JPWO2007108478A1 - Electromagnetic wave absorber and absorbed electromagnetic wave control method - Google Patents

Electromagnetic wave absorber and absorbed electromagnetic wave control method Download PDF

Info

Publication number
JPWO2007108478A1
JPWO2007108478A1 JP2008506315A JP2008506315A JPWO2007108478A1 JP WO2007108478 A1 JPWO2007108478 A1 JP WO2007108478A1 JP 2008506315 A JP2008506315 A JP 2008506315A JP 2008506315 A JP2008506315 A JP 2008506315A JP WO2007108478 A1 JPWO2007108478 A1 JP WO2007108478A1
Authority
JP
Japan
Prior art keywords
electromagnetic wave
conductive carbon
carbon
electrodes
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008506315A
Other languages
Japanese (ja)
Other versions
JP5177425B2 (en
Inventor
成司 秋田
成司 秋田
幸広 藤山
幸広 藤山
田中 健一郎
健一郎 田中
俊紀 野坂
俊紀 野坂
遼太 友兼
遼太 友兼
中山 喜萬
喜萬 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA FOUNDATION FOR TRADE AND INDUSTRY
OSAKAPREFECTURAL GOVERNMENT
Osaka Prefecture University
Original Assignee
OSAKA FOUNDATION FOR TRADE AND INDUSTRY
OSAKAPREFECTURAL GOVERNMENT
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA FOUNDATION FOR TRADE AND INDUSTRY, OSAKAPREFECTURAL GOVERNMENT, Osaka Prefecture University filed Critical OSAKA FOUNDATION FOR TRADE AND INDUSTRY
Priority to JP2008506315A priority Critical patent/JP5177425B2/en
Publication of JPWO2007108478A1 publication Critical patent/JPWO2007108478A1/en
Application granted granted Critical
Publication of JP5177425B2 publication Critical patent/JP5177425B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0071Active shielding

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)
  • Shutters For Cameras (AREA)

Abstract

本発明の吸収波長域及び/又は吸収量が可変な電磁波吸収装置は、高アスペクト比である導電性カーボンを含有する流体が電極間に充填されてなることを特徴とする。また、本発明の吸収電磁波制御方法、電磁波吸収装置を透過する電磁波の波長域及び/又は吸収量を制御する方法であって、高アスペクト比である導電性カーボンを含有する流体が電極間に充填されてなる電磁波吸収装置の当該電極間に電界を印加することにより、当該導電性カーボンを配向させることを特徴とする。The electromagnetic wave absorber having variable absorption wavelength range and / or absorption amount according to the present invention is characterized in that a fluid containing conductive carbon having a high aspect ratio is filled between electrodes. Also, the method for controlling an absorbed electromagnetic wave according to the present invention, a method for controlling the wavelength range and / or the amount of absorption of an electromagnetic wave transmitted through an electromagnetic wave absorber, and a fluid containing conductive carbon having a high aspect ratio is filled between electrodes. The conductive carbon is oriented by applying an electric field between the electrodes of the electromagnetic wave absorbing device.

Description

本発明は、新規な電磁波吸収装置及び吸収電磁波制御方法に関する。   The present invention relates to a novel electromagnetic wave absorber and an absorbed electromagnetic wave control method.

近年、携帯電話等の通信機器の増大、多様化により、それぞれに対応した電磁波を吸収するさまざまな電磁波吸収シートが提供されている(特許文献1等)。   2. Description of the Related Art In recent years, various electromagnetic wave absorbing sheets that absorb electromagnetic waves corresponding to each have been provided due to the increase and diversification of communication devices such as mobile phones (Patent Document 1, etc.).

例えば、特許文献1には、特定の繊維長のマイクロコイル状カーボン繊維が特定量で含有された誘電損失材のシートが提供されている。   For example, Patent Document 1 provides a sheet of dielectric loss material containing a specific amount of microcoiled carbon fibers having a specific fiber length.

しかしながら、上記特許文献1の電磁波吸収シートをはじめ、従来の電磁波吸収材は、吸収する波長域及び吸収量は予め固定されており、製造後や建物等に設置後は、波長域及び吸収量を変更できない。したがって、吸収対象の波長域等が変化した場合は、当該波長域等に対応できないという問題がある。   However, the electromagnetic wave absorbing sheet of Patent Document 1 and the conventional electromagnetic wave absorbing materials are fixed in advance in the wavelength range and the amount of absorption, and after installation or installation in a building or the like, the wavelength range and the amount of absorption are fixed. It can not be changed. Therefore, there is a problem that when the wavelength range or the like to be absorbed changes, the wavelength range or the like cannot be handled.

したがって、製造後又は設置後において、電磁波の波長域及び/又は吸収量を制御できる装置の開発が望まれている。
特開2001−77583号公報
Therefore, it is desired to develop a device that can control the wavelength range and / or the amount of absorption of electromagnetic waves after manufacturing or installation.
JP 2001-77583 A

本発明は、電磁波の吸収波長域及び/又は吸収量を変化させることができる装置及びその制御方法を提供することを主な目的とする。   The main object of the present invention is to provide a device capable of changing the absorption wavelength range and / or the amount of absorption of electromagnetic waves, and a control method therefor.

本発明者らは、上記従来技術に鑑み鋭意研究を重ねた結果、特定の構造を有する装置を使用することにより、本発明を完成するに至った。すなわち、本発明は下記の装置及び制御方法に係る。   As a result of intensive studies in view of the above prior art, the present inventors have completed the present invention by using an apparatus having a specific structure. That is, the present invention relates to the following apparatus and control method.

項1.高アスペクト比である導電性カーボンを含有する流体が電極間に充填されてなる、吸収波長域及び/又は吸収量が可変な電磁波吸収装置。   Item 1. An electromagnetic wave absorber having a variable absorption wavelength range and / or absorption amount, wherein a fluid containing conductive carbon having a high aspect ratio is filled between electrodes.

項2.導電性カーボンのアスペクト比が2以上である、上記項1に記載の電磁波吸収装置。   Item 2. Item 2. The electromagnetic wave absorber according to Item 1, wherein the conductive carbon has an aspect ratio of 2 or more.

項3.導電性カーボンがカーボンナノコイル、カーボンナノチューブ、カーボンナノファイバー及びカーボンナノツイストからなる群から選ばれる少なくとも1種である、上記項1又は2に記載の電磁波吸収装置。   Item 3. Item 3. The electromagnetic wave absorber according to Item 1 or 2, wherein the conductive carbon is at least one selected from the group consisting of carbon nanocoils, carbon nanotubes, carbon nanofibers, and carbon nanotwists.

項4.導電性カーボンの含有量が、流体100重量部に対して0.001〜50重量部である、上記項1〜3のいずれかに記載の電磁波吸収装置。   Item 4. Item 4. The electromagnetic wave absorber according to any one of Items 1 to 3, wherein the conductive carbon content is 0.001 to 50 parts by weight with respect to 100 parts by weight of the fluid.

項5.流体の粘度が1〜100,000cPs(25℃)である、上記項1〜4のいず
れかに記載の電磁波吸収装置。
Item 5. Item 5. The electromagnetic wave absorber according to any one of Items 1 to 4, wherein the fluid has a viscosity of 1 to 100,000 cPs (25 ° C).

項6.電磁波吸収装置を透過する電磁波の波長域及び/又は吸収量を制御する方法であって、高アスペクト比である導電性カーボンを含有する流体が電極間に充填されてなる電磁波吸収装置の当該電極間に電界を印加することにより、当該導電性カーボンを配向させる、
ことを特徴とする吸収電磁波制御方法。
Item 6. A method for controlling the wavelength range and / or the amount of absorption of electromagnetic waves that pass through an electromagnetic wave absorbing device, wherein a fluid containing conductive carbon having a high aspect ratio is filled between the electrodes. Orienting the conductive carbon by applying an electric field to
A method for controlling absorbed electromagnetic waves.

項7.前記電磁波が、マイクロ波以上の波長域を有する電磁波である、上記項6に記載の吸収電磁波制御方法。   Item 7. Item 7. The absorbed electromagnetic wave control method according to Item 6, wherein the electromagnetic wave is an electromagnetic wave having a wavelength range equal to or greater than a microwave.

項8.前記電磁波が、赤外線以下の波長域を有する電磁波である、上記項6に記載の吸収電磁波制御方法。   Item 8. Item 7. The absorbed electromagnetic wave control method according to Item 6, wherein the electromagnetic wave is an electromagnetic wave having a wavelength range equal to or less than infrared rays.

項9.電磁波吸収装置を透過する電磁波の波長域及び/又は吸収量を制御する方法であって、
上記項6〜8のいずれかに記載の方法により配向させた導電性カーボンを含有する流体に流動、振動又は熱を与えることにより、前記導電性カーボンの配向状態を変える、ことを特徴とする吸収電磁波制御方法。
Item 9. A method for controlling the wavelength range and / or the amount of absorption of electromagnetic waves transmitted through an electromagnetic wave absorbing device,
9. Absorption characterized by changing the orientation state of the conductive carbon by applying flow, vibration or heat to the fluid containing the conductive carbon oriented by the method according to any one of items 6 to 8 above. Electromagnetic wave control method.

本発明の電磁波吸収装置(「電磁波変調装置」ともいう。)は、高アスペクト比である導電性カーボンを含有する流体が電極間に充填されてなることを特徴とする。   The electromagnetic wave absorber (also referred to as “electromagnetic wave modulator”) of the present invention is characterized in that a fluid containing conductive carbon having a high aspect ratio is filled between electrodes.

高アスペクト比である導電性カーボンとしては、例えば、カーボンナノチューブ、カーボンナノファイバー、カーボンナノコイル、カーボンナノツイスト等の直径が1μm未満のもののほか、1μm以上であるカーボンマイクロコイル等も挙げられる。これらの中でも、電界に対する配向の応答特性が良い観点から、カーボンナノチューブ、カーボンナノファイバー、カーボンナノコイル及びカーボンナノツイストのうち少なくとも1種が好ましく、最も好ましくはカーボンナノコイルである。   Examples of the conductive carbon having a high aspect ratio include carbon microcoils having a diameter of less than 1 μm and carbon microcoils having a diameter of 1 μm or more, such as carbon nanotubes, carbon nanofibers, carbon nanocoils, and carbon nanotwists. Among these, from the viewpoint of good orientation response characteristics to an electric field, at least one of carbon nanotubes, carbon nanofibers, carbon nanocoils, and carbon nanotwists is preferable, and carbon nanocoils are most preferable.

導電性カーボンのアスペクト比(繊維長/繊維径)は限定的でないが、例えば平均2以上が挙げられ、好ましくは平均10〜5000000程度である。   Although the aspect ratio (fiber length / fiber diameter) of the conductive carbon is not limited, for example, the average is 2 or more, and preferably about 10 to 5000000 on average.

導電性カーボンの繊維長は限定的でなく、例えば平均50nm〜1mm程度という幅広い範囲から適宜決定すればよい。繊維径(直径)も限定的でないが、好ましくは、平均1nm以上1μm未満である。   The fiber length of the conductive carbon is not limited and may be appropriately determined from a wide range of, for example, an average of about 50 nm to 1 mm. The fiber diameter (diameter) is not limited, but is preferably 1 nm or more and less than 1 μm on average.

上記導電性カーボンの形状がコイル状、すなわちカーボンナノコイル又はカーボンナノツイスト等である場合は、コイル長は好ましくは平均50nm〜1mm程度、より好ましくは平均0.5μm〜100μm程度である。コイル径(直径)は好ましくは平均10nm〜10μm程度、より好ましくは平均50nm以上1μm未満程度である。   When the shape of the conductive carbon is a coil, that is, a carbon nanocoil or a carbon nanotwist, the coil length is preferably about 50 nm to 1 mm on average, and more preferably about 0.5 to 100 μm on average. The coil diameter (diameter) is preferably about 10 nm to 10 μm on average, more preferably about 50 nm or more and less than 1 μm.

導電性カーボンを含有している流体は、流動性があり、導電性カーボンを分散させることができるものであれば特に制限されない。例えば、水;イソプロピルアルコール、エタノール、グリセリン、エチレングリコール、ポリエチレングリコール、ソルビトール等の1価又は多価のアルコール;ベンゼン、ヘキサン、クロロホルム、アセトン等の有機溶媒等が挙げられる。   The fluid containing conductive carbon is not particularly limited as long as it has fluidity and can disperse conductive carbon. For example, water; monovalent or polyhydric alcohols such as isopropyl alcohol, ethanol, glycerin, ethylene glycol, polyethylene glycol, and sorbitol; organic solvents such as benzene, hexane, chloroform, and acetone.

本発明では、加熱(例えば、60〜250℃程度)した場合に、流動性を有する物質も流体に含まれる。このような流体としては、例えば、熱可塑性樹脂等が好適に挙げられる。具体的には、スチレン系樹脂、アクリル系樹脂、(メタ)アクリル系樹脂のほか、ポリビニルアルコール(PVA)、ポリエチレン(PE)、ポリプロピレン(PP)等が挙げられる。また、パラフィン、蝋、オリゴマー等も挙げられる。このような樹脂を流体に用いることにより、例えば、上記流体を60〜250℃程度に加熱して流体に流動性をもたせ、次いで、電界を印加して導電性カーボンを配向させた後、温度を常温に戻して流体の流動性を失わせることにより配向状態を維持させることができる。さらには、再度加熱して流動性をもたせ、次いで、電界を印加させて導電性カーボンを再度新たな配向状態にすることもできる。   In the present invention, a substance having fluidity when heated (for example, about 60 to 250 ° C.) is also included in the fluid. As such a fluid, a thermoplastic resin etc. are mentioned suitably, for example. Specifically, polyvinyl alcohol (PVA), polyethylene (PE), polypropylene (PP), etc. other than styrene resin, acrylic resin, and (meth) acrylic resin are mentioned. Also included are paraffin, wax, oligomers and the like. By using such a resin as a fluid, for example, the fluid is heated to about 60 to 250 ° C. to make the fluid fluid, and then an electric field is applied to orient the conductive carbon. The orientation state can be maintained by returning to normal temperature and losing the fluidity of the fluid. Furthermore, it can be heated again to have fluidity, and then an electric field can be applied to bring the conductive carbon into a new orientation state again.

また、液晶などの電流を流すことにより流動性を有する物質も、本発明の流体に含まれる。   Moreover, the substance which has fluidity | liquidity by sending electric currents, such as a liquid crystal, is also contained in the fluid of this invention.

これらの流体は1種単独又は2種以上を混合して使用してもよい。   These fluids may be used alone or in combination of two or more.

本発明では、これらの流体の中でも、特にアルコール及び熱可塑性樹脂が好ましい。   In the present invention, alcohol and thermoplastic resin are particularly preferable among these fluids.

上記流体には、アントラセン、ピレン、ポルフィリンなどの多環式芳香族化合物;カルボキシメチルセルロース、ゼラチン、ポリカーボネート、ポリイミドなどの高分子化合物;界面活性剤等の各種添加剤を含んでいてもよい。   The fluid may contain various additives such as polycyclic aromatic compounds such as anthracene, pyrene and porphyrin; polymer compounds such as carboxymethyl cellulose, gelatin, polycarbonate and polyimide; and surfactants.

上記流体の流動性は、25℃における粘度が、通常1cPs〜100000cPs程度、好ましくは2cPs〜10000cPs程度である。この範囲とすることにより、導電性カーボンの分散及び配向状態をより一層容易に制御できる。なお、加熱した場合又は電流を流した場合に流動性を有する物質については、当該加熱(例えば60〜250℃)時又は通電時に上記範囲の粘度を有していればよい。本発明において粘度は、粘度測定装置によって測定されるものである。   The fluidity of the fluid has a viscosity at 25 ° C. of usually about 1 cPs to 100,000 cPs, preferably about 2 cPs to 10,000 cPs. By setting it as this range, the dispersion and orientation state of the conductive carbon can be controlled more easily. In addition, about the substance which has fluidity | liquidity when heated or when an electric current is sent, what is necessary is just to have the viscosity of the said range at the time of the said heating (for example, 60-250 degreeC) or electricity supply. In the present invention, the viscosity is measured by a viscosity measuring device.

流体は、電磁波透過性の観点から、絶縁体が好ましく、通常は比誘電率が1〜200程度(常温25℃)とすればよい。   The fluid is preferably an insulator from the viewpoint of electromagnetic wave permeability, and usually has a relative dielectric constant of about 1 to 200 (normal temperature 25 ° C.).

上記流体中における導電性カーボンの含有量は、導電性カーボンの種類、流体の種類、粘度等に応じて適宜決定されるが、例えば、流体100重量部に対して0.001〜50重量部程度、好ましくは0.01〜30重量部程度である。   The content of conductive carbon in the fluid is appropriately determined according to the type of conductive carbon, the type of fluid, the viscosity, and the like. For example, about 0.001 to 50 parts by weight with respect to 100 parts by weight of the fluid The amount is preferably about 0.01 to 30 parts by weight.

電極は公知又は市販のものを使用することができる。材質としては、例えば、金、白金、銀、銅、アルミニウム、チタン、ニッケル、クロム、コバルト、インジウム、錫、亜鉛などの金属又はこれらの合金のほか、ITO(Indium Tin Oxide)、IZO(In−ZnO)、SnO等の酸化物、カーボンなども使用できる。A well-known or commercially available electrode can be used. Examples of the material include metals such as gold, platinum, silver, copper, aluminum, titanium, nickel, chromium, cobalt, indium, tin, and zinc, or alloys thereof, ITO (Indium Tin Oxide), IZO (In 2 ). O 3 —ZnO), SnO 2 and other oxides, carbon, and the like can also be used.

電極の形状は細線であってもよく、薄膜であってもよい。また、複数の細線を平行に並べた櫛形電極であってもよい。   The shape of the electrode may be a thin line or a thin film. Further, it may be a comb electrode in which a plurality of fine wires are arranged in parallel.

なお、電極を薄膜状とした場合は、当該薄膜電極を電磁波が透過する必要があるため(後述する図1を参照)、電極の面抵抗は自由空間の電波インピーダンス(377Ω程度)より大きくすればよい。一般的には400Ω程度以上、好ましくは1000Ω程度以上、より好ましくは3000Ω程度以上とすればよい。上限は限定的でないが、例えば、100000Ω程度とすればよい。   When the electrode is made into a thin film, it is necessary to transmit electromagnetic waves through the thin film electrode (see FIG. 1 described later). Therefore, if the surface resistance of the electrode is made larger than the radio wave impedance (about 377Ω) in free space. Good. Generally, it is about 400Ω or more, preferably about 1000Ω or more, more preferably about 3000Ω or more. The upper limit is not limited, but may be about 100,000Ω, for example.

櫛形電極の場合は、当該電極間の基板を電磁波が透過するため、電波インピーダンスは特に限定されない。   In the case of a comb-shaped electrode, the electromagnetic wave is transmitted through the substrate between the electrodes, and thus the radio wave impedance is not particularly limited.

基板は、電磁波が透過できる材質である限り限定されず、例えば、ガラス基板、石英基板、プラスチック基板、セラミック基板等が挙げられる。   The substrate is not limited as long as it is a material that can transmit electromagnetic waves, and examples thereof include a glass substrate, a quartz substrate, a plastic substrate, and a ceramic substrate.

基板及び電極の面積、電極間距離等は、流体中の導電性カーボンの含有量、電界の強度等に応じて適宜決定すればよい。   The area of the substrate and electrodes, the distance between the electrodes, and the like may be appropriately determined according to the content of conductive carbon in the fluid, the strength of the electric field, and the like.

電極に接続する電源は限定的でなく、公知又は市販の電源を使用することができる。   The power source connected to the electrode is not limited, and a known or commercially available power source can be used.

本発明の、吸収波長域及び吸収量からなる群から選択される少なくとも1種が可変な電磁波吸収装置の典型例を挙げると、例えば、
i)図1に示すように、基板に積層された二枚の薄膜電極を向かい合うように配置し、当該二枚の電極間に、高アスペクト比である導電性カーボンを含有する流体を充填させた装置、
ii)図2に示すように、基板に積層された二組の櫛形電極を、対向する当該櫛形電極を構成する各々の細線電極が平行となるように配置し、当該二組の櫛形電極間に、高アスペクト比である導電性カーボンを含有する流体を充填させた装置、
iii)図3に示すように、基板に積層された二組の櫛形電極を、対向する当該櫛形電極の各々の細線電極が垂直(ねじれの関係)となるように配置し、高アスペクト比である導電性カーボンを含有する流体を充填させた装置、等が挙げられる。
As a typical example of the electromagnetic wave absorbing device according to the present invention, at least one selected from the group consisting of an absorption wavelength region and an absorption amount is variable.
i) As shown in FIG. 1, two thin film electrodes laminated on a substrate are arranged so as to face each other, and a fluid containing conductive carbon having a high aspect ratio is filled between the two electrodes. apparatus,
ii) As shown in FIG. 2, two sets of comb-shaped electrodes stacked on the substrate are arranged so that the thin wire electrodes constituting the opposing comb-shaped electrodes are parallel to each other, and between the two sets of comb-shaped electrodes. A device filled with a fluid containing conductive carbon having a high aspect ratio,
iii) As shown in FIG. 3, two sets of comb-shaped electrodes stacked on a substrate are arranged so that each thin wire electrode of the facing comb-shaped electrodes is vertical (relationship of twist) and has a high aspect ratio. Examples thereof include an apparatus filled with a fluid containing conductive carbon.

特に、図1〜3の装置において、透過させる電磁波が可視光である場合、基板は透明なものを使用すればよい。この場合、図1においては、薄膜電極も透明な電極、すなわち、ITO、IZO等を使用することとなる。   In particular, in the apparatus shown in FIGS. 1 to 3, when the electromagnetic wave to be transmitted is visible light, a transparent substrate may be used. In this case, in FIG. 1, the thin film electrode is also a transparent electrode, that is, ITO, IZO or the like.

配向した導電性カーボンを再分散(配向していない状態)させるために、分散装置を電極又は電極間に装備させてもよい。具体的には、電極又は電極間に公知又は市販の流動、振動装置(例えば、液送ポンプ、スターラー、音波装置等)、加熱装置(電熱器、赤外線ランプ、ハロゲンランプ等)などを設置すればよい。   In order to redisperse the oriented conductive carbon (in an unoriented state), a dispersing device may be provided between the electrodes or between the electrodes. Specifically, if a known or commercially available flow, vibration device (for example, liquid feed pump, stirrer, sonic device, etc.), heating device (electric heater, infrared lamp, halogen lamp, etc.) is installed between the electrodes. Good.

本発明は、上記構造を採用するため、電極に電流を流し、電極間に電界を生じさせることにより、電極間の導電性カーボンを所望の角度に配向させ、電極間を透過する電磁波の吸収波長域及び/又は吸収量(透過率又は反射率)を変更することができる。   Since the present invention employs the above-described structure, an electromagnetic wave is transmitted through the electrodes by causing the electric current to flow between the electrodes and generating an electric field between the electrodes to orient the conductive carbon between the electrodes at a desired angle. The area and / or the amount of absorption (transmittance or reflectivity) can be changed.

本発明の配向とは、個々の導電性カーボンが特定方向に配列することをいい、一軸配向のほか、面配向も含む。   The orientation of the present invention means that individual conductive carbons are arranged in a specific direction, and includes plane orientation as well as uniaxial orientation.

本発明装置の吸収する電磁波としては、200nm〜300mm程度という広い波長域のものを吸収することができ、具体的には,マイクロ波(300mm〜10mm程度、1GHz〜30GHz程度)、ミリ波(10mm〜1mm程度、30GHz〜300GHz程度)、テラヘルツ波(1mm〜10μm程度、0.3THz〜30THz程度)、赤外線(100μm〜800nm程度)、可視光(830nm〜360nm程度)、紫外光(400nm〜14nm程度)である。   The electromagnetic wave absorbed by the device of the present invention can be absorbed in a wide wavelength range of about 200 nm to 300 mm. Specifically, microwaves (about 300 mm to 10 mm, about 1 GHz to 30 GHz), millimeter waves (10 mm) About 1 mm, about 30 GHz to about 300 GHz), terahertz wave (about 1 mm to about 10 μm, about 0.3 THz to about 30 THz), infrared light (about 100 μm to about 800 nm), visible light (about about 830 nm to about 360 nm), ultraviolet light (about about 400 nm to about 14 nm) ).

この中でも、特に可視光及び紫外光においては、吸収量(透過率又は反射率)を変化させることにより、スイッチ機能(光シャッター等に代表される光吸収のon、off機能)を好適に発揮できるため、電磁波吸収装置として好適に用いることができる。   Among these, particularly in visible light and ultraviolet light, by changing the amount of absorption (transmittance or reflectance), a switch function (on / off function of light absorption represented by an optical shutter or the like) can be suitably exhibited. Therefore, it can be suitably used as an electromagnetic wave absorber.

マイクロ波、ミリ波、テラヘルツ波、赤外線等においては、上記吸収量のほか、吸収波長域等も多段的(段階的)に変化させることもでき、スイッチ機能のほか、可変波長機能(吸収波長域を多段的に変化させる機能)及び変調機能(電磁波の透過率(又は反射率)或いは偏波面(又は偏波成分)を多段的に変化させる機能)も好適に発揮できる。よって、電磁波吸収装置のみならず、可変波長電磁波吸収装置としても好適に用いることができる。   In microwaves, millimeter waves, terahertz waves, infrared rays, etc., in addition to the above-mentioned absorption amount, the absorption wavelength range can be changed in a multi-stage (stepwise) manner. In addition to the switch function, the variable wavelength function (absorption wavelength range) And the modulation function (the function of changing the transmittance (or reflectivity) or the polarization plane (or polarization component) of the electromagnetic wave in multiple stages) can be suitably exhibited. Therefore, it can be suitably used not only as an electromagnetic wave absorber but also as a variable wavelength electromagnetic wave absorber.

2.制御方法
本発明の第一態様の方法は、電磁波吸収装置を透過する電磁波の波長域及び/又は吸収量を制御する方法であって、高アスペクト比である導電性カーボンを含有する流体が電極間に充填されてなる電磁波吸収装置の当該電極間に電界を印加することにより、当該導電性カーボンを配向させる、ことを特徴とする。
2. Control Method The method according to the first aspect of the present invention is a method for controlling the wavelength range and / or the amount of absorption of electromagnetic waves that pass through the electromagnetic wave absorber, and the fluid containing conductive carbon having a high aspect ratio is between the electrodes. The conductive carbon is oriented by applying an electric field between the electrodes of the electromagnetic wave absorber filled in the electrode.

電磁波吸収装置は、上記した本発明の吸収波長域及び/又は吸収量が可変な電磁波吸収装置を使用する。   As the electromagnetic wave absorbing device, the above-described electromagnetic wave absorbing device with variable absorption wavelength range and / or absorption amount of the present invention is used.

以下、好ましい方法として、上記した典型例の電磁波吸収装置を用いて説明する。   Hereinafter, a preferable method will be described using the above-described typical electromagnetic wave absorber.

i)基板に積層された二枚の薄膜電極を向かい合うように配置し、当該二枚の電極間に、高アスペクト比である導電性カーボンを含有する流体を充填させた装置の場合
図4に示すように、二極の電極に交流電圧を印加すると、流体中の導電性カーボンが電極基板平面に対して垂直方向に配向する。なお、電圧を適宜調節することにより、垂直方向に配向するまでの導電性カーボンの角度を適宜調節できる。これらにより、当該装置の電極間を透過する電磁波の波長域及び/又は吸収量を制御できる。
i) In the case of an apparatus in which two thin film electrodes laminated on a substrate are arranged to face each other, and a fluid containing conductive carbon having a high aspect ratio is filled between the two electrodes. As described above, when an AC voltage is applied to the bipolar electrodes, the conductive carbon in the fluid is oriented in a direction perpendicular to the electrode substrate plane. In addition, by appropriately adjusting the voltage, it is possible to appropriately adjust the angle of the conductive carbon until it is oriented in the vertical direction. By these, the wavelength range and / or absorption amount of the electromagnetic wave transmitted between the electrodes of the device can be controlled.

このメカニズムを詳述すると、例えば、導電性カーボンとしてカーボンナノコイルを使用した場合を例にすると、カーボンナノコイルが未配向(向きが不規則)の時、カーボンナノコイルを分散した流体の誘電率異方性は平均化され、全体としては等方性となる。他方、透明電極間に交流電圧を印加すると、流体中のカーボンナノコイルが透明電極に垂直に配向する。カーボンナノコイルが配向状態にある時、誘電率異方性が発現し、配向方向に垂直な電界に対する誘電率と誘電損失が減少し、配向方向に平行な電界に対する誘電率と誘電損失が増大する。本装置に垂直入射する電磁波の電界はカーボンナノコイルの配向方向と垂直なので、誘電率減少により電磁波の吸収ピーク周波数は上昇し、誘電損失減少により電磁波の透過損失は減少する。この他、入射電磁波の波長がカーボンナノコイルの大きさと比較して小さい場合、幾何光学的遮蔽面積の減少により透過率(透光率)が増大する。   To explain this mechanism in detail, for example, when carbon nanocoils are used as conductive carbon, the dielectric constant of the fluid in which carbon nanocoils are dispersed when carbon nanocoils are unoriented (the orientation is irregular) The anisotropy is averaged and is isotropic as a whole. On the other hand, when an AC voltage is applied between the transparent electrodes, the carbon nanocoils in the fluid are oriented perpendicular to the transparent electrodes. When carbon nanocoils are in an oriented state, dielectric anisotropy develops, the dielectric constant and dielectric loss for an electric field perpendicular to the orientation direction decrease, and the dielectric constant and dielectric loss for an electric field parallel to the orientation direction increase. . Since the electric field of the electromagnetic wave perpendicularly incident on this device is perpendicular to the orientation direction of the carbon nanocoil, the absorption peak frequency of the electromagnetic wave increases due to the decrease in dielectric constant, and the transmission loss of the electromagnetic wave decreases due to the decrease in dielectric loss. In addition, when the wavelength of the incident electromagnetic wave is smaller than the size of the carbon nanocoil, the transmittance (transmittance) increases due to the reduction of the geometric optical shielding area.

ii)基板に積層された二組の櫛形電極を、対向する当該櫛形電極を構成する各々の電極が平行となるように配置し、当該二組の櫛形電極間に、高アスペクト比である導電性カーボンを含有する流体を充填させた装置の場合
図5に示すように、櫛形電極に交流電圧を印加すると、流体中の導電性カーボンが、櫛形電極を構成する一本一本の細線電極間に、当該細線電極と垂直になるように、かつ電極基板と平行になるように配向する。なお、電圧を適宜調節することにより、垂直に配向するまでの導電性カーボンの角度を適宜調節できる。これらにより、当該装置の電極間を透過する電磁波の波長域及び/又は吸収量を制御できる。
ii) Two sets of comb-shaped electrodes stacked on the substrate are arranged so that the electrodes constituting the opposing comb-shaped electrodes are parallel to each other, and the conductivity having a high aspect ratio is set between the two sets of comb-shaped electrodes. In the case of an apparatus filled with a fluid containing carbon As shown in FIG. 5, when an alternating voltage is applied to the comb-shaped electrode, the conductive carbon in the fluid is interposed between the individual thin wire electrodes constituting the comb-shaped electrode. , Orienting so as to be perpendicular to the fine wire electrode and parallel to the electrode substrate. Note that, by appropriately adjusting the voltage, the angle of the conductive carbon until it is vertically aligned can be appropriately adjusted. By these, the wavelength range and / or absorption amount of the electromagnetic wave transmitted between the electrodes of the device can be controlled.

このメカニズムを詳述する。本装置に垂直に入射する電磁波は、電界が櫛歯に平行な偏波成分と、電界が櫛歯電極に垂直な偏波成分とに分けて考えることができる。電界が櫛歯電極に平行な偏波成分に関しては、誘電率の増大と誘電損失の増大により吸収ピーク周波数の低下と透過損失の増大が起こる。   This mechanism will be described in detail. The electromagnetic wave perpendicularly incident on this device can be considered by dividing it into a polarization component whose electric field is parallel to the comb teeth and a polarization component whose electric field is perpendicular to the comb electrodes. With respect to the polarization component in which the electric field is parallel to the comb electrode, an increase in dielectric constant and an increase in dielectric loss cause a decrease in absorption peak frequency and an increase in transmission loss.

電界が櫛歯電極に垂直な偏波成分に関しては、誘電率の減少と誘電損失の減少により吸収ピーク周波数の上昇と透過損失の減少が起こる。この他、入射電磁波の波長がカーボンナノコイルの大きさと比較して小さい場合、幾何光学的遮蔽面積の増大により透過率(透光率)が増大する。   With respect to the polarization component in which the electric field is perpendicular to the comb electrode, the absorption peak frequency increases and the transmission loss decreases due to the decrease in the dielectric constant and the decrease in the dielectric loss. In addition, when the wavelength of the incident electromagnetic wave is smaller than the size of the carbon nanocoil, the transmittance (transmissivity) increases due to an increase in the geometric optical shielding area.

iii)基板に積層された二組の櫛形電極を、対向する当該櫛形電極の各々の電極が垂直(ねじれの関係)となるように、配置し、高アスペクト比である導電性カーボンを含有する流体を充填させた装置の場合
a)上下の櫛形電極に電圧を印加した場合、図6に示すように電極基板平面に垂直に(Z方向に)導電性カーボンが配向する。
b)上側の櫛形電極にのみ電圧を印加した場合、図7に示すように、導電性カーボンが上側の櫛形電極の各々の細線電極間にY方向に配向する。
c)下側の櫛形電極にのみ電圧を印加した場合、図8に示すように、導電性カーボンが下側の櫛形電極の各々の細線電極間にX方向に配向する。
iii) A fluid containing conductive carbon having a high aspect ratio in which two sets of comb-shaped electrodes stacked on a substrate are arranged so that each of the opposing comb-shaped electrodes is vertical (twisted relationship) A) When a voltage is applied to the upper and lower comb electrodes, the conductive carbon is oriented perpendicular to the electrode substrate plane (in the Z direction) as shown in FIG.
b) When a voltage is applied only to the upper comb-shaped electrode, the conductive carbon is oriented in the Y direction between the thin wire electrodes of the upper comb-shaped electrode, as shown in FIG.
c) When a voltage is applied only to the lower comb electrode, as shown in FIG. 8, the conductive carbon is oriented in the X direction between the thin wire electrodes of the lower comb electrode.

なお、電圧を適宜調節することにより、垂直に配向するまでの導電性カーボンの角度を適宜調節できる。これらにより、当該装置の電極間を透過する電磁波の波長域及び/又は吸収量(透過率又は反射率)を制御できる。これらのメカニズムは上記したものと同様である。上記方法から最終製品の用途、目的等に応じて最適な制御方法をとればよい。   Note that, by appropriately adjusting the voltage, the angle of the conductive carbon until it is vertically aligned can be appropriately adjusted. Thus, it is possible to control the wavelength range and / or the amount of absorption (transmittance or reflectivity) of the electromagnetic wave transmitted between the electrodes of the device. These mechanisms are the same as described above. From the above method, an optimal control method may be taken in accordance with the use and purpose of the final product.

特に電磁波が可視光及び紫外光である場合は、上記方法により導電性カーボンを配向させることにより、当該電磁波の吸収量(透過率又は反射率)を変化させて、スイッチ機能(光シャッター等に代表される光吸収のon、off機能)としての役割を効果的に発揮する。   In particular, when the electromagnetic waves are visible light and ultraviolet light, the amount of absorption (transmittance or reflectance) of the electromagnetic waves is changed by orienting the conductive carbon by the above method, and the switch function (represented by an optical shutter or the like). The function as an on / off function of light absorption is effectively exhibited.

電磁波がマイクロ波、ミリ波、テラヘルツ波、赤外線等である場合は、上記の方法により導電性カーボンを配向させることにより、上記吸収量のほか、吸収波長域等も多段的に変化させることもでき、スイッチ機能のほか、可変波長機能(吸収波長域を多段的に変化させる機能)及び変調機能(電磁波の透過率(又は反射率)を多段的に変化させる機能)も好適に発揮できる。   When the electromagnetic waves are microwaves, millimeter waves, terahertz waves, infrared rays, etc., by aligning the conductive carbon by the above method, the absorption wavelength region and the like can be changed in multiple stages in addition to the above absorption amount. In addition to the switch function, a variable wavelength function (a function for changing the absorption wavelength range in a multistage manner) and a modulation function (a function for changing the transmittance (or reflectance) of electromagnetic waves in a multistage manner) can be suitably exhibited.

電圧、印加時間等は、導電性カーボン、流体、上記装置の種類のほか電極間距離等に応じて適宜決定すればよく、電圧、印加時間等を適宜変更することにより、導電性カーボンの配向度合い、ひいては電磁波の吸収波長域及び/又は吸収量を適宜調節することができる。   The voltage, application time, etc. may be determined as appropriate according to the conductive carbon, fluid, type of the above device, as well as the distance between the electrodes, etc., and the degree of orientation of the conductive carbon by appropriately changing the voltage, application time, etc. As a result, the absorption wavelength region and / or the amount of absorption of electromagnetic waves can be appropriately adjusted.

なお、上記装置の電極間の流体を樹脂とすると、樹脂の種類によっては常温では、流動性がなく導電性カーボンが配向しない場合がある。この場合は、加熱により、樹脂に流動性を持たせた後、電界を印加して、導電性カーボンを配向すればよい。このような常温では流動性を有しないが加熱により流動性を有することとなる樹脂を流体として用いることにより、装置設置後に、透過する電磁波の吸収波長域及び/又は吸収量を変化させることができると同時に、常温で導電性カーボンの配向性を強固に安定化することができる、電磁波吸収装置を提供することができる。   If the fluid between the electrodes of the device is a resin, depending on the type of the resin, there is a case where the conductive carbon does not align due to lack of fluidity at room temperature. In this case, the conductive carbon may be oriented by applying an electric field after imparting fluidity to the resin by heating. By using as a fluid a resin that does not have fluidity at room temperature but will have fluidity upon heating, the absorption wavelength range and / or absorption amount of transmitted electromagnetic waves can be changed after installation of the device. At the same time, it is possible to provide an electromagnetic wave absorber that can firmly stabilize the orientation of the conductive carbon at room temperature.

本発明の第二態様の方法は、電磁波吸収装置を透過する電磁波の波長域及び/又は吸収量を制御する方法であって、上記第1発明の方法により配向させた高アスペクト比である導電性カーボンを含有する流体に流動、振動又は熱を与えることにより、配向させた前記導電性カーボンを分散させる、ことを特徴とする。これにより、一度配向させた導電性カーボンの配向状態を変えることができる。   The method according to the second aspect of the present invention is a method for controlling the wavelength region and / or the amount of absorption of an electromagnetic wave transmitted through an electromagnetic wave absorber, and is a conductive material having a high aspect ratio oriented by the method of the first invention. The oriented conductive carbon is dispersed by applying flow, vibration, or heat to a fluid containing carbon. Thereby, the orientation state of the conductive carbon once oriented can be changed.

具体例としては、流体を液送ポンプ等で流動させる方法、流体を超音波装置等で振動させる方法、流体をスターラー等で攪拌する方法、流体を電熱器等で加熱する方法等のほか、電極に振動、加熱等することにより、間接的に流体に流動、振動、攪拌、加熱する方法等が挙げられる。なお、流体が常温で流動性を有しない樹脂である場合は、当該樹脂を加熱することにより流動性を持たせた後、上記方法を採用すればよい。   Specific examples include a method of causing a fluid to flow with a liquid feed pump, a method of vibrating a fluid with an ultrasonic device, a method of stirring the fluid with a stirrer, a method of heating the fluid with an electric heater, etc. For example, a method of indirectly flowing, vibrating, stirring, and heating the fluid by virtue of vibration, heating, or the like can be used. In addition, when the fluid is a resin that does not have fluidity at room temperature, the above method may be employed after the fluidity is imparted by heating the resin.

本発明の電磁波吸収装置は、高アスペクト比である導電性カーボンを含有する流体が電極間に充填されてなる構造を有するため、電磁波の吸収波長域及び/又は吸収量を調節できる。このため、製造後又は所望の場所に設置後も適宜、吸収波長域及び/又は吸収量を変更でき、多種多様の用途に使用できる。   Since the electromagnetic wave absorption device of the present invention has a structure in which a fluid containing conductive carbon having a high aspect ratio is filled between electrodes, the absorption wavelength region and / or absorption amount of electromagnetic waves can be adjusted. For this reason, the absorption wavelength region and / or the amount of absorption can be appropriately changed after production or after installation at a desired location, and can be used for various applications.

また、本発明の制御方法によれば、電界(電圧等)を調節することにより、電磁波の吸収波長域及び/又は吸収量を調節できる。   In addition, according to the control method of the present invention, the absorption wavelength region and / or the amount of absorption of electromagnetic waves can be adjusted by adjusting the electric field (voltage, etc.).

以下に実施例及び比較例を挙げて、本発明をさらに詳述する。なお、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. In addition, this invention is not limited to a following example.

実施例1
<電界によるナノコイルの水平配向の実施例>
カーボンナノコイルをイソプロピルアルコール溶液(25℃における粘度:2cPs)に分散させた分散液を用意した。分散液中のナノコイルのコイル長は平均1〜40μm、分散液中のカーボンナノコイルの濃度は0.0127重量%であった。
Example 1
<Example of horizontal alignment of nanocoil by electric field>
A dispersion liquid in which carbon nanocoils were dispersed in an isopropyl alcohol solution (viscosity at 25 ° C .: 2 cPs) was prepared. The average coil length of the nanocoils in the dispersion was 1 to 40 μm, and the concentration of the carbon nanocoils in the dispersion was 0.0127% by weight.

2本の細線電極(銅線)を0.9mm間隔で平行に並べることにより電極装置(水平対向用)を作製した。当該2本の電極間に上記分散液を充填することにより、実施例1の電磁波吸収装置を製造した。この装置に、周波数100kHz、電界強度63kV/mの電界を1分間印加した。   Two thin wire electrodes (copper wires) were arranged in parallel at intervals of 0.9 mm to produce an electrode device (for horizontal facing). The electromagnetic wave absorber of Example 1 was manufactured by filling the dispersion liquid between the two electrodes. An electric field having a frequency of 100 kHz and an electric field strength of 63 kV / m was applied to this apparatus for 1 minute.

電界印加前後の光学顕微鏡により観察した結果を図9に示す。   The results observed with an optical microscope before and after the application of the electric field are shown in FIG.

上記電界印加前後の電極間にある流体の透過光量を測定したところ、0.91%の変化が生じていた。これにより、スイッチ機能があることが分かった。   When the amount of transmitted light of the fluid between the electrodes before and after the application of the electric field was measured, a change of 0.91% occurred. As a result, it was found that there was a switch function.

なお、光源は白色LED(日亜化学社製、型番:NSPW500CS)を使用した。透過光量の変化率は以下のようにして求めた。   A white LED (manufactured by Nichia Corporation, model number: NSPW500CS) was used as the light source. The rate of change in the amount of transmitted light was determined as follows.

パーソナルコンピュータと直結できる小型CCDカメラ(Logitech Q Cam Pro 4000)を明視野顕微鏡(オリンパス社製)の接眼鏡に取り付けて、コリメート式撮影により電気泳動(配向)の様子をカラー動画像で記録した。記録した動画像から配向開始前と配向終了後のカラー静止画像をそれぞれ抽出し、電極間のカーボンナノコイルの配向が起こる領域内の全画素の平均輝度を計算した。   A small CCD camera (Logitech Q Cam Pro 4000) that can be directly connected to a personal computer was attached to the eyepiece of a bright field microscope (manufactured by Olympus), and the state of electrophoresis (orientation) was recorded as a color moving image by collimated photography. Color still images before and after the start of alignment were extracted from the recorded moving images, and the average luminance of all pixels in the region where the alignment of the carbon nanocoils between the electrodes was calculated.

1画素の赤(R)、緑(G)、青(B)各成分のレベル(0〜255)から下記式を用いて輝度(Y)を算出した。   Luminance (Y) was calculated from the levels (0 to 255) of the red (R), green (G), and blue (B) components of one pixel using the following formula.

Y =0.29891×R + 0.58661×G + 0.11448×B
上記式により算出された配向後の輝度の平均値と配向前の輝度の平均値との変化率を透過光量の変化率とした。
Y = 0.29891 × R + 0.58661 × G + 0.11448 × B
The change rate between the average value of the luminance after orientation calculated by the above formula and the average value of the luminance before orientation was defined as the change rate of the transmitted light amount.

実施例2
<電界によるナノコイルの垂直配向の実施例>
カーボンナノコイルをイソプロピルアルコール溶液(25℃における粘度:2cPs)に分散させた分散液を用いた。分散液中のカーボンナノコイルのコイル長は1〜40μm、分散液中のナノコイルの濃度は0.006重量%であった。
Example 2
<Example of vertical alignment of nanocoil by electric field>
A dispersion in which carbon nanocoils were dispersed in an isopropyl alcohol solution (viscosity at 25 ° C .: 2 cPs) was used. The coil length of the carbon nanocoil in the dispersion was 1 to 40 μm, and the concentration of the nanocoil in the dispersion was 0.006% by weight.

ITO電極(三容真空工業社製)をガラス基板に積層したITOガラス基板2枚を、ITO層が内側になるように0.22mm間隔で配置することにより、電極装置(垂直対向測定用)を作製した。当該電極装置に上記分散液を充填することにより、実施例2の電磁波吸収装置を製造した。周波数1kHz、電界強度256kV/mの電界を1分間印加した。   By placing two ITO glass substrates on which ITO electrodes (manufactured by Sanyo Vacuum Industry Co., Ltd.) are laminated on a glass substrate at an interval of 0.22 mm so that the ITO layer is on the inside, an electrode device (for vertical facing measurement) is installed. Produced. The electromagnetic wave absorbing device of Example 2 was manufactured by filling the electrode device with the dispersion. An electric field having a frequency of 1 kHz and an electric field strength of 256 kV / m was applied for 1 minute.

光学顕微鏡により観察した結果を図10に示す。     The result observed with the optical microscope is shown in FIG.

上記電界印加前後の電極間にある流体の透過光量を測定したところ、8%の変化が生じていた。これにより、スイッチ機能があることが分かった。   When the transmitted light quantity of the fluid between the electrodes before and after the application of the electric field was measured, a change of 8% occurred. As a result, it was found that there was a switch function.

実施例3
<高粘度流体中でのナノコイルの水平配向の実施例>
カーボンナノコイルをグリセリン溶液(25℃における粘度:800cPs)に分散させた分散液を用意した。分散液中のカーボンナノコイルのコイル長は1〜40μm,分散液中のナノコイルの濃度は0.006重量%であった。実施例1で製造した電極装置に、上記分散液を充填することにより、実施例3の電磁波吸収装置を製造した。この装置に周波数1kHz、電界強度63kV/mの電界を印加した。
Example 3
<Example of horizontal orientation of nanocoil in high viscosity fluid>
A dispersion in which carbon nanocoils were dispersed in a glycerin solution (viscosity at 25 ° C .: 800 cPs) was prepared. The coil length of the carbon nanocoil in the dispersion was 1 to 40 μm, and the concentration of the nanocoil in the dispersion was 0.006% by weight. The electromagnetic wave absorber of Example 3 was manufactured by filling the electrode device manufactured in Example 1 with the dispersion. An electric field having a frequency of 1 kHz and an electric field strength of 63 kV / m was applied to this apparatus.

電界印加前後の光学顕微鏡により観察した結果を図11に示す。   The results observed with an optical microscope before and after the application of an electric field are shown in FIG.

上記電界印加前後の電極間にある流体の透過光量を測定したところ、0.7%の変化が生じていた。これにより、スイッチ機能があることが分かった。   When the transmitted light quantity of the fluid between the electrodes before and after the application of the electric field was measured, a change of 0.7% occurred. As a result, it was found that there was a switch function.

実施例4
アクリル系紫外線硬化型樹脂(TESK社製、型番A−1836、25℃における粘度10cPs)にカーボンナノコイルを0.05重量%分散させたコイル含有樹脂を作製した。ITO電極(三容真空工業社製)をガラス基板に積層したITOガラス基板2枚(22mm×33mm)を、ITO層が内側になるように、また電極間隔が0.5mmとなるように平行に配置し、スペーサで固定することにより、セルを作製した。コイル含有樹脂をセル内に0.4g充填することにより、本発明の電磁波吸収装置を作製した。
Example 4
A coil-containing resin in which 0.05% by weight of carbon nanocoil was dispersed in an acrylic ultraviolet curable resin (manufactured by TESK, model number A-1836, viscosity 10 cPs at 25 ° C.) was prepared. Two ITO glass substrates (22 mm x 33 mm) obtained by laminating ITO electrodes (manufactured by Sanyo Vacuum Industry Co., Ltd.) on a glass substrate are parallel so that the ITO layer is on the inside and the electrode interval is 0.5 mm. A cell was prepared by placing and fixing with a spacer. The electromagnetic wave absorbing device of the present invention was produced by filling the cell with 0.4 g of a coil-containing resin.

得られた電磁波吸収装置中のカーボンナノコイルを配向させ、配向前後の複素比誘電率を測定した。図12に測定回路を示す。   The carbon nanocoils in the obtained electromagnetic wave absorber were oriented, and the complex dielectric constant before and after the orientation was measured. FIG. 12 shows a measurement circuit.

まず、セルにコイル含有樹脂を充填した直後の電磁波吸収装置に、交流電圧(電圧20V、周波数100kHz)を印加し、2現象オシロスコープ(テクトロニクス社製、型番TDS3024B)を用いて、配向前のセルインピーダンスZ、及び電圧波形と電流波形との位相差φを測定した。測定結果は、インピーダンスZが54.3kΩ、位相差φが−78.2°であった。この結果から、配向前の複素比誘電率εを計算すると、2.23−j0.466であった。First, an AC voltage (voltage 20 V, frequency 100 kHz) is applied to the electromagnetic wave absorber immediately after the cell is filled with the coil-containing resin, and the cell impedance before orientation is measured using a two-phenomenon oscilloscope (manufactured by Tektronix, model number TDS3024B). Z and the phase difference φ between the voltage waveform and the current waveform were measured. As a result of the measurement, the impedance Z was 54.3 kΩ, and the phase difference φ was −78.2 °. From this result, the complex relative dielectric constant ε r before orientation was calculated to be 2.23-j0.466.

次いで、印加電圧を上げて、200Vの交流電圧(周波数100kHz)を電磁波吸収装置に印加することにより、装置中のカーボンナノコイルを電極平面と垂直となるように配向させた。   Next, the applied voltage was raised and an AC voltage of 200 V (frequency: 100 kHz) was applied to the electromagnetic wave absorbing device, so that the carbon nanocoils in the device were oriented perpendicular to the electrode plane.

その後、印加電圧を下げて、20Vの交流電圧(周波数100kHz)を印加し、2現象オシロスコープ(テクトロニクス社製、型番TDS3024B)を用いて、配向後のセルインピーダンスZ’、及び電圧波形と電流波形との位相差φを測定した。測定結果は、インピーダンスZが48.0kΩ、位相差φが−77.9°であった。この結果から、配向後の複素比誘電率εを計算すると、2.53−j0.527であった。Thereafter, the applied voltage is lowered, an AC voltage of 20 V (frequency 100 kHz) is applied, and the cell impedance Z ′ after orientation, voltage waveform and current waveform are measured using a two-phenomenon oscilloscope (manufactured by Tektronix, model number TDS3024B). The phase difference φ was measured. As a result of the measurement, the impedance Z was 48.0 kΩ, and the phase difference φ was −77.9 °. From this result, the complex relative dielectric constant ε r after orientation was calculated to be 2.53-j0.527.

このことから、配向前の複素比誘電率に比べ、配向後の複素比誘電率の方が虚部及び実部の値ともに大きくなっていた。これにより、本発明の電磁波吸収装置は、電磁波吸収特性(吸収波長域及び吸収量)を変化できることが分かった。   For this reason, both the values of the imaginary part and the real part of the complex relative permittivity after orientation were larger than the complex relative permittivity before orientation. Thereby, it turned out that the electromagnetic wave absorber of this invention can change an electromagnetic wave absorption characteristic (an absorption wavelength range and absorption amount).

比較例1
<カーボンブラックにおけるマイクロ波帯域の電磁波吸収特性>
カーボンブラック(平均粒子径25nm、東海カーボン社製、「導電性トーカブラック#5500」)をイソプロピルアルコール溶液(25℃における粘度:2cPs)に分散させた分散液を用意した。分散液中のカーボンブラックの濃度は0.0127重量%であった。
Comparative Example 1
<Electromagnetic wave absorption characteristics of microwave band in carbon black>
A dispersion was prepared by dispersing carbon black (average particle size 25 nm, manufactured by Tokai Carbon Co., Ltd., “Conductive Talker Black # 5500”) in an isopropyl alcohol solution (viscosity at 25 ° C .: 2 cPs). The concentration of carbon black in the dispersion was 0.0127% by weight.

2本の細線電極(銅線)を0.9mm間隔で平行に並べることにより電極装置(水平対向用)を作製した。当該2本の電極間に上記分散液を充填することにより、比較例1の装置を製造した。   Two thin wire electrodes (copper wires) were arranged in parallel at intervals of 0.9 mm to produce an electrode device (for horizontal facing). The device of Comparative Example 1 was manufactured by filling the dispersion between the two electrodes.

この装置に、周波数100kHz,電界強度63kV/mの電界を1分間印加した。上記電界印加前後の電極間にある流体の透過光量を測定したところ、変化が全く生じていなかった。これにより、スイッチ機能を発揮しないことが分かった。   An electric field having a frequency of 100 kHz and an electric field strength of 63 kV / m was applied to this apparatus for 1 minute. When the amount of light transmitted through the fluid between the electrodes before and after the application of the electric field was measured, no change occurred. As a result, it was found that the switch function was not exhibited.

図1は、本発明の電磁波吸収装置の一例を示す。FIG. 1 shows an example of an electromagnetic wave absorber according to the present invention. 図2は、本発明の電磁波吸収装置の一例を示す。FIG. 2 shows an example of the electromagnetic wave absorber of the present invention. 図3は、本発明の電磁波吸収装置の一例を示す。FIG. 3 shows an example of the electromagnetic wave absorber of the present invention. 図4は、本発明の電磁波の制御方法のメカニズムの一例を示す。FIG. 4 shows an example of the mechanism of the electromagnetic wave control method of the present invention. 図5は、本発明の電磁波の制御方法のメカニズムの一例を示す。FIG. 5 shows an example of the mechanism of the electromagnetic wave control method of the present invention. 図6は、本発明の電磁波の制御方法のメカニズムの一例を示す。FIG. 6 shows an example of the mechanism of the electromagnetic wave control method of the present invention. 図7は、本発明の電磁波の制御方法のメカニズムの一例を示す。FIG. 7 shows an example of the mechanism of the electromagnetic wave control method of the present invention. 図8は、本発明の電磁波の制御方法のメカニズムの一例を示す。FIG. 8 shows an example of the mechanism of the electromagnetic wave control method of the present invention. 図9は、本実施例1の電磁波吸収装置の電界印加前後の観察結果を示す。FIG. 9 shows the observation results before and after applying the electric field of the electromagnetic wave absorber of Example 1. 図10は、本実施例2の電磁波吸収装置の電界印加前後の観察結果を示す。FIG. 10 shows the observation results before and after applying the electric field of the electromagnetic wave absorber according to the second embodiment. 図11は、本実施例3の電磁波吸収装置の電界印加前後の観察結果を示す。FIG. 11 shows the observation results before and after applying the electric field of the electromagnetic wave absorbing device of Example 3. 図12は、本実施例4で用いた可変波長電磁波吸収装置の測定回路を示す。FIG. 12 shows a measurement circuit of the variable wavelength electromagnetic wave absorber used in the fourth embodiment.

Claims (9)

高アスペクト比である導電性カーボンを含有する流体が電極間に充填されてなる、吸収波長域及び/又は吸収量が可変な電磁波吸収装置。   An electromagnetic wave absorber having a variable absorption wavelength range and / or absorption amount, wherein a fluid containing conductive carbon having a high aspect ratio is filled between electrodes. 導電性カーボンのアスペクト比が2以上である、請求項1に記載の電磁波吸収装置。   The electromagnetic wave absorber according to claim 1, wherein the conductive carbon has an aspect ratio of 2 or more. 導電性カーボンがカーボンナノコイル、カーボンナノチューブ、カーボンナノファイバー及びカーボンナノツイストからなる群から選ばれる少なくとも1種である、請求項1に記載の電磁波吸収装置。   The electromagnetic wave absorber according to claim 1, wherein the conductive carbon is at least one selected from the group consisting of carbon nanocoils, carbon nanotubes, carbon nanofibers, and carbon nanotwists. 導電性カーボンの含有量が、流体100重量部に対して0.001〜50重量部である、請求項1に記載の電磁波吸収装置。   The electromagnetic wave absorber according to claim 1, wherein the content of the conductive carbon is 0.001 to 50 parts by weight with respect to 100 parts by weight of the fluid. 流体の粘度が1〜100,000cPs(25℃)である、請求項1に記載の電磁波吸収装置。   The electromagnetic wave absorber according to claim 1, wherein the fluid has a viscosity of 1 to 100,000 cPs (25 ° C.). 電磁波吸収装置を透過する電磁波の波長域及び/又は吸収量を制御する方法であって、
高アスペクト比である導電性カーボンを含有する流体が電極間に充填されてなる電磁波吸収装置の当該電極間に電界を印加することにより、当該導電性カーボンを配向させる、
ことを特徴とする吸収電磁波制御方法。
A method for controlling the wavelength range and / or the amount of absorption of electromagnetic waves transmitted through an electromagnetic wave absorbing device,
Orienting the conductive carbon by applying an electric field between the electrodes of an electromagnetic wave absorbing device in which a fluid containing conductive carbon having a high aspect ratio is filled between the electrodes;
A method for controlling absorbed electromagnetic waves.
前記電磁波がマイクロ波以上の波長域を有する電磁波である、請求項6に記載の吸収電磁波制御方法。   The method for controlling an absorbed electromagnetic wave according to claim 6, wherein the electromagnetic wave is an electromagnetic wave having a wavelength range of microwaves or more. 前記電磁波が赤外線以下の波長域を有する電磁波である、請求項6に記載の吸収電磁波制御方法。   The method for controlling an absorbed electromagnetic wave according to claim 6, wherein the electromagnetic wave is an electromagnetic wave having a wavelength range equal to or less than infrared. 電磁波吸収装置を透過する電磁波の波長域及び/又は吸収量を制御する方法であって、
請求項6に記載の方法により配向させた導電性カーボンを含有する流体に流動、振動又は熱を与えることにより、前記導電性カーボンの配向状態を変える、
ことを特徴とする吸収電磁波制御方法。
A method for controlling the wavelength range and / or the amount of absorption of electromagnetic waves transmitted through an electromagnetic wave absorbing device,
The orientation state of the conductive carbon is changed by applying flow, vibration or heat to the fluid containing the conductive carbon oriented by the method according to claim 6.
A method for controlling absorbed electromagnetic waves.
JP2008506315A 2006-03-20 2007-03-20 Electromagnetic wave absorber and absorbed electromagnetic wave control method Expired - Fee Related JP5177425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008506315A JP5177425B2 (en) 2006-03-20 2007-03-20 Electromagnetic wave absorber and absorbed electromagnetic wave control method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006077806 2006-03-20
JP2006077806 2006-03-20
PCT/JP2007/055713 WO2007108478A1 (en) 2006-03-20 2007-03-20 Electromagnetic wave absorbing device and method for controlling electromagnetic wave absorption
JP2008506315A JP5177425B2 (en) 2006-03-20 2007-03-20 Electromagnetic wave absorber and absorbed electromagnetic wave control method

Publications (2)

Publication Number Publication Date
JPWO2007108478A1 true JPWO2007108478A1 (en) 2009-08-06
JP5177425B2 JP5177425B2 (en) 2013-04-03

Family

ID=38522506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008506315A Expired - Fee Related JP5177425B2 (en) 2006-03-20 2007-03-20 Electromagnetic wave absorber and absorbed electromagnetic wave control method

Country Status (2)

Country Link
JP (1) JP5177425B2 (en)
WO (1) WO2007108478A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6249439B2 (en) * 2013-12-12 2017-12-20 国立研究開発法人理化学研究所 Electromagnetic wave transmittance control method, electromagnetic wave transmittance control device
KR101490654B1 (en) 2014-05-29 2015-02-09 중앙대학교 산학협력단 Metamaterial absorber
KR101704167B1 (en) * 2015-02-13 2017-02-08 김남식 Electromagnetic wave shield apparatus and electronic device having the same
WO2024070882A1 (en) * 2022-09-28 2024-04-04 富士フイルム株式会社 Electromagnetic wave absorber

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207098A (en) * 1985-03-12 1986-09-13 三菱重工業株式会社 Characteristic varying type radio wave absorbing body
JPH088429B2 (en) * 1990-05-28 1996-01-29 大阪瓦斯株式会社 Radio wave absorption method
JPH07231193A (en) * 1991-05-10 1995-08-29 Tokai Univ Radio wave absorption property changing method for ferrite radio wave absorber
JPH06235281A (en) * 1993-02-09 1994-08-23 Yoji Kozuka Radio wave shielding body and absorber
JPH08116197A (en) * 1994-10-13 1996-05-07 Nippon Sheet Glass Co Ltd Radio-wave absorptive structure of transparent plate, window member and frame
US6987602B2 (en) * 1999-06-07 2006-01-17 Research Frontiers Incorporated Anisometrically shaped carbon and/or graphite particles, liquid suspensions and films thereof and light valves comprising same
JP2002261488A (en) * 2001-03-02 2002-09-13 Mitsubishi Electric Corp Electromagnetic dark environment chamber
JP2003158395A (en) * 2001-11-22 2003-05-30 Kansai Research Institute Electromagnetic wave absorbing material
JP2002256781A (en) * 2002-01-07 2002-09-11 Kitagawa Ind Co Ltd Radio wave absorber
JP3880560B2 (en) * 2003-04-07 2007-02-14 三井化学株式会社 Carbon nanotube alignment method and composition
JP2006073991A (en) * 2004-08-02 2006-03-16 Sony Corp Electromagnetic wave suppressing material, electromagnetic wave suppressing device and electronic equipment

Also Published As

Publication number Publication date
JP5177425B2 (en) 2013-04-03
WO2007108478A1 (en) 2007-09-27

Similar Documents

Publication Publication Date Title
CN103460123B (en) For the transparency electrode of electronic console
TWI575263B (en) Electronically switchable privacy film and display device having same
CN103926723B (en) Liquid crystal display panel and manufacturing method thereof
US20140078024A1 (en) Protection of electro-optic displays against thermal effects
Li et al. Resonance coupling and polarization conversion in terahertz metasurfaces with twisted split-ring resonator pairs
JP5177425B2 (en) Electromagnetic wave absorber and absorbed electromagnetic wave control method
Kumar et al. Electrically modulated fluorescence in optically active polymer stabilised cholesteric liquid crystal shutter
Yang et al. Asymmetrically Enhanced Coplanar‐Electrode Electroluminescence for Information Encryption and Ultrahighly Stretchable Displays
Wu et al. Transparent and flexible broadband absorber for the sub-6G band of 5G mobile communication
CN102495493A (en) Manufacturing method for liquid crystal panel, liquid crystal panel and liquid crystal display device
JP2018509639A (en) Grating, display device, and manufacturing method of grating
Park et al. Highly stretchable polymer-dispersed liquid crystal-based smart windows with transparent and stretchable hybrid electrodes
CN103760695B (en) A kind of dimming glass using nano-silver conductive layer and manufacture method thereof
CN109478515A (en) The manufacturing method of TFT substrate, the scanning antenna for having TFT substrate and TFT substrate
Qi et al. Realization of a flexible and mechanically robust Ag mesh transparent electrode and its application in a PDLC device
JP2012027326A (en) Suspended particle device and driving method thereof
CN109478727A (en) The manufacturing method of scanning antenna and scanning antenna
Jia et al. High dielectric properties, TiO2 nanoparticles doped PDLC devices for lower switching voltage
JP2014035385A (en) Dimming element, dimming device, and driving method thereof
CN109564944A (en) The manufacturing method of TFT substrate, the scanning antenna for having TFT substrate and TFT substrate
CN110208998A (en) Drying unit, intelligent color-changing film of nano silver PET conductive film and preparation method thereof
Li et al. Facile fabrication of large-scale silver nanowire transparent conductive films by screen printing
TW201245807A (en) Dual display cholesteric liquid-crystal and method for manufacturing the same
CN109478718A (en) Scanning antenna
CN115458208A (en) Composite nano metal conductive film and high-transmittance heating type electromagnetic shielding glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120501

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120613

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120806

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121225

LAPS Cancellation because of no payment of annual fees