WO2007111132A1 - 送信電力制御方法及び基地局、基地局制御局並びにその制御プログラム - Google Patents

送信電力制御方法及び基地局、基地局制御局並びにその制御プログラム Download PDF

Info

Publication number
WO2007111132A1
WO2007111132A1 PCT/JP2007/055077 JP2007055077W WO2007111132A1 WO 2007111132 A1 WO2007111132 A1 WO 2007111132A1 JP 2007055077 W JP2007055077 W JP 2007055077W WO 2007111132 A1 WO2007111132 A1 WO 2007111132A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
transmission power
transmission
slot
adjustment
Prior art date
Application number
PCT/JP2007/055077
Other languages
English (en)
French (fr)
Inventor
Nahoko Kuroda
Kojiro Hamabe
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2008507424A priority Critical patent/JP5057105B2/ja
Priority to EP07738547.4A priority patent/EP1998475B1/en
Priority to US12/293,232 priority patent/US8135429B2/en
Publication of WO2007111132A1 publication Critical patent/WO2007111132A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/44TPC being performed in particular situations in connection with interruption of transmission

Definitions

  • the present invention relates to a transmission power control method, a transmission power control method, a base station, a base station control device, and a program thereof.
  • W—CDMA Wide band-Code Division Multiple
  • HSDPA High Speed Downlink Packet Access
  • EUDCH Enhanced Uplink Dedicated Channel
  • FIG. 1 is a schematic network configuration diagram showing an example of a W-CDMA system.
  • a plurality of base stations 11 and 12 are connected to the base station controller 10, and the base station controller 10 can be further connected to an external network.
  • Each of the plurality of base stations can accommodate a plurality of mobile stations.
  • the mobile stations 21 and 22 are set as the base station 11, the mobile station 24 is set as the base station 12, and the mobile station 23 is set as the soft hand on phone.
  • ⁇ SHO is written as appropriate.
  • the mobile stations 21 to 24 transmit and receive control signals to and from the base station through uplink and downlink dedicated channels (DPCCH: Dedicated Physical Control Channel). Further, mobile stations 22 and 24 receive data using HSDP A, and mobile stations 23 and 24 transmit data using EUDCH.
  • the mobile stations 22 and 24 that receive data using HSDPA receive HS-SCCH (High Speed-Shared Control Channel) and HS-PDSC H (High Speed-Physical Downlink Shared Channel). (High Spe ed- Dedicated Physical Control Channel).
  • mobile stations 23 and 24 that transmit data using EUDCH are E-HICH (Enhanced-Hybrid ARQ Indicate Channel) ⁇ E-AuCH (Enhanced- Absolute urant Gnannel), E-RG and H (Enhanced — Receives Relative Grant channel and transmits E-DPCCH (Enhanced-Dedicated Control Channel) and E-DPDCH (Enhanced-Dedicated Data Channel).
  • E-HICH Enhanced-Hybrid ARQ Indicate Channel
  • E-AuCH Enhanced- Absolute urant Gnannel
  • E-RG and H Enhanced — Receives Relative Grant channel and transmits E-DPCCH (Enhanced-Dedicated Control Channel) and E-DPDCH (Enhanced-Dedicated Data Channel).
  • mobile stations that are executing HSDPA and EUDCH also transmit and receive a channel called DPCCH in addition to the channel for data transmission and reception.
  • DPCCH transmits control signals such as a TPC (Transmission Power Control) signal, which is a pilot signal used for channel estimation for demodulation and a control signal for closed-loop power control, ensuring synchronization between the mobile station and the base station. Used to do so.
  • TPC Transmission Power Control
  • Closed loop power control is performed so that the transmission power of the DPCCH approaches a target quality (here, a target SIR (Signal to Interference Ratio)).
  • a target SIR Signal to Interference Ratio
  • the base station compares the target SIR determined by the base station controller 10 with the SIR of the actually received DPCCH, and the actual received SIR is smaller than the target SIR. Transmits a TPC signal instructing to increase transmission power on the downlink DPCCH. In other cases, a TPC signal instructing to reduce the transmission power is transmitted.
  • the mobile station increases or decreases the DPCCH power according to the instructions of the TPC signal received on the DPCCH (Non-patent Document 1).
  • the mobile station 23 when the mobile station performs DPCCH transmission / reception with a plurality of base stations, that is, in a soft handover (SHO) state like the mobile station 23, the mobile station 23 has a plurality of TPs.
  • the C signal is received, but if one of them receives a TPC signal instructing power reduction, the power is controlled to decrease.
  • SHO soft handover
  • communication is possible if one of a plurality of base stations satisfies the desired quality, and transmission is performed so that the quality is sufficient with a plurality of base stations. This is because increasing the power is not preferable because it increases interference to other users.
  • Non-Patent Document 2 a power balancing method and a transmission power control method that allow base stations to transmit with substantially the same power during execution of soft handover have been proposed.
  • Figure 2 is a flow diagram in which the base station receives the TPC signal from the mobile station and determines the downlink DPCCH transmission power during execution of the soft handover.
  • the transmission power P is the transmission power for the mobile station. If the base station is a non-serving base station that has newly started transmission to the mobile station, the transmission power P is set to the initial value P0.
  • the Serving base station and the non-serving base station shall be notified of the frame number for starting the control station power soft handover.
  • P (k) is the transmission power to be controlled in slot k within the adjustment period
  • P_bal is the amount of power balance adjustment per slot within the adjustment period
  • P_bal (k) is the adjustment
  • I is the number of frames
  • k is the slot number
  • the frame consists of a predetermined number of slots.
  • the number of slots in one frame is assumed. . Note that 3GPP defines 15 frames as 1 frame.
  • P_TPC (k) is the lot adjustment amount based on closed-loop power control
  • Tinit is the adjustment period
  • P_ref is the reference power offset value determined by the base station controller
  • P_CPICH is the common pilot signal transmitted by the base station R is the power balancing adjustment rate.
  • the power that the TPC signal is notified from the mobile station at a fixed interval When this newly notified downlink control command exists (step 104), and the TPC signal indicates the power increase ( Step 105), increase or decrease transmission power P_TPC (k) by TPC signal in slot k by a predetermined value ATPC (Step 106), and the TPC signal indicates power reduction If so (step 105), P_TPC (k) is decreased by a predetermined value ATPC (step 107).
  • P_TPC (k) 0 (Step 10
  • P_bal (k) P_bal is set (step 109).
  • the transmission power P (k) in the k slot is controlled to be expressed by equation 1 (step 110).
  • P (k-1) uses the value of the last slot of the previous frame.
  • k is incremented by 1 (step 111) and it is determined whether K becomes Lslot (step 112).
  • step 117 The value obtained by dividing 1 is set as P_bal in the next adjustment period (step 117), and the process returns to step 102 to continue the above-described processing.
  • Such power balancing is defined by Equation 1 and Equation 2, and also by the 3GPP (3rd Generation Partnership Project) that prescribes the W-CDMA standard (Non-Patent Document 1, Non-Patent Document 1). Reference 2).
  • the fact that data transmission / reception is not performed with respect to the mobile station means that a signal is transmitted between the mobile station and the base station for a predetermined time in at least one of the HS-PDSCH and E-DPDCH channels. This means that no transmission or reception is performed. Such a situation occurs, for example, while a mobile station user browsing the web using HSDPA is reading a downloaded web page (reading time).
  • control signals such as TPC signals and pilot signals are continuously transmitted in slots in the DPCCH frame. Such a state is called a normal mode.
  • control signals such as a TPC signal and a pilot signal are transmitted intermittently or intermittently only in x (xxN) slots among the N slots of DPCCH. Control signals are not transmitted in other slots.
  • Such a state is hereinafter referred to as an intermittent transmission mode.
  • the X slots for transmitting the control signals are described as continuous, but are not necessarily continuous.
  • Non-Patent Document 1 3GPPTS25.214 v6.7.1 (2005—12) 3rd Generation Partnership Project;
  • Non-Patent Document 2 3GPP TS25.433 v6.8.0 (2005-12) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; UTRAN Iub interface Node B Application Part (NBAP) signaling (Release 6))
  • Non-Patent Document 3 3GPP TR25.903 ( ⁇ .3.0) (2006-02) 3rdGeneration Partnership Project; Technical Specification Group Radio Access Network; Continuous Connectivity for Packet Data Users; (Release7)
  • the TPC signal transmitted from the mobile station to the base station by the uplink DPCCH is also included. Only some (lots in N slots) are sent. Therefore, the increase or decrease in transmission power due to the TPC signal in closed-loop transmission power control is only reflected in the N slots X times. At this time, if power balancing is activated, the downlink transmission power becomes too close to the power balancing reference power (P_ref + P_CPICH), and the transmission power is too low to satisfy the target DIR of the downlink DPC CH. Problems such as high transmission power that causes excessive quality of the downlink DPCCH.
  • FIG. 4 is a diagram showing a change in downlink transmission power when a transition is made from the normal mode to the intermittent transmission mode and a transition to the normal mode is made after a state in which the TPC by DPCCH is not transmitted continues.
  • the adjustment ratio r is 0.5
  • the intermittent transmission period N in the intermittent transmission mode is 45 slots
  • the number of transmission slots is 3 slots.
  • the TPC signal in the normal mode, is also transmitted every slot. Therefore, the TPC signal is executed for each adjustment amount power slot based on the closed loop power control based on the TPC signal, and the target SIR can be satisfied. Control is performed to approach the transmission power.
  • the amount of adjustment based on closed-loop power control using the TPC signal is not reflected in the power in the slot where the control signal is not transmitted on the DPCCH. Therefore, if the power balance adjustment amount P_bal is in the direction of decreasing the power, the downlink transmission power is decreased by P_bal for each slot.
  • the quality of the downlink DPCCH cannot satisfy the target SIR, and the error rate of control signals transmitted on the downlink DPCCH increases.
  • the downlink control signal includes a TPC signal that controls the transmission power of the uplink DPC CH, if the error rate of the control signal in the downlink DPCCH increases, the uplink transmission power control cannot be performed correctly.
  • uplink channels other than D PCCH E-DPCCH, E-DPDCH, etc.
  • E-DPCCH, E-DPDCH, etc. are based on the uplink DPCCH transmission power, and the transmission power is controlled by adding a predetermined power offset. Therefore, if uplink DPCCH power control is not performed correctly, other uplink channel The channel is also likely to deteriorate and is a problem.
  • the present invention has been invented in view of the above problems, and an object of the present invention is to provide a technique for preventing transmission power from excessively deviating from desired transmission power in transmission power control. There is to do.
  • a first invention for solving the above-described problem is a transmission power control method for a base station in a communication system including at least a mobile station and one or more base stations.
  • the ratio at which the transmission power is brought close to a predetermined reference power is changed between communication that performs transmission and communication that does not include a slot that does not transmit a signal.
  • the transmission power control method is based on a predetermined reference power based on a transmission power of a base station that establishes a line with the mobile station.
  • the predetermined power is determined from the reference power offset value determined by the base station controller and the power value of the common pilot signal transmitted by the base station. It is characterized by becoming.
  • a third invention that solves the above-mentioned problem is that in the first or second invention, the ratio of approaching the predetermined reference power in communication in which a slot for stopping signal transmission is present If there is no slot for stopping the communication, it is set to be lower than the rate of approaching the reference power in communication.
  • a fourth invention for solving the above-mentioned problem is that, in any one of the first to third inventions, in a communication in which a slot for stopping transmission of the signal exists, a mobile station intermittently transmits a control signal. This is a case where transmission is performed, and communication is performed when there is no slot for stopping the transmission of the signal, and the mobile station continuously transmits control signals.
  • a fifth invention for solving the above problem is a transmission power control method in a communication method performing downlink power control, wherein P (kl) is a transmission power at (k-1) slots. , P_TPC (k) is the power adjustment value for the lot based on closed-loop power control, R_gating is a variable, and P_bal (k) is the power balance adjustment amount in slot k within the adjustment period.
  • the R_gating is a value less than 1. It is characterized by being.
  • the seventh invention for solving the above-mentioned problem is that, in a certain adjustment period, P (kl) is transmission power at (k-1) slots, and P_TPC (k) is at k slots based on closed-loop power control.
  • Power adjustment value P_bal (k) is the power balance adjustment amount in slot k during the adjustment period
  • r is a variable
  • P_ref is the reference power
  • P_P-CPICH is the power of the common pilot signal
  • Pjnit is the previous power balance adjustment
  • r_gating which is a variable different from r, is used to determine the transmission power P (k) at the time of the lot during the transmission power adjustment period.
  • An eighth invention for solving the above problem is a transmission power control method in a communication method performing downlink power control, wherein P (kl) is a transmission power at (k-1) slots.
  • P_TPC (k) is the power adjustment value in the lot based on closed-loop power control
  • P_bal (k) is the power balance adjustment amount in slot k within the adjustment period
  • r is the adjustment ratio
  • Lgating is a constant
  • P_ref is the reference Power
  • P_P-CPICH is the power of the common pilot signal
  • Pjnit is the transmission power at the start of the adjustment period
  • the transmission power P (k) at the lot time during the downlink transmission power adjustment period
  • a fourth invention for solving the above problem is a transmission power control method in a communication method performing downlink power control, wherein P (kl) is a transmission power at (k-1) slots.
  • P_TPC (k) is the power adjustment value in the lot based on closed-loop power control
  • P_bal (k) is the power balance adjustment amount in slot k within the adjustment period
  • r is the adjustment ratio
  • Lgating is moved within the adjustment period
  • P_ref is the reference power
  • P_P-CPICH is the power of the common pilot signal
  • Pjnit is the transmission power in the last slot of the previous power balance adjustment period
  • the Lgating is 1 It is characterized by being a value less than.
  • any of the fifth to tenth inventions if the mobile station is determined to be in the intermittent transmission mode during the adjustment period, Performs power control for the current power balancing, and also performs power control for power balancing in the intermittent transmission mode for the adjustment period power subsequent to the adjustment period.
  • any of the fifth to tenth inventions if the mobile station is determined to be in the intermittent transmission mode during the adjustment period, Performs downlink power control, and performs power control in the intermittent transmission mode from the adjustment period next to the adjustment period.
  • any one of the fifth to tenth inventions if the mobile station is determined to be in the intermittent transmission mode during the adjustment period, Is characterized in that the power balance adjustment amount is changed in accordance with the ratio of the remaining time of the balance adjustment period.
  • a fourteenth invention for solving the above problem is a transmission method in a communication method performing power control.
  • a transmission power control method wherein transmission power control is executed or stopped based on a reception state of a signal related to power control.
  • a fifteenth invention for solving the above-mentioned problem is a transmission power control method in a communication method performing power control, and two different transmission power control methods based on a reception state of a signal related to power control It is characterized by using any of! / ⁇ .
  • a sixteenth aspect of the present invention for solving the above problem is a transmission power control method in a system in which transmission power balance of a plurality of base stations is adjusted, where there is a slot in which a control signal for the base station is not transmitted.
  • Two adjustment methods are included, that is, a first balance adjustment method and a second balance adjustment method when there is no slot to which no control signal is transmitted.
  • a seventeenth invention for solving the above-mentioned problem is a communication system comprising at least a mobile station and one or more base stations, wherein there is a communication in which a slot that does not transmit a signal and a slot that does not transmit a signal exist. It is characterized by having a transmission power control means for changing a rate at which the transmission power is brought close to a predetermined reference power in the communication not to be performed.
  • the transmission power control means sets the transmission power of a base station that establishes a line with the mobile station to a predetermined reference power.
  • the power supply is updated based on the reference power, and the predetermined reference power includes a reference power offset value determined by a base station controller and a power value of a common pilot signal transmitted by the base station.
  • the transmission power control means approaches the predetermined reference power in communication in which a slot for stopping signal transmission exists.
  • the ratio is lower than the ratio of approaching the reference power in communication because there is no slot for stopping signal transmission!
  • the mobile station in the communication in which a slot for stopping the signal transmission exists, the mobile station intermittently transmits the control signal. The communication is performed when the mobile station is continuously transmitting the control signal. There is no slot for stopping the transmission of the signal.
  • a twenty-first invention for solving the above-mentioned problems is a communication system performing downlink power control.
  • P (kl) is transmission power at (k-1) slot
  • P_TPC (k) is power adjustment value at k slot based on closed loop power control
  • R_gating is variable
  • P_bal (k) is adjustment When the amount of power balance adjustment at slot k within the period is taken as the amount of transmission power P (k) at the time of lot transmission during the downlink transmission power adjustment period,
  • the R_gating when it is determined that the mobile station is in an intermittent transmission mode in which a control signal is intermittently transmitted, the R_gating is less than 1. It is the value of.
  • P (kl) is at (k-1) slots.
  • P_TPC (k) is the power adjustment value for k slots based on closed-loop power control
  • P_bal (k) is the power balance adjustment amount in slot k during the adjustment period
  • r is a variable
  • P_ref is the reference power
  • P_P-CPICH is the power of the common pilot signal
  • Pjnit is the transmission power in the last slot of the previous power balance adjustment period
  • the transmission power P (k) at k slots in the downlink transmission power adjustment period is ,
  • r_gating which is a variable different from r, is used to determine the transmission power P (k) at the time of the lot during the transmission power adjustment period.
  • a twenty-fourth invention for solving the above problem is a communication system performing downlink power control, wherein P (kl) is a transmission power at (k-1) slot, P_TPC (k) Is the power adjustment value for k slots based on closed-loop power control, P_bal (k) is the power in slot k within the adjustment period Balance adjustment amount, r is the adjustment ratio, Lgating is a constant, P_ref is the reference power, P_P-CPICH is the power of the common pilot signal, Pjnit is the transmission power at the start of the adjustment period, and the downlink transmission power adjustment period Transmit power P (k) at k slots in
  • a twenty-fifth aspect of the present invention for solving the above problem is a communication system performing downlink power control, wherein P (kl) is transmission power at (k-1) slot, P_TPC (k) Is the power adjustment value for k slots based on closed-loop power control, P_bal (k) is the amount of power balance adjustment in slot k within the adjustment period, r is the adjustment ratio, and Lgating is the control signal from the mobile station within the adjustment period.
  • P_ref is the reference power
  • P_P-CPICH is the power of the common pilot signal
  • Pjnit is the transmission power in the last slot of the previous power balance adjustment period. Transmission power P (k) at the time of lot in the downlink transmission power adjustment period,
  • the f_gating is The value is less than 1.
  • the transmission power control means determines that the mobile station is in an intermittent transmission mode during the adjustment period. In this case, power control for the current power balancing is performed during the adjustment period, and power control for power balancing in the intermittent transmission mode is performed from the adjustment period next to the adjustment period.
  • the transmission power control means determines that the mobile station is in an intermittent transmission mode during the adjustment period. In the case of the adjustment period, downlink power control is performed during the adjustment period. The power control in the intermittent transmission mode is performed from the next adjustment period.
  • the transmission power control means determines that the mobile station is in an intermittent transmission mode during the adjustment period. In this case, during the adjustment period, the adjustment amount of the power balance is changed according to the ratio of the remaining time of the balance adjustment period.
  • a thirtieth invention for solving the above-described problem is a communication system that performs power control of power balancing, and performs or stops transmission power control based on a reception state of a signal related to power control. It has the means.
  • a thirty-first invention for solving the above-mentioned problem is a communication system that performs power control for power balancing, and uses any one of different transmission power controls based on a reception state of a signal related to power control. It has the means to perform transmission power control, It is characterized by the above-mentioned.
  • a thirty-second invention for solving the above-mentioned problem is a communication system that performs balance adjustment of transmission power of a plurality of base stations, and is a first communication system in which a control signal for a base station is not transmitted and a slot exists. There is no means to adjust the transmission power by using the difference between the balance adjustment method of V and the second balance adjustment method in the case where there is no slot where no control signal is transmitted. It is characterized by having.
  • a thirty-third invention for solving the above-mentioned problems is a base station in a communication system comprising at least a mobile station and one or more base stations, wherein there is a communication in which there is a slot that does not transmit a signal, and a signal is transmitted. Shina! There is no ⁇ slot! It is characterized by having transmission power control means for changing the rate at which the transmission power approaches a predetermined reference power in the communication.
  • the transmission power control means sets the transmission power of a base station that establishes a line with the mobile station to a predetermined reference power.
  • the power supply is updated based on the reference power, and the predetermined reference power includes a reference power offset value determined by a base station controller and a power value of a common pilot signal transmitted by the base station.
  • the transmission power control means approaches the predetermined reference power in communication in which a slot for stopping signal transmission exists. Percentage, there is no slot to stop signal transmission !, It is characterized in that it is lower than the rate of approaching the reference power in the signal.
  • a mobile station in a communication in which a slot that stops transmission of the signal exists, a mobile station intermittently transmits a control signal. The communication is performed when the mobile station is continuously transmitting the control signal. There is no slot for stopping the transmission of the signal.
  • a thirty-seventh aspect of the present invention for solving the above problem is a base station in a communication system performing downlink power control, wherein P (kl) is a transmission power at (k-1) slot, P_TPC (k) is the power adjustment value for k slots based on closed loop power control, R_gating is a variable, and P_bal (k) is the amount of power balance adjustment for slot k within the adjustment period.
  • P (kl) is a transmission power at (k-1) slot
  • P_TPC (k) is the power adjustment value for k slots based on closed loop power control
  • R_gating is a variable
  • P_bal (k) is the amount of power balance adjustment for slot k within the adjustment period.
  • the R_gating is less than 1. It is the value of.
  • P (kl) is equal to (k-1) slots.
  • P_TPC (k) is the power adjustment value for k slots based on closed-loop power control
  • P_bal (k) is the power balance adjustment amount in slot k during the adjustment period
  • r is a variable
  • P_ref is the reference power
  • P_P-CPICH is the power of the common pilot signal
  • Pjnit is the transmission power in the last slot of the previous power balance adjustment period
  • the transmission power P (k) at k slots in the downlink transmission power adjustment period is ,
  • r_gating which is a variable different from r, is used to determine the transmission power P (k) at the time of the lot during the transmission power adjustment period.
  • P (k) P (kl) + P— TPC (k) + P— bal (k)
  • a fortieth aspect of the present invention for solving the above problem is a base station in a communication system performing downlink power control, wherein P (kl) is a transmission power at (k-1) slot, P_TPC (k) is the power adjustment value for k slots based on closed loop power control, P_bal (k) is the amount of power balance adjustment in slot k within the adjustment period, r is the adjustment ratio, Lgating is a constant, P_ref is Reference power, P_P-CPICH is the power of the common pilot signal, Pjnit is the transmission power at the start of the adjustment period, and the transmission power P (k) in the lot during the adjustment period of the downlink transmission power,
  • a forty-first invention for solving the above-described problem is a base station in a communication system performing downlink power control, wherein P (kl) is a transmission power at (k-1) slot, P_TPC (k) is the power adjustment value for k slots based on closed loop power control, P_bal (k) is the power balance adjustment amount in slot k within the adjustment period, r is the adjustment ratio, and Lgating is within the adjustment period.
  • P_ref is the reference power
  • P_P-CPICH is the power of the common pilot signal
  • Pjnit is the last slot in the previous power balance adjustment period.
  • the f_gating when it is determined that the mobile station is in an intermittent transmission mode in which a control signal is intermittently transmitted, the f_gating is The value is less than 1.
  • the transmission power control means is configured such that the mobile station is in an intermittent transmission mode during the adjustment period. If it is determined, power control for the current power balancing is performed during the adjustment period, and power control for power balancing in the intermittent transmission mode is performed from the adjustment period subsequent to the adjustment period.
  • the transmission power control means sets the mobile station in the intermittent transmission mode during the adjustment period. If determined, downlink power control is performed during the adjustment period, and power control in the intermittent transmission mode is performed from the adjustment period next to the adjustment period.
  • the transmission power control means determines that the mobile station is in an intermittent transmission mode during the adjustment period. In this case, during the adjustment period, the adjustment amount of the power balance is changed according to the ratio of the remaining time of the balance adjustment period.
  • a forty-sixth aspect of the present invention for solving the above-described problem is a base station that performs power control for power balancing and performs or stops transmission power control based on a reception state of a signal related to power control. It is characterized by having.
  • a forty-seventh aspect of the present invention for solving the above-mentioned problems is a base station in a communication system that performs power control of power balancing, and has different transmission power V based on a reception state of a signal related to power control. It is characterized by having means for performing transmission power control using either of the control.
  • a forty-eighth aspect of the present invention for solving the above problem is a base station in a communication system that performs balance adjustment of transmission power of a plurality of base stations, and there is a slot in which a control signal for the base station is not transmitted.
  • a forty-ninth aspect of the present invention for solving the above-mentioned problem is a base station control station in a communication system comprising at least a mobile station and one or more base stations, which does not transmit a signal and has a slot. And a transmission power control parameter in the case where no signal is transmitted and there is no slot for transmitting a signal.
  • a 50th invention for solving the above-mentioned problem is a base station control station in a communication system comprising at least a mobile station and one or more base stations, which does not transmit a signal! There is a means for transmitting to the base station either a transmission power control parameter in, or a transmission power control parameter in communication without a signal transmitting slot.
  • a fifty-first invention for solving the above-mentioned problem is a base station program in a communication system comprising at least a mobile station and one or more base stations, and the program has a slot that does not transmit a signal. It is characterized in that the base station is caused to execute a process of changing the ratio of transmitting power close to a predetermined reference power between communication and communication in which there is no slot for transmitting a signal.
  • a fifty-second invention for solving the above-mentioned problem is a program of a base station in a communication system performing downlink power control, wherein P (kl) is (k-1) slots Transmit power, P_TPC (k) is the power adjustment value for k slots based on closed-loop power control, R_gating is a variable, and P_bal (k) is the amount of power balance adjustment in slot k within the adjustment period.
  • the base station is caused to execute processing to be controlled.
  • a fifty-third invention for solving the above-described problem is a program of a base station, and in a certain adjustment period, when it is determined that the mobile station is in a normal mode in which a control signal is continuously transmitted, P (k- 1) is the transmission power at slot (k-1), P_TPC (k) is the power adjustment value at slot k based on closed-loop power control, and P_bal (k) is the power balance adjustment at slot k within the adjustment period.
  • R is a variable
  • P_ref is the reference power
  • P_P-CPICH is the power of the common pilot signal
  • Pjnit is the transmission power in the last slot of the previous power balance adjustment period, in the downlink transmission power adjustment period Transmit power P (k) at k slots
  • the base station is caused to execute processing to be controlled.
  • a fifty-fourth invention for solving the above-mentioned problem is a program for a base station in a communication system performing downlink power control, wherein the program is such that P (kl) is (k-1) slots Transmit power, P_TPC (k) is the power adjustment value for k slots based on closed-loop power control, P_bal (k) is the power balance adjustment amount in slot k during the adjustment period, r is the adjustment ratio, f_g ating Is a constant, P_ref is the reference power, P_P-CPICH is the power of the common pilot signal, Pjnit is the transmission power at the start of the adjustment period, and the transmission power at k slots during the downlink transmission power adjustment period P (k)
  • P (kl) is (k-1) slots Transmit power
  • P_TPC (k) is the power adjustment value for k slots based on closed-loop power control
  • P_bal (k) is the power balance adjustment amount in slot k during the adjustment period
  • r is
  • the base station is caused to execute processing to be controlled.
  • a fifty-fifth invention for solving the above-mentioned problem is a base station program in a communication system performing downlink power control, wherein P (kl) is (k-1) slots. Transmit power, P_TPC (k) is the power adjustment value for k slots based on closed-loop power control, P_bal (k) is the power balance adjustment amount in slot k during the adjustment period, r is the adjustment ratio, f_g ating Is a value determined based on the ratio of the number of slots in which the control signal is transmitted within the adjustment period, P_ref is the reference power, P_P-CPICH is the power of the common pilot signal, Pjnit is the adjustment period of the previous power balance Transmission power P (k) at k slots during the downlink transmission power adjustment period,
  • the base station is caused to execute processing to be controlled.
  • a fifty-sixth aspect of the present invention for solving the above-mentioned problem is a base station program that performs power control of power balancing, wherein the program is a reception status of a signal related to power control.
  • the base station is caused to execute processing for executing or stopping transmission power control.
  • a fifty-seventh aspect of the present invention for solving the above problem is a program of a base station in a communication system that performs power control of power balancing, the program being based on a reception state of a signal related to power control!
  • the base station is caused to execute processing for performing transmission power control using different transmission power control! / Or deviation.
  • a 58th invention for solving the above-mentioned problem is a program of a base station in a communication system that performs balance adjustment of transmission power of a plurality of base stations, wherein the program is a slot in which a control signal for the base station is not transmitted.
  • the base station is caused to execute processing for performing transmission power balance adjustment using either one of the two adjustment methods of the second balance adjustment method.
  • FIG. 1 is a schematic network configuration diagram showing an example of a W-CDMA system.
  • FIG. 2 is a flowchart in which the base station receives the TPC signal from the mobile station and determines the downlink DPCCH transmission power during execution of the soft handover.
  • FIG. 3 is a diagram for explaining DPCCH Gating.
  • FIG. 4 is a diagram for explaining the prior art.
  • FIG. 5 is a diagram for explaining the communication system of the first embodiment.
  • FIG. 6 is a diagram showing a configuration of the base station control station 1.
  • FIG. 7 is a diagram showing a configuration of base station apparatuses of first and second base stations 2 and 3.
  • FIG. 8 is a diagram showing a configuration of the mobile station 4.
  • FIG. 9 is an operation flowchart of the first embodiment.
  • FIG. 10 is an operation flowchart of the second embodiment.
  • FIG. 11 is an operation flowchart of the third embodiment.
  • FIG. 12 is an operation flowchart of the fourth embodiment.
  • FIG. 13 is a diagram illustrating the configuration of the base station control device according to the fifth embodiment.
  • FIG. 14 is a diagram showing a configuration of a base station according to the sixth embodiment.
  • a feature of the present invention is that power control for power balancing is performed in the downlink, and communication in which signals are transmitted in all slots as in the normal mode and signals in the intermittent transmission mode. Do not send! In the communication in which slots exist, the ratio of the transmission power to be close to the reference power for par balancing is changed.
  • a power balancing parameter different from that in the normal mode is applied so that the power balancing adjustment amount can be changed.
  • Equation 1 The downlink power control in the normal mode is expressed by Equation 1.
  • P (k) is the transmission power in slot k
  • P (k-1) is the transmission power in slot (k-1)
  • P_TPC (k) is the adjustment amount in lots based on closed-loop power control
  • P_bal (k) is the amount of power balance adjustment in slot k within the adjustment period.
  • P_bal (k) is defined by Equation 2.
  • P_ref is the reference power offset value determined by the base station controller
  • PXPICH is the power value of the common pilot signal transmitted by the base station
  • Pjnit is the downlink in the last slot of the previous power balance adjustment period. DPCCH transmission power.
  • the adjustment amount in the intermittent transmission mode is changed with respect to P_bal (k).
  • the amount of power balancing adjustment is controlled by multiplying the parameter R_gating.
  • the transmission power P (k) for k slots is given by the following equation 3.
  • the transmission power is controlled using Equation 1 in the normal mode and the transmission power is controlled using Equation 3 in the intermittent transmission mode, that is, different transmission power control is used properly.
  • the transmission power control used is performed.
  • R_gating 1 in the normal mode, and gating may be less than 1 in the intermittent transmission mode.
  • the base station controller determines R_gating and notifies the base station, but the present invention is not limited to this, and the base station randomly selects a value smaller than 1 or intermittent transmission mode. It may be determined based on the ratio of the number of slots in which control signals are transmitted.
  • Equation 1 The downlink power control in the normal mode is expressed by Equation 1.
  • P (k) is the transmission power in slot k
  • P (k-1) is the transmission power in slot (k-1)
  • P_TPC (k) is the adjustment amount in lots based on closed-loop power control
  • P_bal (k) is the amount of power balance adjustment in slot k within the adjustment period.
  • P_bal (k) is defined by Equation 2.
  • P_ref is the reference power offset value determined by the base station controller
  • PXPICH is the power value of the common pilot signal transmitted by the base station
  • Pjnit is the downlink in the last slot of the previous power balance adjustment period. DPCCH transmission power.
  • the adjustment ratio r in the normal mode is adjusted in the intermittent transmission mode.
  • Change to the ratio parameter r_gating Specifically, it is shown by the following formula 4.
  • the base station controller determines r_gating and notifies the base station, but the present invention is not limited to this, and the base station is smaller and larger than r in the normal mode. This can be determined randomly or based on the percentage of slots in which control signals are transmitted during intermittent transmission mode.
  • Equation 1 The downlink power control in the normal mode is expressed by Equation 1.
  • P (k) is the transmission power at k slots
  • P (k-1) is the transmission power at (k-1) slots
  • P_TPC (k) is at k slots based on closed-loop power control.
  • the adjustment amount, P_bal (k), is the power balance adjustment amount in slot k within the adjustment period.
  • P_bal (k) is defined by Equation 2.
  • the constant f_gating is multiplied by the adjustment amount in the intermittent transmission mode during the noise adjustment period, and P_bal (k) is changed. Specifically, it is shown by the following formula 5.
  • Lgating is a constant and is a parameter determined by the base station controller at the start of communication and notified to the base station.
  • the transmission power control performed based on Sum P_bal (k) obtained using Equation 2 is used in the normal mode, and Sum P_bal ( k) based on Transmission power control is used, that is, transmission power control is performed based on Sum P_bal (k) obtained using force equation 5 which shows an example of using different transmission power control.
  • Lgating 1.
  • gating may be less than 1.
  • the base station calculates the reduction rate of the power balancing adjustment amount based on the ratio of the number of slots in which the control signal is transmitted in the intermittent transmission mode, and lowers the adjustment amount.
  • Equation 1 The downlink power control in the normal mode is expressed by Equation 1.
  • P (k) is the transmission power at k slots
  • P (k-1) is the transmission power at (k-1) slots
  • P_TPC (k) is at k slots based on closed-loop power control.
  • the adjustment amount, P_bal (k), is the power balance adjustment amount in slot k within the adjustment period.
  • P_bal (k) is defined by Equation 2.
  • a value Lgating based on the ratio of the number of slots in which the control signal is transmitted on the DPCCH in the intermittent transmission mode is set to Lgating, and this adjustment amount in the intermittent transmission mode in the balance adjustment period is multiplied by P_bal (k ) Is changed. Specifically, it is shown by the following formula 6.
  • Lgating is a value based on the number of slots N, which is the DPCCH gating period, and the number of slots X for transmitting control signals in N slots in the intermittent transmission mode.
  • N which is the DPCCH gating period
  • f_gating xZN Good.
  • transmission power control is performed based on Sum P_bal (k) obtained using Equation 2 in the normal mode, and based on Sum P_bal (k) obtained using Equation 6 in the intermittent transmission mode.
  • Transmit power control is performed based on Sum P_bal (k) obtained using force equation 6 which shows an example of using different transmit power control.
  • f_gating may be a value calculated by the above method.
  • DPCCH gating is applied only to, for example, services / mobile stations that use HSDPA for downlink data transmission and EUDCH for uplink data transmission. Therefore, for example, DPCCH gating does not apply to services that use circuit switching such as calls that transmit and receive data using uplink / downlink dedicated channels. Therefore, the base station controller sets the normal parameters for normal balancing. On the other hand, data transmission / reception for services using packet switching such as Web browsing and VoIP is generally performed using HSDPA and EUDCH. In such a case, the base station controller decides to apply DP CCH gating to this mobile station, and the adjustment ratio by power balancing is higher than that of the mobile station performing data transmission / reception on the dedicated channel described above. Decide the power balancing parameters so that they become smaller or more relaxed.
  • power balancing is controlled only in the X slot in which a control signal such as TPC or pilot signal is transmitted by DPCCH.
  • a control signal such as TPC or pilot signal is transmitted by DPCCH.
  • downlink mode power control is performed in the normal mode.
  • P (k) is the transmission power in slot k
  • P (k-1) is the transmission power in slot (k-1)
  • P_TPC (k) is the adjustment amount in lots based on closed-loop power control
  • P_bal (k) is the amount of power balance adjustment in slot k within the adjustment period.
  • P_bal (k) is defined by Equation 2.
  • Example 1 will be described.
  • the first embodiment is an example in which the reflection ratio of the power balancing adjustment amount is lowered in the above-described intermittent transmission mode in DPCCH Gating.
  • the transmission power control method described in the first embodiment is applied to the cellular system having the configuration shown in FIG. Implemented.
  • the cellular system in FIG. 5 has a service area divided into first and second cells 5 and 6, and the first and second cells have first and second base stations 2 and 3, respectively.
  • a mobile station 4 is present as well as being deployed.
  • the first and second base stations 2 and 3 are each connected to the base station control station 1, and the base station control station 1 further includes a communication network (not shown) composed of another base station control station 1. It is connected to the.
  • this cellular system includes a large number of other base stations, and a large number of mobile stations exist in each cell.
  • Mobile station 4 transmits and receives control signals such as TPC signals and pilot signals to and from base stations 2 and 3 using DPCCH.
  • FIG. 6 shows the configuration of base station control station 1.
  • the base station control station 1 includes a storage unit 101 and a control unit 102.
  • the storage unit 101 stores parameters.
  • the stored parameters include the power value P_CPICH of the common pilot signal transmitted by the base station, the amount of adjustment by the closed-loop transmission power control (width) A TPC, and the target value that is the target value for uplink closed-loop transmission power control There is SIR. Further, as parameters necessary for power balancing control, a reference power offset value P_ref, an adjustment ratio r by power balancing, an adjustment period Tint for power balancing, and the like are stored.
  • the control unit 102 reads the power value P_CPICH from the storage unit 101 and notifies the base station, and for other parameters, when communication with a mobile station (a certain service) starts, etc. Are read from the storage unit 101 and notified to the base station. Furthermore, the control unit 102 calculates a parameter R_gating for changing an adjustment amount applied when the mobile station is determined to be an intermittent transmission mode in DPCCH Gating when power balancing is activated, and notifies the base station. In the first embodiment, when the intermittent transmission period in the intermittent transmission mode performed in DPCCH Gating is N slots and the number of transmission slots is X slots, xZN is calculated as R_gating g. FIG.
  • the base station apparatus includes an antenna 201, a transmission / reception duplexer 202, a reception circuit 203, an SIR measurement unit 204, a transmission power control unit 205, a transmission circuit 206, a state management unit 207, and a timer 208.
  • the SIR measurement unit 204 is a measuring device for measuring the ratio (SIR) of the desired signal power and the interference signal power in the uplink, so that each time a mobile station receives a slot transmitted, Measure the uplink SIR. Further, the SIR measurement unit 204 compares the measured uplink SIR with a predetermined target SIR, and if the measured uplink SIR is equal to or greater than the target SIR, the TPC signal (UL-TPC) instructing power reduction is measured. If is lower than the target SIR, a TPC signal (DL-TPC) instructing an increase in power is generated and sent to the transmission circuit 206. In addition, the measured uplink SIR can be sent to the transmission power control section 205 in order to estimate the reliability of the control signal received on the uplink.
  • SIR ratio
  • transmission power control section 205 is a control section that controls downlink transmission power according to the mode state of mobile station 4 notified from state management section 207, and mobile station 4 is a DPCCH Gating normal In mode, transmission power control based on Equation 1 and Equation 2 is performed.
  • transmission power control section 205 performs transmission power control based on Equations 2 and 3 using R_gating notified from base station control station 1 in the mobile station 4 power SDPCCH Gating intermittent transmission mode.
  • the transmission power is controlled using Equation 1 in the normal mode, and the transmission power is controlled using Equation 3 in the intermittent transmission mode.
  • the station performs transmission power control using Equation 3.
  • R_gating 1 in normal mode and R_gating may be less than 1 in intermittent transmission mode.
  • the transmission power start time in the intermittent transmission mode is the following method.
  • the transmission power control unit 205 is notified that the mobile station 4 is in the DPCCH Gating intermittent transmission mode state from the state management unit 207, and at the same time, the DPCCH Gating intermittent transmission mode. Performs transmission power control during transmission.
  • the transmission power control unit 205 applies normal parameters during the power balancing adjustment period in which the state management unit 207 is notified that the mobile station 4 has entered the DPCCH Gating intermittent transmission mode state. Performs transmission power control in mode. Then, transmission power control in the intermittent transmission mode is performed from the next adjustment period of noise balancing.
  • the transmission power control unit 205 performs only closed-loop power control using the TPC signal during the power balancing adjustment period when the state management unit 207 notifies that the mobile station 4 has entered the DPCCH Gating intermittent transmission mode state. Stop power balancing control. Then, transmission control in the intermittent transmission mode is performed from the next power balancing adjustment period.
  • the power balancing adjustment amount Pbal in the normal mode is multiplied by a predetermined value.
  • the transmission power control in the normal mode is performed using the obtained value.
  • the predetermined value is determined according to the ratio of the remaining time of the current adjustment period. Then, the transmission control in the intermittent transmission mode is performed from the next powerno ⁇ Lansing adjustment period.
  • the state management unit 207 is a management unit that manages the state of the mobile station 4 power PCCH Gating in normal mode or intermittent transmission mode, and notifies the transmission power control unit 205 of the state of the mobile station 4 . Although the state management unit 207 knows the state of the mobile station 4, the following method can be considered.
  • the mobile station 4 sends a control signal to the base station for notification.
  • the state management unit 207 that has received this notification via the receiving circuit 203 manages the state of the mobile station 4.
  • the control signal transmission method is E-DPCCH! /, And transmitted! E-TFCI (E-Transport Format Combination Indicator) or SI (Scheduling) transmitted via E-DPDCH It is conceivable to provide a signal indicating that the state has changed in (Information) etc.
  • E-TFCI is a signal notifying the format such as the data size of the transport block transmitted in E-DPDCH
  • SI is information necessary for scheduling in the base station, for example, To notify the amount of data stored in the mobile station's buffer Signal.
  • the contents of the control signal include the transition information indicating that the mobile station 4 has transitioned from the normal mode to the intermittent transmission mode, the mobile station 4 has transitioned from the intermittent transmission mode to the normal mode, and mobile information. Information indicating the current status of station 4 is considered.
  • the base station makes an autonomous decision (blind). For example, the SIR measurement unit 204 measures the SIR of the DPCC H TPC, pilot signal, etc., and if the slot whose SIR is less than or equal to the predetermined threshold SIR_thr continues for N_thr slots or more, the mobile station 4 is in the intermittent transmission mode. Judge that there is. Then, the determination result is notified to the state management unit 207. SIR_thr and N_thr may be set by the base station control station 1 or by the base station. Note that N_thr is preferably smaller than the DPCCH gating slot transmission stop interval.
  • the uplink signal transmitted from the mobile station 4 is received by the reception circuit 203 via the antenna 201 and the duplexer 202.
  • the receiving circuit 203 Each time the receiving circuit 203 receives an uplink signal slot, the receiving circuit 203 separates the data signal and the control signal, and transfers the data signal to a reception processing unit (not shown). Further, the receiving circuit 203 sends a no-lot signal included in the received control signal to the SIR measuring unit 204 for each slot. Then, the SIR measurement unit 204 measures the received power of the pilot signal, generates a TPC signal (UL-TPC) for controlling the transmission power of the uplink, sends it to the transmission circuit 206, and transmits the SIR measurement result of the pilot signal. It is sent to the transmission power control unit 205.
  • UPC TPC signal
  • reception circuit section 203 transmits the TPC signal included in the received control signal to transmission power control section 205 for each slot.
  • the transmission power control unit 205 calculates the downlink transmission power for the downlink signal for each slot using the TPC signal sent from the reception circuit 203, and generates a downlink transmission power control signal indicating the transmission power below that.
  • Send to transmission circuit 206 transmission power control section 205 may estimate the reliability of the TPC signal based on a predetermined quality threshold and the SIR measurement result of the pilot signal sent from SIR measurement section 204. And when the reliability of the TPC signal is low, the content of the TPC signal may not be used in the calculation of the transmission power.
  • the transmission power is calculated based on the amount of power change by the TPC signal and the amount of adjustment by power balancing as described above.
  • the power balancing operation will be described in the prior art as well as below.
  • the timer 208 measures the time necessary to determine the elapse of the adjustment period used for this power balancing.
  • the transmission circuit 206 sets the downlink transmission power for the downlink signal to a value indicated by the downlink transmission power control signal. Then, the base station transmits the downlink signal generated by the transmission circuit 206 to one or more mobile stations via the duplexer 202 and the antenna 201.
  • FIG. 8 shows the configuration of mobile station 4.
  • the mobile station 4 includes an antenna 401, a transmission / reception duplexer 402, a reception circuit 403, an SIR measurement unit 404, a transmission power control unit 405, a transmission circuit 406, a pilot signal power measurement unit 407, and a state management unit 408. Speak.
  • the downlink signal transmitted from the base station is received by reception circuit 403 via antenna 401 and transmission / reception duplexer 402.
  • Receiving circuit 403 receives the downlink signal, separates the control signal and data, sends the data to a reception processing unit (not shown), and performs necessary reception processing such as decoding.
  • SIR measurement section 404 measures the pilot signal or TPC signal SIR included in the downlink signal to represent the downlink SIR. Get the downstream SIR value.
  • the SIR measurement unit 40 4 compares the measured downlink SIR value with the target downlink SIR value, and when the measured downlink SIR value is smaller than the target downlink SIR value, the SIR measurement unit 404 sends a TPC signal that instructs an increase in downlink transmission power. (DL-T PC) is output. When the measured downlink SIR value is equal to or greater than the target downlink SIR value, the SIR measurement unit 404 outputs a TPC signal (DL-TPC) that instructs a decrease in downlink transmission power. DL-TPC is supplied to the transmission circuit 406.
  • the transmission circuit 406 transmits an uplink signal including DL-TPC for each slot to the base station via the duplexer 402 and the antenna 401 when the state indicated by the state management unit 408 is the normal mode. To do.
  • DL-TPC is transmitted in a slot that can transmit an uplink signal based on a predetermined DPCCH transmission pattern (DPC CH gating pattern). Transmit uplink signal including.
  • the state management unit 408 determines whether or not the state of the mobile station is in the normal mode or the intermittent transmission mode and records the force state. It can be the case where either one or both are satisfied.
  • Receiving circuit 403 notifies the state management unit 408 whether or not the signal received by the receiving station 403 includes data addressed to its own station in a predetermined period. When it is determined that there is no data addressed to your station!
  • the state management unit 403 When the state management unit 403 receives a signal notifying that there is no data to be transmitted in the buffer for a predetermined time or longer as the MAC layer power UL activity information of the mobile station. It is just an example and is irrelevant to the essence of the invention. Therefore, for example, a base station that does not make autonomous judgments as described above transmits a control signal that explicitly notifies the mode change via a downlink channel, such as HS-SCCH. When receiving this signal, the receiving circuit 403 may notify the status management unit 408 to that effect.
  • a downlink channel such as HS-SCCH
  • receiving circuit section 403 sends an uplink TPC signal included in the received control signal to transmission power control section 405 for each slot.
  • Transmission power control section 405 calculates the uplink transmission power for the uplink signal for each slot using the TPC signal sent from reception circuit 403, and transmits the uplink transmission power control signal indicating the uplink transmission power.
  • the transmission circuit 406 sets the uplink transmission power for the uplink signal to a value indicated by the uplink transmission power control signal. Then, the mobile station transmits the uplink signal generated by the transmission circuit 406 via the transmission / reception duplexer 402 and the antenna 401.
  • Embodiment 1 The operation of Embodiment 1 is different from the conventional technique in the processing from Step 200 to Step 202.
  • the transmission power control unit 205 determines whether the mobile station is in the normal mode or the intermittent transmission mode from the notification of the state management unit 207. If the current mode is the normal mode, the process proceeds to step 110, and the same processing as in the prior art is performed.
  • transmission power control according to Equation 3 is performed using R_gating notified from base station control station 1 (step 202).
  • Example 2 will be described.
  • the second embodiment is an example in which the power balancing adjustment amount is lowered by using a power balancing adjustment ratio different from the power balancing adjustment ratio in the normal mode described above.
  • the description of the same parts as those in the first embodiment will be omitted, and different parts will be described.
  • Each parameter is stored in the storage unit 101.
  • the stored parameters include the power value P_CPICH of the common pilot signal transmitted by the base station, the amount of adjustment by the closed-loop transmission power control (width) A TPC, and the target value that is the target value for uplink closed-loop transmission power control There is SIR.
  • the parameters required for power balancing control reference power offset value P_ref, adjustment ratio r by power balancing (Adjustment ratio) r, adjustment period Tint, reference power offset value in intermittent transmission mode P_ref_gating etc. are stored.
  • the X slot in which the control signal is transmitted is also stored in the predetermined period (N slot) performed in the DPCCH Gating described above.
  • the control unit 102 reads the power value P_CPICH from the storage unit 101 when the base station is established and notifies the base station, and stores other parameters at the start of communication (a certain service) with the mobile station. Read from unit 101 and notify base station. Further, the control unit 102 is a mobile station. Calculates r_gating, which is a parameter for the adjustment ratio in the intermittent transmission mode that is applied when the power transmission is determined to be the intermittent transmission mode in DPCCH Gating when starting power balancing, and notifies the base station.
  • the determination method of r_gating in the present invention is not limited to this.
  • r_gating may be determined to have some negative correlation with the ratio of the number of slots transmitted during the intermittent transmission period, or a value that is larger and smaller than r in the normal mode is randomly selected. May be.
  • the transmission power control section 205 of the base station is a control section that controls the downlink transmission power according to the mode state of the mobile station 4 notified from the state management section 207.
  • the transmission power control unit 205 uses the P_ref_gating and r_gating notified from the base station control station 1 in the mobile station 4 power SDPCCH Gating intermittent transmission mode to calculate Sum P_bal (k) based on Equation 4. Based on this Sum P_bal (k), transmit power control based on Equation 1 is performed.
  • Pref_gating may be set to the same value as Pref in normal mode! /.
  • step 300 the transmission power control unit 205 determines whether the mobile station is in the normal mode or the intermittent transmission mode from the notification of the state management unit 207. If the current mode is the normal mode, the process proceeds to step 110, and the same processing as in the prior art is performed.
  • Sum P_bal (k) is calculated based on Equation 4 using P_ref_gating and r_gating notified from the base station control station 1 (step 301) (step 301). Up 302). Then, the process proceeds to step 117, and the same process as in the prior art is performed. [0154] Note that any one of the four methods described above is used for the start time of transmission power control in the intermittent transmission mode.
  • Example 3 will be described.
  • the third embodiment is an example in which the power balancing adjustment amount is reduced by multiplying the power balancing adjustment amount described above by a constant.
  • the description of the same parts as in the first embodiment will be omitted, and different parts will be described.
  • Each parameter is stored in the storage unit 101.
  • the stored parameters include the power value P_CPICH of the common pilot signal transmitted by the base station, the amount of adjustment by the closed-loop transmission power control (width) A TPC, and the target value that is the target value for uplink closed-loop transmission power control There is SIR.
  • a reference power offset value P_ref a reference power offset value
  • an adjustment ratio r by power balancing a adjustment period Tint of power balancing
  • Tint of power balancing are stored.
  • the X slot in which the control signal is transmitted is also stored in a predetermined cycle (N slot) performed in the above DPCCH Gating.
  • Lgating applied when it is determined as intermittent transmission mode is stored.
  • f_gating is x / N.
  • the transmission power control unit 205 calculates Sum P_bal (k) based on Equation 5 using Lgating notified from the base station control station 1 in the mobile station 4 power SDPCCH Gating intermittent transmission mode. Based on this Sum P_bal (k), transmission power control based on Equation 1 is performed.
  • transmission power control is performed based on Sum P_bal (k) obtained using Equation 2 in the normal mode, and based on Swake P_bal (k) obtained using Equation 5 in the intermittent transmission mode.
  • the transmission power control is performed on the basis of Sum P_bal (k) obtained using the power equation 5, which shows an example of using different transmission power control.
  • step 400 the transmission power control unit 205 determines whether the mobile station is in the normal mode or the intermittent transmission mode from the notification of the state management unit 207. If the current mode is the normal mode, the process proceeds to step 110, and the same processing as in the prior art is performed.
  • Sum P_bal (k) is calculated based on Equation 4 using Lgating notified from the base station control station 1 (step 401). . Then, the process proceeds to step 117, and the same processing as in the prior art is performed.
  • Example 4 will be described.
  • the power balancing adjustment amount is calculated by using the power balancing adjustment amount reduction rate calculated based on the ratio of the number of slots in which the base station transmits the control signal in the intermittent transmission mode described above. This is an example of lowering.
  • the description of the same parts as those of the first embodiment will be omitted, and different parts will be described.
  • Each parameter is stored in the storage unit 101.
  • the stored parameters include the power value P_CPICH of the common pilot signal transmitted by the base station, the amount of adjustment by the closed-loop transmission power control (width) A TPC, and the target value that is the target value for uplink closed-loop transmission power control There is SIR. Further, as parameters necessary for power balancing control, a reference power offset value P_ref, an adjustment ratio r by power balancing, an adjustment period Tint for power balancing, and the like are stored. Also, the X slot to which the control signal is transmitted is stored in the predetermined period (N slot) performed in the DPCCH Gating described above.
  • the transmission power control section 205 in the base station performs a uniform balancing adjustment amount between the intermittent transmission modes based on the DPCCH Gating parameters, that is, the period N and the number of slots X in which the control signal is transmitted.
  • the parameter tgating used to calculate.
  • the transmission power control section 205 of the base station is a control section that controls downlink transmission power according to the mode state of the mobile station 4 notified from the state management section 207, and is a mobile station 4-power PCCH Gati. In normal mode of ng, transmit power control based on Equation 1 and Equation 2 is performed.
  • the transmission power control unit 205 calculates Sum P_bal (k) based on Equation 6 using Lgating notified from the base station control station 1 in the mobile station 4 power SDPCCH Gating intermittent transmission mode. Based on this Sum P_bal (k), transmission power control based on Equation 1 is performed.
  • transmission power control is performed based on Sum P_bal (k) obtained using Equation 2 in the normal mode, and V based on SP_bal (k) obtained using Equation 6 in the intermittent transmission mode.
  • the transmission power control is performed based on Sum P_bal (k) obtained using the power equation 6 that shows an example of using different transmission power control, that is, using different transmission power control.
  • step 500 the transmission power control unit 205 determines whether the mobile station is in the normal mode or the intermittent transmission mode from the notification of the state management unit 207. If the current mode is the normal mode, the process proceeds to step 110, and the same processing as in the prior art is performed.
  • Sum P_bal (k) is calculated based on Equation 6 (Step 401) using the above-described Lgating (Step 502). Then, the process proceeds to step 117 and the same processing as in the conventional case is performed.
  • Example 5 determines whether or not to apply DPCCH gating by communication (service) started to the mobile station.
  • a power balancing parameter is set that is smaller or slower than that of a mobile station that performs data transmission / reception using power balancing ratio 3 ⁇ 4PCCH.
  • the normal parameters are set and power balancing is performed.
  • FIG. 13 is a block diagram of the base station control apparatus of the fifth embodiment.
  • the base station control device includes a storage unit 501, an application determination unit 502, and a control unit 503.
  • DPCCH gating is applied to services that use HSDPA for downlink data transmission and EUDCH for uplink data transmission.
  • DPCCH gating performs data transmission / reception using uplink Z downlink dedicated channels.
  • DPCCH gating does not apply to services that use circuit switching such as calls.
  • data transmission / reception for services using packet switching such as Web browsing and VoIP is generally performed using HSDPA and EUDCH.
  • the base station controller applies DPCCH gating to this mobile station.
  • the control unit 503 Upon receiving the determination result of the application determining unit 502, the control unit 503 reads the normal parabalancing parameters from the storage unit 501 and notifies the base station of the mobile station that does not apply DPCCH gating. To do.
  • parameters such as r when adjusting DPCCH gating and adjustment period are read from the storage unit 501 and notified to the base station.
  • the notified base station performs transmission power control on the mobile station based on the notified parameter as in the conventional case.
  • the mobile station since the mobile station does not need a signal for reporting the power of being in the intermittent transmission mode, it is possible to reduce uplink overhead.
  • Example 6 will be described.
  • Example 6 is an example in which power balancing is performed only when a TPC command is executed in downlink power control.
  • FIG. 14 is a block diagram of a base station according to the sixth embodiment. Note that the same reference numerals are given to the same configurations as those of the base station of the above-described embodiment.
  • the basic configuration is the same as that of the base station of Embodiment 1 described above, but SIR measurement section 601 measures the SIR of the TPC signal (or pilot signal) in each slot, and the result is transmitted power control. Notification to part 602. For example, when the SIR has deteriorated below a predetermined reliability threshold value, the transmission power control unit 602 is notified of this.
  • Transmission power control section 602 performs normal power balancing when the SIR does not deteriorate below a predetermined reliability threshold. In other words, transmission power control based on Equation 1 and Equation 2 is performed.
  • the TPC signal and the adjustment value (P_bal) due to power balancing are not reflected in the transmission power. In other words, transmission power control is not performed.
  • the base station control since the mobile station does not need to detect whether or not the intermittent transmission mode is obscured, the base station control becomes easy.
  • the power control method in the system for performing balance adjustment of transmission power of a plurality of base stations according to the present invention signals are transmitted in all slots as in the normal mode.
  • the rate (adjustment speed) of changing the transmission power to the reference power for power balancing was changed in communication with a slot that does not transmit signals such as the intermittent transmission mode.
  • the power control method in the system for performing the balance adjustment of the transmission power of the plurality of base stations according to the present invention is the first in the case where there is a slot in which a control signal for these base stations is not transmitted. It was shown that there are two adjustment methods, the balance adjustment method and the second balance adjustment method in the case where there is no slot in which no control signal is transmitted.
  • the power control method in a system that performs balance adjustment of transmission power of a plurality of base stations according to the present invention is not necessarily limited thereto.
  • the reference power offset value P_ref determined by the base station controller which is a parameter used for transmission power control, the power value P_CPI CH, r, etc. of the common pilot signal transmitted by the base station, and R_gating, r_gating Lgating describes that the base station controller notifies the base station, but the present invention is not limited to the notification method of these parameters.
  • these parameters are individually set in the base station. It may be determined for each base station.

Abstract

少なくとも移動局と、ひとつ以上の基地局からなる通信システムにおける基地局の送信電力制御方法において、信号を送信しないスロットが存在する通信と、信号を送信しないスロットが存在しない通信とで、送信電力を所定の基準電力に近づける割合を変えることを特徴とする。これにより、送信電力制御において、下り送信電力が希望の送信電力と乖離しすぎることを防ぐことができる。  

Description

明 細 書
送信電力制御方法及び基地局、基地局制御局並びにその制御プログラ ム 技術分野
[0001] 本発明は送信電力制御方式、送信電力制御方法及び基地局、基地局制御装置並 びにそのプログラムに関する。
背景技術
[0002] 代表的な無線通信システムである W— CDMA (Wide band-Code Division Multiple
Access)システムでは、下り回線の高速パケット伝送方式である HSDPA (High Spee d Downlink Packet Access)や上り回線の高速パケット伝送方式である EUDCH (En hanced Uplink Dedicated Channel)が標準化されている。これらのパケット伝送方式は 、基地局力スケジューリングを行って複数の移動局に時間多重または符号多重によ つて、データ送受信のあるときのみ無線リソースを割当てるようにし、無線リソースの使 用効率を高めて 、る。この W— CDMAシステムにつ 、て図面を用いて簡単に説明 する。
[0003] 図 1は W— CDMAシステムの一例を示す概略的なネットワーク構成図である。ここ では、複数の基地局 11、 12が基地局制御装置 10に接続され、基地局制御装置 10 は更に外部のネットワークに接続可能である。複数の基地局はそれぞれ複数の移動 局を収容可能であり、ここでは、移動局 21および 22が基地局 11に、移動局 24が基 地局 12にされており、移動局 23がソフトハンドオーノ^適宜、 SHOと記す。)中で基 地局 11および 12の両方に接続されているものとする。
[0004] 移動局 21〜24は基地局との間で上りおよび下りの個別チャネル(DPCCH: Dedica ted Physical Control Channel)により制御信号を送受信している。さらに、移動局 22 および 24は HSDP Aを用いてデータ受信を行い、移動局 23および 24は EUDCHを 用いてデータ送信を行って 、る。 HSDPAを用いたデータ受信を行って ヽる移動局 22および 24は HS- SCCH (High Speed-Shared Control Channel)、並びに HS-PDSC H (High Speed-Physical Downlink Shared Channel)を受信し、 HS- DPCCH (High Spe ed- Dedicated Physical Control Channel)を送信する。また、 EUDCHを用いたデー タ送信を行っている移動局 23および 24は E-HICH (Enhanced- Hybrid ARQ Indicate r Channel) ^ E-AuCH (Enhanced- Absolute urant Gnannel)、 E—RGし H (Enhanced— Re lative Grant channel)を受信し、 E- DPCCH (Enhanced- Dedicated Control Channel) 、 E-DPDCH (Enhanced- Dedicated Data Channel)を送信する。すなわち、 HSDPA や EUDCHを実行中の移動局も、データ送受信のためのチャネル以外に DPCCHと 呼ばれるチャネルを送受信している。 DPCCHは、移動局と基地局とが同期を確保し 復調のためのチャネル推定に使用するパイロット信号ゃ閉ループ型電力制御のため の制御信号である TPC (Transmission Power Control)信号などの制御信号を送信す るために用いられる。
[0005] DPCCHの送信電力は目標品質(ここでは目標 SIR(Signal to Interference Ratio:受 信電力対干渉電力比))に近づくように閉ループ型電力制御が行われる。例えば、上 り回線の DPCCHの送信電力制御では、基地局は基地局制御装置 10が定める目標 SIRと実際に受信した DPCCHの SIRとを比較し、実際の受信 SIRが目標 SIRよりも小 さい場合は、送信電力を増加させるよう指示する TPC信号を下り回線の DPCCHで送 信する。それ以外の場合は、送信電力を減少させるよう指示する TPC信号を送信す る。移動局は DPCCHで受信した TPC信号の指示に従って DPCCHの電力を増減す る (非特許文献 1)。
[0006] ここで、移動局が複数の基地局と DPCCHの送受信を行って 、る場合、すなわち移 動局 23のようにソフトハンドオーバ(SHO)状態の場合には、移動局 23は複数の TP C信号を受信するが、そのなかで一つでも電力減少を指示する TPC信号を受信す れば電力を減少させるように制御される。これは、 SHO中は複数の基地局の中のい ずれか一つにおいて所望の品質を満足していれば通信が可能であるからであり、複 数の基地局で十分な品質となるよう送信電力を増加させることは他ユーザへの干渉 を増加させることになり好ましくないためである。
[0007] し力しながら、この方法では、移動局までの伝搬損失が最も小さ!/、基地局では、移 動局からの制御信号をほぼ正確に受信できるが、移動局力 の伝搬損失が大きい基 地局では、制御信号の受信電力が小さいために移動局力もの制御信号の受信に失 敗することが多くなる。従って、伝播損失の大きい基地局では送信電力制御の誤りが 増加し、それぞれの基地局の下り送信電力を互いに等しく保つことができなくなる。
[0008] そこで、ソフトハンドオーバ実行中に、各基地局が互いにほぼ等しい電力で送信で きる様にするパワーバランシングと 、う送信電力制御方法が提案されて 、る(非特許 文献 2)。
[0009] 次に、図 2を参照して下り回線のための送信電力制御の一例について説明する。
図 2は、ソフトハンドーバの実行中に、基地局が移動局からの TPC信号を受けて下り 回線の DPCCHの送信電力を決定するフロー図である。尚、基地局が移動局とソフト ハンドオーバを開始するとき、その基地局が以前力 その移動局に対して送信を行 つている Serving基地局であれば、送信電力 Pは、その移動局に対する送信電力の直 前の値のままとし、その基地局が新たにその移動局に対して送信を開始した Non-ser ving基地局であれば送信電力 Pを初期値 P0に設定するものとする。また、 Serving基 地局と Non-serving基地局は、制御局力 ソフトハンドオーバを開始するフレーム番 号を通知されるものとする。
[0010] また、以下の説明において、 P(k)は調整期間内のスロット kにおける制御する送信電 力、 P_balは調整期間内の 1スロット当たりのパワーバランスの調整量、 P_bal(k)は調整 期間内の kスロットにおけるパワーバランスの調整量、 Iはフレーム数、 kはスロットの番 号であり、フレームは所定のスロット数からなり、以下の説明では 1フレーム内のスロッ ト数をしとする。尚、 3GPPでは 15スロットで 1フレームと規定している。更に、 P_TPC(k) は閉ループ型電力制御に基づく ロット時の調整量、 Tinitは調整期間、 P_refは基 地局制御装置が決定する基準電力オフセット値、 P_CPICHは基地局が送信する共 通パイロット信号の電力値であり、 rはパワーバランシングの調整割合である。
[0011] 先ず、制御局より複数基地局間の送信電力バランス制御メッセージが到着すると、 初期値として、 P_bal=0、 1=0、 k=0にリセットし (ステップ 101、ステップ 102、ステップ 10 3)。ここで、 TPC信号は移動局より一定の間隔で通知される力 この新たに通知され た下り制御命令が存在して (ステップ 104)、その TPC信号が電力増加を指示してい る場合には (ステップ 105)、 kスロットにおける TPC信号による送信電力増減量 P_TPC (k)を所定の値 ATPCだけ増加させ (ステップ 106)、その TPC信号が電力減少を指示 している場合には (ステップ 105) P_TPC(k)を所定の値 ATPCだけ減少させる (ステ ップ 107)。一方、 TPC信号が受信されない場合には、 P_TPC(k)=0として (ステップ 10
8)、ステップ 109に進む。
[0012] そして、 P_bal(k)= P_balとし (ステップ 109) kスロットにおける送信電力 P(k)を式 1と なるように制御する (ステップ 110)
[0013] P(k) = P(k-l) + P— TPC(k) + P— bal(k) 式 1
尚、 k=0となる場合には、 P(k- 1)は、前フレームの最終スロットの値を用いる。
[0014] 続いて、 kを 1増加し (ステップ 111) Kが Lslotになったか判断する(ステップ 112)。
Kが Lslotでなければ、ステップ 104に戻り、上述した処理を続行する。一方、 Kが Lslo tとなると、 Iを 1増加する (ステップ 113)。そして、 1= Tinit、すなわち、調整期間が終了 したかを判断する (ステップ 114)
[0015] 1= Tinitでなければ、ステップ 103に戻り、上述した処理を続行する。一方、 1= Tinit となった場合、調整期間の最終スロットで送信した電力 Pjnitを P(k-l)とする (ステップ
115)。そして、次の調整期間に用いられる P_balを計算するため、調整期間内の P_bal の合計量を式 2より求める (ステップ 116)
[0016] Sum P— bal = (1— r)*(P— ref + P— CPICH - Pjnit) 式 2
続いて、 Tinitと Lslotとを乗算した値、すなわち調整期間の全スロット数で、 Sum P_ba
1を割った値を、次の調整期間の P_balとし (ステップ 117)、ステップ 102に戻り、上述 した処理を続行する。
[0017] このようなパワーバランシングは、式 1及び式 2で規定され、 W— CDMA規格を規 定している 3GPP(3rd Generation Partnership Project)でも規定されている(非特許文 献 1、非特許文献 2)。
[0018] P(k) = P(k-l) + P— TPC(k) + P— bal(k) 式 1
Sum P— bal = (1- r)*(P— ref + P— CPICH - Pjnit) 式 2
ただし、 3GPPにおける規定では調整期間内で具体的な調整方法については規定 していない。すなわち、上述のように調整期間内の各スロットにおいて一定値だけ調 整するように S Pbalを等分割して調整してもよいし、調整期間内の所定スロットにお V、てのみ一括または数回に分割して調整してもよ 、。 [0019] ところで、上述した 3GPPでは、 HS-PDSCHや E-DPDCHにおいて当該移動局に対 するデータ送信または当該移動局からのデータ送信が行われていない場合には、上 り回線の DPCCHにおいて TPCやパイロット信号等の制御信号の連続送信を行わず、 所定の期間内に限られたスロットのみで、制御信号を送信する技術が提案されてい る (DPCCH Gatingと呼ばれる) (非特許文献 3)。ここで、移動局に対してデータ送受 信が行われていないとは、 HS-PDSCHまたは E-DPDCHの少なくともどちらか一方の チャネルにおいて、所定時間の間、当該移動局と基地局の間で信号の送信受信が 行われないことをいう。このような状況は、例えば、 HSDPAを使用しウェブ閲覧を行つ ている移動局のユーザが、ダウンロードしたウェブページを読んでいる間(reading tim e)などで発生する。
[0020] この技術を、図 3を用いて説明すると、データ送信が行われている場合は、 DPCCH のフレーム内のスロットで連続的に TPC信号やパイロット信号等の制御信号が送信さ れる。このような状態を通常モードと呼ぶ。一方、データ送信が行われていない場合 には、 DPCCHの Nスロットのうち、 x (xく N)スロットのみで間欠的、もしくは断続的に TP C信号やパイロット信号等の制御信号が送信され、それ以外のスロットでは制御信号 を送信しない。このような状態を以後、間欠送信モードと呼ぶ。なお、図 3では制御信 号を送信する Xスロットは連続的なものとして記載されて 、るが、必ずしも連続である ことは要しない。
[0021] 非特許文献 1: 3GPPTS25.214 v6.7.1 (2005—12) 3rd Generation Partnership Project;
rechnical ¾pecincation roup Radio Access Network; Physical layer procedures (r DD) (Release 6))
非特許文献 2 : 3GPP TS25.433 v6.8.0 (2005-12) 3rd Generation Partnership Project ; Technical Specification Group Radio Access Network; UTRAN Iub interface Node B Application Part (NBAP) signaling (Release 6))
非特許文献 3 : 3GPP TR25.903 (νθ.3.0) (2006-02) 3rdGeneration Partnership Projec t; Technical Specification Group Radio Access Network; Continuous Connectivity fo r Packet Data Users; (Release7)
発明の開示 発明が解決しょうとする課題
[0022] ところで、上述のような、通常モードと間欠送信モードとが存在する DPCCH Gating では、間欠送信モードの場合、上り回線の DPCCHで移動局が基地局に対して送信 している TPC信号も一部(Nスロット中 ロット)しか送信されない。従って、閉ループ 型送信電力制御における TPC信号による送信電力の増減も Nスロットに X回しか反映 されなくなる。このとき、パワーバランシングが起動されていると、これによつて下り送 信電力がパワーバランシングの基準電力(P_ref+P_CPICH)に近づきすぎ、下り DPC CHの目標 SIRを満足できないほど低い送信電力となったり、下り DPCCHが過剰品質 になるような高い送信電力となるなどの問題が生じる。
[0023] 図 4は通常モードから間欠送信モードに遷移され、 DPCCHによる TPCが送信され ない状態が続いた後、通常モードに遷移した場合の下り送信電力の変化を示した図 である。ここでは、例えば、パワーバランシングの調整周期を 1フレーム(=15スロット)、 調整割合 rを 0.5、間欠送信モードにおける間欠送信周期 Nを 45スロット、送信スロット 数を 3スロットと仮定する。
[0024] 図 4に示されるように、通常モードでは TPC信号も毎スロット送信されるので、 TPC信 号による閉ループ型電力制御に基づく調整量力スロット毎に実行され、目標 SIRを満 足できるような送信電力に近づくように制御される。し力しながら、間欠送信モードに なると、 DPCCHにおいて制御信号が送信されないスロットにおいては TPC信号による 閉ループ型電力制御に基づく調整量が電力に反映されない。そのため、パワーバラ ンスの調整量 P_balが電力を減少させる方向になって 、る場合、スロット毎に P_bal分だ け、下り送信電力が減少されていく。
[0025] このような場合、下り DPCCHの品質は目標 SIRを満足できなくなり、下り DPCCHで送 信して!/、る制御信号等の誤り率が増加する。下り回線の制御信号には上り回線 DPC CHの送信電力を制御する TPC信号が含まれるため、下り DPCCHにおける制御信号 の誤り率が増加すると、上り回線の送信電力制御が正しく行われなくなる。一般に、 D PCCH以外の上り回線のチャネル(E- DPCCHや E- DPDCH等)は上り DPCCHの送信 電力を基準とし、それに対する所定の電力オフセットを追加することで送信電力が制 御される。従って、上り DPCCHの電力制御が正しく行われない場合、他の上り回線チ ャネルも劣化する可能性が高く問題である。
[0026] そこで、本発明は上記課題に鑑みて発明されたものであって、その目的は、送信電 力の電力制御において、送信電力が希望の送信電力と乖離しすぎることを防ぐ技術 を提供することにある。
課題を解決するための手段
[0027] 上記課題を解決する第 1の発明は、少なくとも移動局と 1以上の基地局からなる通 信システムにおける基地局の送信電力制御方法であって、信号を送信しな!、スロット が存在する通信と、信号を送信しないスロットが存在しない通信とで、送信電力を所 定の基準電力に近づける割合を変えることを特徴とする。
[0028] 上記課題を解決する第 2の発明は、上記第 1の発明において、前記送信電力制御 方法は、前記移動局と回線を設定している基地局の送信電力を所定の基準電力に 基づ 、て更新するパワーランシング力 なる送信電力制御方法であり、前記所定の 基準電力は、基地局制御装置が決定する基準電力オフセット値と、基地局が送信す る共通パイロット信号の電力値とからなることを特徴とする。
[0029] 上記課題を解決する第 3の発明は、上記第 1又は第 2の発明において、信号の送 信を停止するスロットが存在する通信における前記所定の基準電力に近づける割合 を、信号の送信を停止するスロットが存在しな ヽ通信における前記基準電力に近づ ける割合よりも低くすることを特徴とする。
[0030] 上記課題を解決する第 4の発明は、上記第 1から第 3のいずれかの発明において、 前記信号の送信を停止するスロットが存在する通信が、移動局が制御信号を間欠的 に送信して ヽる場合であり、前記信号の送信を停止するスロットが存在しな ヽ通信が 、移動局が制御信号を連続的に送信している場合であることを特徴とする。
[0031] 上記課題を解決する第 5の発明は、下り回線の電力制御を行っている通信方法に おける送信電力制御方法であって、 P(k-l)は (k-1)スロット時の送信電力、 P_TPC(k) は閉ループ型電力制御に基づく ロット時の電力調整値、 R_gatingは変数、 P_bal(k) は調整期間内のスロット kにおけるパワーバランスの調整量としたとき、下り回線の送 信電力の調整期間における ロット時の送信電力 P(k)を、
式 P(k) = P(k - 1) + P— TPC(k) + R— gating * P— bal(k) に基づ!/、て制御することを特徴とする。
[0032] 上記課題を解決する第 6の発明は、上記第 5の発明において、移動局が制御信号 を間欠的に送信する間欠送信モードにあると判断される場合、前記 R_gatingは 1未満 の値であることを特徴とする。
[0033] 上記課題を解決する第 7の発明は、ある調整期間において、 P(k-l)は (k-1)スロット 時の送信電力、 P_TPC(k)は閉ループ型電力制御に基づく kスロット時の電力調整値 、 P_bal(k)は調整期間内のスロット kにおけるパワーバランスの調整量、 rは変数、 P_ref は基準電力、 P_P-CPICHは共通パイロット信号の電力、 Pjnitは前回のパワーバラン スの調整期間の最終スロットにおける送信電力としたとき、下り回線の送信電力の調 整期間における kスロット時の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = (1- r) * (P— ref + P— P- CPICH - Pjnit)
に基づ!/、て制御する送信電力制御方法にお!、て、
移動局が制御信号を間欠的に送信する間欠送信モードにあると判断される場合、 前記 rと異なる変数である r_gatingを用いて、送信電力の調整期間における ロット時 の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = (1—r— gating)* (P— ref + P—P— CPICH - Pjnit)
に基づ!/、て制御することを特徴とする。
[0034] 上記課題を解決する第 8の発明は、下り回線の電力制御を行っている通信方法に おける送信電力制御方法であって、 P(k-l)は (k-1)スロット時の送信電力、 P_TPC(k) は閉ループ型電力制御に基づく ロット時の電力調整値、 P_bal(k)は調整期間内の スロット kにおけるパワーバランスの調整量、 rは調整割合、 Lgatingは定数、 P_refは基 準電力、 P_P-CPICHは共通パイロット信号の電力、 Pjnitは調整期間開始時の送信 電力としたとき、下り回線の送信電力の調整期間における ロット時の送信電力 P(k) を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = f— gating*(l— r)* (P— ref + P—P— CPICH - Pjnit) に基づ!/、て制御することを特徴とする。
[0035] 上記課題を解決する第 4の発明は、下り回線の電力制御を行っている通信方法に おける送信電力制御方法であって、 P(k-l)は (k-1)スロット時の送信電力、 P_TPC(k) は閉ループ型電力制御に基づく ロット時の電力調整値、 P_bal(k)は調整期間内の スロット kにおけるパワーバランスの調整量、 rは調整割合、 Lgatingは調整期間内で移 動局から制御信号が送信されるスロット数の割合に基づいて決定される値、 P_refは 基準電力、 P_P-CPICHは共通パイロット信号の電力、 Pjnitは前回のパワーバランス の調整期間の最終スロットにおける送信電力としたとき、下り回線の送信電力の調整 期間における kスロット時の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = f— gating*(l— r)* (P— ref + P— P— CPICH - Pjnit)
に基づ!/、て制御することを特徴とする。
[0036] 上記課題を解決する第 10の発明は、上記第 8又は第 9の発明において、移動局が 制御信号を間欠的に送信する間欠送信モードにあると判断される場合、前記 Lgating は 1未満の値であることを特徴とする。
[0037] 上記課題を解決する第 11の発明は、上記第 5から第 10のいずれかの発明におい て、調整期間の途中で、移動局が間欠送信モードと判断された場合、前記調整期間 中は現在のパワーバランシングの電力制御を行い、前記調整期間の次の調整期間 力も前記間欠送信モードのパワーバランシングの電力制御を行うことを特徴とする。
[0038] 上記課題を解決する第 12の発明は、上記第 5から第 10のいずれかの発明におい て、調整期間の途中で、移動局が間欠送信モードと判断された場合、前記調整期間 中は下り回線の電力制御を行ず、前記調整期間の次の調整期間から前記間欠送信 モードの電力制御を行うことを特徴とする。
[0039] 上記課題を解決する第 13の発明は、上記第 5から第 10のいずれかの発明におい て、調整期間の途中で、移動局が間欠送信モードと判断された場合、前記調整期間 中は、前記バランス調整期間の残存時間の割合に応じてパワーバランスの調整量を 変更することを特徴とする。
[0040] 上記課題を解決する第 14の発明は、電力制御を行っている通信方法における送 信電力制御方法であって、電力制御に関する信号の受信状態に基づいて、送信電 力の制御を実行又は停止することを特徴とする。
[0041] 上記課題を解決する第 15の発明は、電力制御を行っている通信方法における送 信電力制御方法であって、電力制御に関する信号の受信状態に基づいて、異なる 二つの送信電力制御方法の!/ヽずれかを用いることを特徴とする。
[0042] 上記課題を解決する第 16の発明は、複数の基地局の送信電力のバランス調整を 行うようなシステムにおける送信電力制御方法において、基地局に対する制御信号 が送信されないスロットが存在する場合の第 1のバランス調整方法と、制御信号が送 信されないスロットが存在しない場合の第 2のバランス調整方法との 2つの調整方法 が含まれることを特徴とする。
[0043] 上記課題を解決する第 17の発明は、少なくとも移動局と 1以上の基地局からなる通 信システムであって、信号を送信しないスロットが存在する通信と、信号を送信しない スロットが存在しない通信とで、送信電力を所定の基準電力に近づける割合を変える 送信電力制御手段を有することを特徴とする。
[0044] 上記課題を解決する第 18の発明は、上記第 17の発明において、前記送信電力制 御手段は、前記移動局と回線を設定している基地局の送信電力を所定の基準電力 に基づいて更新するパワーランシングを行い、前記所定の基準電力は、基地局制御 装置が決定する基準電力オフセット値と、基地局が送信する共通パイロット信号の電 力値とからなることを特徴とする。
[0045] 上記課題を解決する第 19の発明は、上記第 17又は第 18の発明において、前記 送信電力制御手段は、信号の送信を停止するスロットが存在する通信における前記 所定の基準電力に近づける割合を、信号の送信を停止するスロットが存在しな!、通 信における前記基準電力に近づける割合よりも低くすることを特徴とする。
[0046] 上記課題を解決する第 20の発明は、上記第 17から第 19のいずれかの発明にお いて、前記信号の送信を停止するスロットが存在する通信が、移動局が制御信号を 間欠的に送信して ヽる場合であり、前記信号の送信を停止するスロットが存在しな ヽ 通信が、移動局が制御信号を連続的に送信している場合であることを特徴とする。
[0047] 上記課題を解決する第 21の発明は、下り回線の電力制御を行っている通信システ ムであって、 P(k-l)は (k-1)スロット時の送信電力、 P_TPC(k)は閉ループ型電力制御 に基づく kスロット時の電力調整値、 R_gatingは変数、 P_bal(k)は調整期間内のスロッ ト kにおけるパワーバランスの調整量としたとき、下り回線の送信電力の調整期間にお ける ロット時の送信電力 P(k)を、
式 P(k) = P(k - 1) + P— TPC(k) + R— gating * P— bal(k)
に基づいて制御する送信電力制御手段を有することを特徴とする。
[0048] 上記課題を解決する第 22の発明は、上記第 21の発明において、移動局が制御信 号を間欠的に送信する間欠送信モードにあると判断される場合、前記 R_gatingは 1未 満の値であることを特徴とする。
[0049] 上記課題を解決する第 23の発明は、ある調整期間において、移動局が制御信号 を連続的に送信する通常モードと判断される場合、 P(k-l)は (k-1)スロット時の送信 電力、 P_TPC(k)は閉ループ型電力制御に基づく kスロット時の電力調整値、 P_bal(k) は調整期間内のスロット kにおけるパワーバランスの調整量、 rは変数、 P_refは基準 電力、 P_P-CPICHは共通パイロット信号の電力、 Pjnitは前回のパワーバランスの調 整期間の最終スロットにおける送信電力としたとき、下り回線の送信電力の調整期間 における kスロット時の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = (1— r)*(P— ref + P— P— CPICH - Pjnit)
に基づ!/、て制御する通信システムにお 、て、
移動局が制御信号を間欠的に送信する間欠送信モードにあると判断される場合、 前記 rと異なる変数である r_gatingを用いて、送信電力の調整期間における ロット時 の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = (1—r— gating)* (P— ref + P—P— CPICH - Pjnit)
に基づいて制御する送信電力制御手段を有することを特徴とする。
[0050] 上記課題を解決する第 24の発明は、下り回線の電力制御を行っている通信システ ムであって、 P(k-l)は (k-1)スロット時の送信電力、 P_TPC(k)は閉ループ型電力制御 に基づく kスロット時の電力調整値、 P_bal(k)は調整期間内のスロット kにおけるパワー バランスの調整量、 rは調整割合、 Lgatingは定数、 P_refは基準電力、 P_P-CPICHは 共通パイロット信号の電力、 Pjnitは調整期間開始時の送信電力としたとき、下り回線 の送信電力の調整期間における kスロット時の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = f— gating*(l— r)* (P— ref + P— P— CPICH - Pjnit)
に基づいて制御する送信電力制御手段を有することを特徴とする。
[0051] 上記課題を解決する第 25の発明は、下り回線の電力制御を行っている通信システ ムであって、 P(k-l)は (k-1)スロット時の送信電力、 P_TPC(k)は閉ループ型電力制御 に基づく kスロット時の電力調整値、 P_bal(k)は調整期間内のスロット kにおけるパワー バランスの調整量、 rは調整割合、 Lgatingは調整期間内で移動局から制御信号が送 信されるスロット数の割合に基づいて決定される値、 P_refは基準電力、 P_P-CPICH は共通パイロット信号の電力、 Pjnitは前回のパワーバランスの調整期間の最終スロ ットにおける送信電力としたとき、下り回線の送信電力の調整期間における ロット 時の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = f— gating*(l— r)* (P— ref + P—P— CPICH - Pjnit)
に基づいて制御する送信電力制御手段を有することを特徴とする。
[0052] 上記課題を解決する第 26の発明は、上記第 24又は第 25の発明において、移動 局が制御信号を間欠的に送信する間欠送信モードにあると判断される場合、前記 f_g atingは 1未満の値であることを特徴とする。
[0053] 上記課題を解決する第 27の発明は、上記第 21から第 26のいずれかの発明にお いて、前記送信電力制御手段は、調整期間の途中で、移動局が間欠送信モードと 判断された場合、前記調整期間中は現在のパワーバランシングの電力制御を行い、 前記調整期間の次の調整期間から前記間欠送信モードのパワーバランシングの電 力制御を行うことを特徴とする。
[0054] 上記課題を解決する第 28の発明は、上記第 21から第 26のいずれかの発明にお いて、前記送信電力制御手段は、調整期間の途中で、移動局が間欠送信モードと 判断された場合、前記調整期間中は下り回線の電力制御を行ず、前記調整期間の 次の調整期間から前記間欠送信モードの電力制御を行うことを特徴とする。
[0055] 上記課題を解決する第 29の発明は、上記第 21から第 26のいずれかの発明にお いて、前記送信電力制御手段は、調整期間の途中で、移動局が間欠送信モードと 判断された場合、前記調整期間中は、前記バランス調整期間の残存時間の割合に 応じてパワーバランスの調整量を変更することを特徴とする。
[0056] 上記課題を解決する第 30の発明は、パワーバランシングの電力制御を行って 、る 通信システムであって、電力制御に関する信号の受信状態に基づいて、送信電力制 御の実行又は停止する手段を有することを特徴とする。
[0057] 上記課題を解決する第 31の発明は、パワーバランシングの電力制御を行っている 通信システムであって、電力制御に関する信号の受信状態に基づいて、異なる送信 電力制御のいずれかを用いて送信電力制御を行う手段を有することを特徴とする。
[0058] 上記課題を解決する第 32の発明は、複数の基地局の送信電力のバランス調整を 行う通信システムであって、基地局に対する制御信号が送信されな 、スロットが存在 する場合の第 1のバランス調整方法と、制御信号が送信されないスロットが存在しな V、場合の第 2のバランス調整方法との 2つの調整方法の 、ずれかを用いて、送信電 力のバランス調整を行う手段を有することを特徴とする。
[0059] 上記課題を解決する第 33の発明は、少なくとも移動局と 1以上の基地局からなる通 信システムにおける基地局であって、信号を送信しないスロットが存在する通信と、信 号を送信しな!ヽスロットが存在しな!ヽ通信とで、送信電力を所定の基準電力に近づ ける割合を変える送信電力制御手段を有することを特徴とする。
[0060] 上記課題を解決する第 34の発明は、上記第 33の発明において、前記送信電力制 御手段は、前記移動局と回線を設定している基地局の送信電力を所定の基準電力 に基づいて更新するパワーランシングを行い、前記所定の基準電力は、基地局制御 装置が決定する基準電力オフセット値と、基地局が送信する共通パイロット信号の電 力値とからなることを特徴とする。
[0061] 上記課題を解決する第 35の発明は、上記第 33又は第 34の発明において、前記 送信電力制御手段は、信号の送信を停止するスロットが存在する通信における前記 所定の基準電力に近づける割合を、信号の送信を停止するスロットが存在しな!、通 信における前記基準電力に近づける割合よりも低くすることを特徴とする。
[0062] 上記課題を解決する第 36の発明は、上記第 33から第 35のいずれかの発明にお いて、前記信号の送信を停止するスロットが存在する通信が、移動局が制御信号を 間欠的に送信して ヽる場合であり、前記信号の送信を停止するスロットが存在しな ヽ 通信が、移動局が制御信号を連続的に送信している場合であることを特徴とする。
[0063] 上記課題を解決する第 37の発明は、下り回線の電力制御を行っている通信システ ムにおける基地局であって、 P(k-l)は (k-1)スロット時の送信電力、 P_TPC(k)は閉ル ープ型電力制御に基づく kスロット時の電力調整値、 R_gatingは変数、 P_bal(k)は調 整期間内のスロット kにおけるパワーバランスの調整量としたとき、下り回線の送信電 力の調整期間における ロット時の送信電力 P(k)を、
式 P(k) = P(k - 1) + P— TPC(k) + R— gating * P— bal(k)
に基づいて制御する送信電力制御手段を有することを特徴とする。
[0064] 上記課題を解決する第 38の発明は、上記第 37の発明において、移動局が制御信 号を間欠的に送信する間欠送信モードにあると判断される場合、前記 R_gatingは 1未 満の値であることを特徴とする。
[0065] 上記課題を解決する第 39の発明は、ある調整期間において、移動局が制御信号 を連続的に送信する通常モードと判断される場合、 P(k-l)は (k-1)スロット時の送信 電力、 P_TPC(k)は閉ループ型電力制御に基づく kスロット時の電力調整値、 P_bal(k) は調整期間内のスロット kにおけるパワーバランスの調整量、 rは変数、 P_refは基準 電力、 P_P-CPICHは共通パイロット信号の電力、 Pjnitは前回のパワーバランスの調 整期間の最終スロットにおける送信電力としたとき、下り回線の送信電力の調整期間 における kスロット時の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = (1— r)*(P— ref + P— P— CPICH - Pjnit)
に基づ!/、て制御する基地局にお!/ヽて、
移動局が制御信号を間欠的に送信する間欠送信モードにあると判断される場合、 前記 rと異なる変数である r_gatingを用いて、送信電力の調整期間における ロット時 の送信電力 P(k)を、 P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = (1—r— gating)* (P— ref + P— P— CPICH - Pjnit)
に基づいて制御する送信電力制御手段を有することを特徴とする。
[0066] 上記課題を解決する第 40の発明は、下り回線の電力制御を行っている通信システ ムにおける基地局であって、 P(k-l)は (k-1)スロット時の送信電力、 P_TPC(k)は閉ル ープ型電力制御に基づく kスロット時の電力調整値、 P_bal(k)は調整期間内のスロット kにおけるパワーバランスの調整量、 rは調整割合、 Lgatingは定数、 P_refは基準電力 、 P_P-CPICHは共通パイロット信号の電力、 Pjnitは調整期間開始時の送信電力とし たとき、下り回線の送信電力の調整期間における ロット時の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = f— gating*(l— r)* (P— ref + P—P— CPICH - Pjnit)
に基づいて制御する送信電力制御手段を有することを特徴とする。
[0067] 上記課題を解決する第 41の発明は、下り回線の電力制御を行っている通信システ ムにおける基地局であって、 P(k-l)は (k-1)スロット時の送信電力、 P_TPC(k)は閉ル ープ型電力制御に基づく kスロット時の電力調整値、 P_bal(k)は調整期間内のスロット kにおけるパワーバランスの調整量、 rは調整割合、 Lgatingは調整期間内で移動局か ら制御信号が送信されるスロット数の割合に基づいて決定される値、 P_refは基準電 力、 P_P-CPICHは共通パイロット信号の電力、 Pjnitは前回のパワーバランスの調整 期間の最終スロットにおける送信電力としたとき、下り回線の送信電力の調整期間に おける ロット時の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = f— gating*(l— r)* (P— ref + P—P— CPICH - Pjnit)
に基づいて制御する送信電力制御手段を有することを特徴とする。
[0068] 上記課題を解決する第 42の発明は、上記第 40又は第 41の発明において、移動 局が制御信号を間欠的に送信する間欠送信モードにあると判断される場合、前記 f_g atingは 1未満の値であることを特徴とする。
[0069] 上記課題を解決する第 43の発明は、上記第 37から第 42のいずれかの発明にお いて、前記送信電力制御手段は、調整期間の途中で、移動局が間欠送信モードと 判断された場合、前記調整期間中は現在のパワーバランシングの電力制御を行い、 前記調整期間の次の調整期間から前記間欠送信モードのパワーバランシングの電 力制御を行うことを特徴とする。
[0070] 上記課題を解決する第 44の発明は、上記第 37から第 43の 、ずれかの発明にお いて、前記送信電力制御手段は、調整期間の途中で、移動局が間欠送信モードと 判断された場合、前記調整期間中は下り回線の電力制御を行ず、前記調整期間の 次の調整期間から前記間欠送信モードの電力制御を行うことを特徴とする。
[0071] 上記課題を解決する第 45の発明は、上記第 37から第 43のいずれかの発明にお いて、前記送信電力制御手段は、調整期間の途中で、移動局が間欠送信モードと 判断された場合、前記調整期間中は、前記バランス調整期間の残存時間の割合に 応じてパワーバランスの調整量を変更することを特徴とする。
[0072] 上記課題を解決する第 46の発明は、パワーバランシングの電力制御を行って 、る 基地局であって、電力制御に関する信号の受信状態に基づいて、送信電力制御の 実行又は停止する手段を有することを特徴とする。
[0073] 上記課題を解決する第 47の発明は、パワーバランシングの電力制御を行って 、る 通信システムにおける基地局であって、電力制御に関する信号の受信状態に基づ V、て、異なる送信電力制御の 、ずれかを用いて送信電力制御を行う手段を有するこ とを特徴とする。
[0074] 上記課題を解決する第 48の発明は、複数の基地局の送信電力のバランス調整を 行う通信システムにおける基地局であって、基地局に対する制御信号が送信されな いスロットが存在する場合の第 1のバランス調整方法と、制御信号が送信されないス ロットが存在しない場合の第 2のバランス調整方法との 2つの調整方法のいずれかを 用いて、送信電力のバランス調整を行う手段を有することを特徴とする。
[0075] 上記課題を解決する第 49の発明は、少なくとも移動局と 1以上の基地局からなる通 信システムにおける基地局制御局であって、信号を送信しな!、スロットが存在する通 信における送信電力制御のパラメータと、信号を送信しな ヽスロットが存在しな!ヽ通 信における送信電力制御のパラメータとを、基地局に送信する手段を有することを特 徴とする。 [0076] 上記課題を解決する第 50の発明は、少なくとも移動局と 1以上の基地局からなる通 信システムにおける基地局制御局であって、信号を送信しな!、スロットが存在する通 信における送信電力制御のパラメータと、信号を送信しな ヽスロットが存在しな!ヽ通 信における送信電力制御のパラメータとのいずれかを、基地局に送信する手段を有 することを特徴とする。
[0077] 上記課題を解決する第 51の発明は、少なくとも移動局と 1以上の基地局からなる通 信システムにおける基地局のプログラムであって、前記プログラムは、信号を送信し ないスロットが存在する通信と、信号を送信しないスロットが存在しない通信とで、送 信電力を所定の基準電力に近づける割合を変える処理を前記基地局に実行させる ことを特徴とする。
[0078] 上記課題を解決する第 52の発明は、下り回線の電力制御を行っている通信システ ムにおける基地局のプログラムであって、前記プログラムは、 P(k-l)は (k-1)スロット時 の送信電力、 P_TPC(k)は閉ループ型電力制御に基づく kスロット時の電力調整値、 R _gatingは変数、 P_bal(k)は調整期間内のスロット kにおけるパワーバランスの調整量と したとき、下り回線の送信電力の調整期間における kスロット時の送信電力 P(k)を、 式 P(k) = P(k - 1) + P— TPC(k) + R— gating * P— bal(k)
に基づ!/、て制御する処理を前記基地局に実行させることを特徴とする。
[0079] 上記課題を解決する第 53の発明は、基地局のプログラムであって、ある調整期間 において、移動局が制御信号を連続的に送信する通常モードと判断される場合、 P(k -1)は (k-1)スロット時の送信電力、 P_TPC(k)は閉ループ型電力制御に基づく kスロッ ト時の電力調整値、 P_bal(k)は調整期間内のスロット kにおけるパワーバランスの調整 量、 rは変数、 P_refは基準電力、 P_P-CPICHは共通パイロット信号の電力、 Pjnitは 前回のパワーバランスの調整期間の最終スロットにおける送信電力としたとき、下り回 線の送信電力の調整期間における kスロット時の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = (1— r)*(P— ref + P— P— CPICH - Pjnit)
に基づ!/、て制御する基地局にお!/ヽて、
移動局が制御信号を間欠的に送信する間欠送信モードにあると判断される場合、 前記 rと異なる変数である r_gatingを用いて、送信電力の調整期間における ロット時 の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = (1—r— gating)* (P— ref + P— P— CPICH - Pjnit)
に基づ!/、て制御する処理を前記基地局に実行させることを特徴とする。
[0080] 上記課題を解決する第 54の発明は、下り回線の電力制御を行っている通信システ ムにおける基地局のプログラムであって、前記プログラムは、 P(k-l)は (k-1)スロット時 の送信電力、 P_TPC(k)は閉ループ型電力制御に基づく kスロット時の電力調整値、 P _bal(k)は調整期間内のスロット kにおけるパワーバランスの調整量、 rは調整割合、 f_g atingは定数、 P_refは基準電力、 P_P-CPICHは共通パイロット信号の電力、 Pjnitは 調整期間開始時の送信電力としたとき、下り回線の送信電力の調整期間における k スロット時の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = f— gating*(l— r)* (P— ref + P—P— CPICH - Pjnit)
に基づ!/、て制御する処理を前記基地局に実行させることを特徴とする。
[0081] 上記課題を解決する第 55の発明は、下り回線の電力制御を行っている通信システ ムにおける基地局のプログラムであって、前記プログラムは、 P(k-l)は (k-1)スロット時 の送信電力、 P_TPC(k)は閉ループ型電力制御に基づく kスロット時の電力調整値、 P _bal(k)は調整期間内のスロット kにおけるパワーバランスの調整量、 rは調整割合、 f_g atingは調整期間内で移動局力も制御信号が送信されるスロット数の割合に基づいて 決定される値、 P_refは基準電力、 P_P- CPICHは共通パイロット信号の電力、 Pjnitは 前回のパワーバランスの調整期間の最終スロットにおける送信電力としたとき、下り回 線の送信電力の調整期間における kスロット時の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = f— gating*(l— r)* (P— ref + P—P— CPICH - Pjnit)
に基づ!/、て制御する処理を前記基地局に実行させることを特徴とする。
[0082] 上記課題を解決する第 56の発明は、パワーバランシングの電力制御を行っている 基地局のプログラムであって、前記プログラムは、電力制御に関する信号の受信状
Figure imgf000021_0001
、て、送信電力制御の実行又は停止する処理を前記基地局に実行させる ことを特徴とする。
[0083] 上記課題を解決する第 57の発明は、パワーバランシングの電力制御を行っている 通信システムにおける基地局のプログラムであって、前記プログラムは、電力制御に 関する信号の受信状態に基づ!、て、異なる送信電力制御の!/、ずれかを用いて送信 電力制御を行う処理を前記基地局に実行させることを特徴とする。
[0084] 上記課題を解決する第 58の発明は、複数の基地局の送信電力のバランス調整を 行う通信システムにおける基地局のプログラムであって、前記プログラムは、基地局 に対する制御信号が送信されないスロットが存在する場合の第 1のバランス調整方法 と、制御信号が送信されな ヽスロットが存在しな!ヽ場合の第 2のバランス調整方法と の 2つの調整方法のいずれかを用いて、送信電力のバランス調整を行う処理を前記 基地局に実行させることを特徴とする。
発明の効果
[0085] 本発明によれば、送信電力の電力制御において、下り送信電力が希望の送信電 力と乖離しすぎることを防ぐことができる。
図面の簡単な説明
[0086] [図 1]図 1は W— CDMAシステムの一例を示す概略的なネットワーク構成図である。
[図 2]図 2はソフトハンドーバの実行中に、基地局が移動局からの TPC信号を受けて 下り回線の DPCCHの送信電力を決定するフローチャートである。
[図 3]図 3は DPCCH Gatingを説明する為の図である。
[図 4]図 4は従来技術を説明する為の図である。
[図 5]図 5は実施例 1の通信システムを説明する為の図である。
[図 6]図 6は基地局制御局 1の構成を示す図である。
[図 7]図 7は第 1および第 2の基地局 2、 3の基地局装置の構成を示す図である。
[図 8]図 8は移動局 4の構成を示す図である。
[図 9]図 9は実施例 1の動作フローチャートである。
[図 10]図 10は実施例 2の動作フローチャートである。
[図 11]図 11は実施例 3の動作フローチャートである。 [図 12]図 12は実施例 4の動作フローチャートである。
[図 13]図 13は実施例 5の基地局制御装置の構成を示す図である。
[図 14]図 14は実施例 6の基地局の構成を示す図である。
符号の説明
1 基地局制御局
2、 3 基地局
4 移動局
101 記憶部
102 制御部
201 アンテナ
202 送受信共用器
203 受信回路
204 SIR測定部
205 送信電力制御部
206 送信回路
207 状態管理部
208 タイマー
401 アンテナ
402 送受信共用器
403 受信回路
404 SIR測定部
405 送信電力制御部
406 送信回路
07 パイロット信号電力測定部
08 状態管理部
501 記憶部
502 適用判定部
503 制御部 601 SIR測定部
602 送信電力制御部
発明を実施するための最良の形態
[0088] 本発明の実施の形態を説明する。
[0089] 本発明の特徴は、下り回線において、パワーバランシングの電力制御を行っており 、通常モードのような全てのスロットで信号が送信されているような通信と、間欠送信 モードのような信号を送信しな!、スロットが存在するような通信とで、送信電力をパヮ 一バランシングの基準電力に近づける割合を変えることを特徴とする。
[0090] 下り回線の送信電力をパワーバランシングの基準電力に近づける割合を変える方 法であるが、以下の方法がある。
1. 間欠送信モード時に通常モードと異なるパワーバランシングのパラメータを適用 する。
[0091] 間欠送信モード時に通常モードとで異なるパワーバランシングのパラメータを適用 し、パワーバランシングの調整量を変更可能とする。特に、パワーバランシングの調 整量を低くなるようにパラメータを設定することにより、送信電力がパワーバランシング の基準電力に収束してしまうことを防ぐことができる。具体的には、以下の方法がある
(1) パワーバランシングの調整量の反映割合を低くする。
[0092] 通常モードの下り回線の電力制御は、式 1で示される。
[0093] P(k) = P(k-l) + P— TPC(k) + P— bal(k) 式 1
ここで、 P(k)は kスロット時の送信電力、 P(k- 1)は (k-1)スロット時の送信電力、 P_TPC( k)は閉ループ型電力制御に基づく ロット時の調整量、 P_bal(k)は調整期間内のス ロット kにおけるパワーバランスの調整量であり、 P_bal(k)は、式 2で規定される。
[0094] Sum P— bal = (1— r)*(P— ref + P— CPICH - Pjnit) 式 2
ここで、 P_refは基地局制御装置が決定する基準電力オフセット値であり、 PXPICH は基地局が送信する共通パイロット信号の電力値であり、 Pjnitは前回のパワーバラ ンスの調整期間の最終スロットにおける下り DPCCHの送信電力である。
[0095] 一方、間欠送信モード時には、 P_bal(k)に対して、間欠送信モード時の調整量を変 更させるパラメータ R_gatingを乗算することにより、パワーバランシングの調整量を制 御する。具体的には、 kスロット時の送信電力 P(k)は下記式 3となる。
[0096] P(k) = P(k - 1) + P— TPC(k) + R— gating * P— bal(k) 式 3
ここで、 R_gatingは基地局制御装置が決定して基地局に通知するパラメータであり、 1以下の値であり、 1未満の値を取ることにより、パワーバランシングの調整量を通常 モード時に比べて低くすることがき、 R_gating=0ではパワーバランシングが停止とな る。
[0097] 上記では、通常モードでは式 1を用いて送信電力を制御し、間欠送信モードでは 式 3を用いて送信電力を制御する、つまり異なる送信電力制御を使い分けるとして示 したが、式 3を用いた送信電力制御がされており、通常モードのときには R_gating =1、 間欠送信モードのときには gatingを 1未満とする、としてもよい。
[0098] また、ここでは基地局制御装置は R_gatingを決定し、基地局に通知するとしているが 、本発明はそれだけには限られず、基地局が 1より小さい値を無作為に、または間欠 送信モード中に制御信号が送信されるスロット数の割合などに基づ!/ヽて決定してもよ い。
(2)通常モード時のパワーバランシングの調整割合とは異なるパワーバランシングの 調整割合を用いて、パワーバランシングの調整量を低くする。
[0099] 通常モードの下り回線の電力制御は、式 1で示される。
[0100] P(k) = P(k-l) + P— TPC(k) + P— bal(k) 式 1
ここで、 P(k)は kスロット時の送信電力、 P(k- 1)は (k-1)スロット時の送信電力、 P_TPC( k)は閉ループ型電力制御に基づく ロット時の調整量、 P_bal(k)は調整期間内のス ロット kにおけるパワーバランスの調整量であり、 P_bal(k)は、式 2で規定される。
[0101] Sum P— bal = (1- r)*(P— ref + P— CPICH - Pjnit) 式 2
ここで、 P_refは基地局制御装置が決定する基準電力オフセット値であり、 PXPICH は基地局が送信する共通パイロット信号の電力値であり、 Pjnitは前回のパワーバラ ンスの調整期間の最終スロットにおける下り DPCCHの送信電力である。
[0102] 一方、間欠送信モード時には、 kスロット当たりの間欠送信モード時の調整量 P_bal(k
)を変更する。具体的には、通常モード時の調整割合 rを、間欠送信モード時の調整 割合のパラメータである r_gatingに変更する。具体的には、下記式 4で示される。
[0103] Sum P—bal(k) = (1-r— gating)* (P—ref + P—P-CPICH - P—init) または、
Sum P— bal(k) = (1—r— gating)* (P—ref— gating + P— P— CPICH + P— init) 式 4 ここで、 r_gatingは、通信開始時に基地局制御装置が決定し基地局に通知するパラ メータであり、 r_gatingは 1以下の値であり、通常モード時の調整割合 rよりも大きい値 を取ることにより、パワーバランシングの調整量を通常モード時に比べて低くすること ができ、 r_gating= lではパワーバランシングが停止となる。また、 P_ref_gatingは間欠 送信モード時の基準電力オフセット値である。
[0104] また、ここでは基地局制御装置が r_gatingを決定し、基地局に通知するとしているが 、本発明はそれだけには限られず、基地局がはり小さく且つ通常モードの rよりも大き V、値を無作為に、または間欠送信モード中に制御信号が送信されるスロット数の割 合などに基づ 、て決定してもよ 、。
(3)パワーバランシングの調整量に定数を乗算し、パワーバランシングの調整量を低 くする。
[0105] 通常モードの下り回線の電力制御は、式 1で示される。
[0106] P(k) = P(k-l) + P— TPC(k) + P— bal(k) 式 1
ここで、 P(k)は kスロット時の送信電力、 P(k- 1)は (k-1)スロット時の送信電力、 P_TPC( k)は閉ループ型電力制御に基づぐ kスロット時の調整量、 P_bal(k)は調整期間内のス ロット kにおけるパワーバランスの調整量であり、 P_bal(k)は、式 2で規定される。
[0107] Sum P_bal = (1- r)*(P— ref + P— CPICH - P— init) 式 2
ここで、ノ《ランス調整期間における間欠送信モード時の調整量に定数 f_gatingを乗 算し、 P_bal(k)を変更する。具体的には、下記式 5で示される。
[0108] Sum P— bal(k) = f— gating*(l- r)* (P—ref + P—P- CPICH - P— init) 式 5
ここで、 Lgatingは定数であり、通信開始時に基地局制御装置が決定し基地局に通 知するパラメータであり、 f_gating〈lとすることにより、パワーバランシングの調整量を 通常モード時に比べて低くすることがきる。
[0109] 上記では、通常モードでは式 2を用いて求めた Sum P_bal(k)に基づ!/、て行う送信電 力制御を用い、間欠送信モードでは式 5を用いて求めた Sum P_bal(k)に基づいて行う 送信電力制御を用いる、つまり異なる送信電力制御を使い分ける例を示した力 式 5 を用いて求めた Sum P_bal(k)に基づいて送信電力制御がされており、通常モードのと きには Lgating =1、間欠送信モードのときには gatingを 1未満とするようにしてもよい。 (4)基地局が間欠送信モード時に制御信号が送信されるスロット数の割合に基づい てパワーバランシングの調整量の低減率を計算し、調整量を低くする。
[0110] 通常モードの下り回線の電力制御は、式 1で示される。
[0111] P(k) = P(k-l) + P_TPC(k) + P_bal(k) 式 1
ここで、 P(k)は kスロット時の送信電力、 P(k- 1)は (k-1)スロット時の送信電力、 P_TPC( k)は閉ループ型電力制御に基づぐ kスロット時の調整量、 P_bal(k)は調整期間内のス ロット kにおけるパワーバランスの調整量であり、 P_bal(k)は、式 2で規定される。
[0112] Sum P— bal = (1— r)*(P— ref + P— CPICH - Pjnit) 式 2
ここで、間欠送信モード時に DPCCHで制御信号が送信されるスロット数の割合に 基づ ヽた値 Lgatingとし、この Lgatingを、バランス調整期間における間欠送信モード 時の調整量に乗算し、 P_bal(k)を変更する。具体的には、下記式 6で示される。
[0113] Sum P— bal(k) = f— gating*(l— r)* (P— ref + P—P— CPICH - Pjnit) 式 6
ここで、 Lgatingは、間欠送信モード時において、 DPCCH gating周期であるスロット 数 Nと、 Nスロット中に制御信号を送信するスロット数 Xに基づく値であり、例えば f_gati ng = xZNと決定してもよい。具体的な例を示すと、 DPCCHにおいて 10スロット(=N )中に 2スロット(=x)だけ制御信号を送信するようなパターンを適用された移動局に 対しては、 Lgating = 2/10= 1 Z5と設定することができる。
[0114] 上記では、通常モードでは式 2を用いて求めた Sum P_bal(k)に基づいて行う送信電 力制御を用い、間欠送信モードでは式 6を用いて求めた Sum P_bal(k)に基づいて行う 送信電力制御を用いる、つまり異なる送信電力制御を使い分ける例を示した力 式 6 を用いて求めた Sum P_bal(k)に基づいて送信電力制御がされており、通常モードのと きには Lgating =1、間欠送信モードのときには f_gatingを上述の方法で計算した値とし てもよい。
2. DPCCH gatingを適用するか否かに応じて、パワーバランシングのパラメータを 決定する。
[0115] DPCCH gatingは、例えば、下り回線のデータ送信を HSDPA、上り回線のデータ送 信を EUDCHを用いて行うサービス/移動局に対してのみ適用される。従って、例えば 、上り/下り個別チャネルを用いてデータの送受信を行う通話などの回線交換を利用 したサービスに対しては、 DPCCH gatingは適用しない。従って、基地局制御装置は ノ ヮ一バランシングも通常通りのノ ラメータを設定する。一方、一般的にウェブ閲覧 や VoIPなどパケット交換を利用したサービスに対するデータの送受信は HSDPA並び に EUDCHを用いて行う。このような場合、基地局制御装置はこの移動局に対して DP CCH gatingを適用することを決定し、且つパワーバランシングによる調整割合が上述 の個別チャネルでデータ送受信を行っている移動局に比して小さくなる、または、ゆ つくりになるようにパワーバランシングのパラメータを決定する。
3. 下りの電力制御において、 TPCコマンドを反映させるときのみパワーバランシン グを行う。
[0116] 例えば、上述した図 3において、 DPCCHにより TPCやパイロット信号等の制御信号 が送信される Xスロットのみで、パワーバランシングの制御を行う。パワーバランシング の制御が行われるスロットでは、通常モードの下り回線の電力制御が行われ、具体的 には、式 1で示される。
[0117] P(k) = P(k-l) + P_TPC(k) + P_bal(k) 式 1
ここで、 P(k)は kスロット時の送信電力、 P(k- 1)は (k-1)スロット時の送信電力、 P_TPC( k)は閉ループ型電力制御に基づく ロット時の調整量、 P_bal(k)は調整期間内のス ロット kにおけるパワーバランスの調整量であり、 P_bal(k)は、式 2で規定される。
[0118] Sum P— bal = (1— r)*(P— ref + P— CPICH - Pjnit) 式 2
以下、具体的な実施例について説明する。
実施例 1
[0119] 実施例 1を説明する。実施例 1は、上述した DPCCH Gatingにおける間欠送信モー ド時に、パワーバランシングの調整量の反映割合を低くする例である。
[0120] 実施例 1で説明する送信電力制御方法は、図 5に示す構成をとるセルラシステムに おいて実施される。図 5のセルラシステムは、サービスエリアが第 1および第 2のセル 5 、 6に分割されており、第 1および第 2のセルには、それぞれ、第 1および第 2の基地 局 2、 3が配置されるとともに、移動局 4が存在する。第 1および第 2の基地局 2、 3はそ れぞれ基地局制御局 1に接続されており、基地局制御局 1はさらに他の基地局制御 局 1からなる通信網(図示せず)に接続されている。なお、図示しないが、このセルラ システムは、他に多数の基地局を備えており、各セル内には多数の移動局が存在す る。
[0121] 移動局 4は基地局 2、 3との間で DPCCHにより TPC信号やパイロット信号等の制御 信号を送受信している。
[0122] 図 6に、基地局制御局 1の構成を示す。基地局制御局 1は、記憶部 101と、制御部 102と力 構成されている。
[0123] 記憶部 101には各パラメータが記憶されている。記憶されているパラメータとしては 、基地局が送信する共通パイロット信号の電力値 P_CPICH、閉ループ送信電力制御 による調整量 (幅) A TPC、上り回線の閉ループ送信電力制御のための目標値であ る目標 SIRがある。更に、パワーバランシングの制御に必要なパラメータとして、基準 電力オフセット値 P_ref、パワーバランシングによる調整割合 (Adjustment ratio) r、パヮ 一バランシングの調整期間(Adjustment period) Tint等が記憶されている。また、上述 した DPCCH Gatingにおいて行われる所定の周期内(Nスロット)のうち、制御信号が 送信されるスロット数を示す Xまたは制御信号を送信するスロットの番号等など間欠送 信に必要なパラメータについても記憶されている。
[0124] 制御部 102は、基地局開設時に電力値 P_CPICHを記憶部 101から読み出して基 地局に通知し、また、他のパラメータについては、移動局との通信(あるサービス)開 始時等に記憶部 101から読み出して基地局に通知する。更に、制御部 102は、移動 局がパワーバランシング起動時に DPCCH Gatingにおける間欠送信モードと判断さ れる場合に適用される調整量を変更させるパラメータ R_gatingを計算して基地局に通 知する。尚、本実施例 1では、 DPCCH Gatingにおいて行われる間欠送信モードにお ける間欠送信周期を Nスロット、送信スロット数を Xスロットとした場合、 xZNを R_gatin gとして計算する。 [0125] 図 7に第 1および第 2の基地局 2、 3の基地局装置の構成を示す。基地局装置は、 アンテナ 201、送受信共用器 202、受信回路 203、 SIR測定部 204、送信電力制御 部 205、送信回路 206、状態管理部 207、タイマー 208から構成されている。
[0126] SIR測定部 204は、上り回線の希望波電力と干渉波電力の比(SIR)を測定するた めの測定器で、これにより、移動局が送信するスロットを受信する毎に、その上り SIR を測定する。さらに、 SIR測定部 204は、測定した上り SIRを所定の目標 SIRと比較し、 測定した上り SIRが目標 SIR以上であれば電力削減を指示する TPC信号 (UL-TPC)を 、測定した上り SIRが目標 SIRよりも低ければ電力増加を指示する TPC信号 (DL-TPC )を生成し、送信回路 206へ送る。また、測定した上り SIRは、上り回線で受信した制 御信号の信頼度推定等のために送信電力制御部 205へも送るとすることができる。
[0127] また、送信電力制御部 205は、状態管理部 207から通知される移動局 4のモードの 状態に応じて下り送信電力を制御する制御部であって、移動局 4が DPCCH Gating の通常モード時には、式 1、式 2に基づく送信電力制御を行う。
[0128] P(k) = P(k-l) + P— TPC(k) + P— bal(k) 式 1
Sum P— bal = (1- r)*(P— ref + P— CPICH - Pjnit) 式 2
一方、送信電力制御部 205は、移動局 4力 SDPCCH Gatingの間欠送信モード時に は、基地局制御局 1から通知される R_gatingを用いて、式 2、式 3に基づく送信電力制 御を行う。
[0129] Sum P— bal = (1— r)*(P— ref + P— CPICH - Pjnit) 式 2
P(k) = P(k - 1) + P— TPC(k) + R— gating * P— bal(k) 式 3
なお、上記では、通常モードでは式 1を用いて送信電力を制御し、間欠送信モード では式 3を用いて送信電力を制御する、つまり異なる送信電力制御を使!ヽ分ける例 を示した力 基地局では式 3を用いた送信電力制御がされており、通常モードのとき には R_gating =1、間欠送信モードのときには R_gatingを 1未満としてもよい。
[0130] ここで、間欠送信モード時の送信電力の開始時期であるが、以下の方法が考えら れる。
(1)送信電力制御部 205は、状態管理部 207から移動局 4が DPCCH Gatingの間欠 送信モード状態となったことを通知されると同時に、 DPCCH Gatingの間欠送信モー ド時の送信電力制御を行う。
(2)送信電力制御部 205は、状態管理部 207から移動局 4が DPCCH Gatingの間欠 送信モード状態となったことを通知されたパワーバランシングの調整期間では、通常 のパラメータを適用、すなわち、通常モード時の送信電力制御を行う。そして、次の ノ ヮーバランシングの調整期間から間欠送信モード時の送信電力制御を行う。
(3)送信電力制御部 205は、状態管理部 207から移動局 4が DPCCH Gatingの間欠 送信モード状態となったことを通知されたパワーバランシングの調整期間では、 TPC 信号による閉ループ型電力制御のみ行い、パワーバランシングの制御を停止する。 そして、次のパワーバランシングの調整期間から間欠送信モード時の送信制御を行
(4)状態管理部 207から移動局 4が DPCCH Gatingの間欠送信モード状態となったこ とを通知されたパワーバランシングの調整期間では、通常モード時のパワーバランシ ングの調整量 P balに所定値を掛けた値を使用して通常モード時の送信電力制御を 行う。所定値は、現調整期間の残時間の割合に応じて決定する。そして、次のパワー ノ《ランシングの調整期間から間欠送信モード時の送信制御を行う。
[0131] 以上の 4つの方法が考えられる力 いずれの方法を用いても良い。
[0132] 状態管理部 207は、移動局 4力 PCCH Gatingの通常モードなのか間欠送信モー ドなの状態を管理する管理部であって、移動局 4の状態を送信電力制御部 205に通 知する。状態管理部 207が移動局 4の状態を知る方法であるが、以下の方法が考え られる。
(1)移動局 4が基地局に制御信号を送信して通知する。この通知を受信回路 203経 由で受け取った状態管理部 207が移動局 4の状態を管理する。ここで、制御信号の 送信方法であるが E- DPCCHにお!/、て送信されて!、る E- TFCI (E- Transport Format Combination Indicator)や、 E-DPDCHで送信されている SI (Scheduling Information) 等に状態変更の旨を示す信号を設けるような方法が考えられる。ここで、 E-TFCIとは E-DPDCHにおいて送信されているトランスポートブロックのデータサイズ等のフォー マットを通知する信号であり、 SIとは基地局においてスケジューリングを行うために必 要な情報、例えば移動局のバッファ内に蓄積しているデータ量などを通知するため の信号である。
[0133] また、制御信号の内容であるが、移動局 4が通常モードから間欠送信モードへ遷移 、移動局 4が間欠送信モードから通常モードへ遷移する又はしたことを示す遷移情 報や、移動局 4の現在の状態を示す情報等が考えられる。
(2)基地局が自律的に (ブラインドで)判定する。例えば、 SIR測定部 204が、 DPCC Hの TPCやパイロット信号等の SIRを測定し、この SIRが所定閾値 SIR_thr以下であるス ロットが、 N_thrスロット以上継続した場合は移動局 4が間欠送信モードであると判定 する。そして、この判定結果を、状態管理部 207に通知する。尚、 SIR_thr, N_thrは基 地局制御局 1が設定してもよいし、基地局が設定してもよい。尚、 N_thrは、 DPCCH g atingのスロット送信停止間隔より小さ 、値に設定することが好ま 、。
[0134] このように構成された基地局において、移動局 4から送信されてきた上り回線の信 号は、アンテナ 201および送受信共用器 202を介して受信回路 203で受信される。 受信回路 203では上り回線の信号のスロットを受信する毎に、データ信号と制御信 号を分離し、データ信号は図示しない受信処理部へ転送する。また、受信回路 203 は受信した制御信号に含まれるノ ィロット信号をスロット毎に SIR測定部 204へと送る 。そして、 SIR測定部 204はパイロット信号の受信電力を測定し、上り回線の送信電力 を制御する TPC信号 (UL-TPC)を生成し、送信回路 206へ送ると共に、パイロット信 号の SIR測定結果を送信電力制御部 205へ送る。
[0135] また、受信回路部 203は、受信した制御信号に含まれる TPC信号をスロット毎に送 信電力制御部 205へ送る。送信電力制御部 205は、受信回路 203から送られてきた TPC信号を使用してスロット毎に下り回線の信号用の下り送信電力を計算し、その下 り送信電力を示す下り送信電力制御信号を送信回路 206へ送る。ここで、送信電力 制御部 205は、予め定められた品質閾値と SIR測定部 204から送られるパイロット信 号の SIR測定結果とに基づいて、 TPC信号の信頼度を推定するようにしてもよい。そ して、 TPC信号の信頼度が低い場合は、 TPC信号の内容は送信電力の計算には用 いないようにしてもよい。送信電力は、これまでに説明したように TPC信号による電力 変更量とパワーバランシングによる調整量とに基づ 、て計算される。パワーバランシ ングの動作に関しては従来技術並びに以下で説明するので、ここで詳しくは記載し ないが、タイマー 208は、このパワーバランシングに用いる調整期間の経過を判定す るために必要な時間計測を行う。下り送信電力制御信号に応答して、送信回路 206 は下り回線の信号用の下り送信電力を下り送信電力制御信号によって示される値に 設定する。そして、基地局は、送受信共用器 202およびアンテナ 201を介して 1台ま たはそれ以上の移動局へ、送信回路 206によって生成された下り回線の信号を送信 する。
[0136] 図 8に移動局 4の構成を示す。移動局 4は、アンテナ 401、送受信共用器 402、受 信回路 403、 SIR測定部 404、送信電力制御部 405、送信回路 406、ノ ィロット信号 電力測定部 407、及び状態管理部 408から構成されて ヽる。
[0137] 移動局 4において、基地局力 送信されてきた下り回線の信号は、アンテナ 401お よび送受信共用器 402を介して受信回路 403で受信される。受信回路 403は下り信 号を受信すると制御信号とデータを分離し、データを図示しない受信処理部へ送り、 復号などの必要な受信処理を行う。また、受信回路 403が下り回線の信号のスロット を受信する毎に、 SIR測定部 404は、下り回線の信号に含まれるパイロット信号、また は TPC信号の SIRを測定して、下り SIRを表す測定下り SIR値を得る。 SIR測定部 40 4は、測定下り SIR値と目標下り SIR値とを比較し、測定下り SIR値が目標下り SIR値 より小さいとき、 SIR測定部 404は、下り送信電力の増加を指示する TPC信号 (DL-T PC)を出力する。測定下り SIR値が目標下り SIR値以上であるとき、 SIR測定部 404 は、下り送信電力の減少を指示する TPC信号 (DL-TPC)を出力する。 DL-TPCは送 信回路 406に供給される。送信回路 406は、送受信共用器 402およびアンテナ 401 を介して基地局へ、状態管理部 408から指示される状態が通常モードである場合は 、スロット毎に DL-TPCを含む上り回線の信号を送信する。また、状態管理部 408から 指示される状態が間欠送信モードである場合は、所定の DPCCH送信パターン (DPC CH gating pattern)に基づいて、上り回線の信号を送信してよいスロットにおいて DL- TPCを含む上り回線の信号を送信する。
[0138] ここで、状態管理部 408は移動局の状態が通常モードであるか、間欠送信モード であるかを判定し記録しているわけである力 状態の判定方法は、例えば、以下のい ずれか一方または両方を満たす場合とすることができる。 (1)受信回路 403が受信した信号に自局宛てのデータが含まれる力否かを所定周 期で状態管理部 408へ通知し、状態管理部 408において所定時間以上、下り回線 にお 、て自局宛てのデータがな!、と判定した場合
(2)移動局の MAC層力 ULアクティビティ情報として、バッファ内に送信すべきデー タが所定時間以上存在しないことを通知する信号を状態管理部 403が受信した場合 なお、以上は本実施例における単なる一例であり、発明の本質には無関係である。 従って、例えば、以上のように移動局が自律的に判断するのではなぐ基地局が明 示的にモード変更を通知するような制御信号を下り回線のチャネル、例えば HS-SCC Hなどで送信するようにし、受信回路 403はこの信号を受信すると、その旨を状態管 理部 408へ通知するようにしてもょ 、。
[0139] また、受信回路部 403は、受信した制御信号に含まれる上りの TPC信号をスロット 毎に送信電力制御部 405へ送る。送信電力制御部 405は、受信回路 403から送ら れてきた TPC信号を使用してスロット毎に上り回線の信号用の上り送信電力を計算し 、その上り送信電力を示す上り送信電力制御信号を送信回路 406へ送る。上り送信 電力制御信号に応答して、送信回路 406は、上り回線の信号用の上り送信電力を上 り送信電力制御信号によって示される値に設定する。そして、移動局は、送受信共 用器 402およびアンテナ 401を介して、送信回路 406によって生成された上り回線の 信号を送信する。
[0140] 次に、図 9を用いて、実施例 1における送信電力制御動作を説明する。尚、従来の 送信電力と同じ処理については、図 2と同じステップ番号を付して説明を省略する。
[0141] 実施例 1の動作が従来の技術と異なる所は、ステップ 200からステップ 202の処理 である。まず、ステップ 200において、送信電力制御部 205は、状態管理部 207の通 知から移動局が通常モードであるのか、又は間欠送信モードであるのかを判断する。 そして、通常モードである場合には、ステップ 110に進み、従来と同様な処理を行う。
[0142] 一方、間欠送信モードである場合には、基地局制御局 1から通知された R_gatingを 用いて、式 3による送信電力制御を行う (ステップ 202)
P(k) = P(k - 1) + P— TPC(k) + R— gating * P— bal(k) 式 3
尚、間欠送信モード時の送信電力制御の開始時期については、上述した 4つのい ずれかの方法を用いる。
[0143] 本実施例は、 DPCCH gatingにより TPC信号が送信されずチャネル品質に基づいた 高速な電力制御を行えな 、場合は、パワーバランシングのための電力調整も停止ま たは緩やかに行うことを可能にする。従って、下り DPCCHの送信電力がパワーバラン シングの基準電力値に引き寄せられ、目標品質を満足するために必要な電力よりも 低過ぎる、または高過ぎる電力値となってしまうことを回避できる。すなわち、チャネル 品質に基づ 、て制御された電力値を維持でき、移動局で所要 SIRを満たすような電 力制御が可能となる。その結果、無駄な干渉や移動局での個別チャネル品質劣化を 低減でき、システムスループット並びにユーザスループットが改善できる。
[0144] また、本実施例では、移動局が通常モード時は通常のパワーバランシングのパラメ ータを適用するため、パワーバランシングの効果を高めることができる。
実施例 2
[0145] 実施例 2を説明する。実施例 2は、上述した通常モード時のパワーバランシングの 調整割合とは異なるパワーバランシングの調整割合を用いて、パワーバランシングの 調整量を低くする例である。尚、上述した実施例 1と同様な部分については説明を省 略し、異なる部分について説明する。
[0146] 記憶部 101には各パラメータが記憶されている。記憶されているパラメータとしては 、基地局が送信する共通パイロット信号の電力値 P_CPICH、閉ループ送信電力制御 による調整量 (幅) A TPC、上り回線の閉ループ送信電力制御のための目標値であ る目標 SIRがある。更に、パワーバランシングの制御に必要なパラメータとして、基準 電力オフセット値 P_ref、パワーバランシングによる調整割合 (Adjustment ratio) r、パヮ 一バランシングの調整期間(Adjustment period) Tint,間欠送信モード時の基準電力 オフセット値である P_ref_gating等が記憶されている。また、上述した DPCCH Gatingに おいて行われる所定の周期内(Nスロット)のうち、制御信号が送信される Xスロットに ついても記憶されている。
[0147] 制御部 102は、基地局開設時に電力値 P_CPICHを記憶部 101から読み出して基 地局に通知し、また、他のパラメータについては、移動局との通信(あるサービス)開 始時に記憶部 101から読み出して基地局に通知する。更に、制御部 102は、移動局 がパワーバランシング起動時に DPCCH Gatingにおける間欠送信モードと判断される 場合に適用される間欠送信モード時の調整割合のパラメータである r_gatingを計算し て基地局に通知する。尚、本実施例 2では、 r_gatingは、 DPCCH Gatingにおいて行 われる間欠送信モードにおける間欠送信周期を Nスロット、送信スロット数を ロット とした場合、 r_gating = l -(X/N)*(l -r)として計算するものとする力 本発明における r_g atingの決定方法はこれだけに限られない。例えば、 r_gatingが間欠送信周期間に送 信されるスロット数の割合になんらかの負の相関をもつように決定してもよいし、通常 モードの rよりも大きく且つはり小さい値を無作為に選択してもよい。
[0148] 基地局の送信電力制御部 205は、状態管理部 207から通知される移動局 4のモー ドの状態に応じて下り送信電力を制御する制御部であって、移動局 4力 PCCH Gati ngの通常モード時には、式 1、式 2に基づく送信電力制御を行う。
[0149] P(k) = P(k-l) + P— TPC(k) + P— bal(k) 式 1
Sum P— bal = (1- r)*(P— ref + P— CPICH - Pjnit) 式 2
一方、送信電力制御部 205は、移動局 4力 SDPCCH Gatingの間欠送信モード時に は、基地局制御局 1から通知される P_ref_gating及び r_gatingを用いて、式 4に基づい て、 Sum P_bal(k)を計算し、この Sum P_bal(k)に基づいて、式 1に基づく送信電力制御 を行う。
[0150] Sum P— bal(k) = (1—r— gating)* (P—ref— gating + P—P— CPICH + Pjnit) 式 4
尚、式 4にお!/、て Pref_gatingは通常モードの Prefと同じ値に設定してもよ!/、。
[0151] 次に、図 10を用いて、実施例 2における動作を説明する。尚、従来の送信電力と同 じ処理については、図 2と同じステップ番号を付して説明を省略する。
[0152] 実施例 1の動作が従来の技術と異なる所は、ステップ 300からステップ 302の処理 である。まず、ステップ 300において、送信電力制御部 205は、状態管理部 207の通 知から移動局が通常モードであるのか、又は間欠送信モードであるのかを判断する。 そして、通常モードである場合には、ステップ 110に進み、従来と同様な処理を行う。
[0153] 一方、間欠送信モードである場合には、基地局制御局 1から通知された P_ref_gating 及び r_gatingを用いて(ステップ 301)、式 4に基づいて、 Sum P_bal(k)を計算する(ステ ップ 302)。そして、ステップ 117に進み、従来と同様な処理を行う。 [0154] 尚、間欠送信モード時の送信電力制御の開始時期については、上述した 4つのい ずれかの方法を用いる。
[0155] 本実施例は、 DPCCH gatingにより TPC信号が送信されずチャネル品質に基づいた 高速な電力制御を行えな 、場合は、パワーバランシングのための電力調整も停止ま たは緩やかに行うことを可能にする。従って、下り DPCCHの送信電力がパワーバラン シングの基準電力値に引き寄せられ、目標品質を満足するために必要な電力よりも 低過ぎる、または高過ぎる電力値となってしまうことを回避できる。すなわち、チャネル 品質に基づ 、て制御された電力値を維持でき、移動局で所要 SIRを満たすような電 力制御が可能となる。その結果、無駄な干渉や移動局での個別チャネル品質劣化を 低減でき、システムスループット並びにユーザスループットが改善できる。
[0156] また、本実施例では、移動局が通常モード時は通常のパワーバランシングのパラメ ータを適用するため、パワーバランシングの効果を高めることができる。
実施例 3
[0157] 実施例 3を説明する。実施例 3は、上述したパワーバランシングの調整量に定数を 乗算し、パワーバランシングの調整量を低くする例である。尚、上述した実施例 1と同 様な部分については説明を省略し、異なる部分について説明する。
[0158] 記憶部 101には各パラメータが記憶されている。記憶されているパラメータとしては 、基地局が送信する共通パイロット信号の電力値 P_CPICH、閉ループ送信電力制御 による調整量 (幅) A TPC、上り回線の閉ループ送信電力制御のための目標値であ る目標 SIRがある。更に、パワーバランシングの制御に必要なパラメータとして、基準 電力オフセット値 P_ref、パワーバランシングによる調整割合 (Adjustment ratio) r、パヮ 一バランシングの調整期間(Adjustment period) Tintが記憶されている。また、上述し た DPCCH Gatingにおいて行われる所定の周期内(Nスロット)のうち、制御信号が送 信される Xスロットについても記憶されている。更に、間欠送信モードと判断される場 合に適用される Lgatingを記憶している。尚、 f_gatingはここでは、 x/Nとする。
[0159] 基地局の送信電力制御部 205は、状態管理部 207から通知される移動局 4のモー ドの状態に応じて下り送信電力を制御する制御部であって、移動局 4力 PCCH Gati ngの通常モード時には、式 1、式 2に基づく送信電力制御を行う。 [0160] P(k) = P(k-l) + P— TPC(k) + P— bal(k) 式 1
Sum P— bal = (1- r)*(P— ref + P— CPICH - Pjnit) 式 2
一方、送信電力制御部 205は、移動局 4力 SDPCCH Gatingの間欠送信モード時に は、基地局制御局 1から通知される Lgatingを用いて、式 5に基づいて、 Sum P_bal(k) を計算し、この Sum P_bal(k)に基づいて、式 1に基づく送信電力制御を行う。
[0161] Sum P— bal(k) = f— gating*(l- r)* (P— ref + P—P- CPICH - Pjnit) 式 5
なお、上記では、通常モードでは式 2を用いて求めた Sum P_bal(k)に基づいて行う 送信電力制御を用い、間欠送信モードでは式 5を用いて求めた S醒 P_bal(k)に基づ Vヽて行う送信電力制御を用いる、つまり異なる送信電力制御を使!ヽ分ける例を示した 力 式 5を用いて求めた Sum P_bal(k)に基づいて送信電力制御がされており、通常モ ードのときには Lgating =1、間欠送信モードのときには Lgatingを 1未満としてもよい。
[0162] 次に、図 11を用いて、実施例 3における動作を説明する。尚、従来の送信電力と同 じ処理については、図 2と同じステップ番号を付して説明を省略する。
[0163] 実施例 1の動作が従来の技術と異なる所は、ステップ 400からステップ 402の処理 である。まず、ステップ 400において、送信電力制御部 205は、状態管理部 207の通 知から移動局が通常モードであるのか、又は間欠送信モードであるのかを判断する。 そして、通常モードである場合には、ステップ 110に進み、従来と同様な処理を行う。
[0164] 一方、間欠送信モードである場合には、基地局制御局 1から通知された Lgatingを 用いて (ステップ 401)、式 4に基づいて、 Sum P_bal(k)を計算する(ステップ 402)。そ して、ステップ 117に進み、従来と同様な処理を行う。
[0165] 尚、間欠送信モード時の送信電力制御の開始時期については、前述した 4つのい ずれかの方法を用いる。
[0166] 本実施例は、 DPCCH gatingにより TPC信号が送信されずチャネル品質に基づいた 高速な電力制御を行えな 、場合は、パワーバランシングのための電力調整も停止ま たは緩やかに行うことを可能にする。従って、下り DPCCHの送信電力がパワーバラン シングの基準電力値に引き寄せられ、目標品質を満足するために必要な電力よりも 低過ぎる、または高過ぎる電力値となってしまうことを回避できる。すなわち、チャネル 品質に基づ 、て制御された電力値を維持でき、移動局で所要 SIRを満たすような電 力制御が可能となる。その結果、無駄な干渉や移動局での個別チャネル品質劣化を 低減でき、システムスループット並びにユーザスループットが改善できる。
[0167] また、本実施例では、移動局が通常モード時は通常のパワーバランシングのパラメ ータを適用するため、パワーバランシングの効果を高めることができる。
実施例 4
[0168] 実施例 4を説明する。実施例 4は、基地局が上述した間欠送信モード時に制御信 号が送信されるスロット数の割合に基づ 、て計算した、パワーバランシングの調整量 の低減率を用いて、パワーバランシングの調整量を低くする例である。尚、上述した 実施例 1と同様な部分については説明を省略し、異なる部分について説明する。
[0169] 記憶部 101には各パラメータが記憶されている。記憶されているパラメータとしては 、基地局が送信する共通パイロット信号の電力値 P_CPICH、閉ループ送信電力制御 による調整量 (幅) A TPC、上り回線の閉ループ送信電力制御のための目標値であ る目標 SIRがある。更に、パワーバランシングの制御に必要なパラメータとして、基準 電力オフセット値 P_ref、パワーバランシングによる調整割合 (Adjustment ratio) r、パヮ 一バランシングの調整期間(Adjustment period) Tint等が記憶されている。また、上述 した DPCCH Gatingにおいて行われる所定の周期内(Nスロット)のうち、制御信号が 送信される Xスロットにつ 、ても記憶されて 、る。
[0170] また、基地局における送信電力制御部 205では、 DPCCH Gatingのパラメータ、す なわち周期 Nと制御信号が送信されるスロット数 Xに基づいて、間欠送信モード間に ノ ヮ一バランシング調整量を計算するために使用するパラメータ tgatingを計算する。 ここでは、一例として、 Lgating = xZNと計算するものとする力 本発明に適用できる 計算方法はこれだけには限られず、間欠送信モード中に制御信号が送信されるスロ ット数の割合に正の相関を持つような値となるようにする等の計算を行えばよい。
[0171] 基地局の送信電力制御部 205は、状態管理部 207から通知される移動局 4のモー ドの状態に応じて下り送信電力を制御する制御部であって、移動局 4力 PCCH Gati ngの通常モード時には、式 1、式 2に基づく送信電力制御を行う。
[0172] P(k) = P(k-l) + P— TPC(k) + P— bal(k) 式 1
Sum P— bal = (1- r)*(P— ref + P— CPICH - Pjnit) 式 2 一方、送信電力制御部 205は、移動局 4力 SDPCCH Gatingの間欠送信モード時に は、基地局制御局 1から通知される Lgatingを用いて、式 6に基づいて、 Sum P_bal(k) を計算し、この Sum P_bal(k)に基づいて、式 1に基づく送信電力制御を行う。
[0173] Sum P— bal(k) = f— gating*(l- r)* (P— ref + P— P- CPICH - P— init) 式 6
なお、上記では、通常モードでは式 2を用いて求めた Sum P_bal(k)に基づいて行う 送信電力制御を用い、間欠送信モードでは式 6を用いて求めた S P_bal(k)に基づ Vヽて行う送信電力制御を用いる、つまり異なる送信電力制御を使!ヽ分ける例を示した 力 式 6を用いて求めた Sum P_bal(k)に基づいて送信電力制御がされており、通常モ ードのときには Lgating =1、間欠送信モードのときには Lgatingを上述の方法で計算し た値としてもよい。
[0174] 次に、図 12を用いて、実施例 4における動作を説明する。尚、従来の送信電力と同 じ処理については、図 2と同じステップ番号を付して説明を省略する。
[0175] 実施例 4の動作が従来の技術と異なる所は、ステップ 500からステップ 502の処理 である。まず、ステップ 500において、送信電力制御部 205は、状態管理部 207の通 知から移動局が通常モードであるのか、又は間欠送信モードであるのかを判断する。 そして、通常モードである場合には、ステップ 110に進み、従来と同様な処理を行う。
[0176] 一方、間欠送信モードである場合には、上述した Lgatingを用いて (ステップ 401) 式 6に基づいて、 Sum P_bal(k)を計算する(ステップ 502)。そして、ステップ 117に進 み、従来と同様な処理を行う。
[0177] 尚、間欠送信モード時の送信電力制御の開始時期については、上述した 4つのい ずれかの方法を用いる。
[0178] 本実施例は、 DPCCH gatingにより TPC信号が送信されずチャネル品質に基づいた 高速な電力制御を行えな 、場合は、パワーバランシングのための電力調整も停止ま たは緩やかに行うことを可能にする。従って、下り DPCCHの送信電力がパワーバラン シングの基準電力値に引き寄せられ、目標品質を満足するために必要な電力よりも 低過ぎる、または高過ぎる電力値となってしまうことを回避できる。すなわち、チャネル 品質に基づ 、て制御された電力値を維持でき、移動局で所要 SIRを満たすような電 力制御が可能となる。その結果、無駄な干渉や移動局での個別チャネル品質劣化を 低減でき、システムスループット並びにユーザスループットが改善できる。
[0179] また、本実施例では、移動局が通常モード時は通常のパワーバランシングのパラメ ータを適用するため、パワーバランシングの効果を高めることができる。
実施例 5
[0180] 実施例 5を説明する。実施例 5は、移動局に対して開始する通信 (サービス)によつ て、 DPCCH gatingを適用するか否かを決定し、 DPCCH
gatingを適用する移動局に対しては、パワーバランシングによる調整割合力 ¾PCCH でデータ送受信を行っている移動局に比して小さくなる、または、ゆっくりとなるような パワーバランシングのパラメータを設定する。一方、 DPCCH gatingを適用しない移動 局に対しては、通常通りのパラメータを設定し、パワーバランシングを行う。
[0181] 図 13は実施例 5の基地局制御装置の構成図である。
[0182] 基地局制御装置は、記憶部 501と、適用判定部 502と、制御部 503とを備えている
[0183] 記憶部 501には、上述した実施例で説明した各パラメータが記憶されている力 実 施例 5の特徴的なパラメータとして、 DPCCH gatingを適用する移動局に対するパラメ ータも格納されている。具体的には、 DPCCH gatingを適用する移動局に対するパヮ 一バランシングによる調整割合 rや、 DPCCH gatingを適用する移動局に対する調整 期間(Adjustment period)である。これらの rや、調整期間は、 DPCCH gatingを適用し ない移動局よりも大きく設定され、 r=lと設定することで停止と同等の効果が得られる 適用判定部 502は、コアネットワーク等より取得した移動局のサービスに基づいて、 移動局に対して DPCCH gatingを適用するか、適用しないかを判定する判定部である 。具体的には、 DPCCH gatingは下り回線のデータ送信を HSDPA、上り回線のデータ 送信を EUDCHを用いて行うサービスに対して適用され、例えば、上り Z下り個別チヤ ネルを用いてデータの送受信を行う通話などの回線交換を利用したサービスに対し ては、 DPCCH gatingは適用しない。一方、一般的にウェブ閲覧や VoIPなどパケット 交換を利用したサービスに対するデータの送受信は HSDPA並びに EUDCHを用いて 行う。このような場合、基地局制御装置はこの移動局に対して DPCCH gatingを適用 する。 [0184] 制御部 503は、適用判定部 502の判定結果を受けて、 DPCCH gatingを適用しない 移動局に対しては、通常のパラーバランシングのパラメータを記憶部 501から読み出 し、基地局に通知する。一方、 DPCCH gatingを適用する移動局に対しては、 DPCCH gatingを適用する場合の rや、調整期間等のパラメータを記憶部 501から読み出し、 基地局に通知する。
[0185] 通知された基地局は、従来と同様に、通知されたパラメータに基づいて、移動局に 対して送信電力制御を行う。
[0186] 本実施例は、 DPCCH gatingにより TPC信号が送信されずチャネル品質に基づいた 高速な電力制御を行えな 、場合は、パワーバランシングのための電力調整も停止ま たは緩やかに行うことを可能にする。従って、下り DPCCHの送信電力がパワーバラン シングの基準電力値に引き寄せられ、目標品質を満足するために必要な電力よりも 低過ぎる、または高過ぎる電力値となってしまうことを回避できる。すなわち、チャネル 品質に基づ 、て制御された電力値を維持でき、移動局で所要 SIRを満たすような電 力制御が可能となる。その結果、無駄な干渉や移動局での個別チャネル品質劣化を 低減でき、システムスループット並びにユーザスループットが改善できる。
[0187] また、本実施例は、移動局が間欠送信モードである力否かに応じてパラメータを設 定するする必要がな 、ため、基地局の制御が容易になる。
[0188] また、本実施例は、移動局が間欠送信モードである力否力を通知する信号が不要 であるため、上り回線のオーバーヘッドを軽減できる。
[0189] また、本実施例は、移動局が間欠送信モードである力否かをブラインドで検出する 必要がな!、ため、検出誤りによる誤動作がな 、。
実施例 6
[0190] 実施例 6を説明する。実施例 6は、下りの電力制御において、 TPCコマンドを実行す る場合のみパワーバランシングを行う例である。
[0191] 図 14は実施例 6の基地局の構成図である。尚、上述した実施例の基地局と同様な 構成のものについては同じ符号を付してある。
[0192] 基本的な構成は、上述した実施例 1の基地局と同じであるが、 SIR測定部 601が各 スロットの TPC信号 (またはパイロット信号)の SIRを測定し、その結果を送信電力制御 部 602に通知する。例えば、 SIRが所定の信頼度閾値以下に劣化している場合は、 送信電力制御部 602にその旨を通知する。
[0193] 送信電力制御部 602は、 SIRが所定の信頼度閾値以下に劣化していない場合には 、通常のパワーバランシングを行う。すなわち、式 1、式 2に基づく送信電力制御を行
[0194] P(k) = P(k-l) + P— TPC(k) + P— bal(k) 式 1
Sum P— bal = (1- r)*(P— ref + P— CPICH - Pjnit) 式 2
一方、 SIRが所定の信頼度閾値以下に劣化している場合は、 TPC信号並びにパヮ 一バランシングによる調整値 (P_bal)を送信電力に反映させない。すなわち、送信電 力制御を行わない。
[0195] 本実施例は、 DPCCH gatingにより TPC信号が送信されずチャネル品質に基づいた 高速な電力制御を行えな 、場合は、パワーバランシングのための電力調整も停止ま たは緩やかに行うことを可能にする。従って、下り DPCCHの送信電力がパワーバラン シングの基準電力値に引き寄せられ、目標品質を満足するために必要な電力よりも 低過ぎる、または高過ぎる電力値となってしまうことを回避できる。すなわち、チャネル 品質に基づ 、て制御された電力値を維持でき、移動局で所要 SIRを満たすような電 力制御が可能となる。その結果、無駄な干渉や移動局での個別チャネル品質劣化を 低減でき、システムスループット並びにユーザスループットが改善できる。
[0196] また、本実施例は、移動局が通常モードである場合は、通常のパラメータを適用す る場合とほぼ同等な制御となるため、パワーバランシングの効果を高めることができる
[0197] また、本実施例は、移動局が間欠送信モードブカ否かの検出が不要になるため、 基地局制御が容易になる。
[0198] 以上述べた通り、本発明の複数の基地局の送信電力のバランス調整を行うようなシ ステムにおける電力制御方法では、通常モードのような全てのスロットで信号が送信 されて ヽるような、間欠送信モードのような信号を送信しな ヽスロットが存在するような 通信とで、送信電力をパワーバランシングの基準電力に近づける割合 (調整速度)を 変えていることを示した。 [0199] また、本発明の複数の基地局の送信電力のバランス調整を行うようなシステムにお ける電力制御方法は、これら基地局に対する制御信号が送信されないスロットが存 在する場合の第 1のバランス調整方法と、制御信号が送信されないスロットが存在し な 、場合の第 2のバランス調整方法との 2つの調整方法が含んで 、ることを示した。
[0200] しかし、本発明の複数の基地局の送信電力のバランス調整を行うようなシステムに おける電力制御方法は必ずしもこれらに限定されるものではない。
[0201] また、上記では、下り回線のパワーバランシングを前提として記載した力 回線の方 向や、基地局または移動局と言った局の役割に必ずしも限定される必要はなぐ少な くとも 1つの送信局、一般的には 2以上の送信局からの受信局に対する送信電力の ノヮーバランシングを行う場合にも本発明は適用することができる。
[0202] また、上記では送信電力制御に用いるパラメータである基地局制御装置が決定す る基準電力オフセット値 P_ref、基地局が送信する共通パイロット信号の電力値 P_CPI CH、 r等、および R_gating、 r_gating、または Lgatingは基地局制御装置が基地局に通 知するとして記載している、これらパラメータの通知方法に本発明は限定されるもの ではなぐ例えばこれらのパラメータは基地局に個別に設定されている、基地局毎に 決定する、などとしても良い。

Claims

請求の範囲
[1] 少なくとも移動局と 1以上の基地局力 なる通信システムにおける基地局の送信電 力制御方法であって、
信号を送信しな ヽスロットが存在する通信と、信号を送信しな ヽスロットが存在しな
V、通信とで、送信電力を所定の基準電力に近づける割合を変えることを特徴とする 送信制御方法。
[2] 前記送信電力制御方法は、前記移動局と回線を設定している基地局の送信電力 を所定の基準電力に基づ 、て更新するパワーランシング力もなる送信電力制御方法 であり、
前記所定の基準電力は、基地局制御装置が決定する基準電力オフセット値と、基 地局が送信する共通パイロット信号の電力値とからなる
ことを特徴とする請求項 1に記載の送信電力制御方法。
[3] 信号の送信を停止するスロットが存在する通信における前記所定の基準電力に近 づける割合を、信号の送信を停止するスロットが存在しない通信における前記基準 電力に近づける割合よりも低くすることを特徴とする請求項 1又は請求項 2に記載の 送信制御方法。
[4] 前記信号の送信を停止するスロットが存在する通信が、移動局が制御信号を間欠 的に送信して 、る場合であり、
前記信号の送信を停止するスロットが存在しない通信が、移動局が制御信号を連 続的に送信して 、る場合である
ことを特徴とする請求項 1から請求項 3のいずれかに記載の送信制御方法。
[5] 下り回線の電力制御を行っている通信方法における送信電力制御方法であって、
P(k-l)は (k-1)スロット時の送信電力、 P_TPC(k)は閉ループ型電力制御に基づく k スロット時の電力調整値、 R_gatingは変数、 P_bal(k)は調整期間内のスロット kにおけ るパワーバランスの調整量としたとき、下り回線の送信電力の調整期間における kスロ ット時の送信電力 P(k)を、
式 P(k) = P(k - 1) + P— TPC(k) + R— gating * P— bal(k)
に基づいて制御することを特徴とする送信電力制御方法。
[6] 移動局が制御信号を間欠的に送信する間欠送信モードにあると判断される場合、 前記 R_gatingは 1未満の値であることを特徴とする請求項 5に記載の送信電力制御方 法。
[7] ある調整期間において、 P(k-l)は (k-1)スロット時の送信電力、 P_TPC(k)は閉ルー プ型電力制御に基づく kスロット時の電力調整値、 P_bal(k)は調整期間内のスロット k におけるパワーバランスの調整量、 rは変数、 P_refは基準電力、 P_P_CPICHは共通 パイロット信号の電力、 Pjnitは前回のパワーバランスの調整期間の最終スロットにお ける送信電力としたとき、下り回線の送信電力の調整期間における kスロット時の送信 電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = (1— r)*(P— ref + P— P— CPICH - Pjnit)
に基づ!/、て制御する送信電力制御方法にお!、て、
移動局が制御信号を間欠的に送信する間欠送信モードにあると判断される場合、 前記 rと異なる変数である r_gatingを用いて、送信電力の調整期間における ロット時 の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = (1—r— gating)* (P— ref + P—P— CPICH - Pjnit)
に基づいて制御することを特徴とする送信電力制御方法。
[8] 下り回線の電力制御を行っている通信方法における送信電力制御方法であって、
P(k-l)は (k-1)スロット時の送信電力、 P_TPC(k)は閉ループ型電力制御に基づく k スロット時の電力調整値、 P_bal(k)は調整期間内のスロット kにおけるパワーバランス の調整量、 rは調整割合、 Lgatingは定数、 P_refは基準電力、 P_P-CPICHは共通パイ ロット信号の電力、 Pjnitは調整期間開始時の送信電力としたとき、下り回線の送信 電力の調整期間における ロット時の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = f— gating*(l— r)* (P— ref + P—P— CPICH - Pjnit)
に基づいて制御することを特徴とする送信電力制御方法。
[9] 下り回線の電力制御を行っている通信方法における送信電力制御方法であって、 P(k-l)は (k-1)スロット時の送信電力、 P_TPC(k)は閉ループ型電力制御に基づく k スロット時の電力調整値、 P_bal(k)は調整期間内のスロット kにおけるパワーバランス の調整量、 rは調整割合、 Lgatingは調整期間内で移動局から制御信号が送信される スロット数の割合に基づいて決定される値、 P_refは基準電力、 P_P_CPICHは共通パ ィロット信号の電力、 Pjnitは前回のパワーバランスの調整期間の最終スロットにおけ る送信電力としたとき、下り回線の送信電力の調整期間における kスロット時の送信電 力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = f— gating*(l— r)* (P— ref + P— P— CPICH - Pjnit)
に基づいて制御することを特徴とする送信電力制御方法。
[10] 移動局が制御信号を間欠的に送信する間欠送信モードにあると判断される場合、 前記 Lgatingは 1未満の値であることを特徴とする請求項 8又は請求項 9に記載の送 信電力制御方法。
[11] 調整期間の途中で、移動局が間欠送信モードと判断された場合、前記調整期間中 は現在のパワーバランシングの電力制御を行 、、前記調整期間の次の調整期間か ら前記間欠送信モードのパワーバランシングの電力制御を行うことを特徴とする請求 項 5から請求項 10のいずれかに記載の送信電力制御方法。
[12] 調整期間の途中で、移動局が間欠送信モードと判断された場合、前記調整期間中 は下り回線の電力制御を行ず、前記調整期間の次の調整期間から前記間欠送信モ ードの電力制御を行うことを特徴とする請求項 5から請求項 10のいずれかに記載の 送信電力制御方法。
[13] 調整期間の途中で、移動局が間欠送信モードと判断された場合、前記調整期間中 は、前記バランス調整期間の残存時間の割合に応じてパワーバランスの調整量を変 更することを特徴とする請求項 5から請求項 10のいずれかに記載の送信電力制御方 法。
[14] 電力制御を行って 、る通信方法における送信電力制御方法であって、
電力制御に関する信号の受信状態に基づいて、送信電力の制御を実行又は停止 することを特徴とする送信電力制御方法。
[15] 電力制御を行って 、る通信方法における送信電力制御方法であって、 電力制御に関する信号の受信状態に基づいて、異なる二つの送信電力制御方法 の!、ずれかを用いることを特徴とする送信電力制御方法。
[16] 複数の基地局の送信電力のバランス調整を行うようなシステムにおける送信電力制 御方法において、
基地局に対する制御信号が送信されないスロットが存在する場合の第 1のバランス 調整方法と、制御信号が送信されな!ヽスロットが存在しな!ヽ場合の第 2のバランス調 整方法との 2つの調整方法が含まれることを特徴とする送信電力制御方法。
[17] 少なくとも移動局と 1以上の基地局力 なる通信システムであって、
信号を送信しな ヽスロットが存在する通信と、信号を送信しな ヽスロットが存在しな
V、通信とで、送信電力を所定の基準電力に近づける割合を変える送信電力制御手 段を有することを特徴とする通信システム。
[18] 前記送信電力制御手段は、前記移動局と回線を設定している基地局の送信電力 を所定の基準電力に基づ 、て更新するパワーランシングを行 、、
前記所定の基準電力は、基地局制御装置が決定する基準電力オフセット値と、基 地局が送信する共通パイロット信号の電力値とからなる
ことを特徴とする請求項 17に記載の通信システム。
[19] 前記送信電力制御手段は、信号の送信を停止するスロットが存在する通信におけ る前記所定の基準電力に近づける割合を、信号の送信を停止するスロットが存在し ない通信における前記基準電力に近づける割合よりも低くすることを特徴とする請求 項 17又は請求項 18に記載の通信システム。
[20] 前記信号の送信を停止するスロットが存在する通信が、移動局が制御信号を間欠 的に送信して 、る場合であり、
前記信号の送信を停止するスロットが存在しない通信が、移動局が制御信号を連 続的に送信して 、る場合である
ことを特徴とする請求項 17から請求項 19のいずれかに記載の通信システム。
[21] 下り回線の電力制御を行っている通信システムであって、
P(k-l)は (k-1)スロット時の送信電力、 P_TPC(k)は閉ループ型電力制御に基づく k スロット時の電力調整値、 R_gatingは変数、 P_bal(k)は調整期間内のスロット kにおけ るパワーバランスの調整量としたとき、下り回線の送信電力の調整期間における kスロ ット時の送信電力 P(k)を、
式 P(k) = P(k - 1) + P— TPC(k) + R— gating * P— bal(k)
に基づいて制御する送信電力制御手段を有することを特徴とする通信システム。
[22] 移動局が制御信号を間欠的に送信する間欠送信モードにあると判断される場合、 前記 R_gatingは 1未満の値であることを特徴とする請求項 21に記載の通信システム。
[23] ある調整期間において、移動局が制御信号を連続的に送信する通常モードと判断 される場合、
P(k-l)は (k-1)スロット時の送信電力、 P_TPC(k)は閉ループ型電力制御に基づく k スロット時の電力調整値、 P_bal(k)は調整期間内のスロット kにおけるパワーバランス の調整量、 rは変数、 P_refは基準電力、 P_P-CPICHは共通パイロット信号の電力、 Pj nitは前回のパワーバランスの調整期間の最終スロットにおける送信電力としたとき、 下り回線の送信電力の調整期間における kスロット時の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = (1— r)*(P— ref + P— P— CPICH - Pjnit)
に基づ!/、て制御する通信システムにお 、て、
移動局が制御信号を間欠的に送信する間欠送信モードにあると判断される場合、 前記 rと異なる変数である r_gatingを用いて、送信電力の調整期間における ロット時 の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = (1—r— gating)* (P— ref + P—P— CPICH - Pjnit)
に基づいて制御する送信電力制御手段を有することを特徴とする通信システム。
[24] 下り回線の電力制御を行っている通信システムであって、
P(k-l)は (k-1)スロット時の送信電力、 P_TPC(k)は閉ループ型電力制御に基づく k スロット時の電力調整値、 P_bal(k)は調整期間内のスロット kにおけるパワーバランス の調整量、 rは調整割合、 Lgatingは定数、 P_refは基準電力、 P_P-CPICHは共通パイ ロット信号の電力、 Pjnitは調整期間開始時の送信電力としたとき、下り回線の送信 電力の調整期間における ロット時の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = f— gating*(l— r)* (P— ref + P— P— CPICH - Pjnit)
に基づいて制御する送信電力制御手段を有することを特徴とする通信システム。
[25] 下り回線の電力制御を行っている通信システムであって、
P(k-l)は (k-1)スロット時の送信電力、 P_TPC(k)は閉ループ型電力制御に基づく k スロット時の電力調整値、 P_bal(k)は調整期間内のスロット kにおけるパワーバランス の調整量、 rは調整割合、 Lgatingは調整期間内で移動局から制御信号が送信される スロット数の割合に基づいて決定される値、 P_refは基準電力、 P_P_CPICHは共通パ ィロット信号の電力、 Pjnitは前回のパワーバランスの調整期間の最終スロットにおけ る送信電力としたとき、下り回線の送信電力の調整期間における kスロット時の送信電 力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = f— gating*(l— r)* (P— ref + P—P— CPICH - Pjnit)
に基づいて制御する送信電力制御手段を有することを特徴とする通信システム。
[26] 移動局が制御信号を間欠的に送信する間欠送信モードにあると判断される場合、 前記 Lgatingは 1未満の値であることを特徴とする請求項 24又は請求項 25に記載の 通信システム。
[27] 前記送信電力制御手段は、調整期間の途中で、移動局が間欠送信モードと判断さ れた場合、前記調整期間中は現在のパワーバランシングの電力制御を行い、前記調 整期間の次の調整期間から前記間欠送信モードのパワーバランシングの電力制御 を行うことを特徴とする請求項 21から請求項 26のいずれかに記載の通信システム。
[28] 前記送信電力制御手段は、調整期間の途中で、移動局が間欠送信モードと判断さ れた場合、前記調整期間中は下り回線の電力制御を行ず、前記調整期間の次の調 整期間から前記間欠送信モードの電力制御を行うことを特徴とする請求項 21から請 求項 26の!、ずれかに記載の通信システム。
[29] 前記送信電力制御手段は、調整期間の途中で、移動局が間欠送信モードと判断さ れた場合、前記調整期間中は、前記バランス調整期間の残存時間の割合に応じて パワーバランスの調整量を変更することを特徴とする請求項 21から請求項 26のいず れかに記載の通信システム。
[30] パワーバランシングの電力制御を行って!/、る通信システムであって、
電力制御に関する信号の受信状態に基づいて、送信電力制御の実行又は停止す る手段を有することを特徴とする通信システム。
[31] パワーバランシングの電力制御を行っている通信システムであって、
電力制御に関する信号の受信状態に基づいて、異なる送信電力制御のいずれ力ゝ を用いて送信電力制御を行う手段を有することを特徴とする通信システム。
[32] 複数の基地局の送信電力のバランス調整を行う通信システムであって、
基地局に対する制御信号が送信されないスロットが存在する場合の第 1のバランス 調整方法と、制御信号が送信されな!ヽスロットが存在しな!ヽ場合の第 2のバランス調 整方法との 2つの調整方法のいずれかを用いて、送信電力のバランス調整を行う手 段を有することを特徴とする通信システム。
[33] 少なくとも移動局と 1以上の基地局力 なる通信システムにおける基地局であって、 信号を送信しな ヽスロットが存在する通信と、信号を送信しな ヽスロットが存在しな
V、通信とで、送信電力を所定の基準電力に近づける割合を変える送信電力制御手 段を有することを特徴とする基地局。
[34] 前記送信電力制御手段は、前記移動局と回線を設定している基地局の送信電力 を所定の基準電力に基づ 、て更新するパワーランシングを行 、、
前記所定の基準電力は、基地局制御装置が決定する基準電力オフセット値と、基 地局が送信する共通パイロット信号の電力値とからなる
ことを特徴とする請求項 33に記載の基地局。
[35] 前記送信電力制御手段は、信号の送信を停止するスロットが存在する通信におけ る前記所定の基準電力に近づける割合を、信号の送信を停止するスロットが存在し ない通信における前記基準電力に近づける割合よりも低くすることを特徴とする請求 項 33又は請求項 34に記載の基地局。
[36] 前記信号の送信を停止するスロットが存在する通信が、移動局が制御信号を間欠 的に送信して 、る場合であり、 前記信号の送信を停止するスロットが存在しない通信が、移動局が制御信号を連 続的に送信して 、る場合である
ことを特徴とする請求項 33から請求項 35のいずれかに記載の基地局。
[37] 下り回線の電力制御を行っている通信システムにおける基地局であって、
P(k-l)は (k-1)スロット時の送信電力、 P_TPC(k)は閉ループ型電力制御に基づく k スロット時の電力調整値、 R_gatingは変数、 P_bal(k)は調整期間内のスロット kにおけ るパワーバランスの調整量としたとき、下り回線の送信電力の調整期間における kスロ ット時の送信電力 P(k)を、
式 P(k) = P(k - 1) + P— TPC(k) + R— gating * P— bal(k)
に基づいて制御する送信電力制御手段を有することを特徴とする基地局。
[38] 移動局が制御信号を間欠的に送信する間欠送信モードにあると判断される場合、 前記 R_gatingは 1未満の値であることを特徴とする請求項 37に記載の基地局。
[39] ある調整期間において、移動局が制御信号を連続的に送信する通常モードと判断 される場合、
P(k-l)は (k-1)スロット時の送信電力、 P_TPC(k)は閉ループ型電力制御に基づく k スロット時の電力調整値、 P_bal(k)は調整期間内のスロット kにおけるパワーバランス の調整量、 rは変数、 P_refは基準電力、 P_P-CPICHは共通パイロット信号の電力、 Pj nitは前回のパワーバランスの調整期間の最終スロットにおける送信電力としたとき、 下り回線の送信電力の調整期間における kスロット時の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = (1— r)*(P— ref + P— P— CPICH - Pjnit)
に基づ!/、て制御する基地局にお!/ヽて、
移動局が制御信号を間欠的に送信する間欠送信モードにあると判断される場合、 前記 rと異なる変数である r_gatingを用いて、送信電力の調整期間における ロット時 の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = (1—r— gating)* (P— ref + P—P— CPICH - Pjnit)
に基づいて制御する送信電力制御手段を有することを特徴とする基地局。
[40] 下り回線の電力制御を行っている通信システムにおける基地局であって、
P(k-l)は (k-1)スロット時の送信電力、 P_TPC(k)は閉ループ型電力制御に基づく k スロット時の電力調整値、 P_bal(k)は調整期間内のスロット kにおけるパワーバランス の調整量、 rは調整割合、 Lgatingは定数、 P_refは基準電力、 P_P-CPICHは共通パイ ロット信号の電力、 Pjnitは調整期間開始時の送信電力としたとき、下り回線の送信 電力の調整期間における ロット時の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = f— gating*(l— r)* (P— ref + P— P— CPICH - Pjnit)
に基づいて制御する送信電力制御手段を有することを特徴とする基地局。
[41] 下り回線の電力制御を行っている通信システムにおける基地局であって、
P(k-l)は (k-1)スロット時の送信電力、 P_TPC(k)は閉ループ型電力制御に基づく k スロット時の電力調整値、 P_bal(k)は調整期間内のスロット kにおけるパワーバランス の調整量、 rは調整割合、 Lgatingは調整期間内で移動局から制御信号が送信される スロット数の割合に基づいて決定される値、 P_refは基準電力、 P_P_CPICHは共通パ ィロット信号の電力、 Pjnitは前回のパワーバランスの調整期間の最終スロットにおけ る送信電力としたとき、下り回線の送信電力の調整期間における kスロット時の送信電 力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = f— gating*(l— r)* (P— ref + P—P— CPICH - Pjnit)
に基づいて制御する送信電力制御手段を有することを特徴とする基地局。
[42] 移動局が制御信号を間欠的に送信する間欠送信モードにあると判断される場合、 前記 Lgatingは 1未満の値であることを特徴とする請求項 40又は請求項 41に記載の 基地局。
[43] 前記送信電力制御手段は、調整期間の途中で、移動局が間欠送信モードと判断さ れた場合、前記調整期間中は現在のパワーバランシングの電力制御を行い、前記調 整期間の次の調整期間から前記間欠送信モードのパワーバランシングの電力制御 を行うことを特徴とする請求項 37から請求項 42のいずれかに記載の基地局。
[44] 前記送信電力制御手段は、調整期間の途中で、移動局が間欠送信モードと判断さ れた場合、前記調整期間中は下り回線の電力制御を行ず、前記調整期間の次の調 整期間から前記間欠送信モードの電力制御を行うことを特徴とする請求項 37から請 求項 43の!、ずれかに記載の基地局。
[45] 前記送信電力制御手段は、調整期間の途中で、移動局が間欠送信モードと判断さ れた場合、前記調整期間中は、前記バランス調整期間の残存時間の割合に応じて パワーバランスの調整量を変更することを特徴とする請求項 37から請求項 43のいず れかに記載の基地局。
[46] パワーバランシングの電力制御を行って!/、る基地局であって、
電力制御に関する信号の受信状態に基づいて、送信電力制御の実行又は停止す る手段を有することを特徴とする基地局。
[47] パワーバランシングの電力制御を行って!/、る通信システムにおける基地局であって 電力制御に関する信号の受信状態に基づいて、異なる送信電力制御のいずれ力ゝ を用いて送信電力制御を行う手段を有することを特徴とする基地局。
[48] 複数の基地局の送信電力のバランス調整を行う通信システムにおける基地局であ つて、
基地局に対する制御信号が送信されないスロットが存在する場合の第 1のバランス 調整方法と、制御信号が送信されな!ヽスロットが存在しな!ヽ場合の第 2のバランス調 整方法との 2つの調整方法のいずれかを用いて、送信電力のバランス調整を行う手 段を有することを特徴とする基地局。
[49] 少なくとも移動局と 1以上の基地局力 なる通信システムにおける基地局制御局で あって、
信号を送信しないスロットが存在する通信における送信電力制御のパラメータと、 信号を送信しな ヽスロットが存在しな!ヽ通信における送信電力制御のパラメータとを 、基地局に送信する手段を有することを特徴とする基地局制御装置。
[50] 少なくとも移動局と 1以上の基地局力 なる通信システムにおける基地局制御局で あって、
信号を送信しないスロットが存在する通信における送信電力制御のパラメータと、 信号を送信しな!ヽスロットが存在しな!ヽ通信における送信電力制御のパラメータとの いずれかを、基地局に送信する手段を有することを特徴とする基地局制御装置。
[51] 少なくとも移動局と 1以上の基地局力 なる通信システムにおける基地局のプロダラ ムであって、前記プログラムは、
信号を送信しな ヽスロットが存在する通信と、信号を送信しな ヽスロットが存在しな V、通信とで、送信電力を所定の基準電力に近づける割合を変える処理を前記基地 局に実行させることを特徴とするプログラム。
[52] 下り回線の電力制御を行っている通信システムにおける基地局のプログラムであつ て、前記プログラムは、
P(k-l)は (k-1)スロット時の送信電力、 P_TPC(k)は閉ループ型電力制御に基づく k スロット時の電力調整値、 R_gatingは変数、 P_bal(k)は調整期間内のスロット kにおけ るパワーバランスの調整量としたとき、下り回線の送信電力の調整期間における kスロ ット時の送信電力 P(k)を、
式 P(k) = P(k - 1) + P— TPC(k) + R— gating * P— bal(k)
に基づ!/、て制御する処理を前記基地局に実行させることを特徴とするプログラム。
[53] 基地局のプログラムであって、
ある調整期間において、移動局が制御信号を連続的に送信する通常モードと判断 される場合、
P(k-l)は (k-1)スロット時の送信電力、 P_TPC(k)は閉ループ型電力制御に基づく k スロット時の電力調整値、 P_bal(k)は調整期間内のスロット kにおけるパワーバランス の調整量、 rは変数、 P_refは基準電力、 P_P-CPICHは共通パイロット信号の電力、 Pj nitは前回のパワーバランスの調整期間の最終スロットにおける送信電力としたとき、 下り回線の送信電力の調整期間における kスロット時の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = (1— r)*(P— ref + P— P— CPICH - Pjnit)
に基づ!/、て制御する基地局にお!/ヽて、
移動局が制御信号を間欠的に送信する間欠送信モードにあると判断される場合、 前記 rと異なる変数である r_gatingを用いて、送信電力の調整期間における ロット時 の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = (1—r— gating)* (P— ref + P— P— CPICH - Pjnit)
に基づ!/、て制御する処理を前記基地局に実行させることを特徴とするプログラム。
[54] 下り回線の電力制御を行っている通信システムにおける基地局のプログラムであつ て、前記プログラムは、
P(k-l)は (k-1)スロット時の送信電力、 P_TPC(k)は閉ループ型電力制御に基づく k スロット時の電力調整値、 P_bal(k)は調整期間内のスロット kにおけるパワーバランス の調整量、 rは調整割合、 Lgatingは定数、 P_refは基準電力、 P_P-CPICHは共通パイ ロット信号の電力、 Pjnitは調整期間開始時の送信電力としたとき、下り回線の送信 電力の調整期間における ロット時の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = f— gating*(l— r)* (P— ref + P—P— CPICH - Pjnit)
に基づ!/、て制御する処理を前記基地局に実行させることを特徴とするプログラム。
[55] 下り回線の電力制御を行っている通信システムにおける基地局のプログラムであつ て、前記プログラムは、
P(k-l)は (k-1)スロット時の送信電力、 P_TPC(k)は閉ループ型電力制御に基づく k スロット時の電力調整値、 P_bal(k)は調整期間内のスロット kにおけるパワーバランス の調整量、 rは調整割合、 Lgatingは調整期間内で移動局から制御信号が送信される スロット数の割合に基づ 、て決定される値、 P_ref
は基準電力、 P_P- CPICHは共通パイロット信号の電力、 Pjnitは前回のパワーバラン スの調整期間の最終スロットにおける送信電力としたとき、下り回線の送信電力の調 整期間における kスロット時の送信電力 P(k)を、
P(k) = P(k-l) + P— TPC(k) + P— bal(k)
Sum P— bal(k) = f— gating*(l— r)* (P— ref + P—P— CPICH - Pjnit)
に基づ!/、て制御する処理を前記基地局に実行させることを特徴とするプログラム。
[56] パワーバランシングの電力制御を行っている基地局のプログラムであって、前記プ ログラムは、 電力制御に関する信号の受信状態に基づいて、送信電力制御の実行又は停止す る処理を前記基地局に実行させることを特徴とするプログラム。
[57] パワーバランシングの電力制御を行っている通信システムにおける基地局のプログ ラムであって、前記プログラムは、
電力制御に関する信号の受信状態に基づいて、異なる送信電力制御のいずれか を用いて送信電力制御を行う処理を前記基地局に実行させることを特徴とするプログ ラム。
[58] 複数の基地局の送信電力のバランス調整を行う通信システムにおける基地局のプ ログラムであって、前記プログラムは、
基地局に対する制御信号が送信されないスロットが存在する場合の第 1のバランス 調整方法と、制御信号が送信されな!ヽスロットが存在しな!ヽ場合の第 2のバランス調 整方法との 2つの調整方法のいずれかを用いて、送信電力のバランス調整を行う処 理を前記基地局に実行させることを特徴とするプログラム。
PCT/JP2007/055077 2006-03-17 2007-03-14 送信電力制御方法及び基地局、基地局制御局並びにその制御プログラム WO2007111132A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008507424A JP5057105B2 (ja) 2006-03-17 2007-03-14 送信電力制御方法及び基地局、基地局制御局並びにその制御プログラム
EP07738547.4A EP1998475B1 (en) 2006-03-17 2007-03-14 Transmission power control method and base station
US12/293,232 US8135429B2 (en) 2006-03-17 2007-03-14 Transmission power control method, base station, base station control station, and control program thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006075506 2006-03-17
JP2006-075506 2006-03-17

Publications (1)

Publication Number Publication Date
WO2007111132A1 true WO2007111132A1 (ja) 2007-10-04

Family

ID=38541053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055077 WO2007111132A1 (ja) 2006-03-17 2007-03-14 送信電力制御方法及び基地局、基地局制御局並びにその制御プログラム

Country Status (5)

Country Link
US (1) US8135429B2 (ja)
EP (1) EP1998475B1 (ja)
JP (1) JP5057105B2 (ja)
CN (1) CN101405963A (ja)
WO (1) WO2007111132A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009213136A (ja) * 2008-03-03 2009-09-17 Asustek Computer Inc バッファ状態報告を実行する方法及び通信装置
WO2009157534A1 (ja) * 2008-06-26 2009-12-30 株式会社エヌ・ティ・ティ・ドコモ 閉ループ送信電力制御方法及び基地局装置、端末装置
US8792931B2 (en) 2009-02-26 2014-07-29 Huawei Technologies Co., Ltd. Method, apparatus and system for controlling carrier power amplifier of base station

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3473555B2 (ja) * 2000-06-30 2003-12-08 日本電気株式会社 送信電力制御方式、制御方法及び基地局、制御局並びに記録媒体
JP4619192B2 (ja) * 2005-05-10 2011-01-26 株式会社エヌ・ティ・ティ・ドコモ 送信電力制御方法および装置
EP2215743B1 (en) * 2007-11-26 2011-04-06 Telefonaktiebolaget LM Ericsson (publ) Dpcch and hs-dpcch control at low grants for e-dch
US9088998B2 (en) * 2008-03-21 2015-07-21 Koninklijke Philips N.V. Method for communicating and radio station therefor
EP2258135B1 (en) * 2008-03-21 2012-09-26 Koninklijke Philips Electronics N.V. Method and mobile station for uplink resource request
WO2010104006A1 (ja) * 2009-03-10 2010-09-16 シャープ株式会社 移動局装置、通信システム、通信方法及びプログラム
CN102804870A (zh) * 2009-06-15 2012-11-28 株式会社Ntt都科摩 无线基站、移动通信系统以及移动通信方法
KR101310901B1 (ko) * 2009-12-15 2013-09-25 한국전자통신연구원 셀룰러 시스템에서 전송전력 제어방법
JP5423505B2 (ja) * 2010-03-17 2014-02-19 富士通株式会社 無線基地局及び通信方法
US9185660B2 (en) * 2011-04-21 2015-11-10 Mediatek Inc. Power adaptation apparatus and power adaptation method for controlling uplink/downlink power
WO2013008406A1 (ja) 2011-07-13 2013-01-17 パナソニック株式会社 端末装置、基地局装置、送信方法及び受信方法
US9119074B2 (en) * 2012-06-05 2015-08-25 Qualcomm Incorporated Uplink downlink resource partitions in access point design
US9258781B2 (en) * 2012-12-03 2016-02-09 Qualcomm Incorporated Method and apparatus for early termination of an RX chain

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049609A1 (fr) * 1998-03-26 1999-09-30 Mitsubishi Denki Kabushiki Kaisha Dispositif de communication a etalement du spectre et procede de communication par etalement du spectre
JP2001053790A (ja) * 1999-06-03 2001-02-23 Matsushita Electric Ind Co Ltd パケット通信装置及び送信電力制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1242633C (zh) * 1996-11-27 2006-02-15 株式会社日立制作所 发送控制方法,基地台装置和终端装置
JP2000261858A (ja) * 1999-03-10 2000-09-22 Matsushita Electric Ind Co Ltd 無線通信方法、無線通信システム及び、この無線通信システムに使用される無線基地局及び無線移動局
WO2001001599A1 (de) * 1999-06-23 2001-01-04 Siemens Aktiengesellschaft Verfahren zur regelung der sendeleistung in einem funksystem und entsprechendes funksystem
US6501744B1 (en) * 1999-12-22 2002-12-31 Koninklijke Philips Electronics N.V. Slotted mode in wireless CDMA systems
KR100892312B1 (ko) * 2002-01-05 2009-04-08 엘지전자 주식회사 이동 통신 시스템에서 하향공유제어채널 전력 제어 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049609A1 (fr) * 1998-03-26 1999-09-30 Mitsubishi Denki Kabushiki Kaisha Dispositif de communication a etalement du spectre et procede de communication par etalement du spectre
JP2001053790A (ja) * 1999-06-03 2001-02-23 Matsushita Electric Ind Co Ltd パケット通信装置及び送信電力制御方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Physical layer procedures (FDD)(Release 6)", 3GPP TS 25.214 V6.7.1 (2005-12), 12 December 2005 (2005-12-12), XP003018131, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Specs/2005-12/Rel-6/25_series/25214-671.zip> *
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; UTRAN Iub interface Node B Application Part (NBAP) signalling (Release 6)", 3GPP TS 25.433 V6.8.0 (2005-12), 20 December 2005 (2005-12-20), XP003018132, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Specs/2005-12/Rel-6/25_series/25433-680.zip> *
See also references of EP1998475A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009213136A (ja) * 2008-03-03 2009-09-17 Asustek Computer Inc バッファ状態報告を実行する方法及び通信装置
WO2009157534A1 (ja) * 2008-06-26 2009-12-30 株式会社エヌ・ティ・ティ・ドコモ 閉ループ送信電力制御方法及び基地局装置、端末装置
US20110164659A1 (en) * 2008-06-26 2011-07-07 Ntt Docomo, Inc. Closed-loop transmission power control method, base station apparatus and terminal
JP5411856B2 (ja) * 2008-06-26 2014-02-12 株式会社Nttドコモ 閉ループ送信電力制御方法及び基地局装置、端末装置
US8665926B2 (en) 2008-06-26 2014-03-04 Ntt Docomo, Inc. Closed-loop transmission power control method, base station apparatus and terminal
US8792931B2 (en) 2009-02-26 2014-07-29 Huawei Technologies Co., Ltd. Method, apparatus and system for controlling carrier power amplifier of base station
US9331876B2 (en) 2009-02-26 2016-05-03 Huawei Technologies Co., Ltd. Method, apparatus and system for controlling carrier power amplifier of base station

Also Published As

Publication number Publication date
JPWO2007111132A1 (ja) 2009-08-13
JP5057105B2 (ja) 2012-10-24
EP1998475A1 (en) 2008-12-03
EP1998475B1 (en) 2018-01-03
CN101405963A (zh) 2009-04-08
EP1998475A4 (en) 2013-12-25
US8135429B2 (en) 2012-03-13
US20090209279A1 (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP5057105B2 (ja) 送信電力制御方法及び基地局、基地局制御局並びにその制御プログラム
US8150447B2 (en) Multi mode outer loop power control in a wireless network
US8971254B2 (en) Controlling uplink and downlink transmission power during asynchronous switching of control states by user equipment
US7787430B2 (en) Power control for gated uplink control channel
KR100851104B1 (ko) 송신 전력 제어 방법 및 그것을 이용한 무선 통신 시스템
JP4880687B2 (ja) 不連続制御チャネル送信のためのプリアンブル長
US20080159238A1 (en) Transmission Power Control Method, Mobile Station, Fixed Station, and Communication System
US9882391B2 (en) Filtering a stream of power control commands
EP2550829B1 (en) Reducing load in a communications network
JP2012109986A (ja) 電力制御アルゴリズムを用いて移動無線通信システムの性能を向上させる方法
JP5175349B2 (ja) チャネル依存ゲーティング
JP2006179965A (ja) 無線ネットワーク制御方法、無線通信システム、基地局制御装置
EP1864399B1 (en) Method of power control for call migration
Gunnarsson et al. Uplink transmission timing in WCDMA
WO2014187368A1 (zh) 一种下行功率控制方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738547

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008507424

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12293232

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780009570.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007738547

Country of ref document: EP