WO2007100026A1 - Dc motor and dc vibration motor - Google Patents

Dc motor and dc vibration motor Download PDF

Info

Publication number
WO2007100026A1
WO2007100026A1 PCT/JP2007/053868 JP2007053868W WO2007100026A1 WO 2007100026 A1 WO2007100026 A1 WO 2007100026A1 JP 2007053868 W JP2007053868 W JP 2007053868W WO 2007100026 A1 WO2007100026 A1 WO 2007100026A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnetic poles
motor
permanent magnet
pole
Prior art date
Application number
PCT/JP2007/053868
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoyuki Kugou
Original Assignee
Namiki Seimitsu Houseki Kabushikikaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Seimitsu Houseki Kabushikikaisha filed Critical Namiki Seimitsu Houseki Kabushikikaisha
Publication of WO2007100026A1 publication Critical patent/WO2007100026A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • B06B1/045Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism using vibrating magnet, armature or coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/145Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having an annular armature coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • H02K7/061Means for converting reciprocating motion into rotary motion or vice versa using rotary unbalanced masses
    • H02K7/063Means for converting reciprocating motion into rotary motion or vice versa using rotary unbalanced masses integrally combined with motor parts, e.g. motors with eccentric rotors

Definitions

  • the present invention relates to a DC motor suitable as a drive source for various small devices and a vibration mode using the same.
  • a mouth motor (vibration motor) is used.
  • micro motors are also used for medical devices (for example, the lens drive mechanism at the end of an endoscope or the device for diagnosis and treatment in the uterus).
  • the field of use is expected to expand further.
  • brushed motors have a simple drive power supply and can be manufactured at low cost.
  • the flat vibration motor disclosed in Patent Document 1 has a peripheral force s of the sliding contact of the brush. Due to its large size, the sliding contact is particularly worn.
  • motors without sliding contacts such as brushless motors and stepping motors have a long service life.
  • the conventional brushless motor requires a complicated driver circuit to control the magnetic pole and rotation mode.
  • the manufacturing cost is very high compared with a motor with a brush.
  • the magnets and the stator structure are complicated for the subbing motor, which is also very expensive to manufacture.
  • a brushless motor has also been proposed (for example, Patent Document 2).
  • Patent Document 1 JP-A-6-205565
  • Patent Document 2 Japanese Patent Laid-Open No. 10-174414
  • a brushless motor as disclosed in Patent Document 2 is a rotor having a special and complicated structure.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, and to control complicated control circuits, etc.
  • the inventors of the present invention have developed a brushless motor structure that can smoothly drive a rotor with a simple control circuit without using a complicated structure as in Patent Document 2.
  • stator was placed at intervals to surround the magnet rotor.
  • the cross-sectional area of the yoke constituting them is
  • the magnetic rotor By gradually increasing in the direction, the magnetic rotor is unidirectionally applied to the magnet rotor by providing a gradient in the magnetic field strength.
  • Each magnetic field has a gradient of the magnetic field.
  • the cross-sectional area of the magnet (Y) is increased gradually toward the rotor rotation direction, and two magnetic poles (
  • the rotor includes a permanent magnet
  • the stator includes a plurality of poles composed of electromagnets.
  • a motor (brushless motor) of a type that includes a plurality of magnetic poles, each of which has a permanent magnet and a rotor that is composed of electromagnets. ) It is possible to realize S
  • the present invention has been made on the basis of the above-described knowledge, and has a complicated control circuit or a conventional one.
  • the DC motor and DC vibration motor of the present invention have the following characteristics.
  • One of the rotor and the stator is provided with a permanent magnet (M) and the other is configured with an electromagnet.
  • n is an integer greater than or equal to 1
  • Magnetic poles (G) adjacent in the circumferential direction around the rotor rotation axis (however, if the number of magnetic poles (G) is two
  • each magnetic pole (G) has a yoke (Y) having an arc shape along the circumferential direction around the rotor rotation axis.
  • a DC motor characterized in that the cross-sectional area of each yoke (Y) is gradually increased in the direction of rotor rotation or counter-rotator rotation in accordance with the following conditions (i) and (mouth).
  • the rotor has a permanent magnet (M) and the stator has a magnetic pole (G) composed of an electromagnet.
  • the stator has a permanent magnet (M), and the rotor has a magnetic pole (G) composed of an electromagnet.
  • the plurality of magnetic poles (G) are each composed of a yoke (Y), and the rotor rotates outside or inside the plurality of yokes (Y).
  • the plurality of magnetic poles (G) are each composed of a yoke (Y), and the rotor rotates outside or inside the plurality of yokes (Y).
  • a direct current motor having a ring-shaped excitation coil.
  • the plurality of magnetic poles (G) are each constituted by an armature coil provided with a yoke (Y). DC motor.
  • a DC vibration motor characterized in that the rotor is provided with an eccentric weight or has an eccentric structure in addition to the DC motor of [1] to [6] above.
  • the rotor is configured to overlap with a disk-shaped data body having a permanent magnet (M) and a part of the surface of the disk with respect to the rotor body. Eccentric connected to
  • the rotor is configured in a disk shape, and one of the disks is
  • the main part of the rotor is a permanent magnet having an eccentric structure.
  • a direct current vibration motor comprising a stone (M).
  • the direct current motor and the direct current vibration motor of the present invention are configured so that the polarities of the two magnetic poles (G) are repeated in a timely manner.
  • the body also has a gradient in the magnetic field strength by gradually increasing the cross-sectional area of the yoke in the circumferential direction around the roll axis (for example, increasing at least one of the height, width, and thickness of the yoke). Therefore, it can be manufactured at a very low cost.
  • the rotor includes a permanent magnet
  • the stator includes a plurality of magnetic poles configured by electromagnets.
  • such a motor has a simple structure as described above, so it has a long service life and a small size.
  • a size of 3mm or less can be easily realized.
  • a DC motor of the present invention includes a permanent magnet (M) on one of a rotor and a stator, and the other side.
  • M permanent magnet
  • the magnetic pole is composed of an electromagnet, and the rotor is moved by the interaction with the permanent magnet (M).
  • magnetic poles (G) providing torque are provided at intervals in the circumferential direction around the rotor rotation axis, and adjacent magnetic poles around the rotor rotation axis ( G)
  • Each magnetic pole (G) has an arc shape along the circumferential direction around the rotor rotation axis.
  • the yoke (Y) has a structure in which the cross-sectional area of each yoke (Y) is sequentially increased toward the rotor rotation direction or the counter-rotor rotation direction in accordance with the following conditions (i) and (mouth).
  • the rotor has a permanent magnet (M) and the stator has a magnetic pole (G) composed of an electromagnet.
  • the stator has a permanent magnet (M), and the rotor has a magnetic pole (G) composed of an electromagnet.
  • Such a direct current motor of the present invention includes (i) a type in which the rotor includes a permanent magnet (M) and the stator includes a plurality of magnetic poles (G) made of electromagnetic stone, and (ii) the stator is permanent. Any type of motor with a magnet (M) and a rotor with multiple magnetic poles (G) composed of electromagnets
  • the type (i) is a brushless motor
  • the type (ii) is a brushed motor
  • both types (i) and (ii) above can be used as motors of either inner rotor type or after rotor type.
  • Each of the plurality of magnetic poles (G) may be composed of an armature coil, but the claw pole type
  • each of the plurality of magnetic poles (G) is composed of a yoke (Y), and the outside of the plurality of yokes (Y)
  • FIG. 1 to FIG. 5 show an embodiment of the inner rotor type brushless motor of the type (i) among the DC motors of the present invention
  • FIG. 1 shows the case in a cross-sectional state.
  • Plan view Fig. 2 is a cross-sectional view taken along line II-II in Fig. 1, showing the rotor side permanent magnet (M) omitted
  • Fig. 3 is an exploded perspective view
  • Fig. 4 is a part of case 1.
  • FIG. 5 shows the case 1 with part of the case 1 and the permanent magnet (M) omitted.
  • FIG. The present embodiment shows an example of a DC vibration motor that does not have an output shaft.
  • 1 is a case composed of case members la and lb
  • 2 is a ring-shaped stator housed in the case 1
  • 3 is a rotor rotatably arranged in the stator 2.
  • the stator 2 includes a pair of yoke units 4a, 4b and an excitation coil 5.
  • the Each yoke unit 4a, 4b has a ring-shaped main body 40a, 40b and a main body 40a
  • 40b consists of arc-shaped yokes (Ya) and (Yb) formed along almost half of the circumference.
  • Both yoke units 4a, 4b are assembled such that their arcuate yokes (Ya), (Yb) are held together in the circumferential direction in a state of being opposed to each other, thereby forming a yoke unit assembly 6. Then, on the outside of the yokes (Ya) and (Yb) constituting this yoke unit assembly 6, there is a rotation around the rotor rotation axis.
  • a ring-shaped exciting coil 5 along the circumferential direction is externally fitted.
  • the yokes (Ya) and (Yb) form magnetic poles (Ga) and (Gb) in a circumferential direction around the rotor rotation axis of 180 °, but they have different polarities.
  • rotor 3 force S Torque is applied to the rotor 3 by interaction with the permanent magnet (M) provided.
  • the magnetic field strength at each of the magnetic poles (Ga) and (Gb) depends on the rotor rotation direction (direction indicated by the arrow in FIG. 1) due to the gradual increase in the height (cross-sectional area) of the yoke (Ya) and (Yb). ), That is, “Minimum
  • the area gradually increases from “area” to “maximum cross-sectional area”.
  • the cross-sectional area of the yoke (Ya), (Yb) is gradually increased in the circumferential direction around the rotor rotation axis.
  • the thickness of the yoke may be changed, and the form is arbitrary.
  • the cross-sectional areas of (Y a) and (Yb) increase stepwise (for example, staircase)
  • It may be a structure that increases gradually.
  • the rotor 3 is a so-called magnet rotor, and in this embodiment, an eccentric way h
  • the permanent magnet (M), which also serves as an eccentric weight, has a rotor rotation as shown in Fig. 1.
  • the angular separation of the legs is 200 to 250 °, more preferably about 210 to 240 °, particularly preferably about 220 to 230 ° from the viewpoint of motor driving performance and vibration performance.
  • the shape of the permanent magnet ( ⁇ ) is arbitrary, for example, it should not have an eccentric weight function.
  • the rotor 3 is fixed to a fixed shaft 7 fixed to the center of the case 1 via a bearing 8 (metal bearing) so as to be rotatable and fixed to the outside of the holding ring 9.
  • Said flat It consists of a permanent magnet (M) with a C-shaped surface (or almost semi-ring shape).
  • the permanent magnet (M) includes two magnetic poles 10A (S pole) and 10B (N pole).
  • At least one magnetic pole is constituted by the permanent magnet (M).
  • Torque is applied to the rotor 3 due to the interaction with the magnetic poles (Ga) and (Gb) composed of electromagnets.
  • reference numeral 11 denotes a roller for retaining oil in the bearing 8 and reducing contact resistance.
  • the rotor 3 is rotated with respect to the fixed shaft 7 fixed to the case 1.
  • a structure in which the shaft is rotatably supported by the case 1 and the rotor 3 is fixed to the shaft may be used.
  • the force S can be set to 2n or more (where n is an integer of 1 or more) of magnetic poles (G).
  • Figure 6 shows a DC motor with four magnetic poles (Ga), (Gb), (Ga), (Gb).
  • FIG. 6 is a plan view showing an embodiment (inner rotor type motor of the above type (i) same as the embodiment of FIGS. 1 to 5) in a cross-sectional state.
  • inner rotor type motor of the above type (i) same as the embodiment of FIGS. 1 to 5) in a cross-sectional state.
  • the magnetic poles (G) adjacent in the circumferential direction around the rotor rotation axis are different.
  • the stator is Each yoke unit 4a, 4b (not shown, see FIGS. 3 to 5) is almost 1/4 of the main body 40a, 40b (also not shown, see FIGS. 3 to 5).
  • each main body 40a, 40b opposes 180 degrees.
  • the yoke units 4a and 4b are assembled so that the arc-shaped yokes (Ya) and Ya) and the yokes (Yb (Yb)) are alternately held in the circumferential direction in an opposed state, York
  • a knit assembly 6 is constructed. Ring-shaped excitation along the circumferential direction around the rotor rotation axis is provided outside the yokes (Ya), (Ya) and the yokes (Yb), (Yb) that constitute the yoke unit assembly 6.
  • the magnetic coil 5 is externally fitted.
  • the yokes (Ya), (Ya) are positioned in a 180 ° relationship in the circumferential direction.
  • the magnetic poles (Gb) and (Gb) are located at 180 ° and are excited to the same polarity.
  • the magnetic field strength at each magnetic pole (Ga), (Ga) and magnetic pole (Gb), (Gb) is the yoke (Ya), (Ya)
  • the height (cross-sectional area) of the yoke (Yb) is gradually increased.
  • the rotor 3 of the embodiment of Fig. 6 is also a so-called magnet rotor, and is composed of four substantially quarter-circular permanent magnets.
  • a disk-shaped rotor body is formed by connecting stones (M), and these permanent magnets (M) make magnetic poles (G)
  • N pole is configured.
  • the magnetic poles 10A to 10B Any one of these forces or two or three may be provided.
  • the number of magnetic poles (G) can be 2n (where n is an integer equal to or greater than 1).
  • the motor structure can be simplified and manufactured easily. Sex 'Manufacturing Cost
  • a structure with a magnetic pole (G) is preferred.
  • the permanent magnet (M) and the form of the magnetic pole 10 constituted thereby are special.
  • Figures 7 (A) to (G) show examples of the permanent magnet (M) applied to the rotor of a DC motor of the type having two magnetic poles (G) and the magnetic pole 10 composed of the permanent magnet (M) ( Diagonal in each figure
  • FIGs. 7 (A) and (B) show the permanent magnet (M) combined with the function of the eccentric weight.
  • the number of magnetic poles 10 relative to the number of magnetic poles (G) is also arbitrary. Basically, if there is at least one magnetic pole 10 (N pole or S pole), the polarity of magnetic pole (G) From the standpoint of ease of switching, the number of magnetic poles (G) and magnetic poles 10 is preferably the same. That is, in the case of having two magnetic poles (G), as shown in FIG. 1, two magnetic poles 10 of N pole and S pole are provided, and in the case of having four magnetic poles (G), FIG. As shown in Fig. 4, four magnetic poles are arranged by alternately arranging N poles and S poles in the circumferential direction.
  • FIG. 8 schematically shows (in principle) one embodiment of the outer rotor type brushless motor of the type (i) described above among the DC motors of the present invention.
  • the rotor (motor cover) 2x is a stator arranged inside the rotor 3x. Since the basic structure of this stator 2x is the same as that of the stator 2 in the embodiment of FIG. 1 and FIG. 5 including the configuration of the yokes (Ya), (Yb) and the magnetic poles (Ga), (Gb), the same reference numerals are used. The detailed explanation is attached.
  • stator 2 according to the present embodiment, the ribs along the circumferential direction around the rotor rotation axis.
  • the yokes (Ya) and (Yb) are arranged outside the ring-shaped excitation coil 5. Also, these yokes (Ya) and (Yb) are arranged outside the ring-shaped excitation coil 5. Also, these yokes
  • (Ya), (Yb) is also a pair of yoke units 4a having the same structure as the embodiment of FIGS.
  • the yokes (Ya) and (Yb) may be disposed inside the ring-shaped exciting coil 5.
  • a permanent magnet (M) having a predetermined length in the circumferential direction is fixed inside the rotor 3x,
  • Magnetic pole 10 (N pole in this embodiment).
  • the DC motor of the type (ii) described above i.e., the stator has a permanent magnet.
  • FIG. 9 schematically shows an embodiment of the inner rotor type brush motor of the type (ii).
  • 2y is a stator with a permanent magnet (M), and 3y is placed inside this stator 2y.
  • M permanent magnet
  • the basic structure of the rotor 3y is the same as that of the stator 2 in the embodiment of FIGS. 1 to 5 including the configuration of the yokes (Ya), (Yb) and the magnetic poles (Ga), (Gb).
  • stator 2y is a permanent magnet (M)
  • a ring-like shape along the circumferential direction around the rotor rotation axis.
  • the yokes (Ya) and (Yb) are arranged inside the exciting coil 5.
  • the yokes (Ya) and (Yb) are also constituted by a part of a pair of yoke units 4a and 4b (not shown) having the same structure as that of the embodiment of FIGS.
  • the yokes (Ya), (Yb) may be arranged outside the ring-shaped exciting coil 5 as in the embodiment of FIG.
  • a permanent magnet (M) having a predetermined length in the circumferential direction is fixed inside the stator 2y.
  • FIG. 10 schematically shows an embodiment of the outer rotor type brush motor of the type (ii).
  • 3z is a rotor
  • 2z is a permanent magnet (M) placed inside this rotor 3z.
  • a stator provided.
  • the structure of the rotor 3z itself is the yoke (Ya), (Yb) or magnetic pole (Ga), (Gb)
  • stator 2 in the embodiment of FIGS.
  • stator 2z is provided with a permanent magnet (M).
  • the stator 2z has a disk-shaped stator body by connecting two substantially semicircular permanent magnets (M).
  • This permanent magnet (M) forms two magnetic poles 10A (S pole) and 10B (N pole). It is.
  • the number of magnetic poles (G) can be any number greater than 2n (where n is an integer greater than or equal to 1). However, as a particularly rational structure, a structure with two or four magnetic poles (G) is preferred.
  • the permanent magnet (M) and the magnetic pole 10 constituted by the permanent magnet (M) may have any configuration as long as torque can be applied to the rotor 3 by interaction with the magnetic pole (G) constituted by the electromagnet. .
  • Magnetic pole (G) constituted by the electromagnet.
  • the number of magnetic poles 10 with respect to the number of magnetic poles 10) is arbitrary, and basically at least one magnetic pole 10 (N pole or S pole) is sufficient, but from the standpoint of ease of switching the polarity of the magnetic pole (G). With the magnetic pole (G)
  • the number of magnetic poles 10 is preferably the same. That is, if you have two magnetic poles (G),
  • a plurality of magnetic poles (G) are respectively provided in the same manner as the claw pole type motor.
  • the force S which is an arrangement of the ring-shaped exciting coils 5, and the magnetic poles (G)
  • It may be composed of armature coils with Y).
  • FIG. 11 is a perspective view showing an embodiment thereof.
  • This DC motor inner rotor type motor of the above type (i), which is the same as the embodiment of FIGS. 1 to 5 and FIG. 6), is the same as the embodiment of FIG. Similarly, four magnetic poles (Ga), (Gb), (Ga), (Gb) are provided.
  • the stator 2 of the present embodiment has an arc-shaped armature coil corresponding to approximately 1/4 turn of the case 1.
  • b represents an exciting coil 13a on the outside of the arc-shaped yoke (Ya), (Yb (Ya), (Yb).
  • the yokes (Ya) and (Ya) and the yokes (Yb) and (Yb) are 180 in case 1. Opposite position
  • the yokes (Ya), (Ya) are positioned in a 180 ° relationship in the circumferential direction.
  • the magnetic poles (Gb) and (Gb) are located at 180 ° and are excited to the same polarity.
  • Torque is applied to rotor 3 by interaction with stone (M).
  • the magnetic field strength at each magnetic pole (Ga), (Ga) and magnetic pole (Gb), (Gb) is the yoke (Ya), (Ya)
  • the rotor 3 of the embodiment of Fig. 11 is also a so-called magnet rotor, and has four permanent semicircular permanent shapes.
  • a magnet (M) is connected to form a disk-shaped rotor body, and these permanent magnets (M)
  • this type of motor is also exactly the same as that of the embodiment of FIG. 6. Also, this type of motor is provided with two armature coils, so that FIGS. It is possible to have two magnetic poles (Ga) and (Gb) as in the embodiment.
  • the rotor is provided with a permanent magnet (M)
  • the stator is provided with a plurality of magnetic poles (G) composed of electromagnets.
  • both types (i) and (ii) above can be used as an inner rotor type or outer rotor type motor.
  • the plurality of magnetic poles (G) are arranged so as to surround the rotor itself.
  • the multiple magnetic poles (G) should be arranged so as to form a magnetic pole that gives torque to the rotor 3, and the multiple magnetic poles should be arranged at intervals in the circumferential direction around the rotor rotation axis. Yes. Shi
  • a plurality of magnetic poles (G) may be arranged so as to surround the rotation axis of the rotor 3. They will be placed facing each other (opposing).
  • the rotor 3 is [
  • Such a control circuit is only necessary to use a switch circuit having a function of reversing the direction.
  • a control circuit is for example, a circuit provided in a target device such as a mobile phone may be used. Also
  • each excitation coil 5 has a different polarity.
  • the rotor 3 is [number of 360Z magnetic poles (G)]. (E.g., 180 ° for the embodiment of FIGS. 1-5, and for the embodiment of FIG. 6).
  • a drifter may be used.
  • the magnetic pole (Ga) and the magnetic pole (Gb) are schematically indicated by hatched portions, and the strength of the magnetic field of each portion is indicated by the thickness of the shaded portion.
  • the magnetic pole (Ga) consisting of the yoke (Ya) is excited to the N pole
  • the magnetic pole (Gb) consisting of the yoke (Yb) is excited to the S pole
  • the rotor 3 permanent magnet
  • the magnetic pole (Ga) has the strongest magnetic field, and the N pole of the rotor 3 (permanent magnet) is the S pole.
  • Each of the magnetic poles (Gb) excited by is fixed at the strongest magnetic field.
  • the rotor 3 rotates as the S pole and the N pole of the rotor 3 are sequentially attracted to the side where the magnetic field is stronger, as shown in Fig. 12 (C).
  • the magnetic field is the most among the magnetic poles (Gb) excited to S and N poles of rotor 3 as much as possible.
  • Rotor 3 continues to rotate.
  • the DC motor of the present invention generates the magnetic field strength of each magnetic pole (G) and the gradient of the magnetic field.
  • the structure is gradually increased toward the rotor rotation direction (or anti-rotor rotation direction).
  • the polarity of the two magnetic poles (G) can be switched alternately (inverted) between the S pole and the N pole. Then, rotor 3 continues to rotate.
  • the polarity of the magnetic pole (G) is reversed by the rotor 3 [number of 360Z magnetic poles (G)]. This is done every time the angle is rotated.
  • the polarity of 2x magnetic poles (Ga) and (Gb) is alternated between S and N poles every time rotor 3x rotates 180 °.
  • the inner rotor brush motor shown in Fig. 9 changes the polarity of the magnetic poles (Ga) and (Gb) of the rotor 3y to the S pole every time the rotor 3y rotates 180 °.
  • the polarity of the magnetic poles (Ga) and (Gb) of the rotor 3z is 180 °
  • switching (reversing) between S pole and N pole alternately at each rotation
  • the rotor rotates on the same drive principle as shown in FIG.
  • the main part of the rotor 3 has an eccentric structure.
  • Examples of the main part of the rotor 3 having an eccentric structure include the embodiments of FIGS. 1 to 5 and the embodiments of FIGS. 7 (A) and 7 (B).
  • Examples of the rotor 3 having an eccentric weight include, for example, a disk-shaped rotor 1 having an eccentric weight (not shown) as shown in FIGS. 7 (C) to (G). Rare The Specifically, (1) a disc-shaped rotor body with a permanent magnet (M) and the rotor body
  • a rotor composed of eccentric weights connected so as to overlap with a part of the surface of the lever, (2) disk shape
  • Examples include a rotor having a weight.
  • FIG. 1 to 5 The embodiment shown in Figs. 1 to 5 is an application of the DC motor of the present invention to a vibration motor.
  • the direct current motor of the invention can also be applied to a general-purpose motor used as a rotational drive source.
  • a rotatable motor shaft (output shaft) is provided, and the rotor is fixed to the motor shaft. Normally, this motor shaft is placed along the axis of the case.
  • Such a DC motor has a rotor and a motor.
  • the rotor shaft rotates as a unit, and the rotational output is taken from the motor shaft.
  • FIG. 1 is a plan view showing a DC motor according to an embodiment of the present invention in a cross-sectional state.
  • FIG. 2 is a cross-sectional view taken along line II—II in FIG. 1, showing the rotor side permanent magnet (M) omitted.
  • FIG. 3 is an exploded perspective view of the DC motor of the embodiment of FIG.
  • FIG. 4 Perspective view showing the DC motor of the embodiment of FIG. 1 with a part of case 1, the exciting coil 5 and the permanent magnet (M) omitted.
  • FIG. 5 is a perspective view showing the DC motor of the embodiment of FIG. 1 with a part of case 1 and the permanent magnet (M) omitted.
  • FIG. 6 is a plan view showing another embodiment of the direct current motor of the present invention in a state in which the case is cross-sectioned.
  • FIG. 7 shows the rotor constituting the direct current motor of the present invention and the form of a permanent magnet provided on the rotor. Illustration showing an example
  • FIG. 9 is a plan view showing another embodiment of the DC motor of the present invention in a state in which the case is cross-sectioned.
  • FIG. 9 is a plan view showing another embodiment of the DC motor in accordance with the present invention in a state in which the case is cross-sectioned.
  • 10 A plan view showing another embodiment of the direct current motor of the present invention in a state in which the case is cross-sectioned.
  • 11 A perspective view showing another embodiment of the direct current motor in accordance with the present invention in a state of cutting the case.

Abstract

[PROBLEMS] To provide a DC motor not requiring a complex control circuit, having a simple structure to enable the motor to be produced at low cost, having a long service life, and reduced in size and thickness. [MEANS FOR SOLVING THE PROBLEMS] A permanent magnet (M) is fitted to either a stator (2) or a rotor (3), and magnetic poles (G) constructed from electromagnets are fitted to the other. Magnetic poles (G) adjacent to each other along the circumference around the rotation axis of the rotor are excited to different polarities from each other. Each of the magnetic poles (G) has a yoke (Y) having an arc shape formed along the circumference around the rotation axis of the rotor. The cross sectional area of each yoke (Y) is gradually increased in the rotating direction of the rotor or in the direction opposite the rotating direction of the rotor so that the magnetic field has a gradient.

Description

明 細 書  Specification
直流モータ及び直流振動モータ  DC motor and DC vibration motor
技術分野  Technical field
[0001] 本発明は、各種小型装置の駆動源として好適な直流モータ及びこれを利用した振 動モー  The present invention relates to a DC motor suitable as a drive source for various small devices and a vibration mode using the same.
タに関するものであり、特にブラシレスモータとしても適用できる全く新たな原理で駆 動  It is driven by a completely new principle that can be applied as a brushless motor.
するモータに関するものである。  It is related with the motor which performs.
背景技術  Background art
[0002] 従来、携帯電話に内蔵される無音呼び出し用振動発生装置などとして、振動式の マイク  Conventionally, as a vibration generator for silent calls built in a mobile phone, a vibration microphone
口モータ(振動モータ)が用いられている。また、このような振動モータ以外にも、マイ クロモータは医療機器 (例えば、内視鏡先端部のレンズ駆動機構ゃ胎空内診断治療 装置の  A mouth motor (vibration motor) is used. In addition to such vibration motors, micro motors are also used for medical devices (for example, the lens drive mechanism at the end of an endoscope or the device for diagnosis and treatment in the uterus).
駆動機構)をはじめとする様々な最先端装置類の駆動源として応用が試みられ、今 後その  Application as a drive source for various state-of-the-art devices such as drive mechanisms).
利用分野は益々拡大するものと考えられる。  The field of use is expected to expand further.
[0003] 従来、振動モータや汎用型マイクロモータとしては、主にブラシ付きモータが用いら れ [0003] Conventionally, brush motors have been mainly used as vibration motors and general-purpose micromotors.
てきた。しかし、ブラシ付きモータは駆動用電源が単純であり、低コストで製造できる 利  I came. However, brushed motors have a simple drive power supply and can be manufactured at low cost.
点がある反面、ブラシの摺動接点の摩耗 (機械摩耗、電蝕摩耗)が激しいため、寿命 が短  On the other hand, the sliding contact point of the brush (mechanical wear, electric corrosion wear) is severe and the service life is short.
いという欠点がある。また、モータの薄型化を指向した扁平型の振動モータが知られ てい  There is a shortcoming. In addition, flat type vibration motors that are aimed at making motors thinner are known.
るが、例えば、特許文献 1に示される扁平型の振動モータは、ブラシの摺動接点の周 速力 s 大きいため、摺動接点の摩耗が特に激しい。 However, for example, the flat vibration motor disclosed in Patent Document 1 has a peripheral force s of the sliding contact of the brush. Due to its large size, the sliding contact is particularly worn.
[0004] 一方、ブラシレスモータやステッピングモータ等のような摺動接点のないモータは長 寿  [0004] On the other hand, motors without sliding contacts such as brushless motors and stepping motors have a long service life.
命であるが、特に製造コストの面で問題がある。すなわち、従来のブラシレスモータは 磁極や回転モードの制御を行うための複雑なドライバ回路を必要とするため、駆動回 路を  Although it is a life, there is a problem especially in terms of manufacturing cost. In other words, the conventional brushless motor requires a complicated driver circuit to control the magnetic pole and rotation mode.
含めて考えた場合、ブラシ付きモータに較べて製造コストが非常に高くなる。また、ス ッビングモータはマグネットゃステータ構造が複雑であるため、これも製造コストが非 常  When considered, the manufacturing cost is very high compared with a motor with a brush. In addition, the magnets and the stator structure are complicated for the subbing motor, which is also very expensive to manufacture.
に高ぐし力 小型化が難しいという問題がある。  There is a problem that it is difficult to reduce the size.
[0005] このような問題に対して、複雑なドライバ回路を用いることなぐパルス駆動で起動 す [0005] To solve this problem, start with pulse drive without using a complicated driver circuit.
るブラシレスモータも提案されている(例えば、特許文献 2)。  A brushless motor has also been proposed (for example, Patent Document 2).
特許文献 1 :特開平 6— 205565号公報  Patent Document 1: JP-A-6-205565
特許文献 2:特開平 10— 174414号公報  Patent Document 2: Japanese Patent Laid-Open No. 10-174414
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しかし、特許文献 2に示されるようなブラシレスモータは、特殊で複雑な構造のロー タ [0006] However, a brushless motor as disclosed in Patent Document 2 is a rotor having a special and complicated structure.
ゃステータを用いる必要があるため、やはり製造コストが高ぐ小型化も難しいという 欠  Because it is necessary to use a stator, the manufacturing cost is high and it is difficult to reduce the size.
点がある。  There is a point.
したがって本発明の目的は、以上のような従来技術の課題を解決し、複雑な制御 回路等  Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, and to control complicated control circuits, etc.
を必要とせず、し力も簡易な構造で低コストに製造することができ、且つ長寿命であ つて 小型化'薄型化も可能な直流モータ及び直流振動モータを提供することにある。 課題を解決するための手段 Can be manufactured at low cost with a simple structure and a long life. It is an object to provide a DC motor and a DC vibration motor that can be reduced in size and thickness. Means for solving the problem
本発明者らは、ロータゃステータを特許文献 2のような複雑な構造にすることなぐし 力、も単純な制御回路により円滑に駆動させることが可能なブラシレスモータの構造に っレヽ  The inventors of the present invention have developed a brushless motor structure that can smoothly drive a rotor with a simple control circuit without using a complicated structure as in Patent Document 2.
て鋭意検討を行い、その結果、ステータにマグネットロータを囲むように間隔的に配 置さ As a result, the stator was placed at intervals to surround the magnet rotor.
れる複数の磁極について、これらを構成するヨークの断面積をロータ回転軸心回りの 周方 For a plurality of magnetic poles, the cross-sectional area of the yoke constituting them is
向で漸増させることで磁界の強さに勾配をつけることにより、マグネットロータに一方 向 By gradually increasing in the direction, the magnetic rotor is unidirectionally applied to the magnet rotor by providing a gradient in the magnetic field strength.
へのトノレクを与えるという着想を得た。そして、このような着想に基づき検討を進めた 結 I got the idea of giving a tonolek to. Then, based on these ideas, we proceeded with the study.
果、マグネットロータを囲んで、ロータ回転軸心回りの周方向に沿った弧形状を有す る 3 As a result, it surrounds the magnet rotor and has an arc shape along the circumferential direction around the rotor rotation axis 3
ーク (Y)を備えた 2つの磁極 (G)を設け、且つ上記磁界の強さの勾配が生じるように各 3— Two magnetic poles (G) with a magnetic field (Y) are provided, and each magnetic field has a gradient of the magnetic field.
ク (Y)の断面積をロータ回転方向に向かって順次大きくした構造とした上で、 2つの磁 極( The cross-sectional area of the magnet (Y) is increased gradually toward the rotor rotation direction, and two magnetic poles (
G)を異なる極性に励磁し且つその極性を適時繰り返し反転させることにより、マグネッ 卜  By exciting G) to different polarities and reversing the polarities in a timely manner,
ロータが一方向に極めて円滑に回転することが判明した。このような駆動原理のモー タは It has been found that the rotor rotates very smoothly in one direction. The motor with this driving principle is
、上記のようにロータが永久磁石を備え、ステータが電磁石により構成される複数の 極  As described above, the rotor includes a permanent magnet, and the stator includes a plurality of poles composed of electromagnets.
を備えるタイプのモータ(ブラシレスモータ)だけでなぐステータが永久磁石を備え、 ロータが電磁石により構成される複数の磁極を備えるタイプのモータ(ブラシ付きモー タ )としてち実現すること力 Sできる。 A motor (brushless motor) of a type that includes a plurality of magnetic poles, each of which has a permanent magnet and a rotor that is composed of electromagnets. ) It is possible to realize S
[0008] 本発明は、以上のような知見に基づきなされたもので、従来のように複雑な制御回 路或  [0008] The present invention has been made on the basis of the above-described knowledge, and has a complicated control circuit or a conventional one.
いは複雑な構造のロータ'ステータを用いることなぐ電磁石で構成される 2系統の磁 極  Or two magnet poles composed of electromagnets without the use of a rotor with a complicated structure
の極性を繰り返し反転させるだけの極く単純な制御手段により円滑に駆動する、全く 新規  Smoothly driven by a very simple control means that repeatedly reverses the polarity of
なタイプの直流モータである。  Type of DC motor.
すなわち、本発明の直流モータ及び直流振動モータは、以下のような特徴を有す る。  That is, the DC motor and DC vibration motor of the present invention have the following characteristics.
[0009] [1]ロータとステータのうちの、一方に永久磁石 (M)を備え、他方に電磁石により構成 さ  [1] One of the rotor and the stator is provided with a permanent magnet (M) and the other is configured with an electromagnet.
れる磁極であって、前記永久磁石 (M)との相互作用によりロータにトルクを付与する 2 n  2 n for applying torque to the rotor by interaction with the permanent magnet (M)
個(但し、 nは 1以上の整数)の磁極 (G)をロータ回転軸心回りの周方向で間隔をおい て  (Where n is an integer greater than or equal to 1) magnetic poles (G) spaced apart in the circumferential direction around the rotor rotation axis
備え、  Prepared,
ロータ回転軸心回りの周方向で隣接する磁極 (G)どうし (但し、磁極 (G)の数が 2つの 場  Magnetic poles (G) adjacent in the circumferential direction around the rotor rotation axis (however, if the number of magnetic poles (G) is two
合は、当該 2つの磁極 (G)どうし)は異なる極性に励磁されるように構成され、 各磁極 (G)はロータ回転軸心回りの周方向に沿った弧形状を有するヨーク (Y)を備え 、該  The two magnetic poles (G) are excited with different polarities, and each magnetic pole (G) has a yoke (Y) having an arc shape along the circumferential direction around the rotor rotation axis. Prepare
各ヨーク (Y)の断面積を、下記 (ィ), (口)の条件にしたがいロータ回転方向又は反口 ータ回転方向に向かって順次大きくしたことを特徴とする直流モータ。  A DC motor characterized in that the cross-sectional area of each yoke (Y) is gradually increased in the direction of rotor rotation or counter-rotator rotation in accordance with the following conditions (i) and (mouth).
(ィ)ロータが永久磁石 (M)を備え、ステータが電磁石により構成される磁極 (G)を備 (Ii) The rotor has a permanent magnet (M) and the stator has a magnetic pole (G) composed of an electromagnet.
X. X.
る場合はロータ回転方向  When rotating the rotor
(口)ステータが永久磁石 (M)を備え、ロータが電磁石により構成される磁極 (G)を備 え (Port) The stator has a permanent magnet (M), and the rotor has a magnetic pole (G) composed of an electromagnet. e
る場合は反ロータ回転方向  If it is
[0010] [2]上記 [1]の直流モータにおいて、ロータが永久磁石 (M)を備え、ステータが電磁石 により構成される複数の磁極 (G)を備えることを特徴とする直流モータ。  [2] The DC motor as set forth in [1], wherein the rotor includes a permanent magnet (M) and the stator includes a plurality of magnetic poles (G) constituted by electromagnets.
[3]上記 [1]の直流モータにおいて、ステータが永久磁石 (M)を備え、ロータが電磁石 により構成される複数の磁極 (G)を備えることを特徴とする直流モータ。  [3] The DC motor as set forth in [1], wherein the stator includes a permanent magnet (M) and the rotor includes a plurality of magnetic poles (G) formed of electromagnets.
[4]上記 [1]〜 [3]のいずれかの直流モータにおいて、複数の磁極 (G)が、各々ヨーク (Y)で構成され、該複数のヨーク (Y)の外側又は内側にロータ回転軸心回りの周方向 に沿つ  [4] In the DC motor according to any one of [1] to [3], the plurality of magnetic poles (G) are each composed of a yoke (Y), and the rotor rotates outside or inside the plurality of yokes (Y). Along the circumferential direction around the axis
たリング状の励磁コイルを有することを特徴とする直流モータ。  A direct current motor having a ring-shaped excitation coil.
[0011] [5]上記 [1]〜 [3]のいずれかの直流モータにおいて、複数の磁極 (G)が、各々ヨーク (Y)を備えた電機子コイルで構成されることを特徴とする直流モータ。 [0011] [5] In the DC motor according to any one of [1] to [3], the plurality of magnetic poles (G) are each constituted by an armature coil provided with a yoke (Y). DC motor.
[6]上記 [1]〜 [5]のレ、ずれかの直流モータにぉレ、て、ロータ回転軸心回りの周方向 に沿って 2個又は 4個の磁極 (G)を備えることを特徴とする直流モータ。  [6] Provided with two or four magnetic poles (G) along the circumferential direction around the rotor rotation axis, with respect to any one of the above [1] to [5] DC motors. DC motor features.
[7]上記 [1]〜 [6]のレ、ずれかの直流モータにぉレ、て、ロータが偏心ウェイトを備え 又は偏心構造を有することを特徴とする直流振動モータ。  [7] A DC vibration motor characterized in that the rotor is provided with an eccentric weight or has an eccentric structure in addition to the DC motor of [1] to [6] above.
[0012] [8]上記 [7]の直流振動モータにおいて、ロータは、永久磁石 (M)を備えた円盤状の ータ本体と、該ロータ本体に対してその盤面の一部と重合するように連結された偏心 ゥェ [8] In the DC vibration motor of [7], the rotor is configured to overlap with a disk-shaped data body having a permanent magnet (M) and a part of the surface of the disk with respect to the rotor body. Eccentric connected to
イトとを有することを特徴とする直流振動モータ。  And a direct current vibration motor.
[9]上記 [7]の直流振動モータにおいて、ロータは円盤状に構成され、該円盤の一 方の  [9] In the DC vibration motor of [7] above, the rotor is configured in a disk shape, and one of the disks is
半円領域内に永久磁石 (M)を有し、他方の半円領域内に偏心ウェイトを有することを 特徴  Features a permanent magnet (M) in the semicircular region and an eccentric weight in the other semicircular region
とする直流振動モータ。  DC vibration motor.
[10]上記 [7]の直流振動モータにおいて、ロータの主要部が偏心構造を有する永久 磁 石 (M)からなることを特徴とする直流振動モータ。 [10] In the DC vibration motor of [7] above, the main part of the rotor is a permanent magnet having an eccentric structure. A direct current vibration motor comprising a stone (M).
発明の効果  The invention's effect
[0013] 本発明の直流モータ及び直流振動モータは、 2系統の磁極 (G)の極性を適時繰り 返し反  [0013] The direct current motor and the direct current vibration motor of the present invention are configured so that the polarities of the two magnetic poles (G) are repeated in a timely manner.
転させるだけで駆動するため、複雑な制御回路が全く不要であり、しかもモータの構 造自  Since it is driven simply by rotating it, no complicated control circuit is required, and the motor structure itself
体も、ヨークの断面積をロール軸心回りの周方向で漸増させる(例えば、ヨークの高さ 幅、厚みなどの少なくとも 1つを漸増させる)ことにより磁界の強さに勾配が付けられた 複数の磁極を配置するだけでよいため、非常に低コストに製造することができる。  The body also has a gradient in the magnetic field strength by gradually increasing the cross-sectional area of the yoke in the circumferential direction around the roll axis (for example, increasing at least one of the height, width, and thickness of the yoke). Therefore, it can be manufactured at a very low cost.
[0014] また、ロータが永久磁石を備え、ステータが電磁石により構成される複数の磁極を 備え [0014] Further, the rotor includes a permanent magnet, and the stator includes a plurality of magnetic poles configured by electromagnets.
る構造とすることによりブラシレスモータとすることができ、このようなモータはブラシ レスであることに加えて、上記のように簡易な構造であるため、長寿命で且つ小型化' 薄  In addition to being brushless, such a motor has a simple structure as described above, so it has a long service life and a small size.
型化が容易であり、従来のブラシレスモータ及びブラシレス振動モータでは難しかつ た厚  It is easy to mold and has a thickness that was difficult with conventional brushless motors and brushless vibration motors.
さ 3mm以下のサイズも容易に実現することができる。  A size of 3mm or less can be easily realized.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 本発明の直流モータは、ロータとステータのうちの、一方に永久磁石 (M)を備え、他 方 [0015] A DC motor of the present invention includes a permanent magnet (M) on one of a rotor and a stator, and the other side.
に電磁石により構成される磁極であって、前記永久磁石 (M)との相互作用によりロー タに  The magnetic pole is composed of an electromagnet, and the rotor is moved by the interaction with the permanent magnet (M).
トルクを付与する 2n個(但し、 nは 1以上の整数)の磁極 (G)をロータ回転軸心回りの 周方向で間隔をおいて備え、ロータ回転軸心回りの周方向で隣接する磁極 (G)どうし (但  2n (where n is an integer greater than or equal to 1) magnetic poles (G) providing torque are provided at intervals in the circumferential direction around the rotor rotation axis, and adjacent magnetic poles around the rotor rotation axis ( G)
し、磁極 (G)の数が 2つの場合は、当該 2つの磁極 (G)どうし)は異なる極性に励磁され る ように構成され、各磁極 (G)はロータ回転軸心回りの周方向に沿った弧形状を有する 3— If the number of magnetic poles (G) is two, the two magnetic poles (G) are excited with different polarities. Each magnetic pole (G) has an arc shape along the circumferential direction around the rotor rotation axis.
ク (Y)を備え、該各ヨーク (Y)の断面積を、下記 (ィ), (口)の条件にしたがいロータ回 転方向または反ロータ回転方向に向かつて順次大きくした構造を有する。  The yoke (Y) has a structure in which the cross-sectional area of each yoke (Y) is sequentially increased toward the rotor rotation direction or the counter-rotor rotation direction in accordance with the following conditions (i) and (mouth).
(ィ)ロータが永久磁石 (M)を備え、ステータが電磁石により構成される磁極 (G)を備 (Ii) The rotor has a permanent magnet (M) and the stator has a magnetic pole (G) composed of an electromagnet.
X. X.
る場合はロータ回転方向  When rotating the rotor
(口)ステータが永久磁石 (M)を備え、ロータが電磁石により構成される磁極 (G)を備 (Port) The stator has a permanent magnet (M), and the rotor has a magnetic pole (G) composed of an electromagnet.
X. X.
る場合は反ロータ回転方向  If it is
[0016] このような本発明の直流モータは、(i)ロータが永久磁石 (M)を備え、ステータが電磁 石により構成される複数の磁極 (G)を備えるタイプ、(ii)ステータが永久磁石 (M)を備え ロータが電磁石により構成される複数の磁極 (G)を備えるタイプ、のいずれのタイプの モ [0016] Such a direct current motor of the present invention includes (i) a type in which the rotor includes a permanent magnet (M) and the stator includes a plurality of magnetic poles (G) made of electromagnetic stone, and (ii) the stator is permanent. Any type of motor with a magnet (M) and a rotor with multiple magnetic poles (G) composed of electromagnets
ータとしてもよいが、実質的に、(i)のタイプはブラシレスモータ、(ii)のタイプはブ ラシ付きモータとなる。また、上記 (i),(ii)のタイプともに、インナーロータ型、ァゥ ターロータ型のいずれの形式のモータとしてもよレ、。 また、複数の磁極 (G)は、各々を電機子コイルで構成してもよいが、クローポール型 モ  However, the type (i) is a brushless motor, and the type (ii) is a brushed motor. In addition, both types (i) and (ii) above can be used as motors of either inner rotor type or after rotor type. Each of the plurality of magnetic poles (G) may be composed of an armature coil, but the claw pole type
ータと同様に、複数の磁極 (G)を各々ヨーク (Y)で構成し、その複数のヨーク (Y)の外側 又  Like the motor, each of the plurality of magnetic poles (G) is composed of a yoke (Y), and the outside of the plurality of yokes (Y)
は内側にロータ回転軸心回りの周方向に沿ったリング状の励磁コイルを配置した構 造とし  Has a structure in which a ring-shaped excitation coil is arranged along the circumferential direction around the rotor rotation axis.
てもよい。  May be.
[0017] 図 1〜図 5は、本発明の直流モータのうち、上記 (i)のタイプのインナーロータ型ブラ シレスモータの一実施形態を示したもので、図 1はケースを断面した状態で示す平面 図、 図 2は図 1中の II— II線に沿う断面図であってロータ側の永久磁石 (M)を省略した状 態で示すもの、図 3は分解斜視図、図 4はケース 1の一部、励磁コイル 5及び永久磁 石 (M FIG. 1 to FIG. 5 show an embodiment of the inner rotor type brushless motor of the type (i) among the DC motors of the present invention, and FIG. 1 shows the case in a cross-sectional state. Plan view, Fig. 2 is a cross-sectional view taken along line II-II in Fig. 1, showing the rotor side permanent magnet (M) omitted, Fig. 3 is an exploded perspective view, and Fig. 4 is a part of case 1. , Excitation coil 5 and permanent magnet (M
)を省略した状態で示す斜視図、図 5はケース 1の一部と永久磁石 (M)を省略した状態 で示  ) Is shown in a perspective view, and FIG. 5 shows the case 1 with part of the case 1 and the permanent magnet (M) omitted.
す斜視図である。なお、本実施形態は、出力軸を有しない直流振動モータの例を示 してい  FIG. The present embodiment shows an example of a DC vibration motor that does not have an output shaft.
る。  The
図において、 1はケース部材 la, lbで構成されるケース、 2はこのケース 1内に収 納されるリング状のステータ、 3はこのステータ 2内に回転可能に配置されるロータで あ  In the figure, 1 is a case composed of case members la and lb, 2 is a ring-shaped stator housed in the case 1, and 3 is a rotor rotatably arranged in the stator 2.
る。  The
[0018] 前記ステータ 2は、 1対のヨークユニット 4a, 4bと励磁コイル 5とで構成されてい  [0018] The stator 2 includes a pair of yoke units 4a, 4b and an excitation coil 5.
る。各ヨークユニット 4a, 4bは、リング状の本体 40a, 40bと、この本体 40a  The Each yoke unit 4a, 4b has a ring-shaped main body 40a, 40b and a main body 40a
, 40bのほぼ半周部に沿って形成された弧形状のヨーク (Ya), (Yb)とからなっている。 これらのヨーク (Ya), (Yb)はステータ 2の磁極を構成するものであり、その高さ(=断面 積)がロータ回転方向に向かって順次大きくなるように構成されている。したがって、ョ ーク (Ya), (Yb)の上端縁は、ロータ回転軸心回りの周方向においてスロープ状に傾斜 して  , 40b consists of arc-shaped yokes (Ya) and (Yb) formed along almost half of the circumference. These yokes (Ya) and (Yb) constitute the magnetic poles of the stator 2 and are configured such that their heights (= cross-sectional areas) increase sequentially in the rotor rotation direction. Therefore, the upper edges of the yokes (Ya) and (Yb) are inclined in a slope shape in the circumferential direction around the rotor rotation axis.
いる。  Yes.
[0019] 両ヨークユニット 4a, 4bは、対向した状態で互いの弧形状のヨーク (Ya), (Yb)が周 方向で嚙み合うように組み立てられ、ヨークユニット組立体 6が構成される。そして、こ のヨークユニット組立体 6を構成するヨーク (Ya),(Yb)の外側に、ロータ回転軸心回り の  [0019] Both yoke units 4a, 4b are assembled such that their arcuate yokes (Ya), (Yb) are held together in the circumferential direction in a state of being opposed to each other, thereby forming a yoke unit assembly 6. Then, on the outside of the yokes (Ya) and (Yb) constituting this yoke unit assembly 6, there is a rotation around the rotor rotation axis.
周方向に沿ったリング状の励磁コイル 5が外嵌されている。  A ring-shaped exciting coil 5 along the circumferential direction is externally fitted.
このようなステータ 2では、ヨーク (Ya), (Yb)が、ロータ回転軸心回りの周方向で 18 0° の関係で磁極 (Ga), (Gb)を構成するが、これらは異なる極性に励磁され、ロータ 3 力 S 備える永久磁石 (M)との相互作用によりロータ 3にトルクを付与する。 In such a stator 2, the yokes (Ya) and (Yb) form magnetic poles (Ga) and (Gb) in a circumferential direction around the rotor rotation axis of 180 °, but they have different polarities. Excited, rotor 3 force S Torque is applied to the rotor 3 by interaction with the permanent magnet (M) provided.
[0020] 各磁極 (Ga), (Gb)での磁界の強さは、ヨーク (Ya), (Yb)の高さ(断面積)の漸増により 、ロータ回転方向(図 1中矢印で示す方向)に向かって、すなわち図 1に示した「最小 断 [0020] The magnetic field strength at each of the magnetic poles (Ga) and (Gb) depends on the rotor rotation direction (direction indicated by the arrow in FIG. 1) due to the gradual increase in the height (cross-sectional area) of the yoke (Ya) and (Yb). ), That is, “Minimum
面積」から「最大断面積」に向かって順次大きくなる。  The area gradually increases from “area” to “maximum cross-sectional area”.
なお、ロータ回転軸心回りの周方向でヨーク (Ya), (Yb)の断面積を漸増させる形態と し  The cross-sectional area of the yoke (Ya), (Yb) is gradually increased in the circumferential direction around the rotor rotation axis.
ては、例えば、ヨークの厚さを変えるなどしてもよく、その形態は任意である。また、 (Y a), (Yb)の断面積は本実施形態のように連続的に漸増する以外に、段階的(例えば、 階段  For example, the thickness of the yoke may be changed, and the form is arbitrary. In addition, the cross-sectional areas of (Y a) and (Yb) increase stepwise (for example, staircase)
状)に漸増するような構造であってもよい。  It may be a structure that increases gradually.
[0021] 前記ロータ 3は所謂マグネットロータであり、本実施形態では永久磁石に偏心ウェイ h [0021] The rotor 3 is a so-called magnet rotor, and in this embodiment, an eccentric way h
の機能(振動モータ用)を持たせるために平面 C字状 (又は略半リング状)の永久磁 石 (M  In order to provide the functions of (for vibration motors), a planar C-shaped (or almost semi-ring shaped) permanent magnet (M
)を備えている。この偏心ウェイトを兼ねる永久磁石 (M)は、図 1に示すようにロータ回 転  ). The permanent magnet (M), which also serves as an eccentric weight, has a rotor rotation as shown in Fig. 1.
中 、力らの角足巨離 αを 200〜250° 、より好ましく ίま 210〜240° 、特に好まし くは 220〜230° 程度とすることが、モータの駆動性能、振動性能の面から望ましレ、 なお、この永久磁石 (Μ)の形状は任意であり、例えば、偏心ウェイトの機能を持たせ な  Among them, the angular separation of the legs is 200 to 250 °, more preferably about 210 to 240 °, particularly preferably about 220 to 230 ° from the viewpoint of motor driving performance and vibration performance. Desirably, the shape of the permanent magnet (Μ) is arbitrary, for example, it should not have an eccentric weight function.
い場合には、円盤状で且つ略全体が永久磁石で構成されたもの(2つの略半円形の 永久磁  In the case of a disc-shaped and substantially entirely composed of permanent magnets (two substantially semicircular permanent magnets).
石を接続して円盤状にしたもの)としてもよい。  It is also possible to make a disk by connecting stones).
[0022] ロータ 3は、ケース 1の中央に固定された固定シャフト 7に軸受 8 (メタル軸受)を介 して回転自在に軸支された保持リング 9と、この保持リング 9の外側に固定された前記 平 面 C形状(又は略半リング状)の永久磁石 (M)とからなっている。このロータ 3では、前 記永久磁石 (M)により、 2つの磁極 10A (S極)、 10B (N極)が構成されている。 [0022] The rotor 3 is fixed to a fixed shaft 7 fixed to the center of the case 1 via a bearing 8 (metal bearing) so as to be rotatable and fixed to the outside of the holding ring 9. Said flat It consists of a permanent magnet (M) with a C-shaped surface (or almost semi-ring shape). In the rotor 3, the permanent magnet (M) includes two magnetic poles 10A (S pole) and 10B (N pole).
なお、本発明の直流モータでは、永久磁石 (M)により少なくとも 1つの磁極が構成さ れ  In the DC motor of the present invention, at least one magnetic pole is constituted by the permanent magnet (M).
、電磁石により構成される磁極 (Ga), (Gb)との相互作用でロータ 3にトルクが付与され れ  Torque is applied to the rotor 3 due to the interaction with the magnetic poles (Ga) and (Gb) composed of electromagnets.
ばよぐしたがって、磁極 10A(S極)、 10B (N極)のいずれ力、 1つを設けるだけ でもよい。  Therefore, only one of the magnetic poles 10A (S pole) and 10B (N pole) may be provided.
[0023] その他図面において、 11は、軸受 8内のオイル保持と接触抵抗を低減させるため のラ  [0023] In other drawings, reference numeral 11 denotes a roller for retaining oil in the bearing 8 and reducing contact resistance.
イナ一である。  It is the best.
なお、本実施形態では、ケース 1に固定された固定シャフト 7に対してロータ 3を回 転  In this embodiment, the rotor 3 is rotated with respect to the fixed shaft 7 fixed to the case 1.
自在に軸支させたものである力 例えば、ケース 1にシャフトを回転自在に支持させ、 のシャフトにロータ 3を固定するような構造としてもよい。  For example, a structure in which the shaft is rotatably supported by the case 1 and the rotor 3 is fixed to the shaft may be used.
[0024] 本発明の直流モータでは、磁極 (G)の数は 2n個(但し、 nは 1以上の整数)以上とす ること力 Sできる。図 6は、 4つの磁極 (Ga ),(Gb ),(Ga ),(Gb )を備えた直流モータ In the DC motor of the present invention, the force S can be set to 2n or more (where n is an integer of 1 or more) of magnetic poles (G). Figure 6 shows a DC motor with four magnetic poles (Ga), (Gb), (Ga), (Gb).
1 1 2 2  1 1 2 2
(図 1〜図 5の実施形態と同じぐ上記 (i)のタイプのインナーロータ型モータ)の一実 施形態を示したもので、ケースを断面した状態で示す平面図である。なお、本実施形 態の  FIG. 6 is a plan view showing an embodiment (inner rotor type motor of the above type (i) same as the embodiment of FIGS. 1 to 5) in a cross-sectional state. In this embodiment,
直流モータを振動モータとする場合には、ロータ 3に偏心ウェイトを取り付け若しくは 組  When using a DC motor as a vibration motor, attach or set an eccentric weight to the rotor 3.
み付ける。  Find out.
[0025] 本発明の直流モータでは、ロータ回転軸心回りの周方向で隣接する磁極 (G)どうし は異  [0025] In the DC motor of the present invention, the magnetic poles (G) adjacent in the circumferential direction around the rotor rotation axis are different.
なる極性に励磁されるように構成されるものであり、このため本実施形態では、ステー タ 2を構成する各ヨークユニット 4a, 4b (図示しないので、図 3〜図 5を参照)には、 それぞれ本体 40a, 40b (同じく図示しないので、図 3〜図 5を参照)のほぼ 1/4 周部に沿って形成された 2つの弧形状のヨーク (Ya ),(Ya )とヨーク (Yb ),(Yb )が、 Therefore, in this embodiment, the stator is Each yoke unit 4a, 4b (not shown, see FIGS. 3 to 5) is almost 1/4 of the main body 40a, 40b (also not shown, see FIGS. 3 to 5). Two arc-shaped yokes (Ya), (Ya) and yokes (Yb), (Yb) formed along the circumference
1 2 1 2 各々の本体 40a, 40bの 180° 対向する位置に設けられている。これら各ヨーク (Y a ),(Ya )とヨーク (Yb ),(Yb )も、その高さ(=断面積)がロータ回転方向に向かつ 1 2 1 2 It is provided in the position which each main body 40a, 40b opposes 180 degrees. These yokes (Y a), (Ya) and yokes (Yb), (Yb) also have their height (= cross-sectional area) oriented in the rotor rotation direction.
1 2 1 2 1 2 1 2
て順次大きくなるように構成され、ヨーク (Ya ),(Ya )とヨーク (Yb ),(Yb )の上端縁  The yoke (Ya), (Ya) and the upper edge of the yoke (Yb), (Yb)
1 2 1 2  1 2 1 2
は、ロータ回転軸心回りの周方向においてスロープ状に傾斜している。  Is inclined like a slope in the circumferential direction around the rotor rotation axis.
[0026] そして、両ヨークユニット 4a, 4bは、対向した状態で互いの弧形状のヨーク (Ya ) ズ Ya )とヨーク (Yb (Yb )が周方向で交互に嚙み合うように組み立てられ、ヨークュ[0026] Then, the yoke units 4a and 4b are assembled so that the arc-shaped yokes (Ya) and Ya) and the yokes (Yb (Yb)) are alternately held in the circumferential direction in an opposed state, York
2 1 2 2 1 2
ニット組立体 6が構成される。このヨークユニット組立体 6を構成するヨーク (Ya ),(Ya )とヨーク (Yb ),(Yb )の外側に、ロータ回転軸心回りの周方向に沿ったリング状の励 A knit assembly 6 is constructed. Ring-shaped excitation along the circumferential direction around the rotor rotation axis is provided outside the yokes (Ya), (Ya) and the yokes (Yb), (Yb) that constitute the yoke unit assembly 6.
2 1 2 2 1 2
磁コイル 5が外嵌されてレ、る。  The magnetic coil 5 is externally fitted.
[0027] このようなステータ 2では、ヨーク (Ya ),(Ya )が周方向で 180° の関係に位置し [0027] In such a stator 2, the yokes (Ya), (Ya) are positioned in a 180 ° relationship in the circumferential direction.
1 2  1 2
て同じ極性に励磁される磁極 (Ga ), (Ga )を構成し、ヨーク (Yb ),(Yb )が周方向で  Magnetic poles (Ga), (Ga) excited to the same polarity, and the yokes (Yb), (Yb) are circumferentially
1 2 1 2  1 2 1 2
180° の関係に位置して同じ極性に励磁される磁極 (Gb ), (Gb )を構成し、且つ磁  The magnetic poles (Gb) and (Gb) are located at 180 ° and are excited to the same polarity.
1 2  1 2
 Extreme
(Ga ), (Ga )と磁極 (Gb ), (Gb )は異なる極性に励磁される。  (Ga), (Ga) and magnetic poles (Gb), (Gb) are excited to different polarities.
1 2 1 2  1 2 1 2
各磁極 (Ga ), (Ga )と磁極 (Gb ), (Gb )での磁界の強さは、ヨーク (Ya ),(Ya )  The magnetic field strength at each magnetic pole (Ga), (Ga) and magnetic pole (Gb), (Gb) is the yoke (Ya), (Ya)
1 2 1 2 1 2 とヨーク (Yb ),(Yb )の高さ(断面積)の漸増により、ロータ回転方向(図 6中矢印で  1 2 1 2 1 2 and the yoke (Yb), the height (cross-sectional area) of the yoke (Yb) is gradually increased.
1 2  1 2
示す方向)に向かって、すなわち図 6に示した「最小断面積」から「最大断面積」に向 か  Direction), that is, from the “minimum cross-sectional area” to the “maximum cross-sectional area” shown in FIG.
つて順次大きくなる。  It becomes gradually larger.
[0028] 図 6の実施形態のロータ 3も所謂マグネットロータであり、 4つの略四半円形の永久 磁  [0028] The rotor 3 of the embodiment of Fig. 6 is also a so-called magnet rotor, and is composed of four substantially quarter-circular permanent magnets.
石 (M)を接続して円盤状のロータ本体が構成され、これらの永久磁石 (M)により、磁極 (G)  A disk-shaped rotor body is formed by connecting stones (M), and these permanent magnets (M) make magnetic poles (G)
の数と同じ 4つの磁極 10A (S極)、 10B (N極)、 10A (S極)、 10B  4 poles 10A (S pole), 10B (N pole), 10A (S pole), 10B
1 1 2  1 1 2
(N極)が構成されている。なお、この実施形態においても、磁極 10A〜: 10B のうちのいずれ力 1つ或いは 2〜3つを設けるだけでもよい。 (N pole) is configured. In this embodiment also, the magnetic poles 10A to 10B Any one of these forces or two or three may be provided.
以上のように本発明の直流モータでは、磁極 (G)は 2n個(但し、 nは 1以上の整数) 以上の任意の数とすることができるが、モータの構造の簡易化、製造の容易性'製造 コス  As described above, in the DC motor of the present invention, the number of magnetic poles (G) can be 2n (where n is an integer equal to or greater than 1). However, the motor structure can be simplified and manufactured easily. Sex 'Manufacturing Cost
ト、モータの円滑な駆動性などの面から、特に合理的な構造としては、 2つまたは 4つ の  In terms of smooth drive performance of the motor and motor, a particularly reasonable structure is 2 or 4
磁極 (G)を備えた構造が好ましレ、。  A structure with a magnetic pole (G) is preferred.
[0029] 本発明の直流モータでは、永久磁石 (M)やこれにより構成される磁極 10の形態に 特別 [0029] In the DC motor of the present invention, the permanent magnet (M) and the form of the magnetic pole 10 constituted thereby are special.
な制限はない。  There is no limit.
図 7 (A)〜(G)は、 2つの磁極 (G)を有するタイプの直流モータのロータに適用さ れる永久磁石 (M)及びこれにより構成される磁極 10の形態例を示しており(各図中の 斜  Figures 7 (A) to (G) show examples of the permanent magnet (M) applied to the rotor of a DC motor of the type having two magnetic poles (G) and the magnetic pole 10 composed of the permanent magnet (M) ( Diagonal in each figure
線部分が永久磁石 (M)を示す)、これらのいずれの形態でもよい。図 7 (A)、 (B)は 永久磁石 (M)に偏心ウェイトの機能を兼ね備えさせたものであり、したがって、直流振 動  Any of these forms may be used. Figs. 7 (A) and (B) show the permanent magnet (M) combined with the function of the eccentric weight.
モータ専用である。  For motors only.
[0030] 磁極 (G)の数に対する磁極 10の数も任意であり、基本的には少なくとも 1つの磁極 1 0 (N極又は S極)があればょレ、が、磁極 (G)の極性の切り換えの簡便性等の面からは 磁極 (G)と磁極 10は同数であることが好ましい。すなわち、 2つの磁極 (G)を有する場 には、図 1に示すように N極と S極の 2つの磁極 10を設け、また、 4つの磁極 (G)を有 する場合には、図 6に示すように周方向で N極と S極を交互に配することで、 4つの磁 極  [0030] The number of magnetic poles 10 relative to the number of magnetic poles (G) is also arbitrary. Basically, if there is at least one magnetic pole 10 (N pole or S pole), the polarity of magnetic pole (G) From the standpoint of ease of switching, the number of magnetic poles (G) and magnetic poles 10 is preferably the same. That is, in the case of having two magnetic poles (G), as shown in FIG. 1, two magnetic poles 10 of N pole and S pole are provided, and in the case of having four magnetic poles (G), FIG. As shown in Fig. 4, four magnetic poles are arranged by alternately arranging N poles and S poles in the circumferential direction.
10を設けることが好ましい。  10 is preferably provided.
[0031] 図 8は、本発明の直流モータのうち、さきに述べた (i)のタイプのアウターロータ型ブ ラシレスモータの一実施形態を模式的(原理的)に示したもので、 3xは永久磁石 (M) を備 [0031] FIG. 8 schematically shows (in principle) one embodiment of the outer rotor type brushless motor of the type (i) described above among the DC motors of the present invention. Magnet (M) Be equipped
えたロータ(モータカバー)、 2xはこのロータ 3xの内側に配置されるステータである。 このステータ 2xの基本構造は、ヨーク (Ya),(Yb)や磁極 (Ga), (Gb)の構成を含めて図 1 図 5の実施形態におけるステータ 2と同様であるので、同一の符号を付し、詳細な説 明は The rotor (motor cover) 2x is a stator arranged inside the rotor 3x. Since the basic structure of this stator 2x is the same as that of the stator 2 in the embodiment of FIG. 1 and FIG. 5 including the configuration of the yokes (Ya), (Yb) and the magnetic poles (Ga), (Gb), the same reference numerals are used. The detailed explanation is attached.
省略する。但し、本実施形態のステータ 2では、ロータ回転軸心回りの周方向に沿つ たリ Omitted. However, in the stator 2 according to the present embodiment, the ribs along the circumferential direction around the rotor rotation axis.
ング状の励磁コイル 5の外側にヨーク (Ya),(Yb)が配置されている。また、これらヨークThe yokes (Ya) and (Yb) are arranged outside the ring-shaped excitation coil 5. Also, these yokes
(Ya), (Yb)も、図 1〜図 5の実施形態と同様の構造を有する 1対のヨークユニット 4a,(Ya), (Yb) is also a pair of yoke units 4a having the same structure as the embodiment of FIGS.
4b (図示せず)の一部によって構成されている。 It is constituted by a part of 4b (not shown).
なお、前記ヨーク (Ya), (Yb)は、リング状の励磁コイル 5の内側に配置してもよい。 前記ロータ 3xの内側には、周方向に所定の長さを有する永久磁石 (M)が固定され、 The yokes (Ya) and (Yb) may be disposed inside the ring-shaped exciting coil 5. A permanent magnet (M) having a predetermined length in the circumferential direction is fixed inside the rotor 3x,
1つ One
の磁極 10 (本実施形態では N極)が構成されている。 Magnetic pole 10 (N pole in this embodiment).
次に、さきに述べた (ii)のタイプの直流モータ、すなわち、ステータが永久磁石を備 え  Next, the DC motor of the type (ii) described above, i.e., the stator has a permanent magnet.
、ロータが電磁石により構成される複数の磁極を備えるタイプの直流モータについて 説明  , DC motor of the type with a plurality of magnetic poles whose rotor is composed of electromagnets
する。 To do.
図 9は、上記 (ii)のタイプのインナーロータ型ブラシ付きモータの一実施形態を模式 的  FIG. 9 schematically shows an embodiment of the inner rotor type brush motor of the type (ii).
に示したもので、 2yは永久磁石 (M)を備えたステータ、 3yはこのステータ 2yの内側に 配 2y is a stator with a permanent magnet (M), and 3y is placed inside this stator 2y.
置されるロータである。このロータ 3yの基本構造は、ヨーク (Ya),(Yb)や磁極 (Ga), (Gb )の構成を含めて図 1〜図 5の実施形態におけるステータ 2と同様であるので、同一の 符 It is a rotor to be placed. The basic structure of the rotor 3y is the same as that of the stator 2 in the embodiment of FIGS. 1 to 5 including the configuration of the yokes (Ya), (Yb) and the magnetic poles (Ga), (Gb).
号を付し、詳細な説明は省略する。但し、本実施形態は、ステータ 2yが永久磁石 (M) を A detailed description is omitted. However, in this embodiment, the stator 2y is a permanent magnet (M) The
備え、ロータ 3yが磁極 (G)を備えるものであるため、図 1〜図 5の実施形態とは逆に、 各ヨーク (Ya),(Yb)の断面積は反ロータ回転方向に向かって順次大きくする。  Since the rotor 3y is provided with the magnetic pole (G), the cross-sectional areas of the yokes (Ya) and (Yb) are sequentially increased in the anti-rotor rotation direction, contrary to the embodiment of FIGS. Enlarge.
[0033] また、本実施形態のロータ 3yでは、ロータ回転軸心回りの周方向に沿ったリング状 の [0033] Further, in the rotor 3y of the present embodiment, a ring-like shape along the circumferential direction around the rotor rotation axis.
励磁コイル 5の内側にヨーク (Ya), (Yb)が配置されている。また、これらヨーク (Ya), (Y b)も、図 1〜図 5の実施形態と同様の構造を有する 1対のヨークユニット 4a, 4b (図 示せず)の一部によって構成されている。  The yokes (Ya) and (Yb) are arranged inside the exciting coil 5. The yokes (Ya) and (Yb) are also constituted by a part of a pair of yoke units 4a and 4b (not shown) having the same structure as that of the embodiment of FIGS.
なお、前記ヨーク (Ya), (Yb)は、図 8の実施形態のようにリング状の励磁コイル 5の外 側に配置してもよい。  The yokes (Ya), (Yb) may be arranged outside the ring-shaped exciting coil 5 as in the embodiment of FIG.
前記ステータ 2yの内側には、周方向に所定の長さを有する永久磁石 (M)が固定さ れ、 1  A permanent magnet (M) having a predetermined length in the circumferential direction is fixed inside the stator 2y.
つの磁 10 (本実施形態では N極)が構成されている。  There are two magnets 10 (N pole in this embodiment).
[0034] 図 10は、上記 (ii)のタイプのアウターロータ型ブラシ付きモータの一実施形態を模 式 FIG. 10 schematically shows an embodiment of the outer rotor type brush motor of the type (ii).
的に示したもので、 3zはロータ、 2zはこのロータ 3zの内側に配置される永久磁石 (M) を  3z is a rotor, 2z is a permanent magnet (M) placed inside this rotor 3z.
備えたステータである。前記ロータ 3zの構造自体は、ヨーク (Ya),(Yb)や磁極 (Ga), (Gb )  A stator provided. The structure of the rotor 3z itself is the yoke (Ya), (Yb) or magnetic pole (Ga), (Gb)
の構成を含めて図 1〜図 5の実施形態におけるステータ 2と同様であるので、同一の 符号  The same reference numerals are used for the stator 2 in the embodiment of FIGS.
を付し、詳細な説明は省略する。但し、本実施形態も、ステータ 2zが永久磁石 (M)を 備  The detailed description is omitted. However, also in this embodiment, the stator 2z is provided with a permanent magnet (M).
え、ロータ 3zが磁極 (G)を備えるものであるため、図 1〜図 5の実施形態とは逆に、各 ヨーク (Ya),(Yb)の断面積は反ロータ回転方向に向かって順次大きくする。  On the other hand, since the rotor 3z is provided with the magnetic pole (G), the cross-sectional areas of the yokes (Ya) and (Yb) are sequentially increased in the counter-rotor rotation direction, contrary to the embodiment of FIGS. Enlarge.
前記ステータ 2zは、 2つの略半円形の永久磁石 (M)を接続して円盤状のステータ本 体が  The stator 2z has a disk-shaped stator body by connecting two substantially semicircular permanent magnets (M).
構成され、この永久磁石 (M)により 2つの磁極 10A (S極)、 10B (N極)が構成さ れている。 This permanent magnet (M) forms two magnetic poles 10A (S pole) and 10B (N pole). It is.
[0035] 以上述べたような (i)のタイプのアウターロータ型ブラシレスモータ(図 8)や (ii)の タイプのインナーロータ型ブラシ付きモータ(図 9)及びアウターロータ型ブラシ付きモ ータ(図 10)についても、図 1〜図 5に示すインナーロータ型ブラシレスモータに関し て述べた以下のような条件が当てはまる。  [0035] (i) type outer rotor type brushless motor (Fig. 8) and (ii) type inner rotor type brushed motor (Fig. 9) and outer rotor type brushed motor ( The following conditions for the inner rotor type brushless motor shown in FIGS. 1 to 5 also apply to FIG. 10).
(ィ)磁極 (G)は 2n個(但し、 nは 1以上の整数)以上の任意の数とすることができ る。但し、特に合理的な構造としては、 2つ又は 4つの磁極 (G)を備えた構造が好まし レヽ  (Ii) The number of magnetic poles (G) can be any number greater than 2n (where n is an integer greater than or equal to 1). However, as a particularly rational structure, a structure with two or four magnetic poles (G) is preferred.
[0036] (口)永久磁石 (M)やこれにより構成される磁極 10は、電磁石により構成される磁極( G)との相互作用でロータ 3にトルクが付与できればよぐその構成は任意である。磁極 (G [0036] (Mouth) The permanent magnet (M) and the magnetic pole 10 constituted by the permanent magnet (M) may have any configuration as long as torque can be applied to the rotor 3 by interaction with the magnetic pole (G) constituted by the electromagnet. . Magnetic pole (G
)の数に対する磁極 10の数も任意であり、基本的には少なくとも 1つの磁極 10 (N極 又は S極)があればよいが、磁極 (G)の極性の切り換えの簡便性等の面からは、磁極( G)と  The number of magnetic poles 10 with respect to the number of magnetic poles 10) is arbitrary, and basically at least one magnetic pole 10 (N pole or S pole) is sufficient, but from the standpoint of ease of switching the polarity of the magnetic pole (G). With the magnetic pole (G)
磁極 10は同数であることが好ましい。すなわち、 2つの磁極 (G)を有する場合には N 極  The number of magnetic poles 10 is preferably the same. That is, if you have two magnetic poles (G),
と S極の 2つの磁極 10を設け、また、 4つの磁極 (G)を有する場合には、周方向で N極 と S極を交互に配することで、 4つの磁極 10を設けることが好ましい。  If there are 4 magnetic poles (G), it is preferable to provide 4 magnetic poles 10 by alternately arranging N poles and S poles in the circumferential direction. .
[0037] 以上述べた各実施形態は、クローポール型モータと同様に、複数の磁極 (G)を各々 [0037] In each of the embodiments described above, a plurality of magnetic poles (G) are respectively provided in the same manner as the claw pole type motor.
3—  3—
ク (Y)で構成し、その複数のヨーク (Y)の外側又は内側にロータ回転軸心回りの周方向 に沿  (Y) and the outer or inner side of the plurality of yokes (Y) along the circumferential direction around the rotor rotation axis.
つたリング状の励磁コイル 5を配置したものである力 S、複数の磁極 (G)は、各々をヨーク (  The force S, which is an arrangement of the ring-shaped exciting coils 5, and the magnetic poles (G)
Y)を備えた電機子コイルで構成してもよレヽ。  It may be composed of armature coils with Y).
図 11は、その一実施形態を示す斜視図である。この直流モータ(図 1〜図 5、図 6の 実施形態と同じぐ上記 (i)のタイプのインナーロータ型モータ)は、図 6の実施形態と 同様に 4つの磁極 (Ga ),(Gb ),(Ga ),(Gb )を備えている。 FIG. 11 is a perspective view showing an embodiment thereof. This DC motor (inner rotor type motor of the above type (i), which is the same as the embodiment of FIGS. 1 to 5 and FIG. 6), is the same as the embodiment of FIG. Similarly, four magnetic poles (Ga), (Gb), (Ga), (Gb) are provided.
1 1 2 2  1 1 2 2
[0038] 本実施形態のステータ 2は、ケース 1のほぼ 1/4周に相当する弧形状の電機子コ ィル  [0038] The stator 2 of the present embodiment has an arc-shaped armature coil corresponding to approximately 1/4 turn of the case 1.
12a, 12b , 12a, 12b力ケース 1の内周に沿って順に配置され、これ  12a, 12b, 12a, 12b are arranged in order along the inner circumference of the force case 1,
1 1 2 2  1 1 2 2
ら電機子コィノレ 12a , 12b , 12a , 12bにより前記磁極 (Ga (Gb ),  Armature coinoles 12a, 12b, 12a, 12b, the magnetic poles (Ga (Gb),
1 1 2 2 1 1  1 1 2 2 1 1
(Ga ),(Gb )カ構成されてレヽる。各電機子コィノレ 12a , 12b , 12a , 12  (Ga 1), (Gb 2) are configured and laid out. Each armature coin 12a, 12b, 12a, 12
2 2 1 1 2  2 2 1 1 2
bは、弧形状のヨーク (Ya ),(Yb (Ya ),(Yb )の外側に各々励磁コイル 13a  b represents an exciting coil 13a on the outside of the arc-shaped yoke (Ya), (Yb (Ya), (Yb).
2 1 1 2 2 1 2 1 1 2 2 1
, 13b, 13a, 13bカ巻力れることで構成されている。 , 13b, 13a, and 13b.
1 2 2  1 2 2
上記のような電機子コィノレ 12a, 12b, 12a, 12bの酉己置こより、前  From the armature coiner 12a, 12b, 12a, 12b
1 1 2 2  1 1 2 2
記ヨーク (Ya ),(Ya )とヨーク (Yb ),(Yb )は、各々ケース 1の 180。 対向する位置  The yokes (Ya) and (Ya) and the yokes (Yb) and (Yb) are 180 in case 1. Opposite position
1 2 1 2  1 2 1 2
に配置されている。これらヨーク (Ya ),(Yb ),(Ya ),(Yb )は、その高さ(=断面積  Is arranged. These yokes (Ya), (Yb), (Ya), (Yb) have their height (= cross-sectional area)
1 1 2 2  1 1 2 2
)がロータ回転方向に向かって順次大きくなるように構成されている。  ) Are sequentially increased in the rotor rotation direction.
[0039] このようなステータ 2では、ヨーク (Ya ),(Ya )が周方向で 180° の関係に位置し [0039] In such a stator 2, the yokes (Ya), (Ya) are positioned in a 180 ° relationship in the circumferential direction.
1 2  1 2
て同じ極性に励磁される磁極 (Ga ), (Ga )を構成し、ヨーク (Yb ),(Yb )が周方向で  Magnetic poles (Ga), (Ga) excited to the same polarity, and the yokes (Yb), (Yb) are circumferentially
1 2 1 2  1 2 1 2
180° の関係に位置して同じ極性に励磁される磁極 (Gb ), (Gb )を構成し、且つ磁  The magnetic poles (Gb) and (Gb) are located at 180 ° and are excited to the same polarity.
1 2  1 2
 Pole
(Ga ), (Ga )と磁極 (Gb ), (Gb )は異なる極性に励磁され、ロータ 3が備える永久磁 (Ga), (Ga) and magnetic poles (Gb), (Gb) are excited with different polarities, and the permanent magnets of rotor 3
1 2 1 2 1 2 1 2
石 (M)との相互作用によりロータ 3にトルクを付与する。  Torque is applied to rotor 3 by interaction with stone (M).
各磁極 (Ga ), (Ga )と磁極 (Gb ), (Gb )での磁界の強さは、ヨーク (Ya ),(Ya )  The magnetic field strength at each magnetic pole (Ga), (Ga) and magnetic pole (Gb), (Gb) is the yoke (Ya), (Ya)
1 2 1 2 1 2 とヨーク (Yb ),(Yb )の高さ(断面積)の漸増により、ロータ回転方向(図 11中矢印  1 2 1 2 1 2 and the yoke (Yb), the height (cross-sectional area) of the yoke (Yb) gradually increases, and the rotor rotation direction (arrow in Fig. 11)
1 2  1 2
で示す方向)に向かって、すなわち図 11に示した「最小断面積」から「最大断面積」 に  Direction), that is, from the “minimum cross-sectional area” to the “maximum cross-sectional area” shown in FIG.
向かって順次大きくなる。  It becomes larger gradually.
[0040] 図 11の実施形態のロータ 3も所謂マグネットロータであり、 4つの略四半円形の永 久  [0040] The rotor 3 of the embodiment of Fig. 11 is also a so-called magnet rotor, and has four permanent semicircular permanent shapes.
磁石 (M)を接続して円盤状のロータ本体が構成され、これらの永久磁石 (M)により、磁 極 (G  A magnet (M) is connected to form a disk-shaped rotor body, and these permanent magnets (M)
)の数と同じ 4つの磁極 10A (S極)、 10B (N極)、 10A (S極)、 10 B (N極)が構成されている。なお、この実施形態においても、磁極 10A〜: 10B) 4 magnetic poles 10A (S pole), 10B (N pole), 10A (S pole), 10 B (N pole) is configured. In this embodiment also, the magnetic poles 10A to 10B
2 1 のうちのいずれ力 1つ或いは 2〜3つを設けるだけでもよい。 Any one of 2 1 or just two or three may be provided.
2  2
[0041] したがって、この形式の直流モータの駆動原理も、図 6の実施形態と全く同じである また、この形式のモータについても、 2つの電機子コイルを備えることにより、図 1〜図 5の実施形態のように 2つの磁極 (Ga),(Gb)を有するものとしてもよレ、。また、(i)ロー タが永久磁石 (M)を備え、ステータが電磁石により構成される複数の磁極 (G)を備える タイ  Therefore, the driving principle of this type of DC motor is also exactly the same as that of the embodiment of FIG. 6. Also, this type of motor is provided with two armature coils, so that FIGS. It is possible to have two magnetic poles (Ga) and (Gb) as in the embodiment. In addition, (i) the rotor is provided with a permanent magnet (M), and the stator is provided with a plurality of magnetic poles (G) composed of electromagnets.
プ、(ii)ステータが永久磁石 (M)を備え、ロータが電磁石により構成される複数の磁極( G)  (Ii) A plurality of magnetic poles (G) in which the stator includes a permanent magnet (M) and the rotor is composed of an electromagnet.
を備えるタイプ、のいずれにも適用できる。また、上記 (i),(ii)のタイプともに、イン ナーロータ型、アウターロータ型のいずれの形式のモータとしてもよレ、。  It can be applied to any of the types including In addition, both types (i) and (ii) above can be used as an inner rotor type or outer rotor type motor.
[0042] 図 11に示した実施形態では、複数の磁極 (G)はロータ自体を囲むように配置されて レヽ  In the embodiment shown in FIG. 11, the plurality of magnetic poles (G) are arranged so as to surround the rotor itself.
る力 複数の磁極 (G)は、ロータ 3にトルクを与える磁極を形成できるように配置されれ ばよぐ複数の磁極がロータ回転軸心回りの周方向で間隔をおいて配置されればよ い。し  The multiple magnetic poles (G) should be arranged so as to form a magnetic pole that gives torque to the rotor 3, and the multiple magnetic poles should be arranged at intervals in the circumferential direction around the rotor rotation axis. Yes. Shi
たがって、複数の磁極 (G)をロータ 3の回転軸心を囲むように配置してもよぐこの場 は、複数の磁極 (G) (電機子コイル)はロータ 3の一方の回転面と対面 (対向)した状態 に配置されることになる。  Therefore, a plurality of magnetic poles (G) may be arranged so as to surround the rotation axis of the rotor 3. They will be placed facing each other (opposing).
[0043] 本発明のブラシレスモータに用いる制御回路(ドライバ回路)としては、ロータ 3が [ [0043] As a control circuit (driver circuit) used in the brushless motor of the present invention, the rotor 3 is [
360/磁極 (G)の数] ° に相当する角度(例えば、図 1〜図 5の実施形態の場合には  360 / number of magnetic poles (G)] angle corresponding to ° (for example, in the case of the embodiment of FIGS. 1 to 5
80° 、図 6の実施形態の場合には 90° )を回転する毎に励磁コイル 5に流れる電流 の 80 °, 90 ° in the case of the embodiment of FIG. 6)
向きを反転させる機能を有するスィッチ回路を用いるだけでよい。このような制御回路 は 、例えば、携帯電話機などの適用対象機器に備えられている回路を利用してもよい。 また It is only necessary to use a switch circuit having a function of reversing the direction. Such a control circuit is For example, a circuit provided in a target device such as a mobile phone may be used. Also
、このような制御回路を用いる以外に、例えば、各励磁コイル 5に、異なる極性を生じ さ  In addition to using such a control circuit, for example, each excitation coil 5 has a different polarity.
せる 2組のコイルを備えさせ、これら 2組のコイルの切り替えにより、磁極 (G)の極性を 切り替えるような方式を採用してもよい。 It is also possible to adopt a method in which two sets of coils are provided and the polarity of the magnetic pole (G) is switched by switching between the two sets of coils.
また、ブラシ付きのモータの場合には、ロータ 3が [360Z磁極 (G)の数]。 に相当 する角度 (例えば、図 1〜図 5の実施形態の場合には 180° 、図 6の実施形態の場合 に  In the case of a motor with a brush, the rotor 3 is [number of 360Z magnetic poles (G)]. (E.g., 180 ° for the embodiment of FIGS. 1-5, and for the embodiment of FIG. 6).
は 90° )を回転する毎に各磁極 (G)に流れる電流の向きを反転させるようなブラシと 整 (90 °) each time it is rotated, the brush and alignment are such that the direction of the current flowing in each magnetic pole (G) is reversed.
流子を用いればよい。 A drifter may be used.
次に、本発明の直流モータの駆動原理を、図 1〜図 5に示す実施形態のものを例 に、図  Next, the drive principle of the DC motor of the present invention is illustrated by taking the embodiment shown in FIGS. 1 to 5 as an example.
12 (A)〜(E)に基づいて説明する。なお、図 12では、模式的に磁極 (Ga),磁極 (Gb )を斜線部で示し、且つそれらの各部分の磁界の強さを斜線部の太さで表している。 図 12 (A)では、ヨーク (Ya)で構成される磁極 (Ga)は N極に、ヨーク (Yb)で構成され る磁極 (Gb)は S極にそれぞれ励磁され、ロータ 3 (永久磁石)の S極が、 N極に励磁さ れ  12 Based on (A) to (E). In FIG. 12, the magnetic pole (Ga) and the magnetic pole (Gb) are schematically indicated by hatched portions, and the strength of the magnetic field of each portion is indicated by the thickness of the shaded portion. In Fig. 12 (A), the magnetic pole (Ga) consisting of the yoke (Ya) is excited to the N pole, and the magnetic pole (Gb) consisting of the yoke (Yb) is excited to the S pole, and the rotor 3 (permanent magnet) The S pole is excited to the N pole.
た磁極 (Ga)のなかで最も磁界の強い位置に、また、ロータ 3 (永久磁石)の N極が、 S 極 The magnetic pole (Ga) has the strongest magnetic field, and the N pole of the rotor 3 (permanent magnet) is the S pole.
に励磁された磁極 (Gb)のなかで最も磁界の強い位置に、それぞれ固定された状態に ある。 Each of the magnetic poles (Gb) excited by is fixed at the strongest magnetic field.
この状態から、図 12 (B)に示すように、磁極 (Ga),磁極 (Gb)の極性を切り替え(反転 させる)、磁極 (Ga)を S極に、磁極 (Gb)を N極にそれぞれ励磁すると、磁極 (Ga) (S極) とロータ 3の S極間、磁極 (Gb) (N極)とロータ 3の N極間にそれぞれ反発力が生じ、一 方、磁極 (Gb) (N極)とロータ 3の S極間、磁極 (Ga) (S極)とロータ 3の N極間にそれ ぞれ吸引力が生じるため、ロータ 3に図中矢印方向でのトノレクが与えられ、ロータ 3が 回 From this state, as shown in Fig. 12 (B), the polarity of the magnetic pole (Ga) and magnetic pole (Gb) is switched (reversed), the magnetic pole (Ga) is changed to S pole, and the magnetic pole (Gb) is changed to N pole. When excited, a repulsive force is generated between the magnetic pole (Ga) (S pole) and the S pole of the rotor 3, and between the magnetic pole (Gb) (N pole) and the N pole of the rotor 3, and on the other hand, the magnetic pole (Gb) (N Pole) and the S pole of the rotor 3, and between the magnetic pole (Ga) (S pole) and the N pole of the rotor 3, attracting force is applied to the rotor 3 in the direction of the arrow in the figure, and the rotor 3 is Times
転する。  Roll.
[0045] さらに、各磁極 (Ga),磁極 (Gb)での磁界の強さは、ロータ回転方向において順次大 さく  [0045] Further, the strength of the magnetic field at each magnetic pole (Ga) and magnetic pole (Gb) increases in order in the rotor rotation direction.
なるように磁界に勾配がつけられているので、図 12 (C)に示されるように、ロータ 3 の S極と N極は、磁界がより強い側に順次吸引されることでロータ 3は回転し、図 12 ( D)に示されるように、ロータ 3の S極力 S、 N極に励磁された磁極 (Gb)のなかで最も磁 界  As shown in Fig. 12 (C), the rotor 3 rotates as the S pole and the N pole of the rotor 3 are sequentially attracted to the side where the magnetic field is stronger, as shown in Fig. 12 (C). However, as shown in Fig. 12 (D), the magnetic field is the most among the magnetic poles (Gb) excited to S and N poles of rotor 3 as much as possible.
の強い位置で、また、ロータ 3の N極力 S、 S極に励磁された磁極 (Ga)のなかで最も磁 界の  The magnetic field of the magnetic field (Ga) excited by the rotor 3's N pole S and S pole
強い位置で、それぞれ固定される。この時点で、図 12 (E)に示すように、再び磁極 (G a),磁極 (Gb)の極性を切り替え(反転させる)、磁極 (Ga)を N極に、磁極 (Gb)を S極にそ れぞれ励磁すると、磁極 (Gb) (S極)とロータ 3の S極間、磁極 (Ga) (N極)とロータ 3 の N極間にそれぞれ反発力が生じ、一方、磁極 (Ga) (N極)とロータ 3の S極間、磁極 ( G  Each is fixed at a strong position. At this point, as shown in Fig. 12 (E), the polarity of the magnetic pole (Ga) and magnetic pole (Gb) is switched (reversed) again, the magnetic pole (Ga) is set to N pole, and the magnetic pole (Gb) is set to S pole. When the magnets are excited, repulsive forces are generated between the magnetic pole (Gb) (S pole) and the S pole of the rotor 3, and between the magnetic pole (Ga) (N pole) and the N pole of the rotor 3, respectively, Ga) (N pole) and S pole of rotor 3, magnetic pole (G
b)とロータ 3の N極間にそれぞれ吸引力が生じるため、引き続きロータ 3にトルクが与 え  b) and the N pole of the rotor 3 are attracted respectively, so that torque is continuously applied to the rotor 3.
られ、ロータ 3は回転を続ける。  Rotor 3 continues to rotate.
[0046] 以上のように本発明の直流モータは、各磁極 (G)の磁界の強さを、磁界の勾配が生 じる As described above, the DC motor of the present invention generates the magnetic field strength of each magnetic pole (G) and the gradient of the magnetic field.
ようにロータ回転方向(又は反ロータ回転方向)に向かって順次大きくした構造とした 上  In this way, the structure is gradually increased toward the rotor rotation direction (or anti-rotor rotation direction).
で、ロータ 3が所定角度回転(図 12の場合には 180° 回転)する毎に、 2系統の磁極 (G)の極性を S極と N極の間で交互に切り替える(反転させる)ことだけで、ロータ 3が 回転し続ける。ここで、磁極 (G)の極性の反転は、ロータ 3が [360Z磁極 (G)の数]。 の角度を回転する毎に行われる。  Thus, every time the rotor 3 rotates by a predetermined angle (180 ° in the case of Fig. 12), the polarity of the two magnetic poles (G) can be switched alternately (inverted) between the S pole and the N pole. Then, rotor 3 continues to rotate. Here, the polarity of the magnetic pole (G) is reversed by the rotor 3 [number of 360Z magnetic poles (G)]. This is done every time the angle is rotated.
[0047] なお、図 12の説明では、ロータ 3の N極と S極が各々、励磁された磁極との間の反 発 力 ·吸引力でトルクを付与されると述べたが、例えば、図 4 (B)〜(D)に示すような ロータ 3 (但し、図 4 (B)〜(D)に示す永久磁石は N極 ' S極の位置が逆でもよい) の場合には、実質的にロータ 3の N極と S極のいずれか一方だけ力 励磁された磁極 との In the description of FIG. 12, the repulsion between the N pole and the S pole of the rotor 3 between the excited magnetic poles. Although it has been stated that torque is applied by attractive force, for example, rotor 3 as shown in FIGS. 4 (B) to (D) (however, the permanent magnet shown in FIGS. 4 (B) to (D) is N Pole 'S pole position may be reversed).
間の反発力 ·吸引力でトルクを付与されることになる。その場合でも、ロータ 3は何ら 問  The repulsive force between them-Torque is applied by suction force. Even in that case, the rotor 3
題なく回転する。  Rotate without title.
[0048] また、図 8〜図 10に示す直流モータについても、基本的に上記と同じ駆動原理で ロー  [0048] The DC motors shown in Figs. 8 to 10 are basically driven by the same driving principle as described above.
タが回転する。すなわち、図 8に示すアウターロータ型ブラシレスモータでは、ステー タ  Rotate. That is, in the outer rotor type brushless motor shown in FIG.
2xの磁極 (Ga),(Gb)の極性をロータ 3xが 180° 回転する毎に S極と N極の間で交互 に  The polarity of 2x magnetic poles (Ga) and (Gb) is alternated between S and N poles every time rotor 3x rotates 180 °.
切り替える(反転させる)ことにより、また、図 9に示すインナーロータ型ブラシ付きモ ータでは、ロータ 3yの磁極 (Ga),(Gb)の極性をロータ 3yが 180° 回転する毎に S極と N極の間で交互に切り替える(反転させる)ことにより、また、図 10に示すアウター口 ータ型ブラシ付きモータでは、ロータ 3zの磁極 (Ga),(Gb)の極性をロータ 3zが 180° 回転する毎に S極と N極の間で交互に切り替える(反転させる)ことにより、それぞれ 図  By switching (reversing), the inner rotor brush motor shown in Fig. 9 changes the polarity of the magnetic poles (Ga) and (Gb) of the rotor 3y to the S pole every time the rotor 3y rotates 180 °. By alternately switching (reversing) between the N poles, and in the outer port type brush motor shown in Fig. 10, the polarity of the magnetic poles (Ga) and (Gb) of the rotor 3z is 180 ° By switching (reversing) between S pole and N pole alternately at each rotation,
12に示した場合と同様の駆動原理でロータが回転する。  The rotor rotates on the same drive principle as shown in FIG.
[0049] 本発明の直流モータを振動モータに適用する場合には、ロータ 3の主要部が偏心 構造を [0049] When the DC motor of the present invention is applied to a vibration motor, the main part of the rotor 3 has an eccentric structure.
有するか若しくは偏心ウェイトを備える必要がある。  Or have an eccentric weight.
ロータ 3の主要部が偏心構造を有する例としては、図 1〜図 5の実施形態、図 7 (A) , (B)の実施形態などが挙げられる。  Examples of the main part of the rotor 3 having an eccentric structure include the embodiments of FIGS. 1 to 5 and the embodiments of FIGS. 7 (A) and 7 (B).
また、ロータ 3が偏心ウェイトを備える例としては、例えば、図 7 (C)〜(G)に示 すような円盤状のロータ 1に偏心ウェイト(図示せず)を備えさせたものなどが挙げら れ る。具体的には、(1)永久磁石 (M)を備えた円盤状のロータ本体と、このロータ本体に 対し Examples of the rotor 3 having an eccentric weight include, for example, a disk-shaped rotor 1 having an eccentric weight (not shown) as shown in FIGS. 7 (C) to (G). Rare The Specifically, (1) a disc-shaped rotor body with a permanent magnet (M) and the rotor body
てその盤面の一部と重合するように連結された偏心ウェイトからなるロータ、(2)円盤 状  A rotor composed of eccentric weights connected so as to overlap with a part of the surface of the lever, (2) disk shape
に構成され、該円盤の一方の半円領域内に永久磁石 (M)を有し、他方の半円領域内 に偏心  With a permanent magnet (M) in one semicircular region of the disk and eccentric in the other semicircular region
ウェイトを有するロータ、などを挙げることができる。  Examples include a rotor having a weight.
[0050] 図 1〜図 5の実施形態は本発明の直流モータを振動モータに適用したものである 、本 [0050] The embodiment shown in Figs. 1 to 5 is an application of the DC motor of the present invention to a vibration motor.
発明の直流モータは、回転駆動源として用いる汎用型モータにも適用できることは言 うま  The direct current motor of the invention can also be applied to a general-purpose motor used as a rotational drive source.
でもなぐこの場合には、回転自在なモータシャフト(出力軸)を備え、このモータシャ フトにロータが固定される。通常、このモータシャフトは、ケースの軸心に沿って配置 さ  However, in this case, a rotatable motor shaft (output shaft) is provided, and the rotor is fixed to the motor shaft. Normally, this motor shaft is placed along the axis of the case.
れ、軸受を介してケースに回転自在に支持される。このような直流モータは、ロータと モ  And is rotatably supported by the case via a bearing. Such a DC motor has a rotor and a motor.
ータシャフトが一体に回転し、回転出力がモータシャフトから取り出される。  The rotor shaft rotates as a unit, and the rotational output is taken from the motor shaft.
図面の簡単な説明  Brief Description of Drawings
[0051] [図 1]本発明の直流モータの一実施形態を、ケースを断面した状態で示す平面図 FIG. 1 is a plan view showing a DC motor according to an embodiment of the present invention in a cross-sectional state.
[図 2]図 1中の II— II線に沿う断面図であって、ロータ側の永久磁石 (M)を省略した状 態で示す断面図 FIG. 2 is a cross-sectional view taken along line II—II in FIG. 1, showing the rotor side permanent magnet (M) omitted.
[図 3]図 1の実施形態の直流モータの分解斜視図  FIG. 3 is an exploded perspective view of the DC motor of the embodiment of FIG.
[図 4]図 1の実施形態の直流モータについて、ケース 1の一部、励磁コイル 5及び永 久磁石 (M)を省略した状態で示す斜視図  [FIG. 4] Perspective view showing the DC motor of the embodiment of FIG. 1 with a part of case 1, the exciting coil 5 and the permanent magnet (M) omitted.
[図 5]図 1の実施形態の直流モータについて、ケース 1の一部と永久磁石 (M)を省略し た状態で示す斜視図  FIG. 5 is a perspective view showing the DC motor of the embodiment of FIG. 1 with a part of case 1 and the permanent magnet (M) omitted.
[図 6]本発明の直流モータの他の実施形態を、ケースを断面した状態で示す平面図 [図 7]本発明の直流モータを構成するロータ及びこれに設けられる永久磁石の形態 例を示す説明図 FIG. 6 is a plan view showing another embodiment of the direct current motor of the present invention in a state in which the case is cross-sectioned. FIG. 7 shows the rotor constituting the direct current motor of the present invention and the form of a permanent magnet provided on the rotor. Illustration showing an example
園 8]本発明の直流モータの他の実施形態を、ケースを断面した状態で示す平面図 [図 9]本発明の直流モータの他の実施形態を、ケースを断面した状態で示す平面図 園 10]本発明の直流モータの他の実施形態を、ケースを断面した状態で示す平面図 園 11]本発明の直流モータの他の実施形態を、ケースを断面した状態で示す斜視図 園 12]本発明の直流モータの駆動原理を示す説明図 FIG. 9 is a plan view showing another embodiment of the DC motor of the present invention in a state in which the case is cross-sectioned. FIG. 9 is a plan view showing another embodiment of the DC motor in accordance with the present invention in a state in which the case is cross-sectioned. 10] A plan view showing another embodiment of the direct current motor of the present invention in a state in which the case is cross-sectioned. 11] A perspective view showing another embodiment of the direct current motor in accordance with the present invention in a state of cutting the case. Explanatory drawing which shows the drive principle of the DC motor of this invention
符号の説明 Explanation of symbols
1 ケース  1 case
la, lb ケース部材  la, lb Case material
2, 2x, 2y, 2z ステータ  2, 2x, 2y, 2z stator
3, 3x, 3y, 3z ロータ  3, 3x, 3y, 3z rotor
4a, 4b ヨークユニット  4a, 4b Yoke unit
5 励磁コイル  5 Excitation coil
6 ヨークユニット糸且立体  6 Yoke unit thread and solid
7 固定シャフト  7 Fixed shaft
8 軸受  8 Bearing
9 保持リング  9 Retaining ring
10A, 10B, 10A , 10A, 10B, 10B 磁極  10A, 10B, 10A, 10A, 10B, 10B Magnetic pole
1 2 1 2  1 2 1 2
12a, 12b 電機子コイル  12a, 12b Armature coil
13a, 13b 励磁コイル  13a, 13b Excitation coil
40a, 40b 本体  40a, 40b body
(Ya)ズ Ya (Ya ),(Yb),(Yb (Yb ) ヨーク  (Ya) 's Ya (Ya), (Yb), (Yb (Yb) York
1 2 1 2  1 2 1 2
(Ga),(Ga (Ga ),(Gb),(Gb ),(Gb ) 磁極  (Ga), (Ga (Ga), (Gb), (Gb), (Gb) Magnetic pole
1 2 1 2  1 2 1 2
(M) 永久磁石  (M) Permanent magnet

Claims

請求の範囲 The scope of the claims
[1] ロータとステータのうちの、一方に永久磁石 (M)を備え、他方に電磁石により構成さ れ  [1] One of the rotor and stator is equipped with a permanent magnet (M) and the other is composed of an electromagnet.
る磁極であって、前記永久磁石 (M)との相互作用によりロータにトルクを付与する 2n 個  2n magnetic poles that apply torque to the rotor through interaction with the permanent magnet (M).
(但し、 nは 1以上の整数)の磁極 (G)をロータ回転軸心回りの周方向で間隔をおいて 備  (Where n is an integer equal to or greater than 1) Magnetic poles (G) are spaced in the circumferential direction around the rotor rotation axis.
え、  e,
ロータ回転軸心回りの周方向で隣接する磁極 (G)どうし (但し、磁極 (G)の数が 2つの 場  Magnetic poles (G) adjacent in the circumferential direction around the rotor rotation axis (however, if the number of magnetic poles (G) is two
合は、当該 2つの磁極 (G)どうし)は異なる極性に励磁されるように構成され、 各磁極 (G)はロータ回転軸心回りの周方向に沿った弧形状を有するヨーク (Y)を備え 、該  The two magnetic poles (G) are excited with different polarities, and each magnetic pole (G) has a yoke (Y) having an arc shape along the circumferential direction around the rotor rotation axis. Prepare
各ヨーク (Y)の断面積を、下記 (ィ), (口)の条件にしたがいロータ回転方向又は反口 ータ回転方向に向かって順次大きくしたことを特徴とする直流モータ。  A DC motor characterized in that the cross-sectional area of each yoke (Y) is gradually increased in the direction of rotor rotation or counter-rotator rotation in accordance with the following conditions (i) and (mouth).
(ィ)ロータが永久磁石 (M)を備え、ステータが電磁石により構成される磁極 (G)を備 (Ii) The rotor has a permanent magnet (M) and the stator has a magnetic pole (G) composed of an electromagnet.
X. X.
る場合はロータ回転方向  When rotating the rotor
(口)ステータが永久磁石 (M)を備え、ロータが電磁石により構成される磁極 (G)を備 (Port) The stator has a permanent magnet (M), and the rotor has a magnetic pole (G) composed of an electromagnet.
X. X.
る場合は反ロータ回転方向  If it is
[2] ロータが永久磁石 (M)を備え、ステータが電磁石により構成される複数の磁極 (G)を 備え [2] The rotor has permanent magnets (M) and the stator has multiple magnetic poles (G) composed of electromagnets
ることを特徴とする請求項 1に記載の直流モータ。  The DC motor according to claim 1, wherein:
[3] ステータが永久磁石 (M)を備え、ロータが電磁石により構成される複数の磁極 (G)を 備え [3] The stator has a permanent magnet (M), and the rotor has a plurality of magnetic poles (G) composed of electromagnets
ることを特徴とする請求項 1に記載の直流モータ。  The DC motor according to claim 1, wherein:
[4] 複数の磁極 (G)が、各々ヨーク (Y)で構成され、該複数のヨーク (Y)の外側又は内側 に口 [4] Each of the plurality of magnetic poles (G) includes a yoke (Y), and the outside or inside of the plurality of yokes (Y) Mouth
ータ回転軸心回りの周方向に沿ったリング状の励磁コイルを有することを特徴とする 請求  A ring-shaped excitation coil along a circumferential direction around the rotation axis
項 1〜3のいずれかに記載の直流モータ。  Item 4. A DC motor according to any one of Items 1 to 3.
[5] 複数の磁極 (G)が、各々ヨーク (Y)を備えた電機子コイルで構成されることを特徴とす る [5] The plurality of magnetic poles (G) are composed of armature coils each having a yoke (Y).
請求項 1〜3のいずれかに記載の直流モータ。  The DC motor according to any one of claims 1 to 3.
[6] ロータ回転軸心回りの周方向に沿って 2個又は 4個の磁極 (G)を備えることを特徴と す [6] Featuring two or four magnetic poles (G) along the circumferential direction around the rotor rotation axis
る請求項 1〜5のいずれかに記載の直流モータ。  The DC motor according to any one of claims 1 to 5.
[7] 請求項 1〜6のいずれかに記載の直流モータにおいて、ロータが偏心ウェイトを備 え又 [7] The DC motor according to any one of claims 1 to 6, wherein the rotor includes an eccentric weight.
は偏心構造を有することを特徴とする直流振動モータ。  Is a DC vibration motor characterized by having an eccentric structure.
[8] ロータは、永久磁石 (M)を備えた円盤状のロータ本体と、該ロータ本体に対してその 盤 [8] The rotor includes a disk-shaped rotor body provided with a permanent magnet (M), and the disk with respect to the rotor body.
面の一部と重合するように連結された偏心ウェイトとを有することを特徴とする請求項 7  8. An eccentric weight connected so as to overlap with a part of the surface.
に記載の直流振動モータ。  The direct current vibration motor described in 1.
[9] ロータは円盤状に構成され、該円盤の一方の半円領域内に永久磁石 (M)を有し、 他方の [9] The rotor is configured in a disk shape, and has a permanent magnet (M) in one semicircular region of the disk,
半円領域内に偏心ウェイトを有することを特徴とする請求項 7に記載の直流振動モ The DC vibration module according to claim 7, wherein an eccentric weight is provided in the semicircular region.
■ ~タ ■ ~
[10] ロータの主要部が偏心構造を有する永久磁石 (M)からなることを特徴とする請求項 7に  [10] The main part of the rotor is composed of a permanent magnet (M) having an eccentric structure.
記載の直流振動モータ。  The described DC vibration motor.
PCT/JP2007/053868 2006-03-03 2007-03-01 Dc motor and dc vibration motor WO2007100026A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-058736 2006-03-03
JP2006058736A JP5204377B2 (en) 2006-03-03 2006-03-03 DC motor and DC vibration motor

Publications (1)

Publication Number Publication Date
WO2007100026A1 true WO2007100026A1 (en) 2007-09-07

Family

ID=38459126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053868 WO2007100026A1 (en) 2006-03-03 2007-03-01 Dc motor and dc vibration motor

Country Status (2)

Country Link
JP (1) JP5204377B2 (en)
WO (1) WO2007100026A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5373882B2 (en) * 2011-12-21 2013-12-18 敏秀 北 Electric motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254029A (en) * 2001-01-31 2002-09-10 Sunonwealth Electric Machine Industry Co Ltd Dc brushless vibration motor
JP2003102156A (en) * 2001-09-25 2003-04-04 Matsushita Electric Ind Co Ltd Dc motor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3447795B2 (en) * 1994-02-22 2003-09-16 日本電産株式会社 Brushless motor
JPH08340667A (en) * 1995-06-09 1996-12-24 Nippon Densan Corp Magnet motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254029A (en) * 2001-01-31 2002-09-10 Sunonwealth Electric Machine Industry Co Ltd Dc brushless vibration motor
JP2003102156A (en) * 2001-09-25 2003-04-04 Matsushita Electric Ind Co Ltd Dc motor

Also Published As

Publication number Publication date
JP2007244006A (en) 2007-09-20
JP5204377B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
CN106233594B (en) Actuator and air pump, reason beauty appliance and Laser Scanning Equipment
JP4814574B2 (en) DC motor and DC vibration motor
KR100488036B1 (en) Armature structure for flat motor
JP2007037269A5 (en)
WO2007100026A1 (en) Dc motor and dc vibration motor
TWI327406B (en)
JP4572671B2 (en) Thrust vibration combined vibration motor
JP2004254411A (en) Actuator and motor-operated toothbrush using the same
JP2005354875A5 (en)
JP2008092629A5 (en)
JP4029774B2 (en) Actuator
JPH02151255A (en) Step motor
JP2005137078A (en) Electromagnetic actuator
JP3590121B2 (en) Brushless motor
JPH10174414A (en) Pulse-drive type brushless motor
JP2002028569A (en) Direct current vibration motor and armature structure
JPH10164809A (en) Vibration generator
JP3987808B2 (en) Actuator and electric toothbrush using the same
JP2005143207A (en) Stepping motor
JP2003111366A (en) Motor
JP2009165343A (en) Magnetism drive device, magnetism rotating device employing magnetism drive device, magnetism radii drive device, magnetism linear drive device, magnetism vibrating device, magnetism speaker
JP2005176523A (en) Stepping motor and bearing structure of actuator
JP2006101667A (en) Vibration motor
JP2003079126A (en) Motor
JP2010119279A (en) Vibrating motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07715093

Country of ref document: EP

Kind code of ref document: A1