JP2007302527A - Glass workpiece with photocatalytic film and constructed structure using glass workpiece with photocatalytic film - Google Patents

Glass workpiece with photocatalytic film and constructed structure using glass workpiece with photocatalytic film Download PDF

Info

Publication number
JP2007302527A
JP2007302527A JP2006133964A JP2006133964A JP2007302527A JP 2007302527 A JP2007302527 A JP 2007302527A JP 2006133964 A JP2006133964 A JP 2006133964A JP 2006133964 A JP2006133964 A JP 2006133964A JP 2007302527 A JP2007302527 A JP 2007302527A
Authority
JP
Japan
Prior art keywords
film
photocatalyst
photocatalyst film
glass
construction body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006133964A
Other languages
Japanese (ja)
Other versions
JP4535026B2 (en
Inventor
Akemi Kato
朱美 加藤
Takashige Yoneda
貴重 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2006133964A priority Critical patent/JP4535026B2/en
Publication of JP2007302527A publication Critical patent/JP2007302527A/en
Application granted granted Critical
Publication of JP4535026B2 publication Critical patent/JP4535026B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide glass with a laminated film including a photocatalytic film which prevents the pollution of the surface of a base material such as the glass caused by low molecular siloxane or the like isolated from a silicone-based sealing material for a long period and keeps transparency and has a self-running-off-layer free from deterioration of various characteristics such as the hydrophilicity of the photocatalytic film and a method of manufacturing the same. <P>SOLUTION: In the glass workpiece with the photocatalytic film using the base material with the photocatalytic film as the glass with the photocatalytic film comprising glass with the photocatalytic film and the sealing material, the methylene blue decomposition property of the photocatalytic film is ≥0.08 (Abs) and the quantity of the low molecular siloxane eluted from the sealing material is <100 ppm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光触媒膜付きガラス施工体および光触媒膜付きガラス施工体を用いた構築構造体に関する。   The present invention relates to a glass construction body with a photocatalyst film and a construction structure using the glass construction body with a photocatalyst film.

近年、建材周辺部にシール材として使用されるシリコーン系シーリング材から遊離した
低分子シロキサンによるガラス施工体表面の汚染が問題となっている。この汚染は、シリコーン系シーリング材中に存在する未反応の低分子シロキサンが遊離し空気や雨水を介してガラス施工体上に拡散することにより、ガラス施工体表面が撥水性となり、疎水性の汚染物質が付着しやすくなることにより生じると考えられる(例えば、非特許文献1参照。)。特に、ガラス施工体は透明であることが多いため、美観を損ねるだけでなく、この汚染により透明性が低下し、視認性が悪化する問題がある。
In recent years, contamination of the glass construction body surface by low-molecular siloxane released from a silicone-based sealing material used as a sealing material around the building material has become a problem. This contamination is caused by the release of unreacted low-molecular-weight siloxane present in the silicone sealant and diffusion on the glass construction body via air or rainwater, making the surface of the glass construction body water-repellent and hydrophobic contamination. It is thought that it is caused by the fact that a substance easily adheres (for example, see Non-Patent Document 1). In particular, since the glass construction body is often transparent, it not only impairs the aesthetic appearance, but also has a problem that transparency deteriorates due to this contamination and visibility deteriorates.

一方、ガラス施工体表面に付着した汚れを分解し、ガラス施工体本来の透明性を復活させる方法として、ガラス施工体上に光触媒膜を形成する方法が知られている。光触媒を光励起することにより光触媒膜の表面に付着した有機汚れなどが光触媒の作用により分解され、結果としてガラス施工体表面の透明性が復活する。現在では、透明性以外にも、親水性、防汚性、防曇性、流滴性等の機能を付与する目的で、各種光触媒膜が提案されている。例えば、少なくともシリコーン系シーリング材近傍に光触媒膜をコーティングすることで、シーリング材からの疎水性物質を光触媒により分解または改質する発明が開示されている(例えば、特許文献1または2参照。)。しかし、これらの光触媒膜では疎水性の汚染物質の汚れを充分に除去できないという問題がある。   On the other hand, a method of forming a photocatalyst film on a glass construction body is known as a method for decomposing dirt adhering to the surface of the glass construction body and restoring the original transparency of the glass construction body. When the photocatalyst is photoexcited, organic stains and the like attached to the surface of the photocatalyst film are decomposed by the action of the photocatalyst, and as a result, the transparency of the glass construction body surface is restored. At present, in addition to transparency, various photocatalytic films have been proposed for the purpose of imparting functions such as hydrophilicity, antifouling property, antifogging property, and flowability. For example, an invention is disclosed in which a hydrophobic material from a sealing material is decomposed or modified with a photocatalyst by coating a photocatalytic film at least in the vicinity of a silicone sealing material (see, for example, Patent Document 1 or 2). However, these photocatalyst films have a problem that the contaminants of hydrophobic contaminants cannot be sufficiently removed.

また、一度撥水性へと変化した光触媒膜表面を親水性へと復活させる洗浄剤も提案されている(例えば、特許文献3参照。)。しかし、洗浄を頻繁に行うのは実用上非常に手間がかかるという問題がある。   There has also been proposed a cleaning agent that restores the surface of the photocatalyst film once changed to water repellency to hydrophilicity (see, for example, Patent Document 3). However, frequent cleaning has a problem that it is very troublesome in practice.

また、徐放性物質で流れ落ちる量をコントロールすることによって、手間をかけずに汚れの付着を防止し、汚れが付着した場合には速やかに除去することによって親水化表面を繰り返し再現する方法も提案されている(例えば、特許文献4参照。)。しかし、この方法は、徐放性物質が有機系(実施例においては徐放性物質としてポリエーテルを使用)であるために、光触媒膜上では光触媒膜の作用で徐放性物質が光分解されて消失し、効果が充分に発揮できない点で問題がある。   In addition, by controlling the amount of flowing-off with a sustained-release substance, it is possible to prevent the adhesion of dirt without trouble, and when the dirt adheres, it is also proposed to reproduce the hydrophilic surface repeatedly by removing it quickly. (For example, refer to Patent Document 4). However, in this method, since the sustained-release substance is organic (in the examples, polyether is used as the sustained-release substance), the sustained-release substance is photodegraded on the photocatalyst film by the action of the photocatalyst film. There is a problem in that it disappears and the effect cannot be fully exhibited.

また、微細孔を有する多孔質構造を有する光触媒コーティング層を形成し、水に対する接触角を低くする構造とフィラーを含有し膜厚方向への浸透性を有する塗膜構造により、シリコーン溶出物に対する汚れに対して有効な外装材も提案されている(例えば、特許文献5参照。)。しかし、この方法ではシリコーン溶出物に対しての許容量は増すが、経時的に溶出し続ける溶出物に対して、長期間に渡って初期と同様の清浄性を維持することは困難である。また、塗膜にシリコーン系コーティングを高比率で用いることからシリコーンシーリング材溶出物との親和性が強く膜表面に選択的に吸着しやすいという欠点がある。   In addition, a photocatalyst coating layer having a porous structure with fine pores is formed, and a structure that lowers the contact angle with water and a coating film structure that contains a filler and has permeability in the film thickness direction make it possible to contaminate the silicone eluate. An effective exterior material has also been proposed (see, for example, Patent Document 5). However, this method increases the allowable amount for the silicone eluate, but it is difficult to maintain the same cleanliness as the initial state over a long period of time for the eluate that continues to elute over time. Moreover, since a silicone-based coating is used in a high ratio for the coating film, there is a drawback that it has a strong affinity with the eluate of the silicone sealing material and is easily selectively adsorbed on the membrane surface.

特開平8−302856号公報JP-A-8-302856 特開2001−55799号公報JP 2001-55799 A 特開2001−64683号公報JP 2001-64683 A 特開2000−265163号公報JP 2000-265163 A 特開2004−225449号公報JP 2004-225449 A 岡本 肇,忍 裕司「建築技術」1997年8月 p152−160Satoshi Okamoto, Yuji Shinobu “Architecture Technology” August 1997 p152-160

本発明は、従来技術が有する前述の欠点、特にシリコーン系シーリング材から遊離した
低分子シロキサン等によるガラス施工体表面の汚染を長期間防止し、透明性を維持でき、光触媒膜の親水性等の諸特性が劣化しない光触媒膜付きガラス施工体および構築構造体の提供を目的とする。
The present invention prevents the above-mentioned drawbacks of the prior art, in particular, contamination of the surface of the glass construction body due to low molecular siloxane released from the silicone-based sealing material for a long period of time, maintains transparency, and improves the hydrophilicity of the photocatalytic film. It aims at providing the glass construction body with a photocatalyst film and various construction structures in which various characteristics do not deteriorate.

本発明における光触媒膜付きガラス施工体は、低分子シロキサンの溶出が少ないシーリング材と光触媒活性が高い光触媒膜付きガラスからなることを特徴とする。   The glass construction body with a photocatalyst film in the present invention is characterized by comprising a sealing material with low elution of low molecular siloxane and a glass with a photocatalyst film having high photocatalytic activity.

光触媒膜付きガラス施工体としては、
(a)光触媒膜付きガラスの光触媒活性が、メチレンブルー分解性評価において、最大波長352nmのブラックライトブルーランプで紫外線照射強度1.7mW/cmの紫外線を3時間照射後の吸光度減少量として、0.08(Abs)以上であることを特徴とする。
As glass construction body with photocatalyst film,
(A) The photocatalytic activity of the glass with a photocatalyst film is 0 as the amount of decrease in absorbance after 3 hours of irradiation with ultraviolet light having an ultraviolet irradiation intensity of 1.7 mW / cm 2 using a black light blue lamp having a maximum wavelength of 352 nm in the evaluation of methylene blue decomposability. 0.08 (Abs) or more.

これに用いるシリコーン系シーリング材としては、
(b)硬化させたシーリング材を以下(b−1)に示される条件でアセトンに浸漬した場合の、以下(b−2)に示される低分子シロキサンのアセトンへの溶出重量が、アセトン浸漬前のシーリング材重量に対して、100ppm以下である低汚染性シーリング材であることを特徴とする。
(b−1)硬化させたシーリング材を、温度23±2度環境下で24時間±1時間、完全密閉容器中でアセトンに浸漬後、シーリング材を取り出す。
(b−2)示性式:C1236Si、化合物名:Dodecamethylcyclohexasiloxane、分子量:445、CAS番号:540−97−6
光触媒膜付きガラスの光触媒膜の耐摩耗性がJIS R3221(2002)6.4に基づくテーバー摩耗試験(CS−10F摩耗輪使用、荷重4.9N)において、摩耗回数100回後のΔヘーズ値で、4%以下であることを特徴とする。
As a silicone sealant used for this,
(B) When the cured sealing material is immersed in acetone under the conditions shown in (b-1) below, the elution weight of acetone in the low molecular weight siloxane shown in (b-2) below is It is characterized by being a low-contamination sealant that is 100 ppm or less with respect to the weight of the sealant.
(B-1) The cured sealing material is immersed in acetone in a completely sealed container for 24 hours ± 1 hour in an environment of 23 ± 2 ° C., and then the sealing material is taken out.
(B-2) Schematic formula: C 12 H 36 O 6 Si 6 , compound name: Dodecamethylcyclohexasiloxane, molecular weight: 445, CAS number: 540-97-6
The abrasion resistance of the photocatalyst film of the glass with a photocatalyst film is a Δhaze value after 100 times of wear in a Taber abrasion test (using a CS-10F worn wheel, load 4.9 N) based on JIS R3221 (2002) 6.4. 4% or less.

光触媒膜の暗所親水持続性として、水接触角が1週間以上20°以下を保つ膜であることを特徴とする。   The photocatalytic film is characterized by being a film having a water contact angle of not less than 1 week and not more than 20 ° as a hydrophilic property in a dark place.

光触媒膜の平均表面粗さRa値が、1nm以上20nm以下であることが好ましい。
光触媒膜は光触媒を発現する物質とSiOを含み、膜中に含まれる全金属組成中のSi比率が、Si/膜中全金属原子のmol比率で0.80以下であることを特徴とする。
光触媒膜に含まれる全金属組成中の光触媒微粒子比率が、光触媒微粒子/膜中全金属原子のmol比率で、0.1以上、0.9以下であることを特徴とする。
The average surface roughness Ra value of the photocatalytic film is preferably 1 nm or more and 20 nm or less.
The photocatalytic film includes a substance that expresses a photocatalyst and SiO 2 , and the Si ratio in the total metal composition contained in the film is Si / the molar ratio of all metal atoms in the film is 0.80 or less. .
The photocatalyst fine particle ratio in the total metal composition contained in the photocatalyst film is a molar ratio of photocatalyst fine particles / all metal atoms in the film, which is 0.1 or more and 0.9 or less.

本発明の構築構造体は、本発明の光触媒膜付きガラス施工体より得られたものであることを特徴とする。   The construction structure of the present invention is obtained from the glass construction body with a photocatalyst film of the present invention.

本発明の光触媒膜付きガラスとシリコーン系シーリング材を用いれば、シーリング材から遊離した低分子シロキサン等によるガラス施工体表面の汚染を防止でき、高い透明性と優れた防汚性、分解性、親水性、防曇性を長期間維持できる光触媒膜付きガラス施工体、および光触媒膜付きガラス施工体を用いた構築構造体を得ることができる。   By using the glass with a photocatalyst film of the present invention and a silicone-based sealing material, it is possible to prevent contamination of the surface of the glass construction body by low-molecular siloxane and the like released from the sealing material, high transparency and excellent antifouling properties, degradability, hydrophilicity The construction structure using the glass construction body with a photocatalyst film and the glass construction body with a photocatalyst film which can maintain the property and antifogging property for a long period of time can be obtained.

本発明においては光触媒膜の光触媒活性評価として、メチレンブルー分解性評価を用いている。メチレンブルーを接触させた光触媒膜付きガラスに紫外線を照射した後のメチレンブルー水溶液の吸光度減少量を0.08(Abs)以上とし、かつ構築構造体として用いる場合の接着目的で使用するシリコーン系シーリング材として低汚染性シーリング材を用いることにより、ガラス施工体表面の汚染を防止でき、高い透明性と優れた防汚性、分解性、親水性、防曇性を長期間維持できる光触媒膜付きガラス施工体、および光触媒膜付きガラス施工体を用いた構築構造体を得ることができる。   In the present invention, methylene blue degradability evaluation is used as the photocatalytic activity evaluation of the photocatalytic film. As a silicone-based sealing material used for bonding purposes when the absorbance of the aqueous solution of methylene blue after irradiating ultraviolet light onto glass with a photocatalyst film in contact with methylene blue is 0.08 (Abs) or more and used as a construction structure Glass construction body with photocatalyst film that can prevent contamination on the surface of glass construction body by using low-contamination sealing material and can maintain high transparency and excellent antifouling, degradability, hydrophilicity, and antifogging properties for a long time And the construction structure using the glass construction body with a photocatalyst film can be obtained.

また、本発明の光触媒膜付きガラス施工体は高い光触媒活性により、少量付着した汚染物質をすみやかに分解除去できる。   Moreover, the glass construction body with a photocatalyst film of the present invention can rapidly decompose and remove a small amount of contaminants due to its high photocatalytic activity.

さらに高い親水性により、疎水性の汚染物質が光触媒膜上に滞留するのを抑制し、汚染物質を膜表面に吸着しにくくすることができる。また、暗所親水性持続として表現される親水性の持続時間が長いほど効果を継続できる。特に、光触媒膜の平均表面粗さRaが大きい場合には、表面積が大きくなるため同一組成の平滑膜に比べ親水性を向上しやすく、疎水性の汚染物質を近づけにくくする効果が高まる。また、表面が多孔性を有している場合は表面積が更に大きくなるために好ましい。一部の汚染物質が光触媒膜の表面や場合によっては内部に吸着することも考えられるが、この場合は、その吸着量が少量であるため、光触媒の光触媒活性により、汚染物質が光触媒膜上に定着する前に分解除去され、光触媒膜表面に残留することを防止でき、本来の光触媒膜の諸特性が維持できる。   Furthermore, due to the high hydrophilicity, it is possible to suppress the retention of hydrophobic contaminants on the photocatalyst film and to make it difficult to adsorb the contaminants on the film surface. Moreover, an effect can be continued, so that the duration of hydrophilicity expressed as darkness hydrophilic persistence is long. In particular, when the average surface roughness Ra of the photocatalyst film is large, the surface area becomes large, so that the hydrophilicity is easily improved as compared with the smooth film having the same composition, and the effect of making it difficult to approach hydrophobic contaminants is enhanced. Moreover, since the surface area becomes still larger when the surface has porosity, it is preferable. Some pollutants may be adsorbed on the surface of the photocatalyst film or in some cases, but in this case, the amount of adsorption is small, so the photocatalytic activity of the photocatalyst causes the pollutant to adhere to the photocatalyst film. It can be prevented from being decomposed and removed before fixing and remaining on the surface of the photocatalyst film, and various characteristics of the original photocatalyst film can be maintained.

また、本発明の光触媒膜付きガラス施工体は、実用的な耐摩耗性を有しており、通常の取り扱い時や清掃時に膜がキズついたり剥離したりすることが抑制され、長期的に物性変化なく使用することができる。   In addition, the glass construction body with a photocatalyst film of the present invention has practical wear resistance, and it is suppressed that the film is scratched or peeled off during normal handling or cleaning. Can be used without change.

光触媒膜の膜組成にSiを含有させることにより、低温処理工程においても膜の耐摩耗性を発現できる。また、親水保持性が増すため親水性、光触媒活性の発現に効果があり、結果としてシーラント汚れ抑制に効果がある。   By including Si in the film composition of the photocatalyst film, the wear resistance of the film can be expressed even in the low temperature treatment process. Moreover, since hydrophilic retention property increases, it is effective in the expression of hydrophilicity and photocatalytic activity, and as a result, it is effective in suppressing sealant contamination.

また、本発明における光触媒膜付きガラス施工体は、汚染物質に汚染される可能性のあるところで使用されるすべてのガラス施工体を意味しており、耐汚染性を格段に高めることができるため、経済性に優れる。特に、長期間ガラス施工体の透明性を維持でき、視認性に優れる。また、ガラス施工体表面の清浄作業の回数を減らすもしくは、無くすことができ、作業の省人化、清掃費用の低減を可能にする。   Moreover, the glass construction body with a photocatalyst film in the present invention means all glass construction bodies used where there is a possibility of being polluted by pollutants, and can significantly improve the contamination resistance. Excellent economy. In particular, the transparency of the glass construction body can be maintained for a long time, and the visibility is excellent. Moreover, the frequency | count of the cleaning operation | work of the glass construction body surface can be reduced or eliminated, and it becomes possible to save work and to reduce cleaning expenses.

本発明の光触媒膜付きガラス施工体は、長期間にわたって、親水性、汚れ分解性および防曇性に優れる。すなわち、汚染物質による汚染を防止することで、光触媒膜表面に付着する水滴が濡れ広がり、光触媒膜の汚れを分解する作用が劣化せず、さらに表面が曇らず防曇性に優れる。また、太陽光等の光が照射されることによって汚れ分解性(特に有機物の汚れの分解)が維持され、さらに、降雨等により水が本発明の光触媒膜付きガラス施工体の表面を流れ落ちる際に、無機物の汚れも洗い流され、セルフクリーニング効果が維持される。   The glass construction body with a photocatalyst film of the present invention is excellent in hydrophilicity, soil decomposability and antifogging properties over a long period of time. That is, by preventing contamination by contaminants, water droplets adhering to the surface of the photocatalyst film are wetted and spread, the action of decomposing the photocatalyst film is not deteriorated, and the surface is not fogged and excellent in antifogging properties. Moreover, when the light such as sunlight is irradiated, the soil decomposability (especially, the decomposition of organic matter) is maintained, and further, when water flows down the surface of the glass construction body with the photocatalyst film of the present invention due to rain or the like. In addition, the inorganic dirt is also washed away, and the self-cleaning effect is maintained.

シーリング材からの汚染物質は、シーリング材を施工した直後から発生し、長期的に発
生し続けると考えられる。汚染物質による汚染を解決すべく、単に光触媒膜のみを形成した場合(例えば、特許文献1または2参照。)、汚染物質が光触媒膜表面へ徐々に拡散し、汚染物質が光触媒膜に結合または吸着することにより膜表面が撥水性に変化する。その結果、大気中の疎水性物質を主成分とする物質が膜表面に付着しやすくなり、表面汚れが発生し、外観を損ねるだけでなく、本来の光触媒膜の諸特性が維持できなくなる問題があることが分かった。また、光触媒膜を形成することにより、膜を形成しない場合よりも表面汚れは若干低減されるが、汚染物質による汚れを防止するには不充分であった。
Contaminants from the sealing material are generated immediately after the sealing material is applied, and are considered to continue to occur over the long term. When only the photocatalyst film is formed to solve the contamination by the pollutant (see, for example, Patent Document 1 or 2), the pollutant gradually diffuses to the surface of the photocatalyst film, and the pollutant is bound or adsorbed to the photocatalyst film. By doing so, the film surface changes to water repellency. As a result, substances that are mainly composed of hydrophobic substances in the air are likely to adhere to the film surface, resulting in surface contamination, not only deteriorating the appearance, but also maintaining the characteristics of the original photocatalytic film. I found out. Moreover, although the surface contamination is slightly reduced by forming the photocatalytic film as compared with the case where the film is not formed, it is insufficient to prevent the contamination due to the contaminant.

本発明者らは、光触媒膜付きガラス施工体を窓ガラス用、外壁用の構築構造体に適用する場合に、光触媒膜の光触媒活性を0.08(Abs)以上とし、かつ光触媒膜付きガラスの固定用として、特定の有機溶剤に溶出する低分子シロキサンが100ppm以下である低汚染性シーリング材を用いることにより、光触媒膜付きガラス施工体表面の汚染を長期間防止することができ、また透明性を維持でき、本来の光触媒膜の諸特性が維持できる構築構造体を得られることを見出した。   When applying the glass construction body with a photocatalyst film to a construction structure for a window glass and an outer wall, the present inventors set the photocatalytic activity of the photocatalyst film to 0.08 (Abs) or more, and By using a low-fouling sealing material with a low-molecular-weight siloxane eluted in a specific organic solvent of 100 ppm or less for fixing, it is possible to prevent contamination of the surface of a glass construction body with a photocatalyst film for a long period of time and transparency It was found that a construction structure that can maintain the various characteristics of the original photocatalytic film can be obtained.

低汚染性シーリング材としては、低分子シロキサンの特定の有機溶剤への溶出重量が、有機溶剤浸漬前のシーリング材重量に対して、100ppm以下であるシリコーンシーリング材が挙げられる。なお、本発明においては、特定の有機溶剤としてはアセトンを用い、低分子シロキサンとしては、試薬として安定的に入手できるため定量評価に簡便で、かつ低分子シロキサンの溶出総量の傾向を反映していると考えられる以下の環状シロキサンを定量評価に用いた。
示性式:C1236Si、化合物名:Dodecamethylcyclohexasiloxane、分子量:445、CAS番号:540−97−6。
Examples of the low-contamination sealant include a silicone sealant in which the weight of elution of low-molecular siloxane into a specific organic solvent is 100 ppm or less with respect to the weight of the sealant before immersion in the organic solvent. In the present invention, acetone is used as a specific organic solvent, and low molecular siloxane is easily available for quantitative evaluation because it can be stably obtained as a reagent, and reflects the tendency of the total elution amount of low molecular siloxane. The following cyclic siloxane considered to be present was used for quantitative evaluation.
Chemical formula: C 12 H 36 O 6 Si 6 , compound name: Dodecamethylcyclohexasiloxane, molecular weight: 445, CAS number: 540-97-6.

低汚染性シーリング材を用いることにより、シーリング材に起因する低分子シロキサンの拡散が抑制され、結果として誘発されて付着していた疎水性の汚れも付着しにくくなり、また少量付着しても分解除去されたり、降雨や洗浄によって流出除去が可能となり、汚染物質による汚染を長期間防止することができる。   By using a low-contamination sealant, the diffusion of low-molecular siloxanes caused by the sealant is suppressed, and as a result, the hydrophobic dirt that has been induced is less likely to adhere. It can be removed, or it can be removed by rainfall or washing, and contamination by pollutants can be prevented for a long time.

本発明における光触媒とは、光触媒の価電子帯と伝導電子帯との間のエネルギー差よりも大きなエネルギーの光を照射したときに、価電子帯中の電子の励起によって伝導電子と正孔を生成しうる性質を有する材料をいい、紫外線応答の光触媒のみならず、可視光応答の光触媒であってもよい。このような光触媒としては、アナターゼ型酸化チタン、ルチル型酸化チタン、酸化スズ、酸化亜鉛、三酸化タングステン、酸化第二鉄、チタン酸ストロンチウム、酸化ビスマス、酸化鉄等が好ましく挙げられる。特に酸化チタンが好ましい。   In the present invention, the photocatalyst generates conduction electrons and holes by excitation of electrons in the valence band when irradiated with light having an energy larger than the energy difference between the valence band and the conduction electron band of the photocatalyst. A material having such properties may be used, and may be not only an ultraviolet-responsive photocatalyst but also a visible-light-responsive photocatalyst. Preferred examples of such a photocatalyst include anatase type titanium oxide, rutile type titanium oxide, tin oxide, zinc oxide, tungsten trioxide, ferric oxide, strontium titanate, bismuth oxide, iron oxide and the like. Titanium oxide is particularly preferable.

以下、本発明について詳述する。
本発明に用いられる光触媒膜は、メチレンブルー分解性評価において0.08(Abs)以上の光触媒活性を有する。また、特定の有機溶剤に溶出する低分子シロキサン量が100ppm以下であるシーリング材を、光触媒活性0.08(Abs)以上の光触媒膜にあわせて用いることにより、長期間の汚染を防止できる。また、本発明に用いられる光触媒膜の光触媒活性は、0.10(Abs)以上であることがより好ましい。
Hereinafter, the present invention will be described in detail.
The photocatalyst film used in the present invention has a photocatalytic activity of 0.08 (Abs) or more in methylene blue degradability evaluation. Further, long-term contamination can be prevented by using a sealing material having a low molecular weight siloxane eluted in a specific organic solvent of 100 ppm or less in combination with a photocatalytic film having a photocatalytic activity of 0.08 (Abs) or more. The photocatalytic activity of the photocatalytic film used in the present invention is more preferably 0.10 (Abs) or more.

本発明におけるメチレンブルー分解性は、以下のように定義した。詳細な評価方法については、実施例[光触媒活性]で後述する。   The methylene blue degradability in the present invention was defined as follows. A detailed evaluation method will be described later in Example [photocatalytic activity].

初期化(初期化の方法は後述する)済みの10cm角光触媒膜付きガラスサンプルを1枚用意し、筒型試験セルにシリコングリースを塗布してサンプル膜面に押し付け固定した。セル内に吸着用メチレンブルー水溶液を注入し、カバーガラスでフタをして暗所静置し、光触媒膜に十分にメチレンブルーを吸着させた。セル中の水溶液を捨て、新たに試験用メチレンブルー水溶液を注入した。注入したメチレンブルー試験液をピペットで充分に撹拌してから正確に1.0ミリミットルを分光光度計測定用セルに採取した(初期液)。カバーガラスでフタをし、カバーガラスの上から、紫外線を3時間照射した後、3時間後のメチレンブルー試験液をピペットで充分に撹拌してから正確に1.0ミリミットルを分光光度計測定用セルに採取した(分解液)。採取した初期液と分解液の波長664nmでの吸光度(Abs)を測定し、分解液の吸光度から初期液の吸光度を引いた値(Abs)を光触媒活性とした。   One glass sample with a 10 cm square photocatalyst film that had been initialized (the initialization method will be described later) was prepared, and silicon grease was applied to the cylindrical test cell and pressed against the surface of the sample film. An aqueous methylene blue solution for adsorption was poured into the cell, covered with a cover glass, and allowed to stand in the dark, and the photocatalyst film was sufficiently adsorbed with methylene blue. The aqueous solution in the cell was discarded, and a test methylene blue aqueous solution was newly injected. After thoroughly injecting the injected methylene blue test solution with a pipette, 1.0 millilimit was accurately collected in a spectrophotometer measurement cell (initial solution). Cover the cover glass, irradiate the cover glass with UV light for 3 hours, and then thoroughly stir the methylene blue test solution after 3 hours with a pipette, and then accurately measure 1.0 milimit with a spectrophotometer measurement cell. (Decomposition solution). The absorbance (Abs) at a wavelength of 664 nm of the collected initial solution and decomposition solution was measured, and the value (Abs) obtained by subtracting the absorbance of the initial solution from the absorbance of the decomposition solution was defined as photocatalytic activity.

本発明に用いられる光触媒膜の光触媒活性が、0.08(Abs)未満の場合、膜表面に拡散した微量の汚染物質でさえも分解除去することが困難となり、結果として長期的には汚れを防止できず汚染が進行してしまう。また、光触媒活性が0.08(Abs)以上あっても、通常建築用途に用いられるシリコーンシーリング材を用いた場合には、シーリング材から溶出する低分子シロキサン量が多く、光触媒膜の分解能力を上回ってしまうため、結果として汚染が進行してしまう。   When the photocatalytic activity of the photocatalyst film used in the present invention is less than 0.08 (Abs), it is difficult to decompose and remove even a trace amount of contaminants diffused on the film surface. It cannot be prevented and contamination progresses. In addition, even when the photocatalytic activity is 0.08 (Abs) or more, when a silicone sealing material usually used for architectural applications is used, the amount of low-molecular siloxane eluted from the sealing material is large, and the photocatalytic film can be decomposed. As a result, the contamination progresses.

一方で、低分子シロキサン溶出量が100ppm以下であるシーリング材はかねてから知られているものの、これを通常建築用途に使用されるソーダライムガラスや、光触媒活性が0.08(Abs)未満の光触媒膜付きガラス施工体に塗布した場合には、長期間汚染を抑制する効果は見られず、半年から1年経過後にはガラス施工体の汚染の程度は通常のシーリング材を用いた場合と同様であった。   On the other hand, although a sealing material having a low molecular weight siloxane elution amount of 100 ppm or less has been known for some time, this is a soda-lime glass usually used for architectural applications, and a photocatalytic film having a photocatalytic activity of less than 0.08 (Abs). When applied to a glass construction with glass, the effect of suppressing contamination is not seen for a long time, and after half a year to one year, the degree of contamination of the glass construction is the same as when using a normal sealing material. It was.

本発明におけるシーリング材の低分子シロキサン溶出量は、以下のように定義した。詳細な定量方法については、実施例[シーリング材から溶出する低分子シロキサン定量方法]に後述する。   The amount of low molecular siloxane eluted from the sealing material in the present invention was defined as follows. A detailed quantification method will be described later in Example [Method for quantification of low-molecular siloxane eluted from sealing material].

温度23℃±2℃、湿度50%RH±5%の環境下で7日間硬化させたシーリング材を、温度23±2度環境下で24時間±1時間、完全密閉容器中でアセトンに浸漬後、容器からシーリング材のみを取り出した。残ったアセトン中の低分子シロキサンをガスクロマトグラフィーにより定量し、
[アセトンに浸漬する前のシーラントの乾燥重量]中の[溶出した低分子シロキサン総重量(=溶出に用いた全アセトン液中の低分子シロキサン重量)]を、濃度(ppm)表記した。
A sealant cured for 7 days in an environment of temperature 23 ° C ± 2 ° C and humidity 50% RH ± 5% is immersed in acetone in a completely sealed container for 24 hours ± 1 hour in an environment of temperature 23 ± 2 ° C. Only the sealing material was taken out of the container. Quantify the low molecular weight siloxane in the remaining acetone by gas chromatography,
[Total weight of eluted low-molecular siloxane (= weight of low-molecular siloxane in all acetone solution used for elution)] in [Dry weight of sealant before dipping in acetone] was expressed in concentration (ppm).

本発明者らは、光触媒活性が、0.08(Abs)以上である光触媒膜と、低分子シロキサン溶出量が100ppm以下であるシーリング材、具体的には、低分子シロキサン含有量、あるいは溶出量を小さくしたシリコーンシーリング材を用いることにより、長期的な汚染を回避することができることを見出した。   The present inventors have provided a photocatalytic film having a photocatalytic activity of 0.08 (Abs) or more and a sealing material having a low molecular siloxane elution amount of 100 ppm or less, specifically, a low molecular siloxane content or an elution amount. It has been found that long-term contamination can be avoided by using a silicone sealing material having a reduced size.

ここで、シーラントの評価方法としては、基板ガラスにシーラント材を塗布して曝露する方法が挙げられる。塗布するシーラントは試験に応じて変更できるが、本発明の目的を達するためには、低分子シロキサンの揮散、溶出が少ないものが好都合である。低分子シロキサンの揮散、溶出が少ないものとしては、半導体関係でのクリーンルームにおける使用を想定したシリコーンシーリング材が知られている。例えば、ピュアシーラント、ピュアシーラントS(いずれも信越シリコーン社製)、SE5088、SE9184、SE9185(いずれも東レダウコーニング社製)、トスシール80−SC(GE東芝シリコーン社製)、TB3961B(横浜スリーボンド社製)、ペンギンクリーンシール2555(サンスター技研社製)などが挙げられるが、これらに限定されるものではない。前記のシーリング材は低分子シロキサンの揮散、および溶出量が少ないことを確認した。   Here, examples of the sealant evaluation method include a method of applying a sealant material to the substrate glass and exposing it. The sealant to be applied can be changed according to the test, but in order to achieve the object of the present invention, a low-molecular-weight siloxane is less volatilized and eluted. Silicone sealing materials that are expected to be used in cleanrooms related to semiconductors are known as those that cause low volatilization and elution of low molecular siloxanes. For example, pure sealant, pure sealant S (all manufactured by Shin-Etsu Silicone), SE5088, SE9184, SE9185 (all manufactured by Toray Dow Corning), Tosseal 80-SC (manufactured by GE Toshiba Silicone), TB3961B (manufactured by Yokohama Three Bond Co., Ltd.) ), Penguin Clean Seal 2555 (manufactured by Sunstar Giken Co., Ltd.) and the like, but are not limited thereto. It was confirmed that the sealing material had a low molecular weight siloxane volatilization and a small amount of elution.

本発明における光触媒膜は、耐摩耗性が実用レベルにあることも特徴である。これまでに公知の光触媒膜は、光触媒活性や親水性を向上させるために厚膜化や多孔構造形成をはかったものがあり、これらの膜は耐摩耗性が劣ることがあった。これに対して、本発明における膜は、テーバー摩耗試験後のΔヘーズが4%以下で、実用上の耐摩耗性を有している。   The photocatalyst film in the present invention is also characterized in that the wear resistance is at a practical level. Some known photocatalyst films have been made thicker or have a porous structure in order to improve photocatalytic activity and hydrophilicity, and these films may have poor wear resistance. On the other hand, the film in the present invention has a Δhaze after the Taber abrasion test of 4% or less and has practical wear resistance.

本発明における光触媒膜は、暗所親水持続性(暗所における親水持続性)が1週間以上、より好ましくは2週間以上、より好ましくは1ヶ月以上の間、水接触角は20°以下、好ましくは10°以下、より好ましくは5°以下を保つ膜である。   The photocatalytic film in the present invention has a hydrophilic property in the dark (hydrophilic property in the dark) of 1 week or more, more preferably 2 weeks or more, more preferably 1 month or more, and a water contact angle of 20 ° or less, preferably Is a film that maintains 10 ° or less, more preferably 5 ° or less.

本発明における暗所持続性は、以下のように定義した。詳細な評価方法については、実施例[暗所親水持続性]に記載した。   The darkness persistence in the present invention was defined as follows. The detailed evaluation method is described in Example [Hydrophilicity in dark place].

初期化済み光触媒膜付きガラス施工体を、屋内通常環境の暗所(紫外線照射強度0.01mW/cm以下、温度23℃±2℃、湿度50±5%RH)に静置し、一定期間経時後に水接触角を測定した。 The glass construction body with the photocatalyst film that has been initialized is left in a dark place in an ordinary indoor environment (ultraviolet irradiation intensity of 0.01 mW / cm 2 or less, temperature 23 ° C. ± 2 ° C., humidity 50 ± 5% RH) for a certain period of time. The water contact angle was measured after time.

屋外使用では、曇り、雨の天候時にシーリング材からの低分子シロキサン溶出が生じやすいと想定されることから、光の当たらない暗所での親水性が高いことにより、シロキサン溶出時に膜表面親水性が高く疎水性汚染物質を近づけにくくなり、汚染防止性を高める。   When used outdoors, it is assumed that low-molecular-weight siloxanes are likely to elute from the sealing material in cloudy and rainy weather. High hydrophobicity makes it difficult to approach hydrophobic pollutants and improves anti-contamination properties.

本発明における光触媒膜は、平均表面粗さRa値が、1nm以上20nm以下、より好ましくは、2nm以上10nm以下である。Raが1nm未満では、光触媒膜の表面積が小さくなりやすく、十分な光触媒活性を発現できなかった。また、Raが20nmを超えると表面粗さが大きすぎて、膜の透明性や耐摩耗性が確保できないといった問題がある。   The photocatalytic film of the present invention has an average surface roughness Ra value of 1 nm to 20 nm, more preferably 2 nm to 10 nm. When Ra was less than 1 nm, the surface area of the photocatalyst film was likely to be small, and sufficient photocatalytic activity could not be expressed. Further, when Ra exceeds 20 nm, the surface roughness is too large, and there is a problem that the transparency and wear resistance of the film cannot be ensured.

本発明における光触媒膜に含まれる全金属組成中のSi比率は、Si/膜中全金属原子のmol比率で0.80以下である。ここで金属とは、遷移金属、典型金属、およびSi、P、Ge、Snなどの半金属も含む非金属以外のすべての元素を意味する。Si/全金属が0.80(mol比)を超えると、Si比率が高すぎて汚染が進みやすい膜となる。この原因は明らかではないが、恐らくSiを多く含む膜は、低分子シロキサンとの親和性が高い膜となるためと考えられる。また、ここでの計算方法は、膜材料がSiO,TiOである場合を例に取ると、SiO,TiO中のSiのmol数と同じである。 In the present invention, the Si ratio in the total metal composition contained in the photocatalytic film is 0.80 or less in terms of the molar ratio of Si / all metal atoms in the film. Here, the metal means all elements other than transition metals, typical metals, and non-metals including metalloids such as Si, P, Ge, and Sn. When Si / all metals exceeds 0.80 (mol ratio), the Si ratio is too high, and the film is easily contaminated. The cause of this is not clear, but it is probably because a film containing a large amount of Si becomes a film having a high affinity with low molecular siloxane. The calculation method here is the same as the number of moles of Si in SiO 2 and TiO 2 when the film material is SiO 2 and TiO 2 as an example.

本発明における光触媒膜付きガラスとこれに用いるシーリング材により構成される光触媒膜付きガラス施工体は、外壁用途に用いられる構築構造体として好適である。ガラス施工体の形状は平板に限らず、全面に、または、一部に曲率を有していてもよい。さらに、ガラス施工体が透明ガラス施工体である場合、光触媒膜が透明であるため、視認性が悪化しない点で優れている。視認性の点から、光触媒膜を有する光触媒膜付きガラス施工体の可視光透過率(JIS R3106(1998年))が70%以上であることが好ましい。   The glass construction body with a photocatalyst film comprised of the glass with a photocatalyst film and a sealing material used therefor in the present invention is suitable as a construction structure used for an outer wall application. The shape of the glass construction body is not limited to a flat plate, and may have a curvature on the entire surface or a part thereof. Furthermore, when a glass construction body is a transparent glass construction body, since the photocatalyst film | membrane is transparent, it is excellent at the point which visibility does not deteriorate. From the viewpoint of visibility, it is preferable that the visible light transmittance (JIS R3106 (1998)) of the glass construction body with a photocatalyst film having a photocatalyst film is 70% or more.

本発明における光触媒膜は、ゾルゲル法等の湿式法、CVD法等の乾式法等で形成でき、製造方法は特に限定されない。湿式法で光触媒膜を形成する場合、光触媒微粒子および媒体を含む光触媒膜形成用組成物をガラス施工体に塗布することで光触媒膜が形成できるため、表面粗さRaを任意にコントロールしやすく好ましい。   The photocatalytic film in the present invention can be formed by a wet method such as a sol-gel method, a dry method such as a CVD method, and the production method is not particularly limited. When the photocatalyst film is formed by a wet method, the photocatalyst film can be formed by applying a photocatalyst film-forming composition containing photocatalyst fine particles and a medium to the glass construction body. Therefore, the surface roughness Ra is preferably easily controlled.

光触媒の微粒子として酸化チタン微粒子を用いることで光触媒膜を低温処理形成する場合においても、酸化チタンからなる膜を形成できる。酸化チタン膜は、酸化チタン以外の他の金属や金属酸化物との複合膜としてもよい。特にシリカ(SiO)との複合膜とすることで、高い親水性を長期間維持でき、光触媒活性も発現できる点で好ましい。ただし、前述したように、シリカ(SiO)比率が高すぎると、汚染物質である低分子シロキサンとの親和性が高くなるためか、長期的には汚染されやすくなる。 Even when the photocatalyst film is formed at low temperature by using titanium oxide fine particles as the photocatalyst fine particles, a film made of titanium oxide can be formed. The titanium oxide film may be a composite film with a metal other than titanium oxide or a metal oxide. In particular, a composite film with silica (SiO 2 ) is preferable in that high hydrophilicity can be maintained for a long time and photocatalytic activity can be exhibited. However, as described above, if the silica (SiO 2 ) ratio is too high, the affinity with the low-molecular siloxane that is a pollutant is increased, so that it is easily contaminated in the long term.

本発明の光触媒膜を構成する、金属や金属酸化物は、完全な金属や金属酸化物である必要はなく、前駆体やアモルファスを含んでいてもよい。また、膜を形成する原料由来の有機基や酸化していない部分が、残っていてもよい。たとえば金属酸化物がシリカ(SiO)である場合は、シラノール基などが部分的に残っていてもよく、脱水縮合反応進行によりシリカ(SiO)が形成される。 The metal or metal oxide constituting the photocatalytic film of the present invention does not need to be a complete metal or metal oxide, and may contain a precursor or amorphous. Moreover, the organic group derived from the raw material which forms a film | membrane, and the part which is not oxidized may remain | survive. For example, when the metal oxide is silica (SiO 2 ), silanol groups or the like may partially remain, and silica (SiO 2 ) is formed as the dehydration condensation reaction proceeds.

本発明における光触媒膜において、光触媒微粒子が含まれる場合は、光触媒微粒子中の金属比率が、全金属組成物中にmol比率で0.1〜0.9、より好ましくは0.3〜0.7含まれていることが好ましい。   In the photocatalyst film in the present invention, when the photocatalyst fine particles are contained, the metal ratio in the photocatalyst fine particles is 0.1 to 0.9, more preferably 0.3 to 0.7 in terms of mole ratio in the total metal composition. It is preferably included.

本発明における光触媒微粒子を光触媒膜形成用組成物中で用いる場合、その凝集粒子の平均粒子径(以下、単に粒子径という。)は、5〜100nmであることが好ましい。組成物中での平均粒子径は、光散乱を利用して液中の微粒子の凝集粒子径をマイクロトラックUPA粒度分布計(日機装社製)を用いて測定することができる。   When the photocatalyst fine particles in the present invention are used in the composition for forming a photocatalyst film, the average particle size (hereinafter simply referred to as particle size) of the aggregated particles is preferably 5 to 100 nm. The average particle size in the composition can be measured by using a Microtrac UPA particle size distribution meter (manufactured by Nikkiso Co., Ltd.), using light scattering to measure the aggregate particle size of fine particles in the liquid.

粒子径があまりに小さいと、形成された光触媒膜の中に光触媒の微粒子が埋没してしまうため、光触媒の種々の効果が発現しにくい。また、粒子径があまりに大きいと、形成される光触媒膜の機械的強度が不足し、また、透明性が確保できないおそれがある。   If the particle diameter is too small, the photocatalyst fine particles are buried in the formed photocatalyst film, so that various effects of the photocatalyst are hardly exhibited. On the other hand, if the particle size is too large, the formed photocatalytic film has insufficient mechanical strength, and transparency may not be ensured.

本発明における光触媒膜付きガラス施工体を作製する前に、ガラス施工体の前処理をすることが好ましい。前記前処理は、洗浄、光照射処理、プラズマ処理、コロナ処理、UV処理、オゾン処理等の放電処理、酸やアルカリ等の化学処理、研磨剤を用いた物理的処理等であることが、効果的に汚れを取ることができる点で好ましい。   Before producing the glass construction body with a photocatalyst film in the present invention, it is preferable to pre-treat the glass construction body. It is advantageous that the pretreatment is cleaning, light irradiation treatment, plasma treatment, corona treatment, UV treatment, discharge treatment such as ozone treatment, chemical treatment such as acid or alkali, physical treatment using an abrasive, etc. It is preferable in that it can remove dirt.

本発明における光触媒膜には、光触媒性以外の機能を有する物質からなる組成が含まれていてもよい。例えば、着色用染料、顔料、紫外線吸収剤、酸化防止剤、光触媒微粒子以外の酸化物微粒子(五酸化リン、酸化マグネシウム等。平均粒子径は200nm以下が好ましい。)等が好ましく挙げられる。   The photocatalytic film in the present invention may contain a composition comprising a substance having a function other than the photocatalytic property. Preferred examples include coloring dyes, pigments, ultraviolet absorbers, antioxidants, oxide fine particles other than photocatalyst fine particles (phosphorus pentoxide, magnesium oxide, etc., preferably having an average particle size of 200 nm or less).

本発明における光触媒膜は、例えば湿式法を用いて、光触媒膜形成用組成物をガラス施工体の表面に塗布し光触媒膜付きガラス施工体を形成できる。湿式法としては、例えば、スプレーコート法、はけ塗り、手塗り、回転塗布、浸漬塗布、各種印刷方式による塗布、カーテンフロー、ダイコート、フローコート等の塗布方法が好ましく挙げられる。   The photocatalyst film in this invention can apply | coat the composition for photocatalyst film formation to the surface of a glass construction body, for example using a wet method, and can form a glass construction body with a photocatalyst film. Preferable examples of the wet method include spray coating, brush coating, hand coating, spin coating, dip coating, coating by various printing methods, curtain flow, die coating, flow coating, and the like.

特に、スプレーコート法により成膜された光触媒膜付きガラス施工体は、製造の経済性や簡便性、塗膜物性の安定性において好適である。   In particular, a glass construction body with a photocatalyst film formed by a spray coating method is suitable in terms of economics and simplicity of production and stability of physical properties of a coating film.

本発明における光触媒膜は、光触媒膜形成用組成物を塗布した後、媒体の除去や光触媒膜の硬度を高めることを目的として、後処理を施してもよい。後処理としては、室温における乾燥や加熱、紫外線や電子線等の電磁波の照射等が挙げられる。加熱はガラス施工体の耐熱性や作業性、量産性を考慮して、50〜700℃、特に80〜300℃で1〜60分間大気中で行うことが好ましい。特に、後処理として紫外線や電子線等の電磁波の照射を行うことが、量産工程が短くなるため好ましい。   The photocatalyst film in the present invention may be subjected to a post-treatment for the purpose of removing the medium or increasing the hardness of the photocatalyst film after applying the photocatalyst film forming composition. Examples of the post-treatment include drying and heating at room temperature, irradiation with electromagnetic waves such as ultraviolet rays and electron beams. In consideration of the heat resistance, workability, and mass productivity of the glass construction body, heating is preferably performed in the air at 50 to 700 ° C., particularly 80 to 300 ° C. for 1 to 60 minutes. In particular, it is preferable to perform irradiation with electromagnetic waves such as ultraviolet rays and electron beams as post-processing because the mass production process is shortened.

本発明においては、光触媒膜の厚さは、経済性も考慮して、1〜300nmが好ましく、特に5〜100nmが好ましい。1nm未満では所望の光触媒性能が発揮されないおそれがあり、300nm超では光触媒膜にクラックが入ったり、干渉縞が生じたり、傷が発生した場合にその傷が目立ったりして好ましくない。光触媒膜形成用組成物の濃度、溶剤の種類、塗布条件、後処理条件等を調節することにより、得られる光触媒膜の厚さを制御できる。   In the present invention, the thickness of the photocatalyst film is preferably 1 to 300 nm, and particularly preferably 5 to 100 nm in consideration of economy. If the thickness is less than 1 nm, the desired photocatalytic performance may not be exhibited. If the thickness exceeds 300 nm, the photocatalyst film may be cracked, interference fringes may be formed, or scratches may be noticeable. The thickness of the resulting photocatalyst film can be controlled by adjusting the concentration of the composition for forming the photocatalyst film, the type of solvent, the coating conditions, the post-treatment conditions, and the like.

なお、本発明における光触媒膜の膜構成としては光触媒膜単膜であってもよいし、光触媒膜、あるいは光触媒以外の膜を含んでなる積層膜であってもよい。例えば、ガラス基材と光触媒膜との間にシリカ膜等のアルカリバリア膜を設けたり、または光触媒膜上にシリカ膜等の膜を形成してもよい。   The film structure of the photocatalyst film in the present invention may be a single photocatalyst film or a laminated film including a photocatalyst film or a film other than the photocatalyst. For example, an alkali barrier film such as a silica film may be provided between the glass substrate and the photocatalyst film, or a film such as a silica film may be formed on the photocatalyst film.

本発明の光触媒膜は、Ti以外に、Al、Si、Zr、およびSnからなる群から選ばれる1種以上の金属や、金属の酸化物を含んでもよい。これらを光触媒膜中に含むことにより、膜の等電点が変化し、帯電している汚染物質の吸着性を制御することができるため好ましい。   In addition to Ti, the photocatalytic film of the present invention may contain one or more metals selected from the group consisting of Al, Si, Zr, and Sn, and metal oxides. The inclusion of these in the photocatalyst film is preferable because the isoelectric point of the film changes and the adsorptivity of charged contaminants can be controlled.

本発明における光触媒膜付きガラス施工体に用いられる光触媒膜中には、吸水性(水分をはじきにくくする性質)向上の点で親水性樹脂や吸水性樹脂等の樹脂を含有してもよい。前記樹脂としては、ポリアクリル酸樹脂、ポリビニルアルコール樹脂、ポリブチラール樹脂、ポリウレタン樹脂、セルロースおよびその誘導体等が例示できる。   In the photocatalyst film used for the glass construction body with a photocatalyst film in the present invention, a resin such as a hydrophilic resin or a water absorbent resin may be contained in terms of improving water absorption (propensity to make moisture difficult to repel). Examples of the resin include polyacrylic acid resin, polyvinyl alcohol resin, polybutyral resin, polyurethane resin, cellulose and derivatives thereof.

本発明の光触媒膜付きガラス施工体は、例えば外壁、ガラス窓、内壁、天井等において、窓枠、躯体、その他の構築構造体に光触媒膜付きガラスをシリコーン系シーリング材で取り付ける各種の用途に展開できる。   The glass construction body with a photocatalyst film of the present invention is developed for various applications in which a glass with a photocatalyst film is attached to a window frame, a casing, or other construction structure with a silicone-based sealing material, for example, on an outer wall, a glass window, an inner wall, a ceiling, it can.

本発明を実施例(基材:a,b,c,e、かつシーリング材:B,E,G〜J使用)、比較例(基材:d,f、またはシーリング材:A,C,D,F使用)により具体的に説明する。光触媒膜付きガラス施工体(以下、単に膜付き基材という)は、以下の方法を用いて評価した。   Examples (base materials: a, b, c, e and sealing materials: B, E, G to J used), comparative examples (base materials: d, f, or sealing materials: A, C, D) , F use). The glass construction body with a photocatalyst film (hereinafter, simply referred to as a film-coated substrate) was evaluated using the following method.

[外観]
膜付き基材のヘーズ値を直読ヘーズコンピュータ(スガ試験機社製)で測定し、ヘーズ値が2.0%以下のものを○、2.0%を超えるものを×とした。
[appearance]
The haze value of the film-coated substrate was measured with a direct reading haze computer (manufactured by Suga Test Instruments Co., Ltd.).

[厚さ]
膜付き基材を作製後、カッターで膜を削り取り、光触媒膜の厚さを触針法により測定した。
[thickness]
After producing the substrate with a film, the film was scraped with a cutter, and the thickness of the photocatalyst film was measured by a stylus method.

[初期親水性]
光触媒膜の表面にピーク波長352nmのブラックライトブルーランプ(松下電器社製、FL20S・BL−B 20形)にて紫外線を紫外線照射強度2.0mW/cm(紫外線照度計:英弘精機社製、UV MONITOR MS−211−I、測定波長範囲:UV-A(315〜400nm)、測定精度:10%以内)で、24時間照射する。この作業を初期化という。初期化した後、膜表面の水接触角を接触角計(協和界面科学社製:CA−X150)にて測定し、この測定値を初期親水性という。測定は異なる5ヶ所の部位で行い、平均値を採用した。接触角は、20°以下、より好ましくは10°以下であることが親水性を発揮できる点から好ましい。
[Initial hydrophilicity]
UV irradiation intensity of 2.0 mW / cm 2 (UV illuminance meter: Eihiro Seiki Co., Ltd.) with a black light blue lamp having a peak wavelength of 352 nm (FL20S / BL-B 20 type, manufactured by Matsushita Electric) on the surface of the photocatalyst film Irradiate with UV MONITOR MS-211-I, measurement wavelength range: UV-A (315-400 nm, measurement accuracy: within 10%) for 24 hours. This operation is called initialization. After initialization, the water contact angle on the membrane surface is measured with a contact angle meter (Kyowa Interface Science Co., Ltd .: CA-X150), and this measured value is referred to as initial hydrophilicity. The measurement was performed at five different sites, and the average value was adopted. The contact angle is preferably 20 ° or less, more preferably 10 ° or less, from the viewpoint that hydrophilicity can be exhibited.

[暗所親水持続性]
初期親水性を測定した膜付き基材を光のあたらない屋内暗所(紫外線照射強度0.01mW/cm以下、温度23℃±2℃、湿度50±5%RH)に1週間保持した後、水接触角を接触角計(協和界面科学社製:CA−X150)にて測定した。測定は異なる5ヶ所の部位で行い、平均値を採用した。接触角は、20°以下、より好ましくは10°以下であることが親水性を長期間発揮できる点から好ましい。
[Hydrophilic durability in the dark]
After holding the film-coated substrate whose initial hydrophilicity was measured in an indoor dark place where no light was irradiated (ultraviolet irradiation intensity of 0.01 mW / cm 2 or less, temperature 23 ° C. ± 2 ° C., humidity 50 ± 5% RH) for one week. The water contact angle was measured with a contact angle meter (Kyowa Interface Science Co., Ltd .: CA-X150). The measurement was performed at five different sites, and the average value was adopted. The contact angle is preferably 20 ° or less, more preferably 10 ° or less from the viewpoint that hydrophilicity can be exhibited for a long period of time.

[光触媒活性]
メチレンブルー分解性の評価を以下の方法で実施した。
作業1.10cm角の光触媒膜付きガラス施工体を1枚用意し、[初期親水性]に示した方法で初期化した。
作業2.φ40mmの筒型試験セル(丸本ストルアス社製、マルチフォーム)にシリコングリース(ダウコーニング社製、HIGH VACUUM SILICONE GREASE FS)を塗布し、サンプル膜面に押し付けて固定した後、セル内にメチレンブルー水溶液(吸着用:濃度20mmol/m)34ミリミットルを注入し、試験セルにカバーガラスでフタをして暗所に12時間静置し、光触媒膜に十分にメチレンブルーを吸着させた。
作業3.上記作業2.の水溶液を捨て、セル内に新たにメチレンブルー水溶液(試験用:濃度10mmol/m)35ミリミットルを注入した。
作業4.初期状態のメチレンブルー試験液をピペットで充分に撹拌してから正確に1.0ミリミットルを分光光度計測定用セルに採取した(初期液)後、作業2.と同様にカバーガラス(ソーダライムガラス:厚さ3.0mm)でフタをした。
作業5.カバーガラスの上から、ブラックライトブルーランプで紫外線を光触媒膜付きガラス施工体の裏面での測定値で紫外線照射強度1.7mW/cmで3時間照射した。
作業6.3時間後のメチレンブルー試験液をピペットで充分に撹拌してから正確に1.0ミリミットルを分光光度計測定用セルに採取した(分解液)。
作業7.作業4.および作業6.で採取したメチレンブルー溶液1.0ミリミットルの波長664nmでの吸光度(Abs)を、分光光度計(日立社製、U−4100)にて測定した。
作業8.(分解液)の吸光度から(初期液)の吸光度を引いた値(Abs)を光触媒活性とした。
[Photocatalytic activity]
Evaluation of methylene blue degradability was carried out by the following method.
Operation One glass construction body with a photocatalyst film of 1.10 cm square was prepared and initialized by the method shown in [Initial hydrophilicity].
Work 2. After applying silicon grease (Dow Corning, HIGH VACUUM SILICON GREESE FS) to a cylindrical test cell (manufactured by Marumoto Struers, Multifoam) with a diameter of 40 mm, and pressing the sample membrane surface to fix it, a methylene blue aqueous solution is placed in the cell. (For adsorption: concentration 20 mmol / m 3 ) 34 milimit was injected, the test cell was covered with a cover glass and allowed to stand in a dark place for 12 hours to sufficiently adsorb methylene blue on the photocatalyst film.
Work 3. The above work 2. The aqueous solution was discarded, and 35 methylene blue (for test: concentration 10 mmol / m 3 ) 35 milimit was newly injected into the cell.
Work 4. After thoroughly stirring the methylene blue test solution in the initial state with a pipette, 1.0 millilimit was accurately collected in the spectrophotometer measurement cell (initial solution), and then operation 2. The lid was covered with a cover glass (soda lime glass: thickness 3.0 mm) in the same manner as described above.
Work 5. From the top of the cover glass, ultraviolet rays were irradiated with a black light blue lamp at a UV irradiation intensity of 1.7 mW / cm 2 for 3 hours as measured on the back side of the glass construction body with a photocatalyst film.
The methylene blue test solution after 6.3 hours of work was sufficiently agitated with a pipette, and then exactly 1.0 millilimit was collected in a spectrophotometer measurement cell (decomposition solution).
Work 7. Work 4. And work 6. The absorbance (Abs) at a wavelength of 664 nm of the 1.0 methylene blue solution collected in step 1 was measured with a spectrophotometer (H-4100, manufactured by Hitachi, Ltd.).
Work 8 A value (Abs) obtained by subtracting the absorbance of (initial solution) from the absorbance of (decomposed solution) was defined as photocatalytic activity.

[耐摩耗性]
膜付き基材にテーバー摩耗試験(JIS R3221(2002)6.4 摩耗回数:100回、荷重:4.9N)を準用して行い、摩耗試験前後におけるヘーズ値を測定(測定機器名:スガ試験機社製:直読ヘーズコンピュータ)し、その変化量を求めた。ヘーズ変化が4%以下であることが実用上好ましい。
[Abrasion resistance]
A taper abrasion test (JIS R3221 (2002) 6.4 wear frequency: 100 times, load: 4.9 N) is applied to the film-coated substrate, and the haze value before and after the abrasion test is measured (measuring device name: Suga test) (Manufactured by Kikai Co., Ltd .: Direct reading haze computer), and the amount of change was determined. A haze change of 4% or less is practically preferable.

[膜表面粗さRa]
膜付き基材の表面粗さを、AFM(SIIナノテクノロジー社製、SPA400/SPI4000)により測定した。
[Membrane surface roughness Ra]
The surface roughness of the substrate with a film was measured by AFM (SII Nanotechnology, SPA400 / SPI4000).

[Si/全金属]
膜付き基材の膜中のSi/膜中全金属(mol比)はコート液組成から計算した。なお、成膜方法が湿式コートの場合には、膜中のSi/全金属原子のmol比率の値とコート液中でのSi/全金属原子のmol比率の値は、一致することを確認済みである。
[Si / all metals]
Si in the film of the substrate with film / total metal in film (mol ratio) was calculated from the coating solution composition. In addition, when the film-forming method is a wet coating, it has been confirmed that the value of the Si / all metal atom mol ratio in the film matches the value of the Si / all metal atom mol ratio in the coating solution. It is.

[微粒子中Ti/全金属]
膜付き基材のTiO微粒子中Ti/膜中全金属(mol比)はコート液組成から計算した。なお、成膜方法が湿式コートの場合には、膜中のTiO微粒子中Ti/全金属原子のmol比率の値とコート液中でのTiO微粒子中Ti/全金属原子のmol比率の値は、一致することを確認済みである。
[Ti in fine particles / all metals]
Ti in the TiO 2 fine particles of the substrate with film / total metal in film (mol ratio) was calculated from the coating solution composition. When the film formation method is wet coating, the value of the molar ratio of Ti / total metal atoms in the TiO 2 fine particles in the film and the value of the molar ratio of Ti / total metal atoms in the TiO 2 fine particles in the coating solution. Has been confirmed to match.

(前処理済ガラス基材<1>の準備)
ソーダライムガラス基材(100mm×100mm、厚さ3.5mm)を用意し、その膜形成部分の表面を酸化セリウムで研磨し、蒸留水で洗浄した後に乾燥させ、前処理済ガラス基材<1>とした。
(Preparation of pretreated glass substrate <1>)
A soda-lime glass substrate (100 mm × 100 mm, thickness 3.5 mm) is prepared, and the surface of the film forming portion is polished with cerium oxide, washed with distilled water, dried, and pretreated glass substrate <1. >

(前処理済ガラス基材<2>の準備)
無アルカリガラス基材(100mm×100mm、厚さ1.1mm、コーニング社製♯1737)を用意し、その膜形成部分の表面を酸化セリウムで研磨し、蒸留水で洗浄した後に乾燥させ、前処理済ガラス基材<2>とした。
(Preparation of pretreated glass substrate <2>)
Prepare an alkali-free glass substrate (100 mm × 100 mm, thickness 1.1 mm, # 1737 manufactured by Corning), polish the surface of the film forming part with cerium oxide, wash it with distilled water, dry it, and pre-process A finished glass substrate <2> was obtained.

(光触媒膜付きガラス基材aの形成)
(シリカゾル(A)の調製)
水37.5gにケイ酸ソーダ4号(SiO:23.35質量%、NaO:6.29質量%。SiO/NaOのモル比:3.83)12.5gを添加し、さらに強酸性陽イオン交換樹脂「SK1BH」(商品名、三菱化学社製)30gを添加して、10分間室温で撹拌した後、イオン交換樹脂を濾別し、脱塩ケイ酸ソーダ液(ケイ酸の100質量部に対してナトリウムイオンは0.12質量部)を調製した。この溶液1.0gを重量秤量済みのアルミナ性るつぼに取り、200℃の電気炉で1時間焼成し、再度秤量して、固形分濃度を測定したところ、5.8重量%であった。さらに、この脱塩ケイ酸液に蒸留水を添加しシリカゾル(A)(SiO濃度:5.0質量%)を得た。
(Formation of glass substrate a with photocatalyst film)
(Preparation of silica sol (A))
12.5 g of sodium silicate No. 4 (SiO 2 : 23.35 mass%, Na 2 O: 6.29 mass%. SiO 2 / Na 2 O molar ratio: 3.83) was added to 37.5 g of water. Furthermore, after adding 30 g of strongly acidic cation exchange resin “SK1BH” (trade name, manufactured by Mitsubishi Chemical Corporation) and stirring for 10 minutes at room temperature, the ion exchange resin was separated by filtration, and a desalted sodium silicate solution (silica The sodium ion was 0.12 parts by mass with respect to 100 parts by mass of the acid). 1.0 g of this solution was placed in a weight-weighed alumina crucible, fired in an electric furnace at 200 ° C. for 1 hour, weighed again, and the solid content concentration was measured to find 5.8% by weight. Further, distilled water was added to the desalted silicic acid solution to obtain silica sol (A) (SiO 2 concentration: 5.0 mass%).

(組成物1の調製)
メタノール65.0gに、アナターゼ型酸化チタン微粒子(平均粒子径:56nm)の水分散液「STS−01」(商品名、石原産業社製、固形分濃度30質量%、以下、チタニアゾル(A)と記す。)5.0gおよびシリカゾル(A)30.0gを添加し、さらに界面活性剤「L−77」(商品名、日本ユニカー社製)を全液量に対して100ppmとなるように添加して、組成物1(固形分濃度:3.0質量%)を得た。
(Preparation of Composition 1)
An aqueous solution “STS-01” (trade name, manufactured by Ishihara Sangyo Co., Ltd., solid content concentration 30 mass%, hereinafter, titania sol (A) and anatase-type titanium oxide fine particles (average particle size: 56 nm) in 65.0 g of methanol 5.0 g and 30.0 g of silica sol (A) are added, and a surfactant “L-77” (trade name, manufactured by Nihon Unicar Co., Ltd.) is added to a total liquid amount of 100 ppm. Thus, composition 1 (solid content concentration: 3.0 mass%) was obtained.

組成物1の2ミリリットルを前処理済ガラス基材<1>の表面に滴下し、スピンコート法により塗布した後、大気雰囲気中100℃にて10分間焼成し、厚さ80nmの光触媒膜付きガラス基材aを得た。この膜の組成、外観、膜厚、初期親水性、暗所親水持続性、光触媒活性、耐摩耗性、膜表面の平均面粗さRa、膜中Si比率、および膜中TiO微粒子中Ti比率を表1に示す。 2 ml of the composition 1 is dropped on the surface of the pretreated glass substrate <1>, applied by a spin coating method, baked at 100 ° C. for 10 minutes in an air atmosphere, and glass with a photocatalyst film having a thickness of 80 nm. A substrate a was obtained. Composition, appearance, film thickness, initial hydrophilicity, dark hydrophilicity, photocatalytic activity, abrasion resistance, average surface roughness Ra of film surface, Si ratio in film, and Ti ratio in TiO 2 fine particles in film Is shown in Table 1.

(光触媒膜付きガラス基材bの形成)
(組成物2の調製)
メタノール89.7gに、アナターゼ型酸化チタン微粒子(平均粒子径:20nm)の水分散液「A−6」(商品名、多木化学社製、TiO6.0質量%、以下、チタニアゾル(B)と記す。)6.7gおよびTC−100(商品名、松本製薬工業社製チタンアセチルアセトネート、固形分濃度16.5質量%、以下、チタニア液(C)と記す。)3.6gを添加し、さらにノニオン性界面活性剤「アデカトールSO−145」(商品名、旭電化工業社製)を液量に対して100ppmとなるように添加して、組成物2(固形分濃度:1.0質量%)を得た。
(Formation of glass substrate b with photocatalyst film)
(Preparation of composition 2)
In 89.7 g of methanol, an aqueous dispersion “A-6” of anatase-type titanium oxide fine particles (average particle size: 20 nm) (trade name, manufactured by Taki Chemical Co., Ltd., 6.0% by mass of TiO 2 , hereinafter, titania sol (B 6.7 g and TC-100 (trade name, titanium acetylacetonate manufactured by Matsumoto Pharmaceutical Co., Ltd., solid content concentration 16.5% by mass, hereinafter referred to as titania solution (C)) 3.6 g. Further, a nonionic surfactant “Adecatol SO-145” (trade name, manufactured by Asahi Denka Kogyo Co., Ltd.) was added so as to be 100 ppm with respect to the liquid volume, and composition 2 (solid content concentration: 1. 0% by mass) was obtained.

組成物2の2ミリリットルを前処理済ガラス基材<2>の表面に滴下し、スピンコート法により塗布した後、大気雰囲気中600℃にて10分間焼成し、厚さ40nmの光触媒膜付きガラス基材bを得た。この膜の組成、外観、膜厚、初期親水性、暗所親水持続性、光触媒活性、耐摩耗性、膜表面の平均面粗さRa、膜中Si比率、および膜中TiO微粒子中Ti比率を表1に示す。 2 ml of composition 2 is dropped on the surface of the pretreated glass substrate <2>, applied by spin coating, then baked at 600 ° C. for 10 minutes in an air atmosphere, and a glass with a photocatalyst film having a thickness of 40 nm. A substrate b was obtained. Composition, appearance, film thickness, initial hydrophilicity, dark hydrophilicity, photocatalytic activity, abrasion resistance, average surface roughness Ra of film surface, Si ratio in film, and Ti ratio in TiO 2 fine particles in film Is shown in Table 1.

(光触媒膜付きガラス基材cの形成)
(組成物3の調製)
メタノール55.0gに、チタニアゾル(A)3.0gおよびシリカゾル(A)42.0gを添加し、さらに界面活性剤「L−77」(商品名、日本ユニカー社製)を全液量に対して100ppmとなるように添加して、組成物3(固形分濃度:3.0質量%)を得た。
(Formation of glass substrate c with a photocatalytic film)
(Preparation of composition 3)
To 55.0 g of methanol, 3.0 g of titania sol (A) and 42.0 g of silica sol (A) were added, and the surfactant “L-77” (trade name, manufactured by Nihon Unicar) was added to the total liquid amount. It added so that it might be set to 100 ppm, and the composition 3 (solid content concentration: 3.0 mass%) was obtained.

組成物3の2ミリリットルを前処理済ガラス基材<1>の表面に滴下し、スピンコート法により塗布した後、大気雰囲気中100℃にて10分間焼成し、厚さ80nmの光触媒膜付きガラス基材cを得た。この膜の組成、外観、膜厚、初期親水性、暗所親水持続性、光触媒活性、耐摩耗性、膜表面の平均面粗さRa、膜中Si比率、および膜中TiO微粒子中Ti比率を表1に示す。 2 ml of the composition 3 is dropped on the surface of the pretreated glass substrate <1>, applied by a spin coating method, baked at 100 ° C. for 10 minutes in an air atmosphere, and glass with a photocatalyst film having a thickness of 80 nm. A substrate c was obtained. Composition, appearance, film thickness, initial hydrophilicity, dark hydrophilicity, photocatalytic activity, abrasion resistance, average surface roughness Ra of film surface, Si ratio in film, and Ti ratio in TiO 2 fine particles in film Is shown in Table 1.

(光触媒膜付きガラス基材dの形成)
市販されている光触媒防汚ガラス、サンクリーン(商品名、PPG社製)を光触媒膜付きガラス基材dとした。この膜の組成、外観、膜厚、初期親水性、暗所親水持続性、光触媒活性、耐摩耗性、膜表面の平均面粗さRa、膜中Si比率、および膜中TiO微粒子中Ti比率を表1に示す。
(Formation of glass substrate d with photocatalyst film)
A commercially available photocatalyst antifouling glass, Sunclean (trade name, manufactured by PPG) was used as a glass substrate d with a photocatalyst film. Composition, appearance, film thickness, initial hydrophilicity, dark hydrophilicity, photocatalytic activity, abrasion resistance, average surface roughness Ra of film surface, Si ratio in film, and Ti ratio in TiO 2 fine particles in film Is shown in Table 1.

(光触媒膜付きガラス基材eの形成)
(組成物5の調製)
メタノール89.7gに、チタニアゾル(B)6.7gおよびチタニア液(C)3.6gを添加して、組成物5(固形分濃度:1.0質量%)を得た。
組成物5を、温度600℃に加熱した前処理済ガラス基材<2>上に大気中でスプレー塗布(スプレー装置一式:エムオースプレーイング社製、SG2500)し、厚さ30nmの光触媒膜付きガラス基材eを得た。この膜の組成、外観、膜厚、初期親水性、暗所親水持続性、光触媒活性、耐摩耗性、膜表面の平均面粗さRa、膜中Si比率、および膜中TiO微粒子中Ti比率を表1に示す。
(Formation of glass substrate e with photocatalyst film)
(Preparation of composition 5)
6.7 g of titania sol (B) and 3.6 g of titania liquid (C) were added to 89.7 g of methanol to obtain composition 5 (solid content concentration: 1.0 mass%).
The composition 5 is spray-coated in the atmosphere on a pretreated glass substrate <2> heated to a temperature of 600 ° C. (a set of spray devices: SG2500, manufactured by EM Spraying Co., Ltd.), and a glass with a photocatalyst film having a thickness of 30 nm A substrate e was obtained. Composition, appearance, film thickness, initial hydrophilicity, dark hydrophilicity, photocatalytic activity, abrasion resistance, average surface roughness Ra of film surface, Si ratio in film, and Ti ratio in TiO 2 fine particles in film Is shown in Table 1.

(光触媒膜付きガラス基材fの形成)
(組成物6の調製)
メタノール50.0gに、チタニアゾル(A)2.0gおよびシリカゾル(A)48.0gを添加し、さらに界面活性剤「L−77」(商品名、日本ユニカー社製)を全液量に対して100ppmとなるように添加して、組成物6(固形分濃度:3.0質量%)を得た。
(Formation of glass substrate f with photocatalyst film)
(Preparation of composition 6)
To 50.0 g of methanol, 2.0 g of titania sol (A) and 48.0 g of silica sol (A) were added, and surfactant “L-77” (trade name, manufactured by Nihon Unicar) was added to the total liquid amount. It added so that it might be set to 100 ppm, and the composition 6 (solid content concentration: 3.0 mass%) was obtained.

組成物6の2ミリリットルを前処理済ガラス基材<1>の表面に滴下し、スピンコート法により塗布した後、大気雰囲気中100℃にて10分間焼成し、厚さ80nmの光触媒膜付きガラス基材fを得た。この膜の組成、外観、膜厚、初期親水性、暗所親水持続性、光触媒活性、耐摩耗性、膜表面の平均面粗さRa、膜中Si比率、および膜中TiO微粒子中Ti比率を表1に示す。 2 ml of the composition 6 is dropped on the surface of the pretreated glass substrate <1>, applied by a spin coating method, then baked at 100 ° C. for 10 minutes in an air atmosphere, and a glass with a photocatalyst film having a thickness of 80 nm. A substrate f was obtained. Composition, appearance, film thickness, initial hydrophilicity, dark hydrophilicity, photocatalytic activity, abrasion resistance, average surface roughness Ra of film surface, Si ratio in film, and Ti ratio in TiO 2 fine particles in film Is shown in Table 1.

[シーリング材から溶出する低分子シロキサン定量方法]
光触媒膜に用いるシーリング材から溶出する低分子シロキサンの定量を、以下の方法で実施し、結果を表2に示した。定量した低分子シロキサンは、請求項1に示した以下の構造のものである。
示性式:C1236Si、化合物名:Dodecamethylcyclohexasiloxane、分子量:445、CAS番号:540−97−6
作業1.洗浄済みガラス上にシーラントを絞り出し、硬化させる。(7日間、23±2℃、50±5%RH)
作業2.硬化したシーラントをカッターでガラスからはがし、重量測定する。また、この重量を乾燥重量という。
作業3.9ccスクリュー瓶に2.のシーラントを入れ、アセトンを、シーラントが完全に浸漬される量入れ、密閉して24h±1h浸漬
作業4.シーラントをすみやかに取り出して再度密閉し、液中の低分子シロキサンをガスクロマトグラフィーにて定量する。このとき、あらかじめ、市販の試薬である低分子シロキサン(東京化成工業社)をアセトンに既知濃度で溶解させた液をガスクロマトグラフィーで解析して濃度対強度の検量線を作成しておき、解析する。
[Quantitative determination method for low molecular weight siloxanes eluted from sealing materials]
Quantification of low molecular weight siloxane eluted from the sealing material used for the photocatalytic film was carried out by the following method, and the results are shown in Table 2. The quantified low molecular weight siloxane has the following structure shown in claim 1.
Chemical formula: C 12 H 36 O 6 Si 6 , compound name: Dodecamethylcyclohexasiloxane, molecular weight: 445, CAS number: 540-97-6
Work 1. Squeeze the sealant onto the cleaned glass and cure. (7 days, 23 ± 2 ° C, 50 ± 5% RH)
Work 2. Remove the cured sealant from the glass with a cutter and measure the weight. Moreover, this weight is called dry weight.
Operation 3.9cc screw bottle 2. 3. Add the sealant, and add acetone in an amount that allows the sealant to be completely immersed, and seal it for 24 hours ± 1 hour. Immediately remove the sealant, seal it again, and quantify the low molecular weight siloxane in the liquid by gas chromatography. At this time, a solution obtained by dissolving a low-molecular-weight siloxane (Tokyo Chemical Industry Co., Ltd.), a commercially available reagent, in acetone at a known concentration is analyzed by gas chromatography to prepare a calibration curve of concentration versus strength. To do.

(例1〜例10)
光触媒膜付きガラス基材aの中央に、厚さ5±2mm、縦10±2mm、横40±2mmとなるように表2に示したシーリング材を1種類ずつ塗布し、温度23±2℃、湿度50±10%RHの環境で2日間(48時間)乾燥させ、光触媒膜付きガラス施工体を作成した後、水平面に対して45°傾斜、南向きで横浜地区の屋外に曝露し、曝露開始から12ヶ月経過した時点でサンプルを回収した。回収したサンプルを水平に置き、膜の表面に蒸留水をキャニオンスプレーでかけ、水滴が付着した疎水部位をシーリング材により汚染された部位と判断し、シーリング材端からの上下左右の疎水部位の距離を測定し、その長さが長いほどシーリング材による汚染が大きいと判断した。
(Example 1 to Example 10)
In the center of the glass substrate a with a photocatalyst film, the sealing material shown in Table 2 was applied one by one so that the thickness was 5 ± 2 mm, the length was 10 ± 2 mm, and the width was 40 ± 2 mm, and the temperature was 23 ± 2 ° C. After drying for 2 days (48 hours) in an environment with a humidity of 50 ± 10% RH and creating a glass construction body with a photocatalyst film, it was exposed to the outdoors in the Yokohama area with a 45 ° inclination to the horizontal plane and facing south. Samples were collected when 12 months passed. Place the collected sample horizontally, apply distilled water to the surface of the membrane with canyon spray, determine that the hydrophobic part with water droplets attached is contaminated by the sealing material, and determine the distance between the upper, lower, left and right hydrophobic parts from the edge of the sealing material. It was determined that the longer the length, the greater the contamination with the sealing material.

疎水部位の長さを合計し、10mm以下の場合を◎、10mm超20mm以下の場合を○、20mm超30mm以下の場合を△、30mm超の場合を×として評価した。なお、客観的な目視評価では一般的にシーラントの20mm以内の汚れは黙認されるため、実用上◎、○がこの順で好ましい。曝露結果を表3に示す。   The total lengths of the hydrophobic sites were evaluated as ◎ when 10 mm or less, ○ when 10 mm or more and 20 mm or less, Δ when 20 mm or more and 30 mm or less, and × when 30 mm or less. In addition, in objective visual evaluation, generally dirt within 20 mm of the sealant is tolerated. Therefore, in practice, ◎ and ○ are preferable in this order. The exposure results are shown in Table 3.

(例11〜20)
例1〜10における光触媒膜付きガラス基材aの代わりに光触媒膜付きガラス基材bを用いる以外は例1〜10と同様に処理して、シーリング材を塗布した光触媒膜が形成された光触媒膜付きガラス施工体を得た。この光触媒膜付きガラス施工体を評価した結果を表3に示す。
(Examples 11 to 20)
The photocatalyst film in which the photocatalyst film which apply | coated the sealing material was formed like Example 1-10 except using the glass base material b with a photocatalyst film instead of the glass base material a with a photocatalyst film in Examples 1-10 An attached glass construction body was obtained. Table 3 shows the results of evaluating this glass construction body with a photocatalyst film.

(例21〜30)
例1〜10における光触媒膜付きガラス基材aの代わりに光触媒膜付きガラス基材cを用いる以外は例1〜10と同様に処理して、シーリング材を塗布した光触媒膜が形成された光触媒膜付きガラス施工体を得た。この光触媒膜付きガラス施工体を評価した結果を表3に示す。
(Examples 21 to 30)
The photocatalyst film in which the photocatalyst film which apply | coated the sealing material was formed like Example 1-10 except using the glass base material c with a photocatalyst film instead of the glass base material a with a photocatalyst film in Examples 1-10 An attached glass construction body was obtained. Table 3 shows the results of evaluating this glass construction body with a photocatalyst film.

(例31〜40)
例1〜10における光触媒膜付きガラス基材aの代わりに光触媒膜付きガラス基材dを用いる以外は例1〜10と同様に処理して、シーリング材を塗布した光触媒膜が形成された光触媒膜付きガラス施工体を得た。この光触媒膜付きガラス施工体を評価した結果を表4に示す。
(Examples 31-40)
The photocatalyst film in which the photocatalyst film which apply | coated the sealing material was formed like Example 1-10 except using the glass base material d with a photocatalyst film instead of the glass base material a with a photocatalyst film in Examples 1-10 An attached glass construction body was obtained. Table 4 shows the results of evaluating this glass construction body with a photocatalyst film.

(例41〜50)
例1〜10における光触媒膜付きガラス基材aの代わりに光触媒膜付きガラス基材eを用いる以外は例1〜10と同様に処理して、シーリング材を塗布した光触媒膜が形成された光触媒膜付きガラス施工体を得た。この光触媒膜付きガラス施工体を評価した結果を表4に示す。
(Examples 41-50)
The photocatalyst film in which the photocatalyst film which apply | coated the sealing material was formed like Example 1-10 except using the glass base material e with a photocatalyst film instead of the glass base material a with a photocatalyst film in Examples 1-10 An attached glass construction body was obtained. Table 4 shows the results of evaluating this glass construction body with a photocatalyst film.

(例51〜60)
例1〜10における光触媒膜付きガラス基材aの代わりに光触媒膜付きガラス基材fを用いる以外は例1〜10と同様に処理して、シーリング材を塗布した光触媒膜が形成された光触媒膜付きガラス施工体を得た。この光触媒膜付きガラス施工体を評価した結果を表4に示す。
(Examples 51 to 60)
The photocatalyst film in which the photocatalyst film which apply | coated the sealing material was formed like Example 1-10 except using the glass base material f with a photocatalyst film instead of the glass base material a with a photocatalyst film in Examples 1-10 An attached glass construction body was obtained. Table 4 shows the results of evaluating this glass construction body with a photocatalyst film.

Figure 2007302527
Figure 2007302527

Figure 2007302527
Figure 2007302527

Figure 2007302527
Figure 2007302527

Figure 2007302527
Figure 2007302527

本発明の光触媒膜付き基材を有する物品は、特にシリコーン系シーリング材などから拡
散する低分子シロキサンによる汚染を防止する性能に優れ、建材をはじめ多方面の用途に展開が可能である。
An article having a substrate with a photocatalyst film of the present invention is particularly excellent in performance of preventing contamination by low molecular siloxanes diffusing from a silicone-based sealing material and the like, and can be developed for various uses including building materials.

Claims (7)

光触媒膜付きガラスがシリコーン系シーリング材より構築構造体に取り付けられている光触媒膜付きガラス施工体において、前記光触媒膜付きガラスとシリコーン系シーリング材が、以下の性能を満たすことを特徴とする光触媒膜付きガラス施工体。
(a)光触媒膜付きガラスの光触媒活性が、メチレンブルー分解性評価において、最大波長352nmのブラックライトブルーランプで紫外線照射強度1.7mW/cmの紫外線を3時間照射後の吸光度減少量として、0.08(Abs)以上である。
(b)硬化させたシーリング材を以下(b−1)に示される条件でアセトンに浸漬した場合の、以下(b−2)に示される低分子シロキサンのアセトンへの溶出重量が、アセトン浸漬前のシーリング材重量に対して、100ppm以下である低汚染性シーリング材
(b−1)硬化させたシーリング材を、温度23±2度環境下で24時間±1時間、完全密閉容器中でアセトンに浸漬後、シーリング材を取り出す。
(b−2)示性式C1236Si、化合物名Dodecamethylcyclohexasiloxane、分子量445、CAS番号540−97−6
In the glass construction body with a photocatalyst film in which the glass with a photocatalyst film is attached to the construction structure from the silicone sealing material, the photocatalyst film with the photocatalyst film and the silicone sealing material satisfy the following performances: With glass construction body.
(A) The photocatalytic activity of the glass with a photocatalyst film is 0 as the amount of decrease in absorbance after 3 hours of irradiation with ultraviolet light having an ultraviolet irradiation intensity of 1.7 mW / cm 2 using a black light blue lamp having a maximum wavelength of 352 nm in the evaluation of methylene blue decomposability. 0.08 (Abs) or more.
(B) When the cured sealing material is immersed in acetone under the conditions shown in (b-1) below, the elution weight of acetone in the low molecular weight siloxane shown in (b-2) below is The low-contamination sealant (b-1), which is 100 ppm or less with respect to the weight of the sealant, is cured with acetone in a completely sealed container for 24 hours ± 1 hour at a temperature of 23 ± 2 degrees. After soaking, the sealing material is taken out.
(B-2) Structural formula C 12 H 36 O 6 Si 6 , compound name Dodecamethylcyclohexasiloxane, molecular weight 445, CAS number 540-97-6
前記光触媒膜の耐摩耗性がJIS R3221(2002)6.4に基づくテーバー摩耗試験(CS−10F摩耗輪使用、荷重4.9N)において、摩耗回数100回後のΔヘーズ値で、4%以下であることを特徴とする請求項1に記載の光触媒膜付きガラス施工体。   Wear resistance of the photocatalyst film is 4% or less in Δ haze value after 100 times of wear in a Taber abrasion test (using CS-10F worn wheel, load 4.9 N) based on JIS R3221 (2002) 6.4 The glass construction object with a photocatalyst film according to claim 1 characterized by things. 前記光触媒膜の暗所親水持続性として、水接触角が1週間以上20°以下を保つ膜であることを特徴とする請求項1または2に記載の光触媒膜付きガラス施工体。   The glass construction body with a photocatalyst film according to claim 1 or 2, wherein the photocatalyst film is a film that maintains a water contact angle of not less than 1 week and not more than 20 ° as a hydrophilic property in a dark place. 前記光触媒膜の平均表面粗さRa値が、1nm以上20nm以下である請求項1〜3のいずれかに記載の光触媒膜付きガラス施工体。   The glass construction body with a photocatalyst film according to claim 1, wherein the photocatalyst film has an average surface roughness Ra value of 1 nm or more and 20 nm or less. 前記光触媒膜は光触媒を発現する物質とSiOを含み、膜中に含まれる全金属組成中のSi比率が、Si/膜中全金属原子のmol比率で0.80以下である請求項1〜4のいずれかに記載の光触媒膜付きガラス施工体。 The photocatalyst film contains a substance that expresses a photocatalyst and SiO 2 , and the Si ratio in the total metal composition contained in the film is 0.80 or less in terms of Si / mol ratio of all metal atoms in the film. The glass construction body with a photocatalyst film in any one of 4. 前記光触媒膜に含まれる全金属組成中の光触媒微粒子比率が、光触媒微粒子中の金属/膜中全金属原子のmol比率で、0.1以上、0.9以下である請求項1〜5のいずれかに記載の光触媒膜付きガラス施工体。   The ratio of the photocatalyst fine particles in the total metal composition contained in the photocatalyst film is 0.1 or more and 0.9 or less in terms of the molar ratio of metal in the photocatalyst fine particles / all metal atoms in the film. A glass construction body with a photocatalyst film according to claim 1. 請求項1〜6のいずれかに記載の光触媒膜付きガラス施工体を用いた構築構造体。
The construction structure using the glass construction body with a photocatalyst film in any one of Claims 1-6.
JP2006133964A 2006-05-12 2006-05-12 Glass construction body with photocatalyst film and construction structure using glass construction body with photocatalyst film Expired - Fee Related JP4535026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006133964A JP4535026B2 (en) 2006-05-12 2006-05-12 Glass construction body with photocatalyst film and construction structure using glass construction body with photocatalyst film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006133964A JP4535026B2 (en) 2006-05-12 2006-05-12 Glass construction body with photocatalyst film and construction structure using glass construction body with photocatalyst film

Publications (2)

Publication Number Publication Date
JP2007302527A true JP2007302527A (en) 2007-11-22
JP4535026B2 JP4535026B2 (en) 2010-09-01

Family

ID=38836792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006133964A Expired - Fee Related JP4535026B2 (en) 2006-05-12 2006-05-12 Glass construction body with photocatalyst film and construction structure using glass construction body with photocatalyst film

Country Status (1)

Country Link
JP (1) JP4535026B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514874A (en) * 2008-02-27 2011-05-12 ピルキントン グループ リミテッド Coated glazing
WO2012011415A1 (en) * 2010-07-23 2012-01-26 Toto株式会社 Use of composite material equipped with photocatalyst layer
JP2014098764A (en) * 2012-11-13 2014-05-29 Pioneer Electronic Corp Optical element and optical device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340757A (en) * 2000-06-01 2001-12-11 Seiichi Rengakuji Titanium dioxide photocatalyst carring body and method of producing the same
JP2002080782A (en) * 2000-07-04 2002-03-19 Toto Ltd Photo-catalytic coating film-forming composition
JP2007031570A (en) * 2005-07-27 2007-02-08 Sustainable Titania Technology Inc Bonding material for substrate having photocatalyst layer or photooxidation layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340757A (en) * 2000-06-01 2001-12-11 Seiichi Rengakuji Titanium dioxide photocatalyst carring body and method of producing the same
JP2002080782A (en) * 2000-07-04 2002-03-19 Toto Ltd Photo-catalytic coating film-forming composition
JP2007031570A (en) * 2005-07-27 2007-02-08 Sustainable Titania Technology Inc Bonding material for substrate having photocatalyst layer or photooxidation layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514874A (en) * 2008-02-27 2011-05-12 ピルキントン グループ リミテッド Coated glazing
WO2012011415A1 (en) * 2010-07-23 2012-01-26 Toto株式会社 Use of composite material equipped with photocatalyst layer
JP2014098764A (en) * 2012-11-13 2014-05-29 Pioneer Electronic Corp Optical element and optical device

Also Published As

Publication number Publication date
JP4535026B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
EP0869156B1 (en) Photocatalytic process for making surface hydrophilic and composite material having photocatalytically hydrophilic surface
EP0816466B1 (en) Use of material having ultrahydrophilic and photocatalytic surface
US6090489A (en) Method for photocatalytically hydrophilifying surface and composite material with photocatalytically hydrophilifiable surface
JP3173391B2 (en) Hydrophilic film, and method for producing and using the same
JP4092714B1 (en) Photocatalyst-coated body and photocatalyst coating liquid therefor
JPS63100042A (en) Glass article difficult-to be dirtied
JP3773087B2 (en) Photocatalytic functional member
CN102653639A (en) Composite titanium dioxide photocatalyst sol coating material component and coating method thereof
JP2010007088A (en) Photocatalyst-coated body and photocatalytic coating liquid therefor
JP4535026B2 (en) Glass construction body with photocatalyst film and construction structure using glass construction body with photocatalyst film
CA2241059C (en) Photocatalyst process for making surface hydrophillic
JP3523787B2 (en) Outdoor building materials with photocatalytic layers
JP4501562B2 (en) SUBSTRATE WITH LAMINATED FILM AND METHOD FOR PRODUCING THE SAME
TWI430841B (en) With the use of photocatalyst layer of composite materials
JP3129194B2 (en) Antifouling crystallized glass
JP3266526B2 (en) Photocatalytic hydrophilic member and method for producing the same
JPH10180948A (en) Transfer sheet and method for transferring photocatalytic hydrophilic thin film
JP2001098187A (en) Photocatalytic hydrophilic coating composition and method for preparing photocatalytic hydrophilic member
JP4292992B2 (en) Composition for forming photocatalyst film and substrate with photocatalyst film
JP2001172545A (en) Coating composition
JPH09188850A (en) Photocatalytic hydrophilic coating composition
JP2004300863A (en) Exterior facing material and its antifouling method
JPH10237357A (en) Coating composition
JP2001172053A (en) Antifogging film-coated substrate having aroma and method for producing the same
JP2002167871A (en) Comparatively antifouling sealing compound for building and building material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees