JP2003066027A - Performance evaluation method of photocatalytic functional film and performance evaluation light source of photocatalytic functional film - Google Patents

Performance evaluation method of photocatalytic functional film and performance evaluation light source of photocatalytic functional film

Info

Publication number
JP2003066027A
JP2003066027A JP2001257513A JP2001257513A JP2003066027A JP 2003066027 A JP2003066027 A JP 2003066027A JP 2001257513 A JP2001257513 A JP 2001257513A JP 2001257513 A JP2001257513 A JP 2001257513A JP 2003066027 A JP2003066027 A JP 2003066027A
Authority
JP
Japan
Prior art keywords
functional film
lamp
photocatalytic functional
photocatalytic
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001257513A
Other languages
Japanese (ja)
Inventor
Koji Kishimoto
広次 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2001257513A priority Critical patent/JP2003066027A/en
Publication of JP2003066027A publication Critical patent/JP2003066027A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a performance evaluation method of photocatalytic functional film capable of providing results of relative performance evaluation photocatalytic functional films of different kinds evaluated by use of solar light and a satisfactory correlation between them, and a performance evaluation light source thereof. SOLUTION: This performance evaluation method of photocatalytic functional film comprises radiating ultraviolet rays from a light source for emitting ultraviolet rays to the surface of a photocatalytic functional film formed on the upper surface of a base material, which exhibits a photocatalytic effect by irradiation with ultraviolet rays, to evaluate the performance of the catalytic functional film. In this method, a light source formed of the combination of a first lamp having a wavelength of maximum relative intensity in a first wavelength range of 310 nm to 400 nm and a second lamp having a wavelength of maximum relative intensity in a second wavelength range of 220 nm to 300 nm is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、紫外線の照射によ
って触媒作用をなす光触媒機能膜の性能評価方法及びこ
の評価方法に適した光触媒機能膜の性能評価用光源に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the performance of a photocatalytic functional film that acts as a catalyst by irradiation with ultraviolet rays, and a light source for evaluating the performance of a photocatalytic functional film suitable for this evaluation method.

【0002】[0002]

【従来の技術】光触媒は、空気の存在下で紫外線を照射
すると、空気中の酸素分子の吸着あるいは脱着を誘起さ
せ、汚れ成分や悪臭成分等の有機化合物の酸化分解を促
進する特性を有する。このような光触媒活性を有する光
触媒を塗料に混合し、建築物の壁材や床材などの建材の
表面に塗装し、光触媒機能膜を形成することによって、
表面に汚れが付着することを防ぐ作用や臭いを分解する
作用を付与することが従来から行われている。
2. Description of the Related Art Photocatalysts have the property of irradiating ultraviolet rays in the presence of air to induce adsorption or desorption of oxygen molecules in the air and accelerate the oxidative decomposition of organic compounds such as dirt and malodorous components. By mixing a photocatalyst having such a photocatalytic activity with a coating material and coating it on the surface of a building material such as a building wall material or floor material, by forming a photocatalytic functional film,
It has been conventionally performed to impart an effect of preventing dirt from adhering to the surface and an effect of decomposing odor.

【0003】そして、このような光触媒を含有する光触
媒機能膜の性能評価方法としては、一般には、まず、そ
の光触媒機能膜に汚れとしての有機物を付着させた後、
その光触媒機能膜に紫外線を照射し、その汚れとしての
有機物がどのように分解されるかを種々の方法で測定す
ることが行われている。
As a method for evaluating the performance of a photocatalyst functional film containing such a photocatalyst, generally, an organic substance as a stain is first attached to the photocatalyst functional film, and then,
The photocatalytic functional film is irradiated with ultraviolet rays, and how the organic matter as the stain is decomposed is measured by various methods.

【0004】例えば、光触媒機能膜にアンモニアやメチ
ルメルカプタン等のガスを付着させた後、その光触媒機
能膜にブラックライトランプの紫外線を照射し、そのガ
スがどのように分解されるかをガスクロマトグラフで測
定する方法や、光触媒機能膜にメチレンブルー等の有色
色素を付着させた後、その光触媒機能膜にブラックライ
トランプの紫外線を照射し、吸光光度計や色差計等によ
って光度又は色差を測定する方法(特開2000−16
2129号公報等)が提案されている。
For example, after a gas such as ammonia or methyl mercaptan is attached to the photocatalyst functional film, the photocatalyst functional film is irradiated with ultraviolet rays of a black light lamp to determine how the gas is decomposed by a gas chromatograph. Method of measuring, or after attaching a colored dye such as methylene blue to the photocatalytic functional film, irradiating the photocatalytic functional film with ultraviolet light of a black light lamp, and measuring the luminous intensity or color difference with an absorptiometer or color difference meter ( JP 2000-16
2129 gazette) is proposed.

【0005】また、特開2001−183359号公報
に開示されている方法では、光触媒を含む光触媒機能膜
上に低級アルコールを有する有機層を形成し、その光触
媒機能膜にブラックライトランプの紫外線を照射した
後、水の接触角により光触媒機能膜の性能を評価する方
法が提案されている。
Further, in the method disclosed in Japanese Patent Laid-Open No. 2001-183359, an organic layer having a lower alcohol is formed on a photocatalytic functional film containing a photocatalyst, and the photocatalytic functional film is irradiated with ultraviolet rays of a black light lamp. After that, a method of evaluating the performance of the photocatalytic functional film by the contact angle of water has been proposed.

【0006】ここで、従来の評価方法における紫外線を
発する光源としては、一般には、ブラックライトランプ
を用いられることが多いが、その他、キセノンランプ、
ナトリウムランプ、水銀灯、殺菌灯等の紫外線ランプか
ら選ばれた1種のランプのみが使用されていた。
Here, a black light lamp is generally used as a light source for emitting an ultraviolet ray in the conventional evaluation method, but in addition to this, a xenon lamp,
Only one type of lamp selected from ultraviolet lamps such as sodium lamps, mercury lamps and germicidal lamps was used.

【0007】ところが、1種のランプのみからなる光源
を用いて、異なる種類の光触媒機能膜の性能を評価した
場合、光触媒機能膜間の相対的な性能の評価結果が、太
陽光を用いて評価した結果と十分な相関性が得られない
傾向にあるという問題があり、その改善が望まれてい
る。
However, when the performance of different types of photocatalytic functional films is evaluated using a light source consisting of only one type of lamp, the relative performance evaluation results between the photocatalytic functional films are evaluated using sunlight. There is a problem that a sufficient correlation with the result cannot be obtained, and its improvement is desired.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記の点に
鑑みてなされたものであり、異なる種類の光触媒機能膜
の性能を評価した場合、光触媒機能膜間の相対的な性能
の評価結果が、太陽光を用いて評価した結果と十分な相
関性が得ることのできる光触媒機能膜の性能評価方法を
提供すること、また、この評価方法に適する光触媒機能
膜の性能評価用光源を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and when the performances of different types of photocatalytic functional films are evaluated, the evaluation results of relative performance between the photocatalytic functional films are obtained. Provide a performance evaluation method of a photocatalytic functional film capable of obtaining a sufficient correlation with the result evaluated using sunlight, and a light source for performance evaluation of a photocatalytic functional film suitable for this evaluation method. This is an issue.

【0009】[0009]

【課題を解決するための手段】本発明者等は、上記目的
を達成するために鋭意研究を重ねた結果、異なる種類の
光触媒機能膜間の相対的な性能を評価する場合におい
て、310nm乃至400nmの第1の波長領域に最大
の相対強度の波長を有する第1のランプと220nm乃
至300nmの第2の波長領域に最大の相対強度の波長
を有する第2のランプの2種類のランプを組み合わせて
構成した光源を用いることで、太陽光を用いて評価した
結果と、良好な相関性を有する結果が得られる傾向にあ
ることを見出して、本発明の完成に至ったのもである。
Means for Solving the Problems As a result of intensive studies for achieving the above-mentioned object, the present inventors have found that when evaluating relative performance between different types of photocatalytic functional films, the film thickness is 310 nm to 400 nm. Combining two types of lamps, a first lamp having a maximum relative intensity wavelength in a first wavelength region of the above and a second lamp having a maximum relative intensity wavelength in a second wavelength region of 220 nm to 300 nm The inventors of the present invention have completed the present invention by finding that by using the constructed light source, a result having a good correlation with a result evaluated using sunlight tends to be obtained.

【0010】太陽光の波長特性は、紫外領域にブロード
に広がる波長特性を有しているが、310nm乃至40
0nmの第1の波長領域に最大の相対強度の波長を有す
る第1のランプと220nm乃至300nmの第2の波
長領域に最大の相対強度の波長を有する第2のランプの
2種類のランプを組み合わせて構成した光源を用いるこ
とで、1種のランプのみからなる光源に比べ、より広範
な紫外領域の紫外線を発する光源とすることができるの
で、より太陽光に近い紫外領域の波長特性を有する光源
が達成できるものと考えられる。その結果、上記2種の
ランプを組み合わせて構成した光源を用いることで、太
陽光を用いて評価した異なる種類の光触媒機能膜間の相
対的な性能の評価結果と良好な相関性を有する結果が得
られる傾向にあるものと考えられる。
The wavelength characteristic of sunlight has a wavelength characteristic that broadly spreads in the ultraviolet region, and is 310 nm to 40 nm.
A combination of two types of lamps, a first lamp having a maximum relative intensity wavelength in a first wavelength region of 0 nm and a second lamp having a maximum relative intensity wavelength in a second wavelength region of 220 nm to 300 nm. By using a light source configured as described above, a light source that emits ultraviolet rays in a wider ultraviolet region can be obtained as compared with a light source that includes only one type of lamp, so a light source that has wavelength characteristics in the ultraviolet region that is closer to sunlight Can be achieved. As a result, by using a light source configured by combining the above two types of lamps, there is a good correlation with the relative performance evaluation results between different types of photocatalytic functional films evaluated using sunlight. It is considered that there is a tendency to be obtained.

【0011】本発明の請求項1に係る発明の光触媒機能
膜の評価方法は、基材上に形成した、紫外線の照射によ
って光触媒作用をなす光触媒機能膜の表面に、紫外線を
発する光源からの紫外線を照射して、光触媒機能膜の性
能を評価する光触媒機能膜の性能評価方法において、前
記紫外線を発する光源が、310nm乃至400nmの
第1の波長領域に最大の相対強度の波長を有する第1の
ランプと220nm乃至300nmの第2の波長領域に
最大の相対強度の波長を有する第2のランプを組み合わ
せて構成した光源であることを特徴としている。
The method for evaluating a photocatalytic functional film according to claim 1 of the present invention is a method for evaluating a photocatalytic functional film formed on a substrate, which has a photocatalytic function upon irradiation with ultraviolet light, and which has an ultraviolet ray from a light source which emits an ultraviolet ray. In the method for evaluating the performance of a photocatalytic functional film, the light source that emits ultraviolet rays has a maximum relative intensity wavelength in a first wavelength region of 310 nm to 400 nm. The light source is characterized by being configured by combining a lamp and a second lamp having a wavelength of maximum relative intensity in a second wavelength region of 220 nm to 300 nm.

【0012】本発明の請求項2に係る発明の光触媒機能
膜の評価方法は、請求項1記載の光触媒機能膜の評価方
法において、上記第1のランプがブラックライトランプ
であり、上記第2のランプが殺菌灯であることを特徴と
している。
A method for evaluating a photocatalytic functional film according to a second aspect of the present invention is the method for evaluating a photocatalytic functional film according to the first aspect, wherein the first lamp is a black light lamp and the second lamp is the second lamp. The feature is that the lamp is a germicidal lamp.

【0013】本発明の請求項3に係る発明の光触媒機能
膜の評価方法は、請求項2記載の光触媒機能膜の評価方
法において、上記光触媒機能膜がシリコン樹脂を含む塗
料で形成された被膜であり、上記基体が無機質基体であ
ることを特徴としている。
A method for evaluating a photocatalytic functional film according to a third aspect of the present invention is the method for evaluating a photocatalytic functional film according to the second aspect, wherein the photocatalytic functional film is a film formed of a paint containing a silicone resin. It is characterized in that the substrate is an inorganic substrate.

【0014】本発明の請求項4に係る発明の光触媒機能
膜の評価方法は、請求項3記載の光触媒機能膜の評価方
法において、上記光触媒機能膜が上記基材上に有機質プ
ライマー層を介して形成されたことを特徴としている。
A method for evaluating a photocatalytic functional film according to a fourth aspect of the present invention is the method for evaluating a photocatalytic functional film according to the third aspect, wherein the photocatalytic functional film is formed on the substrate through an organic primer layer. It is characterized by being formed.

【0015】本発明の請求項5に係る発明の光触媒機能
膜の評価方法は、請求項1乃至請求項4のいずれかに記
載の光触媒機能膜の評価方法において、上記第1のラン
プ及び上記第2のランプの紫外線を同時に照射すること
を特徴としている。
According to a fifth aspect of the present invention, there is provided a method for evaluating a photocatalytic functional film according to any one of the first to fourth aspects, wherein the first lamp and the first lamp are the same. The feature is that the ultraviolet rays of the two lamps are simultaneously irradiated.

【0016】本発明の請求項6に係る発明の光触媒機能
膜の評価方法は、請求項5に記載の光触媒機能膜の評価
方法において、上記第1のランプ及び上記第2のランプ
を同時に照射する場合に、上記第1の波長領域及び上記
第2の波長領域で計測される照度比が10:8乃至1
0:5であることを特徴としている。
A photocatalyst functional film evaluation method according to a sixth aspect of the present invention is the photocatalyst functional film evaluation method according to the fifth aspect, wherein the first lamp and the second lamp are simultaneously irradiated. In this case, the illuminance ratio measured in the first wavelength region and the second wavelength region is 10: 8 to 1
It is characterized by being 0: 5.

【0017】本発明の請求項7に係る発明の光触媒機能
膜の評価方法は、請求項1乃至請求項6のいずれかに記
載の光触媒機能膜の評価方法において、上記光触媒機能
膜に含有する光触媒が酸化チタンであることを特徴とし
ている。
The photocatalyst functional film evaluation method according to claim 7 of the present invention is the photocatalyst functional film evaluation method according to any one of claims 1 to 6, wherein the photocatalyst functional film contains the photocatalyst. Is titanium oxide.

【0018】本発明の請求項8に係る発明の光触媒機能
膜の性能評価用光源は、310nm乃至400nmの第
1の波長領域に最大の相対強度の波長を有する第1のラ
ンプと220nm乃至300nmの第2の波長領域に最
大の相対強度の波長を有する第2ランプを組み合わせて
構成したことを特徴としている。
The light source for performance evaluation of the photocatalytic functional film of the invention according to claim 8 of the present invention is a first lamp having a wavelength of maximum relative intensity in a first wavelength region of 310 nm to 400 nm and 220 nm to 300 nm. It is characterized in that it is configured by combining a second lamp having a wavelength of maximum relative intensity in the second wavelength region.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施形態を説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0020】本発明は、310nm乃至400nmの第
1の波長領域に最大の相対強度の波長を有する第1のラ
ンプと220nm乃至300nmの第2の波長領域に最
大の相対強度の波長を有する第2のランプを組み合わせ
て構成した光源を用いて、光触媒機能膜の性能を評価す
るものである。
The present invention provides a first lamp having a maximum relative intensity wavelength in a first wavelength region of 310 nm to 400 nm and a second lamp having a maximum relative intensity wavelength in a second wavelength region of 220 nm to 300 nm. The performance of the photocatalytic functional film is evaluated using a light source configured by combining the above lamps.

【0021】310nm乃至400nmの第1の波長領
域に最大の相対強度の波長を有する第1のランプとして
は、特に限定するわけではないが、ブラックライトラン
プ、キセノンランプ、ナトリウムランプ等が使用でき
る。これらのうち、ブラックライトランプは、安価であ
り、点灯時の発熱量が小さいため、評価するサンプルに
熱的な影響を与え難いので好ましい。また、220nm
乃至300nmの第2の波長領域に最大の相対強度の波
長を有する第2のランプとしては、特に限定するわけで
はないが、殺菌灯、水銀灯等が使用できる。これらのう
ち、殺菌灯は、安価であり、点灯時の発熱量が小さいた
め、評価するサンプルに熱的な影響を与え難いので好ま
しい。
The first lamp having a wavelength of maximum relative intensity in the first wavelength region of 310 nm to 400 nm is not particularly limited, but a black light lamp, a xenon lamp, a sodium lamp or the like can be used. Of these, black light lamps are preferable because they are inexpensive and generate a small amount of heat when turned on, and are unlikely to exert a thermal influence on the sample to be evaluated. 220 nm
The second lamp having the maximum relative intensity wavelength in the second wavelength region of 300 nm to 300 nm is not particularly limited, but a germicidal lamp, a mercury lamp, or the like can be used. Of these, germicidal lamps are preferable because they are inexpensive and generate a small amount of heat when turned on, and are unlikely to affect the sample to be evaluated thermally.

【0022】上記第1のランプと上記第2のランプの点
灯方法としては、 (1)第1のランプのみを点灯させた後第2のランプの
みを点灯させる方法 (2)第1のランプと第2のランプを交互に点灯させる
方法 (3)第1のランプと第2ランプを同時に点灯させる方
法等を用いることができるが、同時に点灯させる方法
が、評価する時間が短くて済み、太陽光の条件に近いの
で好ましい。
The method of lighting the first lamp and the second lamp includes (1) a method of lighting only the first lamp and then a second lamp (2) a first lamp A method of alternately lighting the second lamp (3) A method of simultaneously lighting the first lamp and the second lamp can be used, but the method of simultaneously lighting requires a short evaluation time, It is preferable because it is close to the condition of.

【0023】上記第1のランプと上記第2のランプを同
時に点灯させる場合に、上記第1の波長領域及び第2の
波長領域で計測される照度比が、10:5乃至10:7
となるように調製して用いるのが、太陽光の条件に近い
ので好ましい。ここで、照度比は、それぞれ、310n
m〜400nmの第1の波長領域を測定波長域とする検
知器1、及び220nm〜300nmの第2の波長領域
を測定波長域とする検知器2を有する照度計で計測され
る照度の比である。
When the first lamp and the second lamp are simultaneously turned on, the illuminance ratio measured in the first wavelength region and the second wavelength region is 10: 5 to 10: 7.
It is preferable to prepare and use so as to be close to the conditions of sunlight. Here, the illuminance ratio is 310 n, respectively.
The ratio of illuminance measured by an illuminometer having a detector 1 having a first wavelength range of m to 400 nm as a measurement wavelength range and a detector 2 having a second wavelength range of 220 nm to 300 nm as a measurement wavelength range. is there.

【0024】また、上記第1のランプ及び上記第2のラ
ンプから照射される光の照度は、光触媒機能膜の光触媒
活性が測定できる照度であれば用いることができるが、
照度が弱過ぎると評価に時間がかかる傾向にあり、強過
ぎると測定精度が悪くなる傾向にある。特に限定するわ
けではないが、1乃至8mW/cm2であるのが、太陽
光の条件により近いので、好ましい。
The illuminance of the light emitted from the first lamp and the second lamp may be any illuminance that can measure the photocatalytic activity of the photocatalytic functional film.
If the illuminance is too weak, the evaluation tends to take time, and if it is too strong, the measurement accuracy tends to deteriorate. Although not particularly limited, 1 to 8 mW / cm 2 is preferable because it is closer to the conditions of sunlight.

【0025】光触媒機能膜の光触媒活性を測定する方法
としては、特に限定するわけではないが、比較的簡便の
方法として、形成した光触媒機能膜中に含まれる可塑剤
や界面活性剤等の残留有機物が、光触媒機能膜に紫外線
を照射することで分解される度合いを光触媒機能膜の親
水性、すなわち、水の接触角の変化で測定する方法を用
いることができる。具体的には、光触媒機能膜に紫外線
を照射して、光触媒機能膜上面の水の接触角が10°以
下になるまでの時間を測定する。この時間は短い程、親
水性になる時間が早いこと、すなわち、残留有機物の光
触媒による分解速度が早く、光触媒の活性が高いことを
示している。また、分解速度は、この時間の逆数に比例
することとなる。
The method of measuring the photocatalytic activity of the photocatalytic functional film is not particularly limited, but as a relatively simple method, residual organic substances such as plasticizers and surfactants contained in the formed photocatalytic functional film are used. However, it is possible to use a method of measuring the degree of decomposition of the photocatalytic functional film by irradiating it with ultraviolet rays, by measuring the hydrophilicity of the photocatalytic functional film, that is, the change in the contact angle of water. Specifically, the photocatalytic functional film is irradiated with ultraviolet rays, and the time until the contact angle of water on the upper surface of the photocatalytic functional film becomes 10 ° or less is measured. The shorter this time, the faster the time to become hydrophilic, that is, the faster the rate of decomposition of residual organic matter by the photocatalyst, and the higher the activity of the photocatalyst. The decomposition rate will be proportional to the reciprocal of this time.

【0026】その他、例えば、アンモニアやメチルメル
カプタン等のガスを付着させ、そのガスがどのように分
解されるかをガスクロマトグラフで測定する方法、光触
媒機能膜にメチレンブルー等の有色色素を付着させた
後、吸光光度計や色差計等によって光度又は色差を測定
する方法又は光触媒機能膜上に低級アルコールを有する
有機層を形成し、水の接触角により評価する方法等、従
来使用されている、一般的な方法を用いることもでき
る。
In addition, for example, a method of attaching a gas such as ammonia or methyl mercaptan and measuring how the gas is decomposed by a gas chromatograph, after attaching a colored dye such as methylene blue to the photocatalytic functional film , A method of measuring the light intensity or color difference by an absorptiometer or a color difference meter or a method of forming an organic layer having a lower alcohol on the photocatalytic functional film and evaluating the contact angle of water, etc. Any method can be used.

【0027】光触媒機能膜としては、紫外線の照射によ
って光触媒機能を発現する光触媒を含有する膜であれ
ば、適応することができる。光触媒としては、特に限定
するわけではないが、酸化チタン、酸化亜鉛、酸化ス
ズ、酸化ジルコニウム、硫化亜鉛、ルテニウム錯体等が
用いられる。これらのうち、酸化チタンは、安価で無害
であるので、好ましい。
As the photocatalyst functional film, any film containing a photocatalyst which exhibits a photocatalytic function by irradiation of ultraviolet rays can be applied. The photocatalyst is not particularly limited, but titanium oxide, zinc oxide, tin oxide, zirconium oxide, zinc sulfide, ruthenium complex and the like are used. Of these, titanium oxide is preferable because it is inexpensive and harmless.

【0028】光触媒を含有させる膜としては、無機系被
膜又は有機系被膜を用いることができる。無機系被膜と
しては、例えばシリコン樹脂を含有する塗料の被膜等
が、また、有機系被膜としては、例えば、アクリル樹
脂、ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂、
フェノール樹脂、メラミン系樹脂を含有する塗料の被膜
等が挙げられるが、無機系被膜を用いる方が、光触媒を
含んだ場合の耐候性がより優れる傾向にあるので、好ま
しい。また、光触媒機能膜は、光触媒を含有させる被膜
の下面に、膜厚を厚くするための光触媒を含有させない
被膜を設けた構造の被膜を用いても良い。膜厚を厚くす
る方が、着色性や防食性が向上する傾向にあるので、好
ましい。
As the film containing the photocatalyst, an inorganic coating or an organic coating can be used. The inorganic coating is, for example, a coating of a paint containing a silicone resin, and the organic coating is, for example, an acrylic resin, a polyester resin, an epoxy resin, a urethane resin,
Examples thereof include coating films of paints containing a phenol resin and a melamine resin, but it is preferable to use an inorganic coating because the weather resistance when a photocatalyst is included tends to be more excellent. As the photocatalyst functional film, a film having a structure in which a photocatalyst-free film for increasing the film thickness is provided on the lower surface of the photocatalyst-containing film may be used. A thicker film tends to improve the coloring property and anticorrosion property, and is therefore preferable.

【0029】光触媒機能膜を形成する基材としては、無
機質基材又は有機質基材等の各種基材を用いることがで
る。無機質基材としては、例えば、ガラス基材、金属基
材、ホーロー基材、無機質硬化体の無機質建材、セラミ
ック等が挙げられる。有機質基材としては、プラスチッ
ク基材、木材、紙等が挙げられる。
As the base material for forming the photocatalytic functional film, various base materials such as an inorganic base material or an organic base material can be used. Examples of the inorganic base material include a glass base material, a metal base material, an enamel base material, an inorganic hardened inorganic building material, and ceramics. Examples of the organic base material include plastic base materials, wood, paper and the like.

【0030】また、上記基材に、光触媒機能膜を形成す
る場合には、基材と光触媒機能膜との中間に、密着強度
を上げるための有機質プライマー層を介在させても良
い。有機質プライマー層としては、例えば、エポキシ樹
脂、アクリル樹脂、ウレタン樹脂等のプライマー層が挙
げられる。
When a photocatalyst functional film is formed on the base material, an organic primer layer for increasing the adhesion strength may be interposed between the base material and the photocatalyst functional film. Examples of the organic primer layer include primer layers of epoxy resin, acrylic resin, urethane resin, and the like.

【0031】基材が有機質基材の場合又は、有機質プラ
イマー層を有する場合は、ランプ点灯時の発熱が大きい
と、その熱で有機質基材又は有機質プライマー層がダメ
ージを受ける可能性が生じる。従って、このような場合
は、第1のランプとしては、発熱量の少ないブラックラ
イトランプを、また、第2のランプとしては、発熱量の
少ない殺菌灯を用いるのが好ましい。
When the substrate is an organic substrate or has an organic primer layer, if the heat generated when the lamp is turned on is large, the heat may damage the organic substrate or the organic primer layer. Therefore, in such a case, it is preferable to use a black light lamp having a small amount of heat generation as the first lamp and a germicidal lamp having a small amount of heat generation as the second lamp.

【0032】次に、本発明に係る光触媒機能膜の性能評
価用光源について説明する。
Next, the light source for evaluating the performance of the photocatalytic functional film according to the present invention will be described.

【0033】本発明に係る光触媒機能膜の性能評価用光
源は、310nm乃至400nmの第1の波長領域に最
大の相対強度の波長を有する第1のランプと220nm
乃至300nmの第2の波長領域に最大の相対強度の波
長を有する第2のランプを組み合わせて構成した光源で
ある。
The light source for evaluating the performance of the photocatalytic functional film according to the present invention comprises a first lamp having a wavelength of maximum relative intensity in a first wavelength region of 310 nm to 400 nm and 220 nm.
It is a light source configured by combining a second lamp having a wavelength of maximum relative intensity in the second wavelength region of 300 nm to 300 nm.

【0034】太陽光の波長特性は、紫外領域にブロード
に広がる波長特性を有しているが、前記第1のランプと
前記第2のランプの2種類のランプを組み合わせて構成
した光源は、ただ、1種のランプのみからなる光源に比
べ、より広範な紫外領域の紫外線を発する光源とするこ
とができるので、より太陽光に近い紫外領域の波長特性
を有する光源が達成できるものと考えられる。その結
果、前記2種のランプを組み合わせて構成した光源を用
いることで、太陽光を用いて評価した異なる種類の光触
媒機能膜間の相対的な性能評価の結果と良好な相関性を
有する結果が得られるものと考えられる。
The wavelength characteristic of sunlight has a wavelength characteristic that broadly spreads in the ultraviolet region, but a light source constructed by combining two types of lamps, the first lamp and the second lamp, is only It is considered that a light source that emits ultraviolet rays in a wider ultraviolet range can be achieved as compared with a light source including only one type of lamp, so that a light source having a wavelength characteristic in an ultraviolet range closer to sunlight can be achieved. As a result, by using a light source configured by combining the two types of lamps described above, there is a good correlation with the result of relative performance evaluation between different types of photocatalytic functional films evaluated using sunlight. It is thought to be obtained.

【0035】[0035]

【実施例】次に、本発明を実施例によって具体的に説明
する。
EXAMPLES Next, the present invention will be specifically described with reference to examples.

【0036】(実施例1)縦5cm×横5cm×厚さ2
mmのアルカリガラスを洗浄・乾燥し、この表面に酸化
チタン含有したシリコン樹脂を含む塗料である松下電工
(株)製「フレッセラ水性P」(「フレッセラ」は登録
商標、以下同じ)をバーコーターにて塗布し、これを室
温で3日間乾燥させて、膜厚が0.1μmの光触媒機能
膜を設けたサンプル1を作製した。
Example 1 Length 5 cm x Width 5 cm x Thickness 2
mm frass glass was washed and dried, and the surface of this surface was a paint containing a silicon resin containing titanium oxide, "Fresselera aqueous P"("Fresselera" is a registered trademark, the same applies below) manufactured by Matsushita Electric Works, Ltd. was used as a bar coater. Was applied and dried at room temperature for 3 days to prepare Sample 1 provided with a photocatalytic functional film having a film thickness of 0.1 μm.

【0037】次に、縦5cm×横5cm×厚さ2mmの
アルカリガラスを洗浄・乾燥し、この表面に酸化チタン
含有したシリコン樹脂を含む塗料である松下電工(株)
製「フレッセラPS1000」をバーコーターにて塗布
し、これを室温で3日間乾燥させて、膜厚が0.1μm
の光触媒機能膜を設けたサンプル2を作製した。
Next, an alkali glass measuring 5 cm in length × 5 cm in width × 2 mm in thickness was washed and dried, and a paint containing a silicon resin containing titanium oxide was applied to the surface of the glass. Matsushita Electric Works Co., Ltd.
"Fressela PS1000" manufactured by Bar Coater was applied and dried at room temperature for 3 days to give a film thickness of 0.1 μm.
A sample 2 provided with the photocatalytic functional film of was prepared.

【0038】作製した1組のサンプル1とサンプル2の
光触媒機能膜に、ブラックライトランプ[松下電器産業
(株)製「FL10BL−B」(最大の相対強度の波長
352nm/カタログ値)]と殺菌灯[松下電器産業
(株)製「GL−10」(最大の相対強度の波長25
3.7nm/カタログ値)]を兼ね備えた光源から、第
1の波長領域の照度:第2の波長領域の照度が5mW/
cm2:3.5mW/cm2(照度比が10:7)となる
よう調製した紫外線を照射して、各サンプルの光触媒機
能膜中の残留有機物が分解される分解速度の度合いを、
光触媒機能膜上面の水の接触角が10°以下になるまで
の時間を測定することで求めた。
A pair of the prepared photocatalytic functional film of Sample 1 and Sample 2 was sterilized with a black light lamp [Matsushita Electric Industrial Co., Ltd. "FL10BL-B" (wavelength of maximum relative intensity 352 nm / catalog value)]. Light ["GL-10" manufactured by Matsushita Electric Industrial Co., Ltd. (wavelength of maximum relative intensity 25
3.7 nm / catalog value)], the illuminance in the first wavelength region: the illuminance in the second wavelength region is 5 mW /
cm 2 : 3.5 mW / cm 2 (irradiation ratio 10: 7) was irradiated with ultraviolet rays, and the degree of decomposition rate of the residual organic matter in the photocatalytic functional film of each sample was decomposed,
It was determined by measuring the time until the contact angle of water on the upper surface of the photocatalytic functional film became 10 ° or less.

【0039】また、作製した別の1組のサンプル1とサ
ンプル2を用いて、屋外で南面垂直暴露を行い、各サン
プルの光触媒機能膜に太陽光を照射して、各サンプルの
光触媒機能膜中の残留有機物が分解される分解速度の度
合いを、光触媒機能膜上面の水の接触角が10°以下に
なるまでの時間を測定することで求めた。
Further, using another set of Sample 1 and Sample 2 prepared, outdoor vertical exposure was carried out on the south surface, and the photocatalyst functional film of each sample was irradiated with sunlight so that the inside of the photocatalyst functional film of each sample was exposed. The degree of decomposition rate of the residual organic substances was determined by measuring the time until the contact angle of water on the upper surface of the photocatalytic functional film was 10 ° or less.

【0040】(実施例2)縦5cm×横5cm×厚さ2
mmのスレート板を洗浄・乾燥し、この表面にエポキシ
樹脂系の有機質プライマー塗料である松下電工(株)製
「フレッセラ水性タイププライマー」をバーコーターに
て塗布し、これを室温で24時間乾燥させて、膜厚が1
0μmの有機質プライマー層を形成した。次に、この表
面にシリコン樹脂を含む塗料である松下電工(株)製
「フレッセラ水性タイプ」をバーコーターにて塗布し、
室温で24時間乾燥させて、膜厚が10μmの光触媒を
含有しない被膜を形成した後、酸化チタン含有のシリコ
ン樹脂を含む塗料である松下電工(株)製「フレッセラ
水性P」をバーコーターにて塗布し、これを室温で3日
間乾燥させて、膜厚が0.1μmの光触媒を含有した被
膜を設けて光触媒機能膜としたサンプル3を作製した。
(Embodiment 2) Length 5 cm × width 5 cm × thickness 2
mm slate plate is washed and dried, and an epoxy resin-based organic primer paint "Fresselera water-based primer" manufactured by Matsushita Electric Works, Ltd. is applied on the surface with a bar coater and dried at room temperature for 24 hours. And the film thickness is 1
A 0 μm organic primer layer was formed. Next, "Fresselera water-based type" manufactured by Matsushita Electric Works, Ltd., which is a coating containing silicon resin, is applied to this surface with a bar coater,
After drying at room temperature for 24 hours to form a film having a thickness of 10 μm and containing no photocatalyst, “Fresselera Aqueous P” manufactured by Matsushita Electric Works, Ltd., which is a paint containing a silicon resin containing titanium oxide, was applied with a bar coater. Sample 3 was prepared by coating and drying it at room temperature for 3 days to form a photocatalyst functional film by providing a film containing a photocatalyst having a film thickness of 0.1 μm.

【0041】次に、縦5cm×横5cm×厚さ2mmの
スレート板を洗浄・乾燥し、この表面にエポキシ樹脂系
の有機質プライマー塗料である松下電工(株)製「フレ
ッセラプライマー」をバーコーターにて塗布し、これを
室温で24時間乾燥させて、膜厚が10μmの有機質プ
ライマー層を形成した。次に、この表面にシリコンを含
む塗料である松下電工(株)製「フレッセラNA30
0」をバーコーターにて塗布し、さらに室温で24時間
乾燥させて、膜厚が10μmの光触媒を含有しない被膜
を形成した後、酸化チタン含有したシリコン樹脂を含む
塗料である松下電工(株)製「フラッセラPS100
0」をバーコーターにて塗布し、これを室温で3日間乾
燥させて、膜厚が0.1μmの光触媒を含有した被膜を
設けて光触媒機能膜としたサンプル3を作製した。
Next, a slate plate measuring 5 cm in length × 5 cm in width × 2 mm in thickness was washed and dried, and an epoxy resin-based organic primer paint “Fressela Primer” manufactured by Matsushita Electric Works, Ltd. was applied to the surface of the bar coater. Was applied and dried at room temperature for 24 hours to form an organic primer layer having a film thickness of 10 μm. Next, "Fresselera NA30" manufactured by Matsushita Electric Works, Ltd., which is a paint containing silicon on this surface.
"0" is applied with a bar coater and further dried at room temperature for 24 hours to form a photocatalyst-free film having a film thickness of 10 μm, which is a paint containing a silicon resin containing titanium oxide. Matsushita Electric Works, Ltd. Made "Frasera PS100
0 "was applied by a bar coater and dried at room temperature for 3 days to prepare a photocatalytic functional film sample 3 provided with a film containing a photocatalyst having a film thickness of 0.1 μm.

【0042】作製した1組のサンプル3とサンプル4の
光触媒機能膜に、実施例1と同じ条件に調製した光源か
ら紫外線を照射して、各サンプルの光触媒機能膜中の残
留有機物が分解される分解速度の度合いを、光触媒機能
膜上面の水の接触角が10°以下になるまでの時間を測
定することで求めた。
The photocatalyst functional films of the set of Sample 3 and Sample 4 thus prepared were irradiated with ultraviolet rays from a light source prepared under the same conditions as in Example 1 to decompose the residual organic substances in the photocatalyst functional films of each sample. The degree of decomposition rate was determined by measuring the time until the contact angle of water on the upper surface of the photocatalytic functional film became 10 ° or less.

【0043】また、作製した別の1組のサンプル3とサ
ンプル4を用いて、実施例1と同様に、屋外で南面垂直
暴露を行い、各サンプルの光触媒機能膜に太陽光を照射
して、各サンプルの光触媒機能膜中の残留有機物が分解
される分解速度の度合いを、光触媒機能膜上面の水の接
触角が10°以下になるまでの時間を測定することで求
めた。
Further, by using another set of Sample 3 and Sample 4 thus prepared, as in the case of Example 1, vertical exposure to the south surface was performed, and the photocatalytic functional film of each sample was irradiated with sunlight. The degree of decomposition rate of the residual organic substances in the photocatalytic functional film of each sample was determined by measuring the time until the contact angle of water on the upper surface of the photocatalytic functional film was 10 ° or less.

【0044】(比較例1)実施例1と同様にしてサンプ
ル1及びサンプル2を作製した。
Comparative Example 1 Samples 1 and 2 were prepared in the same manner as in Example 1.

【0045】作製した1組のサンプル1とサンプル2の
光触媒機能膜に、ブラックライトランプ[松下電器産業
(株)製「FL10BL−B」(最大の相対強度の波長
352nm/カタログ値)]からなる光源から、第1の
波長領域の照度が5mW/cm2となるように調製され
た紫外線を照射して、各サンプルの光触媒機能膜中の残
留有機物が分解される分解速度の度合いを、光触媒機能
膜上面の水の接触角が10°以下になるまでの時間を測
定することで求めた。
A black light lamp [“FL10BL-B” manufactured by Matsushita Electric Industrial Co., Ltd. (wavelength of maximum relative intensity of 352 nm / catalog value)] is provided on the photocatalytic functional film of one set of sample 1 and sample 2 thus prepared. Irradiation of ultraviolet light prepared from the light source so that the illuminance in the first wavelength region is 5 mW / cm 2, and the degree of decomposition rate at which the residual organic substances in the photocatalytic function film of each sample are decomposed is determined by the photocatalytic function. It was determined by measuring the time until the contact angle of water on the upper surface of the film was 10 ° or less.

【0046】また、作製した別の1組のサンプル1とサ
ンプル2を用いて、実施例1と同様に、屋外で南面垂直
暴露を行い、各サンプルの光触媒機能膜に太陽光を照射
して、各サンプルの光触媒機能膜中の残留有機物が分解
される分解速度の度合いを、光触媒機能膜上面の水の接
触角が10°以下になるまでの時間を測定するこで求め
た。
Further, using another set of Sample 1 and Sample 2 thus prepared, as in the case of Example 1, the vertical exposure to the south surface was carried out, and the photocatalytic functional film of each sample was irradiated with sunlight. The degree of decomposition rate of the residual organic substances in the photocatalytic functional film of each sample was determined by measuring the time until the contact angle of water on the upper surface of the photocatalytic functional film was 10 ° or less.

【0047】(水の接触角の測定)光触媒機能膜と水と
の接触角の測定は、協和界面科学(株)製の自動接触角
測定器「CA−W150」を用いて、膜の表面に2.0
μlの蒸留水を滴下した接触角を測定した。
(Measurement of Contact Angle of Water) The contact angle between the photocatalytic functional film and water was measured by using an automatic contact angle measuring device “CA-W150” manufactured by Kyowa Interface Science Co., Ltd. on the surface of the film. 2.0
The contact angle at which μl of distilled water was dropped was measured.

【0048】(照度の測定)サンプルに照射される紫外
線の照度の測定は、トプコン(株)製の紫外線強度計
「UVR2」を用いて測定した。なお、310nm乃至
400nmの第1の波長領域の照度を測定する場合は、
紫外線強度計の受光部に、310nm乃至400nmに
測定波長域を有する受光部「UD−36」を用い、ま
た、220nm乃至300nmの第2の波長領域の照度
を測定する場合は、220nm乃至300nmに測定波
長域を有する受光部「UD−25」を用いて測定した。
(Measurement of illuminance) The illuminance of the ultraviolet light applied to the sample was measured using an ultraviolet intensity meter "UVR2" manufactured by Topcon Corporation. When measuring the illuminance in the first wavelength region of 310 nm to 400 nm,
In the light receiving part of the ultraviolet intensity meter, the light receiving part "UD-36" having a measurement wavelength range of 310 nm to 400 nm is used, and when measuring the illuminance in the second wavelength range of 220 nm to 300 nm, it is set to 220 nm to 300 nm. It measured using the light receiving part "UD-25" which has a measurement wavelength range.

【0049】[0049]

【表1】 [Table 1]

【0050】(結果)評価結果を表1に示す。実施例1
と実施例2においては、いずれも、ブラックライトラン
プと殺菌灯との2種のランプを併用した光源を用いた場
合の、2種のサンプル間の分解速度比と太陽光を用いた
場合の2種のサンプル間の分解速度比との間には、良好
な相関性が認められた。
(Results) Table 1 shows the evaluation results. Example 1
In both Example 2 and Example 2, when using a light source in which two types of lamps, a black light lamp and a germicidal lamp, are used in combination, the decomposition rate ratio between two types of samples and the case of using sunlight are 2 A good correlation was observed with the degradation rate ratio between samples of the species.

【0051】一方、比較例においては、ブラックライト
ランプのみを光源に用いた場合の2種のサンプル間の分
解速度比と太陽光を用いた場合の2種のサンプル間の分
解速度比との間には、良好な相関性が認められなかっ
た。
On the other hand, in the comparative example, between the decomposition rate ratio between the two samples when only the black light lamp was used as the light source and the decomposition rate ratio between the two samples when using sunlight. , No good correlation was observed.

【0052】[0052]

【発明の効果】請求項1〜7に係る発明の光触媒機能膜
の性能評価方法は、基材上面に形成した、紫外線の照射
によって光触媒作用をなす光触媒機能膜の表面に、紫外
線を発する光源からの紫外線を照射して、光触媒機能膜
の性能を評価する光触媒機能膜の性能評価方法におい
て、前記紫外線を発する光源が、310nm乃至400
nmの第1の波長領域に最大の相対強度の波長を有する
第1のランプと220nm乃至300nmの第2の波長
領域に最大の相対強度の波長を有する第2のランプを組
み合わせて構成した光源を用いるので、太陽光を用いて
評価した異なる種類の光触媒機能膜間の相対的な性能評
価の結果と、良好な相関性を有する結果を得ることがで
きる。
The method for evaluating the performance of a photocatalytic functional film according to the first to seventh aspects of the present invention comprises a light source which emits ultraviolet rays on the surface of the photocatalytic functional film formed on the upper surface of the substrate and which acts as a photocatalyst by the irradiation of ultraviolet rays. In the performance evaluation method for a photocatalytic functional film, the performance of the photocatalytic functional film is evaluated by irradiating the ultraviolet light of
a first lamp having a maximum relative intensity wavelength in a first wavelength region of nm and a second lamp having a maximum relative intensity wavelength in a second wavelength region of 220 nm to 300 nm. Since it is used, it is possible to obtain a result having a good correlation with the result of relative performance evaluation between different types of photocatalytic functional films evaluated using sunlight.

【0053】また、請求項8に係る発明の光触媒機能塗
膜の性能評価用光源は、310nm乃至400nmの第
1の波長領域に最大の相対強度の波長を有する第1のラ
ンプと220nm乃至300nmの第2の波長領域に最
大の相対強度の波長を有する第2ランプを組み合わせて
構成した光源であるので、太陽光を用いて評価した異な
る種類の光触媒機能膜間の相対的な性能評価の結果と、
良好な相関性を有する結果を得ることのできる性能評価
用光源となる。
The light source for evaluating the performance of the photocatalytic functional coating film of the invention according to claim 8 is a first lamp having a wavelength of maximum relative intensity in a first wavelength region of 310 nm to 400 nm and 220 nm to 300 nm. Since the light source is configured by combining the second lamp having the wavelength of the maximum relative intensity in the second wavelength region, the result of relative performance evaluation between different types of photocatalytic functional films evaluated using sunlight and ,
The light source for performance evaluation can obtain a result having a good correlation.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基材上に形成した、紫外線の照射によっ
て光触媒作用をなす光触媒機能膜の表面に、紫外線を発
する光源からの紫外線を照射して、光触媒機能膜の性能
を評価する光触媒機能膜の性能評価方法において、前記
紫外線を発する光源が、310nm乃至400nmの第
1の波長領域に最大の相対強度の波長を有する第1のラ
ンプと220nm乃至300nmの第2の波長領域に最
大の相対強度の波長を有する第2ランプを組み合わせて
構成した光源であることを特徴とする光触媒機能膜の性
能評価方法。
1. A photocatalytic functional film for evaluating the performance of a photocatalytic functional film by irradiating the surface of a photocatalytic functional film formed on a substrate with photocatalytic function by irradiation of ultraviolet light with ultraviolet light from a light source that emits ultraviolet light. In the performance evaluation method according to claim 1, the light source that emits ultraviolet light has a first lamp having a wavelength of maximum relative intensity in a first wavelength region of 310 nm to 400 nm and a maximum relative intensity of light in a second wavelength region of 220 nm to 300 nm. A method for evaluating the performance of a photocatalytic functional film, which is a light source configured by combining a second lamp having a wavelength of
【請求項2】 上記第1のランプがブラックライトラン
プであり、上記第2のランプが殺菌灯であることを特徴
とする請求項1記載の光触媒機能膜の性能評価方法。
2. The method for evaluating the performance of a photocatalytic functional film according to claim 1, wherein the first lamp is a black light lamp and the second lamp is a germicidal lamp.
【請求項3】 上記光触媒機能膜がシリコン樹脂を含む
塗料で形成した皮膜であり、上記基材が無機質基材であ
ることを特徴とする請求項2記載の光触媒機能膜の性能
評価方法。
3. The method for evaluating the performance of a photocatalytic functional film according to claim 2, wherein the photocatalytic functional film is a film formed of a paint containing a silicone resin, and the base material is an inorganic base material.
【請求項4】 上記光触媒機能膜が上記基材上に有機質
プライマー層を介して形成されたことを特徴とする請求
項3記載の光触媒機能膜の性能評価方法。
4. The method for evaluating the performance of a photocatalytic functional film according to claim 3, wherein the photocatalytic functional film is formed on the base material via an organic primer layer.
【請求項5】 上記第1のランプ及び上記第2のランプ
を同時に照射することを特徴とする請求項1乃至請求項
4のいずれかに記載の光触媒機能膜の性能評価方法。
5. The photocatalytic functional film performance evaluation method according to claim 1, wherein the first lamp and the second lamp are simultaneously irradiated.
【請求項6】 上記第1のランプ及び上記第2のランプ
を同時に照射する場合に、上記第1の波長領域及び上記
第2の波長領域で計測される照度比が10:8乃至1
0:5であることを特徴とする請求項5記載の光触媒機
能膜の性能評価方法。
6. When irradiating the first lamp and the second lamp at the same time, the illuminance ratio measured in the first wavelength region and the second wavelength region is 10: 8 to 1
It is 0: 5, The performance evaluation method of the photocatalyst functional film of Claim 5 characterized by the above-mentioned.
【請求項7】 上記光触媒機能膜に含有する光触媒が酸
化チタンであることを特徴とする請求項1乃至請求項6
のいずれかに記載の光触媒機能膜の性能評価方法。
7. The photocatalyst contained in the photocatalytic functional film is titanium oxide.
A method for evaluating the performance of a photocatalytic functional film according to any one of 1.
【請求項8】 310nm乃至400nmの第1の波長
領域に最大の相対強度の波長を有する第1のランプと2
20nm乃至300nmの第2の波長領域に最大の相対
強度の波長を有する第2のランプを組み合わせて構成し
たことを特徴とする光触媒機能膜の性能評価用光源。
8. A first lamp having a wavelength of maximum relative intensity in a first wavelength region of 310 nm to 400 nm and 2
A light source for performance evaluation of a photocatalytic functional film, which is configured by combining a second lamp having a wavelength of maximum relative intensity in a second wavelength region of 20 nm to 300 nm.
JP2001257513A 2001-08-28 2001-08-28 Performance evaluation method of photocatalytic functional film and performance evaluation light source of photocatalytic functional film Pending JP2003066027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001257513A JP2003066027A (en) 2001-08-28 2001-08-28 Performance evaluation method of photocatalytic functional film and performance evaluation light source of photocatalytic functional film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001257513A JP2003066027A (en) 2001-08-28 2001-08-28 Performance evaluation method of photocatalytic functional film and performance evaluation light source of photocatalytic functional film

Publications (1)

Publication Number Publication Date
JP2003066027A true JP2003066027A (en) 2003-03-05

Family

ID=19085155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001257513A Pending JP2003066027A (en) 2001-08-28 2001-08-28 Performance evaluation method of photocatalytic functional film and performance evaluation light source of photocatalytic functional film

Country Status (1)

Country Link
JP (1) JP2003066027A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108350A1 (en) * 2006-03-22 2007-09-27 National University Corporation Hokkaido University Method for testing photocatalyst function and apparatus for use in the test

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108350A1 (en) * 2006-03-22 2007-09-27 National University Corporation Hokkaido University Method for testing photocatalyst function and apparatus for use in the test
JP2007256010A (en) * 2006-03-22 2007-10-04 Noritake Co Ltd Testing method of photocatalyst function, and appliance used for testing

Similar Documents

Publication Publication Date Title
US6090489A (en) Method for photocatalytically hydrophilifying surface and composite material with photocatalytically hydrophilifiable surface
RU2473580C2 (en) Coating composition containing photocatalyst coated with apatite, and radiant heating system containing said composition
EP0869156B1 (en) Photocatalytic process for making surface hydrophilic and composite material having photocatalytically hydrophilic surface
CN1323653A (en) Visible light responsing type photochemical catalyst
Galenda et al. Evaluation of self-cleaning photocatalytic paints: Are they effective under actual indoor lighting systems?
US20170176332A1 (en) Optical sensor for detecting a chemical species
JP2000162129A (en) Evaluating method and evaluating device of photocatalyst function
Zuraimi et al. Performance of sorption-and photocatalytic oxidation-based indoor passive panel technologies
CA2241059C (en) Photocatalyst process for making surface hydrophillic
JP2003066027A (en) Performance evaluation method of photocatalytic functional film and performance evaluation light source of photocatalytic functional film
JP3351747B2 (en) Durability test method and test equipment
KR102120253B1 (en) Curing paint composition comprising visible light active photocatalys
JP3247857B2 (en) Method and apparatus for measuring photocatalytic activity
JP5336425B2 (en) Gas measuring method and apparatus
JP2001009295A (en) Photocatalyst body, lamp and lighting fixture
Maruo et al. Development and evaluation of ozone detection paper
JP2005274477A (en) Method of measuring chemical substance decomposition ability of photocatalyst, and measuring instrument therefor
JP2001183359A (en) Evaluation method for activity of photocatalyst layer
JP2007302527A (en) Glass workpiece with photocatalytic film and constructed structure using glass workpiece with photocatalytic film
JP2007256010A (en) Testing method of photocatalyst function, and appliance used for testing
JPH11319579A (en) Photocatalytic body and illuminator
JP2007003353A (en) Method of evaluating performance of photocatalyst
JP3555540B2 (en) Photocatalytic thin film activity measurement method and activity measurement film
JP4569432B2 (en) Method for producing interior material coated with photocatalyst
JP2004052423A (en) Photocatalytic-function building material and manufacturing method therefor