WO2007108478A1 - Electromagnetic wave absorbing device and method for controlling electromagnetic wave absorption - Google Patents

Electromagnetic wave absorbing device and method for controlling electromagnetic wave absorption Download PDF

Info

Publication number
WO2007108478A1
WO2007108478A1 PCT/JP2007/055713 JP2007055713W WO2007108478A1 WO 2007108478 A1 WO2007108478 A1 WO 2007108478A1 JP 2007055713 W JP2007055713 W JP 2007055713W WO 2007108478 A1 WO2007108478 A1 WO 2007108478A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
conductive carbon
electrodes
carbon
absorption
Prior art date
Application number
PCT/JP2007/055713
Other languages
French (fr)
Japanese (ja)
Inventor
Seiji Akita
Yukihiro Fujiyama
Kenichiro Tanaka
Toshikazu Nosaka
Ryota Tomokane
Yoshikazu Nakayama
Original Assignee
Osaka Prefectural Government
Osaka Industrial Promotion Organization
Public University Corporation Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefectural Government, Osaka Industrial Promotion Organization, Public University Corporation Osaka Prefecture University filed Critical Osaka Prefectural Government
Priority to JP2008506315A priority Critical patent/JP5177425B2/en
Publication of WO2007108478A1 publication Critical patent/WO2007108478A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0071Active shielding

Definitions

  • the present invention relates to a novel electromagnetic wave absorbing device and an absorbed electromagnetic wave controlling method.
  • Patent Document 1 provides a sheet of dielectric loss material containing a specific amount of microcoiled carbon fibers having a specific fiber length.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-77583
  • the main object of the present invention is to provide an apparatus capable of changing the absorption wavelength range and / or absorption amount of electromagnetic waves, and a control method therefor.
  • the present inventors have completed the present invention by using an apparatus having a specific structure. That is, the present invention relates to the following apparatus and control method.
  • Item 1 An electromagnetic wave absorbing device having a variable absorption wavelength region and / or an absorption amount, wherein a fluid containing conductive carbon having a high aspect ratio is filled between electrodes.
  • Item 2 The electromagnetic wave absorption according to Item 1, wherein the conductive carbon has an aspect ratio of 2 or more. Collection device.
  • Item 3 The electromagnetic wave absorber according to Item 1 or 2, wherein the conductive carbon is at least one selected from the group consisting of carbon nanocoils, carbon nanotubes, carbon nanofibers, and carbon nanotwists.
  • Item 4 The electromagnetic wave absorber according to any of the above items:! To 3, wherein the conductive carbon content is 0.00: to 50 parts by weight with respect to 100 parts by weight of the fluid.
  • Item 6 A method for controlling the wavelength range and / or amount of absorption of electromagnetic waves that pass through an electromagnetic wave absorber, wherein a fluid containing conductive carbon having a high aspect ratio is filled between electrodes. Orienting the conductive carbon by applying an electric field between the electrodes of the electromagnetic wave absorber;
  • a method for controlling absorbed electromagnetic waves is a method for controlling absorbed electromagnetic waves.
  • Item 7 The method of controlling an absorbed electromagnetic wave according to Item 6, wherein the electromagnetic wave is an electromagnetic wave having a wavelength range equal to or greater than a microwave.
  • Item 8 The absorbed electromagnetic wave control method according to Item 6, wherein the electromagnetic wave is an electromagnetic wave having a wavelength region equal to or less than an infrared ray.
  • Item 9 A method for controlling a wavelength region and / or an absorption amount of an electromagnetic wave transmitted through an electromagnetic wave absorber
  • the orientation state of the conductive carbon is changed by applying a flow, vibration or heat to the fluid containing the conductive carbon oriented by the method according to any one of (6) to (8) above. To absorb absorbed electromagnetic waves.
  • the electromagnetic wave absorber (also referred to as “electromagnetic wave modulator”) of the present invention is characterized in that a fluid containing conductive carbon having a high aspect ratio is filled between electrodes.
  • the conductive carbon having a high aspect ratio for example, carbon micro tubes having a diameter of less than lxm, such as carbon nanotubes, strong carbon nanofibers, carbon nanocoils, carbon nanotwist, etc. A coil etc. are also mentioned. Of these, carbon nanotubes, carbon nanotubes, At least one of bon nanofibers, carbon nanocoils, and carbon nanotwists is preferred, and carbon nanocoils are most preferred.
  • the aspect ratio (fiber length / fiber diameter) of the conductive carbon is not limited.
  • the average ratio is 2 or more, and preferably about 10 to 5000000 on average.
  • the fiber length of the conductive carbon is not limited, and may be appropriately determined from a wide range such as an average of about 50 nm to about 1 mm.
  • the fiber diameter (diameter) is not limited, but is preferably 1 nm or more and less than 1 ⁇ m on average.
  • the coil length is preferably about 50 nm to lmm on average, more preferably 0.5 xm to 100 xm on average. Degree.
  • the coil diameter (diameter) is preferably about lOnm to about 10 ⁇ m, more preferably about 50 nm or more and less than 1 ⁇ m.
  • the fluid containing the conductive carbon is not particularly limited as long as it has fluidity and can disperse the conductive carbon.
  • water monovalent or polyvalent alcoholones such as isopropyl alcohol, ethanol, glycerin, ethylene glycol, polyethylene glycol, sorbitol; organic solvents such as benzene, hexane, chloroform, acetone, and the like.
  • a substance that has fluidity when heated is also included in the fluid.
  • a thermoplastic resin and the like can be preferably cited. Specific examples include styrene resin, acrylic resin, (meth) acrylic resin, polyvinyl alcohol (PVA), polyethylene (PE), polypropylene (PP), and the like.
  • PVA polyvinyl alcohol
  • PE polyethylene
  • PP polypropylene
  • norafine, cocoons, oligomers and the like are also included.
  • the fluid is heated to about 60 to 250 ° C. to make the fluid fluid, and then an electric field is applied to orient the conductive carbon.
  • the orientation state can be maintained by returning the temperature to room temperature and losing the fluidity of the fluid.
  • it can be heated again to have fluidity, and then an electric field can be applied to bring the conductive carbon into a new orientation state again.
  • a substance having fluidity by flowing an electric current such as liquid crystal is also included in the fluid of the present invention.
  • These fluids may be used alone or in combination of two or more.
  • alcohol and thermoplastic resin are particularly preferable.
  • the fluid contains polycyclic aromatic compounds such as anthracene, pyrene and porphyrin; polymer compounds such as carboxymethyl cellulose, gelatin, polycarbonate and polyimide; and various additives such as surfactants. It ’s okay.
  • the fluidity of the fluid is such that the viscosity at 25 ° C is usually about lcPs ⁇ :! OOOOOOcPs, preferably about 2cPs ⁇ :! OOOOcPs.
  • the dispersion and orientation state of the conductive carbon can be controlled more easily.
  • a substance that has fluidity when heated or when an electric current is passed may have a viscosity in the above-mentioned range when heated (for example, 60 to 250 ° C.) or when energized.
  • the viscosity is measured by a viscosity measuring device.
  • the fluid is preferably an insulator, and usually has a relative dielectric constant of about! -200 (normal temperature 25 ° C).
  • the content of the conductive carbon in the fluid is a force that is appropriately determined according to the type of conductive carbon, the type of fluid, the viscosity, etc. For example, 0.0001 to 50 weights per 100 parts by weight of the fluid About 0.1 part, preferably about 0.01 to 30 parts by weight.
  • Electrodes can be used.
  • the material include gold, white gold, silver, copper, ano-remium, titanium, nickel, chromium, cobalt, indium, tin, zinc and other metals or alloys thereof, IT ⁇ (Indium Tin Oxide), IZ ⁇ (In O—Zn),
  • oxides such as SnO, and carbon can also be used.
  • the shape of the electrode may be a thin line or a thin film. Also, it may be a comb-shaped electrode with a plurality of fine wires arranged in parallel.
  • the electromagnetic resistance When the electrode is made into a thin film, the electromagnetic resistance must be transmitted through the thin film electrode (see Fig. 1 to be described later), so the surface resistance of the electrode is a free space radio wave impedance (about 377 ⁇ ) Just make it bigger. Generally, it may be about 400 ⁇ or more, preferably about 1000 ⁇ or more, more preferably about 3000 ⁇ or more. The upper limit is not limited, but for example, '100000 ⁇ '. [0034] In the case of a comb-shaped electrode, the electromagnetic wave impedance is not particularly limited because electromagnetic waves are transmitted through the substrate between the electrodes.
  • the substrate is not limited as long as it is a material that can transmit electromagnetic waves, and examples thereof include a glass substrate, a stone substrate, a plastic substrate, and a ceramic substrate.
  • the area of the substrate and the electrodes, the distance between the electrodes, and the like may be appropriately determined according to the content of the conductive carbon in the fluid, the strength of the electric field, and the like.
  • the power source connected to the electrode is not limited, and a known or commercially available power source can be used.
  • a typical example of the electromagnetic wave absorber of the present invention in which at least one selected from the group consisting of an absorption wavelength region and an absorption amount is variable is given as follows:
  • two sets of comb electrodes stacked on the substrate are arranged so that the respective thin wire electrodes constituting the comb electrodes facing each other are parallel, and the two sets of comb electrodes are arranged between the two sets of comb electrodes.
  • each thin wire electrode of the facing comb-shaped electrodes is vertical (relationship of twist), and has a high aspect ratio
  • Examples thereof include an apparatus filled with a fluid containing conductive carbon.
  • the thin film electrode is also a transparent electrode, that is, ⁇ , ⁇ etc.
  • a dispersing device may be provided between the electrodes or between the electrodes. Specifically, if a known or commercially available flow / vibration device (for example, liquid feed pump, stirrer, sonic device, etc.), heating device (electric heater, infrared lamp, halogen lamp, etc.) is installed between the electrodes. Good.
  • a known or commercially available flow / vibration device for example, liquid feed pump, stirrer, sonic device, etc.
  • heating device electric heater, infrared lamp, halogen lamp, etc.
  • the present invention employs the above-described structure, by passing an electric current through the electrodes and generating an electric field between the electrodes, the conductive carbon between the electrodes is oriented at a desired angle and transmitted between the electrodes.
  • the absorption wavelength range and / or absorption amount (transmittance or reflectance) of the electromagnetic wave can be changed.
  • the orientation of the present invention means that individual conductive carbons are arranged in a specific direction, and includes not only uniaxial orientation but also plane orientation.
  • the electromagnetic wave absorbed by the device of the present invention can absorb light in a wide wavelength range of about 200 nm to 300 mm. Specifically, microwaves (about 300 mm to 10 mm, about 1 GHz to about 30 GHz), Millimeter wave (10 mm to: about 1 mm, 30 GHz to about 300 GHz), terahertz wave (lmm to: about 10 zm, about 0.3 THz to about 30 THz), infrared light (about 100 ⁇ m to about 800 nm), visible light (830 nm ⁇ 360 nm) and ultraviolet light (400 nm ⁇ : about 14 nm).
  • the absorption wavelength region can be changed in a multi-step (stepwise) manner.
  • the function (the function of changing the absorption wavelength range in multiple stages) and the modulation function (the function of changing the electromagnetic wave transmittance (or reflectivity) or polarization plane (or polarization component) in multiple stages) can also be suitably exhibited. Therefore, it can be suitably used not only as an electromagnetic wave absorber but also as a variable wavelength electromagnetic wave absorber.
  • the method according to the first aspect of the present invention is a method for controlling the wavelength range and / or absorption amount of electromagnetic waves that pass through an electromagnetic wave absorber, and a fluid containing conductive carbon having a high aspect ratio is filled between electrodes.
  • the conductive carbon is oriented by applying an electric field between the electrodes of the electromagnetic wave absorbing device.
  • the electromagnetic wave absorber As the electromagnetic wave absorber, the electromagnetic wave absorber having the variable absorption wavelength range and / or absorption amount according to the present invention described above is used.
  • the conductive carbon in the fluid is oriented in a direction perpendicular to the plane of the electrode substrate. Note that, by appropriately adjusting the voltage, the angle of the conductive carbon until it is oriented in the vertical direction can be appropriately adjusted. By these, it is possible to control the wavelength range and Z or the amount of absorption of electromagnetic waves transmitted between the electrodes of the device.
  • carbon nanocoils are used as conductive carbon
  • carbon nanocoils are dispersed when carbon nanocoils are unoriented (the orientation is irregular shell IJ).
  • the dielectric anisotropy of the fluid is averaged and is isotropic as a whole.
  • the carbon nanocoils in the fluid are oriented perpendicular to the transparent electrodes.
  • dielectric anisotropy develops, the dielectric constant and dielectric loss for an electric field perpendicular to the orientation direction decrease, and the dielectric constant and dielectric loss for an electric field parallel to the orientation direction increase.
  • the absorption peak frequency of the electromagnetic wave increases as the dielectric constant decreases, and the transmission loss of the electromagnetic wave decreases as the dielectric loss decreases.
  • the transmittance increases due to the reduction of the geometric optical shielding area.
  • the conductive carbon in the fluid is perpendicular to the thin wire electrode between each thin wire electrode constituting the comb electrode, and Oriented to be parallel to the electrode substrate. Note that, by appropriately adjusting the voltage, the angle of the conductive carbon until it is vertically aligned can be appropriately adjusted. Thus, it is possible to control the wavelength range and / or the amount of absorption of electromagnetic waves transmitted between the electrodes of the device.
  • Electromagnetic waves incident perpendicularly to this device can be considered by dividing them into a polarization component whose electric field is parallel to the comb teeth and a polarization component whose electric field is perpendicular to the comb electrodes.
  • a polarization component whose electric field is parallel to the comb electrode an increase in dielectric constant and an increase in dielectric loss cause a decrease in absorption peak frequency and an increase in transmission loss.
  • a decrease in dielectric constant and a decrease in dielectric loss cause an increase in absorption peak frequency and a decrease in transmission loss.
  • the transmittance increases due to the increase of the geometric optical shielding area.
  • the angle of the conductive carbon until it is vertically aligned can be appropriately adjusted.
  • the conductive carbon is oriented by the above-described method to change the absorption amount (transmittance or reflectance) of the electromagnetic waves, so that the switch function (light It effectively plays a role as a light absorption on / off function represented by a shutter.
  • the conductive carbon is oriented by the above method, so that in addition to the above-mentioned absorption amount, the absorption wavelength range and the like are multistage.
  • Switchable function, variable wavelength function (function to change absorption wavelength range in multiple stages) and modulation function (function to change electromagnetic wave transmittance (or reflectivity) in multiple stages) Can also be suitably exhibited.
  • Voltage, application time, etc. are the distance between the electrodes in addition to the conductive carbon, fluid, type of the above device By appropriately changing the voltage, the application time, etc. as appropriate according to the above, it is possible to appropriately adjust the degree of orientation of the conductive carbon, and hence the absorption wavelength range and / or absorption amount of the electromagnetic wave.
  • the fluid between the electrodes of the device is a resin, depending on the type of the resin, there is a case where the conductive carbon does not orient at normal temperature and there is no fluidity.
  • an electric field may be applied to orient the conductive carbon.
  • the method of the second aspect of the present invention is a method for controlling the wavelength range and Z or the amount of absorption of electromagnetic waves that pass through the electromagnetic wave absorber, and is a high-space orientation oriented by the method of the first invention.
  • the oriented conductive carbon is dispersed by applying a flow, vibration, or heat to a fluid containing the conductive carbon having a ratio of 1 to 5. Thereby, the orientation state of the conductive carbon once oriented can be changed.
  • Specific examples include a method of flowing a fluid with a liquid feed pump, a method of vibrating the fluid with an ultrasonic device, a method of stirring the fluid with a stirrer, a method of heating the fluid with an electric heater, etc.
  • a method of indirectly flowing, vibrating, stirring, and heating the fluid by vibrating or heating the electrode can be used.
  • the fluid is a resin that does not have fluidity at room temperature
  • the above method may be adopted after the fluidity is provided by heating the resin.
  • the electromagnetic wave absorber of the present invention has a structure in which a fluid containing conductive carbon having a high aspect ratio is filled between electrodes, the electromagnetic wave absorption wavelength range and Z or the amount of absorption can be adjusted. . For this reason, the absorption wavelength region and / or the amount of absorption can be appropriately changed after production or after installation at a desired location, and can be used for various applications.
  • the absorption wavelength region and / or the amount of absorption of electromagnetic waves can be adjusted by adjusting the electric field (voltage, etc.).
  • a small CCD camera (Logitech Q Cam Pro 4 000) that can be directly connected to a personal computer is attached to the eyepiece of a bright-field microscope (Olympus), and the state of electrophoresis (orientation) is colored by collimated photography. Recorded as moving images. Color still images before and after the alignment were extracted from the recorded moving images, and the average luminance of all pixels in the region where the alignment of the carbon nanocoils between the electrodes occurred was calculated.
  • Example 2 Example of vertical alignment of nanocoil by electric field>
  • An electrode device (for horizontal orientation) was fabricated by arranging two thin wire electrodes (copper wires) in parallel at 0.9 mm intervals.
  • the device of Comparative Example 1 was manufactured by filling the dispersion between the two electrodes.
  • An electric field having a frequency of 100 kHz and an electric field strength of 63 kV / m was applied to this apparatus for 1 minute. When the amount of transmitted light between the electrodes before and after the application of the electric field was measured, no change occurred. As a result, the switch function was not demonstrated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)
  • Shutters For Cameras (AREA)

Abstract

Disclosed is an electromagnetic wave absorbing device wherein the absorption wavelength range and absorption amount can be varied. This electromagnetic wave absorbing device is characterized in that the space between electrodes is filled with a fluid which contains a conductive carbon having a high aspect ratio. Also disclosed is a method for controlling electromagnetic wave absorption, namely a method for controlling the wavelength range of electromagnetic wave transmitted through the electromagnetic wave absorbing device and/or the absorption amount of electromagnetic wave. This method is characterized in that an electric field is applied between electrodes of the electromagnetic wave absorbing device where a fluid containing a conductive carbon having a high aspect ratio is filled, thereby orienting the conductive carbon in a direction.

Description

明 細 書  Specification
電磁波吸収装置及び吸収電磁波制御方法  Electromagnetic wave absorber and absorbed electromagnetic wave control method
技術分野  Technical field
[0001] 本発明は、新規な電磁波吸収装置及び吸収電磁波制御方法に関する。  [0001] The present invention relates to a novel electromagnetic wave absorbing device and an absorbed electromagnetic wave controlling method.
背景技術  Background art
[0002] 近年、携帯電話等の通信機器の増大、多様化により、それぞれに対応した電磁波 を吸収するさまざまな電磁波吸収シートが提供されている(特許文献 1等)。  [0002] In recent years, various types of electromagnetic wave absorbing sheets that absorb electromagnetic waves corresponding to each have been provided due to the increase and diversification of communication devices such as mobile phones (Patent Document 1 and the like).
[0003] 例えば、特許文献 1には、特定の繊維長のマイクロコイル状カーボン繊維が特定量 で含有された誘電損失材のシートが提供されている。 [0003] For example, Patent Document 1 provides a sheet of dielectric loss material containing a specific amount of microcoiled carbon fibers having a specific fiber length.
[0004] し力しながら、上記特許文献 1の電磁波吸収シートをはじめ、従来の電磁波吸収材 は、吸収する波長域及び吸収量は予め固定されており、製造後や建物等に設置後 は、波長域及び吸収量を変更できない。したがって、吸収対象の波長域等が変化し た場合は、当該波長域等に対応できないという問題がある。 [0004] However, conventional electromagnetic wave absorbers including the electromagnetic wave absorbing sheet of Patent Document 1 described above have a fixed wavelength range and absorption amount that are fixed in advance. The wavelength range and the amount of absorption cannot be changed. Therefore, there is a problem that when the wavelength range or the like to be absorbed changes, the wavelength range cannot be handled.
[0005] したがって、製造後又は設置後において、電磁波の波長域及び/又は吸収量を制 御できる装置の開発が望まれている。 [0005] Therefore, it is desired to develop an apparatus capable of controlling the wavelength range and / or absorption amount of electromagnetic waves after manufacture or after installation.
特許文献 1:特開 2001— 77583号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-77583
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明は、電磁波の吸収波長域及び/又は吸収量を変化させることができる装置 及びその制御方法を提供することを主な目的とする。 The main object of the present invention is to provide an apparatus capable of changing the absorption wavelength range and / or absorption amount of electromagnetic waves, and a control method therefor.
課題を解決するための手段  Means for solving the problem
[0007] 本発明者らは、上記従来技術に鑑み鋭意研究を重ねた結果、特定の構造を有す る装置を使用することにより、本発明を完成するに至った。すなわち、本発明は下記 の装置及び制御方法に係る。 [0007] As a result of intensive studies in view of the above prior art, the present inventors have completed the present invention by using an apparatus having a specific structure. That is, the present invention relates to the following apparatus and control method.
[0008] 項 1.高アスペクト比である導電性カーボンを含有する流体が電極間に充填されて なる、吸収波長域及び/又は吸収量が可変な電磁波吸収装置。 [0008] Item 1. An electromagnetic wave absorbing device having a variable absorption wavelength region and / or an absorption amount, wherein a fluid containing conductive carbon having a high aspect ratio is filled between electrodes.
[0009] 項 2.導電性カーボンのアスペクト比が 2以上である、上記項 1に記載の電磁波吸 収装置。 [0009] Item 2. The electromagnetic wave absorption according to Item 1, wherein the conductive carbon has an aspect ratio of 2 or more. Collection device.
[0010] 項 3.導電性カーボンがカーボンナノコイル、カーボンナノチューブ、カーボンナノ ファイバー及びカーボンナノツイストからなる群から選ばれる少なくとも 1種である、上 記項 1又は 2に記載の電磁波吸収装置。  [0010] Item 3. The electromagnetic wave absorber according to Item 1 or 2, wherein the conductive carbon is at least one selected from the group consisting of carbon nanocoils, carbon nanotubes, carbon nanofibers, and carbon nanotwists.
[0011] 項 4.導電性カーボンの含有量が、流体 100重量部に対して 0. 00:!〜 50重量部 である、上記項:!〜 3のいずれかに記載の電磁波吸収装置。 [0011] Item 4. The electromagnetic wave absorber according to any of the above items:! To 3, wherein the conductive carbon content is 0.00: to 50 parts by weight with respect to 100 parts by weight of the fluid.
[0012] 項 5.流体の粘度が:!〜 100, 000cPs (25°C)である、上記項:!〜 4のいず [0012] Item 5. The viscosity of the fluid is:! ~ 100,000cPs (25 ° C)
れかに記載の電磁波吸収装置。  An electromagnetic wave absorber as described above.
[0013] 項 6.電磁波吸収装置を透過する電磁波の波長域及び/又は吸収量を制御する 方法であって、高アスペクト比である導電性カーボンを含有する流体が電極間に充 填されてなる電磁波吸収装置の当該電極間に電界を印加することにより、当該導電 性カーボンを配向させる、 [0013] Item 6. A method for controlling the wavelength range and / or amount of absorption of electromagnetic waves that pass through an electromagnetic wave absorber, wherein a fluid containing conductive carbon having a high aspect ratio is filled between electrodes. Orienting the conductive carbon by applying an electric field between the electrodes of the electromagnetic wave absorber;
ことを特徴とする吸収電磁波制御方法。  A method for controlling absorbed electromagnetic waves.
[0014] 項 7.前記電磁波が、マイクロ波以上の波長域を有する電磁波である、上記項 6に 記載の吸収電磁波制御方法。 [0014] Item 7. The method of controlling an absorbed electromagnetic wave according to Item 6, wherein the electromagnetic wave is an electromagnetic wave having a wavelength range equal to or greater than a microwave.
[0015] 項 8.前記電磁波が、赤外線以下の波長域を有する電磁波である、上記項 6に記 載の吸収電磁波制御方法。 [0015] Item 8. The absorbed electromagnetic wave control method according to Item 6, wherein the electromagnetic wave is an electromagnetic wave having a wavelength region equal to or less than an infrared ray.
[0016] 項 9.電磁波吸収装置を透過する電磁波の波長域及び/又は吸収量を制御する 方法であって、 Item 9. A method for controlling a wavelength region and / or an absorption amount of an electromagnetic wave transmitted through an electromagnetic wave absorber,
上記項 6〜8のいずれかに記載の方法により配向させた導電性カーボンを含有す る流体に流動、振動又は熱を与えることにより、前記導電性カーボンの配向状態を変 える、ことを特徴とする吸収電磁波制御方法。  (9) The orientation state of the conductive carbon is changed by applying a flow, vibration or heat to the fluid containing the conductive carbon oriented by the method according to any one of (6) to (8) above. To absorb absorbed electromagnetic waves.
[0017] 本発明の電磁波吸収装置(「電磁波変調装置」ともいう。)は、高アスペクト比である 導電性カーボンを含有する流体が電極間に充填されてなることを特徴とする。  [0017] The electromagnetic wave absorber (also referred to as "electromagnetic wave modulator") of the present invention is characterized in that a fluid containing conductive carbon having a high aspect ratio is filled between electrodes.
[0018] 高アスペクト比である導電性カーボンとしては、例えば、カーボンナノチューブ、力 一ボンナノファイバー、カーボンナノコイル、カーボンナノツイスト等の直径が l x m未 満のもののほ力 \ l z m以上であるカーボンマイクロコイル等も挙げられる。これらの 中でも、電界に対する配向の応答特性が良い観点から、カーボンナノチューブ、カー ボンナノファイバー、カーボンナノコイル及びカーボンナノツイストのうち少なくとも 1種 が好ましぐ最も好ましくはカーボンナノコイルである。 [0018] As the conductive carbon having a high aspect ratio, for example, carbon micro tubes having a diameter of less than lxm, such as carbon nanotubes, strong carbon nanofibers, carbon nanocoils, carbon nanotwist, etc. A coil etc. are also mentioned. Of these, carbon nanotubes, carbon nanotubes, At least one of bon nanofibers, carbon nanocoils, and carbon nanotwists is preferred, and carbon nanocoils are most preferred.
[0019] 導電性カーボンのアスペクト比(繊維長/繊維径)は限定的でなレ、が、例えば平均 2以上が挙げられ、好ましくは平均 10〜5000000程度である。  [0019] The aspect ratio (fiber length / fiber diameter) of the conductive carbon is not limited. For example, the average ratio is 2 or more, and preferably about 10 to 5000000 on average.
[0020] 導電性カーボンの繊維長は限定的でなぐ例えば平均 50nm〜: 1mm程度という幅 広い範囲から適宜決定すればよい。繊維径(直径)も限定的でないが、好ましくは、 平均 lnm以上 1 μ m未満である。  [0020] The fiber length of the conductive carbon is not limited, and may be appropriately determined from a wide range such as an average of about 50 nm to about 1 mm. The fiber diameter (diameter) is not limited, but is preferably 1 nm or more and less than 1 μm on average.
[0021] 上記導電性カーボンの形状がコイル状、すなわちカーボンナノコイル又はカーボン ナノツイスト等である場合は、コイル長は好ましくは平均 50nm〜 lmm程度、より好ま しくは平均 0. 5 x m〜100 x m程度である。コイル径(直径)は好ましくは平均 lOnm 〜: 10 μ m程度、より好ましくは平均 50nm以上 1 μ m未満程度である。  [0021] When the conductive carbon has a coil shape, that is, a carbon nanocoil or carbon nanotwist, the coil length is preferably about 50 nm to lmm on average, more preferably 0.5 xm to 100 xm on average. Degree. The coil diameter (diameter) is preferably about lOnm to about 10 μm, more preferably about 50 nm or more and less than 1 μm.
[0022] 導電性カーボンを含有している流体は、流動性があり、導電性カーボンを分散させ ることができるものであれば特に制限されなレ、。例えば、水;イソプロピルアルコール、 エタノール、グリセリン、エチレングリコール、ポリエチレングリコール、ソルビトール等 の 1価又は多価のアルコーノレ;ベンゼン、へキサン、クロ口ホルム、アセトン等の有機 溶媒等が挙げられる。  [0022] The fluid containing the conductive carbon is not particularly limited as long as it has fluidity and can disperse the conductive carbon. For example, water; monovalent or polyvalent alcoholones such as isopropyl alcohol, ethanol, glycerin, ethylene glycol, polyethylene glycol, sorbitol; organic solvents such as benzene, hexane, chloroform, acetone, and the like.
[0023] 本発明では、加熱 (例えば、 60〜250°C程度)した場合に、流動性を有する物質も 流体に含まれる。このような流体としては、例えば、熱可塑性樹脂等が好適に挙げら れる。具体的には、スチレン系樹脂、アクリル系樹脂、(メタ)アクリル系樹脂のほか、 ポリビニルアルコール(PVA)、ポリエチレン(PE)、ポリプロピレン(PP)等が挙げられ る。また、ノ ラフィン、蠟、オリゴマー等も挙げられる。このような樹脂を流体に用いるこ とにより、例えば、上記流体を 60〜250°C程度に加熱して流体に流動性をもたせ、 次いで、電界を印加して導電性カーボンを配向させた後、温度を常温に戻して流体 の流動性を失わせることにより配向状態を維持させることができる。さらには、再度加 熱して流動性をもたせ、次いで、電界を印加させて導電性カーボンを再度新たな配 向状態にすることもできる。  [0023] In the present invention, a substance that has fluidity when heated (for example, about 60 to 250 ° C) is also included in the fluid. As such a fluid, for example, a thermoplastic resin and the like can be preferably cited. Specific examples include styrene resin, acrylic resin, (meth) acrylic resin, polyvinyl alcohol (PVA), polyethylene (PE), polypropylene (PP), and the like. In addition, norafine, cocoons, oligomers and the like are also included. By using such a resin as a fluid, for example, the fluid is heated to about 60 to 250 ° C. to make the fluid fluid, and then an electric field is applied to orient the conductive carbon. The orientation state can be maintained by returning the temperature to room temperature and losing the fluidity of the fluid. Furthermore, it can be heated again to have fluidity, and then an electric field can be applied to bring the conductive carbon into a new orientation state again.
[0024] また、液晶などの電流を流すことにより流動性を有する物質も、本発明の流体に含 まれる。 [0025] これらの流体は 1種単独又は 2種以上を混合して使用してもよい。 [0024] A substance having fluidity by flowing an electric current such as liquid crystal is also included in the fluid of the present invention. [0025] These fluids may be used alone or in combination of two or more.
[0026] 本発明では、これらの流体の中でも、特にアルコール及び熱可塑性樹脂が好まし レ、。 In the present invention, among these fluids, alcohol and thermoplastic resin are particularly preferable.
[0027] 上記流体には、アントラセン、ピレン、ポルフィリンなどの多環式芳香族化合物;カル ボキシメチルセルロース、ゼラチン、ポリカーボネート、ポリイミドなどの高分子化合物 ;界面活性剤等の各種添加剤を含んでレ、てもよレ、。  [0027] The fluid contains polycyclic aromatic compounds such as anthracene, pyrene and porphyrin; polymer compounds such as carboxymethyl cellulose, gelatin, polycarbonate and polyimide; and various additives such as surfactants. It ’s okay.
[0028] 上記流体の流動性は、 25°Cにおける粘度が、通常 lcPs〜: !OOOOOcPs程度、好ま しくは 2cPs〜: !OOOOcPs程度である。この範囲とすることにより、導電性カーボンの 分散及び配向状態をより一層容易に制御できる。なお、加熱した場合又は電流を流 した場合に流動性を有する物質については、当該加熱 (例えば 60〜250°C)時又は 通電時に上記範囲の粘度を有していればよい。本発明において粘度は、粘度測定 装置によって測定されるものである。  [0028] The fluidity of the fluid is such that the viscosity at 25 ° C is usually about lcPs ~:! OOOOOOcPs, preferably about 2cPs ~:! OOOOcPs. By setting this range, the dispersion and orientation state of the conductive carbon can be controlled more easily. Note that a substance that has fluidity when heated or when an electric current is passed may have a viscosity in the above-mentioned range when heated (for example, 60 to 250 ° C.) or when energized. In the present invention, the viscosity is measured by a viscosity measuring device.
[0029] 流体は、電磁波透過性の観点から、絶縁体が好ましぐ通常は比誘電率が:!〜 200 程度(常温 25°C)とすればょレ、。  [0029] In terms of electromagnetic wave permeability, the fluid is preferably an insulator, and usually has a relative dielectric constant of about! -200 (normal temperature 25 ° C).
[0030] 上記流体中における導電性カーボンの含有量は、導電性カーボンの種類、流体の 種類、粘度等に応じて適宜決定される力 例えば、流体 100重量部に対して 0. 001 〜 50重量部程度、好ましくは 0. 01〜30重量部程度である。  [0030] The content of the conductive carbon in the fluid is a force that is appropriately determined according to the type of conductive carbon, the type of fluid, the viscosity, etc. For example, 0.0001 to 50 weights per 100 parts by weight of the fluid About 0.1 part, preferably about 0.01 to 30 parts by weight.
[0031] 電極は公知又は市販のものを使用することができる。材質としては、例えば、金、白 金、銀、銅、ァノレミニゥム、チタン、ニッケル、クロム、コバルト、インジウム、錫、亜鉛な どの金属又はこれらの合金のほ力、 IT〇(Indium Tin Oxide)、 IZ〇(In O—Zn  [0031] Known or commercially available electrodes can be used. Examples of the material include gold, white gold, silver, copper, ano-remium, titanium, nickel, chromium, cobalt, indium, tin, zinc and other metals or alloys thereof, IT〇 (Indium Tin Oxide), IZ 〇 (In O—Zn
2 3 twenty three
0)、 Sn〇等の酸化物、カーボンなども使用できる。 0), oxides such as SnO, and carbon can also be used.
2  2
[0032] 電極の形状は細線であってもよぐ薄膜であってもよレ、。また、複数の細線を平行に 並べた櫛形電極であってもよレ、。  [0032] The shape of the electrode may be a thin line or a thin film. Also, it may be a comb-shaped electrode with a plurality of fine wires arranged in parallel.
[0033] なお、電極を薄膜状とした場合は、当該薄膜電極を電磁波が透過する必要がある ため(後述する図 1を参照)、電極の面抵抗は自由空間の電波インピーダンス(377 Ω程度)より大きくすればよい。一般的には 400 Ω程度以上、好ましくは 1000 Ω程度 以上、より好ましくは 3000 Ω程度以上とすればよい。上限は限定的でないが、例え は'、 100000 Ω程度とすればよレ、。 [0034] 櫛形電極の場合は、当該電極間の基板を電磁波が透過するため、電波インピーダ ンスは特に限定されない。 [0033] When the electrode is made into a thin film, the electromagnetic resistance must be transmitted through the thin film electrode (see Fig. 1 to be described later), so the surface resistance of the electrode is a free space radio wave impedance (about 377 Ω) Just make it bigger. Generally, it may be about 400 Ω or more, preferably about 1000 Ω or more, more preferably about 3000 Ω or more. The upper limit is not limited, but for example, '100000 Ω'. [0034] In the case of a comb-shaped electrode, the electromagnetic wave impedance is not particularly limited because electromagnetic waves are transmitted through the substrate between the electrodes.
[0035] 基板は、電磁波が透過できる材質である限り限定されず、例えば、ガラス基板、石 英基板、プラスチック基板、セラミック基板等が挙げられる。 [0035] The substrate is not limited as long as it is a material that can transmit electromagnetic waves, and examples thereof include a glass substrate, a stone substrate, a plastic substrate, and a ceramic substrate.
[0036] 基板及び電極の面積、電極間距離等は、流体中の導電性カーボンの含有量、電 界の強度等に応じて適宜決定すればよい。 [0036] The area of the substrate and the electrodes, the distance between the electrodes, and the like may be appropriately determined according to the content of the conductive carbon in the fluid, the strength of the electric field, and the like.
[0037] 電極に接続する電源は限定的でなぐ公知又は市販の電源を使用することができ る。 [0037] The power source connected to the electrode is not limited, and a known or commercially available power source can be used.
[0038] 本発明の、吸収波長域及び吸収量からなる群から選択される少なくとも 1種が可変 な電磁波吸収装置の典型例を挙げると、例えば、  [0038] A typical example of the electromagnetic wave absorber of the present invention in which at least one selected from the group consisting of an absorption wavelength region and an absorption amount is variable is given as follows:
i)図 1に示すように、基板に積層された二枚の薄膜電極を向かい合うように配置し、 当該二枚の電極間に、高アスペクト比である導電性カーボンを含有する流体を充填 させた装置、  i) As shown in FIG. 1, two thin film electrodes laminated on a substrate are arranged so as to face each other, and a fluid containing conductive carbon having a high aspect ratio is filled between the two electrodes. Equipment,
ii)図 2に示すように、基板に積層された二組の櫛形電極を、対向する当該櫛形電極 を構成する各々の細線電極が平行となるように配置し、当該二組の櫛形電極間に、 高アスペクト比である導電性カーボンを含有する流体を充填させた装置、  ii) As shown in FIG. 2, two sets of comb electrodes stacked on the substrate are arranged so that the respective thin wire electrodes constituting the comb electrodes facing each other are parallel, and the two sets of comb electrodes are arranged between the two sets of comb electrodes. A device filled with a fluid containing conductive carbon having a high aspect ratio,
iii)図 3に示すように、基板に積層された二組の櫛形電極を、対向する当該櫛形電極 の各々の細線電極が垂直(ねじれの関係)となるように配置し、高アスペクト比である 導電性カーボンを含有する流体を充填させた装置、等が挙げられる。  iii) As shown in FIG. 3, two sets of comb-shaped electrodes stacked on the substrate are arranged so that each thin wire electrode of the facing comb-shaped electrodes is vertical (relationship of twist), and has a high aspect ratio Examples thereof include an apparatus filled with a fluid containing conductive carbon.
[0039] 特に、図 1〜3の装置において、透過させる電磁波が可視光である場合、基板は透 明なものを使用すればよい。この場合、図 1においては、薄膜電極も透明な電極、す なわち、 ΙΤΟ、 ΙΖ〇等を使用することとなる。  In particular, in the apparatus shown in FIGS. 1 to 3, when the transmitted electromagnetic wave is visible light, a transparent substrate may be used. In this case, in FIG. 1, the thin film electrode is also a transparent electrode, that is, ΙΤΟ, ΙΖ〇 etc.
[0040] 配向した導電性カーボンを再分散 (配向していない状態)させるために、分散装置 を電極又は電極間に装備させてもよい。具体的には、電極又は電極間に公知又は 市販の流動、振動装置 (例えば、液送ポンプ、スターラー、音波装置等)、加熱装置( 電熱器、赤外線ランプ、ハロゲンランプ等)などを設置すればよい。  [0040] In order to redisperse the oriented conductive carbon (in an unoriented state), a dispersing device may be provided between the electrodes or between the electrodes. Specifically, if a known or commercially available flow / vibration device (for example, liquid feed pump, stirrer, sonic device, etc.), heating device (electric heater, infrared lamp, halogen lamp, etc.) is installed between the electrodes. Good.
[0041] 本発明は、上記構造を採用するため、電極に電流を流し、電極間に電界を生じさ せることにより、電極間の導電性カーボンを所望の角度に配向させ、電極間を透過す る電磁波の吸収波長域及び/又は吸収量 (透過率又は反射率)を変更することがで きる。 [0041] Since the present invention employs the above-described structure, by passing an electric current through the electrodes and generating an electric field between the electrodes, the conductive carbon between the electrodes is oriented at a desired angle and transmitted between the electrodes. The absorption wavelength range and / or absorption amount (transmittance or reflectance) of the electromagnetic wave can be changed.
[0042] 本発明の配向とは、個々の導電性カーボンが特定方向に配列することをいい、一 軸配向のほか、面配向も含む。  The orientation of the present invention means that individual conductive carbons are arranged in a specific direction, and includes not only uniaxial orientation but also plane orientation.
[0043] 本発明装置の吸収する電磁波としては、 200nm〜300mm程度という広い波長域 のものを吸収することができ、具体的には,マイクロ波(300mm〜10mm程度、 1G Hz〜30GHz程度)、ミリ波(10mm〜: 1mm程度、 30GHz〜300GHz程度)、テラへ ルツ波(lmm〜: 10 z m程度、 0. 3THz〜30THz程度)、赤外線(100 μ m〜800n m程度)、可視光(830nm〜360nm程度)、紫外光(400nm〜: 14nm程度)である。  [0043] The electromagnetic wave absorbed by the device of the present invention can absorb light in a wide wavelength range of about 200 nm to 300 mm. Specifically, microwaves (about 300 mm to 10 mm, about 1 GHz to about 30 GHz), Millimeter wave (10 mm to: about 1 mm, 30 GHz to about 300 GHz), terahertz wave (lmm to: about 10 zm, about 0.3 THz to about 30 THz), infrared light (about 100 μm to about 800 nm), visible light (830 nm ˜360 nm) and ultraviolet light (400 nm˜: about 14 nm).
[0044] この中でも、特に可視光及び紫外光においては、吸収量 (透過率又は反射率)を変 化させることにより、スィッチ機能(光シャッター等に代表される光吸収の on、 off機能 )を好適に発揮できるため、電磁波吸収装置として好適に用いることができる。  [0044] Among these, particularly for visible light and ultraviolet light, by changing the amount of absorption (transmittance or reflectivity), a switch function (on / off function of light absorption typified by an optical shutter or the like) is achieved. Since it can exhibit suitably, it can be used suitably as an electromagnetic wave absorber.
[0045] マイクロ波、ミリ波、テラへルツ波、赤外線等においては、上記吸収量のほか、吸収 波長域等も多段的 (段階的)に変化させることもでき、スィッチ機能のほか、可変波長 機能(吸収波長域を多段的に変化させる機能)及び変調機能 (電磁波の透過率 (又 は反射率)或いは偏波面 (又は偏波成分)を多段的に変化させる機能)も好適に発揮 できる。よって、電磁波吸収装置のみならず、可変波長電磁波吸収装置としても好適 に用いることができる。  [0045] In microwaves, millimeter waves, terahertz waves, infrared rays, etc., in addition to the above-mentioned absorption amount, the absorption wavelength region can be changed in a multi-step (stepwise) manner. The function (the function of changing the absorption wavelength range in multiple stages) and the modulation function (the function of changing the electromagnetic wave transmittance (or reflectivity) or polarization plane (or polarization component) in multiple stages) can also be suitably exhibited. Therefore, it can be suitably used not only as an electromagnetic wave absorber but also as a variable wavelength electromagnetic wave absorber.
[0046] 2.制御方法  [0046] 2. Control method
本発明の第一態様の方法は、電磁波吸収装置を透過する電磁波の波長域及び/ 又は吸収量を制御する方法であって、高アスペクト比である導電性カーボンを含有 する流体が電極間に充填されてなる電磁波吸収装置の当該電極間に電界を印加す ることにより、当該導電性カーボンを配向させる、ことを特徴とする。  The method according to the first aspect of the present invention is a method for controlling the wavelength range and / or absorption amount of electromagnetic waves that pass through an electromagnetic wave absorber, and a fluid containing conductive carbon having a high aspect ratio is filled between electrodes. The conductive carbon is oriented by applying an electric field between the electrodes of the electromagnetic wave absorbing device.
[0047] 電磁波吸収装置は、上記した本発明の吸収波長域及び/又は吸収量が可変な電 磁波吸収装置を使用する。  [0047] As the electromagnetic wave absorber, the electromagnetic wave absorber having the variable absorption wavelength range and / or absorption amount according to the present invention described above is used.
[0048] 以下、好ましい方法として、上記した典型例の電磁波吸収装置を用いて説明する。  [0048] Hereinafter, a preferable method will be described using the above-described typical electromagnetic wave absorber.
[0049] i)基板に積層された二枚の薄膜電極を向かい合うように配置し、当該二枚の電極 間に、高アスペクト比である導電性カーボンを含有する流体を充填させた装置の場 合 [0049] i) A field of an apparatus in which two thin film electrodes laminated on a substrate are arranged so as to face each other, and a fluid containing conductive carbon having a high aspect ratio is filled between the two electrodes. Together
図 4に示すように、二極の電極に交流電圧を印加すると、流体中の導電性カーボン が電極基板平面に対して垂直方向に配向する。なお、電圧を適宜調節することによ り、垂直方向に配向するまでの導電性カーボンの角度を適宜調節できる。これらによ り、当該装置の電極間を透過する電磁波の波長域及び Z又は吸収量を制御できる。  As shown in FIG. 4, when an AC voltage is applied to a bipolar electrode, the conductive carbon in the fluid is oriented in a direction perpendicular to the plane of the electrode substrate. Note that, by appropriately adjusting the voltage, the angle of the conductive carbon until it is oriented in the vertical direction can be appropriately adjusted. By these, it is possible to control the wavelength range and Z or the amount of absorption of electromagnetic waves transmitted between the electrodes of the device.
[0050] このメカニズムを詳述すると、例えば、導電性カーボンとしてカーボンナノコイルを使 用した場合を例にすると、カーボンナノコイルが未配向(向きが不規貝 IJ)の時、カーボ ンナノコイルを分散した流体の誘電率異方性は平均化され、全体としては等方性とな る。他方、透明電極間に交流電圧を印加すると、流体中のカーボンナノコイルが透明 電極に垂直に配向する。カーボンナノコイルが配向状態にある時、誘電率異方性が 発現し、配向方向に垂直な電界に対する誘電率と誘電損失が減少し、配向方向に 平行な電界に対する誘電率と誘電損失が増大する。本装置に垂直入射する電磁波 の電界はカーボンナノコイルの配向方向と垂直なので、誘電率減少により電磁波の 吸収ピーク周波数は上昇し、誘電損失減少により電磁波の透過損失は減少する。こ の他、入射電磁波の波長がカーボンナノコイルの大きさと比較して小さい場合、幾何 光学的遮蔽面積の減少により透過率 (透光率)が増大する。 [0050] To explain this mechanism in detail, for example, when carbon nanocoils are used as conductive carbon, carbon nanocoils are dispersed when carbon nanocoils are unoriented (the orientation is irregular shell IJ). The dielectric anisotropy of the fluid is averaged and is isotropic as a whole. On the other hand, when an AC voltage is applied between the transparent electrodes, the carbon nanocoils in the fluid are oriented perpendicular to the transparent electrodes. When carbon nanocoils are in an oriented state, dielectric anisotropy develops, the dielectric constant and dielectric loss for an electric field perpendicular to the orientation direction decrease, and the dielectric constant and dielectric loss for an electric field parallel to the orientation direction increase. . Since the electric field of the electromagnetic wave incident perpendicularly to this device is perpendicular to the orientation direction of the carbon nanocoil, the absorption peak frequency of the electromagnetic wave increases as the dielectric constant decreases, and the transmission loss of the electromagnetic wave decreases as the dielectric loss decreases. In addition, when the wavelength of the incident electromagnetic wave is smaller than the size of the carbon nanocoil, the transmittance (transmittance) increases due to the reduction of the geometric optical shielding area.
[0051] ii)基板に積層された二組の櫛形電極を、対向する当該櫛形電極を構成する各々 の電極が平行となるように配置し、当該二組の櫛形電極間に、高アスペクト比である 導電性カーボンを含有する流体を充填させた装置の場合  [0051] ii) Two sets of comb-shaped electrodes stacked on the substrate are arranged so that the respective electrodes constituting the facing comb-shaped electrodes are parallel to each other, and a high aspect ratio is provided between the two sets of comb-shaped electrodes. In the case of a device filled with a fluid containing conductive carbon
図 5に示すように、櫛形電極に交流電圧を印加すると、流体中の導電性カーボンが 、櫛形電極を構成する一本一本の細線電極間に、当該細線電極と垂直になるように 、かつ電極基板と平行になるように配向する。なお、電圧を適宜調節することにより、 垂直に配向するまでの導電性カーボンの角度を適宜調節できる。これらにより、当該 装置の電極間を透過する電磁波の波長域及び/又は吸収量を制御できる。  As shown in FIG. 5, when an alternating voltage is applied to the comb electrode, the conductive carbon in the fluid is perpendicular to the thin wire electrode between each thin wire electrode constituting the comb electrode, and Oriented to be parallel to the electrode substrate. Note that, by appropriately adjusting the voltage, the angle of the conductive carbon until it is vertically aligned can be appropriately adjusted. Thus, it is possible to control the wavelength range and / or the amount of absorption of electromagnetic waves transmitted between the electrodes of the device.
[0052] このメカニズムを詳述する。本装置に垂直に入射する電磁波は、電界が櫛歯に平 行な偏波成分と、電界が櫛歯電極に垂直な偏波成分とに分けて考えることができる。 電界が櫛歯電極に平行な偏波成分に関しては、誘電率の増大と誘電損失の増大に より吸収ピーク周波数の低下と透過損失の増大が起こる。 [0053] 電界が櫛歯電極に垂直な偏波成分に関しては、誘電率の減少と誘電損失の減少 により吸収ピーク周波数の上昇と透過損失の減少が起こる。この他、入射電磁波の 波長がカーボンナノコイルの大きさと比較して小さい場合、幾何光学的遮蔽面積の 増大により透過率 (透光率)が増大する。 [0052] This mechanism will be described in detail. Electromagnetic waves incident perpendicularly to this device can be considered by dividing them into a polarization component whose electric field is parallel to the comb teeth and a polarization component whose electric field is perpendicular to the comb electrodes. For the polarization component whose electric field is parallel to the comb electrode, an increase in dielectric constant and an increase in dielectric loss cause a decrease in absorption peak frequency and an increase in transmission loss. [0053] With respect to the polarization component in which the electric field is perpendicular to the comb electrode, a decrease in dielectric constant and a decrease in dielectric loss cause an increase in absorption peak frequency and a decrease in transmission loss. In addition, when the wavelength of the incident electromagnetic wave is smaller than the size of the carbon nanocoil, the transmittance (transmittance) increases due to the increase of the geometric optical shielding area.
[0054] iii)基板に積層された二組の櫛形電極を、対向する当該櫛形電極の各々の電極が 垂直(ねじれの関係)となるように、配置し、高アスペクト比である導電性カーボンを含 有する流体を充填させた装置の場合  [0054] iii) Two sets of comb-shaped electrodes laminated on the substrate are arranged so that each of the opposing comb-shaped electrodes is vertical (twisted relationship), and conductive carbon having a high aspect ratio is disposed. In the case of equipment filled with fluid
a)上下の櫛形電極に電圧を印加した場合、図 6に示すように電極基板平面に垂直に (Z方向に)導電性カーボンが配向する。  a) When a voltage is applied to the upper and lower comb electrodes, the conductive carbon is oriented perpendicular to the electrode substrate plane (in the Z direction) as shown in FIG.
b)上側の櫛形電極にのみ電圧を印加した場合、図 7に示すように、導電性カーボン が上側の櫛形電極の各々の細線電極間に Y方向に配向する。  b) When a voltage is applied only to the upper comb electrode, the conductive carbon is oriented in the Y direction between the thin wire electrodes of the upper comb electrode as shown in FIG.
c)下側の櫛形電極にのみ電圧を印加した場合、図 8に示すように、導電性カーボン が下側の櫛形電極の各々の細線電極間に X方向に配向する。  c) When a voltage is applied only to the lower comb electrode, the conductive carbon is oriented in the X direction between the thin wire electrodes of the lower comb electrode, as shown in FIG.
[0055] なお、電圧を適宜調節することにより、垂直に配向するまでの導電性カーボンの角 度を適宜調節できる。これらにより、当該装置の電極間を透過する電磁波の波長域 及び/又は吸収量 (透過率又は反射率)を制御できる。これらのメカニズムは上記し たものと同様である。上記方法から最終製品の用途、 目的等に応じて最適な制御方 法をとればよい。  [0055] By appropriately adjusting the voltage, the angle of the conductive carbon until it is vertically aligned can be appropriately adjusted. By these, it is possible to control the wavelength region and / or the amount of absorption (transmittance or reflectance) of the electromagnetic wave transmitted between the electrodes of the device. These mechanisms are the same as described above. From the above method, an optimal control method may be taken according to the use and purpose of the final product.
[0056] 特に電磁波が可視光及び紫外光である場合は、上記方法により導電性カーボンを 配向させることにより、当該電磁波の吸収量 (透過率又は反射率)を変化させて、スィ ツチ機能(光シャッター等に代表される光吸収の on、 off機能)としての役割を効果的 に発揮する。  [0056] In particular, when the electromagnetic waves are visible light and ultraviolet light, the conductive carbon is oriented by the above-described method to change the absorption amount (transmittance or reflectance) of the electromagnetic waves, so that the switch function (light It effectively plays a role as a light absorption on / off function represented by a shutter.
[0057] 電磁波がマイクロ波、ミリ波、テラへルツ波、赤外線等である場合は、上記の方法に より導電性カーボンを配向させることにより、上記吸収量のほか、吸収波長域等も多 段的に変化させることもでき、スィッチ機能のほか、可変波長機能(吸収波長域を多 段的に変化させる機能)及び変調機能 (電磁波の透過率 (又は反射率)を多段的に 変化させる機能)も好適に発揮できる。  [0057] When the electromagnetic waves are microwaves, millimeter waves, terahertz waves, infrared rays, or the like, the conductive carbon is oriented by the above method, so that in addition to the above-mentioned absorption amount, the absorption wavelength range and the like are multistage. Switchable function, variable wavelength function (function to change absorption wavelength range in multiple stages) and modulation function (function to change electromagnetic wave transmittance (or reflectivity) in multiple stages) Can also be suitably exhibited.
[0058] 電圧、印加時間等は、導電性カーボン、流体、上記装置の種類のほか電極間距離 等に応じて適宜決定すればよぐ電圧、印加時間等を適宜変更することにより、導電 性カーボンの配向度合い、ひいては電磁波の吸収波長域及び/又は吸収量を適宜 調節すること力 Sできる。 [0058] Voltage, application time, etc. are the distance between the electrodes in addition to the conductive carbon, fluid, type of the above device By appropriately changing the voltage, the application time, etc. as appropriate according to the above, it is possible to appropriately adjust the degree of orientation of the conductive carbon, and hence the absorption wavelength range and / or absorption amount of the electromagnetic wave.
[0059] なお、上記装置の電極間の流体を樹脂とすると、樹脂の種類によっては常温では、 流動性がなく導電性カーボンが配向しない場合がある。この場合は、加熱により、樹 脂に流動性を持たせた後、電界を印加して、導電性カーボンを配向すればよい。こ のような常温では流動性を有しないが加熱により流動性を有することとなる樹脂を流 体として用いることにより、装置設置後に、透過する電磁波の吸収波長域及び Z又は 吸収量を変化させることができると同時に、常温で導電性カーボンの配向性を強固 に安定化することができる、電磁波吸収装置を提供することができる。  [0059] If the fluid between the electrodes of the device is a resin, depending on the type of the resin, there is a case where the conductive carbon does not orient at normal temperature and there is no fluidity. In this case, after imparting fluidity to the resin by heating, an electric field may be applied to orient the conductive carbon. By using as the fluid a resin that does not have fluidity at room temperature but will become fluid by heating, change the absorption wavelength range and Z or amount of absorbed electromagnetic waves after installation. At the same time, it is possible to provide an electromagnetic wave absorber that can firmly stabilize the orientation of the conductive carbon at room temperature.
[0060] 本発明の第二態様の方法は、電磁波吸収装置を透過する電磁波の波長域及び Z 又は吸収量を制御する方法であって、上記第 1発明の方法により配向させた高ァス ぺクト比である導電性カーボンを含有する流体に流動、振動又は熱を与えることによ り、配向させた前記導電性カーボンを分散させる、ことを特徴とする。これにより、一度 配向させた導電性カーボンの配向状態を変えることができる。  [0060] The method of the second aspect of the present invention is a method for controlling the wavelength range and Z or the amount of absorption of electromagnetic waves that pass through the electromagnetic wave absorber, and is a high-space orientation oriented by the method of the first invention. The oriented conductive carbon is dispersed by applying a flow, vibration, or heat to a fluid containing the conductive carbon having a ratio of 1 to 5. Thereby, the orientation state of the conductive carbon once oriented can be changed.
[0061] 具体例としては、流体を液送ポンプ等で流動させる方法、流体を超音波装置等で 振動させる方法、流体をスターラー等で攪拌する方法、流体を電熱器等で加熱する 方法等のほか、電極に振動、加熱等することにより、間接的に流体に流動、振動、攪 拌、加熱する方法等が挙げられる。なお、流体が常温で流動性を有しない樹脂であ る場合は、当該樹脂を加熱することにより流動性を持たせた後、上記方法を採用す ればよい。  [0061] Specific examples include a method of flowing a fluid with a liquid feed pump, a method of vibrating the fluid with an ultrasonic device, a method of stirring the fluid with a stirrer, a method of heating the fluid with an electric heater, etc. In addition, a method of indirectly flowing, vibrating, stirring, and heating the fluid by vibrating or heating the electrode can be used. When the fluid is a resin that does not have fluidity at room temperature, the above method may be adopted after the fluidity is provided by heating the resin.
発明の効果  The invention's effect
[0062] 本発明の電磁波吸収装置は、高アスペクト比である導電性カーボンを含有する流 体が電極間に充填されてなる構造を有するため、電磁波の吸収波長域及び Z又は 吸収量を調節できる。このため、製造後又は所望の場所に設置後も適宜、吸収波長 域及び/又は吸収量を変更でき、多種多様の用途に使用できる。  [0062] Since the electromagnetic wave absorber of the present invention has a structure in which a fluid containing conductive carbon having a high aspect ratio is filled between electrodes, the electromagnetic wave absorption wavelength range and Z or the amount of absorption can be adjusted. . For this reason, the absorption wavelength region and / or the amount of absorption can be appropriately changed after production or after installation at a desired location, and can be used for various applications.
[0063] また、本発明の制御方法によれば、電界(電圧等)を調節することにより、電磁波の 吸収波長域及び/又は吸収量を調節できる。 発明を実施するための最良の形態 [0063] Further, according to the control method of the present invention, the absorption wavelength region and / or the amount of absorption of electromagnetic waves can be adjusted by adjusting the electric field (voltage, etc.). BEST MODE FOR CARRYING OUT THE INVENTION
[0064] 以下に実施例及び比較例を挙げて、本発明をさらに詳述する。なお、本発明は以 下の実施例に限定されるものではない。  [0064] Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited to the following examples.
[0065] 実施例 1 [0065] Example 1
<電界によるナノコイルの水平配向の実施例 >  <Example of horizontal alignment of nanocoil by electric field>
カーボンナノコイルをイソプロピルアルコール溶液(25°Cにおける粘度: 2cPs)に分 散させた分散液を用意した。分散液中のナノコイルのコイル長は平均 1〜40 μ ΐη、分 散液中のカーボンナノコイルの濃度は 0. 0127重量%であった。  A dispersion in which carbon nanocoils were dispersed in an isopropyl alcohol solution (viscosity at 25 ° C .: 2 cPs) was prepared. The average coil length of the nanocoils in the dispersion was 1 to 40 μΐη, and the concentration of the carbon nanocoils in the dispersion was 0.0127 wt%.
[0066] 2本の細線電極 (銅線)を 0. 9mm間隔で平行に並べることにより電極装置(水平対 向用)を作製した。当該 2本の電極間に上記分散液を充填することにより、実施例 1の 電磁波吸収装置を製造した。この装置に、周波数 100kHz、電界強度 63kV/mの 電界を 1分間印加した。  [0066] An electrode device (for horizontal orientation) was fabricated by arranging two thin wire electrodes (copper wires) in parallel at 0.9 mm intervals. The electromagnetic wave absorbing device of Example 1 was manufactured by filling the dispersion between the two electrodes. An electric field with a frequency of 100 kHz and an electric field strength of 63 kV / m was applied to this device for 1 minute.
[0067] 電界印加前後の光学顕微鏡により観察した結果を図 9に示す。  [0067] Fig. 9 shows the results of observation with an optical microscope before and after electric field application.
[0068] 上記電界印加前後の電極間にある流体の透過光量を測定したところ、 0. 91%の 変化が生じていた。これにより、スィッチ機能があることが分かった。  [0068] When the transmitted light quantity of the fluid between the electrodes before and after the application of the electric field was measured, a change of 0.91% occurred. As a result, it was found that there was a switch function.
[0069] なお、光源は白色 LED (日亜化学社製、型番: NSPW500CS)を使用した。透過 光量の変化率は以下のようにして求めた。  [0069] A white LED (manufactured by Nichia Corporation, model number: NSPW500CS) was used as the light source. The rate of change in the amount of transmitted light was determined as follows.
[0070] パーソナルコンピュータと直結できる小型 CCDカメラ(Logitech Q Cam Pro 4 000)を明視野顕微鏡 (ォリンパス社製)の接眼鏡に取り付けて、コリメート式撮影によ り電気泳動(配向)の様子をカラー動画像で記録した。記録した動画像から配向開始 前と配向終了後のカラー静止画像をそれぞれ抽出し、電極間のカーボンナノコイル の配向が起こる領域内の全画素の平均輝度を計算した。  [0070] A small CCD camera (Logitech Q Cam Pro 4 000) that can be directly connected to a personal computer is attached to the eyepiece of a bright-field microscope (Olympus), and the state of electrophoresis (orientation) is colored by collimated photography. Recorded as moving images. Color still images before and after the alignment were extracted from the recorded moving images, and the average luminance of all pixels in the region where the alignment of the carbon nanocoils between the electrodes occurred was calculated.
[0071] 1画素の赤(R)、緑(G)、青(B)各成分のレベル(0〜255)力、ら下記式を用いて輝 度 (Y)を算出した。  [0071] The luminance (Y) was calculated using the following equation using the level (0 to 255) force of each component of red (R), green (G), and blue (B) of one pixel.
[0072] Y =0. 29891 X R + 0. 58661 X G + 0. 11448 X B  [0072] Y = 0.29891 X R + 0. 58661 X G + 0. 11448 X B
上記式により算出された配向後の輝度の平均値と配向前の輝度の平均値との変化 率を透過光量の変化率とした。  The rate of change between the average value of the luminance after orientation calculated by the above formula and the average value of the luminance before orientation was defined as the change rate of the transmitted light amount.
[0073] 実施例 2 <電界によるナノコイルの垂直配向の実施例 > [0073] Example 2 <Example of vertical alignment of nanocoil by electric field>
カーボンナノコイルをイソプロピルアルコール溶液(25°Cにおける粘度: 2cPs)に分 散させた分散液を用いた。分散液中のカーボンナノコイルのコイル長は 1〜40 μ m、 分散液中のナノコイルの濃度は 0. 006重量%であった。  A dispersion in which carbon nanocoils were dispersed in an isopropyl alcohol solution (viscosity at 25 ° C .: 2 cPs) was used. The coil length of carbon nanocoils in the dispersion was 1-40 μm, and the concentration of nanocoils in the dispersion was 0.006% by weight.
[0074] ITO電極(三容真空工業社製)をガラス基板に積層した ITOガラス基板 2枚を、 IT O層が内側になるように 0. 22mm間隔で配置することにより、電極装置 (垂直対向測 定用)を作製した。当該電極装置に上記分散液を充填することにより、実施例 2の電 磁波吸収装置を製造した。周波数 lkHz、電界強度 256kVZmの電界を 1分間印加 した。 [0074] An electrode device (vertically opposed) is formed by placing two ITO glass substrates on which ITO electrodes (manufactured by Sanyo Vacuum Industry Co., Ltd.) are laminated on a glass substrate at an interval of 0.22 mm so that the ITO layer is on the inside. For measurement). The electromagnetic wave absorber of Example 2 was manufactured by filling the electrode device with the dispersion. An electric field with a frequency of 1 kHz and an electric field strength of 256 kVZm was applied for 1 minute.
[0075] 光学顕微鏡により観察した結果を図 10に示す。  [0075] Fig. 10 shows the results of observation with an optical microscope.
[0076] 上記電界印加前後の電極間にある流体の透過光量を測定したところ、 8%の変化 が生じていた。これにより、スィッチ機能があることが分かった。  [0076] When the amount of transmitted light of the fluid between the electrodes before and after the application of the electric field was measured, a change of 8% occurred. As a result, it was found that there was a switch function.
[0077] 実施例 3 [0077] Example 3
<高粘度流体中でのナノコイルの水平配向の実施例 >  <Example of horizontal orientation of nanocoil in high viscosity fluid>
カーボンナノコイルをグリセリン溶液(25°Cにおける粘度: 800cPs)に分散させた分 散液を用意した。分散液中のカーボンナノコイルのコイル長は l〜40 /i m,分散液中 のナノコイルの濃度は 0. 006重量%であった。実施例 1で製造した電極装置に、上 記分散液を充填することにより、実施例 3の電磁波吸収装置を製造した。この装置に 周波数 lkHz、電界強度 63kV/mの電界を印加した。  A dispersion liquid in which carbon nanocoils were dispersed in a glycerin solution (viscosity at 25 ° C .: 800 cPs) was prepared. The coil length of the carbon nanocoil in the dispersion was 1 to 40 / im, and the concentration of the nanocoil in the dispersion was 0.006% by weight. The electromagnetic wave absorbing device of Example 3 was manufactured by filling the electrode device manufactured in Example 1 with the above dispersion. An electric field with a frequency of 1 kHz and an electric field strength of 63 kV / m was applied to this device.
[0078] 電界印加前後の光学顕微鏡により観察した結果を図 11に示す。 FIG. 11 shows the results of observation with an optical microscope before and after the application of an electric field.
[0079] 上記電界印加前後の電極間にある流体の透過光量を測定したところ、 0. 7%の変 化が生じていた。これにより、スィッチ機能があることが分かった。 [0079] When the amount of transmitted light between the electrodes before and after the application of the electric field was measured, a change of 0.7% occurred. As a result, it was found that there was a switch function.
[0080] 実施例 4 [0080] Example 4
アクリル系紫外線硬化型樹脂 (TESK社製、型番 A— 1836、 25°Cにおける粘度 1 OcPs)にカーボンナノコイルを 0. 05重量%分散させたコイル含有樹脂を作製した。 I TO電極(三容真空工業社製)をガラス基板に積層した ITOガラス基板 2枚(22mm X 33mm)を、 IT〇層が内側になるように、また電極間隔が 0. 5mmとなるように平行 に配置し、スぺーサで固定することにより、セルを作製した。コイル含有樹脂をセル内 に 0. 4g充填することにより、本発明の電磁波吸収装置を作製した。 A coil-containing resin was prepared by dispersing 0.05% by weight of carbon nanocoils in an acrylic ultraviolet curable resin (TESK, model number A-1836, viscosity 1 OcPs at 25 ° C.). Two ITO glass substrates (22mm X 33mm) with I TO electrodes (manufactured by Sanyo Vacuum Industries Co., Ltd.) laminated on a glass substrate so that the IT ○ layer is on the inside and the electrode spacing is 0.5mm. Cells were prepared by placing them in parallel and fixing them with a spacer. Coil-containing resin in cell The electromagnetic wave absorbing device of the present invention was produced by filling 0.4 g of the solution.
[0081] 得られた電磁波吸収装置中のカーボンナノコイルを配向させ、配向前後の複素比 誘電率を測定した。図 12に測定回路を示す。 [0081] Carbon nanocoils in the obtained electromagnetic wave absorber were oriented, and the complex dielectric constant before and after the orientation was measured. Figure 12 shows the measurement circuit.
[0082] まず、セルにコイル含有樹脂を充填した直後の電磁波吸収装置に、交流電圧(電 圧 20V、周波数 100kHz)を印加し、 2現象オシロスコープ(テクトロニクス社製、型番 TDS3024B)を用いて、配向前のセルインピーダンス Z、及び電圧波形と電流波形と の位相差 φを測定した。測定結果は、インピーダンス Zが 54. 3k Ω、位相差 φが— 7 8. 2° であった。この結果から、配向前の複素比誘電率 ε を計算すると、 2. 23-jO . 466であった。 [0082] First, an AC voltage (voltage 20V, frequency 100kHz) was applied to the electromagnetic wave absorber immediately after filling the cell with the coil-containing resin, and orientation was performed using a two-phenomenon oscilloscope (Tektronix Corp., model number TDS3024B). The previous cell impedance Z and the phase difference φ between the voltage waveform and the current waveform were measured. The measurement results were an impedance Z of 54.3 kΩ and a phase difference φ of -78.2 °. From this result, the complex dielectric constant ε before orientation was calculated to be 2.23-jO.466.
[0083] 次いで、印加電圧を上げて、 200Vの交流電圧(周波数 100kHz)を電磁波吸収装 置に印加することにより、装置中のカーボンナノコイルを電極平面と垂直となるように 配向させた。  Next, the applied voltage was increased and a 200 V AC voltage (frequency: 100 kHz) was applied to the electromagnetic wave absorbing device, so that the carbon nanocoils in the device were oriented perpendicular to the electrode plane.
[0084] その後、印加電圧を下げて、 20Vの交流電圧(周波数 100kHz)を印加し、 2現象 オシロスコープ(テクトロニクス社製、型番 TDS3024B)を用いて、配向後のセルイン ピーダンス Z'、及び電圧波形と電流波形との位相差 φを測定した。測定結果は、ィ ンピーダンス Zが 48. Ok Ω、位相差 φ力 S— 77. 9° であった。この結果から、配向後 の複素比誘電率 ε を計算すると、 2. 53 -jO. 527であった。  [0084] After that, the applied voltage was lowered, an AC voltage of 20 V (frequency 100 kHz) was applied, and the cell impedance Z ′ after orientation and the voltage waveform were measured using a two-phenomenon oscilloscope (Tektronix, model number TDS3024B). The phase difference φ with respect to the current waveform was measured. The measurement results were impedance Z of 48. Ok Ω and phase difference φ force S—77.9 °. From this result, the complex dielectric constant ε after orientation was calculated to be 2.53-jO.527.
[0085] このこと力ら、配向前の複素比誘電率に比べ、配向後の複素比誘電率の方が虚部 及び実部の値ともに大きくなつていた。これにより、本発明の電磁波吸収装置は、電 磁波吸収特性(吸収波長域及び吸収量)を変化できることが分かった。  [0085] Because of this, the complex relative permittivity after orientation was larger for both the imaginary part and the real part than the complex relative permittivity before orientation. Thereby, it was found that the electromagnetic wave absorption device of the present invention can change the electromagnetic wave absorption characteristics (absorption wavelength region and absorption amount).
[0086] 比較例 1  [0086] Comparative Example 1
<カーボンブラックにおけるマイクロ波帯域の電磁波吸収特性 >  <Electromagnetic wave absorption characteristics in the microwave band of carbon black>
カーボンブラック(平均粒子径 25nm、東海カーボン社製、「導電性トーカブラック # 5500」 )をイソプロピルアルコール溶液(25°Cにおける粘度: 2cPs)に分散させた分 散液を用意した。分散液中のカーボンブラックの濃度は 0. 0127重量%であった。  A dispersion was prepared by dispersing carbon black (average particle size 25 nm, manufactured by Tokai Carbon Co., Ltd., “Conductive Talker Black # 5500”) in an isopropyl alcohol solution (viscosity at 25 ° C .: 2 cPs). The concentration of carbon black in the dispersion was 0.0127% by weight.
[0087] 2本の細線電極 (銅線)を 0. 9mm間隔で平行に並べることにより電極装置(水平対 向用)を作製した。当該 2本の電極間に上記分散液を充填することにより、比較例 1の 装置を製造した。 [0088] この装置に、周波数 100kHz,電界強度 63kV/mの電界を 1分間印加した。上記 電界印加前後の電極間にある流体の透過光量を測定したところ、変化が全く生じて いなかった。これにより、スィッチ機能を発揮しないことが かった。 [0087] An electrode device (for horizontal orientation) was fabricated by arranging two thin wire electrodes (copper wires) in parallel at 0.9 mm intervals. The device of Comparative Example 1 was manufactured by filling the dispersion between the two electrodes. [0088] An electric field having a frequency of 100 kHz and an electric field strength of 63 kV / m was applied to this apparatus for 1 minute. When the amount of transmitted light between the electrodes before and after the application of the electric field was measured, no change occurred. As a result, the switch function was not demonstrated.
図面の簡単な説明  Brief Description of Drawings
[0089] [図 1]図 1は、本発明の電磁波吸収装置の一例を示す。  [0089] FIG. 1 shows an example of an electromagnetic wave absorber according to the present invention.
[図 2]図 2は、本発明の電磁波吸収装置の一例を示す。  FIG. 2 shows an example of an electromagnetic wave absorber according to the present invention.
[図 3]図 3は、本発明の電磁波吸収装置の一例を示す。  FIG. 3 shows an example of an electromagnetic wave absorber according to the present invention.
[図 4]図 4は、本発明の電磁波の制御方法のメカニズムの-一例を示す。  FIG. 4 shows an example of the mechanism of the electromagnetic wave control method of the present invention.
[図 5]図 5は、本発明の電磁波の制御方法のメカニズムの-一例を示す。  FIG. 5 shows an example of the mechanism of the electromagnetic wave control method of the present invention.
[図 6]図 6は、本発明の電磁波の制御方法のメカニズムの-一例を示す。  FIG. 6 shows an example of the mechanism of the electromagnetic wave control method of the present invention.
[図 7]図 7は、本発明の電磁波の制御方法のメカニズムの-一例を示す。  FIG. 7 shows an example of the mechanism of the electromagnetic wave control method of the present invention.
[図 8]図 8は、本発明の電磁波の制御方法のメカニズムの-一例を示す。  FIG. 8 shows an example of the mechanism of the electromagnetic wave control method of the present invention.
[図 9]図 9は、本実施例 1の電磁波吸収装置の電界印加前後の観察結果を示す。  [FIG. 9] FIG. 9 shows the observation results of the electromagnetic wave absorbing device of Example 1 before and after application of an electric field.
[図 10]図 10は、本実施例 2の電磁波吸収装置の電界印加前後の観察結果を示す。  FIG. 10 shows the observation results before and after applying the electric field in the electromagnetic wave absorber of Example 2. FIG.
[図 11]図 11は、本実施例 3の電磁波吸収装置の電界印加前後の観察結果を示す。 園 12]図 12は、本実施例 4で用いた可変波長電磁波吸収装置の測定回路を示す。  [FIG. 11] FIG. 11 shows the observation results of the electromagnetic wave absorbing device of Example 3 before and after application of an electric field. 12] FIG. 12 shows a measurement circuit of the variable wavelength electromagnetic wave absorber used in the fourth embodiment.

Claims

請求の範囲 The scope of the claims
[1] 高アスペクト比である導電性カーボンを含有する流体が電極間に充填されてなる、 吸収波長域及び/又は吸収量が可変な電磁波吸収装置。  [1] An electromagnetic wave absorber having a variable absorption wavelength range and / or absorption amount, which is formed by filling a fluid containing conductive carbon having a high aspect ratio between electrodes.
[2] 導電性カーボンのアスペクト比が 2以上である、請求項 1に記載の電磁波吸収装置  [2] The electromagnetic wave absorber according to claim 1, wherein the conductive carbon has an aspect ratio of 2 or more.
[3] 導電性カーボンがカーボンナノコイル、カーボンナノチューブ、カーボンナノフアイ バー及びカーボンナノツイストからなる群から選ばれる少なくとも 1種である、請求項 1 に記載の電磁波吸収装置。 [3] The electromagnetic wave absorber according to claim 1, wherein the conductive carbon is at least one selected from the group consisting of carbon nanocoils, carbon nanotubes, carbon nanofibers, and carbon nanotwists.
[4] 導電性カーボンの含有量が、流体 100重量部に対して 0. 001〜 50重量部である [4] The conductive carbon content is 0.001 to 50 parts by weight per 100 parts by weight of the fluid.
、請求項 1に記載の電磁波吸収装置。 The electromagnetic wave absorber according to claim 1.
[5] 流体の粘度が:!〜 100, 000cPs (25°C)である、請求項 1に記載の電磁波吸収装 置。 [5] The electromagnetic wave absorber according to claim 1, wherein the fluid has a viscosity of:! To 100,000 cPs (25 ° C).
[6] 電磁波吸収装置を透過する電磁波の波長域及び/又は吸収量を制御する方法で あってヽ  [6] A method for controlling the wavelength range and / or amount of absorption of electromagnetic waves transmitted through an electromagnetic wave absorber.
高アスペクト比である導電性カーボンを含有する流体が電極間に充填されてなる電 磁波吸収装置の当該電極間に電界を印加することにより、当該導電性カーボンを配 向させる、  Orienting the conductive carbon by applying an electric field between the electrodes of an electromagnetic wave absorber in which a fluid containing conductive carbon having a high aspect ratio is filled between the electrodes.
ことを特徴とする吸収電磁波制御方法。  A method for controlling absorbed electromagnetic waves.
[7] 前記電磁波がマイクロ波以上の波長域を有する電磁波である、請求項 6に記載の 吸収電磁波制御方法。 7. The absorbed electromagnetic wave control method according to claim 6, wherein the electromagnetic wave is an electromagnetic wave having a wavelength range equal to or greater than a microwave.
[8] 前記電磁波が赤外線以下の波長域を有する電磁波である、請求項 6に記載の吸 収電磁波制御方法。  8. The absorbed electromagnetic wave control method according to claim 6, wherein the electromagnetic wave is an electromagnetic wave having a wavelength range equal to or less than infrared.
[9] 電磁波吸収装置を透過する電磁波の波長域及び/又は吸収量を制御する方法で あって、  [9] A method for controlling the wavelength range and / or amount of absorption of electromagnetic waves transmitted through an electromagnetic wave absorbing device,
請求項 6に記載の方法により配向させた導電性カーボンを含有する流体に流動、 振動又は熱を与えることにより、前記導電性カーボンの配向状態を変える、  Changing the orientation state of the conductive carbon by applying a flow, vibration or heat to the fluid containing the conductive carbon oriented by the method according to claim 6;
ことを特徴とする吸収電磁波制御方法。  A method for controlling absorbed electromagnetic waves.
PCT/JP2007/055713 2006-03-20 2007-03-20 Electromagnetic wave absorbing device and method for controlling electromagnetic wave absorption WO2007108478A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008506315A JP5177425B2 (en) 2006-03-20 2007-03-20 Electromagnetic wave absorber and absorbed electromagnetic wave control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-077806 2006-03-20
JP2006077806 2006-03-20

Publications (1)

Publication Number Publication Date
WO2007108478A1 true WO2007108478A1 (en) 2007-09-27

Family

ID=38522506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055713 WO2007108478A1 (en) 2006-03-20 2007-03-20 Electromagnetic wave absorbing device and method for controlling electromagnetic wave absorption

Country Status (2)

Country Link
JP (1) JP5177425B2 (en)
WO (1) WO2007108478A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101490654B1 (en) 2014-05-29 2015-02-09 중앙대학교 산학협력단 Metamaterial absorber
JP2015115499A (en) * 2013-12-12 2015-06-22 国立研究開発法人理化学研究所 Transmittance control method of electromagnetic wave, and transmittance control device for electromagnetic wave
KR20160100074A (en) * 2015-02-13 2016-08-23 김남식 Electromagnetic wave shield apparatus and electronic device having the same
WO2024070882A1 (en) * 2022-09-28 2024-04-04 富士フイルム株式会社 Electromagnetic wave absorber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297097A (en) * 1990-05-28 1992-10-21 Osaka Gas Co Ltd Method of radio-wave absorption
JPH06235281A (en) * 1993-02-09 1994-08-23 Yoji Kozuka Radio wave shielding body and absorber
JPH07231193A (en) * 1991-05-10 1995-08-29 Tokai Univ Radio wave absorption property changing method for ferrite radio wave absorber
JP2003158395A (en) * 2001-11-22 2003-05-30 Kansai Research Institute Electromagnetic wave absorbing material
JP2004323342A (en) * 2003-04-07 2004-11-18 Mitsui Chemicals Inc Carbon nanotube orientatation method, and carbon nanotube composition
JP2006073991A (en) * 2004-08-02 2006-03-16 Sony Corp Electromagnetic wave suppressing material, electromagnetic wave suppressing device and electronic equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207098A (en) * 1985-03-12 1986-09-13 三菱重工業株式会社 Characteristic varying type radio wave absorbing body
JPH08116197A (en) * 1994-10-13 1996-05-07 Nippon Sheet Glass Co Ltd Radio-wave absorptive structure of transparent plate, window member and frame
US6987602B2 (en) * 1999-06-07 2006-01-17 Research Frontiers Incorporated Anisometrically shaped carbon and/or graphite particles, liquid suspensions and films thereof and light valves comprising same
JP2002261488A (en) * 2001-03-02 2002-09-13 Mitsubishi Electric Corp Electromagnetic dark environment chamber
JP2002256781A (en) * 2002-01-07 2002-09-11 Kitagawa Ind Co Ltd Radio wave absorber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297097A (en) * 1990-05-28 1992-10-21 Osaka Gas Co Ltd Method of radio-wave absorption
JPH07231193A (en) * 1991-05-10 1995-08-29 Tokai Univ Radio wave absorption property changing method for ferrite radio wave absorber
JPH06235281A (en) * 1993-02-09 1994-08-23 Yoji Kozuka Radio wave shielding body and absorber
JP2003158395A (en) * 2001-11-22 2003-05-30 Kansai Research Institute Electromagnetic wave absorbing material
JP2004323342A (en) * 2003-04-07 2004-11-18 Mitsui Chemicals Inc Carbon nanotube orientatation method, and carbon nanotube composition
JP2006073991A (en) * 2004-08-02 2006-03-16 Sony Corp Electromagnetic wave suppressing material, electromagnetic wave suppressing device and electronic equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015115499A (en) * 2013-12-12 2015-06-22 国立研究開発法人理化学研究所 Transmittance control method of electromagnetic wave, and transmittance control device for electromagnetic wave
KR101490654B1 (en) 2014-05-29 2015-02-09 중앙대학교 산학협력단 Metamaterial absorber
KR20160100074A (en) * 2015-02-13 2016-08-23 김남식 Electromagnetic wave shield apparatus and electronic device having the same
KR101704167B1 (en) 2015-02-13 2017-02-08 김남식 Electromagnetic wave shield apparatus and electronic device having the same
WO2024070882A1 (en) * 2022-09-28 2024-04-04 富士フイルム株式会社 Electromagnetic wave absorber

Also Published As

Publication number Publication date
JPWO2007108478A1 (en) 2009-08-06
JP5177425B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
CN103513488B (en) Electrophoresis element and display
CN105874379B (en) Optic modulating device
EP2397893B1 (en) Electrophoretic device, display, and electronic apparatus
JP5556762B2 (en) Suspended particle device, light control device using suspended particle device, and driving method thereof
WO2007108478A1 (en) Electromagnetic wave absorbing device and method for controlling electromagnetic wave absorption
US20130201549A1 (en) Suspended particle device, light control device using the same, and driving method
JP6574042B2 (en) Plastic cell and manufacturing method thereof
US11469011B2 (en) Method for producing transparent electrode
CN110133897A (en) Transparent display
CN106249459A (en) Liquid crystal optical device
US20140177029A1 (en) Thermochromatic device and thermochromatic display apparatus
Liang et al. Influence of ZnO NPs on morphological and electro-optical properties of polymer-dispersed liquid crystals
Chiou et al. Flexible light valves using polymer-dispersed liquid crystals and TiO 2/Ag/TiO 2 multilayers
WO2015040975A1 (en) Infrared focusing device
CN109478727A (en) The manufacturing method of scanning antenna and scanning antenna
KR102040468B1 (en) Method for manufacturing optical element
CN110208998A (en) Drying unit, intelligent color-changing film of nano silver PET conductive film and preparation method thereof
Ali et al. Stretchable photo sensor using perylene/graphene composite on ridged polydimethylsiloxane substrate
CN109343261A (en) A kind of automatically controlled polymer dispersed liquid-crystal film of variable color and preparation method
WO2017104716A1 (en) Plastic cell and method for manufacturing same
US10606145B2 (en) Plasmonic nanoparticles as pixels and sub-microsecond switches
US10459310B2 (en) Au—Ag nanorods in nonpolar solvents
CN107924096A (en) The method for manufacturing Optical devices
JP2013130858A (en) Electrophoretic device, method of manufacturing the same, and display
US11333323B2 (en) Light emitting device including variable transmission film to control intensity and pattern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739156

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008506315

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07739156

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)