WO2007102247A1 - 成膜用デポマスク、対向側基板集合体及び表示装置 - Google Patents

成膜用デポマスク、対向側基板集合体及び表示装置 Download PDF

Info

Publication number
WO2007102247A1
WO2007102247A1 PCT/JP2006/320486 JP2006320486W WO2007102247A1 WO 2007102247 A1 WO2007102247 A1 WO 2007102247A1 JP 2006320486 W JP2006320486 W JP 2006320486W WO 2007102247 A1 WO2007102247 A1 WO 2007102247A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
substrate
display device
liquid crystal
edge
Prior art date
Application number
PCT/JP2006/320486
Other languages
English (en)
French (fr)
Inventor
Yohsuke Fujikawa
Noriko Uchida
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2007102247A1 publication Critical patent/WO2007102247A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133351Manufacturing of individual cells out of a plurality of cells, e.g. by dicing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels

Definitions

  • Deposition mask for film formation for film formation, counter substrate assembly, and display device
  • the present invention relates to a deposition mask, a counter substrate assembly, and a display device.
  • FIG. 16 is a perspective view of a liquid crystal cell 101 which is a main component of the liquid crystal display device.
  • the liquid crystal cell 101 is an active matrix type liquid crystal cell having a plurality of thin-film transistors (TFTs) (not shown) as switching elements.
  • TFTs thin-film transistors
  • the liquid crystal cell 101 has a structure in which an element-side substrate 102 that is one substrate and an opposite-side substrate 103 that is the other substrate are bonded to each other via a seal member 104 so that the electrode surfaces face each other.
  • the seal member 104 is formed in a substantially rectangular frame shape, and an opening 105 is formed in a part thereof.
  • the opening 105 is sealed with ultraviolet curing resin or the like in a state where liquid crystal is injected into the liquid crystal cell 101 by a so-called vacuum injection method.
  • a liquid crystal cell 101 includes a mother glass 121 including a plurality of element-side substrates and a mother glass 122 including a plurality of counter-side substrates (also referred to as a counter substrate aggregate). After being bonded to each other, the individual liquid crystal cells 101 are manufactured by being divided and cut out.
  • the opening 105 is likely to cause a division failure when the residue of the seal member 104 is cut into each liquid crystal cell 101. Therefore, the opening 105 is disposed on the side of the four sides of the liquid crystal cell 101 where the terminal 106 is not formed. The This also does not impair the degree of freedom of arrangement of the terminals 106.
  • a matrix pixel array is formed as a pixel region 107.
  • a terminal 106 for inputting an external signal is arranged on one side of the element side substrate 102.
  • Such a configuration is also referred to as a three-side free structure, which contributes to downsizing of the display device and has the advantage of increasing the degree of freedom of the layout of the devices arranged around the display device, and is suitably employed.
  • Such a liquid crystal cell 101 with a three-side free structure is They are arranged on the glass so as to be in contact with each other and are multi-faceted.
  • a color filter (not shown) is formed on the counter substrate 103, and a counter electrode 108 having a transparent electrode force such as ITO is formed as a single pattern with a size including the pixel region 107. ing. Note that the color filter can be formed on the element-side substrate 102.
  • the counter substrate 103 is sometimes referred to as a color filter substrate for convenience without forming a colored layer.
  • a driving signal to be applied to the counter electrode 108 is often input from the terminal 106 of the element side substrate 102 via a conductive member 109 such as carbon paste.
  • a common transition (or transfer) 111 is formed at one corner of the liquid crystal cell 101. That is, the counter electrode 108 has a planar shape in which a protrusion 110 is added to a rectangular shape.
  • the common transition 111 is constituted by a protrusion 110 of the counter electrode 108, a conductive member 109 such as carbon paste, and an electrode of an element side substrate 102 (not shown).
  • an arbitrary number of common transitions 111 are arranged in the liquid crystal cell 101.
  • the counter electrode 108 does not require pattern accuracy.
  • the film is formed by so-called mask deposition for the purpose of reducing the manufacturing cost.
  • Mask deposition refers to a technique in which a film is deposited by sputtering using a mask and a thin film is deposited in an arbitrary region.
  • a deposition mask 112 which is a jig (mask) used for a mask deposition also has a metal plate force, and has an opening 113 in a region for forming the counter electrode 108 in advance.
  • the deposition mask 112 is disposed between the film formation source and the counter substrate 103, and a transparent electrode is sputtered onto the surface of the counter substrate 103 to form a film.
  • Techniques for forming the counter electrode 108 in this manner are disclosed in, for example, Patent Documents 1 to 3.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-282480
  • Patent Document 2 Japanese Patent Laid-Open No. 11-44881
  • Patent Document 3 Japanese Patent Laid-Open No. 11-183886 Disclosure of the invention
  • the displacement of the deposition mask 112 with respect to the mother glass 122 is likely to occur, or the uniformity of the deposition is easily deteriorated at the end of the deposition region. There is a problem. As a result, the end of the pattern of the counter electrode 108 is blurred. Therefore, in order to suppress these manufacturing variations, as shown in FIG. 16 and the cross-sectional view of FIG. Is required as the distance between the pixel region 107 and the end of the counter electrode 108. For example, the dimension a is about lmm.
  • the deposition mask requires a thin and shielding portion 114 having a width b as an interval between adjacent liquid crystal cells 101.
  • the deposit mask having a complicated shape is not easy to handle. Furthermore, when the deposition mask is placed facing the color filter substrate, the metal surface of the deposition mask and the surface of the color filter substrate are rubbed, resulting in damage to the power filter pattern near the frame of the liquid crystal cell or the color filter. There is also a risk that the process control mark patterned using this material will be scraped off.
  • FIG. 19 As a shape of the counter electrode 108, a method of simply forming a transparent electrode on the entire surface of the counter side substrate 103 without performing mask deposition is conceivable. However, in this case, the following problems occur. Details will be described with reference to FIGS. 19 and 21.
  • a region X in which a wiring 116 connected to the terminal 106 is formed is formed, as indicated by a one-dot chain line in FIGS. There is.
  • this region X outside the seal member 104, the wiring 116 of the element side substrate 102, The counter electrode 108 of the counter substrate 103 is opposed to each other at a close distance of about several zm.
  • the liquid crystal cell 101 having this configuration When the liquid crystal cell 101 having this configuration is placed in an environment of high temperature and high humidity, for example, moisture 118 that has entered between the element side substrate 102 and the counter side substrate 103, the wiring 116 of the element side substrate 102, and the counter electrode There is a possibility that at least one of the wiring 116 and the counter electrode 108 is corroded by an electric field generated between the wiring 108 and the counter electrode 108.
  • the wiring 116 and the counter electrode 108 constantly generate a predetermined potential difference by applying different signals to each other. Therefore, the wiring 116 and the counter electrode are formed in the outer region of the seal member 104. The state where 108 directly faces is preferable.
  • the present invention has been made in view of these points, and its main purpose is to increase the strength of the deposition mask and to facilitate its handling. Another object is to suppress corrosion of at least one of the wiring and the counter electrode outside the seal member.
  • the deposition mask according to the present invention provides a display on a part of each of the substrate regions with respect to a mother substrate in which a plurality of substrate regions constituting a display device are assembled.
  • a deposition deposit mask for forming a pattern area for an apparatus which includes an opening for forming a plurality of pattern areas as one continuous pattern.
  • the counter-side substrate assembly according to the present invention is a counter-side substrate assembly in which a plurality of counter-side substrates constituting the display device are aggregated, and a part of each counter-side substrate includes Each of the pattern areas for the display device is formed, and the plurality of pattern areas are formed as one continuous pattern.
  • the display device includes a first substrate and a second substrate that are arranged to face each other and are formed in a rectangular shape, and a seal member between the first substrate and the second substrate. And a display medium layer enclosed and enclosed by the first substrate, wherein the first substrate has a pixel region formed inside the seal member, and the seal from the pixel region to the seal. Wiring drawn to the outside of the member is formed, and the second substrate is formed with a counter electrode facing at least a part of the pixel region, and an end of the second substrate outside the seal member. A first end region including a wiring facing region facing the wiring, and a region other than the first end region and outside the seal member, the second substrate extending along a side. A second edge region extending along the edge of the first edge region, and the counter electrode is not formed in the wiring-facing region of the first edge region, while at least part of the second edge region. Pixel region side force is formed across the edge of the second substrate in the second edge region.
  • the counter electrode is formed from the pixel region side to the edge of the second substrate in the second edge region. A little.
  • the counter electrode has a pixel region side force in the second edge region facing the first edge region via the pixel region, and the edge of the second substrate in the second edge region. It may be formed over a period of time.
  • the counter electrode may be formed from the pixel region side to the edge of the second substrate in the second edge region in each of the second edge regions. .
  • a protective film is formed on the first substrate to cover the wiring outside the seal member!
  • the first end region is formed on each of the two sides of the second substrate, and the wiring formed on one of the two first end regions has a terminal connected to the wiring.
  • An external device is connected to the sealing member, and the shape of the sealing member is a closed pattern.
  • the display medium layer may be a liquid crystal layer
  • the external device may be a display device unit.
  • the display device unit includes a pair of substrates arranged opposite to each other, and a liquid crystal layer sealed by a second seal member between the pair of substrates, and the liquid crystal layer of the display device unit includes the liquid crystal layer It may be filled between the pair of substrates through an injection port provided in the second seal member.
  • the opening of the deposition mask is formed so as to form a plurality of pattern regions as one continuous pattern, a thin structure portion for forming a boundary between the noturn regions is formed. It can be eliminated in the depot mask. As a result, the strength of the entire deposition mask can be increased by eliminating the low-strength portion, and the handling thereof can be facilitated.
  • the surface force around the opening of the deposition mask during film formation reduces the chance of contact with the opposite substrate, so that, for example, color filters and marks that are formed on the surface of the opposite substrate are damaged. Sticking can be suppressed. As a result, the yield of the counter substrate can be improved.
  • adjacent pattern regions can be directly connected to each other, so that a margin of positional deviation of the pattern region with respect to the pixel region of the display device can be reduced.
  • a display device made using this counter substrate does not need to take into account the dimensional margins imposed due to the strength of the deposition mask and film formation variations, so the frame can be reduced.
  • FIG. 1 is a perspective view showing a liquid crystal display device of Embodiment 1.
  • FIG. 1 is a perspective view showing a liquid crystal display device of Embodiment 1.
  • FIG. 2 is a plan view showing a deposition mask for film formation according to Embodiment 1.
  • FIG. 3 is a perspective view showing an element-side substrate assembly and a counter-side substrate assembly.
  • FIG. 4 is a perspective view showing a liquid crystal display device of Embodiment 2.
  • FIG. 5 is a plan view showing a deposition mask for film formation according to a second embodiment.
  • FIG. 6 is a perspective view showing an element-side substrate assembly and a counter-side substrate assembly.
  • FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG. 8]
  • FIG. 8 is a view corresponding to FIG. 7 showing a liquid crystal display device on which a protective film is formed.
  • FIG. 9 is a perspective view showing a liquid crystal display device of Embodiment 3.
  • FIG. 10 is a perspective view showing a liquid crystal display device of Embodiment 4.
  • FIG. 11 is a perspective view schematically showing a pair of mother substrates on which the first liquid crystal cell is formed.
  • FIG. 12 is a perspective view showing a strip divided into a mother substrate.
  • FIG. 13 is a perspective view showing a first liquid crystal cell divided into strips.
  • FIG. 14 is a perspective view showing a liquid crystal display device having two liquid crystal cells.
  • FIG. 15 is a perspective view showing an application example of the liquid crystal display device of Embodiment 2.
  • FIG. 16 is a perspective view showing a conventional liquid crystal display device.
  • FIG. 17 is a perspective view showing a conventional element-side substrate assembly and a counter-side substrate assembly.
  • FIG. 18 is a plan view showing a conventional deposition deposit mask.
  • FIG. 19 is a perspective view showing a conventional liquid crystal display device.
  • FIG. 20 is a cross-sectional view showing a schematic configuration of a conventional liquid crystal display device.
  • FIG. 21 is a cross-sectional view showing a liquid crystal display device in which a conventional wiring is corroded.
  • FIG. 1 is a perspective view showing the liquid crystal display device 1
  • FIG. 2 is a plan view showing the deposition mask 40.
  • the deposition mask is a mask for depositing and forming a film on an object such as a substrate.
  • FIG. 1 which is a perspective view
  • FIG. 7 which is a sectional view taken along the line VII-VII of FIG. 1
  • the liquid crystal display device 1 is arranged so as to face each other and is formed in a rectangular shape.
  • An element-side substrate 11 as a substrate and a counter-side substrate 12 as a second substrate; and a liquid crystal layer 14 as a display medium layer enclosed and enclosed by a seal member 13 between the element-side substrate 11 and the counter-side substrate 12 It has.
  • the element side substrate 11 has a pixel region 15 in which a large number of pixels are arranged in a matrix in a substantially central region. Force not shown In each pixel, for example, a thin film transistor (TFT) as a switching element is formed.
  • TFT thin film transistor
  • the seal member 13 is formed in a substantially rectangular frame shape, and a part of the seal member 13 is opened to form an injection port 16.
  • the seal member 13 is made of a resin such as an ultraviolet curable resin.
  • the pixel region 15 is formed inside the seal member 13.
  • a mounting region 17 in which a driver and the like are mounted is formed in a region facing the injection port 16.
  • the mounting region 17 is formed by a partial region of the element side substrate 11 projecting laterally from one end side of the counter side substrate 12.
  • the mounting area 17 is formed with a plurality of wirings 18 drawn to the outside of the pixel force seal members 13 in the pixel area 15, and an end of each wiring 18 is used to input an external signal.
  • Terminal 19 is formed.
  • the wiring 18 and the terminal 19 are arranged so as to gather as much as possible.
  • a driving signal supplied to the counter electrode 21 is input from an arbitrary terminal 19 of the element side substrate 11 via a conductive member 23 such as carbon paste.
  • the common transition (also (Transfer) 22 is formed on each of the two corners facing diagonally on the opposite substrate 12. That is, the counter electrode 21 has a rectangular shape in which the two corners are added as the protrusions 21a.
  • the common transition 22 is constituted by a protrusion 21a of the counter electrode 21, a conductive member 23, and an electrode of the element side substrate 11 (not shown).
  • the counter-side substrate 12 is a first end including a wiring-facing region 25 that extends along the edge of the counter-side substrate 12 outside the seal member 13 and faces the wiring 18. It has a side region 31 and a second end side region 32 which is a region other than the first end side region 31 and extends along the end side of the opposite substrate 12 outside the seal member 13.
  • the counter electrode 21 is not formed in the wiring facing region 25 of the first end side region 31, and the end side of the counter electrode 21 is formed inside the seal member 13. It has been done.
  • the counter electrode 21 is formed across the edge of the counter substrate 12 in the second edge region 32a in the second edge region 32a adjacent to the first edge region 31. ing.
  • the counter electrode 21 is not formed at least in the region near the injection port 16.
  • the end side of the counter electrode 21 in the second end side region 32b is formed inside the seal member 13 as in the first end side region 31.
  • the region meaning “inner side of the seal member 13” is not limited to the region separated from the seal member 13 and surrounded by the seal member 13. From the viewpoint that the wiring 18 and the like can be isolated from moisture that causes corrosion, a region where the seal member 13 is formed, that is, a region directly covered by the seal member 13 is also included in the “inside of the seal member 13”.
  • the shape of the counter electrode 21 in the present embodiment has a planar shape in which a rectangular protrusion is added as in the conventional case, but differs from the conventional shape in the following points.
  • the counter electrode is opposed to the wiring facing region 25 where the wiring 18 extending from the terminal 19 and the counter substrate 12 overlap in the first end region 31 outside the seal member 13.
  • the wiring facing region 25 is configured to have a region where the facing substrate 12 and the element side substrate 11 directly face each other.
  • the first edge region 31 The counter electrode 21 is uniformly formed from the pixel region 15 to the end of the liquid crystal display device 1 in the second edge region 32a on both sides of the pixel region 15a.
  • FIG. 3 which is a perspective view
  • the element side substrate assembly 2 which is a mother substrate in which a plurality of element side substrates 11 are assembled, and the opposite side substrate 12.
  • the opposite substrate assembly 3 which is a mother substrate in which a plurality of substrates are assembled together.
  • the element-side substrate assembly 2 and the counter-side substrate assembly 3 are formed with a plurality of substrate regions 4 that will form each liquid crystal display device 1 after division.
  • a plurality of pixel regions 15, wirings 18, terminals 19, and the like are formed on the bonding surface of the element-side substrate assembly 2.
  • a plurality of counter electrodes 21, a color filter and the like are formed on the bonding surface of the counter substrate assembly 3.
  • a pattern region 37 for a liquid crystal display device is formed on a part of each counter-side substrate 12 included in the counter-side substrate assembly 3, and each of these pattern regions 37 forms the counter electrode 21. It is composed.
  • the plurality of pattern regions 37 are formed as one continuous pattern.
  • the four counter electrodes 21 form one pattern so that the second end side regions 32a adjacent to the first end side region 31 are continuous with each other.
  • the opposing substrate assembly 3 is formed with, for example, four pattern regions 37 arranged side by side.
  • the no-turn region 37 is formed using a deposition mask 40 as shown in FIG. That is, the deposition mask 40 is for forming the pattern region 37 in a part of each substrate region 4 with respect to the opposing substrate assembly 3 which is a mother substrate. In the deposition mask 40, for example, four openings 41 are arranged side by side. The opening 41 is for forming a plurality of pattern regions 37 as one continuous pattern.
  • the deposition mask 40 is disposed opposite to the counter-side substrate assembly 3, and sputtering or the like is performed. As a result, a thin film such as ITO is deposited on the counter substrate assembly 3 as a predetermined pattern, and four continuous pattern regions 37 (that is, the counter electrode 21) are formed for each opening 41.
  • the seal member 13 is disposed in each substrate region 4, the element side substrate assembly 2 and the opposing substrate assembly 3 are bonded to each other, and then cut into each substrate region 4 and divided. . Thereafter, a liquid crystal material is injected from the injection port 16 and sealed, and a driver circuit is mounted on the terminal 19 to manufacture the liquid crystal display device 1.
  • the opening 41 of the deposition mask 40 is formed so as to form a plurality of pattern regions 37 as one continuous pattern, a thin structure for forming a boundary between the pattern regions 37 The object part can be eliminated in the deposition mask 40.
  • the strength of the deposition mask 40 as a whole can be increased by eliminating the low-strength portion, and the handling thereof can be facilitated.
  • the adjacent pattern regions 37 in the counter substrate assembly 3 can be directly connected to each other, the margin of displacement of the pattern region 37 (that is, the counter electrode 21) with respect to the pixel region 15 is reduced. be able to.
  • the liquid crystal display device 1 produced using the opposite substrate 12 has a dimensional margin (dimension a in FIG. 15 and dimension b in FIG. 17) that has been imposed due to the strength of the deposition mask 40 and film formation variation. I need to consider The frame can be reduced.
  • a protective film 35 such as an organic material or an organic resin, is formed on the element-side substrate 11 so as to cover the wiring 18 outside the seal member 13. Is also preferable.
  • the counter electrode 21 is erroneously formed in a part of the wiring facing region 25 outside the seal member 13 at the manufacturing stage. Even if it is done, corrosion of the counter electrode 21 due to moisture 28 and the like can be more reliably suppressed.
  • the configuration in which the counter electrode 21 is not formed in the wiring facing region 25 of the first end region 31 sufficiently covers the wiring 18 with the protective film 35 as shown in FIG. 8 in the actual manufacturing stage. Even if a defect 43 is generated in the protective film 35, it can be considered as a redundant design that can prevent corrosion of the wiring in the wiring facing region 25.
  • the protective film 35 may be formed up to the pixel region 15 and used for improving the so-called aperture ratio of the pixel and forming a concavo-convex reflective surface having scattering properties. .
  • the counter electrode 21 is not formed in the wiring facing region 25 of the first end region 31 and at least a part of the second end regions 32a and 32b is on the pixel region 15 side. To the opposite side substrate 12 as long as it is formed.
  • FIG. 4 to 6 show Embodiment 2 of the present invention.
  • FIG. 4 to 6 show Embodiment 2 of the present invention. In the following embodiments, FIG.
  • the counter electrode 21 is formed from the pixel region 15 side to the end side of the counter substrate 12 for the two second end region 32a adjacent to the first end region 31. At the same time, for the second end region 32b facing the first end region 31, the counter electrode 21 is not formed at least in the region near the injection port 16, but in this embodiment, all the second end regions 31b are not formed.
  • the counter electrode 21 is formed from the pixel region 15 side to the end side of the counter substrate 12. That is, as shown in FIG. 4 which is a perspective view of the liquid crystal display device 1, the counter electrode 21 is a counter-side substrate except for a part of the first end region 31 including the wiring counter region 25. It is uniformly formed on the entire twelve. Therefore, the counter electrode 21 has one protrusion 21a for one counter side substrate 12, and has a simpler shape than the counter electrode 21 of the first embodiment.
  • a plurality of pattern regions 37 are formed on the counter substrate assembly 3 using a deposition mask 40 as shown in FIG. 5 which is a plan view. 21) is formed.
  • the opening 41 formed in the deposition mask 40 forms a plurality of pattern regions 37 as one continuous pattern.
  • FIG. 6 which is a perspective view, the counter substrate assembly 3 in which the counter electrode 21 is formed by the pattern region 37 and the element substrate assembly 2 are connected via the seal member 13.
  • the liquid crystal display device 1 is manufactured by laminating and finally dividing the substrate area 4.
  • the present embodiment can provide the same effects as those of the first embodiment. Furthermore, the shape of the counter electrode 21 and the shape of the opening 41 of the deposition mask 40 can be simplified.
  • the configuration shown in the first and second embodiments is more suitable when the number of wires crossing the first end region 31 is relatively large or when the wires are relatively thin.
  • FIG. 15 which is a perspective view, in the case of a mounting form in which IC drivers 45 are stacked (so-called COG: Chip On Glass), there are, for example, several hundreds of wirings 46 crossing the first end region 31 It is common to have a relatively large number of books.
  • COG Chip On Glass
  • the wiring 46 is drawn out in a fan shape from the IC driver 45 to form a diagonal wiring, so the interval between the wirings 46 needs to be reduced to about several zm. is there.
  • the wiring material is a single material such as A1 or Cr, or an alloy based on these A1 or the like, or a laminate of these A1 and other wiring materials.
  • low resistance materials such as
  • it is known that such wiring materials are prone to corrosion! Such corrosion of fine wiring is easily broken. Therefore, ensuring reliability is more important.
  • the embodiment of the present invention is suitable in that it can suppress the disconnection of the large number of oblique wirings 46 as described above, and has an effect of ensuring the reliability of the display device.
  • FIG. 9 is a perspective view of the liquid crystal display device 1 and shows Embodiment 3 of the present invention.
  • the element-side substrate 11 has two mounting regions 17a and 17b extending laterally from two adjacent edge sides of the opposing substrate 12 respectively. It is formed.
  • a plurality of wirings 18a are led out from the pixel region 15, and a first terminal 19a is formed at an end of the wiring 18a.
  • a plurality of wirings 18b are drawn from the pixel region 15, respectively, and a second terminal 19b is formed at the end of the wiring 18b.
  • the mounting regions 17a and 17b are formed, and V, and the end side of the element side substrate 11 is aligned with the end side of the opposite side substrate 12.
  • the opposing substrate 12 includes a first end region 31a adjacent to the mounting region 17a, a first end region 31b adjacent to the mounting region 17b, and the other two second end region 32. Is formed. As in the first embodiment, each of the first end side regions 31a and 31b includes a wiring facing region 25. Thus, the counter electrode 21 is not formed in each wiring counter region 25, while the pixel region 15 side force is also formed across the end side of the counter substrate 12 in each second end region 32.
  • the same effect as in the first embodiment can be obtained, and the first and second terminals 19a and 19b are formed on the two adjacent edge sides of the element-side substrate 11. be able to.
  • FIG. 10 is a perspective view of the liquid crystal display device 1 and shows Embodiment 4 of the present invention.
  • two mounting regions 17a and 17b are formed on the element-side substrate 11 so as to extend laterally from two opposing edges of the opposing substrate 12, respectively. It has been done.
  • a plurality of wirings 18a are led out from the pixel region 15, and a first terminal 19a is formed at an end of the wiring 18a.
  • a plurality of wirings 18b are drawn from the pixel region 15, respectively.
  • a second terminal 19b is formed at the end of the first terminal.
  • the mounting regions 17a and 17b are formed, and V, and the end side of the element side substrate 11 is aligned with the end side of the opposite side substrate 12.
  • First edge regions 31a and 3 lb are formed on two sides of the opposite substrate 12, respectively.
  • the opposing substrate 12 includes two first end region 31a adjacent to the mounting regions 17a and 17b, a first end region 31b adjacent to the mounting region 17b, and the other two second end regions 31a and 17b.
  • Two edge regions 3 2 are formed.
  • each first end side region 31a, 31b includes a wiring facing region 25.
  • the counter electrode 21 is not formed in each of the wiring opposing regions 25 facing each other, whereas in each of the second end region 32 facing each other, the pixel region 15 side force is formed across the end side of the opposing substrate 12. Has been.
  • the same effect as in the first embodiment can be obtained, and the first and second terminals 19a and 19b are formed on the two opposite sides of the element-side substrate 11. be able to.
  • modules of the liquid crystal display device 1 having various configurations as described below. Is obtained.
  • the liquid crystal display device 1 is separated from the first liquid crystal cell 5 having the first and second terminals 19a and 19b.
  • the second liquid crystal cell 6 is connected to the wiring 18b formed in one first end region 31b via the second terminal 19b.
  • the second liquid crystal cell 6 has an element-side substrate 51 and a counter-side substrate 52 which are a pair of substrates arranged to face each other.
  • a liquid crystal layer is sealed between the element side substrate 51 and the opposite side substrate 52 by a second seal member 53.
  • the liquid crystal layer is filled between the element-side substrate 51 and the counter-side substrate 52 through an injection port 58 provided in the second seal member 53.
  • terminals 55 are formed on the wiring drawn from the pixel region 54.
  • the first liquid crystal cell 5 and the second liquid crystal cell 6 include the terminal 55 and the second terminal 19b.
  • a flexible printed circuit board (FPC) 56 is provided in the element side substrate 51.
  • the second liquid crystal cell 6 is driven by an external signal applied via the first liquid crystal cell 5 or a drive circuit formed in the first liquid crystal cell 5 using polycrystalline silicon as a base material. This is done according to the output signal that is output.
  • Such a display surface of the first liquid crystal cell 5 and the display surface of the second liquid crystal cell 6 are arranged on the same plane, or so as to form a double-side display device so that the back surfaces thereof are in contact with each other. Placed in.
  • the first terminal 19a in the liquid crystal cell of the liquid crystal display device 1 is used as a signal input terminal to the liquid crystal cell, and the second terminal
  • the terminal 19b can be configured to be a signal input / output terminal to a circuit having a function other than the display incorporated in the liquid crystal cell, for example, an optical sensor circuit, a temperature sensor circuit, an audio circuit, or the like.
  • the first terminal 19a in the liquid crystal cell of the liquid crystal display device 1 is used as a signal input terminal to the liquid crystal cell
  • the second terminal 19b is a device outside the liquid crystal cell.
  • it can be configured as a signal input / output terminal to a touch panel, an audio circuit, a backlight control unit, or the like.
  • the backlight control unit may be a separate liquid crystal cell other than the backlight control unit of the liquid crystal cell itself.
  • both the first terminal 19a and the second terminal 19b of the liquid crystal display device 1 can be configured as signal input terminals related to display of the liquid crystal cell. It is.
  • one of the first terminal 19a and the second terminal 19b may be a terminal for binary display driving, and the other may be a terminal for gradation display driving so that the terminals have different functions. Is possible.
  • the sealing member 57 in the liquid crystal display device 1 is formed in a frame-like closed pattern surrounding the pixel region 15 and the liquid crystal is sealed by a so-called drop injection method. Good.
  • the first liquid crystal cell 5 seal member 57
  • the liquid crystal is filled by a so-called dripping injection method with a closed pattern surrounding the element region 15
  • the small second liquid crystal cell 6 is provided with an opening 58 as an injection port in a part of the second seal member 53. It is preferable to fill the liquid crystal by a vacuum injection method.
  • the dropping injection method is usually applied to a relatively large liquid crystal cell used as a display screen of a personal computer, a television or the like from the viewpoint of shortening the liquid crystal injection time.
  • a relatively large liquid crystal cell used as a display screen of a personal computer, a television or the like from the viewpoint of shortening the liquid crystal injection time.
  • the present invention focuses on other new advantages. This will be explained below.
  • liquid crystal injection appropriate for each of the liquid crystal cells 5 and 6 is performed.
  • a dripping injection method is used to realize a simple arrangement.
  • the sealing member is poured on the edges. If an entrance is provided, a plurality of first liquid crystal cells cannot be arranged in series with each other, and an originally unnecessary substrate region ( Since a so-called discarded substrate is required, the manufacturing efficiency is deteriorated.
  • the edges having the terminals are arranged. Since it is necessary to form an inlet, there is a concern about contamination of the liquid crystal.
  • the voltage holding ratio of the liquid crystal is about 80%, which is relatively low, such as a simple matrix type liquid crystal cell using liquid crystal such as STN. Applied to those for which reliability is relatively easy to secure. It is.
  • the sealing resin of the sealing member 13 may spread due to its own weight.
  • the terminal is covered with the sealing resin, and the FPC There is also the problem of poor crimping on the terminals. Therefore, the length of the terminals (dimension L1 or L2 in Fig. 14) should be increased to about 4-5mm so that the above terminals are not covered even if the sealing resin spreads a little, or the number of terminals should be avoided to avoid the injection port. Need to reduce.
  • the first liquid crystal cell has a large outer shape, and the number of first and second terminals and the degree of freedom in position are reduced.
  • the sealing member 57 of the first liquid crystal cell 5 is formed in a closed turn and filled with liquid crystal by the dropping injection method. It is possible to eliminate the inlet that is required by law. Accordingly, the plurality of first liquid crystal cells 5 without lowering the display reliability of the first liquid crystal cell 5 are arranged on the mother substrate so that the edges without the first and second terminals 19a and 19b are in contact with each other. Can be arranged in a row
  • the number and position of the second terminals 19b are limited by the sealing grease of the seal member 57.
  • the length of the second terminal 19b (dimension L2 in FIG. 15) can be less than 2 mm. Therefore, the first liquid crystal cell 5 can be reduced in size, and the degree of freedom in designing the display device can be increased, and the electronic device using this display device can be configured in various ways.
  • the liquid crystal with a high voltage holding ratio can be filled in the first liquid crystal cell 5
  • the first liquid crystal cell 5 can be configured as an active matrix type liquid crystal cell, and the quality is excellent.
  • Various display devices can be obtained.
  • the above-described dropping injection method is excellent as a method of filling liquid crystal into a large liquid crystal cell.
  • a small liquid crystal cell it is difficult to control the amount of liquid crystal to be dripped. It is difficult to fill an appropriate amount of liquid crystal that is sufficient to meet the volume.
  • the second liquid crystal cell 6 in the present embodiment is small, the time required for the injection is short even in the vacuum injection method. That is, as a liquid crystal injection method, a vacuum injection method is sufficient instead of a dropping injection method. That is, the injection method of the first liquid crystal cell 5 and the second liquid crystal cell 6 that form a pair need not be the same.
  • the first liquid crystal cell 5 since the first liquid crystal cell 5 has the first terminal 19a and the second terminal 19b but does not have an injection port by a dropping injection method, the first liquid crystal cell 5 is efficient for a mother substrate.
  • the second liquid crystal cell 6 has a three-side free structure in which the terminal 55 is provided only on one end of the second liquid crystal cell 6, so that the second liquid crystal cell 6 can be efficiently arranged on the mother substrate even though it has the injection port 58. .
  • the structure can be efficiently manufactured by adopting the vacuum injection method for the small second liquid crystal cell 6 while adopting the charge method.
  • FIG. 11 which is a perspective view
  • an element side substrate assembly which is a mother substrate bonded through a closed-turn seal member 57 is used. Without dividing the body 2 and the opposite substrate assembly 3 into individual liquid crystal cells at a time, as shown in FIG. 12, a plurality of first liquid crystal cells 5 are once connected in a row (this is a strip). Divided).
  • the strip 63 is further divided to manufacture a plurality of first liquid crystal cells 5.
  • the length L1 of the first terminal 19a and the length L2 of the second terminal 19b are not necessarily the same.
  • the second liquid crystal cell 6 may be another display cell such as an EL display cell or a simple matrix type liquid crystal cell.
  • the active matrix type first liquid crystal cell 5 and the other A display device may be combined with the second display cell of the formula.
  • the management mark 61 and the management bar code 62 used for managing the manufacturing process are provided in the vacant area of the mounting area 17b where the second terminal 19b is not provided. You may arrange. For example, when the functions of the external device connected to the second terminal 19b are few, the number of the second terminals 19b is relatively small. Therefore, the first end region 31b in which the second terminal 19b is formed can be effectively used as a region for arranging the management mark 61 and the like.
  • the first terminal 19a is a terminal related to driving of the first liquid crystal cell 5 and driving of the second display cell 6 (external device). Therefore, the number of the first terminals 19a is relatively large. Even when a driver IC is mounted on the first end region 31a where the first terminal 19a is formed, the empty region of the first end region 31a is reduced. There is little free space where the mark 61 etc. can be placed. That is, the configuration as shown in FIG. 14 is convenient for arranging the management mark 61, TEG, and the like.
  • the present invention is useful for a deposition deposit mask, a counter-side substrate assembly, and a display device, and is particularly suitable for increasing the strength of the deposition mask to facilitate its handling. Yes.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 成膜用デポマスクは、表示装置を構成する基板領域が複数集合したマザー基板に対し、各基板領域の一部に表示装置用のパターン領域を形成するように構成されている。さらに、複数のパターン領域を互いに連続する1つのパターンとして形成するための開口部を備えている。

Description

明 細 書
成膜用デポマスク、対向側基板集合体及び表示装置
技術分野
[0001] 本発明は、成膜用デポマスク、対向側基板集合体及び表示装置に関するものであ る。
背景技術
[0002] 携帯機器等の表示装置として液晶表示装置が多用されている。図 16は、液晶表示 装置の主要な構成物である液晶セル 101の斜視図である。液晶セル 101は、図示省 略の複数の薄膜トランジスタ(Thin-Film Transistor: TFT)をスイッチング素子として 有するアクティブマトリクス型の液晶セルである。
[0003] 液晶セル 101は、一方の基板である素子側基板 102と、他方の基板である対向側 基板 103とが、シール部材 104を介して互いに電極面が向かい合うように貼り合わさ れた構造を有している。シール部材 104は、略矩形枠状に形成され、その一部に開 口部 105が形成されている。開口部 105は、所謂真空注入法により液晶セル 101の 内部に液晶が注入された状態で、紫外線硬化榭脂等によって封止される。
[0004] 一般に、液晶セル 101は、図 17に示すように、複数の素子側基板を含むマザーガ ラス 121と、複数の対向側基板を含むマザ一ガラス 122 (対向基板集合体とも呼ぶ) とを互いに貼り合わせた後、個々の液晶セル 101を分割して切り出すことによって製 造される。
[0005] 尚、開口部 105はシール部材 104の残渣が各液晶セル 101に切り出す際の分断 不良の原因となり易いため、液晶セル 101の四辺のうち端子 106が形成されていな い辺に配置される。またこのことにより、端子 106の配置の自由度も損なわれない。
[0006] 素子側基板 102には、マトリクス状の画素アレイが画素領域 107として形成されて いる。素子側基板 102の 1辺側には、外部信号を入力するための端子 106が配置さ れている。このような構成は 3辺フリー構造とも称され、表示装置の小型化に寄与する と共に、表示装置の周囲に配置される機器のレイアウトの自由度が高まるという利点 があり、好適に採用されている。このような 3辺フリー構造の液晶セル 101は、マザ一 ガラス上にぉ 、て互いに接するように連なって配置され、多面取りされるようになって いる。
[0007] 対向側基板 103には、カラーフィルタ(図示省略)が形成されるとともに、 ITO等の 透明電極力もなる対向電極 108が、画素領域 107を含む大きさで 1つのパターンとし て成膜されている。尚、カラーフィルタは素子側基板 102に形成することも可能である 。対向側基板 103は着色層を形成せずとも便宜上カラーフィルター基板と称されるこ とちある。
[0008] 一般に、対向電極 108に与えるべき駆動用の信号は、カーボンペースト等の導電 部材 109を介して素子側基板 102の端子 106から入力されることが多い。このために 、コモン転移 (又はトランスファー) 111が液晶セル 101の一角に形成される。すなわ ち、対向電極 108は長方形の形状に突部 110が追加されたような平面形状になって いる。コモン転移 111は、この対向電極 108の突部 110と、カーボンペースト等の導 電部材 109と、図示省略の素子側基板 102の電極とによって構成されている。
[0009] 尚、コモン転移 111は、液晶セル 101に任意の個数配置される。例えばサイズが小 さい液晶セル 101では 1つの、サイズが大きい液晶セル 101では 4つ以上のコモン転 移 111が配置される場合もある。
[0010] ここで、対向電極 108はパターン精度を必要としない。また、製造コストの削減を目 的として所謂マスクデポにより成膜される。マスクデポとは、マスクを用いてスパッタリ ング等により成膜を行って、任意の領域に薄膜を堆積して形成する手法のことをいう
[0011] 図 18に示すように、マスクデポに用いられる冶具(マスク)であるデポマスク 112は、 金属板力もなり、予め対向電極 108を形成するための領域に開口部 113を有してい る。そして、このデポマスク 112を成膜源と対向側基板 103との間に配置して、対向 側基板 103の表面に透明電極をスパッタリングして成膜する。このようにして対向電 極 108を形成する手法は、例えば、特許文献 1〜3に開示されている。
特許文献 1:特開平 10— 282480号公報
特許文献 2:特開平 11—44881号公報
特許文献 3:特開平 11― 183886号公報 発明の開示
発明が解決しょうとする課題
[0012] 対向電極 108を成膜する際には、マザ一ガラス 122に対するデポマスク 112の位 置ずれが生じたり、デポ領域の端部にお 、て成膜の均一性が悪ィ匕し易 、と 、う問題 がある。その結果、対向電極 108のパターンの端部がぼやけてしまうので、これらの 製造ばらつきを抑制する目的で、図 16及び断面図である図 20に示すように、マージ ンである所定の寸法幅 aが画素領域 107と対向電極 108の端部との距離として必要 となる。例えば寸法 aは約 lmmとされる。
[0013] また、デポマスクには、図 18に示すように、隣り合う液晶セル 101同士の間隔として 幅 bを有する細 、遮蔽部 114が必要となる。デポマスク 112の作成にぉ 、てはその加 ェ精度の限界があると共に強度が必要であることから、寸法 bとして 2mm程度が必要 となる。したがって、液晶セル 101の額縁領域 (画素領域の周りの枠状の非表示領域 )の幅は、 a+bZ2=約 2mm以上の寸法が最低限必要となってしまう。
[0014] また、複雑な形状のデポマスクはその取り扱いが容易ではないという問題もある。さ らに、デポマスクをカラーフィルター基板に対向して配置させる際に、そのデポマスク の金属面とカラーフィルター基板の表面とが擦れる結果、液晶セルの額縁近傍の力 ラーフィルターパターンを傷付けたり、カラーフィルターの構成材料を利用してパター ユングされた工程管理用のマークを削りとってしまう虞れもある。
[0015] 近年、液晶セルの狭額縁ィ匕の要望が非常に強まっており、また多用な液晶セルが 実現できる構成も望まれている。この点で、上記問題点は非常に重要なものとなって いる。
[0016] 一方、図 19に示すように、対向電極 108の形状として、マスクデポを行わずに単純 に対向側基板 103の全面に透明電極を成膜する手法も考えられる。しかしながら、こ の場合には以下の不具合が生じる。その詳細を図 19及び図 21を参照して説明する
[0017] 端子 106が形成されている液晶セル 101の 1辺の領域には、図 19及び図 21で 1点 鎖線で示すように、端子 106に接続される配線 116が形成されている領域 Xがある。 この領域 Xでは、シール部材 104の外側において、素子側基板 102の配線 116と、 対向側基板 103の対向電極 108とが数; z m程度の至近距離で互いに対向する構成 となっている。この構成を有する液晶セル 101を、例えば高温高湿度の環境下に放 置すると、素子側基板 102と対向側基板 103との間に入り込んだ水分 118と、素子側 基板 102の配線 116と対向電極 108との間に生じる電界とによって、配線 116及び 対向電極 108の少なくとも一方が腐食する虞れがある。
[0018] 配線 116及び対向電極 108は、互いに異なる信号が印加されることにより所定の電 位差が恒常的に生じているため、シール部材 104の外側領域において、これらの配 線 116及び対向電極 108が直接に対向する状態は好ましくな 、。
[0019] また、近年、平面型の表示装置は、その形態としてさらなる多様性も求められており 新規な構成の提示が期待されて ヽる。
[0020] 本発明は、斯カる諸点に鑑みてなされたものであり、その主たる目的は、デポマスク の強度を高めてその取り扱いを容易にすることにある。また、他の目的とするところは 、シール部材の外側にお ヽて配線及び対向電極の少なくとも一方の腐食を抑制する ことにある。
課題を解決するための手段
[0021] 上記の目的を達成するために、本発明に係る成膜用デポマスクは、表示装置を構 成する基板領域が複数集合したマザ一基板に対し、各前記基板領域の一部に前記 表示装置用のパターン領域を形成するための成膜用デポマスクであって、複数の前 記パターン領域を互いに連続する 1つのパターンとして形成するための開口部を備 えている。
[0022] また、本発明に係る対向側基板集合体は、表示装置を構成する対向側基板が複 数集合した対向側基板集合体であって、各前記対向側基板の一部には、前記表示 装置用のパターン領域がそれぞれ形成され、複数の前記パターン領域は、互いに連 続する 1つのパターンとして形成されている。
[0023] また、本発明に係る表示装置は、互いに対向して配置されると共に矩形状に形成さ れた第 1基板及び第 2基板と、前記第 1基板及び第 2基板の間にシール部材により囲 まれて封入された表示媒体層とを備えた表示装置であって、前記第 1基板は、前記 シール部材の内側に画素領域が形成されると共に、前記画素領域から前記シール 部材の外側へ引き出された配線が形成され、前記第 2基板は、前記画素領域に少な くとも一部が対向する対向電極が形成されると共に、前記シール部材の外側で前記 第 2基板の端辺に沿って延びる領域であって、前記配線に対向する配線対向領域を 含む第 1端辺領域と、前記第 1端辺領域以外の領域であって前記シール部材の外 側で前記第 2基板の端辺に沿って延びる第 2端辺領域とを有し、前記対向電極は、 前記第 1端辺領域の配線対向領域に形成されない一方、前記第 2端辺領域の少なく とも一部において前記画素領域側力 当該第 2端辺領域における前記第 2基板の端 辺に亘つて形成されている。
[0024] 前記対向電極は、前記第 1端辺領域に隣り合う第 2端辺領域において、前記画素 領域側から当該第 2端辺領域における前記第 2基板の端辺に亘つて形成されていて ちょい。
[0025] 前記対向電極は、前記第 1端辺領域に前記画素領域を介して対向する第 2端辺領 域において、前記画素領域側力 当該第 2端辺領域における前記第 2基板の端辺 に亘つて形成されて ヽてもよ 、。
[0026] 前記対向電極は、各前記第 2端辺領域のそれぞれにお 、て、前記画素領域側から 当該第 2端辺領域における前記第 2基板の端辺に亘つて形成されていてもよい。
[0027] 前記第 1基板には、前記シール部材の外側で前記配線を覆う保護膜が形成されて 、ることが好まし!/、。
[0028] 前記第 1端辺領域が前記第 2基板の 2辺にそれぞれ形成され、 2つの前記第 1端辺 領域の一方に形成されて ヽる配線には、該配線に接続された端子を介して外部デ バイスが接続され、前記シール部材の形状が閉パターンになって 、てもよ 、。
[0029] 前記表示媒体層は液晶層であり、前記外部デバイスは表示デバイス部であっても よい。
[0030] 前記表示デバイス部は、対向配置された一対の基板と、該一対の基板の間に第 2 のシール部材によって封入された液晶層とを備え、前記表示デバイス部の液晶層は 、前記第 2のシール部材に設けられた注入口を介して、前記一対の基板の間に充填 されていてもよい。
発明の効果 [0031] 本発明によれば、配線対向領域に対向電極を形成しな 、ようにしたので、シール部 材の外側において配線及び対向電極の少なくとも一方の腐食を抑制することができ る。
[0032] また、成膜用デポマスクの開口部を、複数のパターン領域を連続する 1つのパター ンとして形成するような形状としたので、ノターン領域同士の境界を形成するための 細い構造物部分をデポマスクに無くすことが可能となる。その結果、強度の低い部分 を無くしてデポマスク全体の強度を高めることができ、その取り扱いを容易にすること ができる。
[0033] さらに、成膜の際にデポマスクの開口部周りの表面力 対向側基板に接触する機 会が減少するので、対向側基板の表面に形成されて ヽる例えばカラーフィルターや マーク等が傷付くことを抑制できる。その結果、対向側基板の歩留まりを改善すること ができる。
[0034] また、本発明に係る対向側基板集合体によると、隣り合うパターン領域同士を直接 に繋げることができるため、表示装置の画素領域に対するパターン領域の位置ずれ マージンを小さくすることができる。また、この対向側基板を用いて作成した表示装置 は、デポマスクの強度や成膜ばらつきに起因して強いられていた寸法マージンを考 慮する必要がなくなるので、その額縁を縮小させることが可能となる。
[0035] また、外形を大きくしたりまた信頼性を損ねることなく画素領域力も複数の方向に引 き出される配線に端子を設けることが可能となり、端子設計の自由度を高くして、多種 多用な表示装置を得ることができる。
図面の簡単な説明
[0036] [図 1]図 1は、実施形態 1の液晶表示装置を示す斜視図である。
[図 2]図 2は、実施形態 1の成膜用デポマスクを示す平面図である。
[図 3]図 3は、素子側基板集合体及び対向側基板集合体を示す斜視図である。
[図 4]図 4は、実施形態 2の液晶表示装置を示す斜視図である。
[図 5]図 5は、実施形態 2の成膜用デポマスクを示す平面図である。
[図 6]図 6は、素子側基板集合体及び対向側基板集合体を示す斜視図である。
[図 7]図 7は、図 1における VII— VII線断面図である。 圆 8]図 8は、保護膜が形成された液晶表示装置を示す図 7相当図である。
[図 9]図 9は、実施形態 3の液晶表示装置を示す斜視図である。
[図 10]図 10は、実施形態 4の液晶表示装置を示す斜視図である。
圆 11]図 11は、第 1の液晶セルが形成される一対のマザ一基板を模式的に示す斜 視図である。
[図 12]図 12は、マザ一基板カゝら分割された短冊を示す斜視図である。
[図 13]図 13は、短冊カゝら分割された第 1の液晶セルを示す斜視図である。
[図 14]図 14は、 2つの液晶セルを有する液晶表示装置を示す斜視図である。
[図 15]図 15は、実施形態 2の液晶表示装置の応用例を示す斜視図である。
[図 16]図 16は、従来の液晶表示装置を示す斜視図である。
[図 17]図 17は、従来の素子側基板集合体及び対向側基板集合体を示す斜視図で ある。
[図 18]図 18は、従来の成膜用デポマスクを示す平面図である。
[図 19]図 19は、従来の液晶表示装置を示す斜視図である。
[図 20]図 20は、従来の液晶表示装置の概略構成を示す断面図である。
[図 21]図 21は、従来の配線が腐食した液晶表示装置を示す断面図である。
符号の説明
1 揿晶表示装置
2 素子側基板集合体
3 対向側基板集合体
4 基板領域
5 第 1の液晶セル
6 第 2の液晶セル、第 2の表示セル
11 素子側基板
12 対向側基板
13 シール部材
14 液晶層(表示媒体層)
15 画素領域 16 注入口
17, 17a, 17b 実装領域
18, 18a, 18b 配線
19 端子
19a 第 1の端子
19b 第 2の端子
21 対向電極
21a 突部
25 配線対向領域
31, 31a, 31b 第 1端辺領域
32, 32a, 32b 第 2端辺領域
35 保護膜
37 パターン領域
40 成膜用デポマスク
41 開口部
43 欠損部
51 素子側基板
52 対向側基板
53 第 2のシール部材
54 画素領域
55 端子
57 シール部材
58 注入口
発明を実施するための最良の形態
[0038] 以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、本発明は、以下 の実施形態に限定されるものではない。
[0039] 《発明の実施形態 1》
図 1〜図 3、図 7及び図 8を参照して、本発明の実施形態 1を説明する。本実施形態 では、表示装置として液晶表示装置を例に挙げて説明する。図 1は液晶表示装置 1 を示す斜視図であり、図 2は成膜用デポマスク 40を示す平面図である。ここで、成膜 用デポマスクとは、基板等の対象物に対し、膜を堆積して形成するためのマスクをい
[0040] 斜視図である図 1及び図 1の VII— VII線断面図である図 7に示すように、液晶表示 装置 1は、互いに対向して配置されると共に矩形状に形成された第 1基板である素子 側基板 11及び第 2基板である対向側基板 12と、素子側基板 11及び対向側基板 12 の間にシール部材 13により囲まれて封入された表示媒体層である液晶層 14とを備 えている。
[0041] 素子側基板 11は、略中央の領域に多数の画素がマトリクス状に配置された画素領 域 15が形成されている。図示は省略する力 各画素には、例えばスイッチング素子 である薄膜トランジスタ (TFT)がそれぞれ形成されて!ヽる。
[0042] シール部材 13は、略矩形枠状に形成されており、その一部が開口されて注入口 1 6が形成されている。シール部材 13は、例えば紫外線硬化榭脂等の榭脂によって構 成されている。上記画素領域 15は、シール部材 13の内側に形成されている。
[0043] 素子側基板 11には、上記注入口 16に対向する領域に、ドライバ等が実装される実 装領域 17が形成されている。実装領域 17は、素子側基板 11の一部の領域が、対向 側基板 12の 1つの端辺よりも側方に突出することによって形成されている。また、実 装領域 17には、上記画素領域 15の各画素力 シール部材 13の外側へ引き出され た複数の配線 18が形成され、各配線 18の端部には、外部信号を入力するための端 子 19が形成されている。これらの配線 18及び端子 19は、なるべく集合するように配 置されている。
[0044] 対向側基板 12には、カラーフィルター(図示省略)と共に、図 1に示すように、 ITO 等の透明電極カゝらなる対向電極 21が、素子側基板 11に対向して形成されている。 対向電極 21の少なくとも一部は、画素領域 15に対向している。つまり、対向電極 21 は、画素領域 15を含む大きさでベタ状に形成されている。
[0045] 対向電極 21に供給される駆動用の信号は、カーボンペースト等の導電部材 23を 介して素子側基板 11の任意の端子 19から入力される。このために、コモン転移 (又 はトランスファー) 22が、対向側基板 12で対角線上に向かい合う 2つの角部分にそ れぞれ形成されている。すなわち、対向電極 21は、長方形の形状において、上記 2 つの角部分が突部 21aとして追加されたような平面形状になっている。コモン転移 22 は、この対向電極 21の突部 21aと、導電部材 23と、図示省略の素子側基板 11の電 極とによって構成されている。
[0046] ここで、対向側基板 12には、シール部材 13の外側で対向側基板 12の端辺に沿つ て延びる領域であって、配線 18に対向する配線対向領域 25を含む第 1端辺領域 31 と、第 1端辺領域 31以外の領域であってシール部材 13の外側で対向側基板 12の 端辺に沿って延びる第 2端辺領域 32とを有している。
[0047] そして、図 1に示すように、対向電極 21は、第 1端辺領域 31の配線対向領域 25に 形成されておらず、その対向電極 21の端辺はシール部材 13の内側に形成されてい る。一方、対向電極 21は、第 1端辺領域 31に隣り合う第 2端辺領域 32aにおいて、画 素領域 15側力も当該第 2端辺領域 32aにおける対向側基板 12の端辺に亘つて形成 されている。
[0048] 一方、第 1端辺領域 31に対向する第 2端辺領域 32bでは、少なくとも注入口 16近 傍の領域に対向電極 21が形成されていない。この第 2端辺領域 32bにおける対向 電極 21の端辺は、上記第 1端辺領域 31と同様に、シール部材 13の内側に形成され ている。
[0049] 尚、「シール部材 13の内側」が意味する領域は、シール部材 13から離間し且つシ 一ル部材 13により囲まれた領域に限られない。腐食の原因となる水分から配線 18等 を隔離できるという観点から、シール部材 13の形成領域、すなわちシール部材 13に よって直接覆われている領域も「シール部材 13の内側」に含まれる。
[0050] また、本実施形態における対向電極 21の形状は、従来と同様に長方形の突部が 追加されたような平面形状を有するが、以下の点で従来の形状と異なる。
[0051] すなわち、本実施形態では、シール部材 13の外側の第 1端辺領域 31において端 子 19から延伸されている配線 18と対向側基板 12とが重なる配線対向領域 25に対し て対向電極 21を設けないことにより、配線対向領域 25に対向側基板 12と素子側基 板 11とが直接に対向する領域が存在するように構成した。さらに、第 1端辺領域 31 の両隣の第 2端辺領域 32aにおいて、画素領域 15から液晶表示装置 1の端部まで 対向電極 21を一様に形成している。
[0052] 液晶表示装置 1を製造する場合には、斜視図である図 3に示すように、素子側基板 11が複数集合したマザ一基板である素子側基板集合体 2と、対向側基板 12が複数 集合したマザ一基板である対向側基板集合体 3とを、互いに貼り合わせる。素子側 基板集合体 2及び対向側基板集合体 3には、分割後に各液晶表示装置 1を構成す ることとなる基板領域 4が複数集合して形成されて 、る。
[0053] 素子側基板集合体 2の貼合せ面には、複数の画素領域 15、配線 18及び端子 19 等が形成されている。一方、対向側基板集合体 3の貼合せ面には、複数の対向電極 21、カラーフィルタ一等が形成されている。
[0054] ここで、対向側基板集合体 3について詳細に説明する。図 3に示すように、対向側 基板集合体 3に含まれる各対向側基板 12の一部には、液晶表示装置用のパターン 領域 37がそれぞれ形成され、これら各パターン領域 37が対向電極 21を構成してい る。そして、複数のパターン領域 37は、互いに連続する 1つのパターンとして形成さ れている。例えば、第 1端辺領域 31の隣りの第 2端辺領域 32a同士が連続するように 、 4つの対向電極 21が 1つのパターンを構成している。そうして、対向側基板集合体 3には、例えば 4つのパターン領域 37からなるパターン力 つ並んで形成されている
[0055] ノターン領域 37は、図 2に示すような成膜用デポマスク 40を用いて形成する。すな わち、デポマスク 40は、マザ一基板である対向側基板集合体 3に対し、各基板領域 4 の一部にパターン領域 37を形成するためのものである。デポマスク 40には、開口部 41が例えば 4つ並んで配置されている。開口部 41は、複数のパターン領域 37を互 いに連続する 1つのパターンとして形成するためのものである。
[0056] そして、対向電極 21のパターン領域 37を対向側基板集合体 3に形成する場合に は、対向側基板集合体 3にデポマスク 40を対向配置させて、スパッタリング等を行う。 そのことによって、対向側基板集合体 3に ITO等の薄膜を所定のパターンとして堆積 させ、開口部 41毎に 4つの連続したパターン領域 37 (つまり対向電極 21)を形成す る。 [0057] 各基板領域 4にシール部材 13をそれぞれ配置した状態で、素子側基板集合体 2と 対向側基板集合体 3とを互いに貼り合わせた後に、各基板領域 4毎に切断して分割 する。その後、注入口 16から液晶材料を注入して封止し、端子 19にドライバ回路を 実装して、液晶表示装置 1を製造する。
[0058] 図 20に示すように、従来のように、対向電極 108と配線 116とが直接に対向して一 対の電極として作用すると、周りの水分 118によって腐食が生じる虞れがあるが、本 実施形態によると、第 1端辺領域 31の配線対向領域 25に対向電極 21を形成しない ようにしたので、シール部材 13の外側において配線 18及び対向電極 21が露出した 状態で互いに対向させないようにできる。したがって、図 7に示すように、配線 18の周 りに水分 28等が付着したとしても、シール部材 13の外側において配線 18及び対向 電極 21の少なくとも一方の腐食を抑制することができる。一方、第 2端辺領域 32a, 3 2bには対向電極 21と異なる電位が供給される電極や配線は存在しない。したがって 、対向電極 21がシール部材 13の外側に存在していてもその腐食を避けることが可 能となる。
[0059] また、デポマスク 40の開口部 41を、複数のパターン領域 37を連続する 1つのパタ ーンとして形成するような形状としたので、パターン領域 37同士の境界を形成するた めの細い構造物部分をデポマスク 40に無くすことができる。その結果、強度の低い 部分を無くしてデポマスク 40全体の強度を高めることができ、その取り扱いを容易に することができる。
[0060] さらに、上記細い構造物部分がないことから、成膜の際にデポマスク 40の開口部 4 1周りの表面が、対向側基板 12に接触する機会が減少するので、対向側基板 12の 表面に形成されている例えばカラーフィルターやマーク等の損傷を抑制することがで きる。その結果、対向側基板 12の歩留まりを改善できる。
[0061] さらにまた、対向側基板集合体 3における隣り合うパターン領域 37同士を直接に繋 げることができるため、画素領域 15に対するパターン領域 37 (つまり対向電極 21)の 位置ずれマージンを小さくすることができる。また、この対向側基板 12を用いて作成 した液晶表示装置 1は、デポマスク 40の強度や成膜ばらつきに起因して強いられて いた寸法マージン(図 15における寸法 aや図 17における寸法 b)を考慮する必要がな くなるので、その額縁を縮小させることができる。
[0062] ここで、第 1端辺領域 31では、断面図である図 7に図示するように、完全に対向電 極 21を存在させないことが効果的である力 そのことにカ卩え、断面図である図 8に図 示するように、素子側基板 11に対し、シール部材 13の外側で配線 18を覆うように無 機材料や有機榭脂等カゝらなる保護膜 35を形成することも好ましい。
[0063] このように一方の電極である配線 18を保護膜 35で覆って露出させないことにより、 仮に、製造段階で対向電極 21がシール部材 13外側の配線対向領域 25の一部に誤 つて形成されしまったとしても、水分 28等による対向電極 21の腐食をより確実に抑制 できる。
[0064] また、対向電極 21を第 1端辺領域 31の配線対向領域 25に形成しない構成は、実 際の製造段階で、図 8に示すように、保護膜 35により配線 18を十分に覆うことができ ず、保護膜 35に欠損部 43が生じたとしても、配線対向領域 25における配線の腐食 を防止できる冗長設計とも 、うことができる。
[0065] さらに、図 8に示すように、上記保護膜 35を画素領域 15にまで形成し、画素の所謂 開口率の向上や散乱性を有する凹凸反射面の形成のために利用してもよい。
[0066] 尚、本発明は、第 1端辺領域 31の配線対向領域 25に対向電極 21を形成せず、且 つ、第 2端辺領域 32a, 32bの少なくとも一部において、画素領域 15側から対向側基 板 12の端辺に亘つて形成されていればよい。
[0067] 《発明の実施形態 2》
図 4〜図 6は、本発明の実施形態 2を示している。尚、以降の各実施形態では、図 1
〜図 3、図 7及び図 8と同じ部分については同じ符号を付して、その詳細な説明を省 略する。
[0068] 上記実施形態 1では、第 1端辺領域 31に隣り合う 2つの第 2端辺領域 32aについて は、画素領域 15側から対向側基板 12の端辺に亘つて対向電極 21を形成すると共 に、第 1端辺領域 31に対向する第 2端辺領域 32bについては、少なくとも注入口 16 近傍の領域に対向電極 21を形成しないようにしたが、本実施形態では、全ての第 2 端辺領域 32a, 32bにおいて、対向電極 21を画素領域 15側から対向側基板 12の 端辺に亘つて形成している。 [0069] すなわち、液晶表示装置 1の斜視図である図 4に示すように、対向電極 21は、配線 対向領域 25を含む第 1端辺領域 31の一部の領域を除いて、対向側基板 12の全体 に一様に形成されている。そのため、対向電極 21は、 1つの対向側基板 12について 1つの突部 21aを有しており、上記実施形態 1の対向電極 21に比べて単純な形状に なっている。
[0070] 本実施形態の液晶表示装置 1を製造する場合には、平面図である図 5に示すような デポマスク 40を用いて、対向側基板集合体 3に複数のパターン領域 37 (つまり対向 電極 21)を形成する。上記実施形態 1と同様に、デポマスク 40に形成されている開 口部 41は、複数のパターン領域 37を互いに連続する 1つのパターンとして形成する ようになっている。
[0071] そうして、斜視図である図 6に示すように、パターン領域 37によって対向電極 21を 形成した対向側基板集合体 3と、素子側基板集合体 2とをシール部材 13を介して貼 り合わせ、最終的に、各基板領域 4毎に分割することによって液晶表示装置 1を製造 する。
[0072] したがって、本実施形態によっても、上記実施形態 1と同様の効果を得ることができ る。さらに、対向電極 21の形状、及びデポマスク 40の開口部 41の形状を単純にする ことができる。
[0073] 尚、上記実施形態 1及び実施形態 2に示す構成は、第 1端辺領域 31を横切る配線 の数が比較的多い場合や、配線が比較的細い場合に、より好適である。
[0074] 例えば、斜視図である図 15に示すように、 ICドライバ 45を積載した実装形態 (所謂 COG : Chip On Glass)の場合では、第 1端辺領域 31を横切る配線 46が例えば数百 本と比較的多くなることが一般的である。
[0075] 特に、配線 46が ICドライバ 45から扇状に引き出されて斜め配線となる場合には、 各配線 46の間隔が狭くなるので、各配線 46の幅を数/ z m程度に細くする必要があ る。この場合、配線抵抗を低減するために、配線材料には A1や Cr等の単一材料、あ るいはこれら A1等を基材とした合金、又はこれら A1等と他の配線材料との積層物等 の低抵抗材料を用いることが多い。しカゝしながら、一般に、このような配線材料は腐食 を起し易!、ことが知られており、このような細 、配線の腐食は即座に断線となり易 、た め、信頼性の確保がより重要である。
[0076] 本発明の実施形態は、上記のような多数本の斜め配線 46の断線を抑制できる点で 好適であり、表示装置の信頼性を確保できるという効果を奏する。
[0077] 《発明の実施形態 3》
図 9は、液晶表示装置 1の斜視図であって、本発明の実施形態 3を示している。
[0078] 本実施形態では、図 9に示すように、素子側基板 11には 2つの実装領域 17a, 17b が対向側基板 12の隣接する 2つの端辺カゝらそれぞれ側方に延出して形成されてい る。実装領域 17aには、複数の配線 18aが画素領域 15からそれぞれ引き出されてお り、その配線 18aの端部に第 1の端子 19aが形成されている。同様に、実装領域 17b には、複数の配線 18bが画素領域 15からそれぞれ引き出されており、その配線 18b の端部に第 2の端子 19bが形成されている。一方、実装領域 17a, 17bが形成されて V、な 、素子側基板 11の端辺は、対向側基板 12の端辺に揃って配置されて 、る。
[0079] 対向側基板 12には、実装領域 17aに隣接する第 1端辺領域 31aと、実装領域 17b に隣接する第 1端辺領域 31bと、それ以外の 2つの第 2端辺領域 32とが形成されて いる。各第 1端辺領域 31a, 31bには、上記実施形態 1と同様に、配線対向領域 25 がそれぞれ含まれている。そうして、対向電極 21は、各配線対向領域 25に形成され ない一方、各第 2端辺領域 32では画素領域 15側力も対向側基板 12の端辺に亘っ て形成されている。
[0080] このようにすると、上記実施形態 1と同様の効果を得ることができると共に、第 1及び 第 2の端子 19a, 19bを素子側基板 11において互いに隣接する 2つの端辺側に形成 することができる。
[0081] 《発明の実施形態 4》
図 10は、液晶表示装置 1の斜視図であって、本発明の実施形態 4を示している。
[0082] 本実施形態では、図 10に示すように、素子側基板 11には 2つの実装領域 17a, 17 bが対向側基板 12の対向する 2つの端辺からそれぞれ側方に延出して形成されてい る。実装領域 17aには、複数の配線 18aが画素領域 15からそれぞれ引き出されてお り、その配線 18aの端部に第 1の端子 19aが形成されている。同様に、実装領域 17b には、複数の配線 18bが画素領域 15からそれぞれ引き出されており、その配線 18b の端部に第 2の端子 19bが形成されている。一方、実装領域 17a, 17bが形成されて V、な 、素子側基板 11の端辺は、対向側基板 12の端辺に揃って配置されて 、る。
[0083] 対向側基板 12の 2辺には第 1端辺領域 31a, 3 lbがそれぞれ形成されている。す なわち、対向側基板 12には、実装領域 17a, 17bに隣接する 2つの第 1端辺領域 31 aと、実装領域 17bに隣接する第 1端辺領域 31bと、それ以外の 2つの第 2端辺領域 3 2とが形成されている。各第 1端辺領域 31a, 31bには、上記実施形態 1と同様に、配 線対向領域 25がそれぞれ含まれている。そうして、対向電極 21は、互いに対向する 各配線対向領域 25に形成されない一方、互いに対向する各第 2端辺領域 32では画 素領域 15側力 対向側基板 12の端辺に亘つて形成されている。
[0084] このようにすると、上記実施形態 1と同様の効果を得ることができると共に、第 1及び 第 2の端子 19a, 19bを素子側基板 11における互いに対向する 2つの端辺側に形成 することができる。
[0085] 上述したように、第 1及び第 2の端子 19a, 19bを素子側基板 11の複数の端辺側に 設けることにより、以下に説明するように多様な構成の液晶表示装置 1のモジュール が得られる。
[0086] まず、第 1の構成として、斜視図である図 14に示すように、液晶表示装置 1が上記 第 1及び第 2の端子 19a, 19bを有する第 1の液晶セル 5と、別個の表示デバイス部( 外部デバイス)である第 2の液晶セル 6とを備え、第 1の端子 19aが第 1の液晶セル 5 に信号を入力するための信号入力端子である一方、第 2の端子 19bが第 2の液晶セ ル 6への信号出力端子である構成が可能である。
[0087] 一方の第 1端辺領域 31bに形成されている配線 18bには、第 2の端子 19bを介して 第 2の液晶セル 6が接続されている。第 2の液晶セル 6は、対向配置された一対の基 板である素子側基板 51及び対向側基板 52を有している。素子側基板 51と対向側 基板 52との間には液晶層が第 2のシール部材 53によって封入されている。この液晶 層は、第 2のシール部材 53に設けられた注入口 58を介して、素子側基板 51と対向 側基板 52との間に充填されている。
[0088] 素子側基板 51には画素領域 54から引き出された配線に端子 55が形成されている 。そうして、第 1の液晶セル 5及び第 2の液晶セル 6は、端子 55と上記第 2の端子 19b との間でフレキシブルプリント基板 (FPC) 56を介して接続されて 、る。
[0089] 第 2の液晶セル 6の駆動は、第 1の液晶セル 5を介して印加される外部信号、又は 第 1の液晶セル 5内に多結晶シリコンを基材として形成された駆動回路から出力され る出力信号によって行う。このような第 1の液晶セル 5の表示面と第 2の液晶セル 6の 表示面とは、同一平面上に配置されたり、互いに背面が接するように、云わば両面表 示装置を形成するように配置される。
[0090] 次に、第 2の構成として、例えば図 10に示すように、液晶表示装置 1の液晶セルに おける第 1の端子 19aをその液晶セルへの信号入力端子にすると共に、第 2の端子 1 9bを液晶セル内に組み込まれた表示以外の機能を有する回路、例えば光学センサ 一回路、温度センサー回路及びオーディオ回路等への信号入出力端子とする構成 が可能である。
[0091] また、第 3の構成として、液晶表示装置 1の液晶セルにおける第 1の端子 19aをその 液晶セルへの信号入力端子にすると共に、第 2の端子 19bをその液晶セルの外部の デバイス、例えばタツチパネル、オーディオ回路及びバックライト制御部等への信号 入出力端子とする構成が可能である。バックライト制御部は上記液晶セル自身のバッ クライト制御部ではなぐ別個の他の液晶セルのものであってもよい。
[0092] 次に、第 4の構成として、液晶表示装置 1の第 1の端子 19a及び第 2の端子 19bの 双方が、その液晶セルの表示に係る信号入力端子である構成とすることが可能であ る。例えば、第 1の端子 19a及び第 2の端子 19bの一方を 2値表示駆動の端子であり 、他方が階調表示駆動用の端子であるようにして、互いに機能が異なる端子とするこ とが可能である。
[0093] ここで、図 10及び図 14に示すように、画素領域 15を挟んで第 1及び第 2の端子 19 a, 19bを対向して配置させた場合には、上記実施形態 1〜3で説明した発明とは独 立した別の発明として、液晶表示装置 1におけるシール部材 57を画素領域 15を囲 む枠状の閉パターンに形成し、所謂滴下注入方式によって液晶を封入することが望 ましい。
[0094] 特に、第 2の端子 19bを他の液晶セル (第 2の液晶セル 6)への出力端子とする上記 構成 1の場合には、図 14に図示するように、第 1の液晶セル 5のシール部材 57を画 素領域 15を囲む閉パターンとし、所謂滴下注入方式によって液晶を充填する一方、 小型の第 2の液晶セル 6は第 2のシール部材 53の一部に注入口である開口部 58を 設けて所謂真空注入方式によって液晶を充填することが好ましい。
[0095] 滴下注入法は、通常、液晶の注入時間を短縮する観点から、パソコンやテレビ等の 表示画面として用いられる比較的大型の液晶セルに対して適用される。しかし、本発 明では、他の新たな利点に着目されていることに注目されたい。これに関して以下に 説明する。
[0096] 本実施形態では、所謂メイン液晶である第 1の液晶セル 5と、サブ液晶である第 2の 液晶セル 6とを組み合わせたモジュールにおいて、それぞれの液晶セル 5, 6に適切 な液晶注入方式を採用すると共に、第 1の液晶セル 5における第 1及び第 2の端子 1 9a, 19bの配置の多様性を確保し、またその第 1の液晶セル 5のマザ一基板への効 率的な配置を実現するために滴下注入方式を利用した点に特徴がある。
[0097] すなわち、仮に、複数の端辺に第 1の端子又は第 2の端子が形成された第 1の液晶 セルに対し、上記端子が形成されて!、な 、端辺にシール部材の注入口を設けようと すると、複数の第 1の液晶セルを互いに連ねて配置させることができず、注入ロを設 けた液晶セルの端辺に接するマザ一基板の領域に、本来不要な基板領域 (所謂捨 て基板)が必要となるため、製造効率が悪化してしまう。
[0098] 一方、敢えて上記端子が形成されている端辺に注入口を設けようとすると、液晶を 満たした容器に注入口を浸した際に、その注入口が設けられて ヽる端辺の上記端子 が液晶に浸力つてしまう。その結果、上記端子の表面に付着している不純物が液晶 に混入し、液晶の汚染を引き起こしてしまう。この液晶の汚染は、 100%に近い電圧 保持率を有する液晶を用いる TFT等のアクティブマトリクス型の液晶セルにとって、 表示ムラの原因となり得る。
[0099] したがって、画素領域を挟んで対向する液晶セルの端辺にそれぞれ端子を設ける 場合には、液晶セルを効率よくマザ一基板に配置することを優先させると、端子を有 する端辺に注入口を形成する必要があることから、液晶に汚染の懸念が生じるため、 通常は、液晶の電圧保持率が 80%程度と比較的低い STN等の液晶を用いる単純 マトリクス型の液晶セルのように、信頼性の確保が比較的容易なものについて適用さ れる。
[0100] また、シール部材 13の封止榭脂が硬化する前に、封止榭脂が自重によって広がる 虞れがあり、その結果、上記端子が封止榭脂により覆われて、 FPCの上記端子への 圧着不良が生じる問題もある。そのため、封止榭脂が多少広がっても上記端子を覆 わないように端子の長さ(図 14における寸法 L1又は L2)を 4〜5mm程度に長くした り、注入口を避けるように端子数を減らす必要がある。その結果として、第 1の液晶セ ルの外形が大きくなつてしまったり、第 1及び第 2の端子の数や位置の自由度が低下 してしまう不都合があった。特に、第 2の端子の数が減ると信号を入出力すべき外部 デバイス(図 14では第 2の液晶セル 6を指す)の構成の自由度が狭まるので、表示装 置全体としての魅力が損なわれる。
[0101] これに対し、本実施形態では、上述のように第 1の液晶セル 5のシール部材 57を閉 ノターンに形成して、滴下注入方式によって液晶を充填するようにしたので、真空注 入法で必須となる注入口を不要とすることができる。したがって、第 1の液晶セル 5の 表示信頼性を低下させることなぐ複数の第 1の液晶セル 5を上記第 1及び第 2の端 子 19a, 19bの無い端辺同士が接するようにマザ一基板に効率よく連ねて配置できる
[0102] さらに、本実施形態の構成では、第 1の液晶セル 5に注入口が存在しないので、シ 一ル部材 57の封止榭脂によって第 2の端子 19bの数や位置に制限が加えられること がなぐ例えば第 2の端子 19bの長さ(図 15における寸法 L2)として 2mm未満とする ことも可能となる。よって、第 1の液晶セル 5を小型化できると共に、表示装置の設計 の自由度を高めることができ、この表示装置を用いた電子機器を多様な構成にでき るという効果を奏する。
[0103] また、電圧保持率の高い液晶を第 1の液晶セル 5に充填することができるので、第 1 の液晶セル 5をアクティブマトリクス型の液晶セルに構成することが可能となり、品位 の良 、多様な表示装置を得ることができる。
[0104] ところで、上述した滴下注入方式は大型の液晶セルへの液晶の充填方法として優 れているが、小型の液晶セルの場合には滴下すべき液晶量の制御が難しぐ液晶セ ルの容積に見合う過不足無い適切な量の液晶を充填させることが困難である。 [0105] これに対し、本実施形態における第 2の液晶セル 6は小型であるため、真空注入方 式であっても注入に要する時間は短い。すなわち、液晶の注入方法としては滴下注 入方式ではなく真空注入方式で十分である。つまり、ペアとなる第 1の液晶セル 5及 び第 2の液晶セル 6の注入方式を同一にする必要はない。
[0106] このように、第 1の液晶セル 5は、第 1の端子 19a及び第 2の端子 19bを有しながらも 滴下注入方式による注入口のな 、構造であるため、マザ一基板に効率よく配置でき る一方、第 2の液晶セル 6は、その 1つの端辺のみに端子 55がある 3辺フリー構造で あるので、注入口 58を有する構造でありながらマザ一基板に効率よく配置できる。
[0107] したがって、第 1の液晶セル 5及び第 2の液晶セル 6が互いに接続されている構成と なる 2画面表示型の液晶表示装置 1においては、大型の第 1の液晶セル 5を滴下注 入方式とする一方、小型の第 2の液晶セル 6を真空注入方式とすることにより、効率よ く製造できる構成となることが理解されよう。
[0108] また、第 1の液晶セル 5を製造する場合には、斜視図である図 11に示すように、閉 ノターンのシール部材 57を介して貼り合わせたマザ一基板である素子側基板集合 体 2及び対向側基板集合体 3を一度に個々の液晶セルに分断せずに、図 12に示す ように、一旦、複数の第 1の液晶セル 5がー列に連なった状態 (これを短冊と称する) に分断する。
[0109] このことにより、短冊 63に対してハンドリング及び各種検査等を一括して行うことが できるため、製造効率の向上を図ることができる。尚、第 2の液晶セル 6は 3辺フリー 構造であるので、第 1の液晶セル 5と同様に、短冊を用いた効率的な製造が可能で あることはいうまでもない。その後、斜視図である図 13に示すように、短冊 63をさらに 分断することによって、複数の第 1の液晶セル 5を製造する。
[0110] 尚、第 1の端子 19aの長さ L1と、第 2の端子 19bの長さ L2とを必ずしも同一にする 必要はない。例えば、一方の第 1端辺領域 31aに対して第 1の端子 19aの他に外付 けのドライバ ICを実装し、他方の第 1端辺領域 31bに第 2の端子 19bのみを設ける場 合には、 L1 >L2としてもよ!/ヽ。
[0111] 第 2の液晶セル 6は、例えば、 EL表示セルや、単純マトリクス型の液晶セル等の他 の表示セルとしてもよい。また、アクティブマトリクス型の第 1の液晶セル 5と、他の方 式の第 2の表示セルとが組み合わさった表示装置としてもよい。
[0112] また、図 14に示すように、製造工程を管理するために用いられる管理マーク 61や 管理バーコード 62等を、第 2の端子 19bが設けられていない実装領域 17bの空き領 域に配置してもよい。例えば第 2の端子 19bに接続されている外部デバイスの機能が 少ない場合には、第 2の端子 19bの数は比較的少なくなる。したがって、この第 2の 端子 19bが形成されている第 1端辺領域 31bを上記管理マーク 61等を配置する領 域として有効に利用できる。
[0113] 特に、第 1の端子 19aは、第 1の液晶セル 5の駆動と、第 2の表示セル 6 (外部デバ イス)の駆動とに係る端子である。したがって、第 1の端子 19aの数は比較的多い。ま た、この第 1の端子 19aが形成されている第 1端辺領域 31aにドライバ ICを実装した 場合にも、この第 1端辺領域 31aの空き領域は小さくなるので、いずれにしても管理 マーク 61等を配置できる空き領域は少ない。すなわち、図 14のような構成が管理マ ーク 61や TEG等を配置する上で都合がよい構成となる。
産業上の利用可能性
[0114] 以上説明したように、本発明は、成膜用デポマスク、対向側基板集合体及び表示 装置について有用であり、特に、上記デポマスクの強度を高めてその取り扱いを容易 にする場合に適している。

Claims

請求の範囲
[1] 表示装置を構成する基板領域が複数集合したマザ一基板に対し、各前記基板領 域の一部に前記表示装置用のパターン領域を形成するための成膜用デポマスクで あって、
複数の前記パターン領域を互いに連続する 1つのパターンとして形成するための 開口部を備えて 、ることを特徴とする成膜用デポマスク。
[2] 表示装置を構成する対向側基板が複数集合した対向側基板集合体であって、 各前記対向側基板の一部には、前記表示装置用のパターン領域がそれぞれ形成 され、
複数の前記パターン領域は、互いに連続する 1つのパターンとして形成されている ことを特徴とする対向側基板集合体。
[3] 互いに対向して配置されると共に矩形状に形成された第 1基板及び第 2基板と、 前記第 1基板及び第 2基板の間にシール部材により囲まれて封入された表示媒体 層とを備えた表示装置であって、
前記第 1基板は、前記シール部材の内側に画素領域が形成されると共に、前記画 素領域力 前記シール部材の外側へ引き出された配線が形成され、
前記第 2基板は、前記画素領域に少なくとも一部が対向する対向電極が形成され ると共に、前記シール部材の外側で前記第 2基板の端辺に沿って延びる領域であつ て、前記配線に対向する配線対向領域を含む第 1端辺領域と、前記第 1端辺領域以 外の領域であって前記シール部材の外側で前記第 2基板の端辺に沿って延びる第 2端辺領域とを有し、
前記対向電極は、前記第 1端辺領域の配線対向領域に形成されない一方、前記 第 2端辺領域の少なくとも一部において前記画素領域側力 当該第 2端辺領域にお ける前記第 2基板の端辺に亘つて形成されていることを特徴とする表示装置。
[4] 前記対向電極は、前記第 1端辺領域に隣り合う第 2端辺領域において、前記画素 領域側から当該第 2端辺領域における前記第 2基板の端辺に亘つて形成されている ことを特徴とする請求項 3に記載の表示装置。
[5] 前記対向電極は、前記第 1端辺領域に前記画素領域を介して対向する第 2端辺領 域において、前記画素領域側力 当該第 2端辺領域における前記第 2基板の端辺 に亘つて形成されていることを特徴とする請求項 3に記載の表示装置。
[6] 前記対向電極は、各前記第 2端辺領域のそれぞれにお 、て、前記画素領域側から 当該第 2端辺領域における前記第 2基板の端辺に亘つて形成されていることを特徴と する請求項 3に記載の表示装置。
[7] 前記第 1基板には、前記シール部材の外側で前記配線を覆う保護膜が形成されて
V、ることを特徴とする請求項 3に記載の表示装置。
[8] 前記第 1端辺領域が前記第 2基板の 2辺にそれぞれ形成され、
2つの前記第 1端辺領域の一方に形成されている配線には、該配線に接続された 端子を介して外部デバイスが接続され、
前記シール部材の形状が閉パターンになっていることを特徴とする請求項 3に記載 の表示装置。
[9] 前記表示媒体層は液晶層であり、
前記外部デバイスは表示デバイス部であることを特徴とする請求項 8に記載の表示 装置。
[10] 前記表示デバイス部は、対向配置された一対の基板と、該一対の基板の間に第 2 のシール部材によって封入された液晶層とを備え、
前記表示デバイス部の液晶層は、前記第 2のシール部材に設けられた注入口を介 して、前記一対の基板の間に充填されていることを特徴とする請求項 9に記載の表示 装置。
PCT/JP2006/320486 2006-03-07 2006-10-13 成膜用デポマスク、対向側基板集合体及び表示装置 WO2007102247A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-060860 2006-03-07
JP2006060860 2006-03-07

Publications (1)

Publication Number Publication Date
WO2007102247A1 true WO2007102247A1 (ja) 2007-09-13

Family

ID=38474690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320486 WO2007102247A1 (ja) 2006-03-07 2006-10-13 成膜用デポマスク、対向側基板集合体及び表示装置

Country Status (1)

Country Link
WO (1) WO2007102247A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10282480A (ja) * 1997-04-04 1998-10-23 Sanyo Electric Co Ltd マザーガラス基板
JP2005084514A (ja) * 2003-09-10 2005-03-31 Seiko Epson Corp 表示装置及び表示装置用基板及び表示装置の製造方法並びに表示装置用基板の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10282480A (ja) * 1997-04-04 1998-10-23 Sanyo Electric Co Ltd マザーガラス基板
JP2005084514A (ja) * 2003-09-10 2005-03-31 Seiko Epson Corp 表示装置及び表示装置用基板及び表示装置の製造方法並びに表示装置用基板の製造方法

Similar Documents

Publication Publication Date Title
KR100970925B1 (ko) 액정표시장치 및 이의 제조방법
US8310609B2 (en) Liquid crystal device, electronic apparatus, and method of manufacturing liquid crystal device
US8325311B2 (en) Liquid crystal display device and method of fabricating the same
US8730445B2 (en) Liquid crystal display device with first and second substrates sealed by sealing material with an end of protective material on second substrate being disposed between inner and outer wall surfaces of the sealing material
EP2138890A1 (en) Liquid cystal display device
TWI446064B (zh) 顯示面板
US20130002993A1 (en) Liquid crystal display
WO2012147672A1 (ja) 表示モジュール及び表示装置
JP5627179B2 (ja) 最小面積の液晶表示素子
US20110255034A1 (en) Display device
WO1997016764A1 (fr) Procede de fabrication d'un panneau a cristaux liquides
US20080211754A1 (en) Display device, method of manufacturing the same and display panel for the same
JP2009237410A (ja) 液晶パネル、液晶表示装置及びその製造方法
TWI540361B (zh) 顯示面板之母板的切割方法
US7675602B2 (en) Board device and method for manufacturing display element
US8072571B2 (en) Display device
US7659957B2 (en) Liquid crystal display panel and fabricating method thereof
US10866472B2 (en) Mounting substrate and display panel
JP2008203448A (ja) 液晶表示装置
JP2008090147A (ja) 接続端子基板及びこれを用いた電子装置
JP4648422B2 (ja) 表示素子の製造方法
WO2007102247A1 (ja) 成膜用デポマスク、対向側基板集合体及び表示装置
US20120086900A1 (en) Common electrode panel and method for manufacturing the same
KR20050083433A (ko) 수평 전계형 액정 표시 장치 및 그 제조 방법
KR101140020B1 (ko) 정전기 방지를 위한 액정표시소자 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP