WO2007105255A1 - Decoder circuit - Google Patents

Decoder circuit Download PDF

Info

Publication number
WO2007105255A1
WO2007105255A1 PCT/JP2006/303435 JP2006303435W WO2007105255A1 WO 2007105255 A1 WO2007105255 A1 WO 2007105255A1 JP 2006303435 W JP2006303435 W JP 2006303435W WO 2007105255 A1 WO2007105255 A1 WO 2007105255A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
inverter
circuit
decoder
pulse signal
Prior art date
Application number
PCT/JP2006/303435
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Ijitsu
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2006/303435 priority Critical patent/WO2007105255A1/en
Publication of WO2007105255A1 publication Critical patent/WO2007105255A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/10Decoders

Definitions

  • the present invention relates to a decoder circuit for obtaining a specific output (selected Z non-selected) from a plurality of inputs, and more particularly to a decoder circuit incorporated as a circuit module in a semiconductor integrated circuit device.
  • a decoder circuit incorporated in a semiconductor integrated circuit device such as a semiconductor integrated memory device
  • a plurality of decoder main circuits having a dynamic NAND configuration as shown in FIG. 4 are arranged in parallel. Things are known.
  • a conventional decoder circuit will be briefly described with reference to FIG.
  • FIG. 4 is a circuit diagram showing a configuration example of a main part of a conventional decoder circuit.
  • Figure 4 shows an example of a circuit using a 3-input dynamic NAND.
  • the reset pulse signal rst and the three selection pulse signals adO, adl, ad2 are input, and one decoded output indicating selection Z non-selection is obtained at the output terminal out. Can do.
  • the main part of the 3-input Y-output decoder circuit has a configuration in which Y pieces of the decoder main circuit 40 shown in FIG. 4 are arranged in parallel.
  • the decoder main circuit 40 shown in FIG. 4 includes, as an input processing circuit, a PMOS transistor 42 having a source electrode connected to a power supply 41, a drain electrode of the PMOS transistor 42, and a ground potential (ground). And NMOS transistors 43, 44, 4 5 arranged in series.
  • the negative reset pulse signal rst is applied to the gate electrode of the PMOS transistor 42 in the reset cycle.
  • the three positive selection pulse signals adO, adl, and ad2 are applied to the corresponding gate electrodes of the NMOS transistors 43, 44, and 45 in the selection cycle.
  • the decoder main circuit 40 shown in FIG. 4 includes, as an output processing circuit, a connection terminal N and an output terminal ou between the drain electrode of the PMOS transistor 42 and the drain electrode of the NMOS transistor 43.
  • An odd number of inverters (three inverters 46, 47 and 48 in the illustrated example) arranged in series with t and an inverter 49 connected in reverse parallel to the inverter 46 are provided.
  • Inverters 46, 47, and 48 function as buffers.
  • the inverter 49 functions as a keeper circuit.
  • FIG. 5 is a circuit diagram showing a specific configuration of the inverter shown in FIG.
  • each of the inverters 46 to 49 shown in FIG. 4 includes a PMOS transistor 52 whose source electrode is connected to the power source 51 and an NMOS transistor 53 whose source electrode is connected to the ground potential (ground).
  • This is a CMOS inverter composed of The gate electrodes of the PMOS transistor 52 and the NMOS transistor 53 are connected in common to form an input end, and the drain electrodes are connected in common to form an output end.
  • the capability of each of the PMOS transistor 52 and the NMOS transistor 53 is defined by the ratio (WZL) of the gate width W and the gate length L representing the size.
  • the PMOS transistor 52 when the input signal a is at a high level (hereinafter referred to as “H level”), the PMOS transistor 52 performs an off operation and the NMOS transistor 53 performs an on operation. Since the output terminal is pulled to the ground potential (ground), the output signal X becomes low level (hereinafter referred to as “L level”).
  • the NMOS transistor 53 When the input signal a is at the L level, the NMOS transistor 53 performs the off operation, and the PMOS transistor 52 performs the on operation to draw the output terminal to the power supply potential, so that the output signal X becomes the H level.
  • the reset pulse signal rst and the selection pulse signals adO, adl, ad2 are alternately input.
  • the selection cycle in which the reset pulse signal rst is not input and the signal line is in the H level state and the PMOS transistor 42 is in the OFF operation state, all of the input selection pulse signals adO, adl, and ad2 are positive.
  • All of the NMOS transistors 43, 44, and 45 are turned on during the period of the pulse width of the selection pulse signals adO, a dl, and ad2, and the connection terminal N is pulled to the ground potential (ground) and becomes the L level. .
  • the output of the inverter 46 is maintained at the H level by the holding operation by the inverter 49.
  • the output of the inverter 48 becomes the H level, and the output terminal out becomes the H level, that is, the selected “determined state”.
  • the reset pulse signal rst is input and the PMOS transistor
  • the connection terminal N is pulled to the power supply potential and becomes H level.
  • the output of the inverter 46 is maintained at the L level by the holding operation by the inverter 49.
  • the output of the inverter 48 becomes the L level, and the output end out force level, that is, the “released state”.
  • the output of the inverter 46 is maintained at the L level operated in the immediately preceding reset cycle by the holding operation by the inverter 49.
  • the output power level of the inverter 48 is reached, and the output terminal out is at the L level, that is, the non-selected “determined state”.
  • Patent Document 1 Japanese Patent Laid-Open No. 62-239398 (semiconductor memory)
  • the final-stage inverter 48 sets the output level to the L level force H.
  • the inverter 47 drives the inverter 48 in the final stage in both the deterministic output and the release output, so conventionally, if the drive capacity of the inverter 47 is increased and it is still insufficient
  • it is necessary to increase the drive capacity of each inverter that constitutes the output processing circuit such as increasing the drive capacity of the inverter 46 in the previous stage.
  • the driving capability of the PMOS transistor 51 is less than about half that of the NMOS transistor 52.
  • the PMOS transistor 51 and the NMOS transistor Since it is necessary to increase the size while maintaining the ratio of the drain current coefficient of 52 (so-called PN ratio), it becomes very complicated.
  • CMOS inverter 1 when generating a chip selection signal power internal circuit control signal and an output transistor control signal in a semiconductor memory, the chip Two CMOS inverters (CMOS inverter 1 generating internal circuit control signal and CMOS inverter 2 generating output transistor control signal) are arranged in parallel at the output stage of the CMOS inverter to which the selection signal is input.
  • the size ratio of the PMOS transistor and the NMOS transistor is set to 1:10 so that the internal circuit control signal is activated quickly when the chip selection signal is activated (for example, 0 V).
  • Outputs when the chip selection signal is inactive for example, 3V
  • Transistor control signal Techniques have been proposed to ensure that they become inactive quickly.
  • the present invention has been made in view of the above, and does not increase the size of the entire decoder main body composed of a plurality of decoder main circuits or the size of the circuit itself that drives the decoder main body.
  • the purpose is to obtain a decoder circuit capable of achieving a high-speed deterministic output.
  • the present invention provides a decoder circuit in which a plurality of decoder main circuits that perform one specific output from a plurality of inputs are provided in parallel.
  • a first reset pulse signal is applied, and one signal electrode is connected in series to a first PMOS transistor, and the other signal electrode of the first PMOS transistor and a ground potential are arranged in series.
  • the second reset pulse signal is applied to the gate electrode directly or via the even number of inverters, and one signal electrode is connected to the power supply and the other signal
  • a second PMOS transistor having an electrode connected to an input terminal of the last-stage inverter among the odd-number inverters, and the inverter that directly drives the last-stage inverter in the odd-number inverters, It consists of a small size PMOS transistor and a large size! / NMOS transistor!
  • the deterministic output operation and its release output operation are separated, and in the release output operation, the second stage PMOS transistor drives the final-stage inverter of the odd number of inverters to release the release output. Therefore, the waveform dullness of the release output can be improved.
  • the inverter that drives the final stage inverter increases the size of the NMOS transistor that contributes to the deterministic output, and conversely reduces the size of the PMOS transistor that contributes to the release output. Without changing the capacity of the inverter in the previous stage, that is, without increasing the load on the decoder input, the waveform dullness of the deterministic output can be improved and the deterministic output speed can be increased.
  • the size of the entire decoder main body composed of a plurality of decoder main circuits is increased without increasing the size of the circuit itself that drives the decoder main body, that is, in the semiconductor integrated circuit device. There is an effect that it is possible to achieve a fast output of a deterministic output without hindering the high integration key.
  • FIG. 1 is a circuit diagram showing a configuration of a main circuit of a decoder circuit according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a configuration example of a decoder circuit using the main circuit shown in FIG.
  • FIG. 3 is a time chart for explaining the operation of the decoder circuit shown in FIG.
  • FIG. 4 is a circuit diagram showing a configuration of a main circuit of a conventional decoder circuit.
  • FIG. 5 is a circuit diagram showing a specific configuration of the inverter shown in FIG. 4. Explanation of symbols
  • FIG. 1 is a circuit diagram showing a configuration of a main circuit of a decoder circuit according to one embodiment of the present invention.
  • Fig. 1 as in the conventional example (Fig. 4), a circuit example using a 3-input dynamic NAND is shown.
  • the reset pulse signal power is different from the conventional example. It consists of two pulses: a pulse signal r—a and a second reset pulse signal r—b.
  • a “reset processing circuit” Is provided.
  • the decoder main circuit 1 shown in FIG. 1 includes, as an input processing circuit, a PMOS transistor 3 having a source electrode connected to a power supply 2, a drain electrode of the PMOS transistor 3, and a ground potential (ground). With NMOS transistors 4, 5, 6 arranged in series between ing.
  • the negative first reset pulse signal r—a is applied to the gate electrode of the PMOS transistor 3 in the reset cycle.
  • the three positive selection pulse signals adO, adl, ad2 are applied to the corresponding gate electrodes of the NMOS transistors 4, 5, 6 in the selection cycle.
  • the configuration of the above input processing circuit is the same as that of the conventional example although the reference numerals are different.
  • the decoder main circuit 1 shown in FIG. 1 is arranged in series between the connection end N and the output end out of the drain electrode of the PMOS transistor 3 and the drain electrode of the NMOS transistor 4 as an output processing circuit. Odd number of inverters (in the example shown, three inverters 7, 8, 9) and an inverter 10 connected in reverse parallel to the inverter 7. Inverters 7, 8, and 9 each function as a buffer. The inverter 10 functions as a keeper circuit. In the configuration of the output processing circuit described above, the inverter 9 at the final stage and the inverter 8 that drives the inverter 9 have different abilities from the conventional example. The remaining inverters have different signs. The force is the same as the conventional example.
  • the differences are as follows. Since the object of the present invention is the fast output of the deterministic output, the capacity of the inverter 9 at the final stage may be equal to that of the conventional example. Also good. On the other hand, the inverter 8 that drives the inverter 9 in the final stage is devoted to driving the output decision, so in the CMOS inverter shown in FIG. The gate width W) is increased, and conversely, the size of the PMOS transistor 51 (mainly the gate width W) contributing to the release output is reduced to / J.
  • the decoder main circuit 1 shown in FIG. 1 serves as an even number of inverters (inverter in the illustrated example) that sequentially drive and transmit the second negative reset pulse signal r-b as a reset processing circuit. 11 and 12) and a PMOS transistor 13 in which the output of the final inverter 12 is applied to the gate electrode.
  • the source electrode is connected to the power supply 14, and the drain electrode force S is connected to the output terminal of the inverter 8, and drives the inverter 9 in the final stage in cooperation with the inverter 8 in the reset cycle.
  • the two reset pulse signals have the following relationship.
  • the second reset pulse signal rb is in the generation period of the first reset pulse signal ra. It occurs with a certain time interval between the leading edge and trailing edge.
  • both reset pulse signals are generated after the leading edge of the first reset pulse signal r—a falls and then the leading edge of the second reset pulse signal r—b falls, and the second reset pulse signal r— This occurs because the trailing edge of the first reset pulse signal r—a rises after the trailing edge of b rises.
  • the first reset pulse signal r-a is input, and then the second reset pulse signal r-b is input with a small delay time. Even if the second reset pulse signal r ⁇ b disappears, the first reset pulse signal r ⁇ a does not disappear and continues for a certain period of time.
  • the PMOS transistor 3 When the first reset pulse signal r—a is input, the PMOS transistor 3 is turned on, and the connection terminal N is pulled to the power supply potential and becomes the H level. This continues for the duration of the pulse width of the first reset pulse signal r ⁇ a.
  • the connection terminal N becomes H level, the output of the inverter 7 is maintained at the L level by the holding operation by the inverter 10, so in the inverter 8, the PMOS transistor 51 having a small capacity is turned on and the input terminal of the inverter 9 is connected to the H
  • the inverter 9 is driven with a weak driving force at a low level. As a result, the output of the inverter 9 becomes L level, and the output end out force level, that is, the “released state”.
  • the PMOS transistor 13 is turned on to set the input terminal of the inverter 9 to the H level, stronger than the inverter 8, and driven by the drive power. Data 9. This improves the waveform dullness of the L level release output. Since the first reset pulse signal r-a exists for a certain period even after the second reset pulse signal r-b disappears, the L level release output is maintained until the end of the reset cycle. It is.
  • the inverter 47 that drives the inverter 48 in the final stage is involved in both the definite output and the release output thereof. Focusing on the fact that it affects the output timing and waveform dullness, separate the deterministic output operation and its cancellation output operation, and in the release output operation, the final stage inverter 9 is connected by the PMOS transistor 13 dedicated to reset. Since the release output is driven by driving, the waveform dullness of the release output can be improved.
  • the inverter 8 that drives the inverter 9 in the final stage is the size of the NMOS transistor 52 (mainly the gate) that contributes to the definite output in the CMOS inverter shown in FIG. Since the width (mainly gate width W) of the PMOS transistor 51 contributing to the release output is reduced by increasing the width (W), the capacity of the inverter 7 in the previous stage is not changed, that is, the decoder input (ad0 It is possible to improve the waveform dullness of the deterministic output and increase the deterministic output speed without increasing the load on ⁇ ad2).
  • FIG. 2 is a circuit diagram showing a configuration example of a decoder circuit using the main circuit shown in FIG. Figure 2 shows an example of a decoder circuit configuration that obtains 8 outputs from 3 inputs.
  • FIG. 3 is a time chart for explaining the operation of the decoder circuit shown in FIG.
  • the decoder circuit shown in FIG. 2 includes eight decoder main circuit circuits 1-0 to 1-7 arranged in parallel as the decoder main unit, and 3-bit input that is externally input in the selected cycle.
  • Reset control with three pulse generators 16a, 16b, 16c arranged in parallel corresponding to signal address [0: 2] and reset pulse signal Zwl-rst with negative external force in reset cycle Circuit 25 is provided.
  • the three pulsing circuits 16a, 16b, and 16c have the same configuration, and as shown in the pulsing circuit 16c, when the logical value of the 1-bit input signal address is '1', The NAND circuit 17 synchronizes with the clock elk to generate a pulse signal having the pulse width of the clock elk, and outputs a positive selection pulse signal via the inverter 20. Also, a 1-bit input signal When the logical value of address is "0", the logical value is inverted by the inverter 18 and then synchronized with the clock elk by the NAND circuit 19 to generate a pulse signal having the pulse width of the clock elk. A positive selection pulse signal is output via the inverter 21.
  • the positive selection pulse signal aO—pulse when the logical value of the input signal address [0] is "1", the positive selection pulse signal aO—pulse is output, and the logical value of the input signal address [0] When is 0, the positive selection pulse signal aOx—pulse is output.
  • the pulsing circuit 16b outputs the positive polarity selection pulse signal al—pulse and the logic value of the input signal address [1]. When is 0, the positive selection pulse signal alx-pulse is output.
  • the positive polarity selection pulse signal a2—pulse is output, and the logical value of the input signal address [2] is output.
  • the positive selection pulse signal a2x—pulse is output.
  • the input terminals of the selection pulse signals adO, adl, ad2 in the eight decoder main circuits 1-0 to 1-7 correspond to the two output lines of the three pulse conversion circuits 16a, 16b, 16c, respectively. While Connected to the output line.
  • selection pulse signals adO, adl, ad2 for performing deterministic output of the decoder main circuit 1-0 “select” are logical values of the 3-bit input signal address [0; 2].
  • “000” is “aOx _ pulse, alx _ pulse, a2x one pulse”.
  • Decoder main part circuits 1-6 select pulse signal adO, adl, ad that performs definite output of "selection"
  • one decoder main circuit circuit corresponding to the logical value of the 3-bit input signal addr ess [0; 2] By performing the “select” definite output, 8 outputs from Select [0] to Select [7] are performed.
  • the gate electrode of the PMOS transistor 26 and the gate electrode of the NMOS transistor 29 are connected to the input terminal to which the reset signal line to which the negative reset pulse signal Zwl-rst is sent is connected. And are connected.
  • the source electrode of the PMOS transistor 26 is connected to the power source 27, and during the period in which the negative reset pulse signal Zwl—rst is generated and the input terminal force level continues, the drain electrode is connected to the power source 27. Set the potential to H level.
  • the drain electrode of the PMOS transistor 26 is connected to the input terminal of the inverter 28, the input terminal of the delay circuit 33, and the drain electrode of the NMOS transistor 32! RU
  • the source electrode of the NMOS transistor 29 is connected to the ground potential (ground), and when the input terminal becomes H level after the generation period of the negative reset pulse signal Zwl-rst has passed, the drain electrode is turned on. To the L level, which is the ground potential.
  • the drain electrode of the NMOS transistor 29 is connected to the input terminal of the inverter 30, the input terminal of the delay circuit 31, and the drain electrode of the PMOS transistor 34.
  • Each of the delay circuits 31, 33 serves as a series circuit power of an odd number of inverters (three in the illustrated example).
  • the output terminal of the delay circuit 33 is connected to the gate electrode of the PMOS transistor 34.
  • P The source electrode of the MOS transistor 34 is connected to the power source 35.
  • the output terminal of the delay circuit 31 is connected to the gate electrode of the NMOS transistor 32 !.
  • the source electrode of the NMOS transistor 32 is connected to the ground potential (ground)!
  • the inverter 28 outputs the negative reset pulse signal Zrst-a within a period when the PMOS transistor 26 is turned on! /, And within a predetermined period during the subsequent off operation. To do.
  • the output terminal of the inverter 28 is connected in parallel to the input terminals of the first reset pulse signals r ⁇ a in the eight decoder main circuit 1_0 to 1-7.
  • the inverter 30 outputs the negative reset pulse signal Zrst-b during the period in which the inverter 28 outputs the negative reset pulse signal Zrst-a.
  • the output terminal of the inverter 30 is connected in parallel with the input terminals of the second reset pulse signals r_a in the eight decoder main circuit 1-0 to 1-7.
  • the pulse circuit 16a, 16b, 16c to 8 One of the decoder main circuit 1—0 to 1—7! One of the valid selection pulse signals ad0 to ad2 is generated within the period of the pulse width of the clock CLK.
  • the output is set to H level in synchronization with the rising timing of the selection pulse signals ad0 to ad2, and the selected selection output Select [7: 0] Start and keep it until the end of the selection cycle.
  • the inverter 28 sets the output to the L level. Starts output of negative reset pulse signal Zrst-a. In this case, the NMOS transistor 29 is in an off operation state. Then, after a predetermined delay time in the delay circuit 33, the PMOS transistor 34 is turned on and the drain electrode becomes H level. Therefore, the inverter 30 sets the output to L level and outputs the negative reset pulse signal Zrst-b. Start. The generation of these reset pulse signals Zrst-a and Zrst-b cancels the selected definite output Sele C t [7: 0].
  • the NMOS transistor 32 is turned on and the input level of the inverter 28 is set to L level. Therefore, the inverter 28 sets the output to H level and the negative reset pulse signal Zrst-a Cancel the output and make it disappear.
  • the reset control circuit 25 does not generate the reset pulse signal Zrst-a and the reset pulse signal Zrst-b at the same timing, that is, does not set the L level and resets. Since the generation of the reset pulse signal Zrs t-a is controlled to be at the L level before the pulse signal Zrst-b is at the L level, as described above, at the timing when the PMOS transistor 13 is turned on. The NMOS transistor in the inverter 8 can be turned off and the occurrence of a leak path is suppressed.
  • the decoder circuit according to the present invention does not increase the size of the entire decoder main body composed of a plurality of decoder main circuits or the size of the circuit itself that drives the decoder main body. It is suitable for achieving high-speed output of a definite output without hindering the high integration of the semiconductor integrated circuit device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dram (AREA)

Abstract

A decoder circuit wherein a high-speed, definite output can be achieved without increasing the entire size of a decoder body part, which comprises a plurality of decoder essential circuits, and also without increasing the size of a circuit, which drives the decoder body part, itself. The definite output operation and the cancellation output operation are separated from each other. During the cancellation output operation, a reset-dedicated PMOS transistor (13) is used to drive an inverter (9) in the last stage for performing a cancellation output. The waveform blunting of the cancellation output can be improved. During the definite output operation, an inverter (8), which drives the inverter (9) in the last stage, increases the size of an NMOS transistor, which contributes to the definite output, while, contrarily, reducing the size of a PMOS transistor that contributes to the cancellation output. The waveform blunting of the definite output is improved without changing the capability of an inverter (7) in the preceding stage, that is, without increasing the load for the decoder input, whereby the high-speed, definite output can be achieved.

Description

明 細 書  Specification
デコーダ回路  Decoder circuit
技術分野  Technical field
[oooi] この発明は、複数の入力から特定の出力(選択 Z非選択)を得るデコーダ回路に関 し、特に半導体集積回路装置に回路モジュールとして組み込まれるデコーダ回路に 関するものである。  [oooi] The present invention relates to a decoder circuit for obtaining a specific output (selected Z non-selected) from a plurality of inputs, and more particularly to a decoder circuit incorporated as a circuit module in a semiconductor integrated circuit device.
背景技術  Background art
[0002] 半導体集積記憶装置などの半導体集積回路装置に組み込まれるデコーダ回路と しては、例えば、図 4に示すようなダイナミック NANDの構成を採るデコーダ要部回 路の複数個を並列に配置したものが知られている。以下、この発明の理解を容易に するため、図 4を参照して、従来のデコーダ回路について簡単に説明する。  As a decoder circuit incorporated in a semiconductor integrated circuit device such as a semiconductor integrated memory device, for example, a plurality of decoder main circuits having a dynamic NAND configuration as shown in FIG. 4 are arranged in parallel. Things are known. Hereinafter, in order to facilitate understanding of the present invention, a conventional decoder circuit will be briefly described with reference to FIG.
[0003] 図 4は、従来のデコーダ回路の要部構成例を示す回路図である。図 4では、 3入力 のダイナミック N ANDを用 Vヽた回路例が示されて ヽる。図 4に示すデコ一ダ要部回 路 40では、リセットパルス信号 rst及び 3つの選択パルス信号 adO, adl, ad2を入力 とし、出力端 outに選択 Z非選択を示す 1つのデコード出力を得ることができる。 3入 力 Y出力のデコーダ回路の本体部は、図 4に示すデコーダ要部回路 40の Y個を並 列に配置する構成となる。  FIG. 4 is a circuit diagram showing a configuration example of a main part of a conventional decoder circuit. Figure 4 shows an example of a circuit using a 3-input dynamic NAND. In the decoder main circuit 40 shown in FIG. 4, the reset pulse signal rst and the three selection pulse signals adO, adl, ad2 are input, and one decoded output indicating selection Z non-selection is obtained at the output terminal out. Can do. The main part of the 3-input Y-output decoder circuit has a configuration in which Y pieces of the decoder main circuit 40 shown in FIG. 4 are arranged in parallel.
[0004] すなわち、図 4に示すデコーダ要部回路 40は、入力処理回路として、電源 41にソ ース電極が接続される PMOSトランジスタ 42と、この PMOSトランジスタ 42のドレイン 電極と接地電位(グランド)との間に直列に配置された NMOSトランジスタ 43, 44, 4 5とを備えている。  That is, the decoder main circuit 40 shown in FIG. 4 includes, as an input processing circuit, a PMOS transistor 42 having a source electrode connected to a power supply 41, a drain electrode of the PMOS transistor 42, and a ground potential (ground). And NMOS transistors 43, 44, 4 5 arranged in series.
[0005] 負極性のリセットパルス信号 rstは、リセットサイクルにおいて PMOSトランジスタ 42 のゲート電極に印加される。正極性の 3つの選択パルス信号 adO, adl, ad2は、選 択サイクルにおいて NMOSトランジスタ 43, 44, 45の対応するゲート電極に印加さ れる。  The negative reset pulse signal rst is applied to the gate electrode of the PMOS transistor 42 in the reset cycle. The three positive selection pulse signals adO, adl, and ad2 are applied to the corresponding gate electrodes of the NMOS transistors 43, 44, and 45 in the selection cycle.
[0006] そして図 4に示すデコーダ要部回路 40は、出力処理回路として、 PMOSトランジス タ 42のドレイン電極と NMOSトランジスタ 43のドレイン電極との接続端 Nと出力端 ou tとの間に直列配置される奇数個のインバータ(図示例ではインバータ 46, 47, 48の 3個)と、インバータ 46に逆並列に接続されるインバータ 49とを備えている。インバー タ 46, 47, 48は、それぞれバッファとして機能する。また、インバータ 49は、キーパ 一回路として機能する。 [0006] The decoder main circuit 40 shown in FIG. 4 includes, as an output processing circuit, a connection terminal N and an output terminal ou between the drain electrode of the PMOS transistor 42 and the drain electrode of the NMOS transistor 43. An odd number of inverters (three inverters 46, 47 and 48 in the illustrated example) arranged in series with t and an inverter 49 connected in reverse parallel to the inverter 46 are provided. Inverters 46, 47, and 48 function as buffers. The inverter 49 functions as a keeper circuit.
[0007] 図 5は、図 4に示すインバータの具体的な構成を示す回路図である。図 4に示すィ ンバータ 46〜49は、それぞれ、図 5に示すように、電源 51にソース電極が接続され る PMOSトランジスタ 52と、接地電位(グランド)にソース電極が接続される NMOSト ランジスタ 53とで構成される CMOSインバータである。 PMOSトランジスタ 52と NM OSトランジスタ 53とのゲート電極は共通に接続されて入力端を構成し、ドレイン電極 は共通に接続されて出力端を構成している。なお、 PMOSトランジスタ 52、 NMOSト ランジスタ 53それぞれの能力は、サイズを表すゲート幅 Wとゲート長 Lとの比 (WZL )で規定される。 FIG. 5 is a circuit diagram showing a specific configuration of the inverter shown in FIG. As shown in FIG. 5, each of the inverters 46 to 49 shown in FIG. 4 includes a PMOS transistor 52 whose source electrode is connected to the power source 51 and an NMOS transistor 53 whose source electrode is connected to the ground potential (ground). This is a CMOS inverter composed of The gate electrodes of the PMOS transistor 52 and the NMOS transistor 53 are connected in common to form an input end, and the drain electrodes are connected in common to form an output end. The capability of each of the PMOS transistor 52 and the NMOS transistor 53 is defined by the ratio (WZL) of the gate width W and the gate length L representing the size.
[0008] この図 5に示す構成によれば、入力信号 aが高レベル(以降「Hレベル」という)であ るときは、 PMOSトランジスタ 52はオフ動作を行い、 NMOSトランジスタ 53がオン動 作を行って出力端を接地電位 (グランド)に引き込むので、出力信号 Xは低レベル (以 降「Lレベル」という)となる。また、入力信号 aが Lレベルであるときは、 NMOSトランジ スタ 53はオフ動作を行い、 PMOSトランジスタ 52がオン動作を行って出力端を電源 電位に引き込むので、出力信号 Xは Hレベルとなる。  According to the configuration shown in FIG. 5, when the input signal a is at a high level (hereinafter referred to as “H level”), the PMOS transistor 52 performs an off operation and the NMOS transistor 53 performs an on operation. Since the output terminal is pulled to the ground potential (ground), the output signal X becomes low level (hereinafter referred to as “L level”). When the input signal a is at the L level, the NMOS transistor 53 performs the off operation, and the PMOS transistor 52 performs the on operation to draw the output terminal to the power supply potential, so that the output signal X becomes the H level.
[0009] 以上の構成において、図 4に示すデコーダ要部回路 40では、リセットパルス信号 rs tと選択パルス信号 adO, adl, ad2とは、交互に入力される。リセットパルス信号 rstが 入力せずその信号ラインが Hレベル状態であり、 PMOSトランジスタ 42がオフ動作状 態にある選択サイクルにおいて、入力された選択パルス信号 adO, adl, ad2の全て が正極性であると、 NMOSトランジスタ 43, 44, 45の全てが選択パルス信号 adO, a dl, ad2のパルス幅の期間内オン動作状態になり、接続端 Nは接地電位 (グランド) に引き込まれて Lレベルになる。すると、インバータ 46の出力はインバータ 49による 保持動作によって Hレベルに維持される。これによつて、インバータ 48の出力が Hレ ベルとなり、出力端 outが Hレベル、つまり選択の"確定状態"となる。  In the above configuration, in the decoder main circuit 40 shown in FIG. 4, the reset pulse signal rst and the selection pulse signals adO, adl, ad2 are alternately input. In the selection cycle in which the reset pulse signal rst is not input and the signal line is in the H level state and the PMOS transistor 42 is in the OFF operation state, all of the input selection pulse signals adO, adl, and ad2 are positive. All of the NMOS transistors 43, 44, and 45 are turned on during the period of the pulse width of the selection pulse signals adO, a dl, and ad2, and the connection terminal N is pulled to the ground potential (ground) and becomes the L level. . Then, the output of the inverter 46 is maintained at the H level by the holding operation by the inverter 49. As a result, the output of the inverter 48 becomes the H level, and the output terminal out becomes the H level, that is, the selected “determined state”.
[0010] その後のリセットサイクルにおいて、リセットパルス信号 rstが入力し PMOSトランジ スタ 42がリセットパルス信号 rstのパルス幅の期間内オン動作状態になると、接続端 Nは電源電位に引き込まれて Hレベルになる。すると、インバータ 46の出力はインバ ータ 49による保持動作によって Lレベルに維持される。これによつて、インバータ 48 の出力が Lレベルとなり、出力端 out力 レベル、つまり"解除状態"となる。 [0010] In the subsequent reset cycle, the reset pulse signal rst is input and the PMOS transistor When the star 42 is turned on during the pulse width of the reset pulse signal rst, the connection terminal N is pulled to the power supply potential and becomes H level. Then, the output of the inverter 46 is maintained at the L level by the holding operation by the inverter 49. As a result, the output of the inverter 48 becomes the L level, and the output end out force level, that is, the “released state”.
[0011] 一方、リセットパルス信号 rstが入力せずその信号ラインが Hレベル状態であり、 PM OSトランジスタ 42がオフ動作状態にある選択サイクルにお 、て、入力された選択信 号 adO, adl, ad2の全てまたは一部が負極性であると、 NMOSトランジスタ 43, 44, 45の全てまたは一部がオフ動作状態になる。この場合には、インバータ 49による保 持動作によってインバータ 46の出力は直前のリセットサイクルにて操作された Lレべ ルに維持される。これによつて、インバータ 48の出力力 レベルとなり、出力端 outが Lレベル、つまり非選択の"確定状態"となる。  On the other hand, in the selection cycle in which the reset pulse signal rst is not input and the signal line is in the H level state and the PMOS transistor 42 is in the OFF operation state, the input selection signals adO, adl, If all or part of ad2 is negative, all or part of the NMOS transistors 43, 44, 45 are turned off. In this case, the output of the inverter 46 is maintained at the L level operated in the immediately preceding reset cycle by the holding operation by the inverter 49. As a result, the output power level of the inverter 48 is reached, and the output terminal out is at the L level, that is, the non-selected “determined state”.
[0012] 特許文献 1 :特開昭 62— 239398号公報(半導体メモリ)  Patent Document 1: Japanese Patent Laid-Open No. 62-239398 (semiconductor memory)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] ところで、この種のデコーダ回路において、確定出力の高速ィ匕を図る場合、つまり、 上記のデコーダ要部回路 40の例で言えば、最終段のインバータ 48が出力レベルを Lレベル力 Hレベルに立ち上げる速度を速くする場合、確定出力と解除出力の双 方においてインバータ 47が最終段のインバータ 48を駆動するので、従来では、イン バータ 47の駆動能力を高くし、それでも足りない場合は前段のインバータ 46の駆動 能力を高くするという具合に、出力処理回路を構成する各インバータの駆動能力を 高くする必要がある。さらに、入力処理回路において直列配置される NMOSトランジ スタの駆動能力も高くする必要がある。これらは、各 MOSトランジスタのサイズ (主に ゲート幅 W)を大きくすることで対応することになる。その結果、並設するデコーダ要 部回路の複数個を駆動する回路の能力も高くする必要が生ずる場合もある。  [0013] By the way, in this type of decoder circuit, in order to achieve high-speed deterministic output, that is, in the example of the decoder main circuit 40 described above, the final-stage inverter 48 sets the output level to the L level force H. When increasing the speed to rise to the level, the inverter 47 drives the inverter 48 in the final stage in both the deterministic output and the release output, so conventionally, if the drive capacity of the inverter 47 is increased and it is still insufficient It is necessary to increase the drive capacity of each inverter that constitutes the output processing circuit, such as increasing the drive capacity of the inverter 46 in the previous stage. Furthermore, it is necessary to increase the driving capability of the NMOS transistors arranged in series in the input processing circuit. These can be dealt with by increasing the size (mainly gate width W) of each MOS transistor. As a result, it may be necessary to increase the capacity of a circuit that drives a plurality of decoder essential circuits arranged in parallel.
[0014] つまり、図 4に示したようなダイナミック NAND構成のデコーダ要部回路を並設する 従来のデコーダ回路では、確定出力の高速ィ匕を図る場合、並設するデコーダ要部 回路の複数個からなるデコーダ本体部全体のサイズ、若しくは、デコーダ本体部を駆 動する回路自体のサイズが大きくなり、集積回路装置の高集積ィ匕を妨げるという問題 が発生する。 In other words, in the conventional decoder circuit in which the decoder main part circuits having the dynamic NAND configuration as shown in FIG. The size of the entire decoder main unit or the size of the circuit itself that drives the decoder main unit increases, which hinders the high integration of the integrated circuit device. Will occur.
[0015] そして、図 5に示す CMOSインバータでは、通常、 PMOSトランジスタ 51の駆動能 力は、 NMOSトランジスタ 52の約半分以下である力 当該インバータの駆動能力を 高めるには、 PMOSトランジスタ 51及び NMOSトランジスタ 52のドレイン電流係数の 比(いわゆる PN比)を維持してサイズを大きくする必要があるので、非常に煩雑なこと になってしまう。  In the CMOS inverter shown in FIG. 5, normally, the driving capability of the PMOS transistor 51 is less than about half that of the NMOS transistor 52. To increase the driving capability of the inverter, the PMOS transistor 51 and the NMOS transistor Since it is necessary to increase the size while maintaining the ratio of the drain current coefficient of 52 (so-called PN ratio), it becomes very complicated.
[0016] なお、 CMOSインバータの駆動能力を操作する例として、例えば上記の特許文献 1では、半導体メモリにおいて、チップ選択信号力 内部回路制御信号と出カトラン ジスタ制御信号とを発生する場合に、チップ選択信号が入力する CMOSインバータ の出力段に、 2つの CMOSインバータ(内部回路制御信号を発生する CMOSインバ ータ 1及び出力トランジスタ制御信号を発生する CMOSインバータ 2)を並列に配置 し、 CMOSインバータ 1では、 PMOSトランジスタと NMOSトランジスタとのサイズ比 を 1対 10としてチップ選択信号の活性時 (例えば 0V)に内部回路制御信号が速く活 性化されるようにし、 CMOSインバータ 2では、 PMOSトランジスタと NMOSトランジ スタとのサイズ比を逆に 10対 1としてチップ選択信号の非活性時 (例えば 3V)に出力 トランジスタ制御信号が速く非活性になるようにする技術が提案されて 、る。  As an example of manipulating the driving capability of a CMOS inverter, for example, in Patent Document 1 described above, when generating a chip selection signal power internal circuit control signal and an output transistor control signal in a semiconductor memory, the chip Two CMOS inverters (CMOS inverter 1 generating internal circuit control signal and CMOS inverter 2 generating output transistor control signal) are arranged in parallel at the output stage of the CMOS inverter to which the selection signal is input. In the CMOS inverter 2, the size ratio of the PMOS transistor and the NMOS transistor is set to 1:10 so that the internal circuit control signal is activated quickly when the chip selection signal is activated (for example, 0 V). Outputs when the chip selection signal is inactive (for example, 3V) with the size ratio of the transistor reversed to 10 to 1.Transistor control signal Techniques have been proposed to ensure that they become inactive quickly.
[0017] この発明は、上記に鑑みてなされたものであり、デコーダ要部回路の複数個からな るデコーダ本体部全体のサイズやデコーダ本体部を駆動する回路自体のサイズを大 きくすることなぐ確定出力の高速ィ匕を図ることができるデコーダ回路を得ることを目 的とする。  [0017] The present invention has been made in view of the above, and does not increase the size of the entire decoder main body composed of a plurality of decoder main circuits or the size of the circuit itself that drives the decoder main body. The purpose is to obtain a decoder circuit capable of achieving a high-speed deterministic output.
課題を解決するための手段  Means for solving the problem
[0018] 上述した目的を達成するために、この発明は、複数の入力から特定の 1出力を行う デコーダ要部回路を並列に複数個設けるデコーダ回路において、前記デコーダ要 部回路は、ゲート電極に第 1のリセットパルス信号が印加され、一方の信号電極が電 源に接続される第 1の PMOSトランジスタと、前記第 1の PMOSトランジスタの他方の 信号電極と接地電位との間に直列に配置され、それぞれのゲート電極に選択パルス 信号が印加される複数の NMOSトランジスタと、前記第 1の PMOSトランジスタの他 方の信号電極と前記複数の NMOSトランジスタの直列回路との接続端と出力端との 間に直列に配置される奇数個のインバータと、ゲート電極に第 2のリセットパルス信号 が直接、または、偶数個のインバータを介して印加され、一方の信号電極が電源に 接続され、他方の信号電極が前記奇数個のインバータのうち最終段のインバータの 入力端に接続される第 2の PMOSトランジスタとを備え、前記奇数個のインバータに おいて、前記最終段のインバータを直接駆動するインバータは、サイズの小さい PM OSトランジスタとサイズの大き!/、NMOSトランジスタとで構成されて!、ることを特徴と する。 [0018] In order to achieve the above-described object, the present invention provides a decoder circuit in which a plurality of decoder main circuits that perform one specific output from a plurality of inputs are provided in parallel. A first reset pulse signal is applied, and one signal electrode is connected in series to a first PMOS transistor, and the other signal electrode of the first PMOS transistor and a ground potential are arranged in series. A plurality of NMOS transistors to which a selection pulse signal is applied to each gate electrode, and a connection terminal and an output terminal of the other circuit electrode of the first PMOS transistor and a series circuit of the plurality of NMOS transistors. The second reset pulse signal is applied to the gate electrode directly or via the even number of inverters, and one signal electrode is connected to the power supply and the other signal A second PMOS transistor having an electrode connected to an input terminal of the last-stage inverter among the odd-number inverters, and the inverter that directly drives the last-stage inverter in the odd-number inverters, It consists of a small size PMOS transistor and a large size! / NMOS transistor!
[0019] この発明によれば、確定出力動作とその解除出力動作とを分離し、解除出力動作 では、第 2の PMOSトランジスタによって奇数個のインバータのうち最終段のインバー タを駆動して解除出力を行うので、解除出力の波形鈍りを改善することができる。そし て、確定出力動作では、最終段のインバータを駆動するインバータは、確定出力に 寄与する NMOSトランジスタのサイズを大きくし、逆に解除出力に寄与する PMOSト ランジスタのサイズを小さくしているので、前段のインバータの能力を変えずに、つま り、デコーダ入力に対する負荷を増大させずに、確定出力の波形鈍りを改善し、確定 出力の高速ィ匕を図ることができる。  According to the present invention, the deterministic output operation and its release output operation are separated, and in the release output operation, the second stage PMOS transistor drives the final-stage inverter of the odd number of inverters to release the release output. Therefore, the waveform dullness of the release output can be improved. In the definite output operation, the inverter that drives the final stage inverter increases the size of the NMOS transistor that contributes to the deterministic output, and conversely reduces the size of the PMOS transistor that contributes to the release output. Without changing the capacity of the inverter in the previous stage, that is, without increasing the load on the decoder input, the waveform dullness of the deterministic output can be improved and the deterministic output speed can be increased.
発明の効果  The invention's effect
[0020] この発明によれば、デコーダ要部回路の複数個からなるデコーダ本体部全体のサ ィズゃデコーダ本体部を駆動する回路自体のサイズを大きくすることなぐつまり、半 導体集積回路装置の高集積ィ匕を阻害することなぐ確定出力の高速ィ匕を図ることが できるという効果を奏する。  [0020] According to the present invention, the size of the entire decoder main body composed of a plurality of decoder main circuits is increased without increasing the size of the circuit itself that drives the decoder main body, that is, in the semiconductor integrated circuit device. There is an effect that it is possible to achieve a fast output of a deterministic output without hindering the high integration key.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]図 1は、この発明の一実施の形態によるデコーダ回路の要部回路の構成を示 す回路図である。  FIG. 1 is a circuit diagram showing a configuration of a main circuit of a decoder circuit according to an embodiment of the present invention.
[図 2]図 2は、図 1に示す要部回路を用いたデコーダ回路の構成例を示す回路図で ある。  2 is a circuit diagram showing a configuration example of a decoder circuit using the main circuit shown in FIG.
[図 3]図 3は、図 2に示すデコーダ回路の動作を説明するタイムチャートである。  FIG. 3 is a time chart for explaining the operation of the decoder circuit shown in FIG.
[図 4]図 4は、従来のデコーダ回路の要部回路の構成を示す回路図である。  FIG. 4 is a circuit diagram showing a configuration of a main circuit of a conventional decoder circuit.
[図 5]図 5は、図 4に示すインバータの具体的な構成を示す回路図である。 符号の説明 FIG. 5 is a circuit diagram showing a specific configuration of the inverter shown in FIG. 4. Explanation of symbols
[0022] 1 デコーダ要部回路  [0022] 1 decoder main circuit
2, 14, 27, 35 電源  2, 14, 27, 35 Power supply
3 PMOSトランジスタ(第 1の PMOSトランジスタ)  3 PMOS transistor (first PMOS transistor)
4, 5, 6, 29, 32 NMOSトランジスタ  4, 5, 6, 29, 32 NMOS transistor
7, 8, 9 インバータ  7, 8, 9 Inverter
10 インバータ(キーパー回路)  10 Inverter (keeper circuit)
11, 12 インバータ  11, 12 Inverter
13 PMOSトランジスタ(第 2の PMOSトランジスタ)  13 PMOS transistor (second PMOS transistor)
16 パルス化回路  16 Pulse circuit
17, 19 NAND回路  17, 19 NAND circuit
18 インバータ  18 Inverter
20, 21 インバータ  20, 21 Inverter
25 リセット制御回路  25 Reset control circuit
26, 35 PMOSトランジスタ  26, 35 PMOS transistor
31, 33 遅延回路  31, 33 Delay circuit
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下に図面を参照して、この発明にかかるデコーダ回路の好適な実施の形態を詳 細に説明する。 [0023] Hereinafter, a preferred embodiment of a decoder circuit according to the present invention will be described in detail with reference to the drawings.
[0024] 図 1は、この発明の一実施の形態によるデコーダ回路の要部回路の構成を示す回 路図である。図 1では、従来例(図 4)と同様に、 3入力のダイナミック NANDを用いた 回路例が示されている力 この実施の形態では、リセットパルス信号力 従来例とは 異なり、第 1のリセットパルス信号 r— aと第 2のリセットパルス信号 r—bとの 2つで構成 され、従来例で示した「入力処理回路」及び「出力処理回路と」の他に、「リセット処理 回路」が設けられている。  FIG. 1 is a circuit diagram showing a configuration of a main circuit of a decoder circuit according to one embodiment of the present invention. In Fig. 1, as in the conventional example (Fig. 4), a circuit example using a 3-input dynamic NAND is shown. In this embodiment, the reset pulse signal power is different from the conventional example. It consists of two pulses: a pulse signal r—a and a second reset pulse signal r—b. In addition to the “input processing circuit” and “output processing circuit” shown in the conventional example, a “reset processing circuit” Is provided.
[0025] すなわち、図 1に示すデコーダ要部回路 1は、入力処理回路として、電源 2にソース 電極が接続される PMOSトランジスタ 3と、この PMOSトランジスタ 3のドレイン電極と 接地電位 (グランド)との間に直列に配置された NMOSトランジスタ 4, 5, 6とを備え ている。 That is, the decoder main circuit 1 shown in FIG. 1 includes, as an input processing circuit, a PMOS transistor 3 having a source electrode connected to a power supply 2, a drain electrode of the PMOS transistor 3, and a ground potential (ground). With NMOS transistors 4, 5, 6 arranged in series between ing.
[0026] 負極性の第 1のリセットパルス信号 r— aは、リセットサイクルにおいて PMOSトランジ スタ 3のゲート電極に印加される。正極性の 3つの選択パルス信号 adO, adl, ad2は 、選択サイクルにおいて NMOSトランジスタ 4, 5, 6の対応するゲート電極に印加さ れる。以上の入力処理回路の構成は、符号は違えてあるが従来例と同様である。  The negative first reset pulse signal r—a is applied to the gate electrode of the PMOS transistor 3 in the reset cycle. The three positive selection pulse signals adO, adl, ad2 are applied to the corresponding gate electrodes of the NMOS transistors 4, 5, 6 in the selection cycle. The configuration of the above input processing circuit is the same as that of the conventional example although the reference numerals are different.
[0027] また、図 1に示すデコーダ要部回路 1は、出力処理回路として、 PMOSトランジスタ 3のドレイン電極と NMOSトランジスタ 4のドレイン電極との接続端 Nと出力端 outとの 間に直列配置される奇数個のインバータ(図示例ではインバータ 7, 8, 9の 3個)と、 インバータ 7に逆並列に接続されるインバータ 10とを備えている。インバータ 7, 8, 9 は、それぞれバッファとして機能する。また、インバータ 10は、キーパー回路として機 能する。以上の出力処理回路の構成では、最終段のインバータ 9とこれを駆動するィ ンバータ 8とが従来例とは異なる能力である。残りのインバータは、符号は違えてある 力 従来例と同様である。  Further, the decoder main circuit 1 shown in FIG. 1 is arranged in series between the connection end N and the output end out of the drain electrode of the PMOS transistor 3 and the drain electrode of the NMOS transistor 4 as an output processing circuit. Odd number of inverters (in the example shown, three inverters 7, 8, 9) and an inverter 10 connected in reverse parallel to the inverter 7. Inverters 7, 8, and 9 each function as a buffer. The inverter 10 functions as a keeper circuit. In the configuration of the output processing circuit described above, the inverter 9 at the final stage and the inverter 8 that drives the inverter 9 have different abilities from the conventional example. The remaining inverters have different signs. The force is the same as the conventional example.
[0028] 相違点は、次の通りである。この発明の目的は、確定出力の高速ィ匕にあるので、最 終段のインバータ 9の能力は、従来例と同等でも良いが、確定出力の高速ィ匕のため に従来例よりも大きくしてもよい。一方、最終段のインバータ 9を駆動するインバータ 8 は、出力確定の駆動に専念させるため、図 5に示す CMOSインバータにおいて、 PN 比を維持して確定出力に寄与する NMOSトランジスタ 52のサイズ (主にゲート幅 W) を大きくし、逆に解除出力に寄与する PMOSトランジスタ 51のサイズ (主にゲート幅 W)を/ J、さくしている。  [0028] The differences are as follows. Since the object of the present invention is the fast output of the deterministic output, the capacity of the inverter 9 at the final stage may be equal to that of the conventional example. Also good. On the other hand, the inverter 8 that drives the inverter 9 in the final stage is devoted to driving the output decision, so in the CMOS inverter shown in FIG. The gate width W) is increased, and conversely, the size of the PMOS transistor 51 (mainly the gate width W) contributing to the release output is reduced to / J.
[0029] そして、図 1に示すデコーダ要部回路 1は、リセット処理回路として、負極性の第 2の リセットパルス信号 r—bを順々に駆動伝達する偶数個のインバータ(図示例ではイン バータ 11, 12の 2個)と、終段インバータ 12の出力がゲート電極に印加される PMO Sトランジスタ 13とを備えている。 PMOSトランジスタ 13は、ソース電極が電源 14に接 続され、ドレイン電極力 Sインバータ 8の出力端に接続され、リセットサイクルにおいて、 インバータ 8と協働して最終段のインバータ 9を駆動するようになって 、る。  [0029] The decoder main circuit 1 shown in FIG. 1 serves as an even number of inverters (inverter in the illustrated example) that sequentially drive and transmit the second negative reset pulse signal r-b as a reset processing circuit. 11 and 12) and a PMOS transistor 13 in which the output of the final inverter 12 is applied to the gate electrode. In the PMOS transistor 13, the source electrode is connected to the power supply 14, and the drain electrode force S is connected to the output terminal of the inverter 8, and drives the inverter 9 in the final stage in cooperation with the inverter 8 in the reset cycle. And
[0030] 2つのリセットパルス信号は、次のような関係になっている。すなわち、第 2のリセット パルス信号 r bは、第 1のリセットパルス信号 r aの発生期間内においてそれぞれ の前縁及び後縁の間に或る時間幅を置いて発生する。つまり、両リセットパルス信号 は、第 1のリセットパルス信号 r— aの前縁が立ち下がった後に第 2のリセットパルス信 号 r—bの前縁が立ち下がり、第 2のリセットパルス信号 r—bの後縁が立ち上がった後 に第 1のリセットパルス信号 r— aの後縁が立ち上がる関係で発生するようになってい る。 [0030] The two reset pulse signals have the following relationship. In other words, the second reset pulse signal rb is in the generation period of the first reset pulse signal ra. It occurs with a certain time interval between the leading edge and trailing edge. In other words, both reset pulse signals are generated after the leading edge of the first reset pulse signal r—a falls and then the leading edge of the second reset pulse signal r—b falls, and the second reset pulse signal r— This occurs because the trailing edge of the first reset pulse signal r—a rises after the trailing edge of b rises.
[0031] この構成によれば、選択サイクルにおいては、入力された選択パルス信号 adO, ad 1, ad2の全てが正極性であると、 NMOSトランジスタ 4, 5, 6の全てが選択パルス信 号 adO, adl, ad2のパルス幅の期間内オン動作状態になり、接続端 Nは接地電位( グランド)に引き込まれて Lレベルになる。すると、インバータ 7の出力はインバータ 10 による保持動作によって Hレベルに維持される。  [0031] According to this configuration, in the selection cycle, when all of the input selection pulse signals adO, ad1, ad2 are positive, all of the NMOS transistors 4, 5, 6 are selected pulse signal adO. , adl, ad2 are turned on during the pulse width, and the connection terminal N is pulled to the ground potential (ground) and becomes L level. Then, the output of the inverter 7 is maintained at the H level by the holding operation by the inverter 10.
[0032] このとき、インバータ 8は、図 5に示す CMOSインバータにおいて確定出力に寄与 する NMOSトランジスタ 52のサイズを大きくしてあるので、前段のインバータ 7が出力 を Hレベルにすると、急速に出力を Lレベルに引き込む。これによつて、インバータ 9 が出力を Hレベルに立ち上げる波形の鈍りが改善され、出力端 outが Hレベルに立 ち上がる時間、つまり選択の"確定状態"となる時間が短縮される。  At this time, since the size of the NMOS transistor 52 that contributes to the definite output in the CMOS inverter shown in FIG. 5 is increased in the inverter 8, when the inverter 7 in the previous stage sets the output to the H level, the output is rapidly increased. Pull to L level. As a result, the dullness of the waveform at which the inverter 9 raises the output to the H level is improved, and the time for the output terminal out to rise to the H level, that is, the time for the selection to be “determined” is shortened.
[0033] そして、その後のリセットサイクルにおいては、まず、第 1のリセットパルス信号 r— a が入力し、その後、少ない遅延時間を置いて第 2のリセットパルス信号 r—bが入力す る。そして、第 2のリセットパルス信号 r—bが消滅しても、第 1のリセットパルス信号 r— aは消滅せず或る時間内継続して存在する。  [0033] In the subsequent reset cycle, first, the first reset pulse signal r-a is input, and then the second reset pulse signal r-b is input with a small delay time. Even if the second reset pulse signal r−b disappears, the first reset pulse signal r−a does not disappear and continues for a certain period of time.
[0034] 第 1のリセットパルス信号 r— aが入力すると、 PMOSトランジスタ 3がオン動作し、接 続端 Nは電源電位に引き込まれて Hレベルになる。これは、第 1のリセットパルス信号 r— aのパルス幅の期間内継続する。接続端 Nが Hレベルになると、インバータ 7の出 力はインバータ 10による保持動作によって Lレベルに維持されるので、インバータ 8 では能力の小さい PMOSトランジスタ 51がオン動作してインバータ 9の入力端を Hレ ベルにし弱い駆動力でインバータ 9を駆動する。これによつて、インバータ 9の出力が Lレベルとなり、出力端 out力 レベル、つまり"解除状態"となる。  When the first reset pulse signal r—a is input, the PMOS transistor 3 is turned on, and the connection terminal N is pulled to the power supply potential and becomes the H level. This continues for the duration of the pulse width of the first reset pulse signal r−a. When the connection terminal N becomes H level, the output of the inverter 7 is maintained at the L level by the holding operation by the inverter 10, so in the inverter 8, the PMOS transistor 51 having a small capacity is turned on and the input terminal of the inverter 9 is connected to the H The inverter 9 is driven with a weak driving force at a low level. As a result, the output of the inverter 9 becomes L level, and the output end out force level, that is, the “released state”.
[0035] 次に、第 2のリセットパルス信号 r—bが入力すると、 PMOSトランジスタ 13がオン動 作してインバータ 9の入力端を Hレベルにし、インバータ 8よりも強 、駆動力でインバ ータ 9を駆動する。これによつて、 Lレベルの解除出力の波形鈍りが改善される。そし て、第 2のリセットパルス信号 r—bの消滅後も第 1のリセットパルス信号 r— aは或る期 間継続して存在するので、 Lレベルの解除出力がリセットサイクルの終端まで維持さ れる。 Next, when the second reset pulse signal r−b is input, the PMOS transistor 13 is turned on to set the input terminal of the inverter 9 to the H level, stronger than the inverter 8, and driven by the drive power. Data 9. This improves the waveform dullness of the L level release output. Since the first reset pulse signal r-a exists for a certain period even after the second reset pulse signal r-b disappears, the L level release output is maintained until the end of the reset cycle. It is.
[0036] このとき、 PMOSトランジスタ 13がオン動作するタイミングでは、インバータ 8内の N MOSトランジスタ 52はオフ動作しているので、電源 14→PMOSトランジスタ 13→ィ ンバータ 8内の NMOSトランジスタ 52→接地電位(グランド)に向力うリークパスが発 生することはない。  At this time, at the timing when the PMOS transistor 13 is turned on, the NMOS transistor 52 in the inverter 8 is turned off, so that the power supply 14 → the PMOS transistor 13 → the NMOS transistor 52 in the inverter 8 → the ground potential. There will be no leak path leading to (Ground).
[0037] このように、この実施の形態によれば、従来例(図 4)では、最終段のインバータ 48 を駆動するインバータ 47は、確定出力とその解除出力との双方に関わっているので 、出力タイミングと波形鈍りとに影響を与えている点に着目し、確定出力動作とその解 除出力動作とを分離し、解除出力動作では、リセット専用の PMOSトランジスタ 13に よって最終段のインバータ 9を駆動して解除出力を行うので、解除出力の波形鈍りを 改善することができる。  As described above, according to this embodiment, in the conventional example (FIG. 4), the inverter 47 that drives the inverter 48 in the final stage is involved in both the definite output and the release output thereof. Focusing on the fact that it affects the output timing and waveform dullness, separate the deterministic output operation and its cancellation output operation, and in the release output operation, the final stage inverter 9 is connected by the PMOS transistor 13 dedicated to reset. Since the release output is driven by driving, the waveform dullness of the release output can be improved.
[0038] そして、確定出力動作では、最終段のインバータ 9を駆動するインバータ 8は、図 5 に示す CMOSインバータにお!/、て確定出力に寄与する NMOSトランジスタ 52のサ ィズ (主にゲート幅 W)を大きくし、逆に解除出力に寄与する PMOSトランジスタ 51の サイズ (主にゲート幅 W)を小さくしているので、前段のインバータ 7の能力を変えずに 、つまり、デコーダ入力(ad0〜ad2)に対する負荷を増大させずに、確定出力の波形 鈍りを改善し、確定出力の高速ィ匕を図ることができる。  [0038] In the definite output operation, the inverter 8 that drives the inverter 9 in the final stage is the size of the NMOS transistor 52 (mainly the gate) that contributes to the definite output in the CMOS inverter shown in FIG. Since the width (mainly gate width W) of the PMOS transistor 51 contributing to the release output is reduced by increasing the width (W), the capacity of the inverter 7 in the previous stage is not changed, that is, the decoder input (ad0 It is possible to improve the waveform dullness of the deterministic output and increase the deterministic output speed without increasing the load on ~ ad2).
[0039] したがって、デコーダ要部回路の複数個からなるデコーダ本体部を駆動する回路 に対するサイズへの影響を抑えることができ、デコーダ回路が組み込まれる集積回路 装置の高集積ィ匕を阻害することなぐそこでのデコーダ回路の確定出力の高速ィ匕を 図ることが可能になる。そして、 PN比を維持してサイズを変更する操作も、確定出力 の駆動用インバータだけで済ますことができ、増えても確定出力用インバータが追カロ されるだけであるので、設計の容易化が図れる。  Accordingly, it is possible to suppress the influence on the size of the circuit that drives the decoder main body composed of a plurality of decoder main circuits, and to prevent the high integration of the integrated circuit device in which the decoder circuit is incorporated. Therefore, it becomes possible to achieve a fast output of the deterministic output of the decoder circuit. In addition, the operation to change the size while maintaining the PN ratio can be done with only the drive inverter for the deterministic output. I can plan.
[0040] 次に、図 2と図 3を参照して、デコーダ要部回路の複数個からなるデコーダ本体部 を駆動する回路、つまり選択パルス信号 adO, adl, ad2と第 1及び第 2のリセットパル ス信号 r_a, r_bを発生する回路の具体例について説明する。なお、図 2は、図 1に 示す要部回路を用いたデコーダ回路の構成例を示す回路図である。図 2では、 3入 力から 8出力を得るデコーダ回路の構成例が示されている。また、図 3は、図 2に示す デコーダ回路の動作を説明するタイムチャートである。 [0040] Next, referring to FIG. 2 and FIG. 3, a circuit for driving a decoder main body composed of a plurality of decoder main circuits, that is, selection pulse signals adO, adl, ad2 and first and second resets. Pal A specific example of a circuit that generates the source signals r_a and r_b will be described. FIG. 2 is a circuit diagram showing a configuration example of a decoder circuit using the main circuit shown in FIG. Figure 2 shows an example of a decoder circuit configuration that obtains 8 outputs from 3 inputs. FIG. 3 is a time chart for explaining the operation of the decoder circuit shown in FIG.
[0041] 図 2に示すデコーダ回路は、デコーダ本体部として並列に配置される 8個のデコー ダ要部回路 1— 0〜1— 7と、選択サイクルにおいて外部力 入力される 3ビットの入 力信号 address [0 : 2]に対応して並列に配置される 3個のパルス化回路 16a, 16b, 16cと、リセットサイクルにおいて外部力 負極性のリセットパルス信号 Zwl—rstが入 力されるリセット制御回路 25とを備えている。  [0041] The decoder circuit shown in FIG. 2 includes eight decoder main circuit circuits 1-0 to 1-7 arranged in parallel as the decoder main unit, and 3-bit input that is externally input in the selected cycle. Reset control with three pulse generators 16a, 16b, 16c arranged in parallel corresponding to signal address [0: 2] and reset pulse signal Zwl-rst with negative external force in reset cycle Circuit 25 is provided.
[0042] 3個のパルス化回路 16a, 16b, 16cは、それぞれ同様の構成であって、パルス化 回路 16cに示すように、 1ビットの入力信号 addressの論理値力 ' 1"であるときは、 NA ND回路 17にてクロック elkと同期を取つて当該クロック elkのパルス幅を持つパルス 信号を生成し、インバータ 20を介して正極性の選択パルス信号を出力する。また、 1 ビットの入力信号 addressの論理値が" 0"であるときは、インバータ 18にて論理値を 反転した後に N AND回路 19にてクロック elkと同期を取り、当該クロック elkのパルス 幅を持つパルス信号を生成し、インバータ 21を介して正極性の選択パルス信号を出 力するように構成されている。  [0042] The three pulsing circuits 16a, 16b, and 16c have the same configuration, and as shown in the pulsing circuit 16c, when the logical value of the 1-bit input signal address is '1', The NAND circuit 17 synchronizes with the clock elk to generate a pulse signal having the pulse width of the clock elk, and outputs a positive selection pulse signal via the inverter 20. Also, a 1-bit input signal When the logical value of address is "0", the logical value is inverted by the inverter 18 and then synchronized with the clock elk by the NAND circuit 19 to generate a pulse signal having the pulse width of the clock elk. A positive selection pulse signal is output via the inverter 21.
[0043] すなわち、パルス化回路 16aでは、入力信号 address [0]の論理値が" 1"のときは 、正極性の選択パルス信号 aO— pulseを出力し、入力信号 address [0]の論理値が" 0"のときは、正極性の選択パルス信号 aOx— pulseを出力する。  That is, in the pulsing circuit 16a, when the logical value of the input signal address [0] is "1", the positive selection pulse signal aO—pulse is output, and the logical value of the input signal address [0] When is 0, the positive selection pulse signal aOx—pulse is output.
[0044] また、パルス化回路 16bでは、入力信号 address [l]の論理値力 ' 1"のときは、正 極性の選択パルス信号 al— pulseを出力し、入力信号 address [1]の論理値が" 0" のときは、正極性の選択パルス信号 alx— pulseを出力する。  [0044] In addition, when the logic value of the input signal address [l] is '1', the pulsing circuit 16b outputs the positive polarity selection pulse signal al—pulse and the logic value of the input signal address [1]. When is 0, the positive selection pulse signal alx-pulse is output.
[0045] また、パルス化回路 16cでは、入力信号 address [2]の論理値力 ' 1"のときは、正 極性の選択パルス信号 a2— pulseを出力し、入力信号 address [2]の論理値が" 0" のときは、正極性の選択パルス信号 a2x— pulseを出力する。  [0045] In addition, in the pulsing circuit 16c, when the logical value of the input signal address [2] is '1', the positive polarity selection pulse signal a2—pulse is output, and the logical value of the input signal address [2] is output. When is 0, the positive selection pulse signal a2x—pulse is output.
[0046] 8個のデコーダ要部回路 1—0〜 1—7における選択パルス信号 adO, adl, ad2の 各入力端は、 3個のパルス化回路 16a, 16b, 16cの各 2出力ラインの対応する一方 の出力ラインに接続されて 、る。 [0046] The input terminals of the selection pulse signals adO, adl, ad2 in the eight decoder main circuits 1-0 to 1-7 correspond to the two output lines of the three pulse conversion circuits 16a, 16b, 16c, respectively. While Connected to the output line.
[0047] 図 2に示す例では、デコーダ要部回路 1—0カ '選択"の確定出力を行う選択パルス 信号 adO, adl, ad2は、 3ビットの入力信号 address [0 ; 2]の論理値が「000」である とさの「aOx _ pulse, alx _ pulse, a2x一 pulse」である。  [0047] In the example shown in FIG. 2, selection pulse signals adO, adl, ad2 for performing deterministic output of the decoder main circuit 1-0 “select” are logical values of the 3-bit input signal address [0; 2]. When “000” is “aOx _ pulse, alx _ pulse, a2x one pulse”.
[0048] デコーダ要部回路 1—6が"選択"の確定出力を行う選択パルス信号 adO, adl, ad[0048] Decoder main part circuits 1-6 select pulse signal adO, adl, ad that performs definite output of "selection"
2は、 3ビットの入力信号 address [0; 2]の論理値が「110」であるときの「a0— pulse, al _ pulse, a2x _ puise」で te 。 2 is “a0—pulse, al_pulse, a2x_puise” when the logical value of the 3-bit input signal address [0; 2] is “110”.
[0049] デコーダ要部回路 1—7が"選択"の確定出力を行う選択パルス信号 adO, adl, ad[0049] Selection pulse signal adO, adl, ad for which decoder main circuit 1-7 performs definite output of "selection"
2は、 3ビットの入力信号 address [0; 2]の論理値が「111」であるときの「a0— pulse, al― pulse, a2― pulse」である。 2 is “a0-pulse, al-pulse, a2-pulse” when the logical value of the 3-bit input signal address [0; 2] is “111”.
[0050] これによつて、 8個のデコーダ要部回路 1— 0〜1— 7では、 3ビットの入力信号 addr ess [0 ; 2]の論理値に応じた 1つのデコーダ要部回路カ '選択"の確定出力を行うこと で、 Select [0]〜Select [7]の 8出力が行われる。 Thus, in the eight decoder main circuit 1-0 to 1-7, one decoder main circuit circuit corresponding to the logical value of the 3-bit input signal addr ess [0; 2] By performing the “select” definite output, 8 outputs from Select [0] to Select [7] are performed.
[0051] 次に、リセット制御回路 25では、負極性のリセットパルス信号 Zwl— rstが送出され るリセット信号ラインが接続される入力端子には、 PMOSトランジスタ 26のゲート電極 と NMOSトランジスタ 29のゲート電極とが接続されている。 [0051] Next, in the reset control circuit 25, the gate electrode of the PMOS transistor 26 and the gate electrode of the NMOS transistor 29 are connected to the input terminal to which the reset signal line to which the negative reset pulse signal Zwl-rst is sent is connected. And are connected.
[0052] PMOSトランジスタ 26のソース電極は電源 27に接続され、負極性のリセットパルス 信号 Zwl— rstの発生して入力端子力 レベルを継続する期間にお 、てオン動作し ドレイン電極を電源 27の電位である Hレベルにする。 PMOSトランジスタ 26のドレイ ン電極には、インバータ 28の入力端と遅延回路 33の入力端と NMOSトランジスタ 32 のドレイン電極とに接続されて!、る。 [0052] The source electrode of the PMOS transistor 26 is connected to the power source 27, and during the period in which the negative reset pulse signal Zwl—rst is generated and the input terminal force level continues, the drain electrode is connected to the power source 27. Set the potential to H level. The drain electrode of the PMOS transistor 26 is connected to the input terminal of the inverter 28, the input terminal of the delay circuit 33, and the drain electrode of the NMOS transistor 32! RU
[0053] 一方、 NMOSトランジスタ 29のソース電極は接地電位(グランド)に接続され、負極 性のリセットパルス信号 Zwl— rstの発生期間を経過した後に入力端子が Hレベル になるとオン動作してドレイン電極を接地電位である Lレベルにする。 NMOSトランジ スタ 29のドレイン電極には、インバータ 30の入力端と遅延回路 31の入力端と PMOS トランジスタ 34のドレイン電極とに接続されて!、る。 [0053] On the other hand, the source electrode of the NMOS transistor 29 is connected to the ground potential (ground), and when the input terminal becomes H level after the generation period of the negative reset pulse signal Zwl-rst has passed, the drain electrode is turned on. To the L level, which is the ground potential. The drain electrode of the NMOS transistor 29 is connected to the input terminal of the inverter 30, the input terminal of the delay circuit 31, and the drain electrode of the PMOS transistor 34.
[0054] 遅延回路 31, 33は、共に奇数個(図示例では 3個)のインバータの直列回路力 な る。遅延回路 33の出力端は PMOSトランジスタ 34のゲート電極に接続されている。 P MOSトランジスタ 34のソース電極は電源 35に接続されている。また、遅延回路 31の 出力端は NMOSトランジスタ 32のゲート電極に接続されて!、る。 NMOSトランジスタ 32のソース電極は接地電位 (グランド)に接続されて!、る。 [0054] Each of the delay circuits 31, 33 serves as a series circuit power of an odd number of inverters (three in the illustrated example). The output terminal of the delay circuit 33 is connected to the gate electrode of the PMOS transistor 34. P The source electrode of the MOS transistor 34 is connected to the power source 35. The output terminal of the delay circuit 31 is connected to the gate electrode of the NMOS transistor 32 !. The source electrode of the NMOS transistor 32 is connected to the ground potential (ground)!
[0055] この構成によれば、インバータ 28は、 PMOSトランジスタ 26がオン動作して!/、る期 間内とその後のオフ動作中の所定期間内、負極性のリセットパルス信号 Zrst— aを 出力する。このインバータ 28の出力端には、 8個のデコーダ要部回路 1_0〜1— 7 における第 1のリセットパルス信号 r— aの入力端子が並列に接続されている。  [0055] According to this configuration, the inverter 28 outputs the negative reset pulse signal Zrst-a within a period when the PMOS transistor 26 is turned on! /, And within a predetermined period during the subsequent off operation. To do. The output terminal of the inverter 28 is connected in parallel to the input terminals of the first reset pulse signals r−a in the eight decoder main circuit 1_0 to 1-7.
[0056] また、インバータ 30は、インバータ 28が負極性のリセットパルス信号 Zrst— aを出 力している期間内において、負極性のリセットパルス信号 Zrst— bを出力する。この インバータ 30の出力端には、 8個のデコーダ要部回路 1—0〜1— 7における第 2のリ セットパルス信号 r_aの入力端子が並列に接続されている。  Further, the inverter 30 outputs the negative reset pulse signal Zrst-b during the period in which the inverter 28 outputs the negative reset pulse signal Zrst-a. The output terminal of the inverter 30 is connected in parallel with the input terminals of the second reset pulse signals r_a in the eight decoder main circuit 1-0 to 1-7.
[0057] 次に、図 3を参照して、動作について説明する。図 3において、選択サイクルにおい て発生するクロック CLKによって、パルス化回路 16a, 16b, 16cへの入力信号 addr ess [0 : 2]が確定 (valid)すると、パルス化回路 16a, 16b, 16cから 8個のデコーダ 要部回路 1— 0〜1— 7の!ヽずれか 1つに有効(valid)な選択パルス信号 ad0〜ad2 がクロック CLKのパルス幅の期間内発生する。 8個のデコーダ要部回路 1— 0〜1— 7のいずれ力 1つでは、選択パルス信号 ad0〜ad2の立ち上がりタイミングに同期して 出力を Hレベルにし選択の確定出力 Select [7: 0]を開始し、それを選択サイクルの 終端まで維持する。  Next, the operation will be described with reference to FIG. In FIG. 3, when the input signal addr ess [0: 2] to the pulse circuit 16a, 16b, 16c is validated by the clock CLK generated in the selected cycle, the pulse circuit 16a, 16b, 16c to 8 One of the decoder main circuit 1—0 to 1—7! One of the valid selection pulse signals ad0 to ad2 is generated within the period of the pulse width of the clock CLK. In any one of the eight decoder main circuits 1—0 to 1—7, the output is set to H level in synchronization with the rising timing of the selection pulse signals ad0 to ad2, and the selected selection output Select [7: 0] Start and keep it until the end of the selection cycle.
[0058] そして、次のリセットサイクルにお!/、て、負極性のリセットパルス信号 Zwl— rstが発 生し、 PMOSトランジスタ 26のゲート電位力 レベルになると、インバータ 28は、出力 を Lレベルにし負極性のリセットパルス信号 Zrst— aの出力を開始する。この場合に は、 NMOSトランジスタ 29はオフ動作状態である。そして、遅延回路 33での所定遅 延時間後に PMOSトランジスタ 34がオン動作してドレイン電極が Hレベルになるので 、インバータ 30は、出力を Lレベルにし負極性のリセットパルス信号 Zrst— bの出力 を開始する。これらのリセットパルス信号 Zrst— a, Zrst— bの発生によって選択の 確定出力 SeleCt[7 : 0]が解除される。この解除動作は、 8個のデコーダ要部回路 1 0〜1 7の全てで同様に行われる。 [0059] その後、負極性のリセットパルス信号 Zwl— rstが消滅し、 NMOSトランジスタ 29の ゲート電位が Hレベルになると、インバータ 30は、出力を Hレベルにし負極性のリセッ トパルス信号 Zrst—bの出力を中止して消滅させる。この場合、 PMOSトランジスタ 2 6は、ゲート電位が Hレベルになりオフ動作状態になる力 フローティング状態である ので、インバータ 28の入力レベルは直前の Hレベルを維持する。つまり、インバータ 28は、 Lレベルを継続しての出力する。そして、遅延回路 31での所定遅延時間後に NMOSトランジスタ 32がオン動作してインバータ 28の入力レベルを Lレベルにする ので、インバータ 28は、出力を Hレベルにし負極性のリセットパルス信号 Zrst— aの 出力を中止して消滅させる。 [0058] Then, when the negative reset pulse signal Zwl-rst is generated in the next reset cycle and reaches the gate potential power level of the PMOS transistor 26, the inverter 28 sets the output to the L level. Starts output of negative reset pulse signal Zrst-a. In this case, the NMOS transistor 29 is in an off operation state. Then, after a predetermined delay time in the delay circuit 33, the PMOS transistor 34 is turned on and the drain electrode becomes H level. Therefore, the inverter 30 sets the output to L level and outputs the negative reset pulse signal Zrst-b. Start. The generation of these reset pulse signals Zrst-a and Zrst-b cancels the selected definite output Sele C t [7: 0]. This release operation is performed in the same manner in all of the eight decoder main circuits 10 to 17. [0059] After that, when the negative polarity reset pulse signal Zwl-rst disappears and the gate potential of the NMOS transistor 29 becomes H level, the inverter 30 sets the output to H level and outputs the negative polarity reset pulse signal Zrst-b. Cancel and extinguish. In this case, since the PMOS transistor 26 is in a floating state in which the gate potential becomes the H level and is turned off, the input level of the inverter 28 is maintained at the immediately preceding H level. That is, the inverter 28 continuously outputs the L level. Then, after a predetermined delay time in the delay circuit 31, the NMOS transistor 32 is turned on and the input level of the inverter 28 is set to L level. Therefore, the inverter 28 sets the output to H level and the negative reset pulse signal Zrst-a Cancel the output and make it disappear.
[0060] このように、リセットサイクルにおいては、リセット制御回路 25では、リセットパルス信 号 Zrst— aとリセットパルス信号 Zrst— bとを同じタイミングで発生せず、つまり Lレべ ルにせず、リセットパルス信号 Zrst— bが Lレベルになる前にリセットパルス信号 Zrs t— aが Lレベルとなるように、その発生を制御しているので、前述したように、 PMOS トランジスタ 13がオン動作するタイミングではインバータ 8内の NMOSトランジスタに オフ動作させることができ、リークパスの発生が抑制される。  [0060] Thus, in the reset cycle, the reset control circuit 25 does not generate the reset pulse signal Zrst-a and the reset pulse signal Zrst-b at the same timing, that is, does not set the L level and resets. Since the generation of the reset pulse signal Zrs t-a is controlled to be at the L level before the pulse signal Zrst-b is at the L level, as described above, at the timing when the PMOS transistor 13 is turned on. The NMOS transistor in the inverter 8 can be turned off and the occurrence of a leak path is suppressed.
産業上の利用可能性  Industrial applicability
[0061] 以上のように、この発明に力かるデコーダ回路は、デコーダ要部回路の複数個から なるデコーダ本体部全体のサイズやデコーダ本体部を駆動する回路自体のサイズを 大きくすることなぐつまり、半導体集積回路装置の高集積ィヒを阻害することなぐ確 定出力の高速ィ匕を図るのに好適である。 [0061] As described above, the decoder circuit according to the present invention does not increase the size of the entire decoder main body composed of a plurality of decoder main circuits or the size of the circuit itself that drives the decoder main body. It is suitable for achieving high-speed output of a definite output without hindering the high integration of the semiconductor integrated circuit device.

Claims

請求の範囲 The scope of the claims
[1] 複数の入力力 特定の 1出力を行うデコーダ要部回路を並列に複数個設けるデコ ーダ回路において、  [1] Multiple input powers In a decoder circuit that has multiple decoder main circuits that perform one specific output in parallel,
前記デコーダ要部回路は、  The decoder main circuit is:
ゲート電極に第 1のリセットパルス信号が印加され、一方の信号電極が電源に接続 される第 1の PMOSトランジスタと、  A first PMOS transistor in which a first reset pulse signal is applied to a gate electrode and one signal electrode is connected to a power source;
前記第 1の PMOSトランジスタの他方の信号電極と接地電位との間に直列に配置 され、それぞれのゲート電極に選択パルス信号が印加される複数の NMOSトランジ スタと、  A plurality of NMOS transistors arranged in series between the other signal electrode of the first PMOS transistor and a ground potential, and a selection pulse signal is applied to each gate electrode;
前記第 1の PMOSトランジスタの他方の信号電極と前記複数の NMOSトランジスタ の直列回路との接続端と出力端との間に直列に配置される奇数個のインバータと、 ゲート電極に第 2のリセットパルス信号が直接、または、偶数個のインバータを介し て印加され、一方の信号電極が電源に接続され、他方の信号電極が前記奇数個の インバータのうち最終段のインバータの入力端に接続される第 2の PMOSトランジス タとを備え、  An odd number of inverters arranged in series between a connection end and an output end of the other signal electrode of the first PMOS transistor and the series circuit of the plurality of NMOS transistors; and a second reset pulse on the gate electrode A signal is applied directly or via an even number of inverters, one of the signal electrodes is connected to the power supply, and the other signal electrode is connected to the input terminal of the last stage of the odd number of inverters. 2 PMOS transistors,
前記奇数個のインバータにおいて、前記最終段のインバータを直接駆動するイン バータは、サイズの小さい PMOSトランジスタとサイズの大きい NMOSトランジスタと で構成されている  In the odd number of inverters, the inverter that directly drives the final stage inverter is composed of a small-sized PMOS transistor and a large-sized NMOS transistor.
ことを特徴とするデコーダ回路。  A decoder circuit characterized by the above.
[2] 前記デコーダ要部回路の確定出力を解除させるリセットサイクルにおいて、まず、 前記第 1のリセットパルス信号を発生し、その後の所定時間経過後に前記第 2のリセ ットパルス信号を発生し、当該第 2のリセットパルス信号の消滅後の所定時間経過後 に前記第 1のリセットパルス信号を消滅させるリセット制御手段を備えていることを特 徴とする請求項 1に記載のデコーダ回路。 [2] In a reset cycle for releasing the definite output of the decoder main circuit, first, the first reset pulse signal is generated, and after the predetermined time has elapsed, the second reset pulse signal is generated, and the second reset pulse signal is generated. 2. The decoder circuit according to claim 1, further comprising reset control means for extinguishing the first reset pulse signal after a lapse of a predetermined time after extinction of the two reset pulse signals.
PCT/JP2006/303435 2006-02-24 2006-02-24 Decoder circuit WO2007105255A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/303435 WO2007105255A1 (en) 2006-02-24 2006-02-24 Decoder circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/303435 WO2007105255A1 (en) 2006-02-24 2006-02-24 Decoder circuit

Publications (1)

Publication Number Publication Date
WO2007105255A1 true WO2007105255A1 (en) 2007-09-20

Family

ID=38509104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303435 WO2007105255A1 (en) 2006-02-24 2006-02-24 Decoder circuit

Country Status (1)

Country Link
WO (1) WO2007105255A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068083A (en) * 2001-08-28 2003-03-07 Hitachi Ltd Semiconductor integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068083A (en) * 2001-08-28 2003-03-07 Hitachi Ltd Semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
US20100109995A1 (en) Gate driving device utilized in lcd device
TW200306707A (en) Semiconductor integrated circuit with leak current cut-off circuit
JP2006259753A (en) Static clock pulse generator and display
JP2007267162A (en) Semiconductor integrated circuit
JP5704600B2 (en) Semiconductor integrated circuit
WO2017008488A1 (en) Shift register unit, shift register, gate drive circuit and display apparatus
JP2004246958A (en) Semiconductor device and method for controlling the same
JP3144374B2 (en) Signal change acceleration bus drive circuit
JP2000332598A (en) Random logic circuit
JP2008072349A (en) Semiconductor device
US20080157842A1 (en) MTCMOS Flip-Flop Circuit
JP2005228459A (en) Pulse signal generation method, shifting circuit, and display device
JP5575871B2 (en) Shift register, signal line drive circuit, liquid crystal display device
KR20220085266A (en) Power domain changing circuit and operation method thereof
TWI288264B (en) Shift register and display device
JP2004128590A (en) Level shifter circuit
WO2007105255A1 (en) Decoder circuit
JP3748648B2 (en) Burst counter circuit
JP2009017436A (en) Semiconductor device
US6850460B1 (en) High performance programmable array local clock generator
JP2004032151A (en) Pulse generator circuit capable of shortening output pulse cycle
JP2009038128A (en) Semiconductor integrated circuit device
US20100122133A1 (en) Latch circuit including data input terminal and scan data input terminal, and semiconductor device and control method
JP2005274306A (en) Semiconductor integrated circuit, semiconductor memory device, and testing method for semiconductor memory device
JP2009077059A (en) Flip-flop circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06714574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06714574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP