WO2007104820A1 - Bomba de desagüe de barrenos mediante ciclos alternativos de aspiración y expulsión basada en el principio del desplazamiento neumático - Google Patents

Bomba de desagüe de barrenos mediante ciclos alternativos de aspiración y expulsión basada en el principio del desplazamiento neumático Download PDF

Info

Publication number
WO2007104820A1
WO2007104820A1 PCT/ES2007/070052 ES2007070052W WO2007104820A1 WO 2007104820 A1 WO2007104820 A1 WO 2007104820A1 ES 2007070052 W ES2007070052 W ES 2007070052W WO 2007104820 A1 WO2007104820 A1 WO 2007104820A1
Authority
WO
WIPO (PCT)
Prior art keywords
hose
water
pump
expulsion
hole
Prior art date
Application number
PCT/ES2007/070052
Other languages
English (en)
French (fr)
Inventor
Jorge López Rodríguez
Original Assignee
Lopez Rodriguez Jorge
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lopez Rodriguez Jorge filed Critical Lopez Rodriguez Jorge
Priority to CA002646897A priority Critical patent/CA2646897A1/en
Priority to AU2007226489A priority patent/AU2007226489B2/en
Priority to EP07730492A priority patent/EP2006454B1/en
Priority to ES07730492T priority patent/ES2395781T3/es
Publication of WO2007104820A1 publication Critical patent/WO2007104820A1/es
Priority to US12/210,192 priority patent/US7950465B2/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D19/00Keeping dry foundation sites or other areas in the ground
    • E02D19/06Restraining of underground water
    • E02D19/10Restraining of underground water by lowering level of ground water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F1/00Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped
    • F04F1/02Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped using both positively and negatively pressurised fluid medium, e.g. alternating
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/10Improving by compacting by watering, draining, de-aerating or blasting, e.g. by installing sand or wick drains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping

Definitions

  • the invention falls within the technical sector of the process of execution of blasting in bank or ditch, in quarries, mines or public works, where it is necessary to perform quasi-vertical perforations (from 0 to 30 degrees commonly). In such holes, called holes, it is common for water to accumulate due to internal seepage, rain, etc.
  • Water from the point of view of blasting, is a serious problem that makes it difficult to load the explosives in the holes, reduces the energy efficiency of the explosives, increases the loss of the drilling performance, substantially increases the blasting cost by making the use of significantly more expensive water-resistant explosives necessary, etc.
  • the present invention tries to provide, to the users of industrial explosives, and in particular to the sector dedicated to the execution of bank blasting (quarries, mines, public works, etc.), a useful, flexible and economical technical solution that solves the problem of eliminating water in the holes.
  • the invention describes the design and operation of a water extraction pump based on the principle of pneumatic displacement, which uses, as an essential part, alternative aspiration and expulsion cycles to give the necessary operational performance to the drainage process, and which given Its inventive design with an external profile without appreciable highlights will allow minimizing the problems of berths.
  • exhaust pipes A first system used to drain the water of the holes is called “exhaust pipes", a system that simply consisted of a rigid exhaust pipe, with its bevelled end, normally equipped with a quarter turn valve connected to A source of compressed air. This simple structure can still be seen in operation in some places, with a semi-rigid support plastic hose that is normally used instead of the steel pipe.
  • the main advantage of the exhaust pipe procedure was that it could be applied almost universally at any site where there was a compressor and a hose length.
  • this bilge technique was only effective at limited depths and for small and medium diameters.
  • SUBSTITUTE SHEET (RULE 26) powered by a variety of sources, which can shrink holes with the largest diameters and depths currently drilled.
  • These units are offered with single-phase or multi-phase pumps, and with reels driven for the hose.
  • the units are usually autonomous and are carried in a vehicle dedicated to this specific use. They can be designed to be operated from a position close to the reel or from the vehicle cabin.
  • the pumping unit which is introduced at the end of a hose to the bottom of the hole, consists of a hydraulic motor that drives a booster pump. This unit collects the water through a sieve located at the bottom of the unit, and drives it through the hose towards the surface.
  • the hydraulic tubes that supply energy to the pump are located within the discharge hose of the pump.
  • This equipment is offered by several companies in a variety of configurations. The advantages of these systems are diverse; They are autonomous units and, as such, can shrink water independently of other equipment present on the site, can be operated by a person and are designed to pump large volumes from deep holes of both large diameter and medium diameter.
  • discontinuous bilge systems another system used, and which has already been patented, uses, like the invention, the principle of pneumatic displacement to drain the holes, but, unlike the invention, the air is used compressed to expand a rubber sleeve against the inner wall of the hole. Then, the pressurized air is introduced into the chamber that is formed below the expanded rubber sleeve,
  • SUBSTITUTE SHEET (RULE 26) displacing the water and forcing it to enter a discharge tube, to the center of the sleeve assembly and out of the surface.
  • This pump has several advantages; since it only has one mobile part, the replaceable rubber sleeve, its cost is low and maintenance is minimal; It is not damaged or affected by pumping sludge or abrasive fragments from the hole.
  • Among its disadvantages is the fact that a reasonably round perforated hole is required to form a good seal, and in very loose or fragmented soils, pressure can be lost through the cracks, which impairs its pumping capacity. You also need a different sleeve or pump body for different hole sizes.
  • Another disadvantage with respect to the invention is that the longitudinal profile of the assembly of the pump that is introduced into the borehole is not constant since the pump body that houses the rubber sleeve represents a widening that can lead to problems of bottlenecks.
  • the pumping process is discontinuous, due to the operational limitation, which, due to pressure loss problems, exists in the distance between the hose and at the end of the drain hose. This causes this pumping system to work through intermittent cycles of compressed air (pulses of compressed air) to allow the drain chamber that is formed between the rubber sleeve, the walls of the hole, and the end of the hose to be recharged. drain.
  • Another discontinuous system that uses, like the previous system, pulses of compressed air to drain holes or the like, unlike the invention that requires as an essential part to alternate cycles of aspiration and expulsion, is described as a tubular body that is lowered up to the bottom of the hole, unlike the invention where instead of the tubular body, there is a main hose in which one of its ends always remains outside the hole; and that, coinciding with the previously mentioned system, it communicates with the outside through two hoses, one of air that connects the tubular body with a pulsating system of compressed air that remains outside, and another of drainage, which allows the ascent of the water contained in the volume of the tubular body to the surface.
  • the tubular body, which remains at the bottom of the hole is characterized by incorporating two valves
  • SUBSTITUTE SHEET (RULE 26) antirretomo one at the lower end of said tubular body, and another at the lower end of a hose section located inside the tubular body, whereby the water is displaced by the pressurized air first outside the chamber constituted through the tubular body and without continuity solution ascends through the hole through the drain hose connected to the upper cap of the tubular body.
  • the invention allows, given the basic differences in the design of the invention (constant diameter of the hose along the entire depth of the hole), the calculation of the flow rate of water supply to the hole, if any, comparing the time between two consecutive cycles, and the volumes of water of such consecutive cycles, which, and this I consider relevant, are not the same because of the unique characteristics of the invention with
  • Double Diaphragm Air Aided Pumps Another system is through Double Diaphragm Air Aided Pumps;
  • the system uses a double-diaphragm, air-operated, modified pump.
  • a stream of compressed air is directed through a small tube located inside the inlet hose to a vent nozzle placed near the inlet point of the suction hose.
  • This air injection allows water to be extracted from holes with a depth greater than the normal suction limit of double diaphragm pumps.
  • the primary pumping unit does not descend into the hole. This eliminates the possibility of losing the pump if the hole collapses.
  • the pump will also vacuum sludge and hole fragments
  • Vacuum Bilge Units Although not available on the market, several mine bilge units have been created that use a partial vacuum to extract water from the suction hole. These systems basically consist of a large pressure vessel, mounted on a truck or other transportable vehicle, a vacuum pump and a hose with an intake-suction valve. In use, the vacuum pump is used to remove most of the air from the pressure tank. The intake hose is introduced at the bottom of the hole to be reduced and the valve of the tube is opened, removing the water from the hole and introducing it into the tube and from it to the inside of the tank.
  • the advantages of this type of unit are that it is a stand-alone device, it would need little maintenance and is quite effective within its limitations. Due to the physical limitation of the normal atmospheric pressure, it can only displace water from limited depths (less than 7.6 meters) by what is outside the typical bore depth ranges at present (from 8 to 25 meters); and it has to be dismantled and emptied regularly.
  • the system that is recommended in the invention comprises a cylindrical pump body as a hose, which is the part that is partially introduced into the borehole leaving the rest on the surface or rolled in a winder, and a pneumatic mechanism, which is described more in some of its variants, which constitutes the "lung" of this water extraction system, alternating the cycles of aspiration (vacuum cycle) and expulsion (pressure cycle).
  • the body of the pump constituted externally by a hose of sufficient resistance to pressure fluctuations (suction phases and
  • SUBSTITUTE SHEET (RULE 26) expulsion) is tightly closed at its ends by means of a cover in the upper part and a non-return valve in its lower part.
  • an air intake is connected to the pneumatic mechanism circuit, by means of a pneumatic valve (for example three-way) that alternates the suction phase and the ejection phase, and a water inlet that in the outer part of the lid will be connected to the outer drain hose, and in the inner part the inner hose of the pump body responsible for driving the water from the bottom to the surface will be coupled.
  • the outer hose allows the flow of water to be directed where we are interested (a reservoir, a raft, to the lower bank, etc.) in order that the water does not re-enter the holes through filtration.
  • This hose incorporates an anti-return valve that allows the exit of water in the discharge phase and closes when the drain cycle is that of aspiration. Or, through a slightly more complex pneumatic circuit, it is connected by a valve system (eg a 5-way 2-way valve described in the drawing section) to the vacuum line in the suction phase. In this way, the vacuum is carried out within the inner hose in addition to the internal volume of the pump body, as described below.
  • This last variant such as the volume of water that is introduced in the suction phase also includes that which houses the inner pipe, allows to improve the drainage performance even more because the said net volume aspirated is greater and because also the drain flow in The ejection phase can be substantially greater, since an inner hose of larger diameter can be selected.
  • the lower part of the hose that is introduced into the borehole, which, as said, contains a non-return valve, can be protected with a filter and a blunt protector that serves to protect the anti-return mechanism and at the same time serves as a " ram "to deobturate any possible berth.
  • the procedure of the drainage of the borehole begins with the introduction of the body of the pump, positioning the pneumatic valve (for example three-way or five-way) in a position that allows the exit of the air displaced by the water that is entering the hose through the foot valve (non-return) as the pump body is introduced into the hole
  • SUBSTITUTE SHEET (RULE 26) flooded.
  • the pump introduced into the flooded hole has been loaded with water up to the height of the piezometric level reached after introducing the hose (obviously as the hose has a volume, the water reaches a higher level by the Archimedes principle corresponding to the volume of the pump body introduced into the water).
  • the next step is to act giving way, in the pneumatic control valve (three-way), or to the suction position, if the level of "natural load" matches this, or to the ejection position, with which the pressurized air will enter the inside of the pump body and under its effect the foot valve will be closed leaving the inner hose as the only way of exiting the water displaced by the push of the pressurized air.
  • a small compressor with an air flow rate of approximately 0.4 m 3 / min regulated at a pressure of 5-6 bar (500-600 kPa) would give a more than adequate pumping rate. These low air requirements allow multiple options and leave within the range of useful sources compressors of lower flow and pressure than those available for drilling.
  • the truck brake system compressor and small portable compressors may be suitable.
  • Regarding the vacuum requirements as mentioned in the description of the pumping system, complementing the pumping by pneumatic displacement with a depressor system that increases the volume of water evacuated in each cycle is essential, when improving performance Global system.
  • a vacuum pump with a suction flow of 8 liters / second would achieve in a few seconds that inside a probe of 62 mm in diameter, the water rises for example 6 meters, that is to say more than 11 liters additional to the natural recharge , Which is almost equivalent to 2 meters of water inside a 3.5 inch (89 mm) hole.
  • SUBSTITUTE SHEET (RULE 26) pressure to counteract pressure leaks from cracks. In this sense, it also prevents water from migrating through the fissures, under the effect of overpressure that other pneumatic displacement methods described in the background section generate inside the borehole, with the risk of recharging the borehole more quickly in when the overpressure ceases.
  • the profile of the body of the pump is constant and equal to the outside diameter of the hose.
  • the part of the pump that is introduced into the borehole is basically a simple hose with a foot valve and optionally a simple filter and an austere ram-like protector.
  • the upper cover could always be disengaged, remove the inner hose, and proceed to the loading of the hole with an encapsulated explosive of adequate diameter through the interior of the hose. With this the hole would not be lost and therefore the problem regarding the result of the blasting would be minimized.
  • Figure 1 shows the fundamental parts of the invention, enlarging in detail the upper part and the lower part with their respective components. Specifically, a section of the main hose (1) is drawn, described as the body of the pump, closed in its upper part by a cover (2), in which two holes are located, the first (4) for the inlet or air outlet as we find the expulsion cycle or in the aspiration cycle, and the second (5) so that the water that rises through the inner hose (6) is conducted outside by the hose (10). As mentioned, this upper part is enlarged.
  • the main hose (1) is closed at the bottom by an anti-return system (3), consisting of a non-return valve (9), a filter (8) and a protector (7), which allows water to enter in the suction phase and closes tightly in the expulsion phase leaving, as already said, as the only outlet for the water displaced by the pressurized air the ascent by the inner hose (6) to the outside.
  • an anti-return system (3) consisting of a non-return valve (9), a filter (8) and a protector (7), which allows water to enter in the suction phase and closes tightly in the expulsion phase leaving, as already said, as the only outlet for the water displaced by the pressurized air the ascent by the inner hose (6) to the outside.
  • the lower part is enlarged.
  • Figure 2. shows an example of how the implementation of the pneumatic circuit can be provided that provides air under pressure and vacuum by means of multi-way valves and positions that are conveniently governed alternate the aspiration and expulsion phases, making sense of the drainage mechanism of Ia invention.
  • a 5-way valve (11), V1, V2, V3, V4 and V5, and 2 positions, RI and RII 1 where the V1 line is connected to the water outlet hose (10), the path is represented V2 to the vacuum source (13), the V3 pathway is connected to the compressed air source (12), the V4 pathway is connected to the water outlet (5) and the V5 pathway is connected to the outlet / air inlet (4) of the drain pump.
  • the V1 line is connected to the water outlet hose (10)
  • the path is represented V2 to the vacuum source (13)
  • the V3 pathway is connected to the compressed air source (12)
  • the V4 pathway is connected to the water outlet (5)
  • the V5 pathway is connected to the outlet / air inlet (4) of the drain pump.
  • the air
  • Figure 3. illustrates the positions mentioned in page 7 of the report describing the consecutive phases of the process of draining a hole. Specifically, in the left part of Figure 3, the final moment of lowering the body of the drain pump is represented. In this phase, the water penetrates inside the body of the pump through the non-return system (3) by displacing the air from inside the body of the pump to the atmosphere through the intake (4) and the intake ( 5). In this first stage, the pump introduced into the flooded hole has been loaded with water up to the height of the piezometric level reached after introducing the hose.
  • the central part of Figure 3 corresponds to the phase, in which, when making the vacuum through the intake (4) the water rises inside the main hose (1) at a height proportional to the depression reached and it is captive inside the hose (1) when the anti-return system (3) is closed tightly by the effect of the hydrostatic pressure.
  • the right part of Figure 3 corresponding to the phase in which the displacement of the volume of captive water inside the body of the pump takes place, when entering air under pressure by the intake (4), the water rising Along the only remaining free path, the inner pipe (6), taking into account that the non-return valve (9) that is part of the non-return system (3) will remain closed as long as there is a greater pressure inside the pump body with respect to To the exterior.
  • the first drain cycle will be completed. The cycles are

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Hydrology & Water Resources (AREA)
  • Soil Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Storing, Repeated Paying-Out, And Re-Storing Of Elongated Articles (AREA)
  • External Artificial Organs (AREA)

Abstract

Bomba de desagüe de barrenos mediante ciclos alternativos de aspiración y expulsión basada en el principio del desplazamiento neumático que comprende una manguera principal (1) sin resaltes, que se introduce en el barreno, y una manguera interior (6), que se introduce en la manguera principal. El extremo superior de la manguera principal permanece en superficie y presenta un cierre (2) hermético con una toma para agua (5), conectada a la manguera interior (6), y una toma para aire (4), conectada alternativamente a una fuente de vacio en la aspiración y a una fuente de aire comprimido en la expulsión. De aplicación en el proceso de ejecución de voladuras.

Description

D E S C R I P C IÓ N
BOMBA DE DESAGÜE DE BARRENOS MEDIANTE CICLOS ALTERNATIVOS
DE ASPIRACIÓN Y EXPULSIÓN BASADA EN EL PRINCIPIO DEL DESPLAZAMIENTO NEUMÁTICO.
SECTOR DE LA TÉCNICA
La invención se encuadra en el sector técnico del proceso de ejecución de voladuras en banco o zanja, en canteras, minas u obra pública, donde es necesario realizar perforaciones cuasi-verticales (de 0 a 30 grados comúnmente). En tales huecos, denominados barrenos, es frecuente que se acumule agua por filtraciones internas, lluvia, etc.
El agua, desde el punto de vista de Ia ejecución de voladuras, es un serio problema que dificultad de carga de los explosivos en los barrenos, reduce el rendimiento energético de los explosivos, aumenta Ia pérdida del rendimiento de la perforación realizada, incrementa sustancialmente el coste de Ia voladura al hacer necesario el uso de explosivos resistentes al agua sensiblemente más caros, etc.
OBJETO DE LA INVENCIÓN
La presente invención trata de proporcionar, a los usuarios de los explosivos industriales, y en particular al sector dedicado a Ia ejecución de voladuras en banco (canteras, minas, obra pública, etc), una solución técnica útil, flexible y económica que resuelva el problema de Ia eliminación del agua en los barrenos. La invención describe el diseño y el funcionamiento de una bomba de extracción de agua basada en el principio del desplazamiento neumático, que utiliza, como parte esencial, ciclos alternativos de aspiración y expulsión para dar el necesario rendimiento operativo al proceso de desagüe, y que dado su diseño inventivo con un perfil externo sin resaltes apreciables, permitirá minimizar al máximo los problemas de atranques.
HOJA DE SUSTITUCIÓN (REGLA 26) ESTADO DE LA TÉCNICA PREVIA A LA INVENCIÓN
Un primer sistema empleado de achique del agua de los barrenos es el denominado de "tubos de escape", sistema que constaba simplemente de un tubo de escape rígido, con su extremo cortado en bisel, normalmente equipado con una válvula de cuarto de vuelta conectada a una fuente de aire comprimido. Esta sencilla estructura aún puede verse en funcionamiento en algunos sitios, con una manguera de plástico de soporte semi-rígido que se usa normalmente en lugar de Ia tubería de acero. La ventaja principal del procedimiento del tubo de escape era que se podía aplicar casi umversalmente en cualquier sitio en el que hubiera un compresor y una longitud de manguera. Sin embargo, esta técnica de achique sólo era eficaz a profundidades limitadas y para pequeños y medianos diámetros. Esta técnica tenía y tiene notables inconvenientes debido a que el chorro del agua es lanzado a Io largo del barreno, acelerando Ia destrucción de las paredes de Ia perforación, fundamentalmente en Ia zona de emboquille, que es donde se concentra el material suelto, y su eficacia es cuestionable porque una gran parte del agua extraída pude volver al interior de los barrenos por filtración desde Ia superficie. Este procedimiento es ineficaz cuando existe una cantidad significativa de sobrecarga, y es desagradable, inseguro y casi siempre realizado con desgana por el personal encargado de tal tarea.
Según evolucionaba el equipo de perforación y se volvía práctico para perforar barrenos más profundos y de mayor diámetro, y según se iba disponiendo de agentes explosivos de menor precio, se iba haciendo necesario crear formas más seguras y más eficaces de sacar agua.
Dentro de los sistemas de achique de agua que funcionan de manera continua, las primeras máquinas consistían en una bomba eléctrica sumergible equipada con mangueras de forma que se pudiera transportar de un agujero a otro. Las objeciones obvias de seguridad al uso de dispositivos eléctricos en el suelo próximo a las perforaciones cargadas, pronto condujeron al desarrollo de bombas sumergibles accionadas hidráulicamente. Estas unidades han evolucionado en una familia entera de máquinas de bombeo sofisticadas,
HOJA DE SUSTITUCIÓN (REGLA 26) accionadas por una diversidad de fuentes, que pueden achicar agujeros con los mayores diámetros y profundidades actualmente perforados. Estas unidades se ofrecen con bombas de una sola fase o de múltiples fases, y con carretes accionados para Ia manguera. Las unidades normalmente son autónomas y se llevan en un vehículo dedicado a este uso específico. Pueden diseñarse para hacerse funcionar desde una posición próxima al carrete o desde Ia cabina del vehículo.
La unidad de bombeo, que se introduce en el extremo de una manguera hasta el fondo del agujero, consta de un motor hidráulico que acciona una bomba impulsora. Esta unidad recoge el agua a través de un tamiz situado en el fondo de Ia unidad, y Ia impulsa a través de Ia manguera hacia Ia superficie. Los tubos hidráulicos que suministran energía a Ia bomba están localizados dentro de Ia manguera de descarga de Ia bomba. Este equipo se ofrece por varías compañías en una diversidad de configuraciones. Las ventajas de estos sistemas son diversas; son unidades autónomas y, como tales, pueden achicar agua independientemente de otros equipos presentes en el sitio, pueden hacerse funcionar por una persona y están diseñadas para bombear grandes volúmenes desde agujeros profundos tanto de diámetro grande como de diámetro medio. Por el lado negativo, si se quedan atrapadas en un agujero derrumbado o estrecho, el usuario corre el riesgo de perder una unidad de bombeo relativamente cara, y estas unidades no bombearán fragmentos abrasivos indefinidamente sin dañar ciertas partes caras de Ia cabeza de Ia bomba. Este sistema presenta serias dificultades en diámetros de perforación de 3 y 3,5 pulgadas (76-89 mm), que son muy frecuentes en las voladuras de canteras y obra pública, debido al poco espacio para dimensionar los rodetes de Ia bomba sumergible.
Dentro de los sistemas de achique discontinuos, otro sistema empleado, y que ya ha sido objeto de patente, usa al igual que Ia invención, el principio de desplazamiento neumático para desaguar los barrenos, pero, a diferencia de Ia invención, se usa el aire comprimido para expandir un manguito de caucho contra Ia pared interior del barreno. Después, el aire presurizado se introduce en Ia cámara que se forma por debajo del manguito de caucho expandido,
HOJA DE SUSTITUCIÓN (REGLA 26) desplazando el agua y forzándola a entrar en un tubo de descarga, hasta el centro del conjunto de manguito y hacia fuera de Ia superficie. Esta bomba tiene varias ventajas; ya que sólo tiene una parte móvil, el manguito de caucho reemplazable, su coste es bajo y el mantenimiento es mínimo; no se ve dañada o afectada por el bombeo de lodos o fragmentos abrasivos procedentes del agujero. Entre sus desventajas se encuentra el hecho de requerir un agujero perforado razonablemente redondo para formar un buen cierre, y en suelos muy sueltos o fragmentados, puede perder presión a través de las grietas, Io que perjudica a su capacidad de bombeo. También necesita un manguito o cuerpo de bomba diferente para diferentes tamaños de agujeros. Otra desventaja respecto a Ia invención radica en que el perfil longitudinal del conjunto de Ia bomba que se introduce en el barreno no es constante ya que el cuerpo de bomba que alberga el manguito de caucho representa un ensanche que puede acarrear problemas de atranques. El proceso de bombeo es discontinuo, debido a Ia limitación operativa, que por problemas de pérdidas de carga en Ia presión, existe en Ia distancia entre el manguito y en extremo de Ia manguera de desagüe. Esto provoca que este sistema de bombeo trabaje mediante ciclos intermitentes de aire comprimido (pulsos de aire comprimido) para permitir que se recargue Ia cámara de desagüe que se forma entre el manguito de caucho, las paredes del barreno, y el extremo de Ia manguera de desagüe.
Otro sistema discontinuo que utiliza, al igual que el sistema anterior, pulsos de aire comprimido para desaguar barrenos o similares, a diferencia de Ia invención que requiere como parte esencial alternar ciclos de aspiración y expulsión, se describe como un cuerpo tubular que se hace descender hasta el fondo del barreno, a diferencia de Ia invención en donde en vez del cuerpo tubular, existe una manguera principal en Ia que uno de sus extremos permanece siempre fuera del barreno; y que, coincidiendo con el sistema anteriormente comentado, se comunica con el exterior mediante dos mangueras, una de aire que conecta el cuerpo tubular con un sistema pulsante de aire comprimido que permanece en el exterior, y otra de desagüe, que permite Ia ascensión del agua contenida en el volumen del cuerpo tubular hasta Ia superficie. El cuerpo tubular, que permanece en el fondo del barreno, se caracteriza por incorporar dos válvulas
HOJA DE SUSTITUCIÓN (REGLA 26) antirretomo, una en el extremo inferior de dicho cuerpo tubular, y otra en el extremo inferior de un tramo de manguera ubicada en el interior del cuerpo tubular, por Ia cual el agua sale desplazada por el aire presurizado en primer lugar fuera de Ia cámara constituida por el cuerpo tubular y sin solución de continuidad asciende por el barreno a través de Ia manguera de desagüe conectada a Ia tapa superior del cuerpo tubular.
Como diferencias que desearía constatar entre Ia invención y el anterior sistema descrito, algunas de las cuales considero honestamente importantes, y otras, aunque de menor importancia, también contribuyen a diferenciar ambas invenciones incidiendo en mayor o menor medida en Ia descripción del funcionamiento, están: En primer lugar, las características de Ia invención que hacen, de Ia generación de vacío durante los ciclos alternativos de aspiración y expulsión (en concreto durante el ciclo de aspiración), una parte fundamental en el proceso de funcionamiento, mientras que en el sistema descrito, no figura en modo alguno como parte integrante de Ia misma, en segundo lugar, el concepto de cuerpo principal de Ia bomba (cuerpo tubular) que desciende al fondo del barreno y que permanece conectado a Ia superficie mediante dos mangueras, una para meter aire y otra para sacar agua (concepto que también comparte con el sistema del manguito de caucho descrito) desaparece para dar paso a una manguera principal, sin resaltes apreciables, que permanece en un extremo (en el que se conectan Ia parte esencial neumática de aire presurizado y vacío, y Ia manguera de desagüe exterior) siempre en Ia superficie mientras que es el otro extremo (en el que se ubican Ia válvula antirretomo, el filtro y el protector contundente) el que desciende al fondo del barreno; esta segunda característica, y diferencia a Ia vez, de los otros sistemas descritos frente a Ia invención, acarrea serias desventajas en cuanto a problemas de atranque que se puedan generar. En tercer lugar, Ia invención posibilita, dadas las diferencias básicas del diseño de Ia invención (diámetro constante de Ia manguera a Io largo de toda Ia profundidad del barreno), el calculo del caudal de aportación de agua al barreno, si Io hubiera, comparando el tiempo entre dos ciclos consecutivos, y los volúmenes de agua de tales ciclos consecutivos, que, y esto Io considero de relevancia, no son ¡guales por las características singulares de Ia invención con
HOJA DE SUSTITUCIÓN (REGLA 26) respecto a los otros sistemas descritos. Efectivamente, los otros sistemas descritos no permiten el cálculo del caudal de aporte al barreno, a diferencia de Ia invención, ya que bombean, en dos ciclos sucesivos, un mismo volumen de agua (el correspondiente al volumen del cuerpo tubular o de Ia cámara formada entre el manguito de caucho y el extremo inferior de Ia manguera de desagüe) Por Io tanto, es perfectamente factible una situación en Ia que los sistemas descritos, y a diferencia de Ia invención, se encuentren desaguando un cierto barreno, cuyo caudal de aporte por filtraciones es superior a Ia capacidad de achique de tales sistemas, sin que por las características descritas, tales sistemas puedan detectar de manera evidente, y una vez más a diferencia de Ia invención, semejante circunstancia desfavorable, que ocasionaría, sensibles pérdidas de tiempo en el proceso de carga de una voladura.
Otras diferencias como el peso del conjunto, el rendimiento del caudal de achique, Ia posibilidad de acoplar un protector para poder solventar pequeños problemas de atranques del barreno, considero que son en sí diferencias inherentes a Ia comparativa de dos sistemas con analogías pero también con características de diseño bien diferenciadas.
Dentro del sector de Ia técnica en el que podría encuadrarse Ia invención, existen otros sistemas que utilizan el vacío como parte constituyente del proceso de bombeo. Tales sistemas que procedo a describir, considero que también presentan diferencias sustancíales con respecto a Ia invención.
Otro sistema es por medio de Bombas Ayudadas por Aire de Doble Diafragma; el sistema utiliza una bomba de doble diafragma, accionada por aire, modificada. En funcionamiento, se dirige una corriente de aire comprimido a través de un pequeño tubo localizado dentro de Ia manguera de entrada hasta una boquilla de venturí colocada cerca del punto de entrada de Ia manguera de succión. Esta inyección de aire permite extraer agua de agujeros con una profundidad mayor que el límite de succión normal de las bombas de doble diafragma. Entre sus ventajas se encuentra el hecho de que Ia unidad de bombeo primaria no desciende en el agujero. Esto elimina Ia posibilidad de perder Ia bomba si el agujero se derrumba. La bomba también aspirará lodos y fragmentos del agujero
HOJA DE SUSTITUCIÓN (REGLA 26) sin producir danos. Como extrae Ia línea de descarga casi seca, no se requiere tratamiento anticongelante. Sus limitaciones incluyen el hecho de que su volumen de bombeo se reduce con Ia profundidad del agujero, y requiere un volumen relativamente alto de aire comprimido auxiliar para funcionar (Al menos 26 litros/seg @ 483 kPa).
Un último sistema emplea Unidades de Achique de Vacío. Aunque no están disponibles en el mercado, se han creado varias unidades de achique de minas que utilizan un vacío parcial para extraer el agua del agujero de aspiración. Estos sistemas constan básicamente de un recipiente grande de presión, montado en una carretilla u otro vehículo transportable, una bomba de vacío y una manguera con válvula de admisión-succión. En el uso, Ia bomba de vacío se usa para retirar Ia mayor parte del aire del depósito de presión. La manguera de admisión se introduce en el fondo del agujero a achicar y se abre Ia válvula del tubo, extrayendo el agua del agujero e introduciéndola en el tubo y desde éste al interior del depósito. Las ventajas de este tipo de unidad son que es un dispositivo autónomo, necesitaría poco mantenimiento y es bastante eficaz dentro de sus limitaciones. Debido a Ia limitación física de Ia presión atmosférica normal, sólo puede desplazar agua desde profundidades limitadas (menor de 7,6 metros) por Io que queda fuera de los rangos típicos de profundidad de barrenos en Ia actualidad ( de 8 a 25 metros); y tiene que desmontarse y vaciarse regularmente.
Existe otro sistema, que no está demasiado relacionada con el sector concreto de Ia técnica en el que se podría encuadrar Ia invención, que utiliza también Ia generación de vacío en un hueco buscando como finalidad el achique de agua en un terreno, pero con diferencias importantes que desearía resaltar. Como he dicho, el sector no es el mismo dado que Ia invención que procederé a describir, tiene como objetivo facilitar abatimiento del nivel piezométrico de agua de un suelo en una determinada extensión de terreno, frente al objetivo de Ia invención de desaguar en un macizo rocoso, en volumen concreto de agua de cada uno de los barrenos que se encuentren inundados. Deseo dejar constancia de las diferencias que honestamente considero, razonadas y suficientes, para que tal técnica de vacío no destruya, en combinación de otros posibles documentos, Ia
HOJA DE SUSTITUCIÓN (REGLA 26) capacidad inventiva de Ia solicitud de Ia patente presentada. El sistema en cuestión, donde el proceso de desagüe es continuo, a diferencia de Ia invención, que constituye un sistema discontinuo (y por tanto compuesto de ciclos repetitivos), se utiliza el vacío como apoyo al sistema principal de bombeo (una bomba impelente de gran caudal), a diferencia de Ia invención para Ia cual el vacío constituye una parte imprescindible de su funcionamiento. El comentado apoyo que, con Ia técnica de vacío, complementa al sistema principal de bombeo, se realiza, y esto considero que es Ia diferencia fundamental, en el interior del hueco generado en el terreno, con el objetivo de hacer fluir, por diferencia de presiones, el agua del terreno circundante hacia el hueco generado (y de dicho hueco ser evacuada por Ia bomba impelente de gran caudal), mientras que el objetivo y el punto de aplicación del vacío, como parte fundamental de Ia invención, se lleva a cabo en el interior de Ia manguera principal, con Ia única finalidad de evacuar el agua que albergue cada barreno por si mismo, siendo el objetivo completamente opuesto, todo aquello que favorezca Ia penetración de más agua en el barreno captada del entorno, que es precisamente Ia finalidad de Ia técnica de vacío empleada en el sistema descrito, y a diferencia de Ia invención. Mediante estos argumentos considero, atendiendo con humilde criterio a mi formación técnica, que el procedimiento de vacío descrito no debería destruir, en combinación con otros documentos, Ia capacidad inventiva de Ia presente solicitud de patente.
DESCRIPCIÓN DE LA INVENCIÓN
El sistema que se preconiza en Ia invención comprende un cuerpo de bomba cilindrico a modo de manguera, que es Ia parte que se introduce parcialmente en el barreno quedando el resto en superficie o enrollado en una devanadera, y un mecanismo neumático, que se describe más adelante en alguna de sus variantes, que constituye el "pulmón" de este sistema de extracción de agua, alternando los ciclos de aspiración (ciclo de vacío) y expulsión (ciclo de presión). El cuerpo de Ia bomba, constituido externamente por una manguera de resistencia suficiente a las fluctuaciones de presión (fases de aspiración y
HOJA DE SUSTITUCIÓN (REGLA 26) expulsión) se cierra herméticamente por sus extremos mediante una tapa en Ia parte superior y una válvula anti-retorno en su parte inferior. En Ia tapa superior, que permanece fuera del barreno, se implanta una toma de aire que se conecta al circuito del mecanismo neumático, mediante una válvula neumática (por ejemplo de tres vías) que alterna Ia fase de aspiración y Ia fase de expulsión, y una toma de agua que en Ia parte externa de Ia tapa se conectará a Ia manguera de desagüe exterior, y en Ia parte interna se acoplará Ia manguera interior del cuerpo de Ia bomba encargada de conducir el agua desde el fondo a Ia superficie. La manguera exterior permite dirigir el flujo del agua a donde nos interese (un depósito, una balsa, al banco inferior, etc) con el objeto de que el agua no vuelva a introducirse en los barrenos por filtración. Esta manguera incorpora una válvula anti-retomo que permite Ia salida del agua en Ia fase de impulsión y se cierre cuando el ciclo de desagüe es el de aspiración. O bien, a través de un circuito neumático ligeramente más complejo, se conecta mediante un sistema de válvulas (p.e una válvula de 5 vías y 2 posiciones que se describe en el apartado de dibujos) a Ia línea de vacío en Ia fase de aspiración. De esta forma el vacío de realiza en el seno de Ia manguera interior además de sobre el volumen interior del cuerpo de Ia bomba, como se describe más adelante. Esta última variante, como el volumen de agua que se introduce en Ia fase de aspiración también incluye el que alberga Ia tubería interior, permite mejorar aun más el rendimiento de desagüe porque el citado volumen neto aspirado es mayor y porque también el caudal de desagüe en Ia fase de expulsión puede ser sustancialmente mayor, al poder seleccionarse una manguera interior de mayor diámetro. La parte inferior de Ia manguera que se introduce en el barreno, que como se ha dicho contiene una válvula anti-retorno, se podrá proteger con un filtro y un protector contundente que sirva para proteger el mecanismo anti-retorno y a Ia vez sirva de "ariete" para desobturar algún posible atranque. El procedimiento del desagüe del barreno comienza con Ia introducción del cuerpo de Ia bomba, posicionando Ia válvula neumática (por ejemplo de tres vías o de cinco vías) en una posición que permita Ia salida del aire desplazado por el agua que va penetrando en Ia manguera a través de Ia válvula de pie (antiretorno) según se va introduciendo el cuerpo de Ia bomba en el barreno
HOJA DE SUSTITUCIÓN (REGLA 26) inundado. En este primer estadio, Ia bomba introducida en el barreno inundado, se ha cargado de agua hasta Ia altura del nivel piezométríco alcanzado después de introducir Ia manguera (evidentemente como Ia manguera tiene un volumen, el agua alcanza un nivel mayor por el principio de Arquímedes correspondiente al volumen del cuerpo de bomba introducido en el agua). El siguiente paso es actuar dando paso, en Ia válvula de control neumática (Ia de tres vías), o bien a Ia posición de succión, si el nivel de "carga natural" da juego para ello, o bien a Ia posición de expulsión, con Io cual entrará el aire a presión en el interior del cuerpo de Ia bomba y bajo su efecto se cerrará Ia válvula de pie dejando Ia manguera interior como única vía de salida del agua desplazada por el empuje del aire a presión. Esta agua que sube por Ia manguera interior, atraviesa Ia tapa superior a través de las boquillas de agua interna y externa y es conducida, por Ia manguera de agua exterior, al lugar donde controladamente nos interese verterla (un depósito, una balsa, al banco inferior, etc ). De esta manera al cabo de breves segundos, por el extremo de Ia manguera de agua exterior, saldrá aire a presión que nos indicará que el cuerpo de Ia bomba se ha vaciado. Como lógicamente aun queda agua en el barreno, procederemos a recargar el cuerpo de Ia bomba posicionando Ia válvula neumática de gobierno en el "modo aspiración". Es este punto, donde antes estábamos introduciendo aire a presión, ahora realizamos el efecto contrario, el de succión, de manera que el cuerpo de Ia bomba se recarga rápidamente con un volumen de agua, superior al que quedara del nivel piezométríco del barreno después del desagüe anterior, acorde con el grado de depresión que se genere (por ejemplo un nivel de vacío de 0,5 atmósferas (50 kPa aprox.) equivale, grosso modo, a cinco metros adicionales de recarga del cuerpo de Ia bomba). Una vez recargado el cuerpo de Ia bomba, procederemos de Ia manera ya descrita, variando Ia posición de Ia válvula de gobierno neumática al "modo de expulsión" de tal manera que se vacíe en pocos segundos de nuevo el volumen de agua que alberga Ia bomba. Mediante el proceso descrito, en dos o tres ciclos en Ia mayoría de los casos, se puede desaguar un barreno inundado.
HOJA DE SUSTITUCIÓN (REGLA 26) Por tanto, Ia recarga del cuerpo de bomba se produce por Ia presión que ejerce el agua del barreno sobre Ia válvula anti-retorno, sumado al efecto de succión que generamos en Ia "fase de aspiración". Entre las ventajas de este sistema está el no requerir grandes caudales de presión ni de aspiración; de hecho, en cuanto a los requerimientos de aire comprimido, considerando, al margen de las pérdidas, que 1 bar de presión (100 kPa) de aire equivale a 10 metros de columna de agua, el requerimiento de presión en Ia fuente de aire comprimido en ningún caso va a exceder los 3-4 bares (300-400 kPa). Con estos niveles de presión podríamos estar desaguando barrenos de más de 30 metros de longitud (Ia mayor parte de los bancos de trabajo en las minas y canteras no exceden los 30 metros). Un pequeño compresor con un caudal de aire de aproximadamente 0,4 m3/min regulado a una presión de 5-6 bares (500-600 kPa) daría un régimen más que adecuado de bombeo. Estos bajos requerimientos de aire permiten múltiples opciones y dejan dentro del rango de fuentes útiles compresores de menor caudal y presión que los disponibles para Ia perforación. El compresor del sistema de frenos de los camiones y pequeños compresores portátiles podrían ser adecuados. En cuanto a los requerimientos de vacío, como se mencionó en Ia descripción del sistema de bombeo, el complementar el bombeo por desplazamiento neumático con un sistema depresor que incremente el volumen de agua evacuado en cada ciclo resulta esencial, a Ia hora de mejorar el rendimiento global del sistema. Una bomba de vacío con un caudal de aspiración de 8 litros/segundo conseguiría en pocos segundos que en el interior de una sonda de 62 mm de diámetro, el agua suba por ejemplo 6 metros, es decir más de 11 litros adicionales a Ia recarga natural, Io que casi equivale a 2 metros de agua en el interior de un barreno de 3,5 pulgadas (89 mm).
Ello significa, como ya se ha explicado, que en dos o tres ciclos se consigue desaguar el barreno. Otra ventaja, y a Ia vez diferencia a destacar del sistema que se propone patentar, frente a otros descritos, es que el volumen por metro lineal de trabajo en el bombeo es constante e igual al volumen libre del interior de Ia manguera y su estanqueidad está asegurada; no depende del estado de fisuración del terreno que en ocasiones implicaría unas exigencias elevadas de caudal de
HOJA DE SUSTITUCIÓN (REGLA 26) presión para contrarrestar las fugas de presión por las fisuras. En este sentido, también evita que el agua emigre por las fisuras, bajo el efecto de Ia sobrepresión que otros métodos de desplazamiento neumático descritos en el apartado de antecedentes genera en el interior del barreno, con el riesgo de recargar con mayor rapidez el barreno en cuanto cese Ia sobrepresión.
Otra ventaja, y a Ia vez diferencia a destacar del sistema que se propone patentar, es que el perfil del cuerpo de Ia bomba es constante e igual al diámetro exterior de Ia manguera. Con esto se consigue una practica ausencia de problemas de atranques. En todo caso, Ia parte de Ia bomba que se introduce en el barreno es básicamente una simple manguera con una válvula de pie y opcionalmente un sencillo filtro y un austero protector a modo de ariete. En el caso hipotético de un atranque sin remedio, siempre se podría desenganchar Ia tapa superior, sacar Ia manguera interior, y proceder a Ia carga del barreno con explosivo encartuchado de diámetro adecuado por el interior de Ia manguera. Con ello no se perdería el barreno y por tanto se vería minimizado el problema en cuanto al resultado de Ia voladura.
HOJA DE SUSTITUCIÓN (REGLA 26) DESCRIPCIÓN DE LOS DIBUJOS
Para complementar Ia descripción que se está realizando y con objeto de facilitar Ia comprensión del invento y su funcionamiento, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado Io siguiente:
La figura 1. - muestra las partes fundamentales de Ia invención, ampliando en detalle Ia parte superior y Ia parte inferior con sus respectivos componentes. En concreto se dibuja una sección de Ia manguera principal (1), descrita como el cuerpo de Ia bomba, cerrada en su parte superior por una tapa (2), en Ia que se ubican dos orificios, el primero (4) para Ia entrada o salida de aire según nos encontremos el ciclo de expulsión o en el ciclo de aspiración, y el segundo (5) para que el agua que ascienda por Ia manguera interior (6) salga conducida al exterior por Ia manguera (10). Como se ha mencionado se detalla ampliada esta parte superior. La manguera principal (1) se encuentra cerrada en su parte inferior por un sistema anti-retomo (3), compuesto por una válvula antirretorno (9), un filtro (8) y un protector (7), que permite Ia entrada de agua en Ia fase de aspiración y se cierra herméticamente en Ia fase de expulsión dejando, como ya se ha dicho, como única salida para el agua desplazada por el aire presurizado Ia ascensión por Ia manguera interior (6) al exterior. Igualmente se detalla ampliada Ia parte inferior.
La figura 2. - muestra un ejemplo de cómo puede ser Ia implementación del circuito neumático que proporciona aire a presión y vacío mediante válvulas de múltiples vías y posiciones que gobernadas convenientemente alternan las fases de aspiración y expulsión, dando sentido al mecanismo de desagüe de Ia invención. En concreto se representa una válvula (11) de 5 vías, V1 ,V2,V3,V4 y V5, y 2 posiciones, RI y RII1 donde Ia vía V1 se conecta a Ia manguera de salida de agua (10), Ia vía V2 a Ia fuente de vacío (13), Ia vía V3 se conecta a Ia fuente de aire comprimido (12), Ia vía V4 se conecta a Ia toma de salida de agua (5) y Ia vía V5 se conecta con Ia salida/entrada de aire (4) de Ia bomba de desagüe. En Ia posición RI, se succiona el aire del cuerpo de Ia bomba, tanto en espacio que alberga Ia manguera interior (6) por medio de Ia conexión V2-V4, como en
HOJA DE SUSTITUCIÓN (REGLA 26) el espacio anular entre dicha manguera (6) y Ia manguera principal (1) a través de Ia conexión V2-V5. Como consecuencia de esta succión el cuerpo de Ia bomba se llena de agua en proporción a Ia depresión alcanzada, quedando el agua cautiva en el interior del cuerpo de Ia bomba al cerrarse herméticamente Ia válvula antirretorno (9). El volumen de agua cautivo queda preparado para vaciarse cuando llevemos Ia válvula (11) a Ia posición Rn. En Ia posición Rn, el aire presurizado penetra en el interior del cuerpo de Ia bomba siguiendo Ia conexión V3-V5 con Ia toma (4), de manera que expulsa el agua del interior de Ia bomba a través de su ascensión por Ia manguera interior (6) y salida por Ia vía de conexión de Ia toma (5) con V1-V4.
La figura 3. - ilustra las posiciones mencionadas en Ia página 7 de Ia memoria que describen las fases consecutivas del proceso de desagüe de un barreno. En concreto, en Ia parte izquierda de Ia figura 3, se representa el momento final de Ia bajada del cuerpo de Ia bomba de desagüe. En esta fase, el agua va penetrando en el interior del cuerpo de Ia bomba a través del sistema antirretorno (3) desplazando el aire del interior del cuerpo de Ia bomba a Ia atmósfera a través de Ia toma (4) y de Ia toma (5). En este primer estadio, Ia bomba introducida en el barreno inundado, se ha cargado de agua hasta Ia altura del nivel piezométrico alcanzado después de introducir Ia manguera. La parte central de Ia figura 3, corresponde a Ia fase, en Ia cual, al hacer el vacío a través de Ia toma (4) el agua asciende por el interior de Ia manguera principal (1) a una altura proporcional a Ia depresión alcanzada y queda cautiva en el interior de Ia manguera (1) al cerrarse herméticamente por efecto de Ia presión hidrostática el sistema antirretorno (3). En Ia parte derecha de Ia figura 3, correspondiente a Ia fase en Ia que se produce el desplazamiento del volumen de agua cautivo en el interior del cuerpo de Ia bomba, al entrar en aire a presión por Ia toma (4), ascendiendo el agua Io largo del único camino libre que queda, Ia tubería interior (6), habida cuenta que Ia válvula antirretorno (9) que forma parte del sistema antirretorno (3) permanecerá cerrada mientras exista una presión mayor en el interior del cuerpo de Ia bomba respecto al exterior. En esta fase, cuando deje de salir agua y comience a salir aire por Ia toma (5) y Ia manguera (10) habrá concluido el primer ciclo de desagüe. Los ciclos se
HOJA DE SUSTITUCIÓN (REGLA 26) ^
repetirán sucesivamente hasta el desagüe completo del barreno (normalmente con 3 o 4 ciclos será suficiente).
HOJA DE SUSTITUCIÓN (REGLA 26)

Claims

REIVINDICACIONES
1a.- Bomba de desagüe de barrenos mediante ciclos alternativos de aspiración y expulsión basada en el principio del desplazamiento neumático para extraer el agua de los barrenos de perforación de voladuras que se caracteriza por incorporar, una manguera principal (1) que se distingue por tener un perfil externo sin resaltes apreciables y diámetro constante en todo el conjunto que se introduce en el barreno, para minimizar los problemas de atranques, y que lleva en el extremo superior (que permanece en Ia superficie, siendo por tanto Ia manguera de longitud suficiente) un cierre hermético (2) con dos tomas o conexiones (4) y (5); una toma (4) para Ia entrada y salida de aire, según el ciclo sea de aspiración o expulsión, que se conectará, mediante válvulas cualesquiera adecuadas (11), alternativamente a una fuente de vacío (13), según Ia posición RI, donde se hace el vacío mediante Ia conexión con fuente de vacío (13) en todo el interior del cuerpo de Ia bomba, constituido por el volumen interior de las mangueras (1) y (6), y mejorando por tanto el ritmo de desagüe; y a una fuente de aire comprimido (12) correspondiente a Ia posición Rn, donde a través de Ia conexión (12) con Ia toma (4), se da origen a Ia fase de expulsión por acción del empuje del aire a presión, que conduce al agua desplazada a través de Ia manguera interior (6) y de Ia toma (5) al exterior, de manera controlada, mediante Ia manguera exterior de desagüe (10). La otra toma (5) que se ubica en el cierre hermético (2) incluye una válvuna antiretorno (9) favoreciendo, cuando el ciclo se encuentre en Ia fase de expulsión, Ia salida del agua que asciende por una manguera interior (6). En el extremo inferior de Ia manguera principal (1) (el que se introduce hasta el fondo del barreno) se ubica un sistema anti-retorno (3), un filtro (8) y un protector contundente (7) que sirve para proteger el mecanismo anti-retorno (3) y a Ia vez con funciones de ariete para desatrancar algún posible obstáculo en el interior del barreno, a través de los cuales se permite Ia entrada libre del agua en Ia manguera (1), cuando mediante el ciclo alternativo de aspiración y expulsión, concevidos como parte fundamental de Ia invención, se sitúa en Ia fase de aspiración; pero no Ia salida, cuando tal ciclo fundamental se sitúa en Ia fase de expulsión, dejando en este
HOJA DE SUSTITUCIÓN (REGLA 26) caso como único escape al agua desplazada por el aire presurizado, Ia ascensión por Ia manguera interior (6) hasta Ia atmósfera a través de Ia toma (5).
2a.- Bomba de desagüe de barrenos mediante ciclos alternativos de aspiración y expulsión basada en el principio del desplazamiento neumático para extraer el agua de los barrenos de perforación de voladuras según reivindicación 1, que se caracteriza porque su ergonomía de uso esta asociada al montaje de Ia manguera principal (1) a una devanadera, cuya fuente motriz de giro puede ser vanada, que evite a los operarios el esfuerzo físico de bajar y subir Ia manguera (1) del interior del barreno.
HOJA DE SUSTITUCIÓN (REGLA 26)
PCT/ES2007/070052 2006-03-14 2007-03-14 Bomba de desagüe de barrenos mediante ciclos alternativos de aspiración y expulsión basada en el principio del desplazamiento neumático WO2007104820A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002646897A CA2646897A1 (en) 2006-03-14 2007-03-14 A pump for dewatering boreholes by means of alternate cycles of vacuum and exhaust, based on the principle of pneumatic displacement
AU2007226489A AU2007226489B2 (en) 2006-03-14 2007-03-14 Pump for draining bores by means of alternating aspiration and expulsion cycles, based on the principle of pneumatic displacement
EP07730492A EP2006454B1 (en) 2006-03-14 2007-03-14 Pump for draining bores by means of alternating aspiration and expulsion cycles, based on the principle of pneumatic displacement
ES07730492T ES2395781T3 (es) 2006-03-14 2007-03-14 Bomba de desagüe de barrenos mediante ciclos alternativos de aspiración y expulsión basado en el principio del desplazamiento neumático
US12/210,192 US7950465B2 (en) 2006-03-14 2008-09-13 System for dewatering boreholes by means of alternative cycles of vacuum and exhaust, based on the principle of pneumatic displacement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200600704A ES2270730B2 (es) 2006-03-14 2006-03-14 Bomba de desagüe de barrenos mediante ciclos alternativos de aspiración y expulsión basada en el pricipio del desplazamiento neumático
ESP200600704 2006-03-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/210,192 Continuation-In-Part US7950465B2 (en) 2006-03-14 2008-09-13 System for dewatering boreholes by means of alternative cycles of vacuum and exhaust, based on the principle of pneumatic displacement

Publications (1)

Publication Number Publication Date
WO2007104820A1 true WO2007104820A1 (es) 2007-09-20

Family

ID=38319289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/070052 WO2007104820A1 (es) 2006-03-14 2007-03-14 Bomba de desagüe de barrenos mediante ciclos alternativos de aspiración y expulsión basada en el principio del desplazamiento neumático

Country Status (8)

Country Link
US (1) US7950465B2 (es)
EP (1) EP2006454B1 (es)
AU (1) AU2007226489B2 (es)
CA (1) CA2646897A1 (es)
ES (2) ES2270730B2 (es)
RU (1) RU2405891C2 (es)
WO (1) WO2007104820A1 (es)
ZA (1) ZA200808437B (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104711994A (zh) * 2015-01-27 2015-06-17 江苏省华建建设股份有限公司 基坑深井降水及封堵施工方法
CN104775443A (zh) * 2015-04-28 2015-07-15 金中天集团建设有限公司 一种井点降水方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110130379A (zh) * 2019-05-28 2019-08-16 中亿丰建设集团股份有限公司 降水井的回收方法
CN110630323B (zh) * 2019-09-12 2021-02-12 泗县微腾知识产权运营有限公司 一种高效矿山炮孔排水设备
CN114134918B (zh) * 2021-11-10 2023-08-08 上海建工四建集团有限公司 一种全自动控制式真空深井装置的使用方法
CN114993126B (zh) * 2022-06-30 2024-05-10 安徽铜冠产业技术研究院有限责任公司 一种用于采场内部结构自由补偿空间爆破孔施工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1784077B1 (de) * 1968-07-05 1971-10-07 Heinrich Baasen Einrichtung zur Grundwasserabsenkung mit einer Vakuumfilteranlage
US3647319A (en) * 1969-02-06 1972-03-07 Terresearch Ltd Pumping equipment
DE4005574A1 (de) * 1990-02-22 1991-08-29 Ieg Ind Engineering Gmbh Brunnen zum absaugen von grundwasser
US6260334B1 (en) * 1998-06-02 2001-07-17 TIROMAT KRäMER & GREBE GMBH & CO. KG Process for sealing packages

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES397942A1 (es) 1971-12-14 1974-07-01 Dynamit Nobel Ag Bomba neumatica, en especial para el uso en barrenos gran- des, para sacar agua.
JPS5116032A (en) * 1973-11-14 1976-02-09 Kinoshita Kenkyusho Yugen Seidenzokeiseiho
US3971437A (en) * 1974-12-12 1976-07-27 Clay Robert B Apparatus for dewatering boreholes
US4260334A (en) * 1976-02-11 1981-04-07 Kelley Contract Dewatering Company Ground dewatering system
DE4040805A1 (de) * 1990-12-14 1992-06-17 Cottbus Bauwesen Hochschule Vorrichtung zur grundwasserabsenkung mittels eines als brunnen ausgebildeten filterrohres
US6672392B2 (en) * 2002-03-12 2004-01-06 Donald D. Reitz Gas recovery apparatus, method and cycle having a three chamber evacuation phase for improved natural gas production and down-hole liquid management
RU2232372C1 (ru) * 2002-12-24 2004-07-10 Петровский Игорь Яковлевич Устройство для заряжания скважин с проточной водой на карьерах неводоустойчивыми вв и способ его использования
ES2253970B1 (es) 2004-02-05 2007-03-16 Florencio Santamaria Cimiano Procedimiento de evacuacion de agua de barrenos de perforacion y elemento evacuador.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1784077B1 (de) * 1968-07-05 1971-10-07 Heinrich Baasen Einrichtung zur Grundwasserabsenkung mit einer Vakuumfilteranlage
US3647319A (en) * 1969-02-06 1972-03-07 Terresearch Ltd Pumping equipment
DE4005574A1 (de) * 1990-02-22 1991-08-29 Ieg Ind Engineering Gmbh Brunnen zum absaugen von grundwasser
US6260334B1 (en) * 1998-06-02 2001-07-17 TIROMAT KRäMER & GREBE GMBH & CO. KG Process for sealing packages

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104711994A (zh) * 2015-01-27 2015-06-17 江苏省华建建设股份有限公司 基坑深井降水及封堵施工方法
CN104775443A (zh) * 2015-04-28 2015-07-15 金中天集团建设有限公司 一种井点降水方法及装置

Also Published As

Publication number Publication date
US7950465B2 (en) 2011-05-31
AU2007226489A1 (en) 2007-09-20
EP2006454A2 (en) 2008-12-24
ZA200808437B (en) 2009-09-30
EP2006454B1 (en) 2012-08-22
ES2270730B2 (es) 2013-07-05
EP2006454A4 (en) 2010-01-06
ES2395781T3 (es) 2013-02-15
EP2006454A9 (en) 2009-07-15
CA2646897A1 (en) 2007-09-20
US20090028721A1 (en) 2009-01-29
RU2008140517A (ru) 2010-04-20
RU2405891C2 (ru) 2010-12-10
ES2270730A1 (es) 2007-04-01
AU2007226489B2 (en) 2011-06-23

Similar Documents

Publication Publication Date Title
WO2007104820A1 (es) Bomba de desagüe de barrenos mediante ciclos alternativos de aspiración y expulsión basada en el principio del desplazamiento neumático
ES2581903T3 (es) Desarrollo y rehabilitación de agujeros de perforación, pozos y manantiales mediante un dispositivo de toberas giratorias con toberas ajustables en ángulo
ES2729194T3 (es) Dispositivo para excavar un pozo y procedimiento para excavar un pozo
ES2327166T3 (es) Rodillo compartimentado de ingenieria civil.
CN110984197A (zh) 一种增压启动虹吸排水的装置及方法
ES2267973T3 (es) Dispositivo y bomba de doble cono.
ES2326134T3 (es) Procedimiento y sistema para elevar liquido.
ES2582934T3 (es) Procedimiento y equipo de mantenimiento de pozos
ES2325116T3 (es) Dispositivo y procedimiento para la generacion de columnas de material en el fondo de aguas.
ES2260745T3 (es) Procedimiento y dispositivo para intensivar la permeabilidad de capas del suelo proximas a una perforacion, asi como de cuerpos de filtro y capas de filtro en pozos y otras perforaciones de extraccion.
ES2300461T3 (es) Bomba con estanqueidad de liquido, del tipo de husillo helicoidal.
WO2010086474A1 (es) Sistema de generación de energía eléctrica por aprovechamiento de corrientes de agua
ES2389677T3 (es) Equipo de tornillo de excavación para la construcción de pantallas
US10428581B2 (en) Well-drilling apparatus and method of use
WO2014080050A1 (es) Generador hidroneumático de energía y procedimiento de operación del mismo
ES2977186T3 (es) Conjunto de perforación y procedimiento de perforación asociado
ES2752463T3 (es) Sistema de bomba
US9915113B2 (en) Well drilling apparatus and method of use
CN221055653U (zh) 一种处理露天水孔的充气装置
ES2640397T3 (es) Disposición utilizada en pozos de campo de petróleo para elevar hidrocarburos
ES2754751B2 (es) Dispositivo mecano-hidraulico mejorado
ES2397733B1 (es) Equipo neumatico para achique y carga de explosivos en barrenos con agua
ES2253970B1 (es) Procedimiento de evacuacion de agua de barrenos de perforacion y elemento evacuador.
RU2034129C1 (ru) Оборудование устья затопляемой поглощающей скважины
CN111173015A (zh) 一种循环充气式潜水疏干降水井结构及降水方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07730492

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007730492

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2646897

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007226489

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2008140517

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2007226489

Country of ref document: AU

Date of ref document: 20070314

Kind code of ref document: A