0 to 2.0 volumes of an FT synthetic base material, the total of which is 2% by mass or less, and the total content of straight chain saturated hydrocarbon compounds having 21 to 25 carbon atoms. / 0 content, Saebold color + 28 or more, density at 15 ° C 740 kg / m 3 or more 840 kg / m 3 or less, 10% distillation temperature of distillation property 1 70 ° C or more 220 ° C or less 90% distillation temperature 220 ° C or higher, 300 ° C or lower, cetane index 45 or higher, cetane number 48 or higher, flash point 45 ° C or higher, reaction test result is neutral, copper plate corrosion is 1 or lower, acceleration Peroxide value after oxidation test is 10 mass p pm or less, pour point is 60 ° C or less, sulfur content is 10 mass p pm or less, and kinematic viscosity at 30 ° C is 1.6 mm 2 / s or more 5. 0 mm 2 / s or less, kinematic viscosity at _ 30 ° C is 30 mm 2 Zs or less, moisture content is 0.0 1% by volume or less, 10% residual carbon has a residual carbon content of 0.1% by mass or less It is a fuel composition for cryogenic regions characterized by being. The fuel composition for the cryogenic region of the present invention is obtained through the steps (1) to (3) from the viewpoint of ensuring the low temperature fluidity and good exhaust gas performance required for the environment-friendly fuel. Containing 80 to 100% by volume of the hydrocarbon mixture D with respect to the total fuel composition, and more than 0% by volume and less than 20% by volume of the FT synthetic base material having specific properties with respect to the total fuel composition Can be blended. The FT synthetic base material that can be blended has a total content of linear saturated hydrocarbon compounds of 16 to 20 carbon atoms in a total of 10% by mass or less, and linear saturated carbonization of 21 to 25 carbon atoms. FT synthesis base material characterized in that the total content of hydrogen compounds is 2% by mass or less, more preferably the total content of linear saturated hydrocarbon compounds having 16 to 20 carbon atoms is 8% by mass %, And the total content of linear saturated hydrocarbon compounds having 2 to 1 and 25 or less carbon atoms is 1.8% by mass or less, and more preferably 16 to 20 carbon atoms. FT synthetic base material with a total content of hydrocarbon compounds of 6 mass% or less and a total content of linear saturated hydrocarbon compounds with 21 to 25 carbon atoms of 1.5 mass% or less More preferably, the total content of straight chain saturated hydrocarbon compounds having 16 to 20 carbon atoms is 5 quality. The total content of straight-chain saturated hydrocarbon compounds with a carbon content of 21 or less and 25 or less is 1 mass. »The following are FT synthetic substrates. When blending FT synthetic substrates and other substrates outside this range, it is difficult to achieve both low-temperature fluidity and environmental performance. Become. The FT synthetic substrate here refers to a hydrocarbon substrate obtained by the above-mentioned production method. The linear saturated hydrocarbon compound content (mass. / 0 ) of 16 to 20 carbon atoms (η 16 of C 16 — C 20) and 21 to 25 carbon atoms (η の of C 21 — C 25) is It can be measured using the above-mentioned GC-FID.
本発明の燃料組成物は、 上記処理を経て得られる以下の特定の性状を有する。 本発明の燃料組成物のセーポルト色は、 +28以上であり、 酸化安定性阻害物 質除去の点から、 + 29以上であることが好ましく、 + 30以上であることがさ らに好ましい。 なお、 ここでいぅセーボルト色とは、 J I S Κ 2580 「石 油製品一色試験方法ーセーボルト色試験方法」 により測定される値を意味する。 本発明のディーゼル燃料組成物の 15°Cにおける密度は、発熱量確保の点から、 760 k gZm3以上であり、 765 k g/m3以上が好ましく、 770 k g Zm 3以上がより好ましい。 また、 当該密度は、 NOx、 PMの排出量を低減する点 から、 830 k gZm3以下であり、 825 k g/m3以下が好ましく、 820 k gZm3以下がより好ましい。 The fuel composition of the present invention has the following specific properties obtained through the above treatment. The fuel color of the fuel composition of the present invention is +28 or more, preferably from +29 or more, and more preferably from +30 or more, from the viewpoint of removing oxidation stability inhibitors. Here, “Saebold color” means a value measured according to JIS 2580 “One-color test method for petroleum products—Saebold color test method”. Density at 15 ° C of the diesel fuel composition of the present invention, in terms of calorific value ensuring is a 760 k gZm 3 or more, preferably 765 kg / m 3 or more, more preferably 770 kg Zm 3 or more. Further, the density, NOx, from the viewpoint of reducing the emission of PM, it is 830 k gZm 3 or less, preferably 825 kg / m 3 or less, 820 k gZm 3 or less is more preferable.
本発明の極低温地向け燃料組成物の 1 5°Cにおける密度は、 発熱量確保の点か ら、 740 k g/m 3以上であり、 750 k g/m 3以上が好ましく、 755 k g /m3以上がより好ましい。 また、 当該密度は、 NOx、 PMの排出量を低減す る点から、 840 k g/m3以下であり、 830 k g/m3以下が好ましく、 82 0 k g/m3以下がより好ましい。 The density of the fuel composition for cryogenic regions of the present invention at 15 ° C is 740 kg / m 3 or more, preferably 750 kg / m 3 or more, and 755 kg / m 3 from the viewpoint of securing a calorific value. The above is more preferable. The density is 840 kg / m 3 or less, preferably 830 kg / m 3 or less, and more preferably 820 kg / m 3 or less from the viewpoint of reducing NOx and PM emissions.
なお、 ここでいう密度とは、 J I S K 22.49 「原油及び石油製品の密度 試験方法並びに密度 ·質量 ·容量換算表」 により測定される密度を意味する。 本発明のディーゼル燃料組成物における蒸留性状としては、 10%留出温度が 1 70°C以上 220°C以下、 50%留出温度が 210°C以上 280°C以下、 90% 留出温度が 240°C以上 325 °C以下である。 10%留出温度が 1 70°Cに満た ないとエンジン出力や低温時の始動性が悪化する傾向にあるため、 好ましくは 1 73°C以上、 より好ましくは 1 78°C以上、 さらに好ましくは 180°C以上であ る。 一方、 10%留出温度が 220°Cを超えると排ガス性能が悪化する傾向にあ るため、 好ましくは 21 5°C以下、 より好ましくは 210°C以下、 さらに好まし くは 205。C以下である。 50%留出温度が 210°Cに満たないとエンジン出力 や低温時の始動性が悪化する傾向にあるため、 好ましくは 21 5°C以上、 より好 ましくは 220°C以上、 さらに好ましくは 225°C以上である。 一方、 50%留 出温度が 280°Cを超えると排ガス性能が悪化する傾向にあるため、 好ましくは 275°C以下、 より好ましくは 270°C以下、 さらに好ましくは 265°C以下で ある。 また、 90%留出温度が 240°Cに満たないと燃費向上効果が不十分とな り、 エンジン出力が低下する傾向にあるため、 好ましくは 24 '5°C以上、 より好 ましくは 250°C以上、 さらに好ましくは 255°C以上である。 一方、 90%留 出温度が 325 °Cを超えると PMや微小粒子の排出量が増加す.る傾向にあるため、 好ましくは 320 °C以下、 より好ましくは 31 5 °C以下、 さらに好ましくは 31 0°C以下である。 The density here means the density measured according to JISK 22.49 “Density test method and density / mass / capacity conversion table for crude oil and petroleum products”. The distillation properties of the diesel fuel composition of the present invention are as follows: 10% distillation temperature is 170 ° C to 220 ° C, 50% distillation temperature is 210 ° C to 280 ° C, 90% distillation temperature is 240 ° C or more and 325 ° C or less. If the 10% distillation temperature is less than 1 70 ° C, engine output and startability at low temperatures tend to deteriorate, so preferably 173 ° C or more, more preferably 1 78 ° C or more, more preferably 180 ° C or higher. On the other hand, if the 10% distillation temperature exceeds 220 ° C, the exhaust gas performance tends to deteriorate. Therefore, it is preferably 215 ° C or lower, more preferably 210 ° C or lower, and even more preferably 205. C or less. If the 50% distillation temperature does not reach 210 ° C, engine output and startability at low temperatures tend to deteriorate. It is preferably 220 ° C or higher, more preferably 225 ° C or higher. On the other hand, when the 50% distillation temperature exceeds 280 ° C, the exhaust gas performance tends to deteriorate. Therefore, it is preferably 275 ° C or less, more preferably 270 ° C or less, and further preferably 265 ° C or less. Also, if the 90% distillation temperature does not reach 240 ° C, the fuel efficiency improvement effect will be insufficient and the engine output will tend to decrease. Therefore, it is preferably 24'5 ° C or higher, more preferably 250 ° C or higher, more preferably 255 ° C or higher. On the other hand, when the 90% distillation temperature exceeds 325 ° C, the emission of PM and fine particles tends to increase. Therefore, it is preferably 320 ° C or less, more preferably 315 ° C or less, more preferably 31 0 ° C or less.
本発明の極低温地向け燃料組成物における蒸留性状としては、 10%留出温度 が 1 70°C以上 220°C以下、 90%留出温度が 220°C以上 300°C以下であ る。 10%留出温度が 1 70°Cに満たないとエンジン出力や低温時の始動性が悪 化する傾向にあるため、好ましくは 1 73°C以上、より好ましくは 1 78°C以上、' さらに好ましくは 180°C以上である。 一方、 10%留出温度が 220°Cを超え ると排ガス性能が悪化する傾向にあるため、 好ましくは 21 5°C以下、 より好ま しくは 2 10°C以下、 さらに好ましくは 205°C以下である。 また、 90%留出 温度が 220°Cに満たないと燃費向上効果が不十分となり、 エンジン出力が低下 する傾向にあるため、 好ましくは 225°C以上、 より好ましくは 230°C以上、 さらに好ましくは 235°C以上である。 一方、 90%留出温度が 300°Cを超え ると PMや微小粒子の排出量が増加する傾向にあるため、 好ましくは 295°C以 下、 より好ましくは 290°C以下、 さらに好ましくは 285°C以下である。  The distillation properties of the fuel composition for cryogenic regions of the present invention include a 10% distillation temperature of 170 ° C to 220 ° C and a 90% distillation temperature of 220 ° C to 300 ° C. If the 10% distillation temperature is less than 1 70 ° C, engine output and startability at low temperatures tend to deteriorate, so preferably 173 ° C or higher, more preferably 1 78 ° C or higher. Preferably it is 180 ° C or higher. On the other hand, since the exhaust gas performance tends to deteriorate when the 10% distillation temperature exceeds 220 ° C, it is preferably 215 ° C or less, more preferably 2 10 ° C or less, more preferably 205 ° C or less. It is. Also, if the 90% distillation temperature is less than 220 ° C, the fuel efficiency improvement effect will be insufficient, and the engine output tends to decrease. Therefore, it is preferably 225 ° C or higher, more preferably 230 ° C or higher, more preferably Is above 235 ° C. On the other hand, when the 90% distillation temperature exceeds 300 ° C, the emission of PM and fine particles tends to increase, so it is preferably 295 ° C or less, more preferably 290 ° C or less, and even more preferably 285 It is below ° C.
なお、 ここでいう 10%留出温度、 50%留出温度、 90%留出温度とは、 全 て J I S K 2254 「石油製品一蒸留試験方法一常圧法」 により測定される 値を意味する。  The 10% distillation temperature, 50% distillation temperature, and 90% distillation temperature mentioned here all mean values measured according to JIS K 2254 “Petroleum product one distillation test method one atmospheric pressure method”.
本発明のディーゼル燃料組成物のセタン指数は、 55以上である。 セタン指数 が 55に満たない場合には、 排出ガス中の ΡΜ、 アルデヒ ド類、 あるいはさらに NO Xの濃度が高くなる傾向にある。 同様の理由により、 セタン指数は 57以上 であることが好ましく、 60以上であることがより好ましい。 また、 セタン指数 が 75を越える場合、加速時におけるすすの排出が悪化する傾向が見られるため、 セタン指数は 75以下であることが必要であり、 74以下が好ましく、 73以下 がより好ましい。 The diesel fuel composition of the present invention has a cetane index of 55 or more. When the cetane index is less than 55, the concentration of soot, aldehydes, or NO X in the exhaust gas tends to increase. For the same reason, the cetane index is preferably 57 or more, more preferably 60 or more. Also, if the cetane index exceeds 75, soot emissions during acceleration tend to deteriorate, so the cetane index must be 75 or less, preferably 74 or less, and 73 or less Is more preferable.
本発明の極低温地向け燃料組成物のセタン指数は、 4 5以上である。 セタン指 数が 4 5に満たない場合には、 #出ガス中の P M、 アルデヒ ド類、 あるいはさら に N O Xの濃度が高くなる傾向にある。 また、 同様の理由により、 セタン指数は 4 6以上であることが好ましく、 4 7以上であることがより好ましい。  The cetane index of the fuel composition for cryogenic regions of the present invention is 45 or more. When the cetane index is less than 45, the concentration of PM, aldehydes, or even NOx in the #outgas tends to increase. For the same reason, the cetane index is preferably 46 or more, more preferably 47 or more.
なお、 本発明でいうセタン指数とは、 J I S K 2 2 8 0 「石油製品一燃料 油一オクタン価及びセタン価試験方法並びにセタン指数算出方法」 の 「8 . 4変 数方程式を用いたセタン指数の算出方法」 によって算出される価を意味する。 こ こで、 上記 J I S規格におけるセタン指数は、 一般的にはセタン価向上剤を添加 していない軽油に対して適用されるが、 本発明ではセタン価向上剤を添加した燃 料組成物についても上記 「8 . 4変数方程式を用いたセタン指数の算出方法」 を 適用し、 当該算出方法により算出される値をセタン指数として表す。  The cetane index referred to in the present invention is the calculation of the cetane index using the 8.4 variable equation of JISK 2280 “Petroleum products / fuels / octane number / cetane number test method and cetane index calculation method”. Value calculated by “method”. Here, the cetane index in the above JIS standard is generally applied to light oil to which no cetane number improver is added. However, in the present invention, the cetane index is also applied to a fuel composition to which a cetane number improver is added. Applying the above “8.4 Calculation method of cetane index using variable equation”, the value calculated by this calculation method is expressed as cetane index.
本発明のディーゼル燃料組成物におけるセタン価は、 5 5以上である。 セタン 価が 5 5に満たない場合には、 排出ガス中の N〇x、 P M及びアルデヒド類の濃 度が高くなりやすいため、 好ましくは 5 6以上であり、 より好ましくは 5 7以上 である。 また、 排ガス中の黒煙低減の観点から、 セタン価は 7 0以下であること が必要であり、 6 8以下であることが好ましく、 6 6以下であること.がより好ま しい。 また本発明の燃料組成物においては、 必要に応じてセタン価向上剤を適量 配合し、 得られる燃料組成物のセタン価を向上させることができる。  The cetane number in the diesel fuel composition of the present invention is 55 or more. When the cetane number is less than 55, the concentration of N0x, PM and aldehydes in the exhaust gas tends to be high, so it is preferably 56 or more, more preferably 57 or more. Further, from the viewpoint of reducing black smoke in exhaust gas, the cetane number needs to be 70 or less, preferably 68 or less, and more preferably 66 or less. In the fuel composition of the present invention, if necessary, an appropriate amount of a cetane number improver can be blended to improve the cetane number of the resulting fuel composition.
本発明の極低温地向け燃料組成物におけるセタン価は、 4 8以上である。 セタ ン価が 4 8に満たない場合には、 排出ガス中の N O x、 P M及びアルデヒ ド類の 濃度が高くなりやすいため、 好ましくは 4 8 . 5以上であり、 より好ましくは 4 9以上である。 また、 排ガス中の黒煙低減の観点から、 セタン価は 9 0以下であ ることが好ましく、 8 5以下であることがより好ましく、 8 0以下であることが さらに好ましい。 また本発明の燃料組成物においては、 必要に応じてセタン価向 上剤を適量配合し、 得られる燃料組成物のセタン価を向上させることができる。 なお、 ここでいぅセタン価とは、 J I S K 2 2 8 0 「石油製品一燃料油一 オクタン価及ぴセタン価試験方法並びにセタン指数算出方法」 の 「7 . セタン価 試験方法」 に準拠して測定されるセタン価を意味する。  The cetane number in the fuel composition for the cryogenic region of the present invention is 48 or more. When the cetane number is less than 48, the concentration of NOx, PM and aldehydes in the exhaust gas tends to be high, so it is preferably 48.5 or more, more preferably 49 or more. is there. Further, from the viewpoint of reducing black smoke in the exhaust gas, the cetane number is preferably 90 or less, more preferably 85 or less, and further preferably 80 or less. In the fuel composition of the present invention, if necessary, an appropriate amount of a cetane number improver can be blended to improve the cetane number of the resulting fuel composition. The cetane number here is measured in accordance with “7. Cetane number test method” of “JISK 2 28 0“ Petroleum products / Fuel oil / Octane number and cetane number test method and cetane index calculation method ”. Means cetane number.
本発明のディーゼル燃料組成物の引火点は、 5 0 °C以上である。引火点が 5 0 °C に満たない場合には、 安全上の観点から好ましくないため、 引火点は 5 2 °C以上 であることが好ましく、 5 4 °C以上であることがより好ましい。 The flash point of the diesel fuel composition of the present invention is 50 ° C or higher. Flash point is 50 ° C If the temperature is less than 5, it is not preferable from the viewpoint of safety, so the flash point is preferably 52 ° C or higher, more preferably 54 ° C or higher.
本発明の極低温地向け燃料組^物の引火点は、 4 5 °C以上である。 引火点が 4 5 °Cに満たない場合には、 安全上の観点から好ましくないため、 引火点は 4 7 °C 以上であることが好ましく、 4 9 °C以上であることがより好ましい。  The flash point of the fuel assembly for a cryogenic region of the present invention is 45 ° C. or higher. When the flash point is less than 45 ° C, it is not preferable from the viewpoint of safety. Therefore, the flash point is preferably 47 ° C or higher, more preferably 49 ° C or higher.
なお、本発明でいう引火点は J I S K 2 2 6 5 「原油及び石油製品引火点試 験方法」 で測定される値を示す。  The flash point in the present invention is a value measured by J I S K 2 2 6 5 “Crude oil and petroleum product flash point test method”.
本発明の極低温地向け燃料組成物の反応試験の結果は、 中性を示す。 反応試験 の結果が中性でない場合は、 燃料による金属部材への腐食影響が顕在化する可能 性が高まるため好ましくない。なお、 本発明でいう反応試験の結果は、 J I S K 2 2 5 2 「石油製品一反応試験方法」 で測定される値を示す。  The result of the reaction test of the fuel composition for the cryogenic region of the present invention shows neutrality. If the result of the reaction test is not neutral, it is not preferable because the possibility that the corrosion effect on the metal member by the fuel becomes obvious will increase. In addition, the result of the reaction test as used in the field of this invention shows the value measured by JI S K 2 2 5 2 “Petroleum product one reaction test method”.
本発明の極低温地向け燃料組成物の銅板腐食は、 1以下であり、 l aであるこ とが好ましい。 銅板腐食が 1以下でない場合は、 燃料による金属部材への腐食影 響が顕在化する可能性が高まってしまい、 安定性、 長期保管に問題が生じてしま う。 なお、 本発明でいう銅板腐食は、 J I S K 2 5 1 3 「石油製品一銅板腐食 試験方法」 で測定される値を示す。  The copper plate corrosion of the fuel composition for the cryogenic region of the present invention is 1 or less, and is preferably la. If the corrosion of the copper plate is not less than 1, the possibility of the corrosion effect on the metal parts due to the fuel increases, resulting in problems in stability and long-term storage. The copper plate corrosion referred to in the present invention is a value measured by JI S K 2 5 1 3 “Petroleum product-copper plate corrosion test method”.
本発明の燃料組成物の加速酸化試験後の過酸化物価は、 1 0·質量 p. p m以下で ある。 加速酸化試験後の過酸化物価は、 貯蔵安定性、 部材への適合性の点から、 好ましくは 8質量 p p m以下、 より好ましくは 6質量 p p πι以下、 さらに好まし くは 4質量 p p m以下である。  The peroxide value of the fuel composition of the present invention after the accelerated oxidation test is 10 · mass p.pm or less. The peroxide value after the accelerated oxidation test is preferably 8 mass ppm or less, more preferably 6 mass pp πι or less, and even more preferably 4 mass ppm or less from the viewpoints of storage stability and compatibility with parts. .
なお、 ここでいう加速酸化試験後の過酸化物価とは、 A S TM D 2 2 7 4 - 9 4に準拠して、 9 5 °C、 酸素パブリング下、 1 6時間の条件で加速酸化試験を 実施した後、 石油学会規格 J P I— 5 S— 4 6— 9 6に準拠して測定した過酸化 物価の値を意味する。 本発明の極低温地向け燃料組成物には、 過酸化物価を低減 するために、酸化防止剤や金属不活性剤等の添加剤を適宜添加することができる。 本発明のディーゼル燃料組成物のくもり点は、 一 1 0 °C以下である。 さらに、 低温始動性確保ないしは低温運転性確保の観点、 並びに電子制御式燃料噴射ボン プにおける噴射性能維持の観点から、 一 1 2 °C以下であることが好ましく、 一 1 5 °C以下であることがより好ましい。 ここでくもり点とは、 J I S K 2 2 6 9 「原油及び石油製品の流動点並びに石油製品曇り点試験方法」 に準じて測定さ れる流動点を意味する。 ' 本発明のディーゼル燃料組成物の目詰まり点は、一 1 o °c以下である。さらに、 ディーゼル車のプレフィルタ閉¾防止の点、 並びに電子制御式燃料噴射ポンプに おける噴射性能維持の観点から、 一 1 2 °C以下であることが好ましく、 一 1 5以 下である'ことがより好ましい。 ここで目詰まり点とは J I S K 2 2 8 8 「軽 油一目詰まり点試験方法」 により測定される目詰まり点を意味する。 The peroxide value after the accelerated oxidation test here refers to the accelerated oxidation test under the conditions of 95 ° C, oxygen publishing and 16 hours in accordance with AS TM D 2 2 7 4-94. This means the value of the peroxide value measured in accordance with the Petroleum Institute Standard JPI-5S-4 6-6 96 after implementation. In order to reduce the peroxide value, an additive such as an antioxidant or a metal deactivator can be appropriately added to the fuel composition for cryogenic regions of the present invention. The cloud point of the diesel fuel composition of the present invention is 110 ° C. or less. Further, from the viewpoint of ensuring low temperature startability or low temperature drivability, and maintaining the injection performance of the electronically controlled fuel injection pump, it is preferably 1 12 ° C or less, and 1 15 ° C or less. It is more preferable. The cloud point here is measured in accordance with JISK 2 26 9 “Pour point of crude oil and petroleum products and cloud point test method of petroleum products”. Means pour point. 'The clogging point of the diesel fuel composition of the present invention is 1 1 ° C or less. Further, from the viewpoint of preventing the pre-filter closing of the diesel vehicle and maintaining the injection performance in the electronically controlled fuel injection pump, it is preferably 1 12 ° C. or less, and 1 15 or less. Is more preferable. Here, the clogging point means the clogging point measured by JISK 2 2 8 8 “Test method for one clogging point of light oil”.
本発明のディーゼル燃料組成物の流動点は、 一 1 5 °C以下である。 さらに、 低 温始動性確保ないしは低温運転性確保の 点、 並びに電子制御式燃料噴射ポンプ における噴射性能維持の観点から、一 1 8 °C以下であることが好ましく、一 2 0 °C 以下であることがより好ましい。  The pour point of the diesel fuel composition of the present invention is 115 ° C. or less. Furthermore, from the viewpoint of ensuring low temperature startability or low temperature drivability, and maintaining the injection performance of the electronically controlled fuel injection pump, it is preferably 118 ° C or less, and preferably 120 ° C or less. It is more preferable.
本発明の極低温地向け燃料組成物の流動点は、 一 6 0 °C以下である。 さらに、 極低温下における低温始動性ないしは低温運転性の観点、 並びに電子制御式燃料 噴射ポンプにおける噴射性能維持の観点から、 一 6 2 °C以下であることが好まし い。 .  The pour point of the fuel composition for the cryogenic region of the present invention is 160 ° C. or lower. Furthermore, from the viewpoint of low-temperature startability or low-temperature operability at extremely low temperatures, and from the viewpoint of maintaining the injection performance of the electronically controlled fuel injection pump, it is preferable that the temperature is 162 ° C or lower. .
ここで流動点とは、 J I S K 2 2 6 9 「原油及ぴ石油製品の流動点並びに 石油製品曇り点試験方法」 に準じて測定される流動点を意味する。  Here, the pour point means the pour point measured according to J I S K 2 2 6 9 “Pour point of crude oil and petroleum products and cloud point test method of petroleum products”.
本発明のディーゼル燃料組成物の芳香族分含有量は、 1容量%以下であり、◦ . 8容量%以下であることが好ましく、 0 . 5容量。 /。以下であることがより好まし い。 芳香族分含有量が 1容量%以下であると、 Ρ Μ等の生成を抑制し環境対応性 能を発揮することができ、 また本発明の燃料組成物において規定される性状をよ り容易に且つ確実に達成することができる。なお、ここでいう芳香族分含有量は、 社団法人石油学会により発行されている石油学会誌 J P I— 5 S— 4 9一 9 7 「炭化水素タイプ試験法一高速液体クロマトグラフ法」 に準拠され測定された、 芳香族分含有量の容量百分率 (容量%) を意味する。  The aromatic content of the diesel fuel composition of the present invention is 1% by volume or less, preferably 0.8% by volume or less, and 0.5% by volume. /. It is more preferable that When the aromatic content is 1% by volume or less, production of soot and the like can be suppressed and environmental performance can be exhibited, and the properties specified in the fuel composition of the present invention can be more easily achieved. And it can be achieved reliably. The aromatic content here is based on the JPI-5 S-4 9 1 9 7 “Hydrocarbon type test method—High performance liquid chromatographic method” published by the Japan Petroleum Institute. It means the volume percentage (volume%) of the aromatic content measured.
本発明のディーゼル燃料組成物のナフテン分含有量は、 5質量。/。以下であり、 3質量%以下が好ましく、 1質量。/。以下がより好ましい。 ナフテン分含有量が5 質量%以下であると、 P M等の生成を抑制し環境対応性能を発揮することができ、 また本発明の燃料組成物において規定される性状をより容易に且つ確実に達成す ることができる。 なお、 ここでいうナフテン分含有量は、 A S TM D 2 4 2 5 "Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry" に準拠して測定されるナフテン分の質量百分率 (質量0 /0) を意味 する。 The naphthene content of the diesel fuel composition of the present invention is 5 mass. /. The content is preferably 3% by mass or less, and 1% by mass. /. The following is more preferable. When the naphthene content is 5 % by mass or less, it is possible to suppress the production of PM and the like and to exhibit environmental performance, and more easily and reliably achieve the properties specified in the fuel composition of the present invention. can do. The naphthene content here is AS TM D 2 4 2 5 "Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass. Means naphthene content of mass percentage is measured according to Spectrometry "(mass 0/0).
本発明のディーゼル燃料組成物の硫黄含有量は、 エンジンから排出される有害 排気成分低減と排ガス後処理装置の性能向上の点から 1.0質量 p pm以下であり、 好ましくは 8質量 p pm以下、 より好ましくは 5質量 p pm以下、 さらに好まし くは 3質量 p pm以下、 さらにより好ましくは 1質量 p pm以下である。  The sulfur content of the diesel fuel composition of the present invention is 1.0 mass p pm or less, preferably 8 mass p pm or less, from the viewpoint of reducing harmful exhaust components discharged from the engine and improving the performance of the exhaust gas aftertreatment device. Preferably it is 5 mass p pm or less, more preferably 3 mass p pm or less, even more preferably 1 mass p pm or less.
なお、 ここでいう硫黄含有量とは、 J I S K 254 1 「硫黄分試験方法」 により測定される軽油組成物全量基準の硫黄分の質量含有量を意味する。  The sulfur content here means the mass content of the sulfur content based on the total amount of the light oil composition measured by JISK2541 “Sulfur content test method”.
本発明のディーゼル燃料組成物の 30°Cにおける動粘度は、 1. 7mm2/ s 以上であり、 1. 75 mm2/ s以上であることが好ましく、 1. 8mm2/ s以 上であることがより好ましレ、。当該動粘度が 1. 7mm2Z sに満たない場合は、 燃料噴射ボンプ側の燃料噴射時期制御が困難となる傾向にあり、 またエンジンに 搭載された燃料噴射ポンプの各部における潤滑性が損なわれるおそれがある。 一 方、 30°Cにおける動粘度は 4. Omm2/s以下であることが必要であり、 3. 9mm2ノ s以下であることが好ましく、 3. 8 mm 2/ s以下であることがより 好ましい。 当該動粘度が 4. 0 mm2/ sを超えると、 燃料噴射システム内部の 抵抗が増加して噴射系が不安定化し、 排出ガス中の NO x、 PMの濃度が高くな つてしまい好ましくない。 Kinematic viscosity at 30 ° C of the diesel fuel composition of the present invention, 1. is a 7 mm 2 / s or more, 1. is preferably 75 mm 2 / s or more, the 1. 8 mm 2 / s or less It is more preferable. If the kinematic viscosity is less than 1.7 mm 2 Z s, it tends to be difficult to control the fuel injection timing on the fuel injection bump side, and the lubricity of each part of the fuel injection pump mounted on the engine is impaired. There is a fear. Hand, the kinematic viscosity at 30 ° C is required to be 4. It Omm 2 / s or less, preferably 3 is 9 mm 2 Roh s or less, that 3. or less 8 mm 2 / s More preferable. If the kinematic viscosity exceeds 4.0 mm 2 / s, the resistance inside the fuel injection system increases, the injection system becomes unstable, and the concentrations of NO x and PM in the exhaust gas increase, which is not preferable.
本発明の極低温地向け燃料組成物の 30°Cにおける動粘度は、 1. 6 mm2/ s以上であり、 1. 6 5 mm2/ s以上であることが好ましく、 1. 7mm2/ s 以上であることがより好ましい。 当該動粘度が 1. 6 mm2/ sに満たない場合 は、 燃料噴射ポンプ側の燃料噴射時期制御が困難となる傾向にあり、 またェンジ ンに搭載された燃料噴射ポンプの各部における潤滑性が損なわれるおそれがある。 一方、 30°Cにおける動粘度の上限は 5. 0 mm2/ sであることが必要であり、 4 mm2// s以下であることが好ましく、 Srnni2/ s以下であることがより好ま しい。 当該動粘度が 5. 0mm2// sを超えると、 燃料噴射システム内部の抵抗 が増加して噴射系が不安定化し、 排出ガス中の NO x、 PMの濃度が高くなつて しまい好ましくない。 Kinematic viscosity at 30 ° C for cryogenic locations for fuel compositions of the present invention, 1. is a 6 mm 2 / s or more, preferably 1. at 6 5 mm 2 / s or more, 1. 7 mm 2 / More preferably, it is s or more. When the kinematic viscosity is less than 1.6 mm 2 / s, it tends to be difficult to control the fuel injection timing on the fuel injection pump side, and the lubricity of each part of the fuel injection pump mounted on the engine is low. There is a risk of damage. On the other hand, the upper limit of kinematic viscosity at 30 ° C must be 5.0 mm 2 / s, preferably 4 mm 2 // s or less, more preferably Srnni 2 / s or less. That's right. If the kinematic viscosity exceeds 5.0 mm 2 // s, the resistance inside the fuel injection system increases, the injection system becomes unstable, and the concentrations of NO x and PM in the exhaust gas increase, which is not preferable.
なお、 ここでいう動粘度とは、 J I S K 228 3 「原油及び石油製品一動 粘度試験方法及び粘度指数算出方法」 により測定される動粘度を意味する。 本発明の極低温地向け燃料組成物の一 30°Cにおける動粘度は、 30mm2/ s以下であり、 28 mm2/ s以下であることが好ましく、 26 mm2/ s以下で あることがより好ましい。 当該動粘度が 3 Omm2/ sを超えると、 極低温下に おいて作業性に支障をきたすため好ましくない。 なおく ここでいう動粘度とは、 J I S K 2283 「原油及び石油製品一動粘度試験方法及ぴ粘度指数算出方 法」 に準じて測定される動粘度を意味する。 The kinematic viscosity here means the kinematic viscosity measured according to JISK2283 “Crude oil and petroleum products kinematic viscosity test method and viscosity index calculation method”. The kinematic viscosity in an 30 ° C cryogenic locations for fuel compositions of the present invention is less 30 mm 2 / s, preferably not more than 28 mm 2 / s, not more than 26 mm 2 / s More preferred. When the kinematic viscosity exceeds 3 Omm 2 / s, workability is impaired at extremely low temperatures, which is not preferable. In addition, kinematic viscosity here means kinematic viscosity measured according to JISK 2283 “Crude oil and petroleum product single kinematic viscosity test method and viscosity index calculation method”.
本発明の燃料組成物の水分含有量は、 低温下での凍結防止の観点から、 1 00 容量 p pm以下であることが好ましく、 より好ましくは 50容量 p pm以下、 さ らにより好ましくは 20容量 p p m以下である。  The water content of the fuel composition of the present invention is preferably 100 capacity p pm or less, more preferably 50 capacity p pm or less, and still more preferably 20 capacity from the viewpoint of preventing freezing at low temperatures. ppm or less.
なお、 ここでいう水分含有量とは、 J I S K 22 75 「原油及び石油製品 一水分試験方法一カールフィッシヤー式電量滴定法」 により測定される値を意味 する。  The moisture content here means a value measured according to JIS K 22 75 “Crude oil and petroleum products – One moisture test method – Karl Fischer-type coulometric titration method”.
本発明のディーゼル燃料組成物の 1 0%残油の残留炭素分は 0. 05質量%以 下であり、 スラッジによるフィルター目詰まり防止の点から、 0. 04質量%以 下が好ましく、 0. 03質量%以下がより好ましい。  The residual carbon content of 10% residual oil of the diesel fuel composition of the present invention is 0.05% by mass or less, and preferably 0.04% by mass or less from the viewpoint of preventing filter clogging by sludge. 03 mass% or less is more preferable.
本発明の極低温地向け燃料組成物の 1 0。/。残油の残留炭素分は 0. 1質量%以 下であり、 スラッジによるフィルター目詰まり防止の点から、 0. ひ 8質量%以 下が好ましく、 0. 05質量%以下がより好ましい。  10 of the fuel composition for cryogenic regions of the present invention. /. The residual carbon content of the residual oil is 0.1% by mass or less, and from the viewpoint of preventing filter clogging by sludge, it is preferably 0.08% by mass or less, and more preferably 0.05% by mass or less.
なお、 ここでいう 1 0%残油の残留炭素分とは、 J I S K 2270 「原油 及び石油製品一残留炭素分試験方法」 により測定される値を意味する。  The residual carbon content of 10% residual oil here means the value measured by J ISK 2270 “Testing method for residual carbon content of crude oil and petroleum products”.
本発明のディーゼル燃料組成物の HFRR摩耗痕径 (WS 1. 4) は 400 m以下であり、 好ましくは 3 8◦ Ai m以下、 より好ましくは 360 ii m以下とな る潤滑性能を有することが望ましい。 HFRR摩耗痕径 (WS 1. 4) が 400 μ mを超える場合は、 特に分配型噴射ポンプを搭載したディーゼルエンジンにお いて、 運転中のポンプの駆動トルク増、 ポンプ各部の摩耗増を引き起こし、 排ガ ス性能、 微小粒子性能の悪化のみならずエンジン自体が破壊される恐れがある。 また、 高圧噴射が可能な電子制御式燃料噴射ポンプにおいても、 摺動面等の摩耗 が懸念される。  The diesel fuel composition of the present invention has a HFRR wear scar diameter (WS 1.4) of 400 m or less, preferably 38 ° Aim or less, more preferably 360 iim or less. desirable. When the HFRR wear scar diameter (WS 1.4) exceeds 400 μm, the drive torque of the pump during operation and the wear of each part of the pump increase, especially in diesel engines equipped with a distributed injection pump. The engine itself may be destroyed as well as the exhaust gas performance and fine particle performance deteriorate. There is also concern about wear on the sliding surface of electronically controlled fuel injection pumps capable of high-pressure injection.
なお、 本発明でいう HFRR摩耗痕径 (WS 1. 4) とは、 社団法人石油学会 から発行されている石油学会規格 J P I— 5 S— 50— 98 「軽油一潤滑性試験 方法」 により測定される値を意味する。 The HFRR wear scar diameter (WS 1.4) referred to in the present invention is the Petroleum Institute Standard JPI-5 S-50-98 “Diesel Oil-Lubricity Test” issued by the Japan Petroleum Institute. Means the value measured by
本発明の燃料組成物においては、 必要に応じて潤滑性向上剤、 凍結防止剤、 低 温流動性向上剤を適量配合することが好ましい。  In the fuel composition of the present invention, it is preferable to blend an appropriate amount of a lubricity improver, an antifreeze agent, and a low temperature fluidity improver as necessary.
本発明の燃料組成物には、 燃料噴射ポンプの摩耗防止の理由から、 潤滑性向上 剤を添加することが好ましい。 また、 その添加量は、 活性分濃度で 20mg/L 以上、 20 OmgZL以下であることが好ましく、 50mgZL以上、 1 80m g/L以下であることがより好ましい。 潤滑性向上剤の添加量が前記の範囲内で あると、 添加された潤滑性向上剤の効能を有効に引き出すことができ、 例えば分 配型噴射ポンプを搭載したディーゼルエンジンにおいて、 運転中のポンプの駆動 トルク増を抑制し、 ポンプの摩耗を低減させることができる。  In order to prevent wear of the fuel injection pump, it is preferable to add a lubricity improver to the fuel composition of the present invention. Further, the addition amount is preferably 20 mg / L or more and 20 OmgZL or less, more preferably 50 mgZL or more and 180 mg / L or less in terms of active ingredient concentration. When the added amount of the lubricity improver is within the above range, the effect of the added lubricity improver can be effectively extracted. For example, in a diesel engine equipped with a distributed injection pump, It is possible to suppress the increase in driving torque and reduce pump wear.
潤滑性向上剤の種類は特に限定されるものではないが、例えば、カルボン酸系、 エステル系、 アルコール系おょぴフエノール系の各潤滑性向上剤の 1種又は 2種 以上が任意に使用可能である。 これらの中でも、 カルボン酸系及びエステル系の 潤滑性向上剤が好ましい。 .  The type of the lubricity improver is not particularly limited. For example, one or more of the carboxylic acid-based, ester-based, and alcohol-based opiphenol-based lubricity improvers can be used arbitrarily. It is. Among these, carboxylic acid-based and ester-based lubricity improvers are preferable. .
カルボン酸系の潤滑性向上剤としては、 例えば、 リノール酸、 ォレイン酸、 サ リチル酸、 パルミチン酸、 ミリスチン酸、 へキサデセン酸及び上記カルボン酸の 2種以上の混合物が例示できる。 +  Examples of the carboxylic acid-based lubricity improver include linoleic acid, oleic acid, salicylic acid, palmitic acid, myristic acid, hexadecenoic acid and a mixture of two or more of the above carboxylic acids. +
エステル系の潤滑性向上剤としては、 グリセリンのカルボン酸エステルが挙げ られる。 カルボン酸エステルを構成するカルボン酸は、 1種であっても 2種以上 であってもよく、 その具体例としては、 リノール酸、 ォレイン酸、 サリチル酸、 パルミチン酸、 ミ リスチン酸、 へキサデセン酸等がある。  Ester-based lubricity improvers include glycerin carboxylic acid esters. The carboxylic acid constituting the carboxylic acid ester may be one kind or two or more kinds. Specific examples thereof include linoleic acid, oleic acid, salicylic acid, palmitic acid, myristic acid, hexadecenoic acid, etc. There is.
なお、 本発明は低温環境での使用を前提としているため、 これらの潤滑性向上 剤の脂肪酸構造は不飽和結合を有するものが、 低温流動性確保の観点からより好 ましい。  Since the present invention is premised on use in a low-temperature environment, the fatty acid structure of these lubricity improvers is preferably one having an unsaturated bond from the viewpoint of securing low-temperature fluidity.
本発明の燃料組成物には、 油中水分が凍結し燃料フィルターや燃料噴射系の不 都合を防止する観点から凍結防止剤を添加することが好ましい。 また、 その添加 量は 1 00質量 p pm以上、 500質量 p pm以下であることが好ましく、 20 0質量 p pm以上、 400質量 p pm以下であることがより好ましい。 凍結防止 剤の種類は特に限定されるものではないが、 凍結防止機能を有する各種化合物を 任意に使用することができ、 例えば 2—メ トキシエタノール、 イソプロピルアル コール、ポリダリコールエーテル等が挙げられるが、低温流動性確保の観点から、 これらの凍結防止剤の融点または流動点は一 6 0 °C以下であることが好ましい。 ただし、 金属を有するもの及び塩構造を有するもの、 例えば酢酸ナトリウム、 酢 酸カルシウム、 塩化ナトリウム、 塩化カルシウム等は燃料用途においては不適で ある。 これらの凍結防止剤は、 1種を単独で用いてもよく、 2種以上を組み合わ せて用いても良いが、 それぞれの凍結防止剤含有主化合物の純度が 9 8 %以上で あるものをより好ましく使用することができる。 . It is preferable to add an antifreezing agent to the fuel composition of the present invention from the viewpoint of preventing the inconvenience of the fuel filter and the fuel injection system due to freezing of water in the oil. The addition amount is preferably 100 mass ppm or less and 500 mass ppm or less, more preferably 200 mass ppm or more and 400 mass ppm or less. The type of antifreezing agent is not particularly limited, but various compounds having an antifreezing function can be arbitrarily used, such as 2-methoxyethanol, isopropyl alcohol. Examples thereof include coal and polydaryl alcohol, but from the viewpoint of securing low temperature fluidity, the melting point or pour point of these antifreeze agents is preferably 160 ° C. or lower. However, those having metals and those having a salt structure such as sodium acetate, calcium acetate, sodium chloride, calcium chloride are not suitable for fuel applications. These cryoprotectants may be used singly or in combination of two or more, but more than those in which the purity of each antifreeze-containing main compound is 98% or more. It can be preferably used. .
本発明の燃料組成物には、 ディーゼル自動車のフィルター閉塞防止の点から低 温流動性向上剤を添加することが好ましい。 また、 その添加量は活性分濃度で 2 O O m g / L以上、 1 0 0 O m g / L以下であることが好ましく、 3 0 0 m gノ L以上、 8 0 O m g / L以下であることがより好ましい。  It is preferable to add a low temperature fluidity improver to the fuel composition of the present invention from the viewpoint of preventing filter blockage of a diesel vehicle. Further, the amount added is preferably 2 OO mg / L or more and 100 O mg / L or less in terms of the active ingredient concentration, and is preferably 300 mg or more and 80 O mg / L or less. More preferred.
低温流動性向上剤の種類は特に限定されるものではないが、 例えば、 エチレン —酢酸ビュル共重合体に代表されるエチレン一不飽和エステル共重合体、 ァルケ The type of the low temperature fluidity improver is not particularly limited. For example, ethylene monounsaturated ester copolymer represented by ethylene-butyl acetate copolymer, alkke
-ル琥珀酸アミ ド、 ポリエチレングリコールのジべヘン酸エステルなどの線状の 化合物、 フタル酸、 エチレンジァミン四酢酸、 ユトリロ酢酸などの酸又はその酸 無水物などとヒ ドロカルビル置換ァミンの反応生成物からなる極性窒素化合物、 アルキルフマレートまたはアルキルィタコネート一不飽和エステル共.重合体など からなるくし形ポリマーなどの低温流動性向上剤の 1種または 2種以上が使用で きる。 また、 エチレンとメタクリル酸メチルとの共重合体、 エチレンと α—ォレ フィンとの共重合体、 塩素化メチレン一酢酸ビュル共重合体、 不飽和カルボン酸 のアルキルェステル重合体、 水酸基を有する含窒素化合物と飽和脂肪酸から合成 されるエステルもしくはその塩、 多価アルコールと飽和脂肪酸から合成されるェ ステル及びアミ ド誘導体、 ポリオキシアルキレングリコールと飽和脂肪酸から合 成されるエステル、 多価アルコールまたはその部分エステルのアルキレンォキサ ィ ド付加物と飽和脂肪酸から合成されるエステル、 塩素化パラフィン/ナフタレ ン縮合物、 アルケニルコハク酸アミ ド、 スルホ安息香酸のアミン塩などから選ば れる 1種または 2種以上を組み合わせた低温流動性向上剤も使用することができ る。 この中でも汎用性の点から、 エチレン一酢酸ビュル共重合体系添加剤を好ま しく使用することができる。 なお、 低温流動性向上剤と称して市販されている商 品は、 低温流動性に寄与する有効成分 (活性分) が適当な溶剤で希釈されている ことがあるため、 こうした市販品を本発明の軽油組成物に添加する場合にあたつ ては、上記の添加量は、有効成分としての添加量(活性分濃度) を意味している。 また、 本発明における燃料組^物の性能をさらに高める目的で、 その他の公知 の燃料油添加剤 (以下、 便宜上 「その他の添加剤」 という) を単独で、 または数 種類組み合わせて添加することもできる。 その他の添加剤としては、 例えば、 炭 素数 6〜 8のアルキルナイ トレートで代表される硝酸エステル、 有機過酸化物な どのセタン価向上剤;ィミ ド系化合物、 ァルケニルコハク酸ィミ ド、 コハク酸ェ ステル、 共重合系ポリマー、 無灰清浄剤などの清浄剤; フエノール系、 アミン系 などの酸化防止剤;サリチリデン誘導体などの金属不活性化剤;脂肪族ァミン、 ァルケエルコハク酸エステルなどの腐食防止剤;ァ-オン系、 カチオン系、 両性 系界面活性剤などの帯電防止剤;ァゾ染料などの着色剤; シリコン系などの消泡 剤等が挙 られる。 -From the reaction product of linear compounds such as oxalic acid amide, dibehenate of polyethylene glycol, acid such as phthalic acid, ethylenediammine tetraacetic acid, utlyloacetic acid and its hydrohydric acid One or more low-temperature fluidity improvers such as comb polymers made of polar nitrogen compounds, alkyl fumarate or alkyltaconate monounsaturated ester copolymers may be used. Also, a copolymer of ethylene and methyl methacrylate, a copolymer of ethylene and α-olefin, a chlorinated methylene monoacetic acid butyl copolymer, an alkyl ester polymer of unsaturated carboxylic acid, and a hydroxyl group Esters or salts thereof synthesized from nitrogen-containing compounds and saturated fatty acids, esters and amide derivatives synthesized from polyhydric alcohols and saturated fatty acids, esters synthesized from polyoxyalkylene glycols and saturated fatty acids, polyhydric alcohols or One or two kinds selected from an alkylene oxide adduct of the partial ester and an ester synthesized from a saturated fatty acid, a chlorinated paraffin / naphthalene condensate, an alkenyl succinic acid amide, an amine salt of sulfobenzoic acid, etc. A low temperature fluidity improver combining the above can also be used. Among these, from the viewpoint of versatility, an ethylene monoacetate butyl copolymer additive can be preferably used. In addition, in the product marketed as a low temperature fluidity improver, the active ingredient (active ingredient) contributing to the low temperature fluidity is diluted with an appropriate solvent. Therefore, when such a commercial product is added to the light oil composition of the present invention, the above addition amount means the addition amount (active ingredient concentration) as an active ingredient. Further, for the purpose of further improving the performance of the fuel assembly in the present invention, other known fuel oil additives (hereinafter referred to as “other additives” for convenience) may be added alone or in combination of several kinds. it can. Examples of other additives include cetane number improvers such as nitrate esters represented by alkyl nitrates having 6 to 8 carbon atoms and organic peroxides; imido compounds, alkenyl succinic acid imides, and succinic acids. Detergents such as esters, copolymer polymers, and ashless detergents; Antioxidants such as phenols and amines; Metal deactivators such as salicylidene derivatives; Corrosion inhibitors such as aliphatic amines and alkellesuccinates An antistatic agent such as an ionic, cationic or amphoteric surfactant; a coloring agent such as an azo dye; an antifoaming agent such as a silicon.
その他の添加剤の添加量は任意に決めることができるが、 添加剤個々の添加量 は、極低温地向け燃料組成物の全量基準でそれぞれ好ましくは 0 . 5質量%以下、 より好ましくは 0 . 2質量。 /0以下である。 The addition amount of other additives can be arbitrarily determined. The addition amount of each additive is preferably not more than 0.5% by mass, more preferably not more than 0.5% by mass, based on the total amount of the fuel composition for cryogenic regions. 2 mass. / 0 or less.
以上のように、 本発明によれば、 上記の製造方法、 留分規定等により製造され たディーゼル燃料組成物を使用することにより、 従来の燃料組成物では実現が困 難であった優れた低温流動性と燃費性能、 環境対応性能を同時に有するディーゼ ル燃焼組成物を提供することができる。 また、 上記の製造方法、 留分規定等によ り製造された極低温地向け燃料組成物を使用することにより、 従来の燃料組成物 では実現が困難であった極低温地域における低温流動性と複数の用途に対応でき るフレキシビリティさ並びに環境対応型燃料としての性能を全て満足させた極低 温地向け燃料組成物を提供することができる。  As described above, according to the present invention, by using the diesel fuel composition manufactured by the above-described manufacturing method, fraction regulation, etc., it is possible to achieve an excellent low temperature that is difficult to realize with a conventional fuel composition. It is possible to provide a diesel combustion composition having fluidity, fuel efficiency, and environmental performance at the same time. In addition, by using a fuel composition for cryogenic regions produced by the above production method, fraction regulation, etc., low temperature fluidity in a cryogenic region, which was difficult to achieve with conventional fuel compositions, is achieved. It is possible to provide a fuel composition for extremely low temperatures that satisfies all the flexibility required for multiple applications and the performance as an environmentally friendly fuel.
なお、 本燃料組成物を供給することで作動する機器類、 例えば移動用車両、 雪 上車、 船舶、 航空機、 ヘリコプター、 工作用車両、 暖房用機器、 発電用機器等の 種類、 用途に対しては、 本燃料組成物は何ら制約を加えるものではなく、 それら に用いられている動力源及び熱源、 例えばディーゼルエンジン、 ガスタービン、 燃料電池、 ジェットエンジン、 パーナ一、 コンロ等の種類に関しても何ら制約を 加えるものではない。 [産業上の利用可能性] For equipment that operates by supplying this fuel composition, such as mobile vehicles, snow vehicles, ships, aircraft, helicopters, work vehicles, heating equipment, power generation equipment, etc. The fuel composition does not impose any restrictions, and there are no restrictions on the types of power sources and heat sources used in them, such as diesel engines, gas turbines, fuel cells, jet engines, panners, stoves, etc. It does not add. [Industrial applicability]
本発明の燃料組成物は、 優れた低温流動性と燃費性能、 環境対応性能を同時に 有するため冬季に使用するディーゼル燃料として、 また極低温地域における低温 流動性と複数の用途に対応できるフレキシビリティさ並びに環境対応型燃料とし ての性能を全て満足させた極低温地向け燃料組成物として好適に用いられる。  The fuel composition of the present invention has excellent low-temperature fluidity, fuel efficiency, and environment-friendly performance at the same time, so that it can be used as a diesel fuel in winter, and has low-temperature fluidity in a cryogenic region and flexibility that can be used for multiple applications. In addition, it is suitably used as a fuel composition for cryogenic regions satisfying all the performance as an environmentally friendly fuel.
[実施例] [Example]
以下、 実施例及び比較例に基づいて本発明をさらに具体的に説明するが、 本発 明はこれらの実施例に何ら限定されるものではない。  Hereinafter, the present invention will be described more specifically based on Examples and Comparative Examples, but the present invention is not limited to these Examples.
なお、 原料油および燃料油の性状は以下の方法により測定した。  The properties of the feedstock oil and fuel oil were measured by the following method.
密度は、 J I S K 2 2 4 9 「原油及ぴ石油製品の密度試験方法並びに密度' 質量,容量換算表」 により測定される密度を指す。  Density refers to the density measured by J I S K 2 2 4 9 “Density test method for crude oil and petroleum products and density 'mass, volume conversion table”.
動粘度は、 J I S K 2 2 8 3 「原油及び石油製品一動粘度試験方法及ぴ粘 度指数算出方法」 により測定される動粘度を指す。  Kinematic viscosity refers to the kinematic viscosity measured by J I S K 2 2 8 3 “Crude oil and petroleum products single kinematic viscosity test method and viscosity index calculation method”.
引火点は J I S K 2 2 6 5 「原油及ぴ石油製品引火点試験方法」で測定され る値を示す。  Flash point indicates the value measured by J I S K 2 2 6 5 “Crude oil and petroleum product flash point test method”.
硫黄分含有量は、 J I S K 2 5 4 1 「硫黄分試験方法」により測定される軽 油組成物全量基準の硫黄分の質量含有量を指す。  The sulfur content refers to the mass content of the sulfur content based on the total amount of the diesel fuel composition measured by JI S K 2 5 4 1 “Sulfur content test method”.
蒸留性状は、 全て J I S K 2 2 5 4 「石油製品—蒸留試験方法」 によって 測定される値である。 .  Distillation properties are all measured by J I S K 2 2 5 4 “Petroleum products—Distillation test method”. .
芳香族分含有量は、 社団法人石油学会により発行されている石油学会法 J P I - 5 S - 4 9 - 9 7 「炭化水素タイプ試験方法一高速液体クロマトグラフ法」 に 準拠され測定された芳香族分含有量の容量百分率 (容量。 /0) を意味する。 Aromatic content is measured according to the Petroleum Institute Method JPI-5S-4 9-9 7 "Hydrocarbon Type Test Method-High Performance Liquid Chromatograph Method" published by the Japan Petroleum Institute. Means the volume percentage of the content (capacity. / 0 ).
ナフテン化合物含有量(ナフテン分)は、 A S T M D 2 4 2 5 "Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry に準拠して測定されるナフテン分の質量百分率 (質量。 /0) を意味する。 Naphthenic compound content (naphthene content) refers to ASTMD 2 4 2 5 "Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry naphthene content of the mass percentage is measured in accordance with (mass. / 0).
直鎖飽和炭化水素含有量、 0 1 0—。1 5の11? (炭素数 1 0以上 1 5以下の 直鎖飽和炭化水素含有量)、 C l l— C 1 5の n P、 C 1 6—C 2 0の n P、 C 1 6—C 2 5の n Pは前述の G C— F I Dを用いて測定される値 (質量%) を意味 する。 くもり点は、 J I S K 2 2 6 9 「原油及ぴ石油製品の流動点並びに石油製 品曇り点試験方法」 に準じて測定されるくもり点を意味する。 Linear saturated hydrocarbon content, 0 1 0—. 1 5 1 1? (Linear saturated hydrocarbon content with carbon number of 10 or more and 15 or less), C ll—C 15 n P, C 1 6—C 2 0 n P, C 1 6—C 2 5 n P Means the value (% by mass) measured using the above-mentioned GC-FID. Cloudy point means the cloud point measured according to JISK 2 26 9 “Pour point of crude oil and petroleum products and cloud point test method of petroleum products”.
目詰まり点は、 J I S K 2 2 8 8 「軽油一目詰まり点試験方法」 により測. 定される目詰まり点を意味する。 ·  The clogging point means the clogging point measured by JI S K 2 2 8 8 “Test method for light oil clogging point”. ·
流動点は、 J I S K 2 2 6 9 「原油及び石油製品の流動点並びに石油製品 曇り点試験方法」 に準じて測定される流動点を意味する。  Pour point means the pour point measured according to J I S K 2 26 9 “Pour point of crude oil and petroleum products and cloud point test method of petroleum products”.
セタン指数は、 J I S K 2 2 8ひ 「石油製品一燃料油一オクタン価及びセ タン価試験方法並びにセタン指数算出方法」 の 「8 . 4変数方程式を用いたセタ ン指数の算出方法」 によって算出した価を指す。 なお、 上記 J I S規格における セタン指数は、 セタン価向上剤を添加したものに対しては適用されないが、 本発 明ではセタン価向上剤を添加したもののセタン指数も、 上記 「8 . 4変数方程式 を用いたセタン指数の算出方法」 によって算出した値を表すものとする。  The cetane index is the value calculated by `` Calculation method of cetane index using 8.4 variable equations '' in JISK 2 28 `` Petroleum products / fuel oil / octane number and cetane number test method and cetane index calculation method ''. Point to. Note that the cetane index in the above JIS standard does not apply to the cetane number improver added, but in the present invention, the cetane index of the cetane number improver added also has the above 8.4 variable equation. It shall represent the value calculated by “Calculation method of cetane index used”.
セタン価は、 J I S K 2 2 8 0 「石油製品一燃料油一オクタン価及びセタ ン価試験方法並びにセタン指数算出方法」 の 「7 . セタン価試験方法」 に準拠し て測定されるセタン価を意味する。  Cetane number means the cetane number measured in accordance with “7. Cetane number test method” of JISK 2 28 0 “Petroleum products / Fuel oil / Octane number and cetane number test method and cetane index calculation method”. .
色相は、 J I S K 2 5 8 0 「石油製品一色試験法」 に記載されたセーボル ト色試験法に準拠して測定されるセーボルト色を意味する。  Hue means the Saybolt color measured according to the Savort color test method described in JI S K 2 5 8 0 “Petroleum Product One-Color Test Method”.
反応試験は、 J I S K 2 2 5 2 「石油製品—反応試験方法」 により測定さ れる反応を指す。  Reaction test refers to the reaction measured by JI S K 2 2 5 2 “Petroleum products—Reaction test method”.
銅板腐食は、 J I S K 2 2 5 2. 「石油製品—銅板腐食試験方法」 により測 定される腐食の分類を指す。  Copper plate corrosion refers to the classification of corrosion measured by J I S K 2 2 5 2. “Petroleum products—copper plate corrosion test method”.
水分は、 J I S K 2 2 7 5 「原油及び石油製品—水分試験方法」 に記載の カールフィッシャー式電量滴定法により測定される水分を指す。  Moisture refers to the moisture measured by the Karl Fischer coulometric titration method described in J I S K 2 2 7 5 “Crude oil and petroleum products—Moisture test method”.
1 0 %残油の残留炭素分とは、 J I S K 2 2 7 0 「原油及び石油製品一残 留炭素分試験方法」 により測定される 1 0 %残油の残留炭素分を意味する。  Residual carbon content of 10% residual oil means the residual carbon content of 10% residual oil as measured by JIS K 2 27 0 “Testing method for residual carbon content of crude oil and petroleum products”.
酸化安定性試験後の過酸化物価 (過酸化物価) とは、 A S T M D 2 2 7 4— 9 4に準拠して、 9 5 °C、酸素パブリング下、 1 6時間の条件で加速酸化した後、 石油学会規格 J P I— 5 S— 4 6— 9 6に準拠して測定される値を意味する。 酸化安定性試験後の全不溶解分 (全不溶解分) とは、 A S TM D 2 2 7 4 - 9 4に準拠して、 9 5 °C、 酸素パブリング下、 1 6時間の条件で加速酸化した後 に測定する値を意味する。 Peroxide value after oxidation stability test (peroxide value) is accelerating oxidation under conditions of 95 ° C, oxygen publishing for 16 hours according to ASTMD 2 27 4-9 4 Means a value measured in accordance with the Petroleum Institute Standard JPI—5 S—4 6—9 6. Total insoluble matter after oxidation stability test (total insoluble matter) is accelerated under conditions of 95 ° C and oxygen publishing for 16 hours according to AS TM D 2 2 7 4-94 After oxidation Means the value to be measured.
導電率とは、 J I S K 2276 「石油製品一航空燃料油試験方法」 に準拠 して測定される値を意味する。 '  Conductivity means a value measured according to JI S K 2276 “Petroleum products – Aviation fuel oil test method”. '
潤滑性能および HFRR摩耗痕径 (WS 1. 4) とは、 社団法人石油学会から 発行されている石油学会規格 J P I— 5 S— 50— 98「軽油一潤滑性試験方法」 により測定される潤滑性能を指す。  Lubrication performance and HFRR wear scar diameter (WS 1.4) are the lubrication performance measured by the Petroleum Institute Standard JPI-5 S-50-98 “Diesel Oil-Lubricity Test Method” published by the Japan Petroleum Institute Point to.
(実施例 1〜 2および比較例 1〜 4 ) (Examples 1 and 2 and Comparative Examples 1 to 4)
表 1に示す性状を有する F T合成基材(炭化水素混合物 1 , 2)を原料油とし、 表 2に示す条件で反応、処理し、表 3に示すディーゼル燃料組成物を調製した(実 施例 1〜2)。実施例 1、 2共に天然ガスを FT反応によりワックス及び中間留分 化し、 これに水素化処理を施して得られた炭化水素を原料油としたものである。 ただし、 実施例 1は比較的直鎖飽和炭化水素含有率が高い FT合成基材を使用し ているのに対して、 実施例 2は上記水素化処理中に異性化反応を含ませて、 側鎖 を有する飽和炭化水素含有率が高い基材である。 比較例 1はゼォライトに周期律 表第 6 A族及び第 8族の金属から選ばれた金属群を担持した触媒下において反応 圧力 3 MP a、 反応温度 380°C、 液空間速度 0. 8 h— 1の条件で処理された脱 硫脱ロウ基材を灯油留分と混合して製造した組成物であり、 比較例 2、 3は FT 合成基材に対して本発明が要求する処理を何ら行わずに配合したものであり、 比 較例 4は一般的な水素化精製による製法で軽油 分と灯油留分を製造し、 これら を適量配合して J I S特 3号軽油相当の低温性能を有する組成物である。 The diesel fuel composition shown in Table 3 was prepared by reacting and treating FT synthetic base materials (hydrocarbon mixtures 1 and 2) having the properties shown in Table 1 under the conditions shown in Table 2 (Examples). 1-2). In both Examples 1 and 2, natural gas was converted into wax and middle distillate by FT reaction, and hydrocarbons obtained by hydrotreating this were used as feedstock. However, while Example 1 uses an FT synthesis base material having a relatively high linear saturated hydrocarbon content, Example 2 includes an isomerization reaction during the above hydrotreatment, It is a base material having a high saturated hydrocarbon content having a chain. In Comparative Example 1, the reaction pressure is 3 MPa, the reaction temperature is 380 ° C, and the liquid space velocity is 0.8 h under a catalyst in which a metal group selected from metals of Group 6A and Group 8 is supported on zeolite. — A composition produced by mixing a desulfurized and dewaxed base material treated with the conditions of 1 with a kerosene fraction. Comparative Examples 2 and 3 show no treatment required by the present invention for an FT synthetic base material. In Comparative Example 4, light oil and kerosene fractions were produced by a general hydrorefining process, and they were mixed in appropriate amounts to have low temperature performance equivalent to JIS No. 3 diesel oil. It is a composition.
なお、 本例で使用した添加剤は以下の通りである。  The additives used in this example are as follows.
凍結防止剤: 2—メ トキシェタノール  Antifreeze: 2-methoxetanol
潤滑性向上剤: リノール酸を主成分とするカルボン酸混合物  Lubricant improver: Carboxylic acid mixture based on linoleic acid
低温流動性向上剤:エチレン一酢酸ビュル共重合体  Low temperature fluidity improver: ethylene monoacetate butyl copolymer
セタン価向上剤: 2—ェチルへキシルナイトレート  Cetane improver: 2-Ethylhexyl nitrate
調合した燃料組成物の調合比率、及びこの調合した燃料組成物に対して、 1 5°C における密度、 30°Cにおける動粘度、 引火点、 硫黄分含有量、 蒸留性状、 芳香 族分含有量、 ナフテン化合物含有量、 セタン指数、 セタン価、 くもり点、 目詰ま り点、 流動点、 色相、 1 0%残油の残留炭素分、 酸化安定性試験後の全不溶解分 および過酸化物価、 水分、 導電率、 摩耗痕径を測定した結果を表 3に示す。 Formulation ratio of the prepared fuel composition, and density of this prepared fuel composition at 15 ° C, kinematic viscosity at 30 ° C, flash point, sulfur content, distillation properties, aromatic content , Naphthenic compound content, cetane index, cetane number, cloudy point, clogging point, pour point, hue, residual carbon content of 10% residual oil, total insoluble content after oxidation stability test Table 3 shows the results of measurements of peroxide value, moisture, conductivity, and wear scar diameter.
実施例で使用した燃料組成物は、 表 1、 2に示すとおり、 F T合成基材を原料 油とし特定の工程を経て得られ 炭化水素基材を調合して製造したものである。 表 3から明らかなように、.所定の工程を経て製造された基材を用いて本発明で 規定する条件で配合した実施例 1〜 2においては、 規定した性状を満足した燃料 組成物を容易にかつ確実に得ることができた。 一方、 上記特定の燃料基材を用い ずに燃料組成物を調製した比較例 1〜4においては、 本発明の.目的とする燃料組 成物は必ずしも得られない。  As shown in Tables 1 and 2, the fuel compositions used in the examples are prepared by preparing a hydrocarbon base material obtained through a specific process using a FT synthetic base material as a raw material oil. As is clear from Table 3, in Examples 1 and 2, which were formulated under the conditions specified in the present invention using a base material produced through a predetermined process, a fuel composition satisfying the specified properties was easily obtained. I was able to get it reliably and reliably. On the other hand, in Comparative Examples 1 to 4 in which the fuel composition was prepared without using the specific fuel substrate, the target fuel composition of the present invention was not necessarily obtained.
次に実施例 1〜 2及び比較例 1〜4の各燃料組成物を用いて、 以下に示す各種 試験を行った。 全ての試験結果を表 4に示す。 表 4の結果からわかるように、 実 施例 1〜 2のディーゼル燃料組成物は、 比較例 1〜4の軽油組成物に比べ、 低温 始動後の加速条件における S m o k e測定試験、 低温始動後の燃費測定試験、 排 ガス性能試験、 低温始動後の再始動性試験で良好な結果が得られており、 従来の 燃料組成物では実現が困難であった優れた低温流動性と燃費性能、 環境対応性能 を同時に有するディーゼル燃焼組成物を提供することが確認できる。  Next, using the fuel compositions of Examples 1-2 and Comparative Examples 1-4, various tests shown below were conducted. All test results are shown in Table 4. As can be seen from the results in Table 4, the diesel fuel compositions of Examples 1 and 2 were compared to the diesel oil compositions of Comparative Examples 1 to 4, in the Smoke measurement test under the acceleration conditions after the cold start, and after the cold start. Good results have been obtained in fuel efficiency measurement tests, exhaust gas performance tests, and restartability tests after low-temperature starting, and excellent low-temperature fluidity and fuel efficiency performance, which was difficult to achieve with conventional fuel compositions, and environmental friendliness It can be confirmed that a diesel combustion composition having performance at the same time is provided.
(低温始動後の各種性能試験)  (Various performance tests after cold start)
<始動性確認〉 . <Startability check>
下記に示すディーゼルエンジン搭載車両 (車両 1 ) を用いて、 環^温度の制御 が可能なシャーシダイナモメータ上で、 室温下で、 (1 )供試ディーゼル自動車の 燃料系統を評価燃料でフラッシング (洗浄)、 ( 2;)フラッシング燃料の抜き出し、 ( 3 )メインフィルタの新品への交換、(4 )燃料タンクに評価燃料の規定量(供試車 両の燃料タンク容量の 1 / 2 ) の張り込みを行う。 その後、 ( 5 )環境温度を室温 から一 1 0 °Cまで急冷し、( 6 )— 1 0 °Cで 1時間保持した後、( 7 ) 1 °C/ hの冷却 速度で所定の温度 (一 2 0 °C) に達するまで徐冷し、 (8 )所定の温度で 1時間保 持した後、 エンジンを始動させる。 1 0秒間のクランキングを 3 0秒間隔で 2回 繰り返しても始動しない場合は測定不能とする。 始動できる場合は、 アイ ドリン グで 3 0秒間放置し、 その後以下の試験を順番に実施する。  Using a diesel engine-equipped vehicle (vehicle 1) shown below, on a chassis dynamometer capable of controlling the ring temperature, at room temperature, (1) flushing (cleaning) the fuel system of the test diesel vehicle with the evaluation fuel ), (2;) Pull out the flushing fuel, (3) Replace the main filter with a new one, (4) Fill the fuel tank with the prescribed amount of fuel to be evaluated (1/2 of the fuel tank capacity of the test vehicle) . Then, (5) rapidly cool the ambient temperature from room temperature to 110 ° C, hold it at (6) —10 ° C for 1 hour, and then (7) set the specified temperature (at a cooling rate of 1 ° C / h) (8) Hold the engine at the specified temperature for 1 hour, and then start the engine. If it does not start after repeating 10 seconds of cranking twice at intervals of 30 seconds, measurement is impossible. If it can be started, leave it idle for 30 seconds, and then perform the following tests in order.
< 1 . 加速試験〉 <1. Accelerated test>
旧運輸省監修新型自動車審査関係基準集別添 2 7 「ディーゼル自動車 1 0 · 1 5モード排出ガス測定の技術基準」 に記載された 1 0モードの運転パターンの運 転終了後にインターバル 3 0秒を加えて 5回繰り返し、 その際の黒煙を透過型測 定器で計測する。 5回の平均値を算出し、 比較例 1の結果を 1 0 0とし、 各結果 を相対的に比較、 定量化した。 ' Attachment of standards for new vehicle examinations supervised by the former Ministry of Transport Attachment 2 7 Operation of the operation pattern of the 10 mode described in “Technical Standards for Measuring Diesel Vehicles 10 · 15 Modes” After the end of rolling, add 5 seconds and repeat 5 times, and measure black smoke at that time with a transmission type measuring instrument. The average value of 5 times was calculated, the result of Comparative Example 1 was set to 100, and each result was relatively compared and quantified. '
< 2 . 再始動性試験〉  <2. Restartability test>
加速試験終了後、 エンジンを停止させ、 一 2 0 °C環境下で 1時間ソークする。 ソーク後、 エンジンを再始動させる。 この際、 上記の始動性確認試験と同様に 1 0秒間のクランキングを 3 0秒間隔で 2回繰り返しても始動しない場合は測定不 能とする。 始動できる場合は、 アイドリングで 3 0秒間放置し、 その際にェンジ ン回転数の著しいふらつきが発生した場合も不可とする。  After completion of the acceleration test, stop the engine and soak for 1 hour at 120 ° C. After soak, restart the engine. In this case, as in the above startability confirmation test, if the engine does not start even after repeating 10 seconds of cranking twice at intervals of 30 seconds, measurement is impossible. If the engine can be started, leave it idle for 30 seconds, and if the engine speed fluctuates significantly during that time, it is not allowed.
< 3 . 車両排ガス試験及び燃費試験 >  <3. Vehicle exhaust gas test and fuel consumption test>
再始動性試験終了後、 エンジン回転数を安定させるために図 1に示す実走行を 模擬した過渡運転モードを 5回走行させる。 その後 1分間のアイ ドリングでのィ ンターバル加えて図 1の運転モードで運転を行い、 その間の燃費、 N O x、 P M を測定する。 各排ガス性能値は比較例 1での試験結果を 1 0 0とし、 各結果を相 対的に比較、 定量化した。 なお、 車両試験に係わる試験方法は、 旧運輸省監修新 型自動車審査関係基準集別添 2 7 「ディーゼル自動車 1 0 · 1 5モード排出ガス 測定の技術基準」 に準拠している。  After the restartability test is completed, run the transient operation mode simulating the actual running shown in Fig. 1 five times to stabilize the engine speed. After that, in addition to the 1-minute idling interval, the vehicle is operated in the operation mode shown in Fig. 1, and the fuel consumption, NOx, and PM are measured. For each exhaust gas performance value, the test result in Comparative Example 1 was set to 100, and each result was relatively compared and quantified. The test methods related to vehicle testing are in accordance with Annex 27 of the Standards for New Automobile Examination Supervision Supervised by the former Ministry of Transport, “Technical Standards for Diesel Vehicle 10 · 15 Mode exhaust gas measurement”.
(車両諸元) :車両 1  (Vehicle specifications): Vehicle 1
エンジン種類:インタークーラー付過給直列 4気筒ディーゼル  Engine type: Supercharged inline 4-cylinder diesel with intercooler
排気量 3 L  Displacement 3 L
圧縮比 1 8 . 5  Compression ratio 1 8.5
取 出力 1 2 5 k W/ 3 4 0 0 r p m  Output 1 2 5 k W / 3 4 0 0 r p m
最高トルク 3 5 0 N m/ 2 4 0 0 r p m  Maximum torque 3 5 0 N m / 2 4 0 0 r p m
規制適合 平成 9年度排ガス規制適合  Compliant with regulations 1997 Exhaust gas regulations conformity
両盧量 1 9 0 0 k g  Both sides 1 9 0 0 k g
ミッション 4 A T  Mission 4 A T
排ガス後処理装置:酸化触媒 炭化水素混合物 1 炭化水素混合物 2 Exhaust gas aftertreatment device: oxidation catalyst Hydrocarbon mixture 1 Hydrocarbon mixture 2
(FT合成軽油 1) (FT合成軽油 2) 蒸留 10%留出温度 177.0 190.0 性状 50%留出温度 227.0 233.0 (FT synthetic gas oil 1) (FT synthetic gas oil 2) Distillation 10% distillation temperature 177.0 190.0 Properties 50% distillation temperature 227.0 233.0
°C 90%留出温度 281.0 308.0 芳香族分 容量0 /0 <1 <1 ナフテン分 質量% ぐ 1 <1° C 90% distillation temperature 281.0 308.0 aromatics capacity 0/0 <1 <1 naphthene wt% instrument 1 <1
C16- C25の nP 質量。 /0 59 38 硫黄分 質量% <1 <1 NP mass of C16-C25. / 0 59 38 Sulfur content% by mass <1 <1
表 2 Table 2
Figure imgf000041_0001
Figure imgf000041_0001
表 3 Table 3
Figure imgf000042_0001
表 4
Figure imgf000042_0001
Table 4
Figure imgf000043_0001
Figure imgf000043_0001
(実施例 3〜 6および比較例 5〜 6 ) (Examples 3 to 6 and Comparative Examples 5 to 6)
表 5に示す性状を有する原料油を表 6に示す工程ごとの条件で反応、 処理し、 表 7に示す極 f氐温地向け燃料組成物を調製した。 実施例 3、 4、 5は異なる原料 油を異なる条件での各工程処理を行い得られたものである。 実施例 3は石油系炭 化水素に対して芳香族分の開環反応を含んだ高度の水素化精製処理を施し、 得ら れた炭化水素を原料油としたものである a 実施例 4は天然ガスを F T反応により ワックス及び中間留分化し、 これに水素化処理を施して得られた炭化水素を原料 油としたものである。 実施例 5は、 パームやしから得られた油分 (留分ごとに分 離はせず、 ホール状態で使用) を水素化精製処理し、 不要なアルコール分等を除 去した後に得られた炭化水素を原料油としたものである。 実施例 6は実施例 3の 燃料油組成物を製造した後に表 5に示した合成燃料基材を配合したものである。 なお、 配合した合成燃料基材は天然ガスを F T反応によりワックス及び中間留分 化し、 これに水素化処理を施して得られた炭化水素混合物からなるものであり、 比較的異性化反応が進んだ側鎖を有する飽和炭化水素化合物を含有したものであ る。 比較例 5はゼォライトに周期律表第 6 A族及び第 8族の金属から選ばれた金 属群を担持した触媒下において反応圧力 3 M P a、 反応温度 3 8 0 °C、 液空間速 度 0 . 8 h一 1の条件で処理された脱硫脱口ゥ基材を灯油留分と混合して製造した 組成物であり、 比較例 6は一般的な水素化精製による製法で軽油留分と灯油留分 を製造し、 これらを適量配合して J I S特 3号軽油相当の低温性能を有する組成 物である。 The raw material oil having the properties shown in Table 5 was reacted and processed under the conditions for each process shown in Table 6 to prepare fuel compositions for extreme fridges shown in Table 7. Examples 3, 4, and 5 were obtained by subjecting different raw material oils to respective process treatments under different conditions. Example 3 a fourth embodiment performs a high degree of hydrorefining process including a ring-opening reaction of aromatic content with respect to petroleum coal hydrocarbons are those the resulting et hydrocarbons as a raw material oil Hydrocarbons obtained by subjecting natural gas to wax and middle distillation by FT reaction and hydrotreating it are used as feedstock. In Example 5, the oil obtained from palm palm (not separated for each fraction, used in the hall state) was hydrorefined and carbonized after removing unnecessary alcohol. Hydrogen is used as a feedstock. Example 6 is obtained by blending the synthetic fuel base material shown in Table 5 after the fuel oil composition of Example 3 was produced. The blended synthetic fuel base material consists of a hydrocarbon mixture obtained by subjecting natural gas to wax and middle distillate by FT reaction and hydrotreating it, and the isomerization reaction has progressed relatively. It contains a saturated hydrocarbon compound having a side chain. Comparative Example 5 shows a reaction pressure of 3 MPa, a reaction temperature of 3800 ° C, and a liquid space velocity under a catalyst in which a metal group selected from metals of Group 6A and Group 8 of the periodic table is supported on zeolite. A composition produced by mixing a desulfurization desulfurization base material treated under the conditions of 0.8 h and 1 with a kerosene fraction. Comparative Example 6 is a production process using a general hydrorefining method, and a light oil fraction and kerosene. This is a composition having a low-temperature performance equivalent to JIS No. 3 diesel oil by producing fractions and blending appropriate amounts of these.
なお、 本例で使用した添加剤は以下の通りである。  The additives used in this example are as follows.
凍結防止剤: 2—メ トキシェタノール 潤滑性向上剤: リノール酸を主成分とするカルボン酸混合物 Antifreeze: 2-methoxetanol Lubricant improver: Carboxylic acid mixture based on linoleic acid
低温流動性向上剤:エチレン一酢酸ビュル共重合体  Low temperature fluidity improver: ethylene monoacetate butyl copolymer
セタン価向上剤: 2—ェチノレへキシノレナイ ト レー ト  Cetane improver: 2-Ethinorehexinolenate
調合した燃料組成物の調合比率、及びこの調合した燃料組成物に対して、 1 5 °C における密度、 3 0 °Cにおける動粘度、 一 3 0 °Cにおける動粘度、 引火点、 硫黄 分含有量、 蒸留性状、 芳香族分含有量、 セタン指数、 セタン価、 流動点、 色相、 1 0 %残油の残留炭素分、 反応試験の結果、 銅板腐食、 水分、 酸化安定性試験後 の全不溶解分および過酸化物価、導電率、摩耗痕径を測定した結果を表 7に示す。 実施例および比較例で使用した燃料組成物は、 表 7に示すとおり、 特定の工程 を経て得られた炭化水素基材、 特定の性状を有する F T合成基材を特定の割合で 調合して製造したものである '  Formulation ratio of prepared fuel composition, and density at 15 ° C, kinematic viscosity at 30 ° C, kinematic viscosity at 30 ° C, flash point, sulfur content for this prepared fuel composition Amount, distillation properties, aromatic content, cetane index, cetane number, pour point, hue, residual carbon content of 10% residual oil, results of reaction test, copper plate corrosion, moisture, total failure after oxidation stability test Table 7 shows the results of measurement of dissolved content, peroxide value, conductivity, and wear scar diameter. As shown in Table 7, the fuel compositions used in the examples and comparative examples were prepared by blending hydrocarbon base materials obtained through specific processes and FT synthetic base materials having specific properties at specific ratios. '
表 7から明らかなように、 所定の工程を経て製造された基材を用いて本発明で 規定する条件で配合した実施例 3〜6においては、 規定した性状を満足した燃料 組成物を容易にかつ確実に得ることができた。 一方、 上記特定の燃料基材を用い ずに燃料組成物を調製した比較例 5〜 6においては、 本発明の目的とする燃料組 成物は必ずしも得られない。  As is clear from Table 7, in Examples 3 to 6 blended under the conditions specified in the present invention using the base material manufactured through a predetermined process, a fuel composition satisfying the specified properties was easily obtained. And I was able to get it reliably. On the other hand, in Comparative Examples 5 to 6 in which the fuel composition was prepared without using the specific fuel substrate, the fuel composition intended by the present invention was not necessarily obtained.
次に実施例 3〜 6及ぴ比較例 5〜 6の各燃料組成物を用いて、 以下に示す各種 試験を行った。 全ての試験結果を表 8に示す。 表 8の結果からわかるように、 実 施例 3〜 6の燃料組成物は、 比較例 5〜 6の燃料組成物に比べ、 ストーブでの燃 焼性確認試験、 低温始動性時の白煙測定試験、 排ガス性能試験、 低温保管試験等 で良好な結果が得られており、 従来の燃料組成物では実現が困難であった極低温 地域における低温流動性と複数の用途に対応できるフレキシ 'ビリティさ並びに環 境対応型燃料としての性能を全て満足させた極低温地向け燃料組成物を提供する ことが確認できる。  Next, using the fuel compositions of Examples 3 to 6 and Comparative Examples 5 to 6, various tests shown below were performed. All test results are shown in Table 8. As can be seen from the results in Table 8, the fuel compositions of Examples 3 to 6 were compared to the fuel compositions of Comparative Examples 5 to 6, and the test of white smoke at low temperature startability was performed at the stove. Good results have been obtained in tests, exhaust gas performance tests, low-temperature storage tests, etc., and low-temperature fluidity in a very low-temperature region, which was difficult to achieve with conventional fuel compositions, and flexibility to support multiple applications In addition, it can be confirmed that a fuel composition for cryogenic regions satisfying all the performance as an environmentally friendly fuel can be provided.
(芯式ストーブでの燃焼確認試験)  (Combustion confirmation test with a core-type stove)
—3 0 °Cの環境下に静置した芯式石油ストープ (株式会社コロナ製 S X— E 2 6 1 Y、 2 0 0 4年度製、暖房出力: 2 . 5 6〜 2 . 0 5 k W) に燃料を供試し、 通常の着火操作を行った際に、 着火時に着火不良、 失火、 赤火、 黒煙、 白煙の発 生がない場合、 かつその後 1 0分間燃焼させた際にも同様の異常燃焼が起きなか つた場合を合格 (〇) とし、 異常燃焼が起こった場合は不合格 (X ) とした。 な お、 心式ストーブでの燃焼確認試験に係わる試験方法は、 J I S S 30 3 1 「石油燃焼機器の試験方法通則」 に準拠して実施した。 —30-core oil stove placed in an environment of 0 ° C (SX-E 2 6 1 Y, manufactured by Corona Co., Ltd., manufactured in FY 2004, heating output: 2.5 6 to 2.5 5 kW ), And when normal ignition operation is performed, if there is no ignition failure, misfire, red fire, black smoke, white smoke during ignition, and after burning for 10 minutes The case where similar abnormal combustion did not occur was judged as pass (○), and when abnormal combustion occurred, it was rejected (X). Na The test method related to the combustion confirmation test using the heart-type stove was performed in accordance with JISS 30 3 1 “General Rules for Test Methods for Petroleum Combustion Equipment”.
(低温始動時の白煙測定)  (Measurement of white smoke at low temperature start)
環境温度の制御が可能なシャーシダイナモメータ上で、 室温下で、 (1)供試デ イーゼル自動車の燃料系統を評価燃料でフラッシング (洗浄)、( 2 )フラッシング燃 料の抜き出し、(3)メインフィルタの新品への交換、(4)燃料タンクに評価燃料の 規定量 (供試車両の燃料タンク容量の 1/2) の張り込みを行う。 その後、 (5) 環境温度を室温から一 20°Cまで急冷し、(6)— 20°Cで 1時間保持した後、 (7) l°CZhの冷却速度で所定の温度 (― 30°C) に達するまで徐冷し、 (8)所定の 温度で 1時間保持した後、 エンジンを始動させる。 10秒間のクランキングを 3 0秒間隔で 2回繰り返しても始動しない場合は測定不能とする。 始動できる場合 は、 アイドリングで 30秒間放置し、 その後 5秒間でアクセルペダルを一杯まで 踏み込む操作を 5回繰り返し、 その際の白煙を透過型測定器で計測する。 5回の 平均値を算出し、 比較例 5の結果を 100とし、 各結果を相対的に比較、 定量化 した。 On a chassis dynamometer capable of controlling the ambient temperature, at room temperature, (1) Flush (clean) the fuel system of the test diesel car with the evaluation fuel, (2) Extract the flushing fuel, (3) Main Replace the filter with a new one, and (4) apply the specified amount of fuel to the fuel tank (1/2 of the fuel tank capacity of the test vehicle). Then, (5) Rapidly cool the ambient temperature from room temperature to 120 ° C, hold it at (6) -20 ° C for 1 hour, and then (7) at a predetermined temperature (-30 ° C at a cooling rate of l ° CZh ( 8 ) Hold the engine at the specified temperature for 1 hour, then start the engine. If the engine does not start even after 10 seconds of cranking are repeated twice at 30 second intervals, measurement is impossible. If the engine can be started, leave it idle for 30 seconds, then repeat the operation of depressing the accelerator pedal fully for 5 seconds, and measure the white smoke at that time with a transmission meter. The average value of 5 times was calculated, the result of Comparative Example 5 was set to 100, and each result was relatively compared and quantified.
(車両排ガス試験)  (Vehicle exhaust gas test)
前述のディーゼルエンジン搭載車両(車両 1)を用いて、燃費の測定を行った。 試験モードは、 図 1に示す実走行を模擬した過渡運転モードで行った。 スモーク の測定は透過型測定器を使用している。 各排ガス性能値は比較例 5での試験結果 を 1 00とし、 各結果を相対的に比較、 定量化した。 なお、 車両試験に係わる試 験方法は、 旧運輸省監修新型自動車審査関係基準集別添 2 7 「ディーゼル自動車 1 0 - 1 5モード排出ガス測定の技術基準」 に準拠している。  Fuel consumption was measured using the aforementioned diesel engine-equipped vehicle (vehicle 1). The test mode was a transient operation mode simulating actual driving shown in Fig. 1. The smoke measurement uses a transmission type measuring instrument. For each exhaust gas performance value, the test result in Comparative Example 5 was set to 100, and each result was relatively compared and quantified. The test methods related to vehicle tests are in accordance with Appendix 27 “Technical Standards for Diesel Vehicles 10-15 Mode Emission Measurements”, attached to the new standards for new automobile examinations supervised by the former Ministry of Transport.
(低温保管試験)  (Low temperature storage test)
対象となる燃料組成物を一 30 °C一定で制御できる冷凍庫内に 1ヶ月間保管し、 保管後の外観確認、を行い、 沈殿物や濁りが発生した場合は不可 (X) とし、 外観 上異常がなくまた保管後の燃料組成物の上澄み (液面より 1 cm以内の部分) を サンプリングして流動点測定を行い、 保管前と同等の性能が得られた場合を可 (〇) とする。 表 5
Figure imgf000046_0001
The target fuel composition is stored in a freezer that can be controlled at a constant temperature of 30 ° C for 1 month. After the storage, the appearance is checked. If sediment or turbidity occurs, it is judged as (X). Sampling the fuel composition supernatant (within 1 cm from the liquid level) after storage and measuring the pour point, and if the same performance as before storage is obtained (Yes) . Table 5
Figure imgf000046_0001
表 6
Figure imgf000046_0002
表 7
Table 6
Figure imgf000046_0002
Table 7
Figure imgf000047_0001
表 8
Figure imgf000047_0001
Table 8
Figure imgf000048_0001
Figure imgf000048_0001
[図面の簡単な説明] . [Brief description of drawings]
図 1は、 実走行を模擬した過渡運転モードを示す図である。  Fig. 1 is a diagram showing a transient operation mode that simulates actual driving.

Claims

請 求 の 範 囲 The scope of the claims
1. 〔 I〕 蒸留性状の 1 0 %留出温度が 140 °C以上 200 °C以下、 9 0容量%留出温度が 240 °C以上 350 °C以下、 芳香族含有量が 1容量%以下、 ナフテン化合物含有量が 5質量%以下、 硫黄含有量が 10質量 p pm以下、 炭素 数 16から 25までの直鎖飽和炭化水素含有量が 5質量%以上 70質量%以下で ある F T合成基材からなる炭化水素混合物 X、 1. [I] Distillation property 10% distillation temperature is 140 ° C or more and 200 ° C or less, 90 volume% distillation temperature is 240 ° C or more and 350 ° C or less, and aromatic content is 1 volume% or less FT synthetic substrate having a naphthene compound content of 5 mass% or less, a sulfur content of 10 mass ppm or less, and a linear saturated hydrocarbon content of 16 to 25 carbon atoms of 5 to 70 mass% A hydrocarbon mixture X, consisting of
または Or
〔Π〕 初留点が 140°C以上 200°C以下、 蒸留性状の 90容量%留出温度が 2 00°C以上 300°C以下、 芳香族含有量が 20容量%以下、 直鎖飽和炭化水素含 有量が 25質量%以上、 炭素数 10以上 1 5以下の直鎖飽和炭化水素含有量が 2 0質量%以上、 硫黄含有量が 300質量 p pm以下である炭化水素混合物 Aを、 [Π] Initial boiling point is 140 ° C or higher and 200 ° C or lower, Distillation property is 90 vol% Distillation temperature is 200 ° C or higher and 300 ° C or lower, Aromatic content is 20 vol% or lower, Linear saturated carbonization A hydrocarbon mixture A having a hydrogen content of 25% by mass or more, a linear saturated hydrocarbon content of 10 to 15 carbon atoms of 20% by mass or more, and a sulfur content of 300% by mass or less;
(1) 反応温度 250°C以上 310°C以下、 水素圧力 5 MP a以上 10 MP a以 下、 LHSVO. 5 h— 1以上 3. 0 h— 下、 水素 Z炭化水素容量比が 0. 1 5 以上 6以下の条件で、 N i—W、 N i— Mo、 C o—Mo、 C o— W、 また は N i— C o— Moのいずれかを含有する触媒により水素化脱硫処理して炭化水 素混合物 Bを得、 (2) 該炭化水素混合物 Bの軽質な部分を 1容量%以上 40容 量%以下の範囲で除去して得られる炭化水素混合物 C (1) Reaction temperature 250 ° C to 310 ° C, hydrogen pressure 5MPa to 10MPa, LHSVO. 5h— 1 to 3.0h—under, hydrogen Z hydrocarbon capacity ratio is 0.1 Hydrodesulfurization treatment is performed with a catalyst containing any of Ni-W, Ni-Mo, Co-Mo, Co-W, or Ni-Co-Mo under the conditions of 5 to 6. To obtain a hydrocarbon mixture B. (2) A hydrocarbon mixture C obtained by removing a light portion of the hydrocarbon mixture B in the range of 1% by volume to 40% by volume.
を原料油とし、 反応温度 1 50°C以上 250°C以下、 圧力 IMP a以上 5 MP a 以下の条件下でゼォライトにより脱直鎖飽和炭化水素処理を行うことによって得 られる、 セーボルト色 + 28以上、 1 5 °Cにおける密度が 740 k g/m3以上 840 k g/m3以下、 蒸留性状の 10%留出温度が 1 70°C以上 220°C以下、 セタン指数 45以上、 セタン価 48以上、 引火点 45°C以上、 加速酸化試験後の 過酸化物価が 10質量 p pm以下、 流動点一 15°C以下、 硫黄分 10質量 p pm 以下、 30°Cにおける動粘度が 1. 6mm2_ s以上 5. 0mm2/s以下、 10 % 残油の残留炭素分が 0. 1質量%以下であることを特徴とする燃料組成物。 Is obtained by performing delinear saturated hydrocarbon treatment with zeolite under conditions of reaction temperature 1 50 ° C or higher and 250 ° C or lower, pressure IMP a or higher and 5 MPa or lower, Saybolt color + 28 or higher , Density at 15 ° C is 740 kg / m 3 or more and 840 kg / m 3 or less, 10% distillation temperature of distillation property is 1 70 ° C or more and 220 ° C or less, cetane index 45 or more, cetane number 48 or more, The flash point is 45 ° C or more, the peroxide value after accelerated oxidation test is 10 mass p pm or less, the pour point is 15 ° C or less, the sulfur content is 10 mass p pm or less, and the kinematic viscosity at 30 ° C is 1.6 mm 2 _ s or more and 5.0 mm 2 / s or less, and the residual carbon content of 10% residual oil is 0.1% by mass or less.
2. 蒸留性状の 10%留出温度が 140°C以上 200°C以下、 90容量% 留出温度が 240°C以上 350°C以下、 芳香族含有量が 1容量%以下、 ナフテン 化合物含有量が 5質量%以下、 硫黄含有量が 10質量 p pm以下、 炭素数 16か ら 25までの直鎖飽和炭化水素含有量が 5質量。 /0以上 70質量%以下である FT 合成基材からなる炭化水素混合物 Xを原料油とし、 反応温度 1 50°C以上 25 0°C以下、 圧力 IMP a以上 5 MP a以下の条件下でゼォライトにより脱直鎖飽 和炭化水素処理を行うことによって得られる、 セーボルト色 +28以上、 1 5°C における密度が 760 k gZm3以上 830 k gZm3以下、蒸留性状の 10 %留 出温度が 170°C以上 220°C以下、 50%留出温度が 210°C以上 280°C以 下、 90%留出温度が 240°C以上 325 °C以下、セタン指数 55以上 75以下、 セタン価 55以上 70以下、 引火点 50°C以上、 加速酸化試験後の過酸化物価が 10質量 111以下、 くもり点— 10 °C以下、 目詰まり点一 10°C以下、 流動点 — 15°C以下、 芳香族含有量が 1容量%以下、 ナフテン化合物含有量が 5質量% 以下、 硫黄分 1質量 p pm以下、 30°Cにおける動粘度が 1. 7mm2Z s以上 4. Omm2Z s以下、 10 %残油の残留炭素分が 0. 05質量'。/。以下、 HFR R摩耗痕径 (WS 1. 4) が 400 以下であることを特徴とするディーゼル 燃料組成物である請求項 1に記載の燃料 m成物。 2. Distillation property 10% distillation temperature 140 ° C to 200 ° C, 90% by volume Distillation temperature 240 ° C to 350 ° C, aromatic content 1% by volume, naphthenic compound content 5 mass% or less, sulfur content 10 mass ppm or less, 16 carbon atoms The linear saturated hydrocarbon content up to 25 is 5 mass. / 0 to 70 wt% or less is composed of FT synthetic base hydrocarbon mixture X as a raw material oil, the reaction temperature 1 50 ° C above 25 0 ° C or less, Zeoraito under the following conditions pressure IMP a higher 5 MP a Obtained by performing de-linear saturated hydrocarbon treatment with the above, Saybolt color +28 or more, density at 15 ° C is 760 kgZm 3 or more and 830 kgZm 3 or less, distillation property 10% distillation temperature is 170 ° C or higher, 220 ° C or lower, 50% distillation temperature is 210 ° C or higher, 280 ° C or lower, 90% distillation temperature is 240 ° C or higher, 325 ° C or lower, cetane index 55 or higher, 75 or lower, cetane number 55 or higher 70 or less, flash point 50 ° C or more, peroxide value after accelerated oxidation test is 10 mass 111 or less, cloud point — 10 ° C or less, clogging point one 10 ° C or less, pour point — 15 ° C or less, aroma Group content is 1 volume% or less, naphthene compound content is 5 mass% or less, sulfur content is 1 mass p pm or less, and kinematic viscosity at 30 ° C is 1.7 mm 2 Z s or more. 4. O Less than mm 2 Z s, 10% residual carbon has a residual carbon content of 0.05 mass'. /. 2. The fuel m composition according to claim 1, which is a diesel fuel composition having an HFR R wear scar diameter (WS 1.4) of 400 or less.
3. 初留点が 140°C以上 200°C以下、 蒸留性状の 90容量%留出温 度が 200°C以上 300°C以下、 芳香族含有量が 20容量%以下、 直.鎖飽和炭化 水素含有量が 25質量%以上、 炭素数 10以上 1 5以下の直鎖飽和炭化水素含有 量が 20質量%以上、 硫黄含有量が 300質量 p pm以下である炭化水素混合物 Aを原料油として、 (工程 1) 該炭化水素混合物 Aを反応温度 250°C以上 31 0°C以下、 水素圧力 5MP a以上 1 OMP a以下、 LHSVO. 5 h— 1以上 3. O h— 1以下、 水素ノ炭化水素容量比が 0. 1 5以上0. 6以下の条件で、 N i— W、 N i— Mo、 C o—Mo、 C o— W、 または N i— C o— M oのいずれかを 含有する触媒により水素.化脱硫処理して炭化水素混合物 Bを得、 (工程 2)該炭化 水素混合物 Bの軽質な部分を 1容量。/。以上 40容量。/。以下の範囲で除去して炭化 水素混合物 Cを得、 (工程 3) 該炭化水素混合物 Cを反応温度 1 50°C以上 25 0°C以下、 圧力 IMP a以上 5 MP a'以下の条件下でゼォライ トにより直鎖飽和 炭化水素を 10容量%以上除去して得られる炭化水素混合物 Dを全燃料組成物に 対して 80容量0 /0以上含有し、 セ^"ボルト色 + 28以上、 15°Cにおける密度が 740 k gZm3以上 840 k g/m3以下、 蒸留性状の 1 0%留出温度が 1 7 0°C以上 220°C以下、 90%留出温度が 220°C以上 300°C以下、 セタン指 数 45以上、 セタン価 48以上、 引火点 45 °C以上、 反応試験の結果が中性、 銅 板腐食が 1以下、 加速酸化試験後の過酸化物価が 1 0質量 p pm以下、 流動点一 60°C以下、 硫黄分 10質量 p pm以下、 30°Cにおける動粘度が 1. 6mm2 /s以上 5. 0mm2Zs以下、 一 30 °Cにおける動粘度が 30 mm 2 s以下、 水分含有量が 0. 01容量%以下、 10%残油の残留炭素分が 0. 1質量%以下 であることを特徴とする極低温地向け燃料組成物である請求項 1に記載の燃料組 成物。 3. Initial boiling point is 140 ° C or higher and 200 ° C or lower, 90% volume distillation temperature of distillation property is 200 ° C or higher and 300 ° C or lower, aromatic content is 20% or lower, straight chain saturated carbonization A hydrocarbon mixture A having a hydrogen content of 25% by mass or more, a linear saturated hydrocarbon content of 10 to 15 carbon atoms and a sulfur content of 300% by mass or less as a feedstock (step 1) a hydrocarbon mixture a reaction temperature 250 ° C or more 31 0 ° C or less, or more hydrogen pressure 5MP a 1 OMP a following, LHSVO. 5 h- 1 or more 3. O h- 1 below, hydrogen Roh carbide N i—W, N i—Mo, C o—Mo, C o—W, or N i—C o—M o under the condition that the hydrogen capacity ratio is 0.15 or more and 0.6 or less. Hydrocarbon desulfurization treatment is carried out with the contained catalyst to obtain a hydrocarbon mixture B. (Step 2) 1 volume of a light portion of the hydrocarbon mixture B. /. More than 40 capacity. /. A hydrocarbon mixture C is obtained by removing within the following ranges. (Step 3) The hydrocarbon mixture C is subjected to a reaction temperature of 1-50 ° C to 25 ° C and a pressure of IMP a to 5 MPa '. Zeorai up by a straight-chain saturated hydrocarbon containing 80 volume 0/0 or more for the total fuel composition of a hydrocarbon mixture D obtained by removing 10% by volume or more, Se ^ "bolt color + 28 or more, 15 ° Density in C is 740 kgZm 3 or more and 840 kg / m 3 or less, and 10% distillation temperature of distillation property is 17 0 ° C or higher and 220 ° C or lower, 90% distillation temperature is 220 ° C or higher and 300 ° C or lower, cetane index is 45 or higher, cetane number is 48 or higher, flash point is 45 ° C or higher, reaction test result is neutral, Copper plate corrosion is 1 or less, peroxide value after accelerated oxidation test is 10 mass p pm or less, pour point is 60 ° C or less, sulfur content is 10 mass p pm or less, kinematic viscosity at 30 ° C is 1.6 mm 2 / s or more 5.0 mm 2 Zs or less, kinematic viscosity at 30 ° C is 30 mm 2 s or less, moisture content is 0.01 volume% or less, 10% residual carbon residual carbon content is 0.1 mass% or less 2. The fuel composition according to claim 1, wherein the fuel composition is for a cryogenic region.
4. 初留点が 140°C以上 200°C以下、 蒸留性状の 90容量%留出温 度が 200°C以上 300°C以下、 芳香族含有量が 20容量%以下、 直鎖飽和炭化 水素含有量が 25質量%以上、 炭素数 10以上 1 5以下の直鎖飽和炭化水素含有 量が 20質量%以上、 硫黄含有量が 300質量 p pm以下である炭化水素混合物 Aを原料油として、 (工程 1) 該炭化水率混合物 Aを反応温度 250°C以上 3 1 0。C以下、 水素圧力 5MP a以上 1 OMP'a以下、 LHSVO. 5 h— 1以上 3. O h— 1以下、 水素//炭化水素容量比が 0. 1 5以上 0. 6以下の条件で、 N i— W、 N i— Mo、 C o— Mo、 C o— W、 または N i— C o— M oのいずれかを 含有する触媒により水素化脱硫処理して炭化水素混合物 Bを得、 (工程 2)該炭化 水素混合物 Bの軽質な部分を 1容量%以上 40容量%以下の範囲で除去して炭化 水素混合物 Cを得、 (工程 3) 該炭化水素混合物 Cを反応温度 1 50°C以上 25 0°C以下、 圧力 IMP a以上 5 MP a以下の条件下でゼォライ トにより直鎖飽和 炭化水素を 10容量%以上除去して得られる炭化水素混合物 Dを全燃料組成物に 対して 80〜 100容量%、 炭素数 16以上 20以下の直鎖飽和炭化水素化合物 含有量の総和が 10質量%以下であり、 かつ炭素数 21以上 25以下の直鎖飽和 炭化水素化合物含有量の総和が 2質量%以下である F T合成基材を 0〜 20容 量%含有し、 セーポルト色 + 28以上、 1 5°Cにおける密度が 740 k g/m3 以上 840 k g/m3以下、 蒸留性状の 10 %留出温度が 1 70°C以上 220 °C 以下、 90%留出温度が 220°C以上 300°C以下、 セタン指数 45以上、 セタ ン価 48以上、 引火点 45°C以上、 反応試験の結果が中性、 銅板腐食が 1以下、 加速酸化試験後の過酸化物価が 10質量 p pm以下、 流動点— 60°C以下、 硫黄 分 1 0質量 p pm以下、 30°Cにおける動粘度が 1. 6 mm2ノ s以上 5. 0 m m2ノ s以下、 _ 30°Cにおける動粘度が 30 mm2/ s以下、 水分含有量が 0. 0 1容量。 /0以下、 1 0%残油の残留炭素分が 0. 1質量%以下であることを特徴 とする極低温地向け燃料組成物である請求項 1に記載の燃料組成物。 4. Initial boiling point is 140 ° C or higher and 200 ° C or lower, 90% volume distillation temperature of distillation property is 200 ° C or higher and 300 ° C or lower, aromatic content is 20% or lower, linear saturated hydrocarbon A hydrocarbon mixture A having a content of 25% by mass or more, a linear saturated hydrocarbon content of 10 or more and 15 or less carbon atoms of 20% by mass or more, and a sulfur content of 300% by mass or less is used as a feedstock ( Step 1) The hydrocarbon ratio mixture A is reacted at a reaction temperature of 250 ° C or higher 3 1 0. C or less, Hydrogen pressure 5MPa or more 1 OMP'a or less, LHSVO. 5 h— 1 or more 3. O h— 1 or less, hydrogen / hydrocarbon capacity ratio is 0.15 or more and 0.6 or less, Hydrodesulfurization treatment with a catalyst containing any of Ni-W, Ni-Mo, Co-Mo, Co-W, or Ni-Co-Mo gives hydrocarbon mixture B, (Step 2) A light portion of the hydrocarbon mixture B is removed in a range of 1% by volume to 40% by volume to obtain a hydrocarbon mixture C. (Step 3) The hydrocarbon mixture C is reacted at a reaction temperature of 150 ° C. Hydrocarbon mixture D obtained by removing 10% by volume or more of linear saturated hydrocarbons by zeolite under conditions of C or more and 250 ° C or less, pressure IMPa or more and 5MPa or less with respect to the total fuel composition 80 to 100% by volume, straight chain saturated hydrocarbon compound having 16 to 20 carbon atoms The total content is 10% by weight or less, and includes straight chain saturated hydrocarbon compounds having 21 to 25 carbon atoms The total amount of content is 2% by mass or less. FT synthetic base material is contained in an amount of 0 to 20% by volume, the color of the sport color + 28 or more, and the density at 15 ° C is 740 kg / m 3 or more and 840 kg / m 3 or less. 10% distillation temperature of distillation property 1 70 ° C or more and 220 ° C or less 90% distillation temperature 220 ° C or more and 300 ° C or less, cetane index 45 or more, cetane number 48 or more, flash point 45 ° C or higher, reaction test result is neutral, copper plate corrosion is 1 or less, peroxide value after accelerated oxidation test is 10 mass ppm or less, pour point — 60 ° C or less, sulfur Min 10 mass p pm or less, kinematic viscosity at 30 ° C 1.6 mm 2 s or more 5.0 mm 2 s or less, _ 30 ° C kinematic viscosity 30 mm 2 / s or less, moisture content 0. 0 1 capacity. / 0 or less, 1 0% fuel composition according to claim 1 carbon residue remaining oil is cryogenic locations for fuel composition being not more than 1 wt% 0.1.
5. 炭化水素混合物 Aが F T合成基材であることを特徴とする請求項 1 〜 4のいずれかに記載の燃料組成物。 5. The fuel composition according to any one of claims 1 to 4, wherein the hydrocarbon mixture A is an FT synthetic substrate.
6. 炭化水素混合物 Aが植物油由来の処理油であることを特徴とする請 求項 1〜 4のいずれかに記載の燃料組成物。 6. The fuel composition according to any one of claims 1 to 4, wherein the hydrocarbon mixture A is a processed oil derived from a vegetable oil.
7. 凍結防止剤を 1 00質量 p pm以上 500'質量 p pm以下添加した ことを特徴とする請求項 1〜 6のいずれかに記載の燃料組成物。 7. The fuel composition according to any one of claims 1 to 6, wherein an antifreezing agent is added in an amount of 100 mass ppm to 500 mass ppm.
8. 低温流動性向上剤を活性分? ί度で 20 Omg/L以上 1 00 Omg / L以下添加したことを特徴とする請求項 1〜 7のいずれかに記載の燃料組成物。 8. The fuel composition according to any one of claims 1 to 7, wherein a low temperature fluidity improver is added in an active component degree of 20 Omg / L or more and 100 Omg / L or less.
9. 潤滑性向上剤を活性分濃度で 2 Omg/L以上 20 Omg/L以下 添加したことを特徴とする請求項 1〜8のいずれかに記載の燃料組成物。 9. The fuel composition according to any one of claims 1 to 8, wherein a lubricity improver is added in an active ingredient concentration of 2 Omg / L or more and 20 Omg / L or less.
PCT/JP2007/055307 2006-03-27 2007-03-09 Fuel composition WO2007111152A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006086375A JP4847171B2 (en) 2006-03-27 2006-03-27 Diesel fuel composition
JP2006086374A JP4847170B2 (en) 2006-03-27 2006-03-27 Cryogenic fuel composition
JP2006-086375 2006-03-27
JP2006-086374 2006-03-27

Publications (1)

Publication Number Publication Date
WO2007111152A1 true WO2007111152A1 (en) 2007-10-04

Family

ID=38541073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055307 WO2007111152A1 (en) 2006-03-27 2007-03-09 Fuel composition

Country Status (1)

Country Link
WO (1) WO2007111152A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524679A (en) * 1999-04-06 2003-08-19 サゾル テクノロジー(プロプライアタリー)リミティド Method for producing synthetic naphtha fuel and synthetic naphtha fuel produced by the method
JP2004285155A (en) * 2003-03-20 2004-10-14 Japan Energy Corp Eco-friendly gas oil and method for producing the same
JP2004323625A (en) * 2003-04-23 2004-11-18 Japan Energy Corp Gas oil compatible with environment and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524679A (en) * 1999-04-06 2003-08-19 サゾル テクノロジー(プロプライアタリー)リミティド Method for producing synthetic naphtha fuel and synthetic naphtha fuel produced by the method
JP2004285155A (en) * 2003-03-20 2004-10-14 Japan Energy Corp Eco-friendly gas oil and method for producing the same
JP2004323625A (en) * 2003-04-23 2004-11-18 Japan Energy Corp Gas oil compatible with environment and its manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI X. ET AL.: "Direct synthesis of middle iso-paraffins from synthesis gas", CATALYSIS TODAY, vol. 84, no. 1/2, 2003, pages 59 - 65, XP003017799 *

Similar Documents

Publication Publication Date Title
JP4863772B2 (en) Light oil composition
KR101450347B1 (en) Gas oil composition
JP5072008B2 (en) Method for producing light oil composition
WO2007064015A1 (en) Gas oil composition
JP5121137B2 (en) Light oil composition
JP5030459B2 (en) Light oil composition
KR101437700B1 (en) Gas oil composition
JP5030454B2 (en) Light oil composition
KR101371788B1 (en) Gas-oil composition
JP5072430B2 (en) Method for producing light oil composition
KR20100034000A (en) Light oil composition
WO2007114026A1 (en) Gas oil composition
JP5072010B2 (en) Light oil composition
JP5121138B2 (en) Light oil composition
JP5072007B2 (en) Method for producing light oil composition
JP5000175B2 (en) Light oil composition
JP5030455B2 (en) Light oil composition
JP4847171B2 (en) Diesel fuel composition
JP5000174B2 (en) Light oil composition
JP4847170B2 (en) Cryogenic fuel composition
JP5072006B2 (en) Method for producing light oil composition
JP5030457B2 (en) Light oil composition
WO2007111152A1 (en) Fuel composition
JP5030458B2 (en) Light oil composition
JP2007270108A (en) Gas oil composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738754

Country of ref document: EP

Kind code of ref document: A1