WO2007107044A1 - Algorithme d'attribution de blocs permettant à différents types de téléphones mobiles de partager des canaux - Google Patents

Algorithme d'attribution de blocs permettant à différents types de téléphones mobiles de partager des canaux Download PDF

Info

Publication number
WO2007107044A1
WO2007107044A1 PCT/CN2006/000468 CN2006000468W WO2007107044A1 WO 2007107044 A1 WO2007107044 A1 WO 2007107044A1 CN 2006000468 W CN2006000468 W CN 2006000468W WO 2007107044 A1 WO2007107044 A1 WO 2007107044A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
downlink
mobile phone
uplink
current
Prior art date
Application number
PCT/CN2006/000468
Other languages
English (en)
French (fr)
Inventor
Wenyi Wang
Jihong Wang
Xinyan Lu
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to CN2006800503447A priority Critical patent/CN101352092B/zh
Priority to PCT/CN2006/000468 priority patent/WO2007107044A1/zh
Publication of WO2007107044A1 publication Critical patent/WO2007107044A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information

Definitions

  • the present invention relates to the field of data packet transmission in the Global System for Mobile Communications (GSM)-Enhanced General Packet Radio Service (EGPRS), and more particularly to a mobile phone for general packet radio service (GPRS) in a system supporting EGPRS.
  • GSM Global System for Mobile Communications
  • GPRS General Packet Radio Service
  • GPRS general packet radio service
  • the network side When sharing a channel with an EGPRS mobile phone, the network side performs a method of allocating block resources.
  • Radio Link Control Block RLC block
  • TBF Temporary Block Flow
  • the network and the mobile phone need to establish a TBF through some signaling interaction to obtain the wireless block resource. After the current data transmission is completed, the TBF is released, and the wireless block resource is no longer used. If you need to transfer the data again, create a new TBF. Data transmission on the wireless interface does not distinguish between upper-layer services.
  • a TBF can transmit data that all upper-layer services need to transmit at the same time, that is, a mobile phone establishes only one TBF in the uplink or downlink direction at the same time.
  • radio resources are divided and allocated by radio blocks. All radio blocks on one radio channel can be allocated to TBFs established by different mobile phones for data transmission, so as to achieve the purpose of sharing wireless channels by multiple mobile phones. But a wireless block can only be assigned to one TBF.
  • TBFs established by the mobile phone has an identifier called Temporal Flow Identity (TIFF). Different TBFs with the same direction have different TFIs on the same wireless channel.
  • TIFF Temporal Flow Identity
  • the uplink or downlink TFI is allocated by the network, and the mobile phone is notified through the TBF establishment process.
  • a single TBF can use multiple wireless channels, depending on the multi-slot capability and network channel assignment of the handset.
  • the network In the downlink direction, the network carries the TFI identifier on each downlink radio block, indicating that the radio block is allocated to the TBF with the same TFI; and in the uplink direction, there are several different block allocation modes, also called media access.
  • Mode - Fixed Allocation During the TBF establishment process, the wireless channel and the radio block are fixedly allocated, specified by the bitmap. This method is completed once, and no further allocation is required during the transmission.
  • a TBF usage is assigned to each radio block by the network.
  • an Upstate State Flag (USF) is required.
  • Each uplink TBF has a USF on an uplink radio channel.
  • the USFs of the TBFs on the same radio channel are different from each other. There may be different USFs on the multiple wireless channels assigned.
  • the USF is included in the block header of the downlink radio block, and the mobile phone receives each radio block on the allocated channel, and decodes the block header. If the USF and the TBF of the mobile phone are in the USF on the channel, the next uplink is considered. Blocks are allocated for their own use.
  • Extended dynamic allocation After the mobile phone detects its own USF on a wireless channel, it considers that the next upstream block on this channel and the higher numbered channel is allocated for its own use.
  • the uplink and downlink block resources are independently allocated, and the uplink allocation is implemented by the USF on the downlink block header.
  • EGPRS has a higher maximum transmission rate than GPRS. It introduces 8PSK modulation mode in the wireless port, which increases the maximum data transmission rate of the wireless port to about three times that of GPRS. EGPRS also adopts segment retransmission and incremental redundancy. The rest of the retransmission method also improves the efficiency of transmission. EGPRS uses a different encoding algorithm than GPRS in the wireless port. The four encoding modes (MCS1 to MCS4) with lower encoding rate use GMSK modulation mode, and the five encoding modes with higher encoding rate (MCS5 ⁇ MCS9) are used. It is an 8PSK modulation method. The four encoding methods of GPRS (CS1 ⁇ CS4) use GMSK modulation.
  • GPRS hand The machine indicates that the mobile phone with GPRS TBF is established, and the EGPRS mobile phone indicates that the mobile phone with EGPRS TBF is established.
  • EGPRS In the EGPRS system, multiple mobile phones can also share wireless channels. In particular, GPRS mobile phones and EGPRS mobile phones can share wireless channels.
  • EGPRS is identical to GPRS.
  • the modulation mode is GMSK, and the GPRS mobile phone and the EGPRS mobile phone of the shared channel can be correctly decoded, and the USF on the block header is obtained, as shown in FIG. Shown.
  • the GPRS mobile phone will not use this block to transmit data, resulting in waste of block resources, and if the upstream TBF does not get within the time specified in the protocol.
  • the uplink block is allocated, the TBF will be abnormally released, causing the transmission to fail. It can be seen that in the EGPRS system, when the GPRS mobile phone and the EGPRS mobile phone share the channel, when the EGPRS mobile phone fully uses the higher transmission rate MCS5 ⁇ MCS9 coding mode, the data transmission of the uplink GPRS mobile phone may be disadvantageous.
  • the network should adopt an appropriate method to avoid the occurrence of these two situations.
  • the network can allocate different wireless channels for the EGPRS mobile phone and the GPRS mobile phone, so that the uplink block resource failure does not occur because there is no GPRS mobile phone and the EGPRS shared channel.
  • the shared channel of the GPRS mobile phone and the EGPRS mobile phone will occur in large numbers, in various numbers of different GPRS mobile phones and EGPRS mobile phones.
  • the channel utilization efficiency will be greatly reduced. It has a great adverse effect on the overall transmission performance of the EGPRS system.
  • the technical problem to be solved by the present invention is to provide a block allocation algorithm for different types of mobile phone shared channels, which can minimize the failure of uplink block resource allocation under the condition of shared channel of GPRS mobile phone and EGPRS mobile phone, and improve channel utilization and data transmission. s efficiency.
  • the present invention provides a block allocation algorithm for different types of mobile phone shared channels, which is applied to a mobile phone that performs an enhanced general packet radio service (EGPRS) and a mobile phone shared packet channel that performs a general packet radio service (GPRS).
  • ECGPRS enhanced general packet radio service
  • GPRS general packet radio service
  • the current uplink block and the downlink block are allocated according to the current priority allocation algorithm. If the uplink allocation fails or the downlink coding mode is limited, the weight of the current priority allocation algorithm needs to be reduced, and when the weight reaches the handover threshold Switch the current priority allocation algorithm and reset the weight of the current priority allocation algorithm.
  • the block allocation algorithm may further have the following features:
  • the step (a) is to initially set a default priority allocation algorithm when the network configures the packet channel shared by the GPRS and the EGPRS mobile phone.
  • the block allocation algorithm may further have the following features: when the step 1) assigns a priority weight, and when the step (b) resets the weight of the current priority allocation algorithm, the uplink resource priority allocation value is set. For the number of uplink GPRS mobile phones on the current shared channel, the downlink block resource priority allocation weight is set to the set multiple of the number of downlink EGPRS mobile phones on the current shared channel.
  • the foregoing block allocation algorithm may further have the following features:
  • a current priority allocation algorithm such as an uplink block resource priority allocation algorithm
  • the processing is further divided into the following steps. : (MO each time the current uplink block and the downlink block allocation are performed, the current uplink block is first allocated to a certain mobile phone, and the current downlink block is attempted to be allocated to a certain mobile phone on the shared channel;
  • step (bl3) reducing the uplink block resource priority allocation weight, and determining whether the weight has reached the set switching threshold, if yes, performing step (bl4); otherwise, performing step (bl5) ;
  • step (bl5) determining whether the downlink block is allocated to all downlink mobile phones of the shared channel, and if yes, performing step (bl6), otherwise attempting to allocate the current downlink block to the next mobile phone, and returning to step (bl2);
  • (bl6) Restrict the downlink block coding mode assigned to the downlink EGPRS mobile phone. Only the MCS1 to MCS4 can be used to allocate the current downlink block to a mobile phone on the shared channel. The uplink and downlink block allocation process ends.
  • the block allocation algorithm may further have the following features: When performing block allocation in the step (b), first determine a current priority allocation algorithm, for example, a downlink block resource priority allocation algorithm, and the processing is further divided into the following steps. :
  • the current downlink block is first allocated to a mobile phone, and an attempt is made to allocate the current uplink block to a mobile phone on the shared channel;
  • step (b23) reducing the downlink block resource priority allocation weight, and determining whether the weight has reached the set switching threshold, and if yes, performing step (b24); otherwise, performing step (b25);
  • step (b25) determining whether the current uplink block has been attempted to be allocated to all uplink mobile phones of the shared channel, and if yes, performing step (b26), otherwise attempting to allocate the current uplink block to the next hand Machine, return to step (b22);
  • the foregoing block allocation algorithm may further have the following features:
  • a current priority allocation algorithm such as an uplink block resource priority allocation algorithm
  • step (B13) determining whether the downlink block is allocated to all downlink mobile phones of the shared channel, and if yes, performing step (B14); otherwise, attempting to allocate the current downlink block to the next mobile phone, and returning to step (B12);
  • step (B14) reducing the uplink block resource priority allocation weight, and determining whether the weight has reached the set switching threshold, and if yes, performing step (B15); otherwise, directly performing step (B16);
  • the block allocation algorithm may further have the following features: When performing block allocation in the step (b), first determine a current priority allocation algorithm, for example, a downlink block resource priority allocation algorithm, and the processing is further divided into the following steps. :
  • step B23 determining whether it has attempted to allocate the current uplink block to all uplink mobile phones of the shared channel, and if yes, performing step B24, otherwise attempting to allocate the current uplink block to the next mobile phone, and returning to step B22;
  • step B24 reducing the downlink block resource priority allocation weight, and determining whether the weight has reached the set switching threshold, and if so, executing step B25, otherwise, directly executing step B26;
  • the downlink block coding mode assigned to the downlink EGPRS mobile phone can only use MCS1 ⁇ MCS4 to allocate the current downlink block to a certain mobile phone on the shared channel, and the uplink and downlink block allocation process ends.
  • the block allocation algorithm may further have the following features: if the following allocation mode occurs, it is determined that the encoding mode of the mobile phone allocated by the downlink block is limited: the current uplink block is allocated to the GPRS mobile phone, and the current downlink block is allocated to the EGPRS mobile phone and the mobile phone is The block will be transmitted using the MCS5 ⁇ MCS9 encoding mode, and is not limited in other allocation modes.
  • the block allocation algorithm may further have the following features: when the uplink GPRS mobile phone or the downlink EGPRS mobile phone on the shared packet channel is increased or decreased, the number of uplink GPRS mobile phones and the number of downlink EGPRS mobile phones sharing the packet channel are calculated, Set the priority allocation weight of the block resource, which is to set the uplink block resource priority allocation weight to a multiple of the number of uplink GPRS mobile phones on the current shared channel, and set the downlink block resource priority allocation weight to the number of downlink EGPRS mobile phones on the current shared channel. Multiples.
  • the foregoing block allocation algorithm may further have the following features: When the uplink block resource priority allocation weight or the downlink block resource allocation weight is reduced, the current weight is decreased by 1, and the switching threshold is 0.
  • the method of the present invention comprehensively considers the advantages and disadvantages of the uplink block priority allocation algorithm and the downlink block priority allocation algorithm.
  • the data transmission of the uplink GPRS mobile phone is guaranteed by the uplink block priority allocation algorithm, and there is no occurrence due to the allocation.
  • the abnormal release phenomenon occurs to the radio block resource.
  • the high-speed coding mode of the downlink EGPRS mobile phone is obtained by the downlink block priority allocation algorithm. With the full use, the characteristics of EGPRS mobile phone transmission speed are brought into play.
  • the alternate use of the two prioritized allocation algorithms is achieved by prioritizing the weighting mechanism using the uplink and downlink block resources.
  • Figure 1 is a schematic diagram of dynamic allocation, showing the successful allocation of uplink block resources when GPRS and EGPRS shared channels.
  • Figure 2 is a schematic diagram of dynamic allocation. It shows that the uplink GPRS mobile phone cannot demodulate the USF of the downlink block with the coding mode of MCS5 ⁇ MCS9, which causes the uplink block resource allocation to fail.
  • Figure 3 is a general flow chart of the method of the present embodiment.
  • FIG. 4 is a flowchart of the method for performing uplink and downlink block resource allocation according to the currently used priority allocation algorithm according to the method in this embodiment.
  • the block resource allocation algorithm of the shared channel of the GPRS mobile phone and the EGPRS mobile phone uses the uplink block priority allocation algorithm and the downlink block priority allocation algorithm according to the number of uplink GPRS mobile phones and the number of downlink EGPRS mobile phones of the shared channel.
  • the uplink and downlink block resources of the channel are allocated as efficiently as possible, and the uplink GPRS mobile phone can obtain the block resources as much as possible, and the downlink EGPRS mobile phone can obtain the block resources as much as possible to transmit using the higher transmission rate coding mode. .
  • the following describes the downlink block priority allocation algorithm and the uplink block priority allocation algorithm, and then describes the block allocation algorithm that performs uplink priority and downlink priority in turn.
  • the downlink block priority allocation means that before each downlink block is sent, it is determined that the downlink block is allocated to a mobile phone, and then the mobile phone that obtains the corresponding uplink block is restricted and selected according to the modulation mode used by the downlink block. There are two cases of this type of allocation:
  • the downlink block is idle, or allocated to the GPRS mobile phone, or assigned to the EGPRS mobile phone transmission Signaling (CS1 coding mode) or using MCS1 ⁇ MCS4 coding mode to transmit data.
  • the modulation side of the downlink block is GMSK, and both the GPRS mobile phone and the EGPRS mobile phone can demodulate and decode the USF. Therefore, the corresponding uplink block allocation is not affected. limit.
  • the downlink block is allocated to the EGPRS mobile phone, and the data is transmitted by using the MCS5 ⁇ MCS9 coding mode.
  • the modulation mode of the downlink block is 8PSK, and only the EGPRS mobile phone can be correctly demodulated and decoded. Therefore, in order not to cause the allocation failure,
  • the corresponding upstream block can only be assigned to EGPRS phones. If no EGPRS phone can be assigned, but there is a GPRS phone that needs to be assigned, it can only limit the encoding used by the downlink block.
  • the allocation of the block resources to the downlink EGPRS mobile phone is not limited, so that the high-speed encoding mode can be used as much as possible. Improve the downlink data transmission rate.
  • the uplink GPRS mobile phone there may be no effective block allocation for a long time, resulting in a slow or long transmission time (5 seconds) without the block allocation and the abnormal release of the TBF.
  • the limit case is that when the downlink only has EGPRS handsets and all adopt the coding mode of MCS5 ⁇ MCS9, the uplink GPRS mobile phone of the shared channel will not be allocated to the uplink block resources.
  • the uplink block priority allocation means that before each downlink block is sent, it is determined that the next uplink block is allocated to a mobile phone, and then according to the type of the mobile phone that obtains the uplink block, the mobile phone to be allocated by the downlink block is selected, and the downlink block is used. Encoding. There are two cases of this type of allocation:
  • the uplink block is idle, or allocated to the EGPRS mobile phone.
  • the downlink block can use GMSK or 8PSK modulation mode, that is, the downlink block can use all coding methods to be allocated to the GPRS mobile phone or the EGPRS mobile phone.
  • the uplink block is allocated to the GPRS mobile phone.
  • the downlink block can only use the GMSK modulation mode, that is, the downlink block can only be allocated to the GPRS mobile phone or the EGPRS mobile phone, and the EGPRS mobile phone can only be used.
  • the uplink GPRS mobile phone can smoothly allocate the block resource for data transmission.
  • the downlink block resources are also all allocated, but for the downlink EGPRS mobile phone, the use of the MCS5 ⁇ MCS9 coding mode with higher coding rate is limited, and the performance of high-speed data transmission cannot be effectively utilized.
  • the uplink block priority allocation and the uplink block priority allocation method have their advantages and disadvantages. Therefore, in this embodiment, the uplink block priority allocation and the downlink block priority allocation algorithm are used in turn, and the GPRS mobile phone uplink transmission and The balance of EGPRS mobile phone downlink transmission performance is balanced.
  • the method is shown in Figure 3 and includes the following steps:
  • Step 10 When the network configures the packet channel shared by the GPRS and the EGPRS mobile phone, a default priority allocation algorithm is initially set, for example, the downlink block first allocation algorithm is initially used, but the possibility of random selection is not excluded;
  • Step 20 Calculate an uplink block resource priority allocation weight and a downlink block resource priority allocation weight of the channel according to the number of uplink GPRS mobile phones and the downlink EGPRS mobile phone number of the shared channel; (initial) uplink GPRS on the shared packet channel
  • the uplink block resource priority allocation weight is set to be ⁇ 3 times, preferably 2 times, of the current uplink GPRS mobile phone number when switching.
  • the number of downlink EGPRS mobile phones sharing the packet channel is also calculated, and the downlink block resource priority allocation weight is set to the set multiple of the current downlink EGPRS mobile phone number, preferably 2 times.
  • Step 30 Allocate the current uplink block and the downlink block according to the current priority allocation algorithm. If the uplink allocation fails or the downlink coding mode is limited, the corresponding priority allocation weight is reduced, such as the weight of the currently used priority allocation algorithm. When it becomes 0, the priority allocation algorithm is switched, and the weight of the current priority allocation algorithm is reset.
  • FIG. 4 is a flowchart of the method for allocating current uplink and downlink block resources according to the currently used priority allocation algorithm in the method of the embodiment, including the following steps:
  • Step 110 determining whether the current priority allocation algorithm is an uplink block resource priority allocation algorithm, if yes, performing step 120, otherwise, performing step 210;
  • Step 120 first assigning a current uplink block to a mobile phone;
  • Step 130 attempting to allocate the current downlink block to a mobile phone;
  • Step 140 Determine whether the current uplink block is allocated to the GPRS mobile phone, and the current downlink block is allocated to the EGPRS mobile phone, and the mobile phone will use the MCS5 ⁇ MCS9 coding mode to send the block. If not, the uplink and downlink block allocation is successful, and the process ends; otherwise, the execution is performed. Step 150;
  • the successful allocation of the uplink and downlink blocks in this step includes the following:
  • the current uplink block is idle, or allocated to the EGPRS mobile phone, and the corresponding downlink block resource can be arbitrarily assigned to a GPRS mobile phone or an EGPRS mobile phone.
  • the current uplink block is allocated to the GPRS mobile phone, and the corresponding downlink block is allocated to the GPRS mobile phone, or the downlink block is allocated to the EGPRS mobile phone, but the coding mode of the current downlink block of the mobile phone is MCS1 ⁇ MCS4 or CS1.
  • Step 150 subtracting 1 from the priority allocation weight of the uplink block resource
  • Step 160 determining whether the uplink block resource priority allocation weight is equal to 0, if yes, executing step 170, otherwise, performing step 180;
  • Step 170 Set a current priority allocation algorithm to a downlink block priority allocation algorithm, and reset the uplink block resource priority allocation weight to twice the number of uplink GPRS mobile phones of the shared packet channel;
  • Step 190 Determine whether the current downlink block is allocated to all downlink mobile phones of the shared channel, and if yes, go to step 190, otherwise return to step 130, and try to allocate the current downlink block to the next mobile phone; Step 190, limit allocation
  • the downlink block coding mode of the downlink EGPRS mobile phone can only use MCS1 ⁇ MCS4., and allocate the current downlink block to a certain mobile phone on the shared channel, and the current uplink and downlink block allocation process ends;
  • Step 200 Assign the current downlink block to a mobile phone
  • Step 210 Try to allocate the current uplink block to a mobile phone
  • step 220 it is determined whether the current downlink block is allocated to the EGPRS mobile phone, and the coding mode used by the mobile phone is MCS5 ⁇ MCS9, and the current uplink block is allocated to the GPRS mobile phone. If yes, step 230 is performed, otherwise, the uplink and downlink block allocation is performed. The process ends; In the step, the uplink and downlink block allocation success includes the following: The downlink block is idle, or is allocated to the GPRS mobile phone, or is allocated to the EGPRS mobile phone transmission signaling (CS1 coding mode) or the MCS1 ⁇ MCS4 coding mode is used to transmit data.
  • the corresponding uplink block resources can be arbitrarily assigned to a GPRS mobile phone or an EGPRS mobile phone.
  • the downlink block is allocated to the EGPRS mobile phone and the wireless block used for transmission is encoded by MCS5 ⁇
  • the uplink block is assigned to the EGPRS mobile phone.
  • Step 230 subtracting 1 from the priority allocation weight of the downlink block resource
  • Step 240 determining whether the downlink block resource priority allocation weight is equal to 0, if yes, executing step 250, otherwise performing step 260;
  • Step 250 Set the current priority allocation algorithm to an uplink block resource priority allocation algorithm, and reset the downlink block resource priority allocation weight to twice the number of downlink EGPRS mobile phones of the shared packet channel.
  • Step 260 Determine whether the current downlink block has been tried. All the uplink mobile phones allocated to the shared channel, if yes, go to step 270, otherwise, return to step 210, and try to assign the current line block to the next mobile phone;
  • Step 270 limiting the downlink block coding mode allocated to the downlink EGPRS mobile phone can only be used.
  • MCS1 to MCS4 allocate the current downlink block to a mobile phone on the shared channel, and the current uplink and downlink block allocation process ends.
  • the correspondence between the weighted priority of the uplink and downlink block resources and the number of uplink GPRS mobile phones and the number of downlink EGPRS mobile phones of the shared channel can be adjusted according to the actual operation, so as to obtain better distribution effect and required control.
  • the effect such as increasing the multiple allocation of the downlink block resource priority allocation weight and the number of downlink EGPRS mobile phones, can make the EGPRS mobile phone better perform its high-speed transmission performance.
  • the present invention may also have other transformations.
  • the above embodiment is decremented by one for each allocation of a mobile phone in a single allocation process.
  • the current priority allocation algorithm weight is decremented by 1, that is, the weight reduction operation is not performed multiple times for the limited condition of each mobile phone.
  • the weight is not necessarily minus 1, which can be based on actual conditions and Check to choose the appropriate step size.
  • the current priority allocation algorithm is first determined, for example, an uplink block resource prioritization algorithm, and the processing is further divided into the following steps:
  • the current uplink block is first allocated to a mobile phone, and an attempt is made to allocate the current downlink block to a mobile phone on the shared channel;
  • A2 determining whether the coding mode of the mobile phone to which the downlink block is allocated in the foregoing manner is limited, in the same manner as the foregoing embodiment, if yes, performing the next step, otherwise, performing block allocation in the above manner, and ending;
  • step A3 determining whether it has tried to allocate the current downlink block to all downlink mobile phones of the shared channel, and if yes, performing step A4, otherwise attempting to allocate the current downlink block to the next mobile phone, and returning to step A2;
  • step A4 the uplink block resource priority allocation weight is reduced, and it is determined whether the weight has reached the set switching threshold. If yes, step A5 is performed; otherwise, step A6 is directly executed;
  • the downlink block coding mode assigned to the downlink EGPRS mobile phone can only use MCS1 ⁇ MCS4 to allocate the current downlink block to a mobile phone on the shared channel.
  • the uplink and downlink block allocation process ends.
  • the processing is further divided into the following steps: ⁇ 1 ⁇ , each time the current uplink and downlink block allocation is performed, the current downlink block is first allocated to a mobile phone, and the current uplink block is attempted to be allocated. Sharing a mobile phone on the channel;
  • step ⁇ 3 judge whether it has tried to allocate the current uplink block to all the uplink mobile phones of the shared channel, and if yes, perform step ⁇ 4, otherwise try to allocate the current uplink block to the next mobile phone, and return to step ⁇ 2;
  • step ⁇ 4 reducing the priority value of the downlink block resource allocation, and determining whether the weight has reached the set switching threshold, and if so, performing step ,5, otherwise, directly performing step ⁇ 6; B5, switching the current priority allocation algorithm to an uplink block priority allocation algorithm, and resetting the downlink block resource priority allocation weight;
  • the downlink block coding mode assigned to the downlink EGPRS mobile phone can only use MCS1 ⁇ MCS4 to allocate the current downlink block to a mobile phone on the shared channel, and the uplink and downlink block allocation process ends.
  • the method of the invention is logically reasonable, and the implementation method is relatively simple, and the block allocation problem when the GPRS mobile phone and the EGPRS mobile phone share the channel in the EGPRS system is well solved.
  • Tests show that after the wireless block allocation using the method of the present invention in the EGPRS system, the GPRS mobile phone and the EGPRS mobile phone sharing channel have better effects, and the overall data transmission performance of the system is significantly improved.
  • the invention can be applied to the field of data packet transmission in the Global System for Mobile Communications (GSM)-Enhanced General Packet Radio Service (EGPRS), taking into consideration the advantages and disadvantages of the uplink block first allocation algorithm and the downlink block priority allocation algorithm, so that the uplink The GPRS mobile phone can obtain the block resources as much as possible, and the downlink EGPRS mobile phone can obtain the block resources as much as possible to transmit using the higher transmission rate coding mode.
  • GSM Global System for Mobile Communications
  • EGPRS General Packet Radio Service

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种不同类塑手机共享信道的块分配算法
技术领域
本发明涉及全球移动通信系统 (GSM ) —增强型通用分组无线业务 (EGPRS) 中的数据分组传输领域的应用, 具体涉及一种在支持 EGPRS的系 统中, 进行通用分组无线业务(GPRS) 的手机和进行 EGPRS的手机共享信道 时, 网络侧进行块资源的分配方法。
背景技术
在 GPRS/EGPRS系统的无线接口上, 数据是通过无线块来传输的。 无线 信道上四个连续的 TDMA帧构成一个无线块, 每个无线块传输一个基本数据 单元, 称为无线链路控制块 (Radio Link Control Block, RLC块) , 网络 或手机将需要传输的数据分拆成一组 RLC块, 通过一组无线块传输到对端, 这样的一组无线块称为临时块流 TBF (Temporary Block Flow) , 也就是网 络和手机之间的传输链路。 在 GPRS/EGPRS系统中, 上行和下行的数据传输 是独立的, 即分别建立上行 TBF或下行 TBF传输上行数据或下行数据。 数据 传输前, 网络和手机需要通过一些信令交互建立 TBF,从而获得无线块资源, 当前的数据传输完成后, TBF释放, 不再使用无线块资源。 如果需要再次传 输数据, 则建立新的 TBF。 数据在无线接口传输是不区分上层业务的, 一个 TBF可以传输所有上层业务同时需要传输的数据, 即一个手机在上行或下行 方向上同时只建立一个 TBF。
在 GPRS/EGPRS系统中, 无线资源是以无线块来划分和分配的, 一个无 线信道上的所有无线块可以分配给不同手机建立的 TBF进行数据传输, 以达 到多个手机共享无线信道的目的。但是一个无线块只能分配给一个 TBF使用。 每个手机建立的 TBF都有一个标识, 称为临时流标识 TFI (Temporary Flow Identity) , 在同一个无线信道上, 方向相同的不同 TBF具有不同的 TFI。 上行或下行的 TFI是网络分配的, 通过 TBF建立过程通知手机。 一个 TBF可 以使用多条无线信道, 这依赖于手机的多时隙能力和网络信道分配。 在下行方向, 网络在每个下行无线块上带上 TFI标识, 表明本无线块是 分配给具有相同 TFI的 TBF; 而在上行方向, 有几种不同的块分配方式, 也 称为媒体接入方式- 固定分配: 在 TBF建立过程中, 固定分配无线信道和无线块, 通过位图 指定。 这种方式为一次分配完成, 传输过程中不需要再进行分配。
动态分配: 由网络为每一个无线块指定一个 TBF使用。 在这种方式下, 需要使用一个上行状态标识 USF (Uplink State Flag) , 每个上行 TBF在一 条上行无线信道上有一个 USF, 同一条无线信道上各 TBF的 USF是互不相同 的, 一个 TBF在分配到的多条无线信道上可以有不同的 USF。 USF包含在下 行无线块的块头中, 手机接收分配到的信道上的每个无线块, 并对块头进行 解码, 如果 USF与该手机的 TBF在本信道上的 USF—致, 则认为下一个上行 块是分配给自己使用。
扩展动态分配: 手机在一条无线信道上检测到属于自己的 USF后, 认为 在本信道及更高编号的信道上的下一个上行块都是分配给自己使用的。
这三种分配方式中, 动态分配是最灵活的, 也易于控制, 目前是最常用 的。 在 GPRS系统中, 上下行的块资源是独立分配的, 上行的分配是通过下 行块头上的 USF来实现的。
EGPRS具有比 GPRS更高的最大传输速率, 它在无线口引入了 8PSK的调 制方式,使得无线口的最大数据传输速率提高到 GPRS的三倍左右, EGPRS还 采用了分段重传和增量冗余的重传方式, 也提高了传输的效率。 EGPRS在无 线口使用了与 GPRS不同的编码算法,编码速率较低的四种编码方式 (MCS1〜 MCS4)使用的是 GMSK调制方式,编码速率较高的五种编码方式(MCS5〜MCS9) 使用的是 8PSK调制方式。而 GPRS的四种编码方式 (CS1〜CS4)使用的是 GMSK 调制方式。对于只支持 GPRS功能的手机,它对下行的编码方式为 MCS1〜MCS4 的无线块可以进行解调和块头解码, 而对编码方式为 MCS5〜MCS9的无线块 则不能解调和解码。 GPRS手机只能建立 GPRS TBF, 而 EGPRS手机可以建立 使用 MCS1 S9编码方式的 TBF,也可以建立使用 CS1〜CS4编码方式的 GPRS TBF, 但是在同一 TBF过程中, TBF的类型不能改变。 以下描述中, GPRS手 机表示建立了 GPRS TBF的手机, EGPRS手机表示建立了 EGPRS TBF的手机
在 EGPRS系统中, 多个手机也可以共享无线信道, 特别的, GPRS手机和 EGPRS手机可以共享无线信道。而在无线块资源分配方式方面, EGPRS与 GPRS 完全相同。 在动态分配方式下, 当下行块为信令块或编码方式为 CS1〜CS4 数据块时, 调制方式为 GMSK, 共享信道的 GPRS手机和 EGPRS手机都能正确 解码, 获得块头上 USF, 如图 1所示。 当下行块为 EGPRS的编码方式 MCS1〜 MCS4的数据块时, 调制方式仍为 GMSK, EGPRS手机和 GPRS手机也都能正确 解码,获得块头上的 USF。而当下行块为 EGPRS的编码方式 MCS5〜MCS9的数 据块时, 调制方式为 8PSK, EGPRS手机能正确解码, 获得块头上的 USF, 但 GPRS手机不能正确解码, 因此无法知道下一个上行块是否是为其分配的,如 图 2所示。
这种情况下, 如果下一个上行块是分配给 GPRS使用的, 因为无法解码, GPRS手机也不会使用这个块传输数据, 造成块资源的浪费, 并且, 如果上行 TBF在协议规定时间内得不到上行块分配, TBF会异常释放, 造成传输失败 的情况。 可以看出, 在 EGPRS系统中, 在 GPRS手机和 EGPRS手机共享信道 的情况下, 当 EGPRS手机充分使用较高传输速率的 MCS5〜MCS9编码方式时, 对于上行的 GPRS手机的数据传输会有不利的影响, 而如果采用较低传输速 度的编码方式, MCS1〜MCS4, EGPRS提供的高速传输性能又得不到有效发挥。 因此, 为兼顾上下行 GPRS手机和 EGPRS手机的传输效率, 上下行块资源的 分配需要关联起来考虑。
由于 EGPRS系统中可能出现块上行块资源分配失败和下行 EGPRS TBF高 速的编码方式受限的情况, 网络应采取合适的方法, 尽量避免这两种情况的 出现。 通常情况下, 网络可以为 EGPRS手机和 GPRS手机分配不同的无线信 道, 这样由于不存在 GPRS手机和 EGPRS共享信道, 上述上行块资源失败的 情况不会出现。 但是, 在无线信道数量不多的小区, 特别在目前大量 GPRS 手机和少量 EGPRS手机共存的情况下, GPRS手机和 EGPRS手机共享信道是会 大量发生的, 在各种数量不同的 GPRS手机和 EGPRS手机共享信道情况下, 如果上行块资源分配失败的情况大量出现, 将极大地降低信道的利用效率, 对 EGPRS系统整体的传输性能有较大的不利影响。
发明内容
本发明要解决的技术问题是提供一种不同类型手机共享信道的块分配 算法, 可以尽量减少 GPRS手机和 EGPRS手机共享信道情况下, 上行块资源 分配失败的情况, 提高信道的利用率和数据传输的效率。
为了解决上述技术问题, 本发明提供了一种不同类型手机共享信道的块 分配算法, 应用于进行增强型通用分组无线业务 EGPRS的手机和进行通用分 组无线业务 GPRS的手机共享分组信道的通讯系统, 包括以下步骤:
(a)在迸行块分配之前, 将 GPRS和 EGPRS手机共享信道的优先分配算 法设定为上行块优先分配算法和下行块优先分配算法中的一种, 并设置上行 块资源优先分配权值和下行块资源优先分配权值;
(b)根据当前优先分配算法对当前上行块和下行块进行分配, 如果出 现上行分配失败或下行编码方式受限, 还需减少当前优先分配算法的权值, 并在该权值达到切换阈值时切换当前优先分配算法, 重置当前优先分配算法 的权值。
进一步地, 上述块分配算法还可具有以下特点: 所述步骤(a) 是在网 络配置 GPRS和 EGPRS手机共享的分组信道时, 初始设定一种默认的优先分 配算法。
进一步地, 上述块分配算法还可具有以下特点: 所述步骤 ) 设置优 先分配权值时, 以及步骤 (b) 重置当前优先分配算法的权值时, 是将上行 块资源优先分配权值设置为当前共享信道上的上行 GPRS手机数的广 3倍, 将下行块资源优先分配权值设置为当前共享信道上的下行 EGPRS手机数的设 定倍数。
进一步地, 上述块分配算法还可具有以下特点: 所述步骤(b) 中进行 块分配时, 先判断当前的优先分配算法, 如为上行块资源优先分配算法, 其 处理过程进一步分为以下步骤: (MO每次进行当前上行块和下行块分配时, 先将当前上行块分配给 某一手机, 尝试将当前下行块分配给共享信道上的某一手机;
(bl2)判断按上述方式分配时下行块分配给的手机的编码方式是否受 限, 如果是, 执行下一步, 否则, 按上述方式进行块分配, 结束;
(bl3)减少上行块资源优先分配权值, 并判断该权值是否已达到设定 的切换阈值, 如果是, 执行步骤 (bl4) , 否则, 执行步骤 (bl5 ) ;
(M4) 将当前优先分配算法切换为下行块优先分配算法, 并重新设置 上行块资源优先分配权值;
(bl5)判断是否已尝试过将当前下行块分配给该共享信道的所有下行 手机, 如果是, 执行步骤 (bl6 ) , 否则尝试将当前下行块分配给下一个手 机, 返回步骤(bl2) ;
(bl6) 限制分配给下行 EGPRS手机的下行块编码方式只能使用 MCS1〜 MCS4, 将当前下行块分配给共享信道上的某一手机, 本次上下行块分配过程 结束。
进一步地, 上述块分配算法还可具有以下特点: 所述步骤(b) 中进行 块分配时, 先判断当前的优先分配算法, 如为下行块资源优先分配算法, 其 处理过程进一步分为以下步骤:
(b21 )每次进行当前上行和下行块分配时, 先将当前下行块分配给某 一手机, 尝试将当前上行块分配给共享信道上的某一手机;
(b22 ) 判断按上述方式分配时下行块分配给的手机的编码方式是否受 限, 如果是, 执行下一步, 否则, 按上述方式进行块分配, 结束;
(b23)减少下行块资源优先分配权值, 并判断该权值是否已达到设定 的切换阈值, 如果是, 执行步骤 (b24) , 否则, 执行步骤(b25) ;
(b24)将当前优先分配算法切换为上行块优先分配算法, 并重新设置 下行块资源优先分配权值; ·
(b25)判断是否已尝试过将当前上行块分配给该共享信道的所有上行 手机, 如果是, 执行步骤 (b26) , 否则尝试将当前上行块分配给下一个手 机, 返回步骤(b22) ;
(b26) 限制分配给下行 EGPRS手机的下行块编码方式只能使用 MCS1〜 MCS4, 将当前下行块分配给共享信道上的某一手机, 本次上下行块分配过程 结束。 ' '
进一步地, 上述块分配算法还可具有以下特点: 所述步骤(b) 中进行 块分配时, 先判断当前的优先分配算法, 如为上行块资源优先分配算法, 其 处理过程进一步分为以下步骤:
(B11 ) 每次进行当前上行块和下行块分配时, 先将当前上行块分配给 某一手机, 尝试将当前下行块分配给共享信道上的某一手机;
(B12) 判断按上述方式分配时下行块分配给的手机的编码方式是否受 限, 如果是, 执行下一步, 否则, 按上述方式进行块分配, 结束;
(B13 ) 判断是否已尝试过将当前下行块分配给该共享信道的所有下行 手机, 如果是, 执行步骤 (B14) , 否则尝试将当前下行块分配给下一个手 机, 返回步骤(B12) ;
(B14) 减少上行块资源优先分配权值, 并判断该权值是否已达到设定 的切换阈值, 如果是, 执行步骤(B15) , 否则, 直接执行步骤 (B16) ;
(B15 )将当前优先分配算法切换为下行块优先分配算法, 并重新设置 上行块资源优先分配权值;
(B16) 限制分配给下行 EGPRS手机的下行块编码方式只能使用 MCS1〜 MCS4, 将当前下行块分配给共享信道上的某一手机, 本次上下行块分配过程 结束。
进一步地, 上述块分配算法还可具有以下特点: 所述步骤 (b) 中进行 块分配时, 先判断当前的优先分配算法, 如为下行块资源优先分配算法, 其 处理过程进一步分为以下步骤:
(B21 ) 每次进行当前上行和下行块分配时, 先将当前下行块分配给某 一手机, 尝试将当前上行块分配给共享信道上的某一手机;
(B22 ) 判断按上述方式分配时下行块分配给的手机的编码方式是否受 限, 如果是, 执行下一步, 否则, 按上述方式进行块分配, 结束;
(B23 ) 判断是否已尝试过将当前上行块分配给该共享信道的所有上行 手机, 如果是, 执行步骤 B24, 否则尝试将当前上行块分配给下一个手机, 返回步骤 B22;
(B24)减少下行块资源优先分配权值, 并判断该权值是否已达到设定 的切换阈值, 如果是, 执行步骤 B25, 否则, 直接执行步骤 B26;
(B25 )将当前优先分配算法切换为上行块优先分配算法, 并重新设置 下行块资源优先分配权值;
(B26 ) 限制分配给下行 EGPRS手机的下行块编码方式只能使用 MCS1〜 MCS4, 将当前下行块分配给共享信道上的某一手机, 本次上下行块分配过程 结束。
进一步地, 上述块分配算法还可具有以下特点: 如出现以下分配方式则 判断下行块分配给的手机的编码方式受限: 当前上行块分配给 GPRS手机, 当前下行块分配给 EGPRS手机且该手机将使用 MCS5〜MCS9编码方式发送块, 在其它分配方式下均不受限。
进一步地, 上述块分配算法还可具有以下特点: 每当共享的分组信道上 的上行 GPRS手机或者下行 EGPRS手机增加或减少时, 计算共享分组信道的 上行 GPRS手机数和下行 EGPRS手机数, 在重新设置块资源优先分配权值, 是将上行块资源优先分配权值设置为当前共享信道上的上行 GPRS手机数的 倍数, 将下行块资源优先分配权值设置为当前共享信道上的下行 EGPRS手机 数的倍数。
进一步地, 上述块分配算法还可具有以下特点: 在减少上行块资源优先 分配权值或下行块资源分配权值时, 是将当前权值减 1, 所述切换阈值为 0。
可以看到, 本发明方法综合考虑了上行块优先分配算法和下行块优先分 配算法的优缺点, 一方面, 上行 GPRS手机的数据传输通过上行块优先分配 算法得到了保证, 不会出现由于分配不到无线块资源而出现异常释放现象, 另外一方面, 下行 EGPRS手机的高速编码方式通过下行块优先分配算法得到 了比较充分的使用, 使得 EGPRS手机传输速度快的特点得到了发挥。而这两 种优先分配算法的轮流使用是通过采用上下行块资源优先分配权值机制来 实现的。 附图概述
图 1 是动态分配示意图, 显示了 GPRS和 EGPRS共享信道时上行块资源 分配成功的情况。
图 2 是动态分配示意图, 显示了上行 GPRS手机不能解调编码方式为 MCS5〜MCS9的下行块带的 USF, 导致上行块资源分配失败的情况。
图 3 是本实施例方法的总体流程图。
图 4是本实施例方法根据当前使用的优先分配算法进行上下行块资源分 配的流程图。
本发明的较佳实施方式
本实施例 GPRS手机和 EGPRS手机共享信道的块资源分配算法, 根据共 享信道的上行的 GPRS手机数目和下行的 EGPRS手机数目, 采用不同权值轮 流使用上行块优先分配算法和下行块优先分配算法, 使得信道的上下行块资 源尽可能得到有效分配, 并且上行的 GPRS手机都能尽可能地获得块资源, 而下行的 EGPRS手机能尽可能地获得块资源来使用较高传输速率的编码方式 进行传输。
下面先说明下行块优先分配算法和上行块优先分配算法, 然后再说明轮 流进行上行优先和下行优先的块分配算法。
下行块优先分配算法
下行块优先分配是指每次发送下行块前, 先确定下行块分配给某个手 机, 然后根据本下行块使用的调制方式限制和选择获得相应上行块的手机。 这种分配方式存在下面两种情况:
( a)下行块空闲, 或者分配给 GPRS手机, 或者分配给 EGPRS手机传输 信令(CS1编码方式)或使用 MCS1〜MCS4编码方式传输数据, 此时下行块的 调制方 为 GMSK, GPRS手机和 EGPRS手机都能解调并解码出 USF, 因此, 相 应的上行块分配不受限制。
(b)下行块分配给 EGPRS手机, 并且使用 MCS5〜MCS9编码方式传输数 据, 此时下行块的调制方式为 8PSK, 只有 EGPRS手机能正确解调和解码, 因 此, 为了不出现分配失败的情况, 相应的上行块只能分配给 EGPRS手机。 如 果没有 EGPRS手机可以分配, 但是有 GPRS手机需要分配, 则只能限制下行 块使用的编码方式。
可以看出, 在 GPRS手机和 EGPRS手机共享信道的情况下, 采样下行块 优先分配的算法时, 给下行的 EGPRS手机分配块资源时不会受到限制, 因此 能最大可能地使用其高速编码方式, 提高下行的数据传输速率。 而对于上行 GPRS手机,则可能长时间得不到有效的块分配,造成传输速度慢或长时间(5 秒种) 内得不到块分配而异常释放 TBF。 极限情况是, 当下行只有 EGPRS手 机并且全部采用 MCS5〜MCS9的编码方式时, 共享信道的上行 GPRS手机将不 会分配到上行块资源。
上行块优先分配算法
上行块优先分配是指每次发送下行块前, 先确定下一上行块分配给某个 手机, 然后根据得到该上行块的手机类型, 选择下行块要分配的手机, 并限 制本下行块使用的编码方式。 这种分配方式存在下面两种情况:
(a) 上行块空闲, 或者分配给 EGPRS手机, 此时下行块可以使用 GMSK 或 8PSK调制方式, 即下行块可以使用所有的编码方式, 分配给 GPRS手机或 EGPRS手机。
(b)上行块分配给 GPRS手机, 此时下行块的只能使用 GMSK调制方式, 即下行块只能分配给 GPRS手机或者 EGPRS手机, 并且 EGPRS手机只能使用
MCS1〜MCS4编码方式。
可以看出, 在 GPRS手机和 EGPRS手机共享信道的情况下, 采用上行块 优先分配算法时, 上行的 GPRS手机都能顺利地分配到块资源进行数据传输, 下行的块资源也全部被分配, 但是对于下行的 EGPRS手机, 具有较高编码速 率的 MCS5~MCS9编码方式的使用会受到限制, 高速数据传输的性能得不到有 效发挥。
从上面的描述可以看出, 上行块优先分配和上行块优先分配方法都有其 优点和缺点, 因此, 本实施例采用轮流使用上行块优先分配和下行块优先分 配算法, 在 GPRS手机上行传输和 EGPRS手机下行传输性能中取得平衡。 该 方法如图 3所示, 包括以下步骤:
步骤 10, 网络配置 GPRS和 EGPRS手机共享的分组信道时, 初始设定一 种默认的优先分配算法, 例如初始使用下行块优先分配算法, 但也不排除随 机选择的可能;
步骤 20, 根据共享信道的上行 GPRS手机数和下行 EGPRS手机数, 计算 该信道的上行块资源优先分配权值和下行块资源优先分配权值; (初始) 每当共享的分组信道上的上行 GPRS手机或者下行 EGPRS手机增加或减 少时, 计算共享分组信道的上行 GPRS手机数, 供切换时将上行块资源优先 分配权值设置为当前上行 GPRS手机数的 Γ3倍, 较佳为 2倍。 同时, 还计 算共享分组信道的下行 EGPRS手机数, 供切换时将下行块资源优先分配权值 设置为当前下行 EGPRS手机数的设定倍数, 较佳为 2倍。
步骤 30,根据当前优先分配算法对当前的上行块和下行块进行分配,如 果出现上行分配失败或下行编码方式受限的情况, 减少相应优先分配权值, 如当前使用的优先分配算法的权值变为 0, 则切换优先分配算法, 并重置当 前优先分配算法的权值。 图 4是本实施例方法根据当前使用的优先分配算法分配当前上下行块资 源的流程图, 包括以下步骤:
步骤 110, 判断当前优先分配算法是否是上行块资源优先分配算法, 如 果是, 执行步骤 120, 否则, 执行步骤 210;
步骤 120, 先将当前上行块分配给某一手机; 步骤 130, 尝试将当前下行块分配给某一手机;
步骤 140,判断是否当前上行块分配给 GPRS手机,并且当前下行块分配 给 EGPRS手机且该手机将使用 MCS5〜MCS9编码方式发送块, 如果不是, 本 次上下行块分配成功, 结束; 否则, 执行步骤 150;
该步中上下行块分配成功的情况又包括以下几种:
当前上行块空闲, 或者分配给 EGPRS手机, 相应的下行块资源可以任意 分配给一个 GPRS手机或 EGPRS手机。
当前上行块分配给 GPRS手机, 相应的下行块分配给 GPRS手机, 或者下 行块分配给 EGPRS手机但该手机当前下行块使用的编码方式为 MCS1〜MCS4 或 CS1。
步骤 150, 将上行块资源优先分配权值减去 1 ;
步骤 160, 判断上行块资源优先分配权值是否等于 0, 如果是, 执行步 骤 170, 否则, 执行步骤 180;
步骤 170, 设置当前优先分配算法为下行块优先分配算法, 重新设置上 行块资源优先分配权值为共享分组信道的上行 GPRS手机数的两倍;
步骤 180, 判断是否已尝试过将当前下行块分配给该共享信道的所有下 行手机, 如果是, 执行步骤 190, 否则返回步骤 130, 尝试将当前下行块分 配给下 个手机; 步骤 190, 限制分配给该下行 EGPRS手机的下行块编码方式只能使用 MCS1〜MCS4., 将当前下行块分配给共享信道上的某一手机, 本次上下行块分 配过程结束;
步骤 200, 将当前下行块分配给某一手机;
步骤 210, 尝试将当前上行块分配给某手机;
步骤 220, 判断是否当前下行块分配给是 EGPRS手机且该手机将使用的 编码方式为 MCS5〜MCS9, 而当前上行块分配给 GPRS手机, 如果是, 执行步 骤 230, 否则, 本次上下行块分配过程结束; 该步中上下行块分配成功的情况又包括以下几种: 下行块空闲, 或者分 配给 GPRS手机, 或者分配给 EGPRS手机传输信令(CS1编码方式) 或使用 MCS1〜MCS4编码方式传输数据, 则相应的上行块资源可以任意分配给一个 GPRS手机或 EGPRS手机。
下行块分配给 EGPRS手机并且发送的无线块使用的编码方式为 MCS5〜
MCS9, 上行块分配给 EGPRS手机。
步骤 230, 将下行块资源优先分配权值减去 1 ;
步骤 240, 判断下行块资源优先分配权值是否等于 0, 如果是, 执行步 骤 250, 否则执行步骤 260;
步骤 250, 设置当前优先分配算法为上行块资源优先分配算法, 重新设 置下行块资源优先分配权值为共享分组信道的下行 EGPRS手机数的两倍; 步骤 260, 判断是否已尝试过将当前下行块分配给该共享信道的所有上 行手机, 如果是, 执行步骤 270, 否则, 返回步骤 210, 尝试将当前是行块 分配给下一个手机;
步骤 270, 限制分配给下行 EGPRS 手机的下行块编码方式只能使用
MCS1〜MCS4, 将当前下行块分配给共享信道上的某一手机, 本次上下行块分 配过程结束。
在实施过程中, 可以根据实际运行情况对上下行块资源优先分配权值与 共享信道的上行 GPRS手机数和下行 EGPRS手机数的对应关系进行调整,. 以 获得更好的分配效果和需要的控制效果, 比如增加下行块资源优先分配权值 和下行 EGPRS手机数的倍数关系, 可以使得 EGPRS手机能更好地发挥其高速 传输性能。
在实施例流程的基础上, 本发明还可以有其它的变换, 例如, 在减少当 前优先分配算法权值的方式上, 上述实施例在一次分配过程, 每出现一个手 机分配受限就减 1。 在另一实施例中, 也可以采用一次分配过程中出现受限 情况后, 再将当前优先分配算法权值减 1, 即不针对每个手机的受限情况来 多次进行减权值操作。 另外, 权值也不一定是减 1, 可以根据实际情况和经 验来选择合适的增减步长。
在该另一实施例中, 进行块分配时, 先判断当前的优先分配算法, 如为 上行块资源优先分配算法, 其处理过程进一步分为以下步骤:
A1 , 每次进行当前上行块和下行块分配时, 先将当前上行块分配给某一 手机, 尝试将当前下行块分配给共享信道上的某一手机;
A2 , 判断按上述方式分配时下行块分配给的手机的编码方式是否受限, 方式与前述实施例一样, 如果是, 执行下一步, 否则, 按上述方式进行块分 配, 结束;
A3 , 判断是否已尝试过将当前下行块分配给该共享信道的所有下行手 机, 如果是, 执行步骤 A4, 否则尝试将当前下行块分配给下一个手机, 返回 步骤 A2;
A4, 减少上行块资源优先分配权值, 并判断该权值是否已达到设定的切 换阈值, 如果是, 执行步骤 A5, 否则, 直接执行步骤 A6 ;
A5, 将当前优先分配算法切换为下行块优先分配算法, 并重新设置上行 块资源优先分配权值;
A6, 限制分配给下行 EGPRS 手机的下行块编码方式只能使用 MCS1〜 MCS4, 将当前下行块分配给共享信道上的某一手机, 本次上下行块分配过程 结束。
如为下行块资源优先分配算法, 其处理过程进一步分为以下步骤: Β1·, 每次进行当前上行和下行块分配时, 先将当前下行块分配给某一手 机, 尝试将当前上行块分配给共享信道上的某一手机;
Β2, 判断按上述方式分配时下行块分配给的手机的编码方式是否受限, 如果是, 执行下一步, 否则, 按上述方式进行块分配, 结束;
Β3 , 判断是否已尝试过将当前上行块分配给该共享信道的所有上行手 机, 如果是, 执行步骤 Β4, 否则尝试将当前上行块分配给下一个手机, 返回 步骤 Β2;
Β4, 减少下行块资源优先分配权值, 并判断该权值是否已达到设定的切 换阈值, 如果是, 执行步骤 Β5, 否则, 直接执行步骤 Β6; B5, 将当前优先分配算法切换为上行块优先分配算法, 并重新设置下行 块资源优先分配权值;
B6, 限制分配给下行 EGPRS手机的下行块编码方式只能使用 MCS1〜 MCS4, 将当前下行块分配给共享信道上的某一手机, 本次上下行块分配过程 结束。
综上所述, 本发明方法逻辑合理, 实现方法比较简单, 很好地解决了 EGPRS系统中 GPRS手机和 EGPRS手机共享信道时的块分配问题。 测试表明, 在 EGPRS系统中使用本发明方法进行无线块分配后, 共享信道的 GPRS手机 和 EGPRS手机传输的效果都比较好, 系统整体的数据传输性能得到了显著地 提高。
工业实用性
本发明可应用于全球移动通信系统 (GSM) —增强型通用分组无线业务 (EGPRS ) 中的数据分组传输领域, 综合考虑了上行块优先分配算法和下行 块优先分配算法的优缺点, 使得上行的 GPRS手机能尽可能地获得块资源, 而下行的 EGPRS手机能尽可能地获得块资源来使用较高传输速率的编码方式 进行传输。

Claims

1、 一种不同类型手机共享信道的块分配算法, 应用于进行增强型通用 分组无线业务 EGPRS的手机和进行通用分组无线业务 GPRS的手机共享分组 信道的通讯系统, 包括以下步骤:
(a)在进行块分配之前, 将 GPRS和 EGPRS手机共享信道的优先分配算 法设定为上行块优先分配算法和下行块优先分配算法中的一种, 并设置上行 块资源优先分配权值和下行块资源优先分配权值;
(b) 根据当前优先分配算法对当前上行块和下行块进行分配, 如果出 现上行分配失败或下行编码方式受限, 还需减少当前优先分配算法的权值, 并在该权值达到切换阈值时切换当前优先分配算法, 重置当前优先分配算法 的权值。
2、 如权利要求 1所述的块分配算法, 其特征在于, 所述步骤(a)是在 网络配置 GPRS和 EGPRS手机共享的分组信道时, 初始设定一种默认的优先 分配算法。
3、 如权利要求 1所述的块分配算法, 其特征在于, 所述步骤(a)设置 优先分配权值时, 以及步骤 (b) 重置当前优先分配算法的权值时, 是将上 行块资源优先分配权值设置为当前共享信道上的上行 GPRS手机数的广 3倍, 将下行块资源优先分配权值设置为当前共享信道上的下行 EGPRS手机数的设 定倍数。
4、 如权利要求 1所述的块分配算法, 其特征在于, 所述步骤(b) 中进 行块分配时, 先判断当前的优先分配算法, 如为上行块资源优先分配算法, 其处理过程进一步分为以下步骤:
(bll ) 每次进行当前上行块和下行块分配时, 先将当前上行块分配给 某一手机, 尝试将当前下行块分配给共享信道上的某一手机;
(bl2) 判断按上述方式分配时下行块分配给的手机的编码方式是否受 限, 如果是, 执行下一步, 否则, 按上述方式进行块分配, 结束;
(bl3) 减少上行块资源优先分配权值, 并判断该权值是否已达到设定 的切换阈值, 如果是, 执行步骤 (W4) , 否则, 执行步骤 (bl5) (bl4) 将当前优先分配算法切换为下行块优先分配算法, 并重新设置 上行块资源优先分配权值;
(M5)判断是否已尝试过将当前下行块分配给该共享信道的所有下行 手机, 如果是, 执行步骤 (bl6 ) , 否则尝试将当前下行块分配给下一个手 机, 返回步骤(bl2) ;
(bl6) 限制分配给下行 EGPRS手机的下行块编码方式只能使用 MCS1〜 MCS4, 将当前下行块分配给共享信道上的某一手机, 本次上下行块分配过程 结束。 .
5、 如权利要求 1所述的块分配算法, 其特征在于, 所述步骤(b) 中进 行块分配时, 先判断当前的优先分配算法, 如为下行块资源优先分配算法, 其处理过程进一步分为以下步骤-
(b21 )每次进行当前上行和下行块分配时, 先将当前下行块分配给某 一手机, 尝试将当前上行块分配给共享信道上的某一手机;
(b22) 判断按上述方式分配时下行块分配给的手机的编码方式是否受 限, 如果是, 执行下一步, 否则, 按上述方式进行块分配, 结束;
(b23 ).减少下行块资源优先分配权值, 并判断该权值是否已达到设定 的切换阈值, 如果是, 执行步骤(b24) , 否则, 执行步骤(b25) ;
(b24) 将当前优先分配算法切换为上行块优先分配算法, 并重新设置 下行块资源优先分配权值;
(b25) 判断是否已尝试过将当前上行块分配给该共享信道的所有上行 手机, 如果是, 执行步骤 (b26 ) , 否则尝试将当前上行块分配给下一个手 机, 返回步骤(b22) ;
(b26) 限制分配给下行 EGPRS手机的下行块编码方式只能使用 MCS1〜 MCS4, 将当前下行块分配给共享信道上的某一手机, 本次上下行块分配过程 结束。
6、 如权利要求 1所述的块分配算法, 其特征在于, 所述步骤(b) 中进 行块分配时, 先判断当前的优先分配算法, 如为上行块资源优先分配算法, 其处理过程进一步分为以下步骤: (BID 每次进行当前上行块和下行块分配时, 先将当前上行块分配给 某一手机, 尝试将当前下行块分配给共享信道上的某一手机;
(B12) 判断按上述方式分配时下行块分配给的手机的编码方式是否受 限, 如果是, 执行下一步, 否则, 按上述方式进行块分配, 结束;
(B13 ) 判断是否已尝试过将当前下行块分配给该共享信道的所有下行 手机, 如果是, 执行步骤(B14) , 否则尝试将当前下行块分配给下一个手 机, 返回步骤(B12) ;
(B14) 减少上行块资源优先分配权值, 并判断该权值是否已达到设定 的切换阈值, 如果是, 执行步骤(B15) , 否则, 直接执行步骤(B16) ; (B15) 将当前优先分配算法切换为下行块优先分配算法, 并重新设置 上行块资源优先分配权值;
(B16) 限制分配给下行 EGPRS手机的下行块编码方式只能使用 MCS1〜 MCS4, 将当前下行块分配给共享信道上的某一手机, 本次上下行块分配过程 结束。 '
7、 如权利要求 1所述的块分配算法, 其特征在于, 所述步骤(b) 中进 行块分配时, 先判断当前的优先分配算法, 如为下行块资源优先分配算法, 其处理过程进一步分为以下步骤:
(B21 ) 每次进行当前上行和下行块分配时, 先将当前下行块分配给某 一手机, 尝试将当前上行块分配给共享信道上的某一手机;
(B22 ) 判断按上述方式分配时下行块分配给的手机的编码方式是否受 限, 如果是, 执行下一步, 否则, 按上述方式进行块分配, 结束;
(B23 )判断是否已尝试过将当前上行块分配给该共享信道的所有上行 手机, 如果是, 执行步骤 B24, 否则尝试将当前上行块分配给下一个手机, 返回步骤 B22;
(B24) 减少下行块资源优先分配权值, 并判断该权值是否已达到设定 的切换阈值, 如果是, 执行步骤 B25, 否则, 直接执行步骤 B26;
(B25)将当前优先分配算法切换为上行块优先分配算法, 并重新设置 下行块资源优先分配权值; (B26 ) 限制分配给下行 EGPRS手机的下行.块编码方式只能使用 MCS1〜 MCS4, 将当前下行块分配给共享信道上的某一手机, 本次上下行块分配过程 结束。
8、 如权利要求 4、 5、 6或 7所述的块分配算法, 其特征在于, 如出现 以下分配方式则判断下行块分配给的手机的编码方式受限: 当前上行块分配 给 GPRS手机, 当前下行块分配给 EGPRS手机且该手机将使用 MCS5〜MCS9编 码方式发送块, 在其它分配方式下均不受限。 .
9、 如权利要求 4、 5、 6或 7所述的块分配算法, 其特征在于, 每当共 享的分组信道上的上行 GPRS手机或者下行 EGPRS手机增加或减少时, 计算 共享分组信道的上行 GPRS手机数和下行 EGPRS手机数, 在重新设置块资源 优先分配权值, 是将上行块资源优先分配权值设置为当前共享信道上的上行 GPRS手机数的倍数,将下行块资源优先分配权值设置为当前共享信道上的下 行 EGPRS手机数的倍数。
10、 如权利要求 9所述的块分配算法, 其特征在于, 在减少上行块资源 优先分配权值或下行块资源分配权值时, 是将当前权值减 1, 所述切换阈值 为 0。
PCT/CN2006/000468 2006-03-23 2006-03-23 Algorithme d'attribution de blocs permettant à différents types de téléphones mobiles de partager des canaux WO2007107044A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2006800503447A CN101352092B (zh) 2006-03-23 2006-03-23 一种不同类型手机共享信道的块分配算法
PCT/CN2006/000468 WO2007107044A1 (fr) 2006-03-23 2006-03-23 Algorithme d'attribution de blocs permettant à différents types de téléphones mobiles de partager des canaux

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2006/000468 WO2007107044A1 (fr) 2006-03-23 2006-03-23 Algorithme d'attribution de blocs permettant à différents types de téléphones mobiles de partager des canaux

Publications (1)

Publication Number Publication Date
WO2007107044A1 true WO2007107044A1 (fr) 2007-09-27

Family

ID=38522005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/000468 WO2007107044A1 (fr) 2006-03-23 2006-03-23 Algorithme d'attribution de blocs permettant à différents types de téléphones mobiles de partager des canaux

Country Status (2)

Country Link
CN (1) CN101352092B (zh)
WO (1) WO2007107044A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102695214A (zh) * 2011-03-24 2012-09-26 华为技术有限公司 一种数据传输方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102196447B (zh) * 2010-03-03 2015-06-03 中兴通讯股份有限公司 分组业务无线信道的分配方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044755A2 (en) * 1997-03-27 1998-10-08 Nokia Telecommunications Oy Resource allocation mechanism in packet radio network
JP2002152813A (ja) * 2000-11-09 2002-05-24 Ntt Docomo Inc 移動通信システムにおけるタイムスロット割り当て方法および移動通信システムにおけるタイムスロット割り当て装置
US6430163B1 (en) * 1997-03-27 2002-08-06 Nokia Telecommunications Oy Allocation of control channel in packet radio network

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501745B1 (en) * 1998-02-13 2002-12-31 Telefonaktiebolaget Lm Ericsson (Publ) Method for variable block scheduling indication by an uplink state flag in a packet data communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044755A2 (en) * 1997-03-27 1998-10-08 Nokia Telecommunications Oy Resource allocation mechanism in packet radio network
US6430163B1 (en) * 1997-03-27 2002-08-06 Nokia Telecommunications Oy Allocation of control channel in packet radio network
JP2002152813A (ja) * 2000-11-09 2002-05-24 Ntt Docomo Inc 移動通信システムにおけるタイムスロット割り当て方法および移動通信システムにおけるタイムスロット割り当て装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102695214A (zh) * 2011-03-24 2012-09-26 华为技术有限公司 一种数据传输方法和装置

Also Published As

Publication number Publication date
CN101352092B (zh) 2011-09-14
CN101352092A (zh) 2009-01-21

Similar Documents

Publication Publication Date Title
JP5363633B2 (ja) カバレッジ拡張のための自律送信方法
JP5438115B2 (ja) キャリアアグリゲーションのためのrlc分割
AU2003246491B2 (en) Apparatus, system and method for the transmission of data with different QoS attributes
TWI435573B (zh) 在無線通訊系統中用於傳輸語音封包之方法
RU2422999C2 (ru) Способ работы улучшенных модуля управления радиоканалом (rlc) и модуля управления радиосетью (rnc) для множественного доступа с кодовым разделением каналов и система для его осуществления
JP5280560B2 (ja) 過負荷状況下でのデータ通信システム内の通信リソースの効率的な使用のための方法および装置
JP4823177B2 (ja) エンハンストアップリンクを多重化するための装置および方法
JP4639237B2 (ja) 高速アップリンクパケットアクセス方式の改善
JP5956348B2 (ja) 可変レート・ボコーダを利用するユーザ機器のためのボイスオーバip容量を改善する方法
JP4185035B2 (ja) パケット通信システムで速い転送レート変化を支援する逆方向転送レートスケジューリング方法及び装置
CN101499887B (zh) 半静态资源调度方法及系统、重传选择调度方法及系统
Parkvall et al. The high speed packet data evolution of WCDMA
JP2003283471A (ja) 基地局装置及びパケット伝送方法
WO2006073223A1 (en) Method and apparatus for scheduling enhanced uplink dedicated channels in a mobile communication system
WO2008014133A2 (en) Apparatus and method for handling control channel reception/decoding failure in a wireless voip communication system
JP2002026991A (ja) 物理リソース上でデータを送信する方法及びumts移動電話システム
US20070189332A1 (en) Apparatus, method and computer program product providing in-band signaling and data structures for adaptive control and operation of segmentation
WO2007148611A1 (ja) 複数のリソースブロックサイズを利用するための基地局、ユーザ装置及び方法
US20070189304A1 (en) MAC-driven transport block size selection at a physical layer
MX2010010220A (es) Metodo y aparato para conmutacion de celula rapida basada en el control de acceso de medio para acceso de paquetes de alta velocidad.
WO2007107044A1 (fr) Algorithme d'attribution de blocs permettant à différents types de téléphones mobiles de partager des canaux
US8411697B2 (en) Method and arrangement for improving media transmission quality using robust representation of media frames
CN102143589A (zh) 异构网络下的网络资源调度方法和无线资源控制器
JP4847543B2 (ja) メディアフレームの耐性のある表現形を使用してメディア伝送品質を改善する方法および装置
WO2023143189A1 (zh) 信令传输方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06722120

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200680050344.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06722120

Country of ref document: EP

Kind code of ref document: A1