WO2007108350A1 - Method for testing photocatalyst function and apparatus for use in the test - Google Patents

Method for testing photocatalyst function and apparatus for use in the test Download PDF

Info

Publication number
WO2007108350A1
WO2007108350A1 PCT/JP2007/054838 JP2007054838W WO2007108350A1 WO 2007108350 A1 WO2007108350 A1 WO 2007108350A1 JP 2007054838 W JP2007054838 W JP 2007054838W WO 2007108350 A1 WO2007108350 A1 WO 2007108350A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubular
photocatalyst
test
light
photocatalytic
Prior art date
Application number
PCT/JP2007/054838
Other languages
French (fr)
Japanese (ja)
Inventor
Bunsho Ohtani
Hirokazu Watanabe
Shinji Kato
Original Assignee
National University Corporation Hokkaido University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Hokkaido University filed Critical National University Corporation Hokkaido University
Publication of WO2007108350A1 publication Critical patent/WO2007108350A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/10Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using catalysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties

Definitions

  • the present invention relates to a method for simply testing a photocatalytic function and an instrument used for the test. Specifically, the present invention relates to a method and an instrument that can easily test the photocatalytic function at the site of use of a photocatalyst used for building materials.
  • Photocatalysts such as titanium oxide are used in various applications.
  • building materials are being marketed that contain photocatalysts on the surface of building materials (outer wall materials, etc.) that make up the exterior of buildings.
  • Such exterior building materials with a photocatalyst can exhibit a so-called self-cleaning function that always maintains the surface of the exterior material in a clean state by a photocatalytic reaction induced by light irradiation, that is, a decomposition reaction or a hydrophilization reaction. it can.
  • Non-Patent Document 1 introduces several evaluation methods for the self-cleaning function of a photocatalyst.
  • Patent Documents 1 and 2 evaluate the photocatalytic function by coloring the surface of the photocatalytic film formed on the substrate and measuring the absorbance or reflectance while irradiating the colored surface with ultraviolet rays. A method is described.
  • Patent Document 3 an organic layer containing a lower alcohol is formed on the surface of a photocatalyst layer formed on a substrate, the organic layer is irradiated with ultraviolet rays, and then the organic layer (after decomposition of the organic layer) is formed. Is a photocatalytic layer) by examining the contact angle of water on the surface A method for evaluating the photocatalytic function is described.
  • Patent Document 1 Japanese Patent Laid-Open No. 11 83833
  • Patent Document 2 JP 2000-162129 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-183359
  • Non-Patent Document 1 Hiroki Tobimatsu, “Evaluation method of self-cleaning of photocatalyst”, Industrial Materials, 200 3 July, p26-27
  • the method provided by the present invention is a test method for evaluating the photocatalytic function.
  • a tubular specimen that can transmit light both ends of which constitute an open end connected to the hollow portion, and the diameter of the hollow portion is a size that can cause capillary action
  • the wall of the hollow part includes a step for preparing a light-transmitting tubular test body on which a photocatalytic layer is formed.
  • the step which irradiates light to the prepared tubular test body is included.
  • the method includes the step of placing the tubular specimen in a container containing an aqueous solvent in a state where the one open end is in the aqueous solvent and the other open end is in the atmosphere.
  • the step of evaluating the function of the photocatalyst by comparing the capillary rise in the hollow portion of the tubular test body before the light irradiation and the capillary rise in the hollow portion of the tubular test body irradiated with the light is included.
  • a container containing a light-transmitting tubular test body having a simple configuration as described above and an appropriate amount of an aqueous solvent (typically water) is used, and the test body exhibits capillary action. Place it in a state where it can occur.
  • the rise of the capillary water before the light irradiation in the said tubular test body the rise condition of the capillary water which advances corresponding to the hydrophilization by the photocatalytic action that occurs when the external force light is irradiated to the test body,
  • the photocatalytic function of the photocatalyst layer on the inner wall surface of the hollow portion of the tubular test body can be evaluated.
  • the location using the change in capillary phenomenon typically, the capillary rise value or elevation height
  • the test of a photocatalyst function can be performed simply. Therefore, according to the test method of the present invention, the function of the photocatalyst contained in the predetermined photocatalyst-utilizing member can be easily evaluated at the site where the member is used.
  • a tubular test body in which a substrate layer containing a substance decomposable by a photocatalytic action is further formed on the surface of the photocatalyst layer is used.
  • the degree of decomposition of the substance (typically easily decomposable organic matter) in the substrate layer by the photocatalytic reaction at the time of light irradiation, that is, the sample is provided.
  • the degree of substance decomposition performance of the photocatalyst is increased by increasing the capillary rise value based on the hydrophilicity improvement of the inner wall surface of the hollow part due to the decomposition, or until the capillary rise starts or the progress of the capillary rise is completed. It can be easily tested by measuring the time.
  • the test method of this embodiment among the functions exhibited by the photocatalyst included in the predetermined photocatalyst utilizing member, particularly the substance decomposition performance can be easily evaluated at the site where the photocatalyst utilizing member is used.
  • the substrate layer includes a hydrophobic organic substance as the decomposable substance.
  • the inner wall surface is hydrophilized, and the rate of increase in capillary water, which is an indicator of organic decomposition, can be more pronounced.
  • the hydrophobic organic substance has a hydrophobic structure portion and a reactive group capable of binding to the photocatalyst layer.
  • the reactive group has a hydroxyl group, a carboxyl group, an amino group, an epoxy group, a thiol group, a halogen, etc., and a long chain alkyl group as a hydrophobic structure portion.
  • hydrophobic substances eg, higher fatty acids having a sulfur group.
  • the hydrophobic substance having such a structure can be firmly bonded to the photocatalyst layer by a covalent bond or the like due to the presence of the reactive group. For this reason, a highly accurate photocatalytic function (decomposition function) evaluation test can be performed.
  • a dye-containing liquid is used as the aqueous solvent, and the degree of coloration of the aqueous solvent in the hollow portion of the tubular test body before the light irradiation and the tubular test body irradiated with the light
  • the method further includes the step of evaluating the function of the photocatalyst by comparing the degree of coloration of the aqueous solvent in the hollow portion.
  • the present invention provides, as another aspect, an instrument for suitably performing the above-described test method.
  • the present invention is a test body used for evaluating the photocatalytic function, and has a tubular structure that allows light to pass therethrough, and both ends thereof constitute open end portions connected to the hollow portion, and the hollow portion
  • the diameter is a size that can cause capillary action, and a photocatalyst layer is formed on the wall surface of the hollow portion to provide a tubular test body.
  • a substrate layer containing a substance that can be decomposed by photocatalytic action is further formed on the surface of the photocatalyst layer.
  • the substrate layer contains a hydrophobic organic substance as the decomposable substance.
  • a hydrophobic substance for example, higher fatty acid
  • a reactive group capable of binding to the photocatalyst layer is preferable.
  • tubular test body having such a configuration, it is possible to easily perform an evaluation test at a site where the member is used, particularly regarding the substance decomposition performance among the photocatalytic functions of the predetermined photocatalyst utilizing member.
  • the present invention is a kit for use in the photocatalyst function evaluation test disclosed herein, One of the tubular specimens disclosed herein, and a container into which an aqueous solvent is placed so that the specimen can be placed in a state where capillarity can occur (typically in a vertically standing state).
  • a kit for a photocatalyst function evaluation test is provided.
  • the photocatalytic function can be easily and easily tested without limiting the location by using the change in the capillary phenomenon before and after the light irradiation in the hollow portion of the tubular test body as an index. . Therefore, according to the present invention, the function of the photocatalyst contained in the predetermined photocatalyst utilization member can be easily evaluated at the site where the member is used.
  • FIG. 1 is a diagram schematically illustrating a configuration example of a tubular test body according to the present invention.
  • FIG. 1A is a longitudinal sectional view
  • FIG. 1B is a transverse sectional view
  • FIG. 1C is different from that shown in FIG.
  • FIG. 3 is a cross-sectional view of a tubular test specimen in the form.
  • FIG. 2 is a diagram schematically illustrating an example of use of the tubular specimen of the present invention.
  • FIG. 3 is a graph showing the results obtained in the examples of the test method of the present invention, where the horizontal axis represents the light irradiation time (hours) and the vertical axis represents the capillary rise value (mm).
  • the photocatalytic function test method disclosed herein includes the above-described tubular test body, and an aqueous solvent (that is, tap water, distilled water, ion-exchanged water, pure water, seawater, or spring water). This can be achieved by using a container for supplying an aqueous solution containing various salts and other hydrophilic solvents.
  • the light source is not particularly limited as long as it can emit light having a wavelength that can excite a photocatalytic substance such as titanium dioxide (a semiconductor substance such as a metal oxide or metal sulfide).
  • the method can be used outdoors (i.e. using the Natural light can be used when it is carried out at the place where the member is originally used. When this method is carried out indoors, various light sources such as general fluorescent lamps, mercury lamps and incandescent lamps can be used.
  • the tubular specimens 1 and 10 used in the photocatalytic function testing method disclosed herein are made of a material that can transmit light that allows the tubular bodies 2 and 12 to excite the photocatalytic substance (
  • the hollow portions 8 and 18 are formed so that the aqueous solvent introduced from one open end portion 8a can rise by capillary action when the test method of the present invention is performed.
  • the tubular structure is not particularly limited as long as it has a diameter of 5 mm.
  • the lengths of the tubular bodies 2 and 12 are not particularly limited as long as the capillary rise value can be measured, and may be, for example, twice as long as the expected capillary rise value.
  • the material of the tubular bodies 2 and 12 is preferably glass having a wide transmission wavelength range.
  • a tubular test body 1 having a tubular body 2 having a circular cross section as shown in FIGS. 1A and 1B is a typical example of a tubular test body used in the test method of the present invention, but as long as capillary action can occur,
  • it may be a tubular specimen 10 including a plate-shaped tubular body 12 having a flat cross section as shown in FIG. 1C.
  • photocatalyst layers 4 and 14 containing a photocatalyst to be tested are formed on the inner wall surfaces of the hollow portions 8 and 18 of the tubular test bodies 1 and 10 (tubular bodies 2 and 12).
  • the Such photocatalyst layers 4 and 14 can be formed by various conventionally known methods. For example, a suspension (typically an ink-like or best suspension) containing photocatalyst particles made of titanium dioxide or the like and an appropriate binder is prepared, and the suspension (sol) is prepared as a hollow hollow body. Apply to internal wall.
  • the photocatalyst layers 4 and 14 in which the photocatalyst particles are almost uniformly coated on the inner wall surface can be formed. Also light touch Before forming the media layers 4, 14, the inner walls of the hollow portions 8, 18 may be coated with a base material.
  • the base agent include silicon oxide and aluminum oxide.
  • tubular test bodies 1 and 10 in which the photocatalyst layers 4 and 14 are formed on the inner wall surfaces of the hollow portions 8 and 18 as described above can be used in a test method as described in Examples described later.
  • substrate layers 6 and 16 containing substances that can be decomposed by photocatalytic action may be further formed on the surfaces of the photocatalyst layers 4 and 14.
  • the substance decomposition function of the photocatalyst can be easily evaluated based on the capillary rise.
  • a solution containing an appropriate degradable substrate material for example, an organic substance such as alcohol, fatty acid, sugar, peptide, nucleic acid
  • an appropriate degradable substrate material for example, an organic substance such as alcohol, fatty acid, sugar, peptide, nucleic acid
  • the substrate layers 6 and 16 containing the target substrate substance can be formed on the surface of the photocatalyst layers 4 and 14 by appropriately performing drying, Z or heat treatment.
  • the substrate substance is particularly preferably a hydrophobic organic substance that binds to and competes with the surfaces of the photocatalyst layers 4 and 14 by a strong bond such as a covalent bond that is preferred by the hydrophobic organic substance.
  • This type of hydrophobic organic substance reacts with an alkyl chain that is a hydrophobic moiety and a fatty acid having a carboxyl group that is a reactive group (preferably a higher fatty acid such as oleic acid) and an alkyl chain that is a hydrophobic moiety.
  • fatty acid having a carboxyl group that is a reactive group preferably a higher fatty acid such as oleic acid
  • alkyl chain that is a hydrophobic moiety examples thereof include alcohols such as octanol having a hydroxyl group which is a functional group.
  • the tubular test specimens 1 and 10 obtained as described above are used in a state where capillary action can occur.
  • one open end 8a is in the aqueous solvent SW and the other open end is in a container P containing a suitable aqueous solvent (typically water) SW.
  • a suitable aqueous solvent typically water
  • the tubular specimen 1 is vertically arranged.
  • a holder H for example, an engagement hole corresponding to the outer diameter of the tubular test body 1 that can stably hold the tubular test body 1 for a long time in a state where capillarity can occur (typically in a vertically standing state).
  • a container P equipped with a socket-like holder) is particularly preferred.
  • Such a dedicated container is preferable as a component of the kit according to the present invention.
  • the force with which the tubular specimen 1 is set up vertically is acceptable as long as the capillary rise value can be measured in this test method.
  • the tubular specimen 1 is inclined to the side wall surface of the container P. The test may be performed in a standing state.
  • the tubular specimen 1 is placed in the container P, and the photocatalytic function evaluation is started.
  • the test location is not limited, and a photocatalyst-utilizing member containing the photocatalyst to be tested, such as a tile, a wall panel material, or a paint intended to provide a self-cleaning function by the photocatalyst. It can be carried out using natural light or certain lighting equipment at the site (outdoor or indoor) where the building exterior material is actually used.
  • the photocatalytic substance (titanium oxide or the like) constituting the photocatalyst layer 4 is irradiated with light L after passing through the tubular body 2 of the tubular test body 1, and the hydrophilization reaction caused by the photocatalyst generated thereby.
  • the aqueous solvent (water in this case) SW enters into the hollow portion 8 of the tubular test body 1 that functions as a capillary and forms the capillary water CW at this time, a predetermined contact angle
  • the capillary water CW rises to a predetermined position (height) corresponding to the diameter of the hollow portion 8.
  • the contact angle ⁇ between the inner wall surface of the hollow portion 8 and the liquid surface of the capillary water CW is reduced, thereby further pushing up the liquid surface of the capillary water CW.
  • the capillary rise in the hollow portion 8 of the tubular test body 1 before the light irradiation is compared with the capillary rise in the hollow portion 8 of the tubular test body 1 after the light irradiation.
  • the function of the photocatalyst constituting the photocatalyst layer 4 can be easily evaluated regardless of the place.
  • this evaluation method may be performed simultaneously with light irradiation, or after performing a light irradiation treatment for a predetermined time (for example, 1 to 24 hours or more) in advance as shown in FIG.
  • the body 1 may be placed in the container P and irradiated with light, or may be performed without light irradiation.
  • is the surface tension of water (70 g 'cm 2 ' s_ 2 )
  • is the contact angle
  • p is the density of water (lg 'cm — 3 )
  • g is the acceleration of gravity (981 cm' s — 2 )
  • R is The radius (cm 2) of the hollow part 8 (capillary) of the tubular specimen is shown.
  • the photocatalytic function is quantified and evaluated for a predetermined parameter. can do.
  • the photocatalytic function can be evaluated by this test method even in a hollow portion having a cross-sectional plate (planar) shape as shown in FIG. 1C as long as capillary action is observed.
  • the maximum capillary rise value when irradiated with light of sufficient intensity as a comparative control test can be obtained as an index.
  • the photocatalytic function can be evaluated.
  • a tubular test body having the same photocatalyst layer and having a substrate layer formed on the surface thereof and a tubular test body having no substrate layer formed thereon are prepared. It is possible to evaluate the substance decomposition performance of the photocatalyst by measuring the time until the capillary rise value reaches the maximum value (plateau) in each tubular specimen with the substrate layer and comparing the measured values.
  • tubular specimens 1 and 10 disclosed herein are extremely easy to carry and set for testing, the use of the tubular specimen allows any other photocatalyst function evaluation test to be performed. Can be done at any place.
  • the hollow portions 8 and 18 are filled with an appropriate reaction substrate and irradiated with light to cause various photocatalytic reactions (for example, oxidation-reduction reactions) in the hollow portions 8 and 18, and the photocatalyst is based on the intensity of the reaction.
  • the function can be tested 'evaluated. For example, a liquid containing pigment such as methylene blue is filled in the hollow portions 8 and 18, and the color development degree (transmission light intensity) of the filling liquid after light irradiation is measured with a colorimeter or the like.
  • the photocatalytic function of the photocatalyst utilizing member can be easily evaluated at a place where it is actually used.
  • the tubular test body of the present invention is also applied to a photocatalyst-utilizing member in which a photocatalyst layer is formed by a method that is difficult to apply to the inside of the tubular bodies 2 and 12 such as a sputtering method by creating a calibration curve. 1 and 10 can be used to evaluate the photocatalytic function.
  • the capillary rise value (or the capillary rise value) in the tubular specimen of the present invention is used.
  • a calibration curve may be prepared in advance between a parameter (such as a calculated contact angle of water) and a numerical value (for example, a contact angle of water) indicating the photocatalytic function of the building exterior material.
  • a parameter such as a calculated contact angle of water
  • a numerical value for example, a contact angle of water
  • a value (or a parameter such as a water contact angle calculated from a capillary rise value) and a numerical value (for example, a water contact angle) indicating a photocatalytic function in the building exterior material may be measured.
  • a Pyrex (registered trademark) glass tube with a length of 20 mm, an outer diameter of 4 mm, and a hollow diameter of 2 mm was prepared. Further, as the photocatalyst coating liquid (sol), a commercially available ultrafine titanium oxide zone (Product “Showa Denko Co., Ltd. product“ Nanotitania (registered trademark) NTB-01J ”) was used.
  • the above-mentioned titania sol was diluted and appropriately diluted with water (alcohols) into the hollow portion of the glass tube, and then the excess sol was discharged from the hollow portion. After draining, it was dried in air, then transferred to an electric furnace and baked at about 300 ° C.
  • a tubular test body in which a photocatalyst layer made of titanium dioxide particles was formed on the inner wall surface of the hollow portion was obtained.
  • a test for evaluating the hydrophilization performance of the photocatalyst was conducted using the obtained tubular specimen. That is, one open end of the test body according to this example was placed in a petri dish containing water. Several hours later, the specimen was irradiated with light using a 400 W high-pressure mercury lamp.
  • the capillary rise value at the time when 4 hours had elapsed (that is, the height from the water level of the Petri dish to the liquid level of the capillary water rising the hollow portion of the tubular specimen) was measured. The results are shown in the graph of FIG. 3.
  • Comparative Example 1 the capillary rise value at the time when 24 hours had elapsed without performing light irradiation was measured for a tubular test piece produced by the same treatment. The result is shown in the graph of FIG.
  • a photocatalyst coating liquid As a photocatalyst coating liquid (sol), a commercially available titanium oxide zonore (Titanium Chemical Co., Ltd., “Tainok (registered trademark) M-6”) was used, and the same material and method as in Example 1 were used. A tubular test body in which a photocatalyst layer made of titanium dioxide particles was formed on the inner wall surface of the part was obtained.
  • Example 2 Then, the same test as in Example 1 was performed, and the capillary rise value was measured before light irradiation and at the time of 0.5 hours, 1 hour, 1.5 hours, 2 hours, 3 hours, and 24 hours after light irradiation. It was. The result is shown in the graph of FIG.
  • Comparative Example 2 the capillary test value was measured at the time when 24 hours had passed without performing light irradiation on a tubular test specimen produced by the same treatment. The result is shown in the graph of FIG.
  • Comparative Example 3 control test
  • the same test was performed on the above glass tube in which the photocatalyst layer was not formed, and before light irradiation, and 0.5 hours, 1 hour, 1.5 hours from light irradiation, Capillary elevation was measured after 2 hours, 3 hours and 24 hours. The results are shown in the graph of Fig. 3.
  • Example 2 The same material as in Example 1 was used, except that a commercially available ultrafine titanium oxide sol (Showa Denko Co., Ltd. product, Knotitania (registered trademark) NTB_03)) was used as the photocatalyst coating liquid (sol) and treated in the same manner.
  • a substrate layer was further formed on the surface. That is, a substrate layer forming solution was prepared by mixing oleic acid and ethanol so that the oleic acid concentration was 20 to 50 vol%.
  • This solution was poured into the hollow part of the test specimen and filled at 50 to 90 ° C. for 60 minutes to form a substrate layer having oleic acid power on the surface of the photocatalyst layer.
  • the same test as in Example 1 was performed, and before and after the light irradiation.
  • the capillary rise was measured at the time of 0.5 hour, 1 hour, 1.5 hour, 2 hours, 3 hours and 24 hours. The result is shown in the graph of FIG.
  • Example 1 The same material as in Example 1 was used, except that a commercially available titanium oxide sol (Titanium Oxide Zonole “Tainock (registered trademark) A-6” manufactured by Taki Chemical Co., Ltd.) was used as the photocatalyst coating liquid (sol). Then, a photocatalyst layer was formed on the inner wall surface of the hollow part of the glass tube, and then the same treatment as in Example 3 was performed to form a substrate layer on the surface of the photocatalyst layer. The same test as in Example 1 was carried out using the obtained tubular test specimen with the base layer, and before light irradiation and 0.5 hours, 1 hour, 1.5 hours, 2 hours, 3 hours and so on. Capillary elevation was measured after 24 hours. The result is shown in the graph of FIG.
  • a commercially available titanium oxide sol Tianium Oxide Zonole “Tainock (registered trademark) A-6” manufactured by Taki Chemical Co., Ltd.
  • the photocatalytic function can be easily evaluated by measuring the capillary rise value.
  • the capillary rise value which was 2 to 8 mm before light irradiation, increased to 15 to 16 mm by light irradiation for 0.5 hours.
  • the difference in the capillary rise value was recognized by the kind of photocatalyst used.
  • This test method clearly identifies the difference in the degree of the photocatalytic function (especially the hydrophilization performance that affects the self-cleaning ability) that can be exhibited according to the place of use (environmental factors) for multiple types of photocatalysts. Show you get.
  • the capillary rise value which was 6 to 8 mm before light irradiation, increased to 15 to 16 mm after 24 hours. This indicates that the oleic acid constituting the substrate layer was decomposed by the photocatalyst excited by light irradiation, and the hydrophilicity proceeded (contact angle approached 0 °).
  • the test sample of Example 3 in which the substrate layer was formed such a high capillary rise was not recognized after 24 hours from the start of light irradiation.
  • the present invention can correctly and simply test and evaluate the photocatalytic function of various photocatalyst-utilizing members (for example, building exterior materials) at actual usage sites. Therefore, the present invention can be used in various industrial fields where photocatalysts are used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

This invention provides a testing method and a testing apparatus that, in the field where a member utilizing a photocatalyst is actually used, for example, exterior materials for building, a photocatalyst function exerted by a photocatalyst contained in the member can be simply evaluated. The method for an evaluation test of a photocatalyst function comprises the step of providing a light transparent tubular test piece (1) having a hollow part (8), of which the diameter is such that causes a capillary phenomenon, and of which the wall surface is provided with a photocatalyst layer (4), the step of applying light L to the tubular test piece, the step of disposing the tubular test piece in such a state that, in a container (P) containing an aqueous solvent (SW), one opening end (8a) is located in the aqueous solvent and the other opening end (8b) is located in the air, and the step of comparing capillary rise in the hollow part of the tubular test piece before light irradiation with capillary rise in the hollow part of the light-exposed tubular test piece to evaluate the function of the photocatalyst.

Description

明 細 書  Specification
光触媒機能の試験方法および該試験に用いる器具  Photocatalytic function test method and instrument used for the test
技術分野  Technical field
[0001] 本発明は、光触媒機能を簡便に試験する方法とその試験に用いられる器具に関す る。詳しくは、建築材料等に使用される光触媒について、その使用現場における光 触媒機能を簡便に試験し得る方法及び器具に関する。  [0001] The present invention relates to a method for simply testing a photocatalytic function and an instrument used for the test. Specifically, the present invention relates to a method and an instrument that can easily test the photocatalytic function at the site of use of a photocatalyst used for building materials.
背景技術  Background art
[0002] 酸化チタン等の光触媒が種々の用途に利用されている。例えば、建物の外装を構 成する建築材料 (外壁材等)の表面部に光触媒を含有させて成る建築材料が市場に 提供されている。このような光触媒付き外装建築材料では、光の照射で誘起される光 触媒反応即ち分解反応や親水化反応によって、当該外装材の表面を常にクリーン 状態に維持する所謂セルフクリーニング機能を発揮させることができる。  [0002] Photocatalysts such as titanium oxide are used in various applications. For example, building materials are being marketed that contain photocatalysts on the surface of building materials (outer wall materials, etc.) that make up the exterior of buildings. Such exterior building materials with a photocatalyst can exhibit a so-called self-cleaning function that always maintains the surface of the exterior material in a clean state by a photocatalytic reaction induced by light irradiation, that is, a decomposition reaction or a hydrophilization reaction. it can.
[0003] ところで、セルフクリーニング機能その他の光触媒機能を良好に発揮させる要因と して、(1)使用する光触媒自体の本質的な活性 (性能)という物質的要因と、(2)その 光触媒が使用される場所の環境的要因(例えば光触媒によって吸収され得る波長の 光が光触媒に十分供給される場所であるか否かといった要因)とが挙げられる。従つ て、所望の用途に用いる光触媒を含む材料、資材、製品(以下「光触媒利用部材」と 総称する。)について、その使用態様における光触媒機能を正しく評価するためには 、上記(1)及び(2)の両面から検討する必要がある。  [0003] By the way, as factors that make the self-cleaning function and other photocatalytic functions work well, (1) the material factor of the essential activity (performance) of the photocatalyst itself used, and (2) the use of the photocatalyst Environmental factors (for example, whether or not the photocatalyst is sufficiently supplied with light having a wavelength that can be absorbed by the photocatalyst). Therefore, in order to correctly evaluate the photocatalytic function in the usage mode of materials, materials, and products (hereinafter collectively referred to as “photocatalyst utilization members”) containing photocatalysts used for desired applications, the above (1) and It is necessary to consider both aspects of (2).
[0004] このうち(1)については、従来提案されている種々の方法に基づき実験室において 光触媒機能評価モデル試験を行うことができる。例えば、非特許文献 1には、光触媒 のセルフクリーニング機能についての評価方法が幾つか紹介されている。また、特許 文献 1及び 2には、基材上に形成された光触媒膜の表面を着色し、その着色面に紫 外線を照射しつつ吸光度または反射率を測定することによって光触媒機能を評価す る方法が記載されている。また、特許文献 3には、基材上に形成された光触媒層の表 面に低級アルコールを含む有機層を形成し、その有機層に紫外線を照射した後、当 該有機層(有機層分解後は光触媒層)表面における水の接触角を調べることにより 光触媒機能を評価する方法が記載されてレヽる。 [0004] Among these, for (1), a photocatalyst function evaluation model test can be performed in a laboratory based on various conventionally proposed methods. For example, Non-Patent Document 1 introduces several evaluation methods for the self-cleaning function of a photocatalyst. Patent Documents 1 and 2 evaluate the photocatalytic function by coloring the surface of the photocatalytic film formed on the substrate and measuring the absorbance or reflectance while irradiating the colored surface with ultraviolet rays. A method is described. In Patent Document 3, an organic layer containing a lower alcohol is formed on the surface of a photocatalyst layer formed on a substrate, the organic layer is irradiated with ultraviolet rays, and then the organic layer (after decomposition of the organic layer) is formed. Is a photocatalytic layer) by examining the contact angle of water on the surface A method for evaluating the photocatalytic function is described.
特許文献 1:特開平 11 83833号公報  Patent Document 1: Japanese Patent Laid-Open No. 11 83833
特許文献 2 :特開 2000— 162129号公報  Patent Document 2: JP 2000-162129 A
特許文献 3 :特開 2001— 183359号公報  Patent Document 3: Japanese Patent Laid-Open No. 2001-183359
非特許文献 1 :飛松浩樹著「光触媒のセルフクリーニングの評価法」、工業材料、 200 3年 7月号、 p26 - 27  Non-Patent Document 1: Hiroki Tobimatsu, “Evaluation method of self-cleaning of photocatalyst”, Industrial Materials, 200 3 July, p26-27
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、上記文献に記載されているような評価方法を実施するには煩雑な処 理を行う必要があるとともに持ち運びが困難な機器を使用せざるを得ない。このため 、評価が行える場所は特定の実験施設内に限られ、評価対象である光触媒利用部 材を実際に使用する現場において当該部材の光触媒機能を評価することは困難で ある。 However, in order to carry out the evaluation method as described in the above document, it is necessary to perform a complicated process and use a device that is difficult to carry. For this reason, the place where the evaluation can be performed is limited to a specific experimental facility, and it is difficult to evaluate the photocatalytic function of the member at the site where the photocatalyst utilizing member to be evaluated is actually used.
[0006] 本発明の目的は、光触媒利用部材を実際に使用する現場において当該部材に含 まれる光触媒が発揮し得る光触媒機能を簡便に評価し得る試験方法を提供すること である。また、本発明の他の目的は、そのような試験方法に好適に使用される器具及 びキット類を提供することである。  [0006] An object of the present invention is to provide a test method that can easily evaluate a photocatalytic function that can be exhibited by a photocatalyst contained in a member that actually uses a photocatalyst-utilizing member. Another object of the present invention is to provide instruments and kits suitably used for such a test method.
課題を解決するための手段  Means for solving the problem
[0007] 本発明により提供される方法は、光触媒機能を評価するための試験方法である。こ こで開示される方法では、光が透過可能な管状試験体であって、その両端は中空部 に連なる開口端部を構成し、その中空部の径は毛管現象が生じ得るサイズであり、そ の中空部の壁面には光触媒層が形成されている光透過性管状試験体を用意するス テツプを含む。また、その用意した管状試験体に光を照射するステップを含む。また、 水性溶媒を入れた容器に、上記一方の開口端部が水性溶媒中に在り且つ他方の開 口端部が大気中に在る状態で、上記管状試験体を配置するステップを含む。そして 、上記光照射前の上記管状試験体の中空部における毛管上昇と、光照射された該 管状試験体の中空部における毛管上昇とを比較して上記光触媒の機能を評価する ステップを含む。 [0008] かかる構成の試験方法では、上述した単純な構成の光透過性管状試験体と適当 量の水性溶媒 (典型的には水)の入った容器を使用し、当該試験体を毛管現象が生 じ得る状態に配置する。そして、当該管状試験体における光照射前の毛管水の上昇 具合と、当該試験体に外方力 光が照射された際に生じる光触媒作用による親水化 に対応して進行する毛管水の上昇具合とを比較して、管状試験体の中空部内壁面 の光触媒層における光触媒機能を評価することができる。 [0007] The method provided by the present invention is a test method for evaluating the photocatalytic function. In the method disclosed here, a tubular specimen that can transmit light, both ends of which constitute an open end connected to the hollow portion, and the diameter of the hollow portion is a size that can cause capillary action, The wall of the hollow part includes a step for preparing a light-transmitting tubular test body on which a photocatalytic layer is formed. Moreover, the step which irradiates light to the prepared tubular test body is included. In addition, the method includes the step of placing the tubular specimen in a container containing an aqueous solvent in a state where the one open end is in the aqueous solvent and the other open end is in the atmosphere. Then, the step of evaluating the function of the photocatalyst by comparing the capillary rise in the hollow portion of the tubular test body before the light irradiation and the capillary rise in the hollow portion of the tubular test body irradiated with the light is included. [0008] In the test method having such a configuration, a container containing a light-transmitting tubular test body having a simple configuration as described above and an appropriate amount of an aqueous solvent (typically water) is used, and the test body exhibits capillary action. Place it in a state where it can occur. And the rise of the capillary water before the light irradiation in the said tubular test body, the rise condition of the capillary water which advances corresponding to the hydrophilization by the photocatalytic action that occurs when the external force light is irradiated to the test body, Thus, the photocatalytic function of the photocatalyst layer on the inner wall surface of the hollow portion of the tubular test body can be evaluated.
この方法によると、上記構成の管状試験体の中空部における光照射前と光照射後 の毛管現象 (典型的には毛管上昇値即ち上昇高さ)の変化を指標にして、場所の制 限なく且つ簡便に光触媒機能の試験を行うことができる。従って、本発明の試験方法 によると、所定の光触媒利用部材に含まれる光触媒の機能を当該部材が使用される 現場にぉレ、て簡便に評価することができる。  According to this method, there is no limitation on the location using the change in capillary phenomenon (typically, the capillary rise value or elevation height) before and after light irradiation in the hollow part of the tubular specimen having the above-described configuration as an index. And the test of a photocatalyst function can be performed simply. Therefore, according to the test method of the present invention, the function of the photocatalyst contained in the predetermined photocatalyst-utilizing member can be easily evaluated at the site where the member is used.
[0009] ここで開示される試験方法の好ましい一態様では、上記光触媒層の表面に光触媒 作用によって分解可能な物質を含む基質層がさらに形成された管状試験体を使用 する。  [0009] In a preferred embodiment of the test method disclosed herein, a tubular test body in which a substrate layer containing a substance decomposable by a photocatalytic action is further formed on the surface of the photocatalyst layer is used.
このような基質層が光触媒層上に形成された管状試験体を用いることによって、光 照射時の光触媒反応による基質層中の物質 (典型的には分解容易な有機物)の分 解の程度即ち供試光触媒の物質分解性能の程度を、当該分解に起因する中空部 内壁面の親水性向上に基づく毛管上昇値の増大、或いは毛管上昇が開始される迄 の時間若しくは毛管上昇の進行が終了するまでの時間を測定することによって、容 易に試験することができる。従って、本態様の試験方法によると、所定の光触媒利用 部材に含まれる光触媒が発揮する諸機能のうち特に物質分解性能を当該光触媒利 用部材が使用される現場において簡便に評価することができる。  By using a tubular test body in which such a substrate layer is formed on the photocatalyst layer, the degree of decomposition of the substance (typically easily decomposable organic matter) in the substrate layer by the photocatalytic reaction at the time of light irradiation, that is, the sample is provided. The degree of substance decomposition performance of the photocatalyst is increased by increasing the capillary rise value based on the hydrophilicity improvement of the inner wall surface of the hollow part due to the decomposition, or until the capillary rise starts or the progress of the capillary rise is completed. It can be easily tested by measuring the time. Therefore, according to the test method of this embodiment, among the functions exhibited by the photocatalyst included in the predetermined photocatalyst utilizing member, particularly the substance decomposition performance can be easily evaluated at the site where the photocatalyst utilizing member is used.
[0010] 好ましくは、上記基質層には上記分解可能な物質として疎水性有機物が含まれる。 [0010] Preferably, the substrate layer includes a hydrophobic organic substance as the decomposable substance.
このような物質が光触媒作用で分解することによって内壁面の親水化が進行し、有 機物分解の指標となる毛管水の上昇割合をより際だたせることができる。  When such a substance is decomposed by photocatalysis, the inner wall surface is hydrophilized, and the rate of increase in capillary water, which is an indicator of organic decomposition, can be more pronounced.
特に好ましくは、上記疎水性有機物は、疎水性構造部分と上記光触媒層と結合可 能な反応性基とを有する。例えば、反応性基として、水酸基、カルボキシル基、ァミノ 基、エポキシ基、チオール基、ハロゲン等を有し、疎水性構造部分として長鎖アルキ ル基を備える疎水性物質 (例えば高級脂肪酸)が挙げられる。 Particularly preferably, the hydrophobic organic substance has a hydrophobic structure portion and a reactive group capable of binding to the photocatalyst layer. For example, the reactive group has a hydroxyl group, a carboxyl group, an amino group, an epoxy group, a thiol group, a halogen, etc., and a long chain alkyl group as a hydrophobic structure portion. And hydrophobic substances (eg, higher fatty acids) having a sulfur group.
このような構造の疎水性物質は、上記反応性基の存在によって、光触媒層に共有 結合等によって強固に結合させることができる。このため、より精度の高い光触媒機 能 (分解機能)評価試験を行うことができる。  The hydrophobic substance having such a structure can be firmly bonded to the photocatalyst layer by a covalent bond or the like due to the presence of the reactive group. For this reason, a highly accurate photocatalytic function (decomposition function) evaluation test can be performed.
[0011] 他の好ましい一態様では、上記水性溶媒として色素含有液を使用し、上記光照射 前の上記管状試験体の中空部における上記水性溶媒の発色度合と、光照射された 該管状試験体の中空部における上記水性溶媒の発色度合とを比較して上記光触媒 の機能を評価するステップをさらに含む。  In another preferred embodiment, a dye-containing liquid is used as the aqueous solvent, and the degree of coloration of the aqueous solvent in the hollow portion of the tubular test body before the light irradiation and the tubular test body irradiated with the light The method further includes the step of evaluating the function of the photocatalyst by comparing the degree of coloration of the aqueous solvent in the hollow portion.
この方法によると、上記構成の管状試験体の中空部における光照射前と光照射後 の水性溶媒の発色度合 (典型的には透過光強度)の変化を指標にして、場所の制限 なく且つ簡便に光触媒機能の試験を行うことができる。  According to this method, there is no restriction on the location, using the change in the degree of color development (typically transmitted light intensity) of the aqueous solvent before and after the light irradiation in the hollow part of the tubular test body having the above configuration as an index, and without any restrictions. In addition, the photocatalytic function can be tested.
[0012] また、本発明は、他の側面として、上述した試験方法を好適に実施するための器具 を提供する。  [0012] Further, the present invention provides, as another aspect, an instrument for suitably performing the above-described test method.
即ち、本発明は、光触媒機能を評価するために使用する試験体であって、光が透 過可能な管状構造であり、その両端は中空部に連なる開口端部を構成し、その中空 部の径は毛管現象が生じ得るサイズであり、その中空部の壁面には光触媒層が形成 されてレ、る管状試験体を提供する。  That is, the present invention is a test body used for evaluating the photocatalytic function, and has a tubular structure that allows light to pass therethrough, and both ends thereof constitute open end portions connected to the hollow portion, and the hollow portion The diameter is a size that can cause capillary action, and a photocatalyst layer is formed on the wall surface of the hollow portion to provide a tubular test body.
力かる構成の管状試験体を使用することによって、本発明の試験方法を好適に実 施すること力 Sできる。  By using a tubular specimen having a strong structure, it is possible to suitably apply the test method of the present invention.
[0013] 好ましい一態様では、上記光触媒層の表面に光触媒作用によって分解可能な物 質を含む基質層がさらに形成されている。特に好ましくは、上記基質層には上記分 解可能な物質として疎水性有機物が含まれる。力かる疎水性有機物としては、疎水 性構造部分と上記光触媒層と結合可能な反応性基とを有する疎水性物質 (例えば 高級脂肪酸)が好ましい。  [0013] In a preferred embodiment, a substrate layer containing a substance that can be decomposed by photocatalytic action is further formed on the surface of the photocatalyst layer. Particularly preferably, the substrate layer contains a hydrophobic organic substance as the decomposable substance. As the strong hydrophobic organic substance, a hydrophobic substance (for example, higher fatty acid) having a hydrophobic structure portion and a reactive group capable of binding to the photocatalyst layer is preferable.
このような構成の管状試験体を使用することによって、所定の光触媒利用部材の光 触媒機能のうち特に物質分解性能について、当該部材を使用する現場において簡 便に評価試験を行うことができる。  By using the tubular test body having such a configuration, it is possible to easily perform an evaluation test at a site where the member is used, particularly regarding the substance decomposition performance among the photocatalytic functions of the predetermined photocatalyst utilizing member.
[0014] また、本発明は、ここで開示される光触媒機能評価試験に使用するキットであって、 ここで開示されるいずれかの管状試験体と、水性溶媒を入れる容器であって該試験 体を毛管現象が生じ得る状態 (典型的には垂直に立てた状態)で配置し得る容器と を備える光触媒機能評価試験用キットを提供する。 [0014] Further, the present invention is a kit for use in the photocatalyst function evaluation test disclosed herein, One of the tubular specimens disclosed herein, and a container into which an aqueous solvent is placed so that the specimen can be placed in a state where capillarity can occur (typically in a vertically standing state). A kit for a photocatalyst function evaluation test is provided.
発明の効果  The invention's effect
[0015] 本発明によれば、管状試験体の中空部における光照射前と光照射後の毛管現象 の変化を指標にして、場所の制限なく且つ簡便に光触媒機能の試験を行うことがで きる。従って、本発明によれば、所定の光触媒利用部材に含まれる光触媒の機能を 当該部材が使用される現場において簡便に評価することができる。  [0015] According to the present invention, the photocatalytic function can be easily and easily tested without limiting the location by using the change in the capillary phenomenon before and after the light irradiation in the hollow portion of the tubular test body as an index. . Therefore, according to the present invention, the function of the photocatalyst contained in the predetermined photocatalyst utilization member can be easily evaluated at the site where the member is used.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]本発明の管状試験体の構成例を模式的に説明する図であり、図 1Aは縦断面 図、図 1Bは横断面図,図 1Cは図 1Bに示すものと異なる形態の管状試験体の横断 面図である。  FIG. 1 is a diagram schematically illustrating a configuration example of a tubular test body according to the present invention. FIG. 1A is a longitudinal sectional view, FIG. 1B is a transverse sectional view, and FIG. 1C is different from that shown in FIG. FIG. 3 is a cross-sectional view of a tubular test specimen in the form.
[図 2]本発明の管状試験体の使用例を模式的に説明する図である。  FIG. 2 is a diagram schematically illustrating an example of use of the tubular specimen of the present invention.
[図 3]本発明の試験方法の実施例において得られた結果を示すグラフであり、横軸 は光照射時間(時間)、縦軸は毛管上昇値 (mm)である。  FIG. 3 is a graph showing the results obtained in the examples of the test method of the present invention, where the horizontal axis represents the light irradiation time (hours) and the vertical axis represents the capillary rise value (mm).
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及し ている事項 (例えば管状試験体の形状や当該試験体を構成する材料の組成)以外 の事柄であって本発明の実施に必要な事柄 (例えば光触媒層形成用材料の調製や コーティング方法)は、当該分野における従来技術に基づく当業者の設計事項として 把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術 常識とに基づいて実施することができる。  [0017] Hereinafter, preferred embodiments of the present invention will be described. It should be noted that matters other than matters specifically mentioned in the present specification (for example, the shape of the tubular specimen and the composition of the material constituting the specimen) and matters necessary for the implementation of the present invention (for example, for photocatalyst layer formation) Material preparation and coating methods) can be understood as design matters for those skilled in the art based on the prior art in the field. The present invention can be carried out based on the contents disclosed in this specification and common general technical knowledge in the field.
[0018] ここで開示される光触媒機能試験方法は、上述の管状試験体と、当該管状試験体 に水性溶媒 (即ち、水道水、蒸留水、イオン交換水、純水、海水又は湧き水のような 種々の塩類を含む水溶液、その他親水性溶媒を包含する。)を供給するための容器 とを使用することによって実施すること力 Sできる。光源は、二酸化チタン等の光触媒物 質 (金属酸化物、金属硫化物等の半導体物質)を励起させ得る波長の光線を放射可 能であれば特に限定されない。例えば、本方法を野外 (即ち評価対象の光触媒利用 部材の本来の使用場所)で実施する場合には自然光を利用することができる。本方 法を屋内で実施する場合には、一般的な蛍光灯、水銀灯、白熱電球等の種々の光 源を用いることができる。 [0018] The photocatalytic function test method disclosed herein includes the above-described tubular test body, and an aqueous solvent (that is, tap water, distilled water, ion-exchanged water, pure water, seawater, or spring water). This can be achieved by using a container for supplying an aqueous solution containing various salts and other hydrophilic solvents. The light source is not particularly limited as long as it can emit light having a wavelength that can excite a photocatalytic substance such as titanium dioxide (a semiconductor substance such as a metal oxide or metal sulfide). For example, the method can be used outdoors (i.e. using the Natural light can be used when it is carried out at the place where the member is originally used. When this method is carried out indoors, various light sources such as general fluorescent lamps, mercury lamps and incandescent lamps can be used.
[0019] 図 1に示すように、ここで開示される光触媒機能試験方法に用いられる管状試験体 1 , 10は、その管状本体 2, 12が光触媒物質を励起させ得る光を透過可能な材質( 例えば無機ガラス、有機ガラス)によって構成されており、その中空部 8, 18は本発明 の試験方法を実施した際に一方の開口端部 8aから導入される水性溶媒が毛管現象 によって上昇し得る程度の径であればよぐその管状構造に特に限定はない。管状 本体 2, 12の長さは、毛管上昇値を計測可能な長さであれば特に限定されず、例え ば予想される毛管上昇値の 2倍の長さとすればよい。このようにすることで、管状本体 2, 12の一方の開口端部 8a, 18aを水性溶媒中に配置しても、中空部 8, 18内の水 面の位置が開口端部 8aと開口端部 8bとの間に位置するようになるので、毛管上昇値 を計測することができる(図 2参照)。  As shown in FIG. 1, the tubular specimens 1 and 10 used in the photocatalytic function testing method disclosed herein are made of a material that can transmit light that allows the tubular bodies 2 and 12 to excite the photocatalytic substance ( For example, the hollow portions 8 and 18 are formed so that the aqueous solvent introduced from one open end portion 8a can rise by capillary action when the test method of the present invention is performed. The tubular structure is not particularly limited as long as it has a diameter of 5 mm. The lengths of the tubular bodies 2 and 12 are not particularly limited as long as the capillary rise value can be measured, and may be, for example, twice as long as the expected capillary rise value. In this way, even if one of the open ends 8a and 18a of the tubular bodies 2 and 12 is placed in an aqueous solvent, the position of the water surface in the hollow portions 8 and 18 is the same as the open ends 8a and 8 Since it is positioned between the part 8b, the capillary rise value can be measured (see Fig. 2).
管状本体 2, 12の材質としては、透過波長範囲の広いガラスが好ましい。例えば、 石英ガラス、高ケィ酸ガラス (例えばコ一二ング社製品であるバイコール (登録商標) ガラス)、ホウケィ酸ガラス (例えばコ一二ング社製品であるパイレックス(登録商標)ガ ラス)が特に好ましい材質として挙げられる。  The material of the tubular bodies 2 and 12 is preferably glass having a wide transmission wavelength range. For example, quartz glass, high silicate glass (for example, Vycor (registered trademark) glass, which is a product of Corning), and borosilicate glass (for example, Pyrex (registered trademark) glass, which is a product of Corning) It is mentioned as a preferable material.
図 1A及び図 1Bに示すような断面が円形の管状本体 2を備える管状試験体 1は、 本発明の試験方法に用いられる管状試験体の典型例であるが、毛管現象が生じ得 る限り、例えば図 1Cに示すような断面が扁平なプレート形状の管状本体 12を備える 管状試験体 10であってもよい。  A tubular test body 1 having a tubular body 2 having a circular cross section as shown in FIGS. 1A and 1B is a typical example of a tubular test body used in the test method of the present invention, but as long as capillary action can occur, For example, it may be a tubular specimen 10 including a plate-shaped tubular body 12 having a flat cross section as shown in FIG. 1C.
[0020] 図 1に示すように、管状試験体 1, 10 (管状本体 2, 12)の中空部 8, 18の内壁面に は、試験対象である光触媒を含む光触媒層 4, 14が形成される。かかる光触媒層 4, 14は、従来公知の種々の方法により形成することができる。例えば、二酸化チタン等 力 成る光触媒粒子と適当なバインダーを含む懸濁液 (典型的にはインク状又はべ 一スト状懸濁液)を調製し、当該懸濁液 (ゾル)を管状本体の中空部内壁に塗布する 。その後、適宜、乾燥及び/又は加熱処理を行うことによって、光触媒粒子が内壁面 にほぼ均一にコーティングされた光触媒層 4, 14を形成することができる。また、光触 媒層 4, 14を形成する前に、下地剤で中空部 8, 18の内壁面をコーティングしてもよ レ、。下地剤は、例えば、酸化ケィ素や酸化アルミニウムなどが挙げられる。 As shown in FIG. 1, photocatalyst layers 4 and 14 containing a photocatalyst to be tested are formed on the inner wall surfaces of the hollow portions 8 and 18 of the tubular test bodies 1 and 10 (tubular bodies 2 and 12). The Such photocatalyst layers 4 and 14 can be formed by various conventionally known methods. For example, a suspension (typically an ink-like or best suspension) containing photocatalyst particles made of titanium dioxide or the like and an appropriate binder is prepared, and the suspension (sol) is prepared as a hollow hollow body. Apply to internal wall. Thereafter, by appropriately performing drying and / or heat treatment, the photocatalyst layers 4 and 14 in which the photocatalyst particles are almost uniformly coated on the inner wall surface can be formed. Also light touch Before forming the media layers 4, 14, the inner walls of the hollow portions 8, 18 may be coated with a base material. Examples of the base agent include silicon oxide and aluminum oxide.
上記のようにして中空部 8, 18の内壁面に光触媒層 4, 14が形成された管状試験 体 1 , 10は、後述する実施例に記載されるような試験方法に使用することができる。  The tubular test bodies 1 and 10 in which the photocatalyst layers 4 and 14 are formed on the inner wall surfaces of the hollow portions 8 and 18 as described above can be used in a test method as described in Examples described later.
[0021] また、図 1に示すように、光触媒層 4, 14の表面に光触媒作用によって分解可能な 物質を含む基質層 6, 16をさらに形成してもよい。このような構成により、光触媒の物 質分解機能を毛管上昇に基づいて容易に評価することができる。 Further, as shown in FIG. 1, substrate layers 6 and 16 containing substances that can be decomposed by photocatalytic action may be further formed on the surfaces of the photocatalyst layers 4 and 14. With such a configuration, the substance decomposition function of the photocatalyst can be easily evaluated based on the capillary rise.
適当な分解可能な基質物質 (例えばアルコール、脂肪酸、糖質、ペプチド、核酸の ような有機物)を含む溶液を光触媒層 4, 14付き管状本体 2, 12の中空部 8, 18に導 入し、その後適宜乾燥及び Z又は加熱処理を行うことによって目的の基質物質を含 む基質層 6, 16を光触媒層 4, 14の表面に形成することができる。  A solution containing an appropriate degradable substrate material (for example, an organic substance such as alcohol, fatty acid, sugar, peptide, nucleic acid) is introduced into the hollow portions 8 and 18 of the tubular bodies 2 and 12 with the photocatalyst layers 4 and 14, Thereafter, the substrate layers 6 and 16 containing the target substrate substance can be formed on the surface of the photocatalyst layers 4 and 14 by appropriately performing drying, Z or heat treatment.
基質物質としては、疎水性有機物が好ましぐ共有結合等の強固な結合によって光 触媒層 4, 14の表面に結合し競る疎水性有機物が特に好ましい。この種の疎水性有 機物としては、疎水性部分であるアルキル鎖と反応性基であるカルボキシル基を有 する脂肪酸 (好ましくはォレイン酸等の高級脂肪酸)、疎水性部分であるアルキル鎖 と反応性基である水酸基を有するォクタノール等のアルコールが挙げられる。  The substrate substance is particularly preferably a hydrophobic organic substance that binds to and competes with the surfaces of the photocatalyst layers 4 and 14 by a strong bond such as a covalent bond that is preferred by the hydrophobic organic substance. This type of hydrophobic organic substance reacts with an alkyl chain that is a hydrophobic moiety and a fatty acid having a carboxyl group that is a reactive group (preferably a higher fatty acid such as oleic acid) and an alkyl chain that is a hydrophobic moiety. Examples thereof include alcohols such as octanol having a hydroxyl group which is a functional group.
[0022] ここで開示される本発明の試験方法では、上述のようにして得られた管状試験体 1 , 10を毛管現象が生じ得る状態に配置して使用する。典型的には、図 2に示すように 、適当な水性溶媒 (典型的には水) SWを入れた容器 P内に、一方の開口端部 8aが 水性溶媒 SW中に在り且つ他方の開口端部 8bが大気中に在る状態で管状試験体 1 を配置する。典型的には、図示するように垂直に管状試験体 1を立てて配置する。こ のとき、水性溶媒 SW中に浸けた開口端部 8aが塞がれないように容器 Pの底に凹凸 形状を設けるか、或いは、管状試験体 1の開口端部 8a周縁に水性溶媒 SWの進入 可能な切欠き部分(図示せず)を設けてもよい。 [0022] In the test method of the present invention disclosed herein, the tubular test specimens 1 and 10 obtained as described above are used in a state where capillary action can occur. Typically, as shown in FIG. 2, one open end 8a is in the aqueous solvent SW and the other open end is in a container P containing a suitable aqueous solvent (typically water) SW. Place the tubular specimen 1 with the part 8b in the atmosphere. Typically, as shown in the drawing, the tubular specimen 1 is vertically arranged. At this time, an uneven shape is provided on the bottom of the container P so that the open end 8a immersed in the aqueous solvent SW is not blocked, or the periphery of the open end 8a of the tubular test body 1 is made of the aqueous solvent SW. You may provide the notch part (not shown) which can enter.
また、管状試験体 1を毛管現象が生じ得る状態 (典型的には垂直に立てた状態)で 長時間安定して保持し得るホルダー H (例えば管状試験体 1の外径に対応する係合 穴を構成するソケット状ホルダー)が備えられた容器 Pが特に好ましい。このような専 用容器は本発明に係るキットの構成要素として好ましい。 なお、図 2においては典型例として管状試験体 1を垂直に立てている力 本試験方 法では毛管上昇値が計測可能であればよぐ例えば管状試験体 1を容器 Pの側壁面 に斜めに立て掛けた状態で試験を行ってもよい。 In addition, a holder H (for example, an engagement hole corresponding to the outer diameter of the tubular test body 1) that can stably hold the tubular test body 1 for a long time in a state where capillarity can occur (typically in a vertically standing state). A container P equipped with a socket-like holder) is particularly preferred. Such a dedicated container is preferable as a component of the kit according to the present invention. In FIG. 2, as a typical example, the force with which the tubular specimen 1 is set up vertically is acceptable as long as the capillary rise value can be measured in this test method.For example, the tubular specimen 1 is inclined to the side wall surface of the container P. The test may be performed in a standing state.
[0023] 図 2に示すような状態で管状試験体 1を容器 Pに配置し、光触媒機能評価を開始す る。ここで開示される試験方法では試験場所が限定されず、試験対象の光触媒を含 有する光触媒利用部材、例えば光触媒によるセルフクリーニング機能を付与すること を目的とするタイル、壁用パネル材、塗料等の建築用外装材が実際に使用される現 場 (屋外又は屋内)にて自然光或いは所定の照明器具を利用して実施することがで きる。 In the state shown in FIG. 2, the tubular specimen 1 is placed in the container P, and the photocatalytic function evaluation is started. In the test method disclosed herein, the test location is not limited, and a photocatalyst-utilizing member containing the photocatalyst to be tested, such as a tile, a wall panel material, or a paint intended to provide a self-cleaning function by the photocatalyst. It can be carried out using natural light or certain lighting equipment at the site (outdoor or indoor) where the building exterior material is actually used.
ここで開示される試験方法では、管状試験体 1の管状本体 2を通過して光触媒層 4 を構成する光触媒物質 (酸化チタン等)に光 Lを照射し、それによつて生じる光触媒 による親水化反応を利用する。具体的には、図 2に示すように、毛細管として機能す る管状試験体 1の中空部 8に水性溶媒 (ここでは水) SWが進入し毛管水 CWを構成 する力 このとき所定の接触角及び中空部 8の径に対応して毛管水 CWが所定の位 置 (高さ)まで上昇する。  In the test method disclosed here, the photocatalytic substance (titanium oxide or the like) constituting the photocatalyst layer 4 is irradiated with light L after passing through the tubular body 2 of the tubular test body 1, and the hydrophilization reaction caused by the photocatalyst generated thereby. Is used. Specifically, as shown in FIG. 2, the force that the aqueous solvent (water in this case) SW enters into the hollow portion 8 of the tubular test body 1 that functions as a capillary and forms the capillary water CW at this time, a predetermined contact angle In addition, the capillary water CW rises to a predetermined position (height) corresponding to the diameter of the hollow portion 8.
そして、光 Lを照射して親水化が進行すれば、中空部 8の内壁面と毛管水 CWの液 面との接触角 Θが小さくなり、それによつて毛管水 CWの液面がさらに押し上げられ る(例えば図 2の点線の位置)毛管上昇が生じる。従って、ここで開示される試験方法 では、かかる光照射前の管状試験体 1の中空部 8における毛管上昇と、光照射後の 該管状試験体 1の中空部 8における毛管上昇とを比較することにより、光触媒層 4を 構成する光触媒の機能を簡便に場所を選ばず評価することができる。かかる評価方 法は、 目的に応じて、光照射と同時に行うか或いは予め所定時間(例えば 1〜24時 間又はそれ以上)の光照射処理を行った後に図 2に示すような状態で管状試験体 1 を容器 Pに配置して光照射しつつ又は光照射しない状態で行ってもよい。  When the light L is irradiated and the hydrophilization proceeds, the contact angle Θ between the inner wall surface of the hollow portion 8 and the liquid surface of the capillary water CW is reduced, thereby further pushing up the liquid surface of the capillary water CW. (For example, the position of the dotted line in FIG. 2), the capillary rises. Therefore, in the test method disclosed herein, the capillary rise in the hollow portion 8 of the tubular test body 1 before the light irradiation is compared with the capillary rise in the hollow portion 8 of the tubular test body 1 after the light irradiation. Thus, the function of the photocatalyst constituting the photocatalyst layer 4 can be easily evaluated regardless of the place. Depending on the purpose, this evaluation method may be performed simultaneously with light irradiation, or after performing a light irradiation treatment for a predetermined time (for example, 1 to 24 hours or more) in advance as shown in FIG. The body 1 may be placed in the container P and irradiated with light, or may be performed without light irradiation.
[0024] なお、毛管上昇値 h (cm)は、式: h = 2 γ X cos Θ / ( p X g X R)によって規定され る。ここで γは水の表面張力(70g' cm2' s_2)、 Θは接触角、 pは水の密度(lg ' cm — 3)、 gは重力加速度(981cm' s—2)、 Rは管状試験体の中空部 8 (毛管)の半径(cm )を示す。 従って、本試験方法の実施によって毛管上昇値を測定し、例えば、光照射前の接 触角と所定時間の光照射後の接触角を算出することによって、光触媒機能を所定の パラメーターについて数値化して評価することができる。 [0024] It should be noted that the capillary rise value h (cm) is defined by the formula: h = 2γX cos Θ / (pXgXR). Where γ is the surface tension of water (70 g 'cm 2 ' s_ 2 ), Θ is the contact angle, p is the density of water (lg 'cm — 3 ), g is the acceleration of gravity (981 cm' s — 2 ), and R is The radius (cm 2) of the hollow part 8 (capillary) of the tubular specimen is shown. Therefore, by measuring the capillary rise value by carrying out this test method, for example, calculating the contact angle before light irradiation and the contact angle after light irradiation for a predetermined time, the photocatalytic function is quantified and evaluated for a predetermined parameter. can do.
また、図 1Cに示すような断面プレート(平面)形状の中空部においても、毛管現象 がみられる限り、本試験方法によって光触媒機能を評価することができる。例えば、 接触角が 0° になるときの毛管上昇値については、比較対照試験として必要十分な 強度の光を照射したときの最大毛管上昇値を指標として得ることができる。  In addition, the photocatalytic function can be evaluated by this test method even in a hollow portion having a cross-sectional plate (planar) shape as shown in FIG. 1C as long as capillary action is observed. For example, for the capillary rise value when the contact angle becomes 0 °, the maximum capillary rise value when irradiated with light of sufficient intensity as a comparative control test can be obtained as an index.
[0025] また、図 1に示すように、光触媒層 4, 14の表面に基質層 6, 16が形成されている場 合も同様に、光照射前の毛管上昇と光照射後の毛管上昇とを比較することにより光 触媒機能評価を行うことができる。また、光触媒層は同一であってその表面上に基質 層を形成した管状試験体と基質層を形成していない管状試験体とを用意し、光照射 開始力、ら基質層無し管状試験体及び基質層付き管状試験体それぞれにおいて毛管 上昇値が最大値 (プラトー)に達するまでの時間を測定し、それら計測値を比較する ことによって光触媒の物質分解性能を評価することができる。  Further, as shown in FIG. 1, when the substrate layers 6 and 16 are formed on the surfaces of the photocatalyst layers 4 and 14, similarly, the capillary rise before light irradiation and the capillary rise after light irradiation By comparing the photocatalytic function, the photocatalytic function can be evaluated. In addition, a tubular test body having the same photocatalyst layer and having a substrate layer formed on the surface thereof and a tubular test body having no substrate layer formed thereon are prepared. It is possible to evaluate the substance decomposition performance of the photocatalyst by measuring the time until the capillary rise value reaches the maximum value (plateau) in each tubular specimen with the substrate layer and comparing the measured values.
[0026] また、ここで開示される管状試験体 1, 10は持ち運び及び試験のためのセッティン グが極めて容易なため、当該管状試験体を用いることによって他の態様の光触媒機 能評価試験を任意の場所において行うことができる。  [0026] In addition, since the tubular specimens 1 and 10 disclosed herein are extremely easy to carry and set for testing, the use of the tubular specimen allows any other photocatalyst function evaluation test to be performed. Can be done at any place.
例えば、中空部 8, 18に適当な反応基質を充填し、光を照射することによって中空 部 8, 18において種々の光触媒反応 (例えば酸化還元反応)を生じさせ、その反応 の強度に基づいて光触媒機能を試験 '評価することができる。例えば、メチレンブル 一等の色素含有液を中空部 8, 18に充填し、光照射後の該充填液の発色度合 (透 過光強度)を比色計等で計測することによって建築外装材のような光触媒利用部材 の光触媒機能を実際に使用する場所において簡便に評価することができる。  For example, the hollow portions 8 and 18 are filled with an appropriate reaction substrate and irradiated with light to cause various photocatalytic reactions (for example, oxidation-reduction reactions) in the hollow portions 8 and 18, and the photocatalyst is based on the intensity of the reaction. The function can be tested 'evaluated. For example, a liquid containing pigment such as methylene blue is filled in the hollow portions 8 and 18, and the color development degree (transmission light intensity) of the filling liquid after light irradiation is measured with a colorimeter or the like. The photocatalytic function of the photocatalyst utilizing member can be easily evaluated at a place where it is actually used.
[0027] また、検量線を作成することによって、スパッタ法等の管状本体 2, 12内部に適用 することが困難な方法により光触媒層を形成された光触媒利用部材についても、本 発明の管状試験体 1, 10を用いて光触媒機能を評価することができる。  [0027] The tubular test body of the present invention is also applied to a photocatalyst-utilizing member in which a photocatalyst layer is formed by a method that is difficult to apply to the inside of the tubular bodies 2 and 12 such as a sputtering method by creating a calibration curve. 1 and 10 can be used to evaluate the photocatalytic function.
例えば、スパッタ法により光触媒層を形成された建築外装材について光触媒機能 を評価する場合は、本発明の管状試験体における毛管上昇値 (または毛管上昇値 力 算出される水の接触角などのパラメーター)と、当該建築外装材における光触媒 機能を示す数値 (例えば、水の接触角)との検量線を予め作成すればよい。このよう な検量線を作成するには、例えば、実験室内において本発明の管状試験体および 評価対象の建築外装材に同一強度の光を同じ時間照射して、本発明の管状試験体 における毛管上昇値 (または毛管上昇値から算出される水の接触角などのパラメータ 一)および当該建築外装材における光触媒機能を示す数値 (例えば、水の接触角) を測定すればよい。また、より正確に光触媒機能を評価するために、(1)本発明の管 状試験体と、 (2)当該管状試験体と同じ方法 (例えば、懸濁液の塗布による方法)で 光触媒層を形成された平板状試験体と、 (3)評価対象の光触媒層を形成された建築 外装材とを用意し、 (1)と(2)との間の検量線および(2)と(3)との間の検量線を予め 作成するようにしてもよい。 For example, when evaluating the photocatalytic function of a building exterior material having a photocatalyst layer formed by sputtering, the capillary rise value (or the capillary rise value) in the tubular specimen of the present invention is used. A calibration curve may be prepared in advance between a parameter (such as a calculated contact angle of water) and a numerical value (for example, a contact angle of water) indicating the photocatalytic function of the building exterior material. In order to create such a calibration curve, for example, the tubular specimen of the present invention and the building exterior material to be evaluated are irradiated with the same intensity of light for the same time in the laboratory, and the capillary rise in the tubular specimen of the present invention is increased. A value (or a parameter such as a water contact angle calculated from a capillary rise value) and a numerical value (for example, a water contact angle) indicating a photocatalytic function in the building exterior material may be measured. In order to more accurately evaluate the photocatalytic function, (1) the tubular test body of the present invention, and (2) the photocatalyst layer by the same method as the tubular test body (for example, a method by applying a suspension). Prepare the formed flat specimen, and (3) the building exterior material on which the photocatalyst layer to be evaluated was formed, and the calibration curve between (1) and (2) and (2) and (3) A calibration curve between and may be created in advance.
実施例  Example
[0028] 以下に説明する実施例によって、本発明を更に詳細に説明するが、本発明をかか る実施例に示すものに限定することを意図したものではない。  [0028] The present invention will be described in more detail with reference to the following examples. However, the present invention is not intended to be limited to those shown in the examples.
[0029] <実施例 1 >  [0029] <Example 1>
長さ 20mm、外径 4mm、中空部の径 2mmのパイレックス(登録商標)製ガラス管を 用意した。また、光触媒コーティング液(ゾル)として、市販の超微粒子酸化チタンゾ ノレ (昭和電工 (株)製品「ナノチタニア (登録商標) NTB-01J )を使用した。  A Pyrex (registered trademark) glass tube with a length of 20 mm, an outer diameter of 4 mm, and a hollow diameter of 2 mm was prepared. Further, as the photocatalyst coating liquid (sol), a commercially available ultrafine titanium oxide zone (Product “Showa Denko Co., Ltd. product“ Nanotitania (registered trademark) NTB-01J ”) was used.
即ち、ガラス管の中空部に水(アルコール類でもよい)で適宜希釈した上記酸化チ タンゾノレを注入 ·充填し、次いで中空部から過剰のゾノレを排出した。液切り後、空気 中で乾燥させ、その後電気炉内に移して約 300°Cで焼成した。以上の処理により、 中空部の内壁面に二酸化チタン粒子から成る光触媒層が形成された管状試験体を 得た。  That is, the above-mentioned titania sol was diluted and appropriately diluted with water (alcohols) into the hollow portion of the glass tube, and then the excess sol was discharged from the hollow portion. After draining, it was dried in air, then transferred to an electric furnace and baked at about 300 ° C. By the above treatment, a tubular test body in which a photocatalyst layer made of titanium dioxide particles was formed on the inner wall surface of the hollow portion was obtained.
[0030] 上記得られた管状試験体を用いて、光触媒の親水化性能評価試験を行った。即ち 、水を入れたペトリディッシュに本実施例に係る試験体の一方の開口端部を浸した状 態で配置した。数時間後、 400Wの高圧水銀ランプを用いて当該試験体に光を照射 した。  [0030] A test for evaluating the hydrophilization performance of the photocatalyst was conducted using the obtained tubular specimen. That is, one open end of the test body according to this example was placed in a petri dish containing water. Several hours later, the specimen was irradiated with light using a 400 W high-pressure mercury lamp.
光照射前、ならびに光照射から 0. 5時間、 1時間、 1. 5時間、 2時間、 3時間及び 2 4時間経過時点における毛管上昇値 (即ちペトリディッシュの水面から管状試験体の 中空部を上昇した毛管水の液面までの高さ)を測定した。結果を図 3のグラフに示す 同時に比較例 1として、同様に処理して作製した管状試験体について光照射を行う ことなく 24時間経過した時点の毛管上昇値を測定した。結果を図 3のグラフに示す。 0.5 hours, 1 hour, 1.5 hours, 2 hours, 3 hours and 2 before and after light irradiation The capillary rise value at the time when 4 hours had elapsed (that is, the height from the water level of the Petri dish to the liquid level of the capillary water rising the hollow portion of the tubular specimen) was measured. The results are shown in the graph of FIG. 3. At the same time, as Comparative Example 1, the capillary rise value at the time when 24 hours had elapsed without performing light irradiation was measured for a tubular test piece produced by the same treatment. The result is shown in the graph of FIG.
[0031] ぐ実施例 2 > [0031] Example 2>
光触媒コーティング液(ゾル)として、市販の酸化チタンゾノレ(多木化学 (株)製酸化 チタンゾノレ「タイノック(登録商標) M— 6」 )を使用した以外は実施例 1と同様の材料 及び方法により、中空部の内壁面に二酸化チタン粒子から成る光触媒層が形成され た管状試験体を得た。  As a photocatalyst coating liquid (sol), a commercially available titanium oxide zonore (Titanium Chemical Co., Ltd., “Tainok (registered trademark) M-6”) was used, and the same material and method as in Example 1 were used. A tubular test body in which a photocatalyst layer made of titanium dioxide particles was formed on the inner wall surface of the part was obtained.
そして、実施例 1と同様の試験を行い、光照射前、ならびに光照射から 0. 5時間、 1 時間、 1. 5時間、 2時間、 3時間及び 24時間経過時点における毛管上昇値を測定し た。結果を図 3のグラフに示す。  Then, the same test as in Example 1 was performed, and the capillary rise value was measured before light irradiation and at the time of 0.5 hours, 1 hour, 1.5 hours, 2 hours, 3 hours, and 24 hours after light irradiation. It was. The result is shown in the graph of FIG.
同時に比較例 2として、同様に処理して作製した管状試験体について光照射を行う ことなく 24時間経過した時点の毛管上昇値を測定した。結果を図 3のグラフに示す。 また、比較例 3 (対照試験)として、光触媒層を形成していない上記ガラス管につい て同様の試験を行い、光照射前、ならびに光照射から 0. 5時間、 1時間、 1. 5時間、 2時間、 3時間及び 24時間経過時点における毛管上昇値を測定した。結果を図 3の グラフに示す。  At the same time, as Comparative Example 2, the capillary test value was measured at the time when 24 hours had passed without performing light irradiation on a tubular test specimen produced by the same treatment. The result is shown in the graph of FIG. In addition, as Comparative Example 3 (control test), the same test was performed on the above glass tube in which the photocatalyst layer was not formed, and before light irradiation, and 0.5 hours, 1 hour, 1.5 hours from light irradiation, Capillary elevation was measured after 2 hours, 3 hours and 24 hours. The results are shown in the graph of Fig. 3.
[0032] <実施例 3 > <Example 3>
光触媒コーティング液 (ゾル)として、市販の超微粒子酸化チタンゾル(昭和電工( 株)製品けノチタニア (登録商標) NTB_03」)を使用した以外は実施例 1と同様の 材料を使用し且つ同様に処理して上記ガラス管の中空部内壁面に光触媒層を形成 後、さらにその表面に基質層を形成した。即ち、ォレイン酸濃度が 20〜50vol%とな るようにォレイン酸とエタノールを混合して基質層形成溶液を調製した。  The same material as in Example 1 was used, except that a commercially available ultrafine titanium oxide sol (Showa Denko Co., Ltd. product, Knotitania (registered trademark) NTB_03)) was used as the photocatalyst coating liquid (sol) and treated in the same manner. After forming a photocatalyst layer on the inner wall surface of the hollow part of the glass tube, a substrate layer was further formed on the surface. That is, a substrate layer forming solution was prepared by mixing oleic acid and ethanol so that the oleic acid concentration was 20 to 50 vol%.
この溶液を試験体の中空部に注入'充填し、 50〜90°Cで 60分間乾燥させることに よって、光触媒層表面にォレイン酸力も成る基質層を形成した。得られた基質層付き 管状試験体を用いて実施例 1と同様の試験を行い、光照射前、ならびに光照射から 0. 5時間、 1時間、 1. 5時間、 2時間、 3時間及び 24時間経過時点における毛管上 昇値を測定した。結果を図 3のグラフに示す。 This solution was poured into the hollow part of the test specimen and filled at 50 to 90 ° C. for 60 minutes to form a substrate layer having oleic acid power on the surface of the photocatalyst layer. Using the obtained tubular test specimen with a substrate layer, the same test as in Example 1 was performed, and before and after the light irradiation. The capillary rise was measured at the time of 0.5 hour, 1 hour, 1.5 hour, 2 hours, 3 hours and 24 hours. The result is shown in the graph of FIG.
[0033] <実施例 4 >  <Example 4>
光触媒コーティング液(ゾル)として、市販の酸化チタンゾル(多木化学 (株)製酸化 チタンゾノレ「タイノック(登録商標) A— 6」)を使用した以外は実施例 1と同様の材料を 使用し且つ同様に処理して上記ガラス管の中空部内壁面に光触媒層を形成後、さら に実施例 3と同様の処理を行い、光触媒層の表面に基質層を形成した。得られた基 質層付き管状試験体を用いて実施例 1と同様の試験を行い、光照射前、ならびに光 照射から 0. 5時間、 1時間、 1. 5時間、 2時間、 3時間及び 24時間経過時点における 毛管上昇値を測定した。結果を図 3のグラフに示す。  The same material as in Example 1 was used, except that a commercially available titanium oxide sol (Titanium Oxide Zonole “Tainock (registered trademark) A-6” manufactured by Taki Chemical Co., Ltd.) was used as the photocatalyst coating liquid (sol). Then, a photocatalyst layer was formed on the inner wall surface of the hollow part of the glass tube, and then the same treatment as in Example 3 was performed to form a substrate layer on the surface of the photocatalyst layer. The same test as in Example 1 was carried out using the obtained tubular test specimen with the base layer, and before light irradiation and 0.5 hours, 1 hour, 1.5 hours, 2 hours, 3 hours and so on. Capillary elevation was measured after 24 hours. The result is shown in the graph of FIG.
[0034] 図 3のグラフから明ら力、なように、ここで開示される試験方法によると、毛管上昇値の 測定によって光触媒機能を簡単に評価することができる。例えば、実施例 1及び 2で は、光照射前には 2〜8mmであった毛管上昇値が 0. 5時間の光照射によって 15〜 16mmまで増大した。このような変化は、比較例 1 , 2及び 3では認められなかった。 また、使用した光触媒の種類によって毛管上昇値に差異が認められた。このことは、 本試験方法により、複数種の光触媒について使用場所 (環境要因)に応じて発揮し 得る光触媒機能 (特にセルフクリーニング能力に影響する親水化性能)の程度の差 異を明確に識別し得ることを示している。  As is apparent from the graph of FIG. 3, according to the test method disclosed herein, the photocatalytic function can be easily evaluated by measuring the capillary rise value. For example, in Examples 1 and 2, the capillary rise value, which was 2 to 8 mm before light irradiation, increased to 15 to 16 mm by light irradiation for 0.5 hours. Such a change was not observed in Comparative Examples 1, 2 and 3. Moreover, the difference in the capillary rise value was recognized by the kind of photocatalyst used. This test method clearly identifies the difference in the degree of the photocatalytic function (especially the hydrophilization performance that affects the self-cleaning ability) that can be exhibited according to the place of use (environmental factors) for multiple types of photocatalysts. Show you get.
[0035] また、基質層を形成した実施例 4の試験体では、光照射前 6〜8mmであった毛管 上昇値が 24時間後に 15〜: 16mmまで上昇した。このことは、光照射によって励起し た光触媒によって基質層を構成するォレイン酸が分解し、親水化が進行した (接触 角が 0° に近づいた)ことを示すものである。他方、基質層を形成した実施例 3の試験 体ではこのような高い毛管上昇は光照射開始から 24時間経過時点では認められな 力、つた。このことは、本試験方法により、複数種の光触媒について使用場所 (環境要 因)に応じて発揮し得る光触媒機能 (特に汚染物質や有害物質の除去能力に影響 する物質 (特に有機物)分解性能)の程度の差異を目立った毛管上昇が発現するま での時間を測定することによって明確に識別し得ることを示している。  [0035] Further, in the test body of Example 4 in which the substrate layer was formed, the capillary rise value, which was 6 to 8 mm before light irradiation, increased to 15 to 16 mm after 24 hours. This indicates that the oleic acid constituting the substrate layer was decomposed by the photocatalyst excited by light irradiation, and the hydrophilicity proceeded (contact angle approached 0 °). On the other hand, in the test sample of Example 3 in which the substrate layer was formed, such a high capillary rise was not recognized after 24 hours from the start of light irradiation. This means that this test method can be used for multiple types of photocatalysts depending on the place of use (environmental factors) (especially the decomposition performance of substances (especially organic substances) that affect the ability to remove pollutants and harmful substances). It is shown that the difference in degree can be clearly discriminated by measuring the time until the conspicuous capillary rise appears.
[0036] 本出願は、 2006年 3月 22日出願の特願 2006— 079386に基づく優先権を主張 する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。 産業上の利用可能性 [0036] This application claims priority based on Japanese Patent Application No. 2006-079386 filed on Mar. 22, 2006. To do. All the contents described in the application specification are incorporated herein by reference. Industrial applicability
本発明は、種々の光触媒利用部材 (例えば建築用外装材)の光触媒機能を実際の 使用現場において正しく簡易に試験 '評価することができる。このため、光触媒が用 いられる種々の産業分野において本発明を利用することができる。  The present invention can correctly and simply test and evaluate the photocatalytic function of various photocatalyst-utilizing members (for example, building exterior materials) at actual usage sites. Therefore, the present invention can be used in various industrial fields where photocatalysts are used.

Claims

請求の範囲 The scope of the claims
[1] 光触媒機能を評価するための試験方法であって、  [1] A test method for evaluating the photocatalytic function,
光が透過可能な管状試験体であって、その両端は中空部に連なる開口端部を構 成し、その中空部の径は毛管現象が生じ得るサイズであり、その中空部の壁面には 光触媒層が形成されている光透過性管状試験体を用意するステップと、  It is a tubular test body that can transmit light, and both ends thereof constitute an open end portion that is continuous with the hollow portion, and the diameter of the hollow portion is a size that can cause capillary action. Providing a light transmissive tubular specimen in which a layer is formed;
前記管状試験体に光を照射するステップと、  Irradiating the tubular specimen with light;
水性溶媒を入れた容器に、前記一方の開口端部が水性溶媒中に在り且つ他方の 開口端部が大気中に在る状態で、前記管状試験体を配置するステップと、 前記光照射前の前記管状試験体の中空部における毛管上昇と、光照射された該 管状試験体の中空部における毛管上昇とを比較して、前記光触媒の機能を評価す るステップと、  Placing the tubular specimen in a container containing an aqueous solvent in a state where the one open end is in the aqueous solvent and the other open end is in the atmosphere; and before the light irradiation. Comparing the capillary rise in the hollow portion of the tubular specimen with the capillary rise in the hollow portion of the tubular specimen irradiated with light, and evaluating the function of the photocatalyst;
を含む方法。  Including methods.
[2] 前記管状試験体は、前記光触媒層の表面に光触媒作用によって分解可能な物質 を含む基質層をさらに有する、請求項 1に記載の方法。  [2] The method according to claim 1, wherein the tubular specimen further has a substrate layer containing a substance decomposable by photocatalytic action on the surface of the photocatalytic layer.
[3] 前記基質層は、前記分解可能な物質として疎水性有機物を含む、請求項 2に記載 の方法。 [3] The method according to claim 2, wherein the substrate layer includes a hydrophobic organic substance as the decomposable substance.
[4] 前記水性溶媒は、色素含有液であり、  [4] The aqueous solvent is a dye-containing liquid,
前記光照射前の前記管状試験体の中空部における前記水性溶媒の発色度合と、 光照射された該管状試験体の中空部における前記水性溶媒の発色度合とを比較し て、前記光触媒の機能を評価するステップをさらに含む、請求項 1に記載の方法。  The function of the photocatalyst is compared by comparing the degree of coloration of the aqueous solvent in the hollow part of the tubular specimen before the light irradiation and the degree of coloration of the aqueous solvent in the hollow part of the tubular specimen that has been irradiated with light. The method of claim 1, further comprising the step of evaluating.
[5] 光触媒機能を評価するために使用する試験体であって、 [5] A test specimen used for evaluating the photocatalytic function,
光が透過可能な管状構造であり、その両端は中空部に連なる開口端部を構成し、 その中空部の径は毛管現象が生じ得るサイズであり、その中空部の壁面には光触媒 層が形成されている、管状試験体。  It has a tubular structure that allows light to pass through, and both ends constitute an open end connected to the hollow portion, and the diameter of the hollow portion is a size that can cause capillary action, and a photocatalytic layer is formed on the wall surface of the hollow portion. A tubular specimen.
[6] 前記光触媒層の表面に光触媒作用によって分解可能な物質を含む基質層をさら に有する、請求項 5に記載の管状試験体。 6. The tubular test body according to claim 5, further comprising a substrate layer containing a substance decomposable by a photocatalytic action on the surface of the photocatalytic layer.
[7] 光触媒機能評価試験に使用するキットであって、 [7] A kit for use in a photocatalytic function evaluation test,
請求項 5に記載の管状試験体と、 水性溶媒を入れる容器であって、前記試験体を毛管現象が生じ得る状態で配置し 得る容器と、 A tubular test body according to claim 5; A container in which an aqueous solvent is placed, wherein the test body can be placed in a state where capillary action can occur;
を備える光触媒機能評価試験用キット。  A photocatalyst function evaluation test kit.
PCT/JP2007/054838 2006-03-22 2007-03-12 Method for testing photocatalyst function and apparatus for use in the test WO2007108350A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006079386A JP2007256010A (en) 2006-03-22 2006-03-22 Testing method of photocatalyst function, and appliance used for testing
JP2006-079386 2006-03-22

Publications (1)

Publication Number Publication Date
WO2007108350A1 true WO2007108350A1 (en) 2007-09-27

Family

ID=38522382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054838 WO2007108350A1 (en) 2006-03-22 2007-03-12 Method for testing photocatalyst function and apparatus for use in the test

Country Status (2)

Country Link
JP (1) JP2007256010A (en)
WO (1) WO2007108350A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4368934B1 (en) 2009-02-09 2009-11-18 アイランド ジャイアント デベロップメント エルエルピー Liquid storage system, liquid storage container, and liquid derivation control method
JP2011158456A (en) * 2010-02-03 2011-08-18 Kohei Kosaka Device for surface tension measurement of capillary tube rising system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183359A (en) * 1999-12-24 2001-07-06 Inax Corp Evaluation method for activity of photocatalyst layer
JP2003066027A (en) * 2001-08-28 2003-03-05 Matsushita Electric Works Ltd Performance evaluation method of photocatalytic functional film and performance evaluation light source of photocatalytic functional film
JP2003220341A (en) * 2001-11-26 2003-08-05 Toyota Motor Corp Method for treating photocatalyst body and nitrogen oxide
JP2005254100A (en) * 2004-03-10 2005-09-22 Toto Ltd Photocatalyst used for cleaning water quality

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183359A (en) * 1999-12-24 2001-07-06 Inax Corp Evaluation method for activity of photocatalyst layer
JP2003066027A (en) * 2001-08-28 2003-03-05 Matsushita Electric Works Ltd Performance evaluation method of photocatalytic functional film and performance evaluation light source of photocatalytic functional film
JP2003220341A (en) * 2001-11-26 2003-08-05 Toyota Motor Corp Method for treating photocatalyst body and nitrogen oxide
JP2005254100A (en) * 2004-03-10 2005-09-22 Toto Ltd Photocatalyst used for cleaning water quality

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INUKAI T.: "Hikari Shokubai o Riyo shita Gaiso Shiage Zairyo no Mizu Sesshoku Kaku ni yoru Boosei Hyoka", JOURNAL OF STRUCTURAL AND CONSTRUCTION ENGINEERING, no. 578, 2004, pages 21 - 26, XP003017846 *
KATAOKA S. ET AL.: "Capillary rise between two TiO2 thin-films: evaluating photo-activated wetting", THIN SOLID FILMS, vol. 446, no. 2, 2004, pages 232 - 237, XP004482218 *
SATO S.: "Handotai Hikari Shokubai Dai 10 Kai (Saishukai) Hikari Shokubai no Kino Hyoka no Jitsugen", ENVIRONMENTS SOLUTION TECHNOLOGY, vol. 4, no. 3, 2005, pages 64 - 68, XP003017847 *

Also Published As

Publication number Publication date
JP2007256010A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
US7993891B2 (en) Method for binding reactive groups in observation area of zero mode waveguide
ES2344066T3 (en) COMPOSITION OF COVERING THAT PRESENTS DECONTAMINATING PROPERTIES OF SURFACES.
US20100022416A1 (en) Assay plates, methods and systems having one or more etched features
US20030027353A1 (en) Microsensor arrays and method of using same for detecting analytes
Malekghasemi et al. Rapid and alternative fabrication method for microfluidic paper based analytical devices
JP2004529339A (en) Fluorescence signal reference device
JP6297065B2 (en) Low fluorescent equipment
WO2011097677A1 (en) Printed multi-zone microzone plates
Zhong et al. Photochemical device for selective detection of phenol in aqueous solutions
Preejith et al. Total protein measurement using a fiber-optic evanescent wave-based biosensor
Narang et al. Chemical sensor based on an artificial receptor element trapped in a porous sol-gel glass matrix
WO2007108350A1 (en) Method for testing photocatalyst function and apparatus for use in the test
Higgins et al. Novel hybrid optical sensor materials for in-breath O 2 analysis
US20060141486A1 (en) Porous substrates and arrays comprising the same
JP6264172B2 (en) Sealed space forming member, water molecule adsorption / desorption measurement system using the same, and water molecule adsorption / desorption measurement method
JP5043118B2 (en) Method for quantifying surface photocatalytic activity and use thereof
US20100001185A1 (en) Photonic sensors, xerogel-based sensors and nanosensors
JP2007298328A (en) Photocatalyst activity evaluation device
Mills et al. Photocatalytic oxidation of deposited sulfur and gaseous sulfur dioxide by TiO2 films
Evstrapov et al. Porous glasses as a substrate for sensor elements
Podbielska et al. Sol-gels for optical sensors
JP2008128905A (en) Active oxygen detector and active oxygen detecting method
US20150316546A1 (en) Sensor chip
US20090171052A1 (en) Polyelectrolyte Monolayers and Multilayers for Optical Signal Transducers
Murari et al. Fluorescence spectroscopic study of dip coated sol-gel thin film internal environment using fluorescent probes Hoechst33258 and Pyranine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738310

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738310

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)