WO2007105598A1 - Method for producing aluminate phosphor and aluminate phosphor - Google Patents

Method for producing aluminate phosphor and aluminate phosphor Download PDF

Info

Publication number
WO2007105598A1
WO2007105598A1 PCT/JP2007/054558 JP2007054558W WO2007105598A1 WO 2007105598 A1 WO2007105598 A1 WO 2007105598A1 JP 2007054558 W JP2007054558 W JP 2007054558W WO 2007105598 A1 WO2007105598 A1 WO 2007105598A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminate
metal
acid
phosphor
chelating agent
Prior art date
Application number
PCT/JP2007/054558
Other languages
French (fr)
Japanese (ja)
Inventor
Hidetoshi Saitoh
Shunsuke Tahara
Nobuyoshi Nambu
Atsushi Nakamura
Hiroshi Ito
Original Assignee
Nagaoka University Of Technology
Chubu Chelest Co., Ltd.
Chelest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University Of Technology, Chubu Chelest Co., Ltd., Chelest Corporation filed Critical Nagaoka University Of Technology
Priority to CN2007800085991A priority Critical patent/CN101400758B/en
Priority to US12/224,881 priority patent/US20090047202A1/en
Priority to JP2008505094A priority patent/JP5261667B2/en
Priority to EP07738048A priority patent/EP2006348A4/en
Publication of WO2007105598A1 publication Critical patent/WO2007105598A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • C01F17/34Aluminates, e.g. YAlO3 or Y3-xGdxAl5O12
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data

Definitions

  • the present invention relates to a method for producing an aluminate phosphor, and to the aluminate phosphor produced by the method.
  • Phosphors having an aluminate as a mother structure are widely put into practical use as ultraviolet-excited phosphors that emit light mainly in a blue to green color tone region.
  • PDPs plasma display panels
  • development of vacuum ultraviolet ray excited light emitting devices having a mechanism for exciting a phosphor by the vacuum ultraviolet rays emitted by rare gas discharge to emit light has been actively conducted.
  • several aluminate phosphors have been put to practical use for PDPs that emit blue to green light.
  • the aluminate is represented by the composition formula: xMO. YAl 2 O (wherein, M is an alkaline earth metal)
  • phosphors of various compositions are manufactured by introducing a plurality of divalent metals or doping an M site with a rare earth metal or Mn as an activator. For example, it has been confirmed that blue light is emitted by ultraviolet excitation when metal doped with Ba and Mg as metal M, and doped with Eu as an activator at the Ba site.
  • representative ones are, for example, BaM g Al 2 O 3: Eu disclosed in JP-B-52-22836, or BaMgAl 2 O 3: Eu disclosed in Japanese Patent Application Laid-Open No. 08-115673.
  • Mn is known as a green phosphor that emits green fluorescence upon ultraviolet excitation
  • Ce and Tb activated lanthanum 'magnesium' to further enhance the light emission characteristics.
  • a part of Ba in Zn-halide green phosphor (Japanese Unexamined Patent Publication No. H06-240252) or a manganese-substituted barium lumium aluminate phosphor is replaced with Zn, and the remaining Ba is replaced with Sr,
  • a Ce--Mn co-activated green phosphor in which Ce is activated Japanese Patent Laid-Open No. 2000-290647
  • europium activated strontium aluminate exhibiting a bluish green color with an emission peak wavelength of 493 nm is also known.
  • This phosphorescent phosphor is MAIO (wherein, M is selected from Ca, Sr and Ba)
  • At least one kind of metal element is a parent structure.
  • a luminescent phosphor one in which Eu as an activator and another rare earth element as a coactivator are known (Japanese Patent Application Laid-Open No. 07-11250).
  • a part of aluminum of the matrix aluminate is replaced with boron and contained to stabilize the crystal to improve the afterglow property (Japanese Patent Laid-Open No. 08-73845), the matrix is Sr Al O And you
  • Examples thereof include those obtained by adding 2 ⁇ 11> ⁇ 1> ⁇ 1> ⁇ 1> ⁇ 1> ⁇ 1> ⁇ 212 ⁇ H ⁇ H 2000) to addition of dysprosium as a co- activation agent.
  • the conventional aluminate phosphor is composed of an oxide containing three or more metals, and in the production of these phosphors, the respective metal components are mixed uniformly. It becomes important whether they match.
  • phosphors are manufactured by a method of obtaining a composite metal oxide by mixing and calcining a solid phase raw material so as to obtain a desired metal composition ratio, that is, by the classical method of solid phase method. It is done.
  • this solid phase method a plurality of metal oxides are mixed in the solid phase state, so even if they are uniformly mixed, they are clearly heterogeneous phases when viewed microscopically. Also, no matter how carefully the metal composition ratio and the doping amount of the metal element are controlled, and even if the composition ratio of the metal component contained in each individual particle is controlled as desired, within the particle It is impossible in principle to produce phosphors in which the metal distribution is completely uniform.
  • a precursor having a uniform composite metal composition as a precursor immediately before that is used.
  • sol-gel method and coprecipitation
  • a liquid phase method which emphasizes a chemical method represented by the law.
  • the metal composition ratio of the obtained powder must be nonuniform.
  • the hydrolysis rate and solubility product of the metal compound differ depending on the type of metal, and the metal composition ratio of the precipitate formed in the subsequent process such as hydrolysis, neutralization or precipitation becomes uneven. It is considered that such nonuniformity of the metal composition also has a considerable adverse effect on the fluorescence characteristics of the complex oxide-based or aluminate-based phosphors.
  • the present inventors have developed a technology described in WO 2005/090513 as a result of repeated research aiming at development of a novel aluminate blue phosphor.
  • the present invention relates to a novel blue phosphor represented by Sr Al 2 O 3: Eu, which has various uses.
  • this phosphor has a light emission peak wavelength of 41 Onm, which is somewhat close to ultraviolet light, there is still room for improvement in its application to displays and three-wavelength fluorescent lamps. That is, if it is possible to give such a characteristic that it is desirable to bring the emission peak wavelength closer to the vicinity of 45 Onm, which is better in color purity, to be applied to these applications, the applications will be dramatically increased. Is a must.
  • the present invention has been made under such circumstances, and is a further development of the technology described in the above-mentioned WO 2005/090513 publication.
  • the object of the present invention is to focus on an aluminate-based phosphor which has been confirmed to emit fluorescence by ultraviolet excitation and electron beam excitation, and to emit ultraviolet light which has a uniform composition and a higher degree of blueness, and emits fluorescence.
  • the aim is to develop a new electron beam excited type aluminate phosphor.
  • Another object of the present invention is to provide a method capable of efficiently producing such a phosphor.
  • the method for producing an aluminate phosphor according to the present invention is a composition formula: 7 (Sr Eu) 0-yAl O (
  • x, y is 0 ⁇ x ⁇ 0.5, l ⁇ y ⁇ 36), and the reducing atmosphere in the state in which an anolamine salt is in contact with an acid manganate. It is characterized in that it includes the step of heating inside.
  • the aluminate phosphor of the present invention is produced by the above method, and is an ultraviolet ray. It is characterized by emitting light at an emission peak wavelength of 450 to 470 nm by excitation and electron beam excitation.
  • FIG. 1 is an emission spectrum diagram when the aluminate-based phosphor obtained in the example is irradiated with ultraviolet light with an excitation wavelength of 325 nm.
  • composition formula used in the method of the present invention 7 (Sr Eu) ⁇ 'yAl ⁇
  • the range of (y) is the range of “1 ⁇ y ⁇ 36”.
  • the value of (X) is determined as described above.
  • a more preferable range of (X) is the range of “0. 001 ⁇ x ⁇ 0.3”, and the highest light emission characteristic is exhibited in this range.
  • the value of (y) is set in the above range.
  • the more preferable range of (y) is the range of “3 ⁇ y ⁇ 27”, and the highest light emission characteristic is exhibited in this range
  • the aluminate represented by the compositional formula: 7 (Sr Eu) 0 -yAl 2 O has the following properties: (1) Sr, Eu and Al
  • the organic metal chelate powder to be a precursor is each metal compound and an organic chelating agent.
  • the aqueous solution can be easily obtained, for example, by spray-drying after being mixed so as to obtain a predetermined metal composition ratio to obtain a clear organic metal chelate aqueous solution.
  • a powder containing organometallic chelates of Sr, Eu and A1 is produced.
  • This manufacture is performed, for example, as follows.
  • Sr and Eu are precisely weighed so as to obtain a predetermined metal composition, and these are reacted with an organic chelating agent to prepare a clear organic metal chelate aqueous solution.
  • This reaction is carried out in an aqueous medium, for example, at a temperature of 20 ° C to boiling point, preferably 50 to 70 ° C.
  • the preferred aqueous solution concentration is 5% by mass or more and 30% by mass or less, more preferably 10% by mass or more and 20% by mass or less in terms of solid content conversion, but of course it is not limited to this temperature range.
  • the amount of the organic chelating agent used is preferably at least 1.0 times mol and not more than 1.5 times mol based on the metal ion so that all the metals can be completely dissolved. .
  • the metal chelate or the organic chelating agent is not completely dissolved, in the case where ammonia or an amine is added, it is preferable to completely dissolve it.
  • the organic metal chelates of the above-mentioned respective metals may be prepared separately, and they may be precisely weighed and mixed so as to obtain a predetermined metal ratio.
  • the present invention which uses carbonates, nitrates, hydroxides, oxides, etc., as metal raw materials, in the present invention using strontium and europium, has good reactivity and excess ions after the reaction. It is an oxide or carbonate in which etc. do not remain.
  • aluminum considering the reactivity with organic chelating agents, usable raw materials are substantially limited to salts, sulfates and nitrates, and nitrate is preferred. Among them, it is particularly preferable to first produce an aluminum chelate solution using chloride, sulfate or nitrate, pre-produce high purity aluminum chelate crystals by crystallization, and use this as an aluminum source. .
  • organic metal chelates sodium salts and potassium salts remain in the fluorescent body even after thermal decomposition, and they should not be used because they cause the composition of the fluorescent body to be upset.
  • organic acids such as hydrochloric acid, sulfuric acid, phosphoric acid or their salts, etc. and inorganic acids and inorganic acid salts containing chlorine, sulfur or phosphorus, etc .; and thiol compounds are preferably not used as much as possible. These are almost completely pyrolyzed in the firing process, but complex metal chelates of uniform composition Because there is a risk of adversely affecting the generation of
  • organic chelating agent used in the present invention examples include ethylenediamine tetraacetic acid, 1,2-cyclohexanediamine tetraacetic acid, dihydroxyglycine, diamineopropanoltetraacetic acid, diethylenetriaminepentaacetic acid, ethylenediamine diacetic acid and ethylenediamine Dipropionic acid, Hydroxyethylenediamine triacetic acid, Glycoletherdiamine triacetic acid, Hexamethylendiaminetetraacetic acid, Ethylenediamine di (o-hydroxyphenyl) acetic acid, Hydroxye noreimino diacetic acid, Iminoniacetic acid, 1,3-Diaminopropane Tetraacetic acid, 1,2-Diaminopropane tetraacetic acid, 2-tri-portal triacetic acid, 2-tri-portal 3-propionic acid, triethylenetetramine hexaacetic acid, ethylenediamine dibasic acid, 1,3-dimine
  • organometallic chelate a complex composed of an aminocarboxylic acid chelating agent and a metal ion, and / or a salt thereof is used.
  • aminocarboxylic acid chelating agent more preferably, at least one selected from the group consisting of ditritrichloroacetic acid, ethylenediamine tetraacetic acid, diethylenetriaminepentaacetic acid, and triethylenetetramine hexaacetic acid is used.
  • the free acid type, ammonium salt or amine salt is used, and the chelate formation constant with each metal, the stability of the metal chelate, and the solubility of the metal chelate in water or alkaline aqueous solution are taken into consideration. It is desirable to select an appropriate one for each metal component to be used.
  • the organic metal chelate aqueous solution prepared as described above is then powdered by spray drying.
  • the conditions for spray drying may be appropriately set according to the concentration of the aqueous solution, the solution processing rate, the amount of air for spraying, the amount of air for hot air, etc.
  • the drying temperature is preferably the temperature at which the organic substance is not decomposed. Also, a temperature sufficient to dry sufficiently may be employed. From this point of view, the drying temperature is generally in the range of 140 to 180 ° C., more preferably in the range of about 100 to 200 ° C. Considering such drying temperatures, the above amino acids used in the present invention are It is desirable to select the one that does not thermally decompose at a temperature of about 200 ° C. or less as the rubonic acid-based chelating agent.
  • the organometallic chelate powder obtained as described above is then fired to form a metal oxide.
  • the preferable conditions at this time are as follows.
  • the organic metal chelate powder obtained as described above is fired as it is, the organic component is thermally decomposed to form a complex oxide powder.
  • the organic components are completely decomposed, for example, at 500 ° C. or higher, all the organic components are decomposed and burned off to form a composite metal oxide.
  • the crystallinity of the composite metal oxide is improved as the calcination temperature is raised, so that the calcination can be carried out at a temperature of up to 1600 ° C. if necessary.
  • the atmosphere for firing and heating is not necessarily in the air, and may be performed in an oxygen-enriched atmosphere, a neutral atmosphere, or a reducing atmosphere, as necessary. Preferably, it is fired in an atmosphere containing at least one selected from the group consisting of air, oxygen and nitrogen.
  • the aluminate powder obtained as described above is brought into contact with magnesium oxide and heated in a reducing atmosphere while maintaining the contact state, the aluminate phosphor according to the present invention is obtained.
  • the shape of the magnesium oxide used herein is not particularly limited. For example, coarse particles, fine particles, thin films, substrates and the like can be used. Also, they may be single crystals or polycrystals.
  • magnesium oxide of magnesium oxide becomes an aluminate powder at the contact interface between the aluminate powder and the magnesium oxide.
  • Thermal diffusion The resulting phosphor has a crystal structure clearly different from that of the strontium aluminate phosphor disclosed in the above-mentioned WO 2005/090513. That is, according to the method of the present invention, a novel blue phosphor having a novel crystal structure and composition and emitting specific fluorescence at an emission peak wavelength of 450 to 470 nm is obtained.
  • the heating conditions at this time may be heating the precursor powder in a contact state in a reducing atmosphere, and the preferable heating temperature is 500 ° C. or more and 1600 ° C. or less, more preferably 800 ° C. or more and 1500 ° C. C or less, more preferably in the range of 800 ° C. or more and 1500 ° C. or less.
  • the reducing atmosphere is not particularly limited, it is preferable to use an argon / hydrogen mixed atmosphere or nitrogen / water. It is an elementary mixed atmosphere.
  • the aluminate phosphor of the present invention is produced by the above-mentioned method of the present invention, but the composition formula after thermal reduction has not been clarified until now. Force This heat-reduced product exerts a specific fluorescence characteristic to generate blue emission of high color purity which emits light specifically at an emission peak wavelength of 450 to 470 nm by ultraviolet excitation and electron beam excitation as described above.
  • the phosphor of the present invention produces blue light with a specific high color purity at an emission peak wavelength of 450 to 470 nm as described above, but its fluorescence lifetime is extremely short. This is in contrast to the very long or afterglow fluorescence lifetime of the strontium aluminate phosphor disclosed in the prior art cited above.
  • This solution was powdered by a spray drying method at a drying temperature of 160 ° C. to obtain (Sr, Al, Eu) -EDTA complex powder.
  • An X-ray diffraction chart of this powder was confirmed, and it showed a halo figure due to scattering of incident X-rays, and the crystal structure was amorphous.
  • the complex powder was calcined at 800 ° C. for 3 hours in an open-air electric furnace to thermally decompose and remove the organic matter, to obtain an aluminate powder.
  • Olg is dispersed in ethanol, dropped onto a (100) oriented magnesium oxide substrate (10 mm x 10 mm) and dried, and then in a stream of Ar + H (3%) By heating and reducing at 1400 ° CX for 24 hours
  • a phosphor film was produced.
  • This phosphor film when it is irradiated with ultraviolet light at an excitation wavelength of 325 nm is shown in FIG. As apparent from this figure, it can be seen that it emits blue light with high color purity and high luminance, with an emission peak wavelength of 450 to 470 nm.
  • the emission spectrum by electron beam excitation with an acceleration voltage of 30 kV was also confirmed to be the same spectrum as FIG. 1, and it was confirmed that it is a blue phosphor applicable to both ultraviolet excitation and electron beam excitation.
  • the aluminate-based phosphor of the present invention is used as a blue phosphor such as a three-wavelength fluorescent lamp using an ultraviolet ray as an excitation source, a brama display, etc., and a cathode ray tube or a fluorescent display tube using an electron beam as an excitation source. It can be very effectively used as a phosphor to be used.
  • a blue phosphor having the above-mentioned characteristics can be efficiently produced, and can be provided as a phosphor which can be widely and effectively utilized for various applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

Disclosed is a novel aluminate phosphor which emits blue fluorescence with high color purity and high luminance in a certain wavelength range through ultraviolet light excitation and electron beam excitation. Also disclosed is a useful method for producing such an aluminate phosphor. Specifically disclosed is a method for producing an aluminate phosphor, which comprises a step wherein an aluminate represented by the following composition formula: 7(Sr1-xEux)O·yAl2O3 (wherein x and y satisfy 0 < x ≤ 0.5 and 1 ≤ y ≤ 36) is heated in a reducing atmosphere while being in contact with magnesium oxide.

Description

明 細 書  Specification
アルミン酸塩系蛍光体の製法およびアルミン酸塩系蛍光体  Process for producing aluminate phosphor and aluminate phosphor
技術分野  Technical field
[0001] 本発明は、アルミン酸塩系蛍光体の製法、および当該方法で製造されたアルミン 酸塩系蛍光体に関するものである。  The present invention relates to a method for producing an aluminate phosphor, and to the aluminate phosphor produced by the method.
背景技術  Background art
[0002] アルミン酸塩を母構造とする蛍光体は、主に青色から緑色の色調領域で発光する 紫外線励起型蛍光体として幅広く実用化されている。特に最近では、プラズマデイス プレイパネル (PDP)のために、希ガス放電によって放射される真空紫外線により蛍 光体を励起して発光させる機構を有する真空紫外線励起型発光素子の開発が活発 に行われている。実際、青色から緑色に発光する PDP用として、幾つかのアルミン酸 塩系蛍光体が実用化されてレ、る。  Phosphors having an aluminate as a mother structure are widely put into practical use as ultraviolet-excited phosphors that emit light mainly in a blue to green color tone region. In particular, recently, for plasma display panels (PDPs), development of vacuum ultraviolet ray excited light emitting devices having a mechanism for exciting a phosphor by the vacuum ultraviolet rays emitted by rare gas discharge to emit light has been actively conducted. ing. In fact, several aluminate phosphors have been put to practical use for PDPs that emit blue to green light.
[0003] ところで、アルミン酸塩は組成式: xMO .yAl O (式中、 Mは、アルカリ土類金属な  [0003] By the way, the aluminate is represented by the composition formula: xMO. YAl 2 O (wherein, M is an alkaline earth metal)
2 3  twenty three
どの金属をである)で表される。この金属 Mとして、複数の 2価金属を導入したり、賦 活剤として希土類金属や Mnなどを Mサイトにドープしたりすることによって、様々な 組成の蛍光体が製造されている。例えば、金属 Mとして Baと Mgを用レ、、 Baサイトに 賦活剤として Euをドープしたものは、紫外線励起により青色蛍光を発することが確認 されている。  Which metal is represented). As the metal M, phosphors of various compositions are manufactured by introducing a plurality of divalent metals or doping an M site with a rare earth metal or Mn as an activator. For example, it has been confirmed that blue light is emitted by ultraviolet excitation when metal doped with Ba and Mg as metal M, and doped with Eu as an activator at the Ba site.
[0004] 中でも代表的なものは、例えば特公昭 52— 22836号公報に開示されている BaM g Al O : Euや、特開平 08— 115673号公報に開示されている BaMgAl O : Eu Among them, representative ones are, for example, BaM g Al 2 O 3: Eu disclosed in JP-B-52-22836, or BaMgAl 2 O 3: Eu disclosed in Japanese Patent Application Laid-Open No. 08-115673.
2 16 27 10 17 等である。これら以外にも、上記 BaMgAl 〇 : Euに対して Baや Alの比率を多くし It is 2 16 27 10 17 mag. In addition to these, the ratio of Ba and Al to the above BaMgAl 〇: Eu is increased.
10 17  10 17
たり、 Baの一部を Srに置換したりすることでベーキング処理による熱劣化を抑えたも の(特開 2000— 226574号公報)や、マグネトプランバイト型構造のアルミン酸塩に Euを賦活剤として添加したもの(特開 2001— 240856号公報)等が知られている。  Or a part of Ba is replaced with Sr to suppress the thermal deterioration due to the baking treatment (Japanese Patent Laid-Open No. 2000-226574), an aluminate of a magnetoplumbite type structure, and an activator of Eu. What was added as (Japanese Patent Application Laid-Open No. 2001-240856) and the like are known.
[0005] また、アルミン酸塩に賦活剤として Mnをドープした例えば BaAl 〇 : Mnや BaMg Further, for example, BaAl:: Mn or BaMg in which aluminate is doped with Mn as an activator.
12 19  12 19
Al O : Mnは、紫外線励起により緑色の蛍光を発する緑色蛍光体として知られてい Al 2 O 3: Mn is known as a green phosphor that emits green fluorescence upon ultraviolet excitation
14 23 14 23
る。また発光特性を更に高めるため、 Ceや Tbで賦活したランタン 'マグネシウムアル ミン酸塩緑色蛍光体(特開平 06— 240252号公報)や、マンガン置換型バリウム ·力 ルシゥムアルミネート蛍光体における Baの一部を Znに置換し、残りの Baを Srに置換 し、更に Ceを賦活した Ce— Mn共賦活緑色蛍光体(特開 2000— 290647号公報) も知られている。その他の蛍光体として、発光ピーク波長が 493nmの青緑色を呈す るユーロピウム賦活ストロンチウムアルミネートも知られている。 Ru. In addition, Ce and Tb activated lanthanum 'magnesium' to further enhance the light emission characteristics. A part of Ba in Zn-halide green phosphor (Japanese Unexamined Patent Publication No. H06-240252) or a manganese-substituted barium lumium aluminate phosphor is replaced with Zn, and the remaining Ba is replaced with Sr, Furthermore, a Ce--Mn co-activated green phosphor in which Ce is activated (Japanese Patent Laid-Open No. 2000-290647) is also known. As another phosphor, europium activated strontium aluminate exhibiting a bluish green color with an emission peak wavelength of 493 nm is also known.
[0006] またアルミン酸塩系蛍光体の中には、長時間の残光特性を持ったいわゆる蓄光性 の蛍光体がある。この蓄光性蛍光体は、 MAIO (式中、 Mは Ca, Sr, Baから選ばれ  Further, among the aluminate phosphors, there are so-called luminous phosphors having long-lasting properties. This phosphorescent phosphor is MAIO (wherein, M is selected from Ca, Sr and Ba)
4  Four
る少なくとも 1種の金属元素を意味する)で表される化合物を母構造とする。この蓄光 性蛍光体としては、これに賦活剤として Eu、共賦活剤として他の希土類元素を添カロ したものが知られている(特開平 07— 11250号公報)。その他にも、母体アルミネー トのアルミニウムの一部をホウ素で置換して含有させ、結晶を安定化させることにより 残光特性を改善したもの(特開平 08— 73845号公報)、母体を Sr Al O とし、ユー  And at least one kind of metal element) is a parent structure. As such a luminescent phosphor, one in which Eu as an activator and another rare earth element as a coactivator are known (Japanese Patent Application Laid-Open No. 07-11250). Besides, a part of aluminum of the matrix aluminate is replaced with boron and contained to stabilize the crystal to improve the afterglow property (Japanese Patent Laid-Open No. 08-73845), the matrix is Sr Al O And you
2 6 11 口ピウムを賦活剤とし、或はユーロピウムを賦活剤として添加すると共にジスプロシゥ ムを共賦活剤として添加したもの(特開 2000— 63823号公報)、などが挙げられる。  Examples thereof include those obtained by adding 2 <11> <1> <1> <1> <1> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 212 << H <H 2000) to addition of dysprosium as a co- activation agent.
[0007] 上記の様に、従来のアルミン酸塩系蛍光体は 3種以上の金属を含む酸化物で構成 されており、これら蛍光体の製造に当たっては、各々の金属成分を如何に均一に混 合するかが重要となる。 As described above, the conventional aluminate phosphor is composed of an oxide containing three or more metals, and in the production of these phosphors, the respective metal components are mixed uniformly. It becomes important whether they match.
[0008] ところで上述した蛍光体の殆どは、固相原料を所望の金属組成比となる様に混合し 焼成することによって複合金属酸化物を得る方法、すなわち固相法という古典的な 方法で製造されている。この固相法では、複数の金属酸化物を固相状態で混合する ので、如何に均一に混合したとしても、ミクロ的に見ると明らかに不均一相である。ま た、金属組成比や金属元素のドープ量を如何に巧妙に制御したとしても、また個々 の粒子 1粒ずつに含まれる金属成分の組成比を所望通りに制御したとしても、粒子 内での金属分布が完全に均一な蛍光体を製造することは原理的に不可能である。  By the way, most of the above-mentioned phosphors are manufactured by a method of obtaining a composite metal oxide by mixing and calcining a solid phase raw material so as to obtain a desired metal composition ratio, that is, by the classical method of solid phase method. It is done. In this solid phase method, a plurality of metal oxides are mixed in the solid phase state, so even if they are uniformly mixed, they are clearly heterogeneous phases when viewed microscopically. Also, no matter how carefully the metal composition ratio and the doping amount of the metal element are controlled, and even if the composition ratio of the metal component contained in each individual particle is controlled as desired, within the particle It is impossible in principle to produce phosphors in which the metal distribution is completely uniform.
[0009] また、上記の様な複数の金属酸化物からなる均一な複合金属酸化物系やアルミン 酸塩系の蛍光体を製造するには、その直前の前駆体として均一な複合金属組成の ものを経ることが必要であり、均一な前駆体物質を得るには、原料の時点から均一な 状態を経て合成することが必要となる。この様な方法としては、ゾル—ゲル法や共沈 法に代表される化学的手法を重視した液相法が知られている。 Further, in order to manufacture a uniform composite metal oxide-based or aluminate-based phosphor composed of a plurality of metal oxides as described above, a precursor having a uniform composite metal composition as a precursor immediately before that is used. In order to obtain a uniform precursor substance, it is necessary to synthesize it from the point of raw material through a uniform state. Such methods include sol-gel method and coprecipitation There is known a liquid phase method which emphasizes a chemical method represented by the law.
[0010] しかしこれら従来の液相法でも、複数金属成分の組成比を均一にしょうとすると、製 造コストが高騰する他、製造作業が非常に煩雑となる。また、溶液状態での金属組成 比が均一であったとしても、得られる粉体の金属組成比は不均一にならざるを得ない 。金属化合物の加水分解速度や溶解度積などは金属の種類によって異なり、その後 の加水分解、中和もしくは沈殿生成などの過程で生成する沈澱の金属組成比が不 均一になるからである。こうした金属組成の不均一も、複合酸化物系やアルミン酸塩 系蛍光体の蛍光特性に少なからず悪影響を及ぼしていると考えられる。  However, even with these conventional liquid phase methods, if the composition ratio of the plurality of metal components is made uniform, the manufacturing cost will rise, and the manufacturing operation will be very complicated. In addition, even if the metal composition ratio in the solution state is uniform, the metal composition ratio of the obtained powder must be nonuniform. The hydrolysis rate and solubility product of the metal compound differ depending on the type of metal, and the metal composition ratio of the precipitate formed in the subsequent process such as hydrolysis, neutralization or precipitation becomes uneven. It is considered that such nonuniformity of the metal composition also has a considerable adverse effect on the fluorescence characteristics of the complex oxide-based or aluminate-based phosphors.
[0011] こうした状況の下で本発明者らは、新規なアルミン酸系青色蛍光体の開発を期して 研究を重ねた結果、先に WO2005/090513号公報に記載の技術を開発した。こ の発明は、 Sr Al O : Euで示される新規な青色蛍光体に関するもので、様々の用  [0011] Under these circumstances, the present inventors have developed a technology described in WO 2005/090513 as a result of repeated research aiming at development of a novel aluminate blue phosphor. The present invention relates to a novel blue phosphor represented by Sr Al 2 O 3: Eu, which has various uses.
7 12 25  7 12 25
途展開が期待される。し力、しこの蛍光体は、発光ピーク波長が 41 Onmとやや紫外線 に近いため、ディスプレイや三波長型蛍光灯に適用するには尚改善の余地を残して いる。即ち、これらの用途に適用するには、発光ピーク波長をより色純度の良好な 45 Onm付近に近づけることが望ましぐこの様な特性を与えることができれば、その用途 は更に飛躍的に高まることが必定である。  Development is expected. Since this phosphor has a light emission peak wavelength of 41 Onm, which is somewhat close to ultraviolet light, there is still room for improvement in its application to displays and three-wavelength fluorescent lamps. That is, if it is possible to give such a characteristic that it is desirable to bring the emission peak wavelength closer to the vicinity of 45 Onm, which is better in color purity, to be applied to these applications, the applications will be dramatically increased. Is a must.
発明の開示  Disclosure of the invention
[0012] 本発明はこうした状況の下でなされたものであり、前記 WO2005/090513号公 報に記載の技術を更に発展させたものである。本発明の目的は、紫外線励起および 電子線励起により蛍光を発することが確認されているアルミン酸塩系蛍光体に焦点を 絞って、均一組成で且つより青色度の高レ、蛍光を発する紫外線および電子線励起 型の新規なアルミン酸塩系蛍光体を開発することにある。また、本発明は、その様な 蛍光体を効率よく製造することのできる方法を提供することも目的とする。  The present invention has been made under such circumstances, and is a further development of the technology described in the above-mentioned WO 2005/090513 publication. The object of the present invention is to focus on an aluminate-based phosphor which has been confirmed to emit fluorescence by ultraviolet excitation and electron beam excitation, and to emit ultraviolet light which has a uniform composition and a higher degree of blueness, and emits fluorescence. The aim is to develop a new electron beam excited type aluminate phosphor. Another object of the present invention is to provide a method capable of efficiently producing such a phosphor.
[0013] 本発明に係るアルミン酸塩系蛍光体の製法は、組成式: 7 (Sr Eu ) 0 - yAl O (  The method for producing an aluminate phosphor according to the present invention is a composition formula: 7 (Sr Eu) 0-yAl O (
1-x x 2 3 式中、 x, yは、 0 < x≤0. 5、 l≤y≤ 36を表わす)で示されるァノレミン酸塩を、酸ィ匕マ グネシゥムと接触させた状態で還元雰囲気中で加熱する工程を含むことを特徴とす る。  1-xx 2 3 In the formula, x, y is 0 <x ≤ 0.5, l ≤ y ≤ 36), and the reducing atmosphere in the state in which an anolamine salt is in contact with an acid manganate. It is characterized in that it includes the step of heating inside.
[0014] 本発明のアルミン酸塩系蛍光体は、上記方法により製造されるものであり、紫外線 励起および電子線励起により発光ピーク波長 450〜470nmで発光するものであるこ とを特徴とする。 The aluminate phosphor of the present invention is produced by the above method, and is an ultraviolet ray. It is characterized by emitting light at an emission peak wavelength of 450 to 470 nm by excitation and electron beam excitation.
図面の簡単な説明  Brief description of the drawings
[0015] [図 1]実施例で得たアルミン酸系蛍光体に励起波長 325nmの紫外線を照射したとき の発光スペクトル図である。  FIG. 1 is an emission spectrum diagram when the aluminate-based phosphor obtained in the example is irradiated with ultraviolet light with an excitation wavelength of 325 nm.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 先ず、本発明に係る蛍光体の製法についてより詳細に説明する。 First, the method for producing a phosphor according to the present invention will be described in more detail.
[0017] 本発明方法で用いる組成式: 7 (Sr Eu )〇'yAl〇で表されるアルミン酸塩におThe composition formula used in the method of the present invention: 7 (Sr Eu) 〇'yAl〇
-x 2 3  -x 2 3
いて、 Srに対する Euドープ量(X)の範囲は「0 < χ≤0· 5」、アルミナ(A1〇)の比率  And the range of the Eu doping amount (X) to Sr is “0 <χ≤ 0 · 5”, the ratio of alumina (A10)
2 3 twenty three
(y)の範囲は「1≤y≤ 36」の範囲である。 The range of (y) is the range of “1≤y≤ 36”.
[0018] 上記 Euドープ量 (X)がゼロ(0)、即ち Euドープなしでは、発光中心がなくなって発 光を示さなくなり、一方、 Euドープ量が多くなり過ぎて (X)の値が 0. 5を超えると、濃 度消光を起して輝度の低下が顕著になる。よって本発明では (X)の値を上記の様に 定めた。 (X)のより好ましい範囲は「0. 001≤x≤0. 3」の範囲であり、この範囲で最 も高い発光特性を発揮する。  When the above-mentioned Eu doping amount (X) is zero (0), that is, without Eu doping, the luminescence center is lost and no light emission is shown, while the Eu doping amount is too high and the value of (X) is 0 When it exceeds 5, concentration quenching occurs and the decrease in luminance becomes noticeable. Therefore, in the present invention, the value of (X) is determined as described above. A more preferable range of (X) is the range of “0. 001 ≤ x ≤ 0.3”, and the highest light emission characteristic is exhibited in this range.
[0019] 他方、 Al Oの比率 (y)が 1未満では、蛍光体としての機能が低下して満足な蛍光  On the other hand, when the ratio (y) of Al 2 O is less than 1, the function as a phosphor decreases and satisfactory fluorescence is obtained.
2 3  twenty three
を発しなくなり、また (y)が 36を超えて過度に高くなつても、やはり満足のいく蛍光特 性が発揮されなくなる。よって本発明では (y)の値を上記範囲に定めた。 (y)のより好 ましい範囲は「3≤y≤27」の範囲であり、この範囲で最も高い発光特性が発揮される  If (y) exceeds 36 and becomes too high, satisfactory fluorescent characteristics will not be exhibited again. Therefore, in the present invention, the value of (y) is set in the above range. The more preferable range of (y) is the range of “3≤y≤27”, and the highest light emission characteristic is exhibited in this range
[0020] 組成式: 7 (Sr Eu ) 0 -yAl Oで表されるアルミン酸塩は、(1) Sr, Euおよび Alを The aluminate represented by the compositional formula: 7 (Sr Eu) 0 -yAl 2 O has the following properties: (1) Sr, Eu and Al
l-x x 2 3  l-x x 2 3
金属成分とする有機金属キレートからなる粉末を製造する工程、および(2)前記工程 (1)で得た粉末を焼成してアルミン酸塩を得る工程、を経て製造することができる。よ り詳しい製造条件は、前掲の WO2005/090513号公報で開示されている。具体的 な製造条件などは特に制限されないが、 Sr, Al, Euからなる各金属成分が分子レべ ルで均一に混合された有機金属キレート粉末を前駆体として使用すれば、より容易 に上記一般式で表されるアルミン酸塩ストロンチウムを得ることができる。  It can manufacture via the process of manufacturing the powder which consists of an organometallic chelate used as a metal component, and the process of baking the powder obtained at (2) said process (1), and obtaining an aluminate. More detailed production conditions are disclosed in the above-mentioned WO 2005/090513. Specific production conditions are not particularly limited, but it is easier to use the organometallic chelate powder in which each metal component consisting of Sr, Al and Eu is uniformly mixed at the molecular level as a precursor. The aluminate strontium represented by the formula can be obtained.
[0021] ここで、前駆体となる有機金属キレート粉末は、各金属化合物と有機キレート剤を 所定の金属組成比となる様に混合して澄明な有機金属キレート水溶液とした後、この 水溶液を例えば噴霧乾燥することによって容易に得ることができる。 Here, the organic metal chelate powder to be a precursor is each metal compound and an organic chelating agent. The aqueous solution can be easily obtained, for example, by spray-drying after being mixed so as to obtain a predetermined metal composition ratio to obtain a clear organic metal chelate aqueous solution.
[0022] 具体的には、次の様な方法が例示される。まず Sr, Euおよび A1の有機金属キレー トを含む粉末を製造する。この製造は、例えば次の様にして行われる。まず、 Srと Eu を所定の金属組成となる様に精秤し、これらを有機キレート剤と反応させて澄明な有 機金属キレート水溶液を調製する。この反応は、水性媒体中で、たとえば温度 20°C 〜沸点、好ましくは 50〜70°Cの範囲で行われる。好ましい水溶液濃度は、固形分換 算で 5質量%以上、 30質量%以下、より好ましくは 10質量%以上、 20質量%以下で あるが、勿論この温度域に限定されるわけではない。  Specifically, the following method is exemplified. First, a powder containing organometallic chelates of Sr, Eu and A1 is produced. This manufacture is performed, for example, as follows. First, Sr and Eu are precisely weighed so as to obtain a predetermined metal composition, and these are reacted with an organic chelating agent to prepare a clear organic metal chelate aqueous solution. This reaction is carried out in an aqueous medium, for example, at a temperature of 20 ° C to boiling point, preferably 50 to 70 ° C. The preferred aqueous solution concentration is 5% by mass or more and 30% by mass or less, more preferably 10% by mass or more and 20% by mass or less in terms of solid content conversion, but of course it is not limited to this temperature range.
[0023] 有機キレート剤の使用量は、全金属を完全溶解できるよう、金属イオンに対して当 量以上とするのがよぐ好ましくは 1. 0倍モル以上、 1. 5倍モル以下である。尚、金属 キレートや有機キレート剤が完全に溶解しなレ、場合は、アンモニアやアミン等を加え て完全溶解させるのがよい。また、上記各金属の有機金属キレートを別々に調製して おき、これらを精秤して所定金属比率となる様に混合してもよい。  [0023] The amount of the organic chelating agent used is preferably at least 1.0 times mol and not more than 1.5 times mol based on the metal ion so that all the metals can be completely dissolved. . In the case where the metal chelate or the organic chelating agent is not completely dissolved, in the case where ammonia or an amine is added, it is preferable to completely dissolve it. Alternatively, the organic metal chelates of the above-mentioned respective metals may be prepared separately, and they may be precisely weighed and mixed so as to obtain a predetermined metal ratio.
[0024] 金属原料としては、炭酸塩、硝酸塩、水酸化物、酸化物などを使用できる力 スト口 ンチウムとユーロピウムを用いる本発明において特に好ましいのは、反応性が良好で 且つ反応後に余分なイオン等が残らない酸化物や炭酸塩である。アルミニウムにつ いては、有機キレート剤との反応性を考慮すると使用可能な原料は実質的に塩ィ匕物 、硫酸塩、硝酸塩に限定され、好ましいのは硝酸塩である。中でも特に好ましいのは 、塩化物、硫酸塩または硝酸塩を用いてまずアルミニウムキレート溶液を製造し、晶 析によって高純度のアルミニウムキレート結晶を予め作製し、これをアルミニウム源と して使用するのがよい。 Particularly preferred in the present invention, which uses carbonates, nitrates, hydroxides, oxides, etc., as metal raw materials, in the present invention using strontium and europium, has good reactivity and excess ions after the reaction. It is an oxide or carbonate in which etc. do not remain. As for aluminum, considering the reactivity with organic chelating agents, usable raw materials are substantially limited to salts, sulfates and nitrates, and nitrate is preferred. Among them, it is particularly preferable to first produce an aluminum chelate solution using chloride, sulfate or nitrate, pre-produce high purity aluminum chelate crystals by crystallization, and use this as an aluminum source. .
[0025] ところで、アルミン酸塩系蛍光体を製造する際に一番問題となるのは、不純物元素 の混入である。有機金属キレートの中でもナトリウム塩やカリウム塩などは熱分解後も 蛍光体内に残留し、蛍光体の組成を狂わせる要因になるため使用すべきではない。 また、塩酸、硫酸、リン酸またはこれらの塩など、塩素、硫黄またはリン等が含まれる 無機酸や無機酸塩;およびチオールィ匕合物などの有機物は、極力用いないことが望 ましレ、。これらは焼成過程でほぼ完全に熱分解するが、均一組成の複合金属キレー トの生成に悪影響を及ぼす恐れもあるからである。 By the way, what matters most when producing an aluminate phosphor is the mixing of impurity elements. Among the organic metal chelates, sodium salts and potassium salts remain in the fluorescent body even after thermal decomposition, and they should not be used because they cause the composition of the fluorescent body to be upset. In addition, organic acids such as hydrochloric acid, sulfuric acid, phosphoric acid or their salts, etc. and inorganic acids and inorganic acid salts containing chlorine, sulfur or phosphorus, etc .; and thiol compounds are preferably not used as much as possible. These are almost completely pyrolyzed in the firing process, but complex metal chelates of uniform composition Because there is a risk of adversely affecting the generation of
[0026] 本発明で用いる有機キレート剤としては、エチレンジァミン四酢酸、 1 , 2—シクロへ キサンジァミン四酢酸、ジヒドロキシェチルグリシン、ジァミノプロパノール四酢酸、ジ エチレントリアミン五酢酸、エチレンジァミン二酢酸、エチレンジァミン二プロピオン酸 、ヒドロキシエチレンジァミン三酢酸、グリコールエーテルジァミン四酢酸、へキサメチ レンジアミン四酢酸、エチレンジアミンジ(o—ヒドロキシフエニル)酢酸、ヒドロキシェチ ノレイミノニ酢酸、イミノニ酢酸、 1 , 3—ジァミノプロパン四酢酸、 1, 2—ジァミノプロパ ン四酢酸、二トリ口三酢酸、二トリ口三プロピオン酸、トリエチレンテトラミン六酢酸、ェ チレンジァミン二こはく酸、 1, 3—ジァミノプロパン二こはく酸、グルタミン酸一 N, N —二酢酸、ァスパラギン酸— N, N—二酢酸、などの如き水溶性のアミノカルボン酸 系キレート剤を挙げることができる。これらのモノマー、オリゴマー或はポリマーのいず れでも用レ、ること力 Sできる。有機キレート剤として、より好ましくは、アミノカルボン酸系 キレート剤および/またはその塩を使用する。  Examples of the organic chelating agent used in the present invention include ethylenediamine tetraacetic acid, 1,2-cyclohexanediamine tetraacetic acid, dihydroxyglycine, diamineopropanoltetraacetic acid, diethylenetriaminepentaacetic acid, ethylenediamine diacetic acid and ethylenediamine Dipropionic acid, Hydroxyethylenediamine triacetic acid, Glycoletherdiamine triacetic acid, Hexamethylendiaminetetraacetic acid, Ethylenediamine di (o-hydroxyphenyl) acetic acid, Hydroxye noreimino diacetic acid, Iminoniacetic acid, 1,3-Diaminopropane Tetraacetic acid, 1,2-Diaminopropane tetraacetic acid, 2-tri-portal triacetic acid, 2-tri-portal 3-propionic acid, triethylenetetramine hexaacetic acid, ethylenediamine dibasic acid, 1,3-diaminopropane dibasic acid, glutamate mono-N, N — Diacetic acid, gas There may be mentioned water-soluble aminocarboxylic acid-based chelating agents such as paraformic acid-N, N-diacetic acid and the like. Any of these monomers, oligomers or polymers can be used. As the organic chelating agent, more preferably, an aminocarboxylic acid chelating agent and / or a salt thereof is used.
[0027] 有機金属キレートとしては、より好ましくは、アミノカルボン酸系キレート剤と金属ィォ ンからなる錯体、および/またはその塩を用いる。また、アミノカルボン酸系キレート 剤として、より好ましくは、二トリ口三酢酸、エチレンジァミン四酢酸、ジエチレントリアミ ン五酢酸、およびトリエチレンテトラミン六酢酸よりなる群から選ばれる少なくとも 1種を 使用する。  More preferably, as the organometallic chelate, a complex composed of an aminocarboxylic acid chelating agent and a metal ion, and / or a salt thereof is used. Further, as the aminocarboxylic acid chelating agent, more preferably, at least one selected from the group consisting of ditritrichloroacetic acid, ethylenediamine tetraacetic acid, diethylenetriaminepentaacetic acid, and triethylenetetramine hexaacetic acid is used.
[0028] 但し、遊離酸タイプやアンモニゥム塩またはアミン塩を使用し、各金属とのキレート 生成定数や、金属キレートの安定性、更には金属キレートの水またはアルカリ水溶液 中への溶解性などを考慮して、使用する金属成分毎に適切なものを選択することが 望ましい。  However, the free acid type, ammonium salt or amine salt is used, and the chelate formation constant with each metal, the stability of the metal chelate, and the solubility of the metal chelate in water or alkaline aqueous solution are taken into consideration. It is desirable to select an appropriate one for each metal component to be used.
[0029] 上記の様にして調製された有機金属キレート水溶液は、次いで噴霧乾燥によって 粉体化される。噴霧乾燥する際の条件は、水溶液の濃度や溶液処理速度、噴霧空 気量、熱風空気量等によって適宜に設定すればよいが、乾燥温度は、好ましくは有 機物が分解しない温度を上限とし、また十分に乾燥できる温度を採用すればよい。こ うした観点から、乾燥温度は 100〜200°C程度の範囲がよぐより一般的なのは 140 〜180°Cの範囲である。こうした乾燥温度を考慮すると、本発明で用いる上記アミノカ ルボン酸系キレート剤としては、 200°C程度以下の温度で熱分解しないものを選択 することが望ましい。 The organic metal chelate aqueous solution prepared as described above is then powdered by spray drying. The conditions for spray drying may be appropriately set according to the concentration of the aqueous solution, the solution processing rate, the amount of air for spraying, the amount of air for hot air, etc. The drying temperature is preferably the temperature at which the organic substance is not decomposed. Also, a temperature sufficient to dry sufficiently may be employed. From this point of view, the drying temperature is generally in the range of 140 to 180 ° C., more preferably in the range of about 100 to 200 ° C. Considering such drying temperatures, the above amino acids used in the present invention are It is desirable to select the one that does not thermally decompose at a temperature of about 200 ° C. or less as the rubonic acid-based chelating agent.
[0030] 上記により得られた有機金属キレート粉末は、次いで焼成することにより金属酸化 物とされる。この際の好ましい条件は次の通りである。上記により得られた有機金属キ レート粉末は、そのまま焼成すると有機成分が熱分解して複合酸化物系の粉末とな る。焼成は有機成分が完全に分解されればよぐ例えば 500°C以上で焼成すると、 有機成分は全て分解焼失して複合金属酸化物となる。なお焼成温度を高めれば高 めるほど複合金属酸化物の結晶性は向上するので、必要によっては 1600°Cまでの 温度で焼成することも可能である。  The organometallic chelate powder obtained as described above is then fired to form a metal oxide. The preferable conditions at this time are as follows. When the organic metal chelate powder obtained as described above is fired as it is, the organic component is thermally decomposed to form a complex oxide powder. In the firing, when the organic components are completely decomposed, for example, at 500 ° C. or higher, all the organic components are decomposed and burned off to form a composite metal oxide. The crystallinity of the composite metal oxide is improved as the calcination temperature is raised, so that the calcination can be carried out at a temperature of up to 1600 ° C. if necessary.
[0031] 焼成時および加熱時の雰囲気は必ずしも空気中である必要はなぐ必要に応じて 酸素富化雰囲気や中性雰囲気、還元雰囲気で行ってもよい。好適には、空気、酸素 および窒素よりなる群から選ばれる少なくとも 1種を含む雰囲気中で焼成する。  The atmosphere for firing and heating is not necessarily in the air, and may be performed in an oxygen-enriched atmosphere, a neutral atmosphere, or a reducing atmosphere, as necessary. Preferably, it is fired in an atmosphere containing at least one selected from the group consisting of air, oxygen and nitrogen.
[0032] 上記により得られたアルミン酸塩粉末を酸化マグネシウムと接触させ、接触状態を 保持しながら還元雰囲気中で加熱すると、本発明に係るアルミン酸系蛍光体が得ら れる。ここで用いる酸化マグネシウムの形状に格別の制限はなぐ例えば粗粒子状、 微粒子状、薄膜状、基板状などを使用できる。また、それらは単結晶体でも多結晶体 でも構わない。  When the aluminate powder obtained as described above is brought into contact with magnesium oxide and heated in a reducing atmosphere while maintaining the contact state, the aluminate phosphor according to the present invention is obtained. The shape of the magnesium oxide used herein is not particularly limited. For example, coarse particles, fine particles, thin films, substrates and the like can be used. Also, they may be single crystals or polycrystals.
[0033] 前掲のアルミン酸塩粉末と上記酸化マグネシウムを、接触状態を維持しつつ還元 雰囲気で加熱すると、アルミン酸塩粉末と酸化マグネシウムとの接触界面で酸化マグ ネシゥムのマグネシウムがアルミン酸塩粉末に熱拡散する。その結果得られる蛍光体 は、前掲の WO2005/090513号公報で開示されているアルミン酸ストロンチウム型 蛍光体とは結晶構造が明らかに異なる。即ち、本発明方法によって、新規な結晶構 造と組成を有し、発光ピーク波長 450〜470nmで特異的な蛍光を発する新規な青 色蛍光体が得られる。  When the above-mentioned aluminate powder and the above magnesium oxide are heated in a reducing atmosphere while maintaining the contact state, magnesium oxide of magnesium oxide becomes an aluminate powder at the contact interface between the aluminate powder and the magnesium oxide. Thermal diffusion. The resulting phosphor has a crystal structure clearly different from that of the strontium aluminate phosphor disclosed in the above-mentioned WO 2005/090513. That is, according to the method of the present invention, a novel blue phosphor having a novel crystal structure and composition and emitting specific fluorescence at an emission peak wavelength of 450 to 470 nm is obtained.
[0034] このときの加熱条件は、還元雰囲気中で前駆体粉末を接触状態で加熱すればよく 、好ましい加熱温度は 500°C以上、 1600°C以下、より好ましくは 800°C以上、 1500 °C以下、さらに好ましくは 800°C以上、 1500°C以下の範囲である。還元雰囲気も特 に制限されないが、好ましいのは、アルゴン/水素混合雰囲気、あるいは窒素/水 素混合雰囲気である。 The heating conditions at this time may be heating the precursor powder in a contact state in a reducing atmosphere, and the preferable heating temperature is 500 ° C. or more and 1600 ° C. or less, more preferably 800 ° C. or more and 1500 ° C. C or less, more preferably in the range of 800 ° C. or more and 1500 ° C. or less. Although the reducing atmosphere is not particularly limited, it is preferable to use an argon / hydrogen mixed atmosphere or nitrogen / water. It is an elementary mixed atmosphere.
[0035] 上述した本発明の製法によれば、原料として、分子レベルで均一に混合された有 機金属キレートを含む粉末を前駆体として使用することで、分子レベルで均一な組成 の蛍光体を効率よく確実に製造できる。  [0035] According to the manufacturing method of the present invention described above, by using, as the precursor, a powder containing an organic metal chelate uniformly mixed at the molecular level as a raw material, a phosphor having a uniform composition at the molecular level is obtained. Efficient and reliable manufacturing.
[0036] 発明のアルミン酸塩系蛍光体は、上記本発明方法で製造されるが、現在のところ加 熱還元後の組成式まで明確にされていなレ、。し力 この加熱還元物は、上記の様に 紫外線励起および電子線励起により発光ピーク波長 450〜470nmで特異的に発光 する高い色純度の青色発光を生じる特異的な蛍光特性を発揮するのである。  The aluminate phosphor of the present invention is produced by the above-mentioned method of the present invention, but the composition formula after thermal reduction has not been clarified until now. Force This heat-reduced product exerts a specific fluorescence characteristic to generate blue emission of high color purity which emits light specifically at an emission peak wavelength of 450 to 470 nm by ultraviolet excitation and electron beam excitation as described above.
[0037] 本発明の蛍光体は、上記の様に 450〜470nmの発光ピーク波長で特異的な高色 純度の青色発光を生じものであるが、その蛍光寿命は極めて短レ、。これは、前掲の 先行技術に開示されているアルミン酸ストロンチウム型蓄光体の蛍光寿命が非常に 長ぐつまり残光性であるのと対照的である。  [0037] The phosphor of the present invention produces blue light with a specific high color purity at an emission peak wavelength of 450 to 470 nm as described above, but its fluorescence lifetime is extremely short. This is in contrast to the very long or afterglow fluorescence lifetime of the strontium aluminate phosphor disclosed in the prior art cited above.
[0038] 本発明に係る蛍光体の金属組成比や構造は、現在のところ未だ明らかになつてい ない。加熱還元によって得た本発明蛍光体の X線回折分析結果によると、複数相の 共存状態である可能性も十分に考えられる。しかし、前掲の先行技術に開示されて レ、るアルミン酸ストロンチウム型蛍光体とは結晶構造が明らかに異なっており、両者 は全く異質の蛍光体に分類されるべきである。  [0038] The metal composition ratio and structure of the phosphor according to the present invention have not been clarified at present. According to the results of X-ray diffraction analysis of the phosphor of the present invention obtained by thermal reduction, the possibility of coexistence of multiple phases is also fully considered. However, the crystal structure is clearly different from the strontium aluminate phosphor disclosed in the prior art mentioned above, and both should be classified as completely different phosphors.
実施例  Example
[0039] 以下に、実施例および試験例を示し、本発明を更に詳細に説明するが、本発明の 範囲はこれらに限定されるものではない。  The present invention will be described in more detail by way of examples and test examples below, but the scope of the present invention is not limited to these.
[0040] 実施例 1 Example 1
1リットルのビーカーにエチレンジァミン四酢酸 217gと水を加えて総量を 500gとし た後、アンモニア水 lOOgを加えて溶解させた。これを撹拌しながら、炭酸ストロンチウ ム 110gをゆっくり加えた後、 100°Cに昇温して 2時間撹拌を続けることにより完全に 溶解させた。この溶液に水をカ卩えて濃度調整し、無色透明のストロンチウムーェチレ ンジァミン四酢酸 (Sr-EDTA)錯体水溶液を得た。  After adding 217 g of ethylenediaminetetraacetic acid and water to a 1 liter beaker to make the total amount 500 g, 100 g of aqueous ammonia was added and dissolved. While this was stirred, 110 g of strontium carbonate was slowly added, and the temperature was raised to 100 ° C. and stirring was continued for 2 hours to completely dissolve it. Water was added to this solution to adjust its concentration to obtain a colorless and transparent aqueous solution of strontium tetramethylenediacetic acid (Sr-EDTA) complex.
[0041] 一方、 100mlのビーカーにエチレンジァミン四酢酸 0· 65gと水をカ卩えて総量を 10 Ogとした後、アンモニア水 0. 3gを加えて溶解させた。これを撹拌しながら、酸化ユー 口ピウム 0. 4gを加えて 80°Cで 30分間撹拌すると、完全に溶解して無色透明のユー 口ピウムーエチレンジァミン四酢酸 (Eu— EDTA)錯体溶液が得られた。 On the other hand, 0. 65 g of ethylenediaminetetraacetic acid and water were added to a 100 ml beaker to make the total amount 10 Og, and 0.3 g of ammonia water was then added and dissolved. While stirring this, you After 0.4 g of oral palladium was added and the mixture was stirred at 80 ° C. for 30 minutes, it was completely dissolved to obtain a colorless and transparent solution of europium-ethylenediamine tetraacetic acid (Eu-EDTA) complex.
[0042] 100mlのビーカーに、上記で得た Sr— EDTA錯体溶液 29. 72g (Sr含量: 4. 41 質量0 /0)と Eu— EDTA錯体溶液 10. 55g (Eu含量: 0. 440質量0 /0)およびエチレン ジァミン四酢酸アルミニウムアンモニゥム(EDTA. Α1·ΝΗ ) 9. 91g (Al含量: 7. 13 [0042] beaker 100 ml, obtained in the above Sr-EDTA complex solution 29. 72 g (Sr content: 4.41 mass 0/0) and Eu-EDTA complex solution 10. 55 g (Eu content: 0.440 mass 0 / 0 ) and ethylene diamine tetraacetic acid ammonium (EDTA. 1 ·)) 9. 91 g (Al content: 7. 13
4  Four
質量%)を精秤してカ卩えた後、水をカ卩えて総量を 100gとした。次いで 30分間撹拌し て完全溶解し、金属組成比が(Sr+Eu) /Al = 7/12、 EuZSr=0. 02/0. 98で ある無色透明の(Sr, Al, Eu) _ EDTA錯体水溶液を得た。  After precisely weighing and mass-producing), water was added to make the total amount 100 g. Next, it is stirred for 30 minutes and completely dissolved, and the metal composition ratio is (Sr + Eu) / Al = 7/12, EuZSr = 0.2 / 0.0.98 colorless and transparent (Sr, Al, Eu) _ EDTA complex An aqueous solution was obtained.
[0043] この溶液を、噴霧乾燥法によって乾燥温度 160°Cで粉末化することにより、 (Sr, Al , Eu)—EDTA錯体粉末を得た。この粉末の X線回折チャートを確認したところ、入 射 X線の散乱によるハロー図形を示し、結晶構造はアモルファス(非晶質)のものであ つた。 This solution was powdered by a spray drying method at a drying temperature of 160 ° C. to obtain (Sr, Al, Eu) -EDTA complex powder. An X-ray diffraction chart of this powder was confirmed, and it showed a halo figure due to scattering of incident X-rays, and the crystal structure was amorphous.
[0044] この錯体粉末を、大気開放型の電気炉により 800°Cで 3時間仮焼して有機物を熱 分解除去し、アルミン酸塩粉末を得た。得られたアルミン酸塩粉末 0. Olgをエタノー ルに分散し、(100)配向の酸化マグネシウム基板(10mm X 10mm)上に滴下して 乾燥した後、 Ar+H (3%)の気流中で 1400°C X 24時間加熱還元することにより、  The complex powder was calcined at 800 ° C. for 3 hours in an open-air electric furnace to thermally decompose and remove the organic matter, to obtain an aluminate powder. The obtained aluminate powder 0. Olg is dispersed in ethanol, dropped onto a (100) oriented magnesium oxide substrate (10 mm x 10 mm) and dried, and then in a stream of Ar + H (3%) By heating and reducing at 1400 ° CX for 24 hours
2  2
蛍光体膜を作製した。  A phosphor film was produced.
[0045] この蛍光体膜に、励起波長 325nmの紫外線を照射したときの発光スペクトルを図 1 に示す。この図からも明らかな様に、発光ピーク波長が 450〜470nmである高色純 度で且つ高輝度な青色発光を発することが分かる。また加速電圧 30kVの電子線励 起による発光スペクトルも、図 1と同じスペクトルであることが確認され、紫外線励起お よび電子線励起のいずれにも適用可能な青色蛍光体であることを確認した。  The emission spectrum of this phosphor film when it is irradiated with ultraviolet light at an excitation wavelength of 325 nm is shown in FIG. As apparent from this figure, it can be seen that it emits blue light with high color purity and high luminance, with an emission peak wavelength of 450 to 470 nm. The emission spectrum by electron beam excitation with an acceleration voltage of 30 kV was also confirmed to be the same spectrum as FIG. 1, and it was confirmed that it is a blue phosphor applicable to both ultraviolet excitation and electron beam excitation.
産業上の利用可能性  Industrial applicability
[0046] 本発明のアルミン酸系蛍光体は、励起源に紫外線を用いる三波長型蛍光灯やブラ ズマディスプレイ等の青色蛍光体として、また励起源に電子線を用いるブラウン管や 蛍光表示管などに用いる蛍光体として極めて有効に活用できる。 The aluminate-based phosphor of the present invention is used as a blue phosphor such as a three-wavelength fluorescent lamp using an ultraviolet ray as an excitation source, a brama display, etc., and a cathode ray tube or a fluorescent display tube using an electron beam as an excitation source. It can be very effectively used as a phosphor to be used.
[0047] また本発明の製法によれば、上記特性を備えた青色蛍光体を効率よく製造でき、 様々の用途に幅広く有効に活用できる蛍光体として提供できる。 Further, according to the production method of the present invention, a blue phosphor having the above-mentioned characteristics can be efficiently produced, and can be provided as a phosphor which can be widely and effectively utilized for various applications.

Claims

請求の範囲 The scope of the claims
[1] 組成式: 7 (Sr Eu )〇'yAl〇(式中、 x, yは、 0<x≤0. 5、 l≤y≤36を表わす)  [1] Composition formula: 7 (Sr Eu) 〇 'y Al ((wherein, x, y represent 0 <x ≤ 0.5, l ≤ y ≤ 36)
1-x 2 3  1-x 2 3
で示されるアルミン酸塩を、酸化マグネシウムと接触させた状態で還元雰囲気中でカロ 熱する工程を含むことを特徴とするアルミン酸塩系蛍光体の製法。  A process for producing an aluminate-based phosphor, comprising the step of heating the aluminate described in the foregoing in a reducing atmosphere in contact with magnesium oxide.
[2] 前記酸化マグネシウムとして、バルタ状、粉末、および基板状の単結晶並びに多結 晶よりなる群から選ばれる少なくとも 1種を使用する請求項 1に記載の製法。  [2] The process according to claim 1, wherein at least one selected from the group consisting of balta-like, powder, and substrate-like single crystals and multiple crystals is used as the magnesium oxide.
[3] 前記組成式: 7 (Sr Eu )〇'yAl〇(式中、 X, yは、 0<x≤0. 5、 0<v≤10を表  [3] Said compositional formula: 7 (Sr Eu) '' y Al ((wherein, X, y are 0 <x ≤ 0.5, 0 <v ≤ 10
1-x x 2 3  1-x x 2 3
わす)で示されるアルミン酸塩は、  The aluminate shown in
(1) Sr, Euおよび A1を金属成分とする有機金属キレートからなる粉末を製造する 工程、  (1) producing a powder comprising an organic metal chelate having Sr, Eu and A1 as a metal component,
(2)前記工程(1)で得た粉末を焼成してアルミン酸塩を得る工程、  (2) a step of calcining the powder obtained in the step (1) to obtain an aluminate;
を経て製造する請求項 1または 2に記載の製法。  The manufacturing method of Claim 1 or 2 manufactured through.
[4] 前記工程(1)では、当該構成金属元素の金属単体もしくはその金属化合物と有機 キレート剤、および/またはその構成金属元素の有機金属キレートを、所定の金属 組成となる様に混合して調製した澄明な有機金属キレート水溶液を噴霧乾燥して得 た粉末を使用する請求項 3に記載の製法。  [4] In the step (1), the metal simple substance of the constituent metal element or the metal compound thereof and the organic chelating agent, and / or the organic metal chelate of the constituent metal element are mixed to obtain a predetermined metal composition. The method according to claim 3, wherein the powder obtained by spray-drying the prepared clear organic metal chelate aqueous solution is used.
[5] 前記有機キレート剤として、アミノカルボン酸系キレート剤および Zまたはその塩を 使用する請求項 3または 4に記載の製法。 [5] The process according to claim 3 or 4, wherein an aminocarboxylic acid chelating agent and Z or a salt thereof are used as the organic chelating agent.
[6] 前記アミノカルボン酸系キレート剤として、二トリ口三酢酸、エチレンジァミン四酢酸、 ジエチレントリアミン五酢酸、およびトリエチレンテトラミン六酢酸よりなる群から選ばれ る少なくとも 1種を使用する請求項 5に記載の製法。 [6] The method according to [5], wherein the aminocarboxylic acid chelating agent is at least one selected from the group consisting of ditrilic triacetic acid, ethylenediamine tetraacetic acid, diethylenetriaminepentaacetic acid, and triethylenetetramine hexaacetic acid. Manufacturing method.
[7] 前記有機金属キレートとして、アミノカルボン酸系キレート剤と金属イオンからなる錯 体、および Zまたはその塩を使用する請求項 3〜6のレ、ずれかに記載の製法。 [7] The process according to any one of [3] to [6], wherein a complex composed of an aminocarboxylic acid chelating agent and a metal ion, and Z or a salt thereof are used as the organic metal chelate.
[8] 前記工程(2)において、空気、酸素および窒素よりなる群から選ばれる少なくとも 1 種を含む雰囲気中で焼成を行う請求項 3〜7のいずれかに記載の製法。 [8] The method according to any one of claims 3 to 7, wherein in the step (2), firing is performed in an atmosphere containing at least one selected from the group consisting of air, oxygen and nitrogen.
[9] 前記工程(2)において、焼成を 500〜: 1600°Cの範囲内で行う請求項 3〜8のいず れかに記載の製法。 [9] The process according to any one of claims 3 to 8, wherein in the step (2), the firing is performed in the range of 500 to 1600 ° C.
[10] 前記還元雰囲気として、窒素と水素の混合ガスまたはアルゴンと水素の混合ガスを 採用する請求項 1〜9のいずれかに記載の製法。 [10] As the reducing atmosphere, a mixed gas of nitrogen and hydrogen or a mixed gas of argon and hydrogen The manufacturing method in any one of Claims 1-9 employ | adopted.
[11] 前記加熱を 800〜1500°Cの範囲内で行う請求項に 1〜: 10のいずれかに記載の製 法。 [11] The process according to any one of claims 1 to 10, wherein the heating is performed in the range of 800 to 1500 ° C.
[12] 請求項 1〜: 11のいずれかに記載の製法で製造されるものであり、紫外線励起およ び電子線励起により発光ピーク波長 450〜470nmで発光するものであることを特徴 とするアルミン酸塩系蛍光体。  [12] The method according to any one of [1] to [11], which is characterized by emitting light at an emission peak wavelength of 450 to 470 nm by ultraviolet excitation and electron beam excitation. Aluminate-based phosphors.
[13] 前記組成式にぉレヽて、 X, y力 S、 0. 001 < x≤0. 3、 3≤y≤ 27の範囲内である請求 項 12に記載のアルミン酸塩系蛍光体。  [13] The aluminate fluorescent material according to claim 12, wherein X, y force S, 0. 001 <x ≤ 0.3, 3 ≤ y ≤ 27 within the above composition formula.
PCT/JP2007/054558 2006-03-10 2007-03-08 Method for producing aluminate phosphor and aluminate phosphor WO2007105598A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800085991A CN101400758B (en) 2006-03-10 2007-03-08 Method for producing aluminate phosphor and aluminate phosphor
US12/224,881 US20090047202A1 (en) 2006-03-10 2007-03-08 Method for Producing Aluminate Phosphor and Aluminate Phosphor
JP2008505094A JP5261667B2 (en) 2006-03-10 2007-03-08 Method for producing aluminate phosphor and aluminate phosphor
EP07738048A EP2006348A4 (en) 2006-03-10 2007-03-08 Method for producing aluminate phosphor and aluminate phosphor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-066170 2006-03-10
JP2006066170 2006-03-10

Publications (1)

Publication Number Publication Date
WO2007105598A1 true WO2007105598A1 (en) 2007-09-20

Family

ID=38509423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054558 WO2007105598A1 (en) 2006-03-10 2007-03-08 Method for producing aluminate phosphor and aluminate phosphor

Country Status (5)

Country Link
US (1) US20090047202A1 (en)
EP (1) EP2006348A4 (en)
JP (1) JP5261667B2 (en)
CN (1) CN101400758B (en)
WO (1) WO2007105598A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121161A1 (en) * 2011-03-04 2012-09-13 国立大学法人長岡技術科学大学 Method for producing strontium oxide crystal having structure similar to cesium chloride type structure
JP5868542B1 (en) * 2014-12-12 2016-02-24 大電株式会社 Phosphor production method, phosphor, light-emitting element, and light-emitting device based on nitride or oxynitride

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222579A (en) * 1975-08-14 1977-02-19 Fujitsu Ltd Production process of fluorescent substance for gas discharge panel
JPS5222836B2 (en) 1972-11-03 1977-06-20
JPS5993783A (en) * 1982-11-19 1984-05-30 Matsushita Electronics Corp Fluorescent substance of blue green emission
JPH06240252A (en) 1993-02-06 1994-08-30 Samsung Display Devices Co Ltd Green emitting phosphor for fluorescent lamp
JPH0711250A (en) 1993-04-28 1995-01-13 Nemoto Tokushu Kagaku Kk Light-storing fluorescent material
JPH0873845A (en) 1994-06-29 1996-03-19 Nichia Chem Ind Ltd Afterglow type fluorescent material
JPH08115673A (en) 1994-10-17 1996-05-07 Kasei Optonix Co Ltd Vacuum ultraviolet-excited light-emitting element
JPH09286981A (en) * 1996-04-23 1997-11-04 Toshiba Corp Luminescent substance and luminescent lamp
JP2000063823A (en) 1998-08-18 2000-02-29 Riido:Kk Strontium aluminate luminous body having high brightness
JP2000226574A (en) 1999-02-08 2000-08-15 Daiden Co Ltd Blue-color fluorescent material for plasma display panel
JP2000290647A (en) 1999-04-13 2000-10-17 Tokyo Kagaku Kenkyusho:Kk Green color-emitting aluminate-based fluorescent substance
JP2001240856A (en) 2000-02-29 2001-09-04 Sumitomo Chem Co Ltd Fluorescent substance for light emission element by ultraviolet excitation in vacuum
JP2004323576A (en) * 2003-04-22 2004-11-18 Matsushita Electric Ind Co Ltd Phosphor and plasma display device
WO2005090513A1 (en) 2004-03-19 2005-09-29 Chubu Chelest Co., Ltd. Aluminate phosphor and process for producing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625354B2 (en) * 1984-04-18 1994-04-06 松下電子工業株式会社 Fluorescent lamp
JP2747018B2 (en) * 1989-05-30 1998-05-06 株式会社東芝 Phosphor and fluorescent lamp
JP3181218B2 (en) * 1995-09-29 2001-07-03 松下電器産業株式会社 Aluminate phosphor, method for producing the same, and device using this phosphor
JP3755390B2 (en) * 2000-09-08 2006-03-15 株式会社日立製作所 Phosphor, display device using the same, and light source
JP5176084B2 (en) * 2000-11-30 2013-04-03 中部キレスト株式会社 Method for producing metal oxide phosphor
JP2003292949A (en) * 2002-03-29 2003-10-15 Japan Science & Technology Corp High-luminance luminescent material and method of producing the same
US7285913B2 (en) * 2003-08-29 2007-10-23 Matsushita Electric Industrial Co., Ltd. Plasma display device having blue phosphor layers with alkaline earth metal aluminate containing molybdenum or tungsten

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222836B2 (en) 1972-11-03 1977-06-20
JPS5222579A (en) * 1975-08-14 1977-02-19 Fujitsu Ltd Production process of fluorescent substance for gas discharge panel
JPS5993783A (en) * 1982-11-19 1984-05-30 Matsushita Electronics Corp Fluorescent substance of blue green emission
JPH06240252A (en) 1993-02-06 1994-08-30 Samsung Display Devices Co Ltd Green emitting phosphor for fluorescent lamp
JPH0711250A (en) 1993-04-28 1995-01-13 Nemoto Tokushu Kagaku Kk Light-storing fluorescent material
JPH0873845A (en) 1994-06-29 1996-03-19 Nichia Chem Ind Ltd Afterglow type fluorescent material
JPH08115673A (en) 1994-10-17 1996-05-07 Kasei Optonix Co Ltd Vacuum ultraviolet-excited light-emitting element
JPH09286981A (en) * 1996-04-23 1997-11-04 Toshiba Corp Luminescent substance and luminescent lamp
JP2000063823A (en) 1998-08-18 2000-02-29 Riido:Kk Strontium aluminate luminous body having high brightness
JP2000226574A (en) 1999-02-08 2000-08-15 Daiden Co Ltd Blue-color fluorescent material for plasma display panel
JP2000290647A (en) 1999-04-13 2000-10-17 Tokyo Kagaku Kenkyusho:Kk Green color-emitting aluminate-based fluorescent substance
JP2001240856A (en) 2000-02-29 2001-09-04 Sumitomo Chem Co Ltd Fluorescent substance for light emission element by ultraviolet excitation in vacuum
JP2004323576A (en) * 2003-04-22 2004-11-18 Matsushita Electric Ind Co Ltd Phosphor and plasma display device
WO2005090513A1 (en) 2004-03-19 2005-09-29 Chubu Chelest Co., Ltd. Aluminate phosphor and process for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2006348A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121161A1 (en) * 2011-03-04 2012-09-13 国立大学法人長岡技術科学大学 Method for producing strontium oxide crystal having structure similar to cesium chloride type structure
JPWO2012121161A1 (en) * 2011-03-04 2014-07-17 国立大学法人長岡技術科学大学 Method for producing strontium oxide crystal having similar structure to cesium chloride type
JP5868542B1 (en) * 2014-12-12 2016-02-24 大電株式会社 Phosphor production method, phosphor, light-emitting element, and light-emitting device based on nitride or oxynitride

Also Published As

Publication number Publication date
JPWO2007105598A1 (en) 2009-07-30
EP2006348A4 (en) 2010-05-05
CN101400758B (en) 2013-07-17
EP2006348A2 (en) 2008-12-24
US20090047202A1 (en) 2009-02-19
CN101400758A (en) 2009-04-01
JP5261667B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
KR100760882B1 (en) Fluorescent substances for vacuum ultraviolet radiation excited light-emitting devices
JP3985478B2 (en) Phosphor for vacuum ultraviolet light-excited light emitting device
US6660186B2 (en) Method of making blue emitting aluminate phosphor for VUV excited light emitting device
JP4847860B2 (en) Aluminate phosphor and process for producing the same
US6187225B1 (en) Blue phosphor for plasma display and lamp application and method of making
WO2010137533A1 (en) Process for producing surface-treated fluorescent-substance particles, and surface-treated fluorescent-substance particles
WO2007105598A1 (en) Method for producing aluminate phosphor and aluminate phosphor
JPH0141673B2 (en)
JP2004263088A (en) Process for producing fluorescent substance
KR100417607B1 (en) Preparation of Phosphor Oxide by Pyrophoric Synthesis Method
JP2004026922A (en) Fluorescent substance for vacuum ultraviolet light excitation light emission element
KR100419862B1 (en) The composition of the green phosphor in a GdPO4 system and its preparing method
JP4656089B2 (en) Phosphor for vacuum ultraviolet light-excited light emitting device
JP2005008764A (en) Vacuum ultraviolet excitation aluminate phosphor and vacuum ultraviolet excitation luminescent device using the same
JP2004224842A (en) Production method for high-luminance illuminator, and high-luminance illuminator
JP2007246918A (en) Fluorescent substance for vacuum ultraviolet-excited light emitting element
JP2003313550A (en) Phosphor for vacuum ultraviolet ray-excited light emission element
JP2004175908A (en) Blue phosphor for vacuum ultraviolet-exciting light-emitting device
JP2005015678A (en) Phosphor for vacuum-ultraviolet-excited luminescent element
JP2005314596A (en) Phosphor for vacuum ultraviolet ray-excited luminescent element
KR20030053919A (en) Blue-emitting phosphor for long wavelength ultraviolet and a preparation method thereof
JP2002309245A (en) Preparation process of fluorescent material plate
JP2007284683A (en) Fluorescent substance
JP2004217709A (en) Phosphor
JP2001354956A (en) Aluminate phosphor and fluorescent lamp using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008505094

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200780008599.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007738048

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12224881

Country of ref document: US