JP2003220341A - Method for treating photocatalyst body and nitrogen oxide - Google Patents
Method for treating photocatalyst body and nitrogen oxideInfo
- Publication number
- JP2003220341A JP2003220341A JP2002079109A JP2002079109A JP2003220341A JP 2003220341 A JP2003220341 A JP 2003220341A JP 2002079109 A JP2002079109 A JP 2002079109A JP 2002079109 A JP2002079109 A JP 2002079109A JP 2003220341 A JP2003220341 A JP 2003220341A
- Authority
- JP
- Japan
- Prior art keywords
- photocatalyst
- pores
- surface side
- treated
- fine particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 112
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 title claims description 84
- 238000000034 method Methods 0.000 title claims description 23
- 239000011148 porous material Substances 0.000 claims abstract description 84
- 239000010419 fine particle Substances 0.000 claims abstract description 47
- 239000012530 fluid Substances 0.000 claims abstract description 39
- 239000000463 material Substances 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims description 39
- 239000003638 chemical reducing agent Substances 0.000 claims description 13
- 239000002245 particle Substances 0.000 claims description 12
- 230000001699 photocatalysis Effects 0.000 abstract description 18
- 238000006243 chemical reaction Methods 0.000 abstract description 14
- 238000000354 decomposition reaction Methods 0.000 abstract description 10
- 238000007254 oxidation reaction Methods 0.000 abstract description 9
- 230000003647 oxidation Effects 0.000 abstract description 8
- 239000000376 reactant Substances 0.000 abstract description 3
- 238000003795 desorption Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 47
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 46
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 26
- 238000012360 testing method Methods 0.000 description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 8
- 239000011521 glass Substances 0.000 description 7
- 238000009423 ventilation Methods 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000013067 intermediate product Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 238000013032 photocatalytic reaction Methods 0.000 description 2
- 238000006552 photochemical reaction Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 101100325793 Arabidopsis thaliana BCA2 gene Proteins 0.000 description 1
- 102100033029 Carbonic anhydrase-related protein 11 Human genes 0.000 description 1
- 101000867841 Homo sapiens Carbonic anhydrase-related protein 11 Proteins 0.000 description 1
- 101001075218 Homo sapiens Gastrokine-1 Proteins 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000005816 glass manufacturing process Methods 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000005373 porous glass Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001330 spinodal decomposition reaction Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Surface Treatment Of Glass (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は光触媒体に関し、よ
り詳細には大気中もしくは水中の臭気成分、排気ガス成
分、不純物等を化学的に分解除去して浄化する光触媒体
に関する。また、本発明はその光触媒体により窒素酸化
物を処理する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalyst body, and more particularly to a photocatalyst body for chemically decomposing and removing odorous components, exhaust gas components, impurities and the like in the air or water. The present invention also relates to a method of treating nitrogen oxide with the photocatalyst.
【0002】[0002]
【従来の技術】光触媒とは、光を吸収してそのエネルギ
ーを光を吸収しない反応物に与え、反応を起こさせるも
のをいい、この原理を利用して、例えば有機化合物の酸
化や不飽和化合物の水素化等の有機合成、廃液や排気ガ
ス中の有害な化学物質の除去及び分解等の各種応用をも
つ光触媒体の製造が試みられている。また、同様の作用
を利用することにより、殺菌作用や汚れを分解する防汚
作用への応用も試みられている。2. Description of the Related Art A photocatalyst is a substance which absorbs light and gives its energy to a reaction product which does not absorb light to cause a reaction, and by utilizing this principle, for example, oxidation of an organic compound or an unsaturated compound. Attempts have been made to produce photocatalysts having various applications such as organic synthesis such as hydrogenation of methane, removal and decomposition of harmful chemical substances in waste liquid and exhaust gas. Further, by utilizing the same action, application to a bactericidal action or an antifouling action for decomposing stains has been attempted.
【0003】光触媒体としては、酸化チタン等の光触媒
体を紫外線を良く受けることができるように薄膜化して
用いたり、特開平10−151355公報に開示された
ように、孔径2〜50nmの細孔をもつシリカからなる
多孔体に光触媒をコーティング乃至は担持させたり、特
開2000−51334号公報に開示されたように、メ
ッシュ上又は孔開支持基材に光り触媒を担持させた光触
媒シートとしたり、特開2000−157864号公報
に開示されたように、シリカ繊維と補強用繊維の表面に
チタニアを被膜したりした。また、光触媒と共に吸着剤
を組み合わせて使用するものもあった。As the photocatalyst, a photocatalyst such as titanium oxide is used in a thin film so that it can receive ultraviolet rays well, or as disclosed in JP-A-10-151355, pores having a pore diameter of 2 to 50 nm. Coating or carrying a photocatalyst on a porous body made of silica having a silane, or a photocatalyst sheet carrying a light catalyst on a mesh or on a perforated support substrate as disclosed in JP-A-2000-51334. As disclosed in Japanese Patent Application Laid-Open No. 2000-157864, titania is coated on the surfaces of silica fibers and reinforcing fibers. In addition, there are some which use an adsorbent in combination with a photocatalyst.
【0004】これらの光触媒体を用いることにより、環
境中に拡散した比較的低濃度の環境汚染物質、例えば窒
素酸化物を、光エネルギーを主たる駆動力として光触媒
によって低コストで分解し除去することができる。By using these photocatalysts, relatively low concentrations of environmental pollutants such as nitrogen oxides diffused in the environment can be decomposed and removed at low cost by the photocatalyst using light energy as a main driving force. it can.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、従来の
光触媒体は光触媒作用が充分であるとは言い難かった。However, it has been difficult to say that the conventional photocatalyst has a sufficient photocatalytic action.
【0006】そこで、本発明では、従来よりも光触媒作
用の高い光触媒体を提供することを解決すべき課題とす
る。Therefore, it is an object of the present invention to provide a photocatalyst having a higher photocatalytic action than the conventional one.
【0007】また、本発明ではその光触媒体を用いて窒
素酸化物を処理する方法を提供することを解決すべき課
題とする。Another object of the present invention is to provide a method for treating nitrogen oxides using the photocatalyst.
【0008】[0008]
【課題を解決するための手段】上記課題を解決する目的
で本発明者等は従来の光触媒体が充分な光触媒能を発揮
できない理由について鋭意研究を行った結果、従来の光
触媒体は、表面の利用を主としており、表面の粗さ、
凹凸、形状の工夫に限度があること、吸着剤に活性炭
などを使用しており、活性炭は光を透過しないのでその
分、光触媒能が低下すること及び活性炭は酸化分解され
て消費すること、透明体の利用については表面への処
理、ガラスビーズの利用に留まっていること、多孔体
の利用については酸化チタン等の光触媒の単なる担持体
として用いていること、細孔の利用については、シリ
カゲル、ゼオライト混合体の使用があるが、恒常的な反
応物の吸着が生じ連続的な反応時間(接触時間)及び反
応場を充分に確保することが困難であること等が判明し
た。In order to solve the above problems, the inventors of the present invention have conducted diligent research on the reason why conventional photocatalysts cannot exhibit sufficient photocatalytic activity. Mainly used, surface roughness,
There is a limit to the unevenness and shape of the device, and because activated carbon is used as the adsorbent, the activated carbon does not transmit light, so the photocatalytic activity is reduced by that amount, and the activated carbon is consumed by being oxidatively decomposed and transparent. Regarding the use of the body, it is limited to the treatment on the surface, the use of glass beads, the use of the porous body is used as a simple carrier of a photocatalyst such as titanium oxide, the use of the pores is silica gel, Although a zeolite mixture has been used, it has been found that it is difficult to secure sufficient continuous reaction time (contact time) and reaction field due to constant adsorption of reactants.
【0009】そこで、本発明者等はこれらの知見に基づ
き、光触媒体の光触媒能を向上させるために、透明基材
中に形成した所定方向に配向させた細孔内に光触媒を担
持させ、その細孔に被処理流体を通過させる構造をもつ
光触媒体を発明した。Therefore, based on these findings, the present inventors support the photocatalyst in the pores formed in the transparent substrate and oriented in a predetermined direction in order to improve the photocatalytic activity of the photocatalyst. The inventor has invented a photocatalyst having a structure that allows a fluid to be processed to pass through the pores.
【0010】つまり、被処理流体が光触媒微粒子を担持
した細孔内を通過する構造とすることで、細孔内でも吸
着された被処理成分の酸化、分解反応が進行できる。ま
た、被処理流体が細孔内を順次通過する構造であるの
で、酸化、分解反応途中での中間反応体の離脱が抑制で
き、酸化、分解をより完全に進行させることができる。That is, by adopting a structure in which the fluid to be treated passes through the pores carrying the photocatalyst fine particles, the oxidation and decomposition reaction of the adsorbed components to be treated can proceed even in the pores. Further, since the fluid to be treated has a structure in which it sequentially passes through the pores, the separation of the intermediate reactant during the oxidation and decomposition reaction can be suppressed, and the oxidation and decomposition can proceed more completely.
【0011】たとえば、NOをNO3 -にまで光触媒体に
より酸化する場合に、中間生成物として好ましくないN
O2が生成するが、従来の単純に表面での反応のみで酸
化、分解を行う光触媒体では中間生成物のNO2が一部
リークすることが観測されたが、細孔内で連続的に反応
を生起する本発明の光触媒体では中間生成物のリークは
最小限に抑制できる。For example, when NO is oxidized to NO 3 − by a photocatalyst, N which is not preferable as an intermediate product.
O 2 is produced, but it was observed that some of the intermediate NO 2 was leaked in the conventional photocatalyst that is oxidized and decomposed only by the reaction on the surface. In the photocatalyst of the present invention which causes a reaction, leakage of intermediate products can be suppressed to a minimum.
【0012】さらに、細孔の後段付近では酸化生成物を
ある程度吸着する効果が期待でき、最終的な酸化生成物
を系外に排出せず保持できるバッファー効果を果たすも
のと考えられる。Further, it can be expected that an effect of adsorbing an oxidation product to some extent can be expected in the vicinity of the latter stage of the pores, and that a final oxidation product can be retained without being discharged to the outside of the system.
【0013】ところで、従来の酸化チタン等を用いた光
触媒体による窒素酸化物の除去は、常温環境下で適用さ
れていると共に、窒素酸化物から硝酸への酸化反応が支
配的であった。また、還元剤を添加しない場合に被処理
流体を加温しても熱によっては窒素酸化物の処理反応は
促進されず、紫外線等の光による光触媒反応が支配的で
あった。By the way, the conventional removal of nitrogen oxides by a photocatalyst using titanium oxide or the like is applied in a room temperature environment, and the oxidation reaction of nitrogen oxides to nitric acid is dominant. Further, when the reducing agent was not added, even if the fluid to be treated was heated, the treatment reaction of the nitrogen oxide was not promoted by heat, and the photocatalytic reaction by light such as ultraviolet rays was dominant.
【0014】そこで上記課題を解決する目的で本発明者
らは光触媒体による窒素酸化物の処理方法に関して鋭意
研究を行った結果、以下の知見を得た。Therefore, as a result of intensive studies on the method for treating nitrogen oxides with a photocatalyst, the present inventors have obtained the following findings for the purpose of solving the above problems.
【0015】すなわち、本発明者らは窒素酸化物の分解
促進を目的として種々の添加物を検討した結果、被処理
流体に還元剤を添加することによって、常温での窒素酸
化物の分解が促進されることを見出した。また、被処理
流体に還元剤を添加した場合には被処理流体の温度を上
昇させることで窒素酸化物の分解除去が促進できること
を見出した。以上の知見に基づき以下の発明を完成し
た。That is, the present inventors have studied various additives for the purpose of promoting the decomposition of nitrogen oxides, and as a result, by adding a reducing agent to the fluid to be treated, decomposition of nitrogen oxides at room temperature is promoted. I was found to be done. It was also found that when a reducing agent is added to the fluid to be treated, the decomposition and removal of nitrogen oxides can be promoted by raising the temperature of the fluid to be treated. The following inventions have been completed based on the above findings.
【0016】本発明の窒素酸化物の処理方法は、光触媒
体の前記一面側から窒素酸化物を含む被処理流体を導入
して処理する窒素酸化物の処理方法である。本発明で
は、本窒素酸化物の処理方法において、光触媒体に導入
される前の被処理流体に還元剤を添加することを特徴と
する。The method for treating nitrogen oxides of the present invention is a method for treating nitrogen oxides, in which a fluid to be treated containing nitrogen oxides is introduced and treated from the one side of the photocatalyst. In the present invention, in the method for treating nitrogen oxide, the reducing agent is added to the fluid to be treated before being introduced into the photocatalyst.
【0017】[0017]
【発明の実施の形態】〔光触媒体〕本発明の光触媒体
は、透明基材と光触媒微粒子とからなる。BEST MODE FOR CARRYING OUT THE INVENTION [Photocatalyst] The photocatalyst of the present invention comprises a transparent substrate and photocatalyst fine particles.
【0018】透明基材は光触媒微粒子を構成する光触媒
の光触媒作用を発揮できる波長の光に対して透明である
素材で構成される。たとえば、紫外線を吸収する光触媒
を用いる場合には石英ガラス、バイコールガラス、シリ
カのような二酸化ケイ素を主成分とする素材が例示でき
る。なお、透明であるといっても完全に必要な波長の光
を全部透過するものである必要はなく、適正量(割合)
の光を透過できるものであればよい。また、光触媒反応
に関連のない波長の光の透過性については限定がないこ
とはいうまでもない。ここで、透明基材の近傍には紫外
線ランプ等の光源を配設し、必要に応じて光源からの光
線を照射できるようにすることが好ましい。The transparent substrate is made of a material which is transparent to light having a wavelength capable of exerting the photocatalytic action of the photocatalyst which constitutes the photocatalyst fine particles. For example, when a photocatalyst that absorbs ultraviolet rays is used, a material containing silicon dioxide as a main component such as quartz glass, Vycor glass, and silica can be exemplified. It should be noted that even if it is transparent, it does not have to completely transmit all the light of the required wavelength, and an appropriate amount (ratio)
Any light can be used as long as it can transmit the light. Needless to say, there is no limitation on the transmittance of light having a wavelength not related to the photocatalytic reaction. Here, it is preferable to dispose a light source such as an ultraviolet lamp in the vicinity of the transparent base material so that a light beam from the light source can be irradiated as necessary.
【0019】透明基材にはその一面側から他面側に向け
て被処理流体を通過でき所定方向に配向する細孔をも
つ。つまり、被処理流体は細孔内を透過して一面側から
他面側へと到達する。ここで、透明基材の一面側とは本
光触媒体によって、処理される被処理流体が供給される
側の面であり、他面側とは被処理流体が一面側から細孔
を通過して流出する側の面である。本光触媒体への被処
理流体の供給は本発明では特に問題とするものではな
く、任意の方法で行うことができる。透明基材の形状と
しては板状体であり、その表裏面がそれぞれ一面側と他
面側とに対応する形状や、管状体でありその内外面がそ
れぞれ一面側と他面側とに対応する形状とする等任意の
形状を採用できる。The transparent substrate has pores which can pass the fluid to be processed from one surface side to the other surface side and are oriented in a predetermined direction. That is, the fluid to be processed permeates through the pores and reaches from the one surface side to the other surface side. Here, the one surface side of the transparent substrate is the surface on the side to which the fluid to be processed to be processed by the present photocatalyst is supplied, and the other surface side is the fluid to be processed passing through the pores from the one surface side. This is the surface on the outflow side. The supply of the fluid to be treated to the present photocatalyst does not cause any particular problem in the present invention and can be performed by any method. The shape of the transparent base material is a plate-like body, the front and back surfaces of which correspond to the one surface side and the other surface side, respectively, and the tubular body whose inner and outer surfaces correspond to the one surface side and the other surface side, respectively. Any shape such as a shape can be adopted.
【0020】細孔は所定方向に配向させることで、効率
よく細孔を透明基材に形成することができる。所定方向
としてはどのような方向であっても良いが、透明基材の
一面側と他面側とを連結する方向が好ましい。By orienting the pores in a predetermined direction, the pores can be efficiently formed in the transparent substrate. The predetermined direction may be any direction, but a direction in which one surface side of the transparent substrate is connected to the other surface side is preferable.
【0021】細孔は平均孔径が0.1〜50μmである
ことが、さらには1〜50μmであることが好ましい。
この範囲とすることで通気抵抗がそれほど大きくなく被
処理流体が細孔内を充分に通過できると同時に、被処理
流体と細孔(つまり光触媒微粒子)との接触面積を充分
に確保できる。また、被処理流体と細孔内の光触媒微粒
子との接触時間を充分に確保するために、平均長さがそ
の孔径の10倍以上であることが、さらには50倍以上
であることが好ましい。そして、細孔の体積は透明基材
の見かけ体積に対して、35%以上とすることが光触媒
能の観点から好ましい。The average pore diameter of the fine pores is preferably 0.1 to 50 μm, more preferably 1 to 50 μm.
Within this range, the ventilation resistance is not so large that the fluid to be treated can sufficiently pass through the pores, and at the same time, the contact area between the fluid to be treated and the pores (that is, photocatalyst fine particles) can be sufficiently secured. Further, in order to secure a sufficient contact time between the fluid to be treated and the photocatalyst fine particles in the pores, the average length is preferably 10 times or more, more preferably 50 times or more the pore diameter. The volume of pores is preferably 35% or more of the apparent volume of the transparent substrate from the viewpoint of photocatalytic activity.
【0022】細孔を形成した透明基材の製造方法は特に
限定されず、公知の方法を適用できる。たとえば、細孔
を有する透明基材としては、前述のバイコールガラスの
製造工程で中間製品として現れる多孔質体を用いること
ができる。すなわち、ケイ砂と硼酸とソーダ灰とから通
常の溶融プロセスによりNa2O−B2O3−SiO2系ガ
ラスを作成し、これを成形した後に数百℃で熱処理を行
うことでガラス内部にSiO2リッチ相とNa2O−B2
O3リッチ相とに数nmのスケールでスピノーダル分解
による分相が起こる。この分相は熱処理条件、組成条件
等により制御可能である。たとえば、熱処理温度を高
く、熱処理時間を長くすると細孔径が大きくでき、反対
に熱処理温度を低く、熱処理時間を短くすると細孔径が
小さくできる。この分相ガラスを酸溶液に浸漬すると、
Na2O−B2O3相のみが酸で溶出されてSiO2骨格を
もつ多孔質ガラスが得られる。The method for producing the transparent substrate having pores is not particularly limited, and a known method can be applied. For example, as the transparent base material having pores, a porous body that appears as an intermediate product in the above-mentioned Vycor glass manufacturing process can be used. That is, Na 2 O—B 2 O 3 —SiO 2 -based glass is prepared from silica sand, boric acid, and soda ash by a normal melting process, and after molding this, heat treatment is performed at several hundreds of degrees Celsius so that the inside of the glass is SiO 2 rich phase and Na 2 O-B 2
Phase separation by spinodal decomposition occurs on the O 3 rich phase on a scale of several nm. This phase separation can be controlled by heat treatment conditions, composition conditions and the like. For example, if the heat treatment temperature is high and the heat treatment time is long, the pore size can be increased, and conversely, if the heat treatment temperature is low and the heat treatment time is shortened, the pore size can be reduced. When this phase-separated glass is immersed in an acid solution,
Only Na 2 O-B 2 O 3 phase is eluted with acid porous glass with SiO 2 skeleton is obtained.
【0023】また、透明基材は、複数の毛細管を束ねて
構成することができる。これら複数の毛細管はそれぞれ
被処理流体が通過する一面側から他面側に向けて配向さ
せる。これら毛細管が有する孔の大きさがほぼそのまま
透明基材の細孔径となる。更に、毛細管が有する孔の他
に毛細管の外壁間の隙間も細孔として光触媒を担持させ
ることもできる。Further, the transparent substrate can be formed by bundling a plurality of capillaries. The plurality of capillaries are oriented from one surface side through which the fluid to be processed passes toward the other surface side. The size of the pores of these capillaries becomes almost the same as the pore diameter of the transparent substrate. Further, in addition to the holes of the capillaries, the gap between the outer walls of the capillaries can be made into pores to carry the photocatalyst.
【0024】透明基材を複数の毛細管を束ねて形成する
ことで、長手方向に任意な長さを選択できる効果があ
る。その結果、光触媒作用に必要な光触媒微粒子担持面
積を著しく拡大できる。By forming the transparent substrate by bundling a plurality of capillaries, there is an effect that an arbitrary length can be selected in the longitudinal direction. As a result, the area for supporting the photocatalyst fine particles necessary for the photocatalytic action can be significantly expanded.
【0025】複数の毛細管を束ねて透明基材とする方法
は特に限定しない。例えば、毛細管を束ねたまま光触媒
として用いてもよいし、適正に加温することで毛細管間
を融着させてもよいし、適正な接着剤により毛細管間を
接着することもできる。The method of bundling a plurality of capillaries into a transparent substrate is not particularly limited. For example, the capillaries may be used as a photocatalyst while they are bundled, the capillaries may be fused by heating appropriately, or the capillaries may be bonded with an appropriate adhesive.
【0026】光触媒微粒子の素材については限定はしな
い。たとえば、酸化チタン、酸化亜鉛等の金属酸化物半
導体や、化合物半導体等が例示でき、酸化チタンを用い
ることが好ましい。光触媒微粒子の粒子径は7〜20n
m、さらには7〜10nmであることが好ましい。透明
基材への光触媒微粒子の担持量としては透明基材の見か
け体積に対して、0.2mg/mL以上であることが好
ましい。The material of the photocatalyst fine particles is not limited. Examples thereof include metal oxide semiconductors such as titanium oxide and zinc oxide, and compound semiconductors. Titanium oxide is preferably used. The particle diameter of the photocatalyst fine particles is 7 to 20 n
m, and more preferably 7 to 10 nm. The amount of the photocatalyst fine particles carried on the transparent substrate is preferably 0.2 mg / mL or more based on the apparent volume of the transparent substrate.
【0027】透明基材の細孔内に光触媒微粒子を担持乃
至はコーティングする方法としては、たとえば、光触媒
微粒子の懸濁液を調製し、内部を真空とした細孔内にそ
の懸濁液を吸引させる方法、細孔の一面側から圧入する
方法等がある。As a method for supporting or coating the fine particles of the photocatalyst in the pores of the transparent substrate, for example, a suspension of the fine particles of the photocatalyst is prepared, and the suspension is sucked into the fine pores having a vacuum inside. There are methods such as a method of pressing and a method of press-fitting from one side of the pores.
【0028】〔窒素酸化物の処理方法〕本処理方法は、
前述の光触媒体を用い、その光触媒体の光触媒微粒子を
担持した透明基材の一面側から他面側に向けて被処理流
体を導入する方法である。光触媒体に導入された被処理
流体は光触媒体の透明基材の細孔内の光触媒微粒子上で
分解除去される。光触媒体には光触媒が作用する波長の
光線が照射される。[Method for Treating Nitrogen Oxide]
This is a method in which the above-mentioned photocatalyst is used and the fluid to be treated is introduced from one surface side to the other surface side of the transparent substrate supporting the photocatalyst fine particles of the photocatalyst. The fluid to be treated introduced into the photocatalyst is decomposed and removed on the photocatalyst fine particles in the pores of the transparent base material of the photocatalyst. The photocatalyst is irradiated with light having a wavelength at which the photocatalyst acts.
【0029】光触媒体に導入される被処理流体は窒素酸
化物が含まれており、導入される前に還元剤が添加され
る。添加される還元剤の種類は特に限定しないが、気体
若しくは揮発性の高い物質とすることが被処理流体への
混合性に優れるので好ましい。例えば還元剤としてはプ
ロパン等の炭化水素化合物等が挙げられる。還元剤の添
加量は特に限定しないが、被処理流体中の窒素酸化物の
量に応じて適正に選択できる。例えば被処理流体中に含
まれる窒素酸化物40に対して、還元剤を240程度添
加することができる。The fluid to be treated introduced into the photocatalyst contains nitrogen oxides, and the reducing agent is added before introduction. The type of reducing agent to be added is not particularly limited, but it is preferable to use a gas or a substance having high volatility because it is excellent in the mixing property with the fluid to be treated. Examples of the reducing agent include hydrocarbon compounds such as propane. The addition amount of the reducing agent is not particularly limited, but can be appropriately selected according to the amount of nitrogen oxide in the fluid to be treated. For example, the reducing agent can be added to about 240 to the nitrogen oxide 40 contained in the fluid to be treated.
【0030】被処理流体は光触媒体内に導入される前に
加温することが好ましい。被処理流体を加温することで
窒素酸化物の分解が促進できる。好ましい被処理流体の
温度としては常温から300℃であり、より好ましくは
200℃から250℃程度である。The fluid to be treated is preferably heated before being introduced into the photocatalyst. Decomposition of nitrogen oxides can be accelerated by heating the fluid to be treated. The temperature of the fluid to be treated is preferably room temperature to 300 ° C, more preferably 200 ° C to 250 ° C.
【0031】[0031]
【実施例】(試験1)
(実施例1)
・光触媒体の製造
光触媒微粒子としての市販のアナターゼ型チタニアゾル
(粒子径7nm)と、透明基材(細孔径10μm、気孔
率40%、外径10mm、厚さ0.5mmで長さ50m
mの円筒状の透光性バイコールガラス)とをステンレス
製真空容器に入れた後に、減圧下で保持した。ステンレ
ス製真空容器を常圧に戻し、圧力により細孔内にチタニ
アゾルを吸引させた。チタニアゾルを吸引させた透明基
材を110℃、1時間の条件で乾燥した。この操作を3
回繰り返し、担持された酸化チタン微粒子の量を質量増
加の値から算出すると、透明基材に対して0.35質量
%担持されていることが判明した。また、調製した光触
媒体の細孔の観察結果から酸化チタン微粒子は細孔内に
均一に分散されていることが明らかとなった。Example (Test 1) (Example 1) Production of photocatalyst body Commercially available anatase-type titania sol (particle diameter 7 nm) as photocatalyst fine particles and a transparent substrate (pore diameter 10 μm, porosity 40%, outer diameter 10 mm) , Thickness 0.5mm and length 50m
and a cylindrical translucent Vycor glass of m) were placed in a stainless steel vacuum container and then held under reduced pressure. The stainless steel vacuum container was returned to normal pressure, and the titania sol was sucked into the pores by the pressure. The transparent substrate sucked with the titania sol was dried at 110 ° C. for 1 hour. Do this operation 3
When the amount of the titanium oxide fine particles carried was calculated from the value of the mass increase repeatedly, it was found that 0.35 mass% was carried on the transparent substrate. Further, from the observation result of the pores of the prepared photocatalyst, it was revealed that the titanium oxide fine particles were uniformly dispersed in the pores.
【0032】・光触媒体特性の測定
図1に示す装置を用いて実施例1の光触媒体1を室温で
評価した。本実施例の光触媒体1の一端部をシールドゴ
ム5で封止し、他端部にガス排出用の内筒管2(石英ガ
ラス製、外径9.6mm、厚み1.0mm)を接続し
た。光触媒体1と内筒管2とは反応カラム3(石英ガラ
ス製、内径10.5mm)でその周囲を覆った。反応カ
ラム3の一端部から被処理流体としての被処理ガスを流
入し(A)、流入した被処理ガスは光触媒体1の細孔を
通過して内筒管2に流入し内筒管2の端部から外部に排
出される(B)。Measurement of Photocatalyst Property The photocatalyst 1 of Example 1 was evaluated at room temperature using the apparatus shown in FIG. One end of the photocatalyst 1 of this example was sealed with a shield rubber 5, and an inner cylindrical tube 2 for gas discharge (made of quartz glass, outer diameter 9.6 mm, thickness 1.0 mm) was connected to the other end. . The photocatalyst 1 and the inner tube 2 were covered with a reaction column 3 (made of quartz glass, inner diameter 10.5 mm). A gas to be processed as a fluid to be processed flows in from one end of the reaction column 3 (A), and the inflowing gas to be processed passes through the pores of the photocatalyst body 1 and flows into the inner cylindrical tube 2 to enter the inner cylindrical tube 2. It is discharged from the end to the outside (B).
【0033】被処理ガスはNOを40ppm含む。被処
理ガスの通過流量は200mL/分に設定した。反応カ
ラム3の外側から市販のブラックライト(100W)に
より紫外線を照射した。その結果、図2に示すように、
Bから流出してくる被処理ガス中のNO濃度は紫外線照
射後8分で22ppmにまで低下した後、透過ガス中の
NO濃度は上昇して27ppm程度で定常化した。被処
理ガスを通過させた光触媒体1を調べたところ、細孔内
には触媒反応で生成した硝酸(HNO3)が保持されて
いることが明らかとなった。なお、NO濃度はオゾンガ
ス混合による化学発光を測定する方式の堀場汎用ガス分
析計CLA−510SSにより測定した。The gas to be treated contains 40 ppm of NO. The flow rate of the gas to be processed was set to 200 mL / min. Ultraviolet rays were irradiated from the outside of the reaction column 3 with a commercially available black light (100 W). As a result, as shown in FIG.
The NO concentration in the gas to be treated flowing out from B decreased to 22 ppm 8 minutes after the irradiation with ultraviolet rays, and then the NO concentration in the permeated gas increased and became steady at about 27 ppm. Examination of the photocatalyst 1 that passed the gas to be treated revealed that nitric acid (HNO 3 ) generated by the catalytic reaction was retained in the pores. The NO concentration was measured by a Horiba general-purpose gas analyzer CLA-510SS, which measures chemiluminescence by mixing ozone gas.
【0034】(実施例2及び3)図1に示す装置を用い
て実施例1で説明した光触媒体1を評価した。実施例1
の光触媒体1の一端部をシールドセラミックス5で封止
し、他端部にガス排出用の内筒管2(石英ガラス製、外
径9.6mm、厚み1.0mm)を接続した。光触媒体
1と内筒管2とは反応カラム3(石英ガラス製、内径1
0.5mm)でその周囲を覆った。反応カラム3の一端
部から被処理流体としての被処理ガスを流入し(A)、
流入した被処理ガスは光触媒体1の細孔を通過して内筒
管2に流入し内筒管2の端部から外部に排出される
(B)。(Examples 2 and 3) The photocatalyst 1 described in Example 1 was evaluated using the apparatus shown in FIG. Example 1
One end of the photocatalyst body 1 was sealed with a shield ceramic 5, and an inner cylindrical tube 2 for gas discharge (made of quartz glass, outer diameter 9.6 mm, thickness 1.0 mm) was connected to the other end. The photocatalyst 1 and the inner tube 2 are a reaction column 3 (made of quartz glass, inner diameter 1
0.5 mm) was wrapped around it. A gas to be treated as a fluid to be treated is introduced from one end of the reaction column 3 (A),
The gas to be processed that has flowed in passes through the pores of the photocatalyst 1 and flows into the inner cylindrical tube 2, and is discharged to the outside from the end portion of the inner cylindrical tube 2 (B).
【0035】被処理ガスはNOを40ppm含むと共
に、還元剤としてのプロパンを240ppm含む。被処
理ガスの通過流量は200mL/分に設定した。反応カ
ラム3の外側から市販のブラックライト(100W)に
より紫外線を照射した。被処理ガスの温度を常温とした
試験(実施例2)及び250℃まで加温した試験(実施
例3)を行った。The gas to be treated contains 40 ppm of NO and 240 ppm of propane as a reducing agent. The flow rate of the gas to be processed was set to 200 mL / min. Ultraviolet rays were irradiated from the outside of the reaction column 3 with a commercially available black light (100 W). A test in which the temperature of the gas to be treated was room temperature (Example 2) and a test in which the temperature of the gas to be treated was heated to 250 ° C. (Example 3) were performed.
【0036】その結果、図2に示すように、Bから流出
してくる被処理ガス中のNO濃度は実施例2の試験で紫
外線照射後8分で19ppmにまで低下した後、透過ガ
ス中のNO濃度は上昇して25ppm程度で定常化し
た。また、実施例3の試験では紫外線照射後8分で16
ppmにまで低下した後、透過ガス中のNO濃度は15
ppm程度で定常化した。As a result, as shown in FIG. 2, in the test of Example 2, the NO concentration in the gas to be treated flowing out from B was reduced to 19 ppm in 8 minutes after the irradiation with ultraviolet rays, and then, in the permeated gas. The NO concentration increased and became steady at about 25 ppm. In addition, in the test of Example 3, 16 minutes after irradiation with ultraviolet rays,
After decreasing to ppm, the NO concentration in the permeated gas was 15
It was stabilized at about ppm.
【0037】被処理ガスを通過させた実施例2及び3の
各光触媒体1を調べたところ、細孔内には触媒反応で生
成した硝酸の保持状態は実施例1と大差ないことが明ら
かとなった。When the photocatalysts 1 of Examples 2 and 3 through which the gas to be treated was passed were examined, it was found that the state of retention of nitric acid produced by the catalytic reaction in the pores was not much different from that of Example 1. became.
【0038】つまり、被処理ガスに予め還元剤を添加す
ることで窒素酸化物の濃度が同じ常温での処理である実
施例2において実施例1の結果に対してNO濃度が2p
pm低下した。更に被処理ガスを250℃にまで加温し
た実施例3では実施例2と比較して更にNO濃度が10
ppm低下した。この低下分は被処理ガス中のNOがN
2に還元されたためである。なお、上記実施例1の試験
では詳細は示していないが実施例1に記載した試験条件
で被処理ガスを加温してもNO濃度に有意な差が認めら
れず、熱による影響は見いだせなかった。That is, in Example 2 in which the reducing agent is added to the gas to be treated in advance at a room temperature in which the concentration of nitrogen oxides is the same, the NO concentration is 2 p with respect to the result of Example 1.
pm decreased. Further, in Example 3 in which the gas to be treated was heated to 250 ° C., the NO concentration was further 10 compared to Example 2.
ppm decreased. This decrease is due to NO in the gas to be treated being N
This is because it was reduced to 2 . Although details are not shown in the test of Example 1 above, no significant difference in NO concentration was observed even when the gas to be treated was heated under the test conditions described in Example 1, and the effect of heat was not found. It was
【0039】(実施例4)毛細管(透明ガラス製、孔径
50μm、外形60μm、長さ50mm)を6300本
を束ねて、内径10mm、外径12mmの透明石英ガラ
ス管内に挿入、接着固定して透明基材(空隙率35%)
とした。(Embodiment 4) 6300 capillary tubes (made of transparent glass, hole diameter 50 μm, outer diameter 60 μm, length 50 mm) are bundled and inserted into a transparent quartz glass tube having an inner diameter of 10 mm and an outer diameter of 12 mm, and are fixed by adhesion to be transparent. Base material (porosity 35%)
And
【0040】この透明基材と、光触媒微粒子としての市
販のアナターゼ型チタニアゾル(粒子径7nm)とをス
テンレス製真空容器に入れた後に、減圧下で保持した。
ステンレス製真空容器を常圧に戻し、圧力により細孔内
にチタニアゾルを吸引させた。チタニアゾルを吸引させ
た透明基材を110℃、1時間の条件で乾燥した。この
操作を3回繰り返し実施例4の光触媒体とした。担持さ
れた酸化チタン微粒子の量を質量増加の値から算出する
と、透明基材に対して0.06質量%担持されているこ
とが判明した。また、調製した光触媒体の細孔の観察結
果から酸化チタン微粒子は細孔内に均一に分散されてい
ることが明らかとなった。This transparent substrate and a commercially available anatase type titania sol (particle size 7 nm) as photocatalyst fine particles were placed in a stainless steel vacuum container and then held under reduced pressure.
The stainless steel vacuum container was returned to normal pressure, and the titania sol was sucked into the pores by the pressure. The transparent substrate sucked with the titania sol was dried at 110 ° C. for 1 hour. This operation was repeated 3 times to obtain the photocatalyst of Example 4. When the amount of the titanium oxide fine particles carried was calculated from the value of the mass increase, it was found that 0.06 mass% was carried on the transparent substrate. Further, from the observation result of the pores of the prepared photocatalyst, it was revealed that the titanium oxide fine particles were uniformly dispersed in the pores.
【0041】実施例4の光触媒体について実施例2で示
した試験に供した。結果を図2に併せて示す。Bから流
出してくる被処理ガス中のNO濃度は実施例2の試験で
紫外線照射後8分で14ppmにまで低下した後、透過
ガス中のNO濃度は上昇して22ppm程度で定常化し
た。被処理ガスを通過させた実施例4の光触媒体1を調
べたところ、細孔内には触媒反応で生成した硝酸が保持
されていることが明らかとなった。The photocatalyst of Example 4 was subjected to the test shown in Example 2. The results are also shown in FIG. In the test of Example 2, the NO concentration in the gas to be treated flowing out from B dropped to 14 ppm 8 minutes after the irradiation with ultraviolet rays, and then the NO concentration in the permeated gas rose to a steady state at about 22 ppm. When the photocatalyst body 1 of Example 4 in which the gas to be treated was passed was examined, it was revealed that nitric acid generated by the catalytic reaction was retained in the pores.
【0042】本実施例4の光触媒体で処理した被処理ガ
ス中のNO濃度が実施例1及び2の光触媒体で処理した
被処理ガス中のNO濃度より低くできたのは毛細管を用
いることで光触媒微粒子を担持する面積を増加できたた
めと考えられる。The NO concentration in the gas to be treated treated with the photocatalyst of Example 4 was lower than the NO concentration in the gas to be treated with the photocatalysts of Examples 1 and 2 by using the capillary tube. It is considered that the area for supporting the photocatalyst fine particles could be increased.
【0043】(比較例1)光触媒微粒子としての実施例
1と同じ市販のチタニアゾル(粒子径7nm)と、アル
ミナ基材(細孔径12μm、気孔率40%、外径10m
m、厚さ1.6mm、長さ50mm)とを用いて実施例
1と同様の方法でアルミナ基材の細孔内に酸化チタン微
粒子を担持させた。光触媒微粒子としての酸化チタン微
粒子の担持量はアルミナ基材に対して0.1質量%であ
った。Comparative Example 1 Commercially available titania sol (particle size 7 nm) as photocatalyst fine particles and an alumina base material (pore diameter 12 μm, porosity 40%, outer diameter 10 m) were used.
m, thickness 1.6 mm, length 50 mm), and titanium oxide fine particles were loaded in the pores of the alumina substrate in the same manner as in Example 1. The amount of titanium oxide fine particles supported as photocatalyst fine particles was 0.1% by mass based on the alumina base material.
【0044】この光触媒体について実施例1と同様の装
置及び方法で光触媒能を評価した。実施例1と同じ被処
理ガスの供給条件で被処理ガスの通過量は220mL/
分となった。結果を図2に併せて示す。通過ガス中のN
O濃度は紫外線照射後、8分で一旦30ppmにまで低
下し、その後、35ppmで定常化した。The photocatalytic activity of this photocatalyst was evaluated by the same apparatus and method as in Example 1. Under the same conditions for supplying the target gas as in Example 1, the flow rate of the target gas was 220 mL /
It became a minute. The results are also shown in FIG. N in the passing gas
The O concentration once dropped to 30 ppm in 8 minutes after the irradiation with ultraviolet rays, and then became steady at 35 ppm.
【0045】(比較例2)実施例1で用いた透明基材を
酸化チタン微粒子を担持させることなくそのまま実施例
1に示した試験に供した。結果を図2に併せて示す。紫
外線照射にかかわらず通過ガス中のNO濃度は一定であ
った。Comparative Example 2 The transparent substrate used in Example 1 was directly subjected to the test shown in Example 1 without supporting the titanium oxide fine particles. The results are also shown in FIG. The NO concentration in the passing gas was constant regardless of the irradiation of ultraviolet rays.
【0046】(試験2)(試料1〜4)試験用の光触媒
体として細孔径10μmで、基材厚さ(細孔の長さに相
当する)/細孔径が表1に示す値とした以外は実施例1
の光触媒体と同様の方法で試料1〜4を製造した。(Test 2) (Samples 1 to 4) As the photocatalyst for the test, the pore diameter was 10 μm, and the substrate thickness (corresponding to the length of the pore) / pore diameter was the value shown in Table 1. Is Example 1
Samples 1 to 4 were manufactured by the same method as that for the photocatalyst.
【0047】各試料について実施例1に示した試験と同
様の試験を行い、通過ガス中のNO濃度からNO除去率
{(被処理ガス中のNO濃度−通過ガス中のNO濃度)
/被処理ガス中のNO濃度×100(%)}、さらにN
O2濃度を測定し理論的に生成したNO2に対しての残存
率とを求めた。結果を表1に併せて示す。なお、NO2
濃度はオゾンガス混合による化学発光を測定する方式の
堀場汎用ガス分析計CLA−510SSにより測定し
た。A test similar to the test shown in Example 1 was conducted for each sample, and the NO removal rate from the NO concentration in the passing gas {(NO concentration in the gas to be treated-NO concentration in the passing gas)
/ NO concentration in the gas to be treated x 100 (%)}, and N
The O 2 concentration was measured and the residual rate with respect to theoretically generated NO 2 was determined. The results are also shown in Table 1. Note that NO 2
The concentration was measured by a Horiba general-purpose gas analyzer CLA-510SS, which measures chemiluminescence by mixing ozone gas.
【0048】[0048]
【表1】 [Table 1]
【0049】表1から明らかなように、基材厚さ/細孔
径の値が10以上となると、NO除去率が30以上とな
り、それ以上は基材厚さ/細孔径の値を大きくしてもN
O除去率に大きな変化はなかった。また、基材厚さ/細
孔径の値が5である試料1ではNO2残存量も6%と比
較的高い値を示しており、NO2残存量の値からも基材
厚さ/細孔径の値としては10以上であることが好まし
いことが明らかとなった。As is clear from Table 1, when the value of the substrate thickness / pore size is 10 or more, the NO removal rate is 30 or more, and the substrate thickness / pore size is increased if the NO removal rate is more than 30. Also N
There was no significant change in the O removal rate. In addition, Sample 1 having a substrate thickness / pore diameter value of 5 also shows a relatively high NO 2 remaining amount of 6%, and the substrate thickness / pore diameter is also shown by the value of the NO 2 remaining amount. It has been clarified that the value of is preferably 10 or more.
【0050】細孔径を一定にし、基材厚さ/細孔径の値
を制御した上述の試験の結果、分解すべき成分を含む被
処理ガスに対して効率的に光化学反応が行われるために
は、細孔の面積を増加させて光触媒微粒子の担持面積を
増加させると共に、細孔の長さを充分に長くして通過す
る被処理ガスと光触媒微粒子とが接触する時間を充分に
確保することが必要であること示していると思われる。As a result of the above-mentioned test in which the pore diameter is kept constant and the value of substrate thickness / pore diameter is controlled, in order to efficiently carry out the photochemical reaction with respect to the gas to be treated containing the component to be decomposed, In addition to increasing the area of the pores to increase the area for supporting the photocatalyst fine particles, the length of the pores should be sufficiently long to secure a sufficient time for the gas to be passed and the photocatalyst fine particles to come into contact with each other. It seems that it is necessary.
【0051】(試験3)
(試料5〜10)基材厚さ/細孔径の値を50に固定
し、平均細孔径を表2に示す値とした以外は実施例1と
同様の光触媒体を製造した。そして、試験2と同様の評
価を各試料について行った。(Test 3) (Samples 5 to 10) A photocatalyst similar to that of Example 1 was prepared except that the value of substrate thickness / pore diameter was fixed at 50 and the average pore diameter was set to the value shown in Table 2. Manufactured. Then, the same evaluation as in Test 2 was performed on each sample.
【0052】[0052]
【表2】 [Table 2]
【0053】表2から明らかなように、細孔径が小さい
試料5(細孔径0.05μm)ではNO除去率が8%と
低く、試料6(細孔径0.1μm)〜試料10(細孔径
60μm)ではNO除去率が比較的高い15%以上とな
った。特に細孔径が1〜50μmである試料7〜9では
NO除去率が30%以上とさらに優れた値を示した。ま
た、NO2残存率の値も併せて考慮すると、試料6〜9
の細孔径0.1〜50μmが好ましいと考えられる。As is clear from Table 2, the NO 5 removal rate of sample 5 (pore diameter 0.05 μm) having a small pore diameter was as low as 8%, and sample 6 (pore diameter 0.1 μm) to sample 10 (pore diameter 60 μm). ), The NO removal rate was 15% or higher, which is relatively high. In particular, in samples 7 to 9 having pore diameters of 1 to 50 μm, the NO removal rate was 30% or more, which was a more excellent value. In addition, considering the value of the NO 2 residual rate together, samples 6 to 9
It is considered that the pore size of 0.1 to 50 μm is preferable.
【0054】細孔径があまりに小さい場合には細孔内に
充分に酸化チタン微粒子を担持することができないほ
か、通気抵抗の値が増加するために充分に光触媒能を発
揮できないものと考えられる。また、細孔径が大きすぎ
る場合には被処理ガスと酸化チタン微粒子との接触が充
分でなくなり、NO除去率及びNO2残存量の値が悪化
したものと考えられる。When the pore diameter is too small, it is considered that the titanium oxide fine particles cannot be sufficiently supported in the pores, and the air resistance value increases, so that the photocatalytic activity cannot be sufficiently exhibited. Further, it is considered that when the pore size is too large, the contact between the gas to be treated and the titanium oxide fine particles becomes insufficient and the values of the NO removal rate and the NO 2 remaining amount deteriorate.
【0055】(試験3)透明基材に形成する細孔の体積
密度を原料成分SiO2の比率を調整することで、表3
に示す気孔率の値となるように、試料11〜15の光触
媒体を製造した。製造した試料11〜15について、N
O除去率、及び通気抵抗の値をそれぞれ測定した。通気
抵抗の値は反応カラム3入り口及び内筒管2の出口端の
流体流路の差圧を水柱マノメーターにより測定した。(Test 3) The volume density of the pores formed in the transparent substrate was adjusted by adjusting the ratio of the raw material component SiO 2.
Photocatalysts of Samples 11 to 15 were manufactured so that the porosity values shown in Table 1 were obtained. Regarding the manufactured samples 11 to 15, N
The O removal rate and the value of ventilation resistance were measured. The value of the ventilation resistance was determined by measuring the differential pressure in the fluid flow path at the inlet of the reaction column 3 and the outlet end of the inner cylindrical tube 2 with a water column manometer.
【0056】[0056]
【表3】 [Table 3]
【0057】表3から明らかなように、気孔率を35%
以上とした試料12〜15はNO除去率が15%以上と
高除去率を示すと共に、通気抵抗も10mmAq以下と
低い値をとり気孔率が35%以上であることが好ましい
ことが明らかとなった。As is clear from Table 3, the porosity is 35%.
It was revealed that the above-mentioned samples 12 to 15 have a high NO removal rate of 15% or more, a low ventilation resistance of 10 mmAq or less, and a porosity of 35% or more. .
【0058】透明基材の細孔密度は気孔率に関係し、気
孔率が小さいと細孔密度が低くなり触媒面積も低下す
る。そのために気孔率が35%以上で酸化チタン微粒子
の光触媒能が充分に発揮できるものと考えられる。ま
た、通気抵抗は気孔率の2乗に比例しする。したがっ
て、通気抵抗の値からも気孔率は35%以上の通気抵抗
10mmAq以下が好ましい値である。さらに、気孔率
が増加すれば酸化チタン微粒子を担持できる表面積も増
加するのでその点においても好ましい。The pore density of the transparent substrate is related to the porosity. When the porosity is small, the pore density is low and the catalyst area is also low. Therefore, it is considered that when the porosity is 35% or more, the photocatalytic activity of the titanium oxide fine particles can be sufficiently exhibited. Further, the ventilation resistance is proportional to the square of the porosity. Therefore, in view of the value of ventilation resistance, the porosity is preferably 35% or more and ventilation resistance of 10 mmAq or less. Further, as the porosity increases, the surface area capable of supporting the titanium oxide fine particles also increases, which is also preferable in that respect.
【0059】(試験4)光触媒微粒子としての酸化チタ
ン微粒子について、酸化チタン微粒子の平均粒子径を
7、20、30、180nmとして、光触媒能に関連す
る特性である光照射により誘起される電位の値を測定し
た。電位は、半透膜を介して配置されるKCl溶液と各
粒子径の酸化チタン微粒子を懸濁したKCl溶液との間
での紫外線照射時の起電力を測定することで行った。結
果を表4に示す。(Test 4) Regarding titanium oxide fine particles as photocatalyst fine particles, the value of the potential induced by light irradiation, which is a characteristic relating to the photocatalytic ability, is defined by setting the average particle diameter of the titanium oxide fine particles to 7, 20, 30, 180 nm. Was measured. The electric potential was measured by measuring the electromotive force at the time of ultraviolet irradiation between the KCl solution arranged via the semipermeable membrane and the KCl solution in which the titanium oxide fine particles of each particle size were suspended. The results are shown in Table 4.
【0060】[0060]
【表4】 [Table 4]
【0061】表4から明らかなように、酸化チタン微粒
子の粒子径が7〜20nmであるときには電位が−16
0〜−150mVと優れた値を示すのに対して、粒子径
が20nmを越えると、電位が−50mV程度に減退す
ることが判明した。したがって、酸化チタン微粒子の粒
子径としては7〜20nmが適正である。As is clear from Table 4, when the particle size of titanium oxide fine particles is 7 to 20 nm, the potential is -16.
It was found that while the excellent value was 0 to −150 mV, when the particle size exceeded 20 nm, the potential decreased to about −50 mV. Therefore, it is appropriate that the particle diameter of the titanium oxide fine particles is 7 to 20 nm.
【0062】アナターゼ型酸化チタンの光触媒能は紫外
線を受光する表面光電化学反応である。そのために酸化
チタン微粒子の粒子径が小さいほど、単位面積当たりの
表面積が増加する。また、表面積が増加することによ
り、光触媒能の活性点となる欠陥も同時に増加する。し
たがって、酸化チタン微粒子としては粒子径が小さい
(20nm以下)ことが好ましいものと考えられる。た
だし、あまりに小さくすることは加工が困難であるので
コスト的な要因も含めると、実用上は7nm以上が好ま
しいものと考えれる。The photocatalytic ability of anatase type titanium oxide is a surface photochemical reaction that receives ultraviolet rays. Therefore, the smaller the particle size of the titanium oxide fine particles, the larger the surface area per unit area. Further, as the surface area increases, the number of defects that become active sites for photocatalytic activity also increases. Therefore, it is considered preferable that the titanium oxide fine particles have a small particle size (20 nm or less). However, if it is made too small, it is difficult to process. Therefore, including the cost factor, it is considered that 7 nm or more is preferable for practical use.
【0063】(試験5)実施例1の光触媒体と、酸化チ
タン微粒子の担持量を変化させた以外はほぼ同様に試料
16〜18の試料を製造した。担持量の変化はチタニア
ゾルの吸引回数を変化させることで調整した。各試料に
ついて、NO除去率の測定結果を表5に示す。(Test 5) Samples 16 to 18 were manufactured in substantially the same manner as the photocatalyst of Example 1 except that the supported amount of titanium oxide fine particles was changed. The change in the carried amount was adjusted by changing the number of times of sucking titania sol. Table 5 shows the measurement results of the NO removal rate of each sample.
【0064】[0064]
【表5】 [Table 5]
【0065】表5から明らかなように、酸化チタン微粒
子の担持量が多くなるほど、NO除去率も向上してい
る。特に担持量を0.20mg/mL以上とした試料1
7、18がNO除去率が15%以上となり好ましく、さ
らには担持量を0.35mg/mL以上とすることでN
O除去率が32%となって、優れた値を示す。As is clear from Table 5, the NO removal rate is improved as the amount of titanium oxide fine particles carried is increased. Sample 1 with a carried amount of 0.20 mg / mL or more
Nos. 7 and 18 are preferable because the NO removal rate is 15% or more. Furthermore, when the supported amount is 0.35 mg / mL or more, N
The O removal rate is 32%, which is an excellent value.
【0066】[0066]
【発明の効果】以上説明したように、本発明の光触媒体
は、被処理流体を通過でき所定方向に配向する細孔をも
つ透明基材と、その細孔内に担持された光触媒微粒子と
を有することで、充分に被処理流体と光触媒微粒子との
接触時間を確保することが可能となり、高い光触媒能を
発揮することができる。As described above, the photocatalyst body of the present invention comprises a transparent base material having pores that can pass a fluid to be treated and is oriented in a predetermined direction, and photocatalyst fine particles carried in the pores. By having it, it becomes possible to sufficiently secure the contact time between the fluid to be treated and the photocatalyst fine particles, and it is possible to exhibit a high photocatalytic ability.
【0067】更に本発明の窒素酸化物の処理方法による
と、被処理ガス中に還元剤を添加することで、より効率
よく窒素酸化物を分解除去することができる。Furthermore, according to the method for treating nitrogen oxides of the present invention, the nitrogen oxides can be decomposed and removed more efficiently by adding the reducing agent to the gas to be treated.
【図1】実施例で用いた試験装置を示した概略図であ
る。FIG. 1 is a schematic diagram showing a test apparatus used in Examples.
【図2】試験1の結果を示したグラフである。FIG. 2 is a graph showing the results of test 1.
1…光触媒体 2…内筒管 3…反応カラム 4…ブラックライト 5…シールドゴム 1 ... Photocatalyst 2 ... Inner tube 3 ... Reaction column 4 ... Black light 5 ... Shield rubber
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 53/86 ZAB B01J 21/06 A 53/94 35/10 301F B01J 21/06 C03C 17/25 A 35/10 301 B01D 53/36 ZABJ C03C 17/25 102D (71)出願人 000116655 愛知製鋼株式会社 愛知県東海市荒尾町ワノ割1番地 (72)発明者 酒井 武信 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 恩田 勝弘 愛知県名古屋市熱田区六野2丁目4番1号 財団法人ファインセラミックスセンター 内 (72)発明者 岩本 雄二 愛知県名古屋市熱田区六野2丁目4番1号 財団法人ファインセラミックスセンター 内 (72)発明者 白木 久史 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機内 Fターム(参考) 4C080 AA07 AA10 BB02 BB05 CC07 HH05 JJ03 KK02 KK08 LL03 LL10 MM02 NN02 NN06 NN12 QQ03 QQ11 QQ12 4D048 AA06 AA22 AB03 AC02 AC10 BA07X BA41X BB03 BB05 BB15 BB17 CC52 EA01 4G059 AA16 AA17 AB01 AB09 AB11 AC22 EA04 EB07 4G069 AA03 AA08 BA04A BA04B BA14A BA14B BA48A CA05 CA10 CA11 CA13 CA17 DA06 EA06 EA11 EB18X EB19 EC06X EC17X EC22Y EC27 FA03 FB15 FB57 FC08 Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B01D 53/86 ZAB B01J 21/06 A 53/94 35/10 301F B01J 21/06 C03C 17/25 A 35/10 301 B01D 53/36 ZABJ C03C 17/25 102D (71) Applicant 000116655 Aichi Steel Co., Ltd. 1 Wanowari, Arao-cho, Tokai-shi, Aichi (72) Inventor Takenobu Sakai 1 Toyota-cho, Toyota-shi, Aichi Toyota Motor Co., Ltd. (72) Inventor Katsuhiro Onda 2-4-1 Rokuno, Atsuta-ku, Nagoya, Aichi Prefecture Fine Ceramics Center Foundation (72) Inventor Yuji Iwamoto 2-4-1 Rono, Atsuta-ku, Nagoya City, Aichi Foundation Corporate Fine Ceramics Center (72) Inventor Hisashi Shiraki 2-chome Toyota-cho, Kariya city, Aichi Stock company Toyota automatic loom F-term (reference) 4C080 AA07 AA10 BB02 BB05 CC07 HH05 JJ03 KK02 KK08 LL03 LL10 MM02 NN02 NN06 NN12 QQ03 QQ11 QQ12 4D048 AA06 AA22 AB03 AC02 AC10 BA07X BA41X BB03 BB05 BB15 BB17 CC52 EA01 4G059 AA16 AA17 AB01 AB09 AB11 AC22 EA04 EB07 4G069 AA03 AA08 BA18CA18 CA18 CA17 CA17 CA17 CA17 CA17 CA17 CA17 CA17 CA17 CA17 CA17 CA17 CA17 CA17 CA17 CA11
Claims (11)
通過でき所定方向に配向する細孔をもつ透明基材と、該
細孔内に担持された光触媒微粒子とを有することを特徴
とする光触媒体。1. A transparent base material having pores capable of passing a fluid to be treated from one surface side to the other surface side and oriented in a predetermined direction, and photocatalyst fine particles carried in the pores. And photocatalyst.
絡する方向である請求項1に記載の光触媒体。2. The photocatalyst body according to claim 1, wherein the predetermined direction is a direction connecting the one surface side and the other surface side.
mであり、平均長さが該孔径の10倍以上である請求項
1又は2に記載の光触媒体。3. The pores have an average pore diameter of 0.1 to 50 μm.
The photocatalyst body according to claim 1 or 2, wherein m is m and the average length is 10 times or more the pore size.
細孔の体積が35%以上である請求項1〜3のいずれか
に記載の光触媒体。4. The photocatalyst body according to claim 1, wherein the volume of the pores is 35% or more with respect to the apparent volume of the transparent substrate.
0nmである請求項1〜4のいずれかに記載の光触媒
体。5. The average particle diameter of the photocatalyst fine particles is 7 to 2.
It is 0 nm, The photocatalyst body in any one of Claims 1-4.
見かけ体積に対して、0.2mg/mL以上である請求
項1〜5のいずれかに記載の光触媒体。6. The photocatalyst body according to claim 1, wherein the amount of the photocatalyst fine particles carried is 0.2 mg / mL or more based on the apparent volume of the transparent substrate.
側及び前記他面側は該板状体の表裏面である請求項1〜
6のいずれかに記載の光触媒体。7. The transparent substrate is a plate-shaped body, and the one surface side and the other surface side are front and back surfaces of the plate-shaped body.
6. The photocatalyst body according to any one of 6.
側及び前記他面側は該管状体の表裏面である請求項1〜
7のいずれかに記載の光触媒体。8. The transparent substrate is a tubular body, and the one surface side and the other surface side are front and back surfaces of the tubular body.
7. The photocatalyst body according to any one of 7.
構成されており、 該毛細管はそれぞれ前記一面側から前記他面側に向けて
配向する請求項1〜8のいずれかに記載の光触媒体。9. The transparent base material is configured by bundling a plurality of capillaries, and the capillaries are oriented from the one surface side to the other surface side, respectively. Photocatalyst.
媒体の前記一面側から窒素酸化物を含む被処理流体を導
入して処理する窒素酸化物の処理方法であって、 該光触媒体に導入される前の該被処理流体に還元剤を添
加することを特徴とする窒素酸化物の処理方法。10. A method for treating nitrogen oxides, which comprises introducing a treatment target fluid containing nitrogen oxides from the one surface side of the photocatalyst body according to claim 1 to treat the nitrogen oxides. A method for treating nitrogen oxides, which comprises adding a reducing agent to the fluid to be treated before being introduced into.
0に記載の窒素酸化物の処理方法。11. The fluid to be processed is heated.
The method for treating nitrogen oxide according to 0.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002079109A JP4094874B2 (en) | 2001-11-26 | 2002-03-20 | Method for treating photocatalyst and nitrogen oxide |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001359893 | 2001-11-26 | ||
JP2001-359893 | 2001-11-26 | ||
JP2002079109A JP4094874B2 (en) | 2001-11-26 | 2002-03-20 | Method for treating photocatalyst and nitrogen oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003220341A true JP2003220341A (en) | 2003-08-05 |
JP4094874B2 JP4094874B2 (en) | 2008-06-04 |
Family
ID=27759295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002079109A Expired - Fee Related JP4094874B2 (en) | 2001-11-26 | 2002-03-20 | Method for treating photocatalyst and nitrogen oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4094874B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006280428A (en) * | 2005-03-31 | 2006-10-19 | Koha Co Ltd | Filter and device for sterilization/deodorization |
WO2007108350A1 (en) * | 2006-03-22 | 2007-09-27 | National University Corporation Hokkaido University | Method for testing photocatalyst function and apparatus for use in the test |
-
2002
- 2002-03-20 JP JP2002079109A patent/JP4094874B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006280428A (en) * | 2005-03-31 | 2006-10-19 | Koha Co Ltd | Filter and device for sterilization/deodorization |
WO2007108350A1 (en) * | 2006-03-22 | 2007-09-27 | National University Corporation Hokkaido University | Method for testing photocatalyst function and apparatus for use in the test |
JP2007256010A (en) * | 2006-03-22 | 2007-10-04 | Noritake Co Ltd | Testing method of photocatalyst function, and appliance used for testing |
Also Published As
Publication number | Publication date |
---|---|
JP4094874B2 (en) | 2008-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ITSA20070020A1 (en) | HIGH EFFICIENCY PHOTO-FENTON HETEROGENEOUS PROCESS FOR DEGRADATION OF ORGANIC POLLUTANTS. | |
JP4469975B2 (en) | Photocatalyst composite and organic substance conversion method using the same | |
US20070149397A1 (en) | Photocatalytic composite material, method for producing the same and application thereof | |
US11224860B2 (en) | Nanofiber surfaces | |
JP3228035B2 (en) | Manufacturing method of antibacterial material | |
WO2007004592A1 (en) | Method for formation of alumina coating film, alumina fiber, and gas treatment system comprising the alumina fiber | |
JP3944094B2 (en) | Photocatalyst production method, photocatalyst and gas purification device | |
JP4806108B2 (en) | Deodorizing device | |
JP2003220341A (en) | Method for treating photocatalyst body and nitrogen oxide | |
JP2014073956A (en) | Method of oxidizing carbon monoxide to carbon dioxide by light | |
JP2009254961A (en) | Catalyst for decomposing/removing ozone and manufacturing method therefor | |
CN101081307A (en) | Process for improving the effect of photochemical catalyst air purification | |
TW201217291A (en) | Glass with photocatalytic function | |
RU2482912C1 (en) | Method of producing filtering-sorbing material with photo catalytic properties | |
JPH1071331A (en) | Zno-pd complex catalyst and preparation thereof | |
CN107497293A (en) | A kind of air purifying filter core | |
JP3521748B2 (en) | Air purification filter and air purifier | |
JP2005111354A (en) | Photocatalyst carrier and gas treatment device | |
JP3051645B2 (en) | Method for producing adsorbent and adsorbent | |
JP3202863B2 (en) | Photocatalyst-supported linear articles | |
JP4636954B2 (en) | Air cleaning apparatus and air cleaning method | |
JP2002233735A (en) | Method for cleaning by using photocatalyst composite | |
JPH08323346A (en) | Method and device for treating dry cleaning waste water | |
JP2000126610A (en) | Photocatalyst member and harmful matter treating device using the member | |
JP2002320664A (en) | Air cleaning method and apparatus using by photocatalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050316 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20060307 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060307 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071120 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080118 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080306 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110314 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110314 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110314 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120314 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120314 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130314 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130314 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130314 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140314 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |