WO2007099889A1 - Method of treating conductive polymer - Google Patents

Method of treating conductive polymer Download PDF

Info

Publication number
WO2007099889A1
WO2007099889A1 PCT/JP2007/053467 JP2007053467W WO2007099889A1 WO 2007099889 A1 WO2007099889 A1 WO 2007099889A1 JP 2007053467 W JP2007053467 W JP 2007053467W WO 2007099889 A1 WO2007099889 A1 WO 2007099889A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive polymer
fiber
treatment
treating
fibers
Prior art date
Application number
PCT/JP2007/053467
Other languages
French (fr)
Japanese (ja)
Inventor
Hidenori Okuzaki
Original Assignee
University Of Yamanashi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Yamanashi filed Critical University Of Yamanashi
Priority to JP2008502756A priority Critical patent/JP5256454B2/en
Publication of WO2007099889A1 publication Critical patent/WO2007099889A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/96Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from other synthetic polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/144Alcohols; Metal alcoholates
    • D06M13/148Polyalcohols, e.g. glycerol or glucose
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • D06M15/233Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated aromatic, e.g. styrene

Definitions

  • the present invention relates to a conductive polymer immersion treatment method capable of simply improving the conductive properties and mechanical properties of a fibrous conductive polymer by immersing it in a treatment liquid.
  • conjugated conductive polymers that have a conjugated double bond in the linear chain of the polymer and exhibit conductivity due to the ease of movement of electrons related to the ⁇ bond have attracted attention.
  • Such a conjugated conductive polymer is generally used by injecting carriers by doping in order to increase carrier mobility.
  • Japanese Patent Application Laid-Open Publication No. 2003-228707 discloses a method for producing a conductive polymer fiber.
  • poly 3, 4 ethylene dioxythiophene has a relatively low band gap of 1.5 to 1.6 eV in the doped state. It is a conductive polymer that has excellent conductivity, transparency, and stability, and is attracting attention as a hole injection material for antistatic agents, electrification window, and organic electrescence luminescence (EL) devices.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-330624
  • an object of the present invention is to provide a method capable of simply improving the conductive properties and mechanical properties of a fibrous conductive polymer.
  • the present invention for solving the above-mentioned problems involves immersing a fiber of a conjugated conductive polymer material to which a dopant is added in a treatment liquid containing ethylene glycol and Z or an aprotic solvent for a predetermined time.
  • a method for treating a conductive polymer characterized by improving the conductive properties and mechanical properties of the fibers.
  • the electrical conductivity is increased by the above treatment.
  • the treatment method of the present invention is an epoch-making method that can improve the properties of the conductive polymer fiber very easily and inexpensively.
  • the above treatment liquid may be a pure solution of this active substance as long as it contains ethylene glycol and Z or one or more of aprotic solvents as the active substance.
  • a solution obtained by diluting the active substance with a solvent such as water or alcohol may be used.
  • the mechanical properties improved by the present invention include fiber Young's modulus, tensile cut strength, cut elongation, and the like. The reason why such an improvement effect can be obtained will be described in detail later.
  • the aprotic solvent is preferably dimethyl sulfoxide (DMSO) or dimethylformamide (DMF).
  • the method of the present invention is characterized in that the fiber properties can be improved simultaneously with the formation of the fiber shape in the wet spinning process.
  • the fiber to be treated is an emulsion dispersion of a polymer material flowing out from a nozzle or a precursor solution thereof, and the treatment
  • the treatment liquid By using the treatment liquid as a coagulation bath, it is possible to simultaneously perform the fiber shape formation by the wet spinning method and the above-described property improvement treatment.
  • the fiber characteristic can be improved in the wet spinning process, and simplification can be achieved.
  • the immersion time of the fiber in the treatment solution may be 30 seconds or more. More preferably, the immersion time is 3 minutes or more.
  • the treatment method of the present invention involves immersing the polymer fiber in a solvent having the ability to dissolve the polymer, and therefore the solvent (treatment liquid component) remaining on the fiber after the immersion is used. There is a risk of degrading the fiber.
  • the fiber treated by the above method is subjected to a heat treatment in which the fiber is maintained at a temperature of 0 to 50 ° C. for 1 minute or more under a reduced pressure of an absolute pressure of 1 Torr or less.
  • a heat treatment in which the fiber is maintained at a temperature of 0 to 50 ° C. for 1 minute or more under a reduced pressure of an absolute pressure of 1 Torr or less.
  • Fig. I is a diagram showing the chemical structure of PEDOTPSPS.
  • FIG. 2 is a conceptual diagram showing a configuration of a wet spinning apparatus used in this example.
  • FIG. 3 is an explanatory diagram of conductivity measurement by a four-terminal method.
  • FIG. 4 is an explanatory diagram of a stress-strain curve.
  • FIG. 5 is a diagram showing the influence of the type of treatment liquid on the change in fiber conductivity in this example.
  • FIG. 6 is a graph showing the effect of immersion time on the change in fiber conductivity in this example.
  • FIG. 7 is a diagram showing an example of the measurement result of the fiber diameter in the present example.
  • FIG. 8 is a diagram showing an example of a measurement result of temperature dependence of fiber conductivity in the present example.
  • FIG. 9 The data of Fig. 8 is displayed with In ⁇ and ⁇ _ 1/2 on the vertical and horizontal axes.
  • FIG. 10 is a diagram showing a comparison of stress-strain curves of fibers before and after the dipping treatment in this example.
  • PEDOTZPSS PED-doped PEDOT
  • the test samples were prepared by completely evaporating and removing the solvent, and the changes in fiber diameter, conductivity, and mechanical properties before and after the immersion treatment were investigated.
  • the production method, test method, and measurement method of the specimen will be described in some detail.
  • FIG. 1 shows the chemical structure of PEDOTZPSS used in this example.
  • This PED OTZPSS was prepared by polymerizing 3,4 ethylenedioxythiophene, a monomer commercially available from Baytron P. Bayer Cotd in the presence of PSS, a dopant, in the form of an aqueous solution. .
  • the ratio of repeat units from PEDOT to PSS was about 0.8, and the dope ratio was 0.33.
  • FIG. 2 is a conceptual diagram showing the configuration of the wet spinning apparatus used in this example.
  • About 1 ml of PE DOTZPSS aqueous solution (emulsion dispersion) 1 is filled in a glass cylinder 2 (diameter 12 mm), and then injected into a coagulation tank 4 filled with acetone at room temperature from an injection needle 3 (inner diameter 180-410 / ⁇ ⁇ ). Spill into.
  • the piston 7 is attached to the syringe pump 5 upright on the ground using a stand via the magnet 6, and the controller 8 controls the stroke of the syringe pump 5 so that the liquid from the injection needle 3 is discharged.
  • the flow rate was adjusted.
  • the fiber of PEDOT ZPSS that flowed out from the injection needle 3 was solidified in acetone for about 20 seconds, then pulled up from the coagulation tank 4 and dried over a wire wrap type IC socket previously wetted with acetone.
  • the microfiber produced by the above method is cut to an appropriate length and immersed in a glass vat (size: 145 x 80 x 10 mm) filled with the treatment solution for a predetermined time. It was hung on a wire wrap type IC socket that had been wet with water. Three types of treatment solutions were used: ethylene glycol (EG), dimethyl sulfoxide (DMS 2 O), or dimethylformamide (DMF). V and deviation were immersed in a pure solution to prepare test samples. The immersion time was changed in 5 steps of 30 seconds, 3 minutes, 10 minutes, 20 minutes and 30 minutes.
  • EG ethylene glycol
  • DMS 2 O dimethyl sulfoxide
  • DMF dimethylformamide
  • An IC socket with microfibers was placed on a ceramic plate, covered with a windshield petri dish, placed in a vacuum oven, and heat-treated by heating for a predetermined time.
  • the heat treatment condition was maintained at 160 ° C for 1 hour for the fiber prepared by PEDOTZPSS aqueous solution force.
  • the diameter d of the microfiber produced by the above method is the image of a microscope (54590-F, Infinity Photo-Optical Company) equipped with a CCD color camera and an objective lens.
  • a digital video camera manufactured by Sony, HANDYCAM DCR-PC1000 was taken and measured on the computer using image measurement software (Image SXM, 175-2C).
  • the conductivity of the microfiber was measured using the 4-terminal method shown in Fig. 3. Cross the microfiber 9 over the pin 10 and insert the tester probe into the two adjacent pins to confirm contact. Confirm that the pin that shows resistance is covered with microfiber on the four adjacent pins. After confirmation, insert the IC socket soldered with copper wire into the pin where the microfiber is firmly attached, and pinch the copper wire with the Kelvin clip 11. At this time, a plastic piece was sandwiched between the Kelvin clips as an insulator. In this state, resistance was measured using a digital multimeter 12 (Model 2000, Keithley). Also, using a reading microscope (manufactured by Shimadzu Corporation), the distance between the center two pins was measured and the distance between electrodes was 1 (cm). Using the fiber diameter d (cm) and resistance value R ( ⁇ ) measured by the above method, the electrical conductivity ⁇ (S / cm) was calculated from the following equation.
  • a digital multimeter Model 2000, Keithley
  • a temperature controller Model 9700, Scientific Instruments
  • cryostat EYELA CA-112 attached (Daikin Kogyo Co., Ltd., cryokelvin (PS22)) It was used.
  • the temperature controller was controlled by a computer and measured under the following conditions.
  • the sponential factor ⁇ was calculated.
  • is the conductivity obtained by extrapolating the temperature to infinity
  • is the electric current between the regions as shown in the following equation.
  • N (E) is the density of states at the film level
  • k is the Boltzmann constant
  • L is the high
  • a tensile tester (TENSILON UTM-2 type) manufactured by Orientec Co., Ltd. was used.
  • a load cell is attached to the upper part of the sample attachment of this device, which is connected to the combi-tor.
  • STRESS stress
  • STRAIN stress
  • Young's modulus, cutting strength, and cutting elongation can be obtained.
  • the sample was fixed to a cardboard made as a sample holder with a double-sided tape and a mending tape. As described above, the diameter of the sample was measured in advance using a microscope and PC software.
  • Fig. 5 shows a comparison of the electrical conductivity of fibers treated by changing the type of treatment solution, pre-treatment fiber (Prestine) and fiber treated by immersion for 3 minutes in the following treatment solution at room temperature, and then heat treatment under the above conditions.
  • the processing solutions used were pure solutions of EG, DMSO, DMF (all of the examples of the present invention) and ethanol (EtOH, comparative examples).
  • the conductivity before treatment is 1-30 (average about 10) S / cm
  • 160-230 (average 200) S / cm DMSO and DMF are 160 to 230 and 120 to 170 S / cm, respectively, and it is known that the conductivity increases to nearly 20 times that before the treatment.
  • EtOH the improvement effect was small at 20-50 S / cm.
  • FIG. 6 shows the results of examining the influence of the immersion time in the treatment liquid on the conductivity in the case of the treatment liquid power 3 ⁇ 4G.
  • the conductivity increases from 110 to 210 at an immersion time of 30 seconds, from 160 to 230 S / cm at an immersion time of 3 minutes, and then very large until 30 minutes.
  • the immersion time of the fiber in the treatment liquid is preferably 30 seconds or more, more preferably 3 minutes or more.
  • FIG. An example of the measurement result of the fiber diameter in this example is shown in FIG. It is known that the fiber diameter is about 5 ⁇ .
  • the horizontal axis in this figure is the dipping time, and there are variations in measured values, but it cannot be said that a significant change in fiber diameter occurred due to the dipping treatment.
  • Fig. 8 shows the measurement results of the temperature change of electrical conductivity ⁇ between 8 and 300K of the fiber before dipping treatment (indicated as PEDOTZPSS in the figure) and the fiber (indicated as PEDOTZPSSZEG) that has been heat treated for 3 minutes after being immersed in ethylene glycol.
  • Figure 9 shows this data with 1 ⁇ and __1 / 2 on the vertical and horizontal axes.
  • the temperature dependence of PEDOTZPSS follows a quasi-one-dimensional hopping model.From PEDOTZPSS microfibers, it is known from Fig. 9 that the characteristics are expressed by a quasi-one-dimensional hopping model at 100K and above. T can be obtained by extrapolating the straight line.
  • Table 1 shows a comparison of the values of ⁇ , ⁇ , and ⁇ obtained in this way.
  • the value of conductivity has greatly increased from 5.3 S / cm to 205 S / cm. This is probably because EG entered the microfiber and reacted with PEDOTZPSS to reduce the active energy in carrier hopping. In other words, an increase in density of states and localization length at the Fermi level can be considered.
  • the reason for the increase in conductivity is that the EGs wash away the excess insulating layer (PSS) surrounding the PEDOTZPSS particles, thereby facilitating the movement of carriers between the particles. You could think so.
  • PSS insulating layer
  • Figure 10 shows a comparison of the stress-strain curves of the fiber before dipping (PEDOTZPSS) and the fiber (PEDOTZPSSZEG) that was dipped in ethylene glycol for 3 minutes and then heat-treated.
  • Table 2 shows the values of Young's modulus, cutting strength, and cutting elongation obtained from this data by the method described above.
  • the Young's modulus increases from 2.47 ⁇ 0.73 GPa before treatment to 3.66 ⁇ 0.64 GPa after treatment, and the cutting strength increases from 98.53 ⁇ 34.42 MPa before treatment to 125.07 ⁇ 26.69 MPa after treatment.
  • the reason for this is that when the fiber before treatment is spun in acetone, stress concentration occurs in the structural defects caused by rapid dehydration, and it is easy to break. Therefore, compared to a cast film of the same material, Young's modulus, Both cutting strength is low. In contrast, soaking in EG causes rearrangement of molecular chains and reduces structural defects, which is thought to improve tensile properties.
  • the fiber used in the above example is manufactured by the wet spinning method of an acetone coagulation bath.
  • the present invention does not have to limit the fiber to be processed in the present invention. It can also be applied to fibers produced by the method.
  • an emulsion dispersion of a conjugated-diameter conductive polymer material or a precursor solution thereof is injected into the coagulation bath from a nozzle cover to form fibers by the wet spinning method as described above. It has also been confirmed that the characteristic improvement processing can be performed simultaneously.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

A method by which the conductivity characteristics and mechanical properties of a fibrous conductive polymer can be easily improved. The method for conductive-polymer treatment comprises immersing fibers of a conjugated conductive polymeric material having a dopant added thereto in a treating liquid comprising ethylene glycol and/or an aprotic solvent for a given time to improve the conductivity characteristics and mechanical properties of the fibers. Especially when the fibers are PEDOT/PSS fibers in which the conductive polymeric material is poly(3,4-ethylenedioxythiophene) (PEDOT) and the dopant is poly(4-styrenesulfonic acid) (PSS), a significant conductivity-improving effect is produced.

Description

明 細 書  Specification
導電性高分子の処理方法  Method for treating conductive polymer
技術分野  Technical field
[0001] 本発明は、繊維状の導電性高分子を処理液中に浸漬することにより、簡便にその 導電特性並びに機械的特性を改善することのできる導電性高分子の浸漬処理方法 に関する。  TECHNICAL FIELD [0001] The present invention relates to a conductive polymer immersion treatment method capable of simply improving the conductive properties and mechanical properties of a fibrous conductive polymer by immersing it in a treatment liquid.
背景技術  Background art
[0002] 近年、高分子の直鎖に共役二重結合を有し、 π結合に関わる電子の動き易さから 導電性を示す共役系導電性高分子が注目されて ヽる。かかる共役系導電性高分子 は、キャリア移動度を高めるためにドーピングでキャリアを注入して使用されるのがー 般的である。導電性高分子繊維の製造方法については下記特許文献 1がある。  [0002] In recent years, conjugated conductive polymers that have a conjugated double bond in the linear chain of the polymer and exhibit conductivity due to the ease of movement of electrons related to the π bond have attracted attention. Such a conjugated conductive polymer is generally used by injecting carriers by doping in order to increase carrier mobility. Japanese Patent Application Laid-Open Publication No. 2003-228707 discloses a method for producing a conductive polymer fiber.
[0003] 力かる共役系導電性高分子の中でも、ポリ 3, 4エチレンジォキシチォフェン(PED ΟΤ)は、ドープされた状態で、 1. 5〜1. 6eVと比較的低いバンドギャップを有する導 電性高分子であり、導電性や透明性、安定性に優れ、帯電防止剤、エレクト口クロミツ クウインドウ、有機エレクト口ルミネッセンス(EL)素子の正孔注入材料として注目され ている。  [0003] Among conjugated conductive polymers, poly 3, 4 ethylene dioxythiophene (PED ΟΤ) has a relatively low band gap of 1.5 to 1.6 eV in the doped state. It is a conductive polymer that has excellent conductivity, transparency, and stability, and is attracting attention as a hole injection material for antistatic agents, electrification window, and organic electrescence luminescence (EL) devices.
[0004] ポリ 4 スチレンスルホン酸(PSS)をドープした PEDOTに関する従来の研究の多 くは、キャスティングや電気化学的手法により作られた薄!ヽコーティング膜あるいは厚 めのフィルムを用いて行われており、ファイバーの作製に関する研究は比較的少な い。  [0004] Much of the previous work on PEDOT doped with poly-4 styrene sulfonic acid (PSS) is made of thin films made by casting or electrochemical techniques!ヽ It is done using a coating film or a thick film, and there is relatively little research on fiber production.
[0005] しかし、導電性ファイバーの作製は、材料のバルタにおける電気的、機械的特性を 理解するための基礎的な観点力もだけでなぐファイバーという形状による電磁気シ 一ルド材、導電性織物、人工筋肉繊維、高感度センサーなどの応用面においても重 要である。  [0005] However, the production of conductive fibers is based on electromagnetic shield materials, conductive fabrics, artificial fabrics in the form of fibers that only have basic viewpoints to understand the electrical and mechanical properties of the material. It is also important in applications such as muscle fibers and high sensitivity sensors.
特許文献 1:特開 2005-330624号公報  Patent Document 1: Japanese Patent Laid-Open No. 2005-330624
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0006] 上記のような背景から、本発明者らは湿式紡糸法による導電性高分子のファイバー の作製に関する研究を行っており、 PSSをドープした PEDOTに湿式紡糸法を適用 することで、直径力 Sミクロンオーダーの PEDOTZPSSマイクロファイバーの作製に成 功している。 Problems to be solved by the invention [0006] Against the background described above, the present inventors have been conducting research on the production of conductive polymer fibers by a wet spinning method. By applying the wet spinning method to PEDOT doped with PSS, Strength We have successfully produced PEDOTZPSS microfibers on the order of S microns.
[0007] 力かる研究の過程にぉ 、て、本発明者らは、導電性高分子繊維をある種の処理液 中に浸漬するだけで、その導電特性や機械的特性を改善できることを知見し、本発 明を完成させるに至った。  [0007] In the course of intensive research, the present inventors have found that the conductive properties and mechanical properties can be improved simply by immersing the conductive polymer fiber in a certain type of treatment liquid. The present invention has been completed.
[0008] すなわち本発明の課題は、繊維状の導電性高分子の導電特性並びに機械的特性 を、簡便に改善することのできる方法を提供することにある。  [0008] That is, an object of the present invention is to provide a method capable of simply improving the conductive properties and mechanical properties of a fibrous conductive polymer.
課題を解決するための手段  Means for solving the problem
[0009] 上記課題を解決するための本発明は、ドーパントが添加された共役系導電性高分 子材料の繊維を、エチレングリコール及び Z又は非プロトン性溶媒を含む処理液中 に所定時間浸潰して、該繊維の導電特性並びに機械的特性を改善することを特徴と する導電性高分子の処理方法である。 [0009] The present invention for solving the above-mentioned problems involves immersing a fiber of a conjugated conductive polymer material to which a dopant is added in a treatment liquid containing ethylene glycol and Z or an aprotic solvent for a predetermined time. Thus, there is provided a method for treating a conductive polymer characterized by improving the conductive properties and mechanical properties of the fibers.
[0010] とくに、導電性高分子材料がポリ 3, 4エチレンジォキシチォフェン (PEDOT)であり 、そのドーパントがポリ 4 スチレンスルホン酸 (PSS)である場合に、上記処理により 、電気電導度が数十倍になることが知見されており、本発明の処理方法は、極めて 簡便かつ安価に導電性高分子繊維の特性を改善できる画期的な方法である。  [0010] In particular, when the conductive polymer material is poly 3, 4 ethylene dioxythiophene (PEDOT) and the dopant is poly 4 styrene sulfonic acid (PSS), the electrical conductivity is increased by the above treatment. The treatment method of the present invention is an epoch-making method that can improve the properties of the conductive polymer fiber very easily and inexpensively.
[0011] なお、上記の処理液は、エチレングリコール及び Z又は非プロトン性溶媒の 1種又 は 2種以上を作用物質として含有するものであればよぐこの作用物質の純溶液であ つても、作用物質を水、アルコール等の溶媒で希釈した溶液であってもよい。また、 本発明で改善される機械的特性としては、繊維のヤング率、引張切断強度、切断伸 度等が挙げられる。このような改善効果が得られる理由については、後に詳述する。  [0011] The above treatment liquid may be a pure solution of this active substance as long as it contains ethylene glycol and Z or one or more of aprotic solvents as the active substance. A solution obtained by diluting the active substance with a solvent such as water or alcohol may be used. The mechanical properties improved by the present invention include fiber Young's modulus, tensile cut strength, cut elongation, and the like. The reason why such an improvement effect can be obtained will be described in detail later.
[0012] 上記の処理方法にお!、て、前記非プロトン性溶媒としては、ジメチルスルホキシド( DMSO)又はジメチルホルムアミド(DMF)が好適である。  [0012] In the above treatment method, the aprotic solvent is preferably dimethyl sulfoxide (DMSO) or dimethylformamide (DMF).
[0013] また、本発明の方法は、湿式紡糸プロセスにおいて、繊維の形状形成と同時に繊 維特性の改善を行い得ることが特徴である。すなわち、処理対象の繊維が、ノズルか ら流出した高分子材料のェマルジヨン分散液又はその前駆体溶液であって、前記処 理液を凝固浴として用いることにより、湿式紡糸法による繊維の形状形成と前記の特 性改善処理を同時に行うことができる。これにより、湿式紡糸プロセスの中で、フアイ バーの特性改善の処理を行うことができ、簡略ィ匕を図ることができる。 [0013] Further, the method of the present invention is characterized in that the fiber properties can be improved simultaneously with the formation of the fiber shape in the wet spinning process. That is, the fiber to be treated is an emulsion dispersion of a polymer material flowing out from a nozzle or a precursor solution thereof, and the treatment By using the treatment liquid as a coagulation bath, it is possible to simultaneously perform the fiber shape formation by the wet spinning method and the above-described property improvement treatment. As a result, the fiber characteristic can be improved in the wet spinning process, and simplification can be achieved.
[0014] 本発明における浸漬処理の処理条件としては、処理液として室温のものを用いた 場合に、前記繊維の該処理液への浸漬時間を 30秒以上とすればよい。より好ましく は、この浸漬時間を 3分以上とする。  [0014] As the treatment conditions for the immersion treatment in the present invention, when a treatment solution at room temperature is used, the immersion time of the fiber in the treatment solution may be 30 seconds or more. More preferably, the immersion time is 3 minutes or more.
[0015] なお、本発明の処理方法は、高分子を溶解する能力を有する溶媒中に、高分子繊 維を浸漬するものであるから、浸漬後の繊維に残存した溶媒 (処理液成分)が、繊維 を劣化させるおそれがある。これを防止するため、本発明においては、上記の方法に より処理された前記繊維を、絶対圧 lTorr以下の減圧下で、 0〜50°Cの温度に 1分 以上保持する熱処理を行うことが好ま 、。  [0015] The treatment method of the present invention involves immersing the polymer fiber in a solvent having the ability to dissolve the polymer, and therefore the solvent (treatment liquid component) remaining on the fiber after the immersion is used. There is a risk of degrading the fiber. In order to prevent this, in the present invention, the fiber treated by the above method is subjected to a heat treatment in which the fiber is maintained at a temperature of 0 to 50 ° C. for 1 minute or more under a reduced pressure of an absolute pressure of 1 Torr or less. Favored ,.
発明の効果  The invention's effect
[0016] 本発明により、ドーパントが添加された共役系導電性高分子繊維の導電特性並び に機械的特性を簡便かつ安価な手段で改善することが可能になった。とくに、 PSSを ドープした PEDOT繊維の電導度の向上効果が顕著である。  [0016] According to the present invention, it has become possible to improve the conductive properties and mechanical properties of a conjugated conductive polymer fiber to which a dopant is added by simple and inexpensive means. In particular, the effect of improving the conductivity of PEDOT fibers doped with PSS is remarkable.
[0017] また、湿式紡糸プロセスにおける凝固浴に前記の処理液を用いることにより、繊維 の形状形成とその特性改善処理を同時に行うことができ、簡単な方法で特性の優れ た導電性高分子のマイクロファイバーを作製することが可能になった。  [0017] Further, by using the above-mentioned treatment liquid in the coagulation bath in the wet spinning process, it is possible to simultaneously form the shape of the fiber and improve its properties, and to conduct a conductive polymer with excellent properties by a simple method. It became possible to produce microfibers.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 I]PEDOTZPSSの化学構造を示す図である。 [0018] Fig. I is a diagram showing the chemical structure of PEDOTPSPS.
[図 2]本実施例で用いた湿式紡糸装置の構成を示す概念図である。  FIG. 2 is a conceptual diagram showing a configuration of a wet spinning apparatus used in this example.
[図 3]4端子法による電導度測定の説明図である。  FIG. 3 is an explanatory diagram of conductivity measurement by a four-terminal method.
[図 4]応力 歪曲線の説明図である。  FIG. 4 is an explanatory diagram of a stress-strain curve.
[図 5]本実施例におけるファイバー電導度の変化に及ぼす処理液種類の影響を示す 図である。  FIG. 5 is a diagram showing the influence of the type of treatment liquid on the change in fiber conductivity in this example.
[図 6]本実施例におけるファイバー電導度の変化に及ぼす浸漬時間の影響を示す図 である。  FIG. 6 is a graph showing the effect of immersion time on the change in fiber conductivity in this example.
[図 7]本実施例におけるファイバー直径の測定結果の例を示す図である。 [図 8]本実施例におけるファイバー電導度の温度依存性の測定結果の例を示す図で ある。 FIG. 7 is a diagram showing an example of the measurement result of the fiber diameter in the present example. FIG. 8 is a diagram showing an example of a measurement result of temperature dependence of fiber conductivity in the present example.
[図 9]図 8のデータを In σと Τ_ 1/2を縦横軸にとって表示した図である. [Fig. 9] The data of Fig. 8 is displayed with In σ and Τ_ 1/2 on the vertical and horizontal axes.
[図 10]本実施例における浸漬処理前後のファイバーの応力 歪曲線の比較を示す 図である。  FIG. 10 is a diagram showing a comparison of stress-strain curves of fibers before and after the dipping treatment in this example.
符号の説明  Explanation of symbols
[0019] 1: PEDOTZPSS溶液 [0019] 1: PEDOTZPSS solution
2:シリンダー  2: Cylinder
3:注射針  3: Injection needle
4:凝固槽 (凝集槽)  4: Coagulation tank (coagulation tank)
5:シリンジポンプ  5: Syringe pump
6:マグネット  6: Magnet
7:ピストン  7: Piston
8:コントローラー  8: Controller
9:マイクロファイノく一  9: MicroFino Kuichi
10:ピン  10: Pin
11 :ケルビンクリップ  11: Kelvin clip
12:デジタルマルチメータ  12: Digital multimeter
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、実施例に基づいて本発明の好ましい実施形態について説明する力 本発明 の実施形態は、この実施例に限られるものではな 、。 [0020] The following is a description of preferred embodiments of the present invention based on examples. The embodiments of the present invention are not limited to these examples.
本実施例においては、 PSSをドープした PEDOT (以下、 PEDOTZPSSと略記す る)のマイクロファイバーを湿式紡糸法により作製し、固化したファイバーを処理液に 所定時間浸潰した後、熱処理により繊維に付着した溶媒を完全に揮散,除去して供 試サンプルを作製し、浸漬処理前後における繊維径、導電特性、機械的特性の変 化等を調査した。以下、供試材の作製方法、試験方法や測定方法についてやや詳 しく説明する。  In this example, PED-doped PEDOT (hereinafter abbreviated as PEDOTZPSS) microfibers were prepared by a wet spinning method, the solidified fibers were immersed in a treatment solution for a predetermined time, and then adhered to the fibers by heat treatment. The test samples were prepared by completely evaporating and removing the solvent, and the changes in fiber diameter, conductivity, and mechanical properties before and after the immersion treatment were investigated. Hereinafter, the production method, test method, and measurement method of the specimen will be described in some detail.
[0021] <マイクロファイバーの作製 > 図 1は、本実施例で用いた PEDOTZPSSの化学構造を示す図である。この PED OTZPSSは、水溶液の状態で Baytron P.Bayer Co丄 tdから市販されているモノマー である 3, 4エチレンジォキシチォフェンを、ドーパントである PSSの存在下で重合す ることにより作製した。 PEDOTから PSSの繰り返し単位の比率は約 0. 8であり、ドー プ比は 0. 33であった。 [0021] <Production of microfiber> FIG. 1 shows the chemical structure of PEDOTZPSS used in this example. This PED OTZPSS was prepared by polymerizing 3,4 ethylenedioxythiophene, a monomer commercially available from Baytron P. Bayer Cotd in the presence of PSS, a dopant, in the form of an aqueous solution. . The ratio of repeat units from PEDOT to PSS was about 0.8, and the dope ratio was 0.33.
[0022] 図 2は、本実施例で用いた湿式紡糸装置の構成を示す概念図である。約 lmlの PE DOTZPSS水溶液(エマルジョン分散液) 1を、ガラスシリンダー 2 (直径 12mm)内 に充填し、注射針 3 (内径 180〜410 /ζ πι)から、室温のアセトンを充填した凝集槽 4 内に流出させる。その際、スタンドを用いて地面に直立させたシリンジポンプ 5に、マ グネット 6を介してピストン 7を取付け、コントローラー 8によりシリンジポンプ 5のスト口 ークを制御し、注射針 3からの液の流速を調節した。注射針 3から流出した PEDOT ZPSSのファイバ一は、約 20秒間アセトン中で固化させた後、凝集槽 4から引き上げ 、予めアセトンで濡らしておいたワイヤラップタイプ ICソケットにかけて、乾燥させた。  FIG. 2 is a conceptual diagram showing the configuration of the wet spinning apparatus used in this example. About 1 ml of PE DOTZPSS aqueous solution (emulsion dispersion) 1 is filled in a glass cylinder 2 (diameter 12 mm), and then injected into a coagulation tank 4 filled with acetone at room temperature from an injection needle 3 (inner diameter 180-410 / ζ πι). Spill into. At that time, the piston 7 is attached to the syringe pump 5 upright on the ground using a stand via the magnet 6, and the controller 8 controls the stroke of the syringe pump 5 so that the liquid from the injection needle 3 is discharged. The flow rate was adjusted. The fiber of PEDOT ZPSS that flowed out from the injection needle 3 was solidified in acetone for about 20 seconds, then pulled up from the coagulation tank 4 and dried over a wire wrap type IC socket previously wetted with acetone.
[0023] <浸漬処理 >  [0023] <Immersion treatment>
上記の方法で作製したマイクロファイバーを適当な長さに切り、処理液を満たしたガ ラスバット(大きさ 145 X 80 X 10mm)に所定時間浸漬した後、ファイバーを注意深く 引き上げ、上記と同様に予めアセトンで濡らしておいたワイヤラップタイプ ICソケット に掛けた。処理液としては、エチレングリコール(EG)、ジメチルスルホキシド(DMS O)又はジメチルホルムアミド (DMF)の 3種を用い、 V、ずれも純溶液に浸漬して供試 サンプルを作製した。浸漬時間は、 30秒、 3分、 10分、 20分、 30分の 5段階に変え た。  The microfiber produced by the above method is cut to an appropriate length and immersed in a glass vat (size: 145 x 80 x 10 mm) filled with the treatment solution for a predetermined time. It was hung on a wire wrap type IC socket that had been wet with water. Three types of treatment solutions were used: ethylene glycol (EG), dimethyl sulfoxide (DMS 2 O), or dimethylformamide (DMF). V and deviation were immersed in a pure solution to prepare test samples. The immersion time was changed in 5 steps of 30 seconds, 3 minutes, 10 minutes, 20 minutes and 30 minutes.
[0024] <熱処理 >  [0024] <Heat treatment>
マイクロファイバーを掛けた ICソケットをセラミック板の上にのせ、風除けのシャーレ をかぶせ、真空オーブンに入れ、所定時間加熱する熱処理を行った。熱処理条件は 、 PEDOTZPSS水溶液力ら作製したファイバーでは、 160°Cで 1時間保持した。  An IC socket with microfibers was placed on a ceramic plate, covered with a windshield petri dish, placed in a vacuum oven, and heat-treated by heating for a predetermined time. The heat treatment condition was maintained at 160 ° C for 1 hour for the fiber prepared by PEDOTZPSS aqueous solution force.
[0025] <直径の測定 > [0025] <Measurement of diameter>
上記の方法で作製したマイクロファイバーの直径 dは、 CCDカラーカメラと対物レン ズを搭載したマイクロスコープ(54590- F, Infinity Photo-Optical Company)の画像を デジタルビデオカメラ(Sony製, HANDYCAM DCR-PC1000)で撮景し、コンピュータ 一上で画像計測ソフト (Image SXM,175-2C)を用いて測定した。 The diameter d of the microfiber produced by the above method is the image of a microscope (54590-F, Infinity Photo-Optical Company) equipped with a CCD color camera and an objective lens. A digital video camera (manufactured by Sony, HANDYCAM DCR-PC1000) was taken and measured on the computer using image measurement software (Image SXM, 175-2C).
[0026] <電導度測定 > [0026] <Conductivity measurement>
マイクロファイバーの電導度測定は、図 3に示す 4端子法を用いて行った。マイクロ ファイバー 9をピン 10上に架け渡し、テスターのプローブを隣り合う 2本のピンに差し 込んで接触の確認をする。そのうち隣り合う 4本のピンにマイクロファイバーが掛かり、 抵抗を示しているピンを確認する。確認した後、銅線をはんだ付けした ICソケットを、 マイクロファイバーがしつ力り付いているピンに差し込み、ケルビンクリップ 11で銅線 を挟む。このときケルビンクリップの間に絶縁体としてプラスチック片を挟んだ。この状 態で、デジタルマルチメータ 12 (Model2000,Keithley)を用いて抵抗を測定した。また 、読み取り顕微鏡 (株式会社島津製作所製)を用いて、中央 2本のピンの間隔を測定 し、電極間距離 l(cm)とした。前記の方法で測定したファイバー直径 d(cm)と抵抗値 R( Ω)を用い、下式から電導度 σ (S/cm)を算出した。  The conductivity of the microfiber was measured using the 4-terminal method shown in Fig. 3. Cross the microfiber 9 over the pin 10 and insert the tester probe into the two adjacent pins to confirm contact. Confirm that the pin that shows resistance is covered with microfiber on the four adjacent pins. After confirmation, insert the IC socket soldered with copper wire into the pin where the microfiber is firmly attached, and pinch the copper wire with the Kelvin clip 11. At this time, a plastic piece was sandwiched between the Kelvin clips as an insulator. In this state, resistance was measured using a digital multimeter 12 (Model 2000, Keithley). Also, using a reading microscope (manufactured by Shimadzu Corporation), the distance between the center two pins was measured and the distance between electrodes was 1 (cm). Using the fiber diameter d (cm) and resistance value R (Ω) measured by the above method, the electrical conductivity σ (S / cm) was calculated from the following equation.
σ =1/RX π (d/2) 2 σ = 1 / RX π (d / 2) 2
[0027] <電導度の温度依存性 > [0027] <Temperature dependence of conductivity>
測定には、デジタルマルチメータ(Model2000,Keithley)、温度コントローラー(Model 9700,Scientific Instruments社)水循環(EYELA CA- 112)を取り付けたクライオスタツト (ダイキン工業 (株)製、クライオケルビン (PS22型))を使用した。温度コントローラ一は コンピューターによって制御し、以下の条件で測定を行った。  For measurement, a digital multimeter (Model 2000, Keithley), a temperature controller (Model 9700, Scientific Instruments) cryostat (EYELA CA-112) attached (Daikin Kogyo Co., Ltd., cryokelvin (PS22)) It was used. The temperature controller was controlled by a computer and measured under the following conditions.
昇温速度: lKZmin  Temperature increase rate: lKZmin
測定温度: 8K〜300K  Measurement temperature: 8K ~ 300K
サンプリング: 6sec  Sampling: 6sec
[0028] 測定の手順は以下のとおりである。 [0028] The measurement procedure is as follows.
まず、サンプルホルダーにマイクロファイバーを固定したワイヤラップタイプソケットを 取り付ける。この時、デジタルマルチメータの抵抗が示されていることを確認する。 1 回の測定で 2個のサンプルを取り付ける。次にサンプルホルダー部をクローズし、真 空吸引するとともに、圧縮機用の冷却水を流して、測定を開始する。  First, attach a wire wrap type socket with microfiber fixed to the sample holder. At this time, confirm that the resistance of the digital multimeter is shown. Attach two samples in one measurement. Next, the sample holder is closed, vacuum suction is performed, and cooling water for the compressor is poured to start measurement.
[0029] 圧縮機の電源を入れると同時に、コンピューター上の温度コントロールプログラムを 走らせる。 8Kまで温度を低下させた後、 300Κまで上昇させた。温度制御と同時に、 4端子法で抵抗値を測定した。 [0029] As soon as the compressor is turned on, the temperature control program on the computer make them run. After decreasing the temperature to 8K, it was increased to 300mm. Simultaneously with temperature control, the resistance value was measured by the 4-terminal method.
[0030] 測定後、ホルダー内のサンプルを取り出し、直径と電極間距離を測定し、電導度を 算出した。求めた電導度 σと温度 Τを用い、次式力 活性ィ匕エネルギー Τ、プレエキ [0030] After the measurement, the sample in the holder was taken out, the diameter and the distance between the electrodes were measured, and the electrical conductivity was calculated. Using the calculated conductivity σ and temperature Τ, the following equation is used: force 匕 energy Τ, pre-excitation
0  0
スポーネンシャルファクター σ を算出した。  The sponential factor σ was calculated.
0  0
σ = σ · exp — /Ύ) }  σ = σ · exp — / Ύ)}
Ο 0  Ο 0
σ は温度を無限大に外挿した電導度、 Τは、次式で示されるように、局在間の電 σ is the conductivity obtained by extrapolating the temperature to infinity, and Τ is the electric current between the regions as shown in the following equation.
0 0 0 0
荷担体のホッピングの実際のエネルギー障壁を意味している。  It means the actual energy barrier of load carrier hopping.
T = 16/k · Ν(Ε ) - L - L 2 T = 16 / k · (Ε)-L-L 2
O B F / /  O B F / /
ここで、 N(E )はフ ルミレベルにおける状態密度、 kはボルツマン定数、 L は高  Where N (E) is the density of states at the film level, k is the Boltzmann constant, and L is the high
F B // 分子鎖に対して平行方向における局在長、 L は高分子鎖に対して垂直方向におけ る局在長を意味している。  F B // Local length in the direction parallel to the molecular chain, L means local length in the direction perpendicular to the polymer chain.
[0031] <引張試験 > [0031] <Tensile test>
測定には、(株)オリエンテック製の引張試験機 (TENSILON UTM-2型)を使用した。 この装置の試料取り付け上部にはロードセルが取り付けられており、これがコンビ ターに接続されている。これにより、図 4に示すような応力(STRESS) 歪(STRAIN)曲 線が得られ、ヤング率、切断強度、切断伸度を求めることができる。測定条件は下記 のとおりである。  For the measurement, a tensile tester (TENSILON UTM-2 type) manufactured by Orientec Co., Ltd. was used. A load cell is attached to the upper part of the sample attachment of this device, which is connected to the combi-tor. As a result, a stress (STRESS) strain (STRAIN) curve as shown in FIG. 4 is obtained, and Young's modulus, cutting strength, and cutting elongation can be obtained. The measurement conditions are as follows.
チャック間隔: 2cm  Chuck interval: 2cm
フルスケール: 50g  Full scale: 50g
サンプリング時間: 0. Is  Sampling time: 0. Is
ヘッドスピード: 2mmZ min  Head speed: 2mmZ min
歪速度: 10%Zmin  Strain rate: 10% Zmin
測定温度: 25°C  Measurement temperature: 25 ° C
[0032] 試料は、サンプルホルダーとして作った厚紙に、両面テープとメンデイングテープに よって固定した。試料の直径は前述と同様に、顕微鏡とパソコンのソフトにより、予め 計測した。  [0032] The sample was fixed to a cardboard made as a sample holder with a double-sided tape and a mending tape. As described above, the diameter of the sample was measured in advance using a microscope and PC software.
[0033] 測定により得られた応力 歪曲線よりヤング率、切断強度、切断伸度を下式により 算出した。 [0033] From the stress-strain curve obtained by measurement, Young's modulus, cutting strength, and cutting elongation are Calculated.
L =a+ 15 (mm)  L = a + 15 (mm)
o  o
E={(FXL )/(b X S)} X 9.807 X 10"5 (GPa) E = {(FXL) / (b XS)} X 9.807 X 10 " 5 (GPa)
o  o
St=(F/S) X (l+EL/100) X 9.807X10—5 (GPa) St = (F / S) X (l + EL / 100) X 9.807X10— 5 (GPa)
EL= AL/L X100(%)  EL = AL / L X100 (%)
o  o
ここで、 L:試料の初長(mm)  Where L: Initial length of sample (mm)
o  o
AL:試料の伸び(mm)  AL: Elongation of sample (mm)
a, b:図 4中に示した数値  a, b: Numerical values shown in Fig. 4
F:切断時の荷重 (kg)  F: Load when cutting (kg)
S:試料の断面積 (cm2) S: Sample cross-sectional area (cm 2 )
E:ヤング率(GPa)  E: Young's modulus (GPa)
St:切断強度 (GPa)  St: Cutting strength (GPa)
EL:切断伸度(%)  EL: Cutting elongation (%)
である。  It is.
[0034] 次に、本発明の処理方法による導電特性及び機械的特性の改善効果について説 明する。  Next, the effect of improving the conductive characteristics and mechanical characteristics by the treatment method of the present invention will be described.
<電導度の改善 >  <Improvement of conductivity>
図 5に、処理液の種類を変え、処理前のファイバー(Prestine)とこれを室温の下記 処理液で 3分間浸漬処理をし、さらに前記条件で熱処理をしたファイバーの電導度 の比較を示す。使用した処理液は、 EG, DMSO, DMF (いずれも本発明例)とエタ ノール (EtOH,比較例)の純溶液である。図に見られるように、処理前の電導度が 1 〜30(平均で約 10)S/cmであるのに対し、 EGで処理した場合は、 160〜230(平均 で約 200)S/cm、 DMSO, DMFでは、それぞれ 160〜230, 120〜170S/cmとなり 、いずれも電導度が処理前の 20倍近くまで増大していることが知れる。これに対して EtOHに浸漬した場合は、 20〜50S/cmで、改善効果が小さ力つた。  Fig. 5 shows a comparison of the electrical conductivity of fibers treated by changing the type of treatment solution, pre-treatment fiber (Prestine) and fiber treated by immersion for 3 minutes in the following treatment solution at room temperature, and then heat treatment under the above conditions. The processing solutions used were pure solutions of EG, DMSO, DMF (all of the examples of the present invention) and ethanol (EtOH, comparative examples). As can be seen in the figure, the conductivity before treatment is 1-30 (average about 10) S / cm, whereas when treated with EG, 160-230 (average 200) S / cm DMSO and DMF are 160 to 230 and 120 to 170 S / cm, respectively, and it is known that the conductivity increases to nearly 20 times that before the treatment. On the other hand, when immersed in EtOH, the improvement effect was small at 20-50 S / cm.
[0035] 処理液力 ¾Gの場合について、処理液中への浸漬時間の電導度に対する影響を 調べた結果を図 6に示す。図に見られるように、浸漬時間 30秒で電導度は 110〜21 0,浸漬時間 3分で 160〜230S/cmまで増大し、それ以降 30分まであまり大きな電導 度の変化はない。すなわち、浸漬した直後の 0. 5〜1分間で、電導度は急増し、 3分 程度で飽和することが知れた。したがって、本発明においては、ファイバーの処理液 への浸漬時間は、 30秒以上とすることが好ましぐより好ましくは 3分以上とする。 [0035] FIG. 6 shows the results of examining the influence of the immersion time in the treatment liquid on the conductivity in the case of the treatment liquid power ¾G. As can be seen in the figure, the conductivity increases from 110 to 210 at an immersion time of 30 seconds, from 160 to 230 S / cm at an immersion time of 3 minutes, and then very large until 30 minutes. There is no change in degree. That is, it was known that the conductivity increased rapidly in 0.5 to 1 minute immediately after immersion and saturated in about 3 minutes. Therefore, in the present invention, the immersion time of the fiber in the treatment liquid is preferably 30 seconds or more, more preferably 3 minutes or more.
[0036] 参考までに、本実施例におけるファイバー直径の測定結果の例を図 7に示す。ファ ィバー直径が 5 πι程度であることが知れる。また、この図の横軸は浸漬時間であり、 測定値のバラツキはあるが、浸漬処理によってファイバー直径に有意な変化が生じ たとは言えない。  For reference, an example of the measurement result of the fiber diameter in this example is shown in FIG. It is known that the fiber diameter is about 5πι. In addition, the horizontal axis in this figure is the dipping time, and there are variations in measured values, but it cannot be said that a significant change in fiber diameter occurred due to the dipping treatment.
[0037] <電導度の温度依存性 >  [0037] <Temperature dependence of conductivity>
図 8に、浸漬処理前のファイバー(図では PEDOTZPSSと表示)及びエチレンダリ コールに 3分間浸漬後熱処理したファイバー(PEDOTZPSSZEGと表示)の 8〜3 00Kの間の電気電導度 σの温度変化の測定結果を示す。また、図 9はこのデータを 1η σと Τ_1/2を縦横軸にとって表示したものである。一般に、 PEDOTZPSSの温度 依存性は擬一次元のホッピングモデルに従うことが報告されており、 PEDOTZPSS マイクロファイバーにおいても、図 9から、 100K以上で特性が擬一次元のホッピング モデルで表わされることが知れ、直線部分を外挿することで Tを求めることができる。 Fig. 8 shows the measurement results of the temperature change of electrical conductivity σ between 8 and 300K of the fiber before dipping treatment (indicated as PEDOTZPSS in the figure) and the fiber (indicated as PEDOTZPSSZEG) that has been heat treated for 3 minutes after being immersed in ethylene glycol. Indicates. Figure 9 shows this data with 1ησ and __1 / 2 on the vertical and horizontal axes. In general, it has been reported that the temperature dependence of PEDOTZPSS follows a quasi-one-dimensional hopping model.From PEDOTZPSS microfibers, it is known from Fig. 9 that the characteristics are expressed by a quasi-one-dimensional hopping model at 100K and above. T can be obtained by extrapolating the straight line.
0  0
このようにして求めた、 σ , σ , Τの値の比較を表 1に示す。  Table 1 shows a comparison of the values of σ, σ, and Τ obtained in this way.
300 0 0  300 0 0
[0038] [表 1]  [0038] [Table 1]
Fiber σ300 ' σ0 Τ0 Fiber σ 300 'σ 0 Τ 0
, (S/cm (Start) (Κ)  , (S / cm (Start) (Κ)
PEDOT/PSS 5.3 9.1 85  PEDOT / PSS 5.3 9.1 85
PEDOT/PSS/EG 205 232 4.3  PEDOT / PSS / EG 205 232 4.3
[0039] 浸漬処理によって活性化エネルギー Τ 1S 85K力ら 4. 3Kと 1Z20に低下した。 [0039] The activation energy に よ っ て 1S 85K force et al. 4. It decreased to 3K and 1Z20.
0 一 方、電導度の値は 5. 3S/cmから 205S/cmへと大きく上昇している。この理由は、 EG がマイクロファイバーの内部に入り込み、 PEDOTZPSSと反応することで、キャリア のホッピングにおける活性ィ匕エネルギーを低下させたためでな 、かと考えられる。す なわち、フェルミレベル準位における状態密度や局在長の増加が考えられる。  On the other hand, the value of conductivity has greatly increased from 5.3 S / cm to 205 S / cm. This is probably because EG entered the microfiber and reacted with PEDOTZPSS to reduce the active energy in carrier hopping. In other words, an increase in density of states and localization length at the Fermi level can be considered.
[0040] さらに、電導度増加の理由として、 EGにより PEDOTZPSS粒子を取り囲む過剰な 絶縁層(PSS)を洗い流すことで、粒子間のキャリアの移動がスムーズになっているこ とが考えられる。同時に EGは PEDOTZPSSの良溶媒であるため、 PSS鎖が伸び 3 次元ネットワークを形成することで、 PEDOTがより均一に分布したためでないか と考えられる。 [0040] Further, the reason for the increase in conductivity is that the EGs wash away the excess insulating layer (PSS) surrounding the PEDOTZPSS particles, thereby facilitating the movement of carriers between the particles. You could think so. At the same time, since EG is a good solvent for PEDOTZPSS, it is thought that PEDOT is more uniformly distributed by extending the PSS chain and forming a three-dimensional network.
[0041] 処理液として DMSOや DMFを用いた場合にも、これと同様な効果により、電導度 が増大したものと考えられる。また、その他の非プロトン性溶媒、例えば、ァセトニトリ ル、ジメトキシェタン、へキサメチルリン酸トリアミド、グリセリン等を用いた場合、ポリエ チレングリコール、ソルビトール等を溶媒に溶力して用いた場合にも同様の効果が得 られると期待される。  [0041] Even when DMSO or DMF is used as the treatment liquid, it is considered that the conductivity is increased by the same effect. The same applies when other aprotic solvents such as acetonitrile, dimethoxyethane, hexamethylphosphoric triamide, glycerin, etc. are used with a solvent of polyethylene glycol, sorbitol, etc. Expected to be effective.
[0042] <機械的特性の改善 >  [0042] <Improvement of mechanical properties>
浸漬処理前のファイバー(PEDOTZPSS)及びエチレングリコールに 3分間浸漬 後熱処理したファイバー(PEDOTZPSSZEG)の応力 歪曲線の比較を図 10に 示す。また、このデータから前述の方法で求めた、ヤング率、切断強度、切断伸度の 値を表 2に示す。  Figure 10 shows a comparison of the stress-strain curves of the fiber before dipping (PEDOTZPSS) and the fiber (PEDOTZPSSZEG) that was dipped in ethylene glycol for 3 minutes and then heat-treated. In addition, Table 2 shows the values of Young's modulus, cutting strength, and cutting elongation obtained from this data by the method described above.
[0043] [表 2]  [0043] [Table 2]
Young's modulus Tensile strength Young's modulus Tensile strength
Fiber Elongation at break  Fiber Elongation at break
(GPa) ( Pa) (%)  (GPa) (Pa) (%)
PEDOT/PSS 2.47±0.73 98.53±34.42 12.28±6.87  PEDOT / PSS 2.47 ± 0.73 98.53 ± 34.42 12.28 ± 6.87
PEDOT/PSS/EG 3.66+0.64 125.07±26.69 12.50±8.15  PEDOT / PSS / EG 3.66 + 0.64 125.07 ± 26.69 12.50 ± 8.15
[0044] ヤング率については、処理前 2.47±0.73GPaから処理後 3.66±0.64GPaに、切断強 度については、処理前 98.53±34.42MPaから処理後 125.07±26.69MPaに、それぞれ 高くなつている。この理由は、処理前のファイバーでは、アセトン中に紡糸した際に、 急激な脱水により生じた構造欠陥に応力集中が起り、破断しやすくなるため、同じ材 料のキャストフィルムに比べ、ヤング率、切断強度ともに低い。これに対して、 EGに浸 漬することで分子鎖の再配列が起り、構造欠陥が減少するため、引張特性が改善さ れるものと考えられる。 [0044] The Young's modulus increases from 2.47 ± 0.73 GPa before treatment to 3.66 ± 0.64 GPa after treatment, and the cutting strength increases from 98.53 ± 34.42 MPa before treatment to 125.07 ± 26.69 MPa after treatment. The reason for this is that when the fiber before treatment is spun in acetone, stress concentration occurs in the structural defects caused by rapid dehydration, and it is easy to break. Therefore, compared to a cast film of the same material, Young's modulus, Both cutting strength is low. In contrast, soaking in EG causes rearrangement of molecular chains and reduces structural defects, which is thought to improve tensile properties.
[0045] 上記の実施例で用いたファイバ一は、アセトン凝固浴の湿式紡糸法で製造されたも のであるが、本発明の処理対象物となるファイバーをこれに限る必要はなぐ本発明 は如何なる方法で製造されたファイバーにも適用することができる。また、前記の処 理液を凝固浴として用いることにより、共役径導電性高分子材料のェマルジヨン分散 液又はその前駆体溶液をノズルカゝら凝固浴中に注入して、湿式紡糸法による繊維の 形成と上記のような特性改善処理を同時に行い得ることも確かめられている。 [0045] The fiber used in the above example is manufactured by the wet spinning method of an acetone coagulation bath. However, the present invention does not have to limit the fiber to be processed in the present invention. It can also be applied to fibers produced by the method. In addition, By using the treatment liquid as a coagulation bath, an emulsion dispersion of a conjugated-diameter conductive polymer material or a precursor solution thereof is injected into the coagulation bath from a nozzle cover to form fibers by the wet spinning method as described above. It has also been confirmed that the characteristic improvement processing can be performed simultaneously.
本明細書は、 2006年 2月 28日出願の特願 2006— 054131に基づく。この内容は すべてここに含めておく。  This specification is based on Japanese Patent Application No. 2006-054131 filed on Feb. 28, 2006. All this content is included here.

Claims

請求の範囲 The scope of the claims
[1] ドーパントが添加された共役系導電性高分子材料の繊維を、エチレングリコール及 び Z又は非プロトン性溶媒を含む処理液中に所定時間浸漬して、該繊維の導電特 性並びに機械的特性を改善することを特徴とする導電性高分子の処理方法。  [1] A fiber of a conjugated conductive polymer material to which a dopant is added is immersed in a treatment solution containing ethylene glycol and Z or an aprotic solvent for a predetermined time, and the conductive characteristics and mechanical properties of the fiber are immersed. A method for treating a conductive polymer, characterized by improving characteristics.
[2] 前記導電性高分子材料がポリ 3, 4エチレンジォキシチォフェン (PEDOT)であり、 前記ドーパントがポリ 4 スチレンスルホン酸 (PSS)である請求項 1に記載の導電性 高分子の処理方法。  [2] The conductive polymer material according to claim 1, wherein the conductive polymer material is poly 3,4 ethylene dioxythiophene (PEDOT), and the dopant is poly 4 styrene sulfonic acid (PSS). Processing method.
[3] 前記非プロトン性溶媒が、ジメチルスルホキシド(DMSO)又はジメチルホルムアミド  [3] The aprotic solvent is dimethyl sulfoxide (DMSO) or dimethylformamide
(DMF)である請求項 1又は 2に記載の導電性高分子の処理方法。  The method for treating a conductive polymer according to claim 1 or 2, which is (DMF).
[4] 前記繊維が、ノズル力 流出した前記導電性高分子材料のェマルジヨン分散液又 はその前駆体溶液であって、前記処理液を凝固浴として用い、湿式紡糸法による繊 維の形成と前記特性の改善処理を同時に行うことを特徴とする請求項 1から 3のいず れかに記載の導電性高分子の処理方法。  [4] The fiber is an emulsion dispersion or precursor solution of the conductive polymer material that has flowed out of the nozzle force, using the treatment liquid as a coagulation bath, forming fibers by wet spinning and 4. The method for treating a conductive polymer according to claim 1, wherein the property improvement treatment is performed simultaneously.
[5] 前記処理液として室温のものを用い、前記繊維の該処理液への浸漬時間を 30秒 以上とすることを特徴とする請求項 1から 4のいずれかに記載の導電性高分子の処理 方法。  [5] The conductive polymer according to any one of claims 1 to 4, wherein the treatment liquid is room temperature, and the immersion time of the fibers in the treatment liquid is 30 seconds or more. Processing method.
[6] 前記浸漬時間を 3分以上とすることを特徴とする請求項 5に記載の導電性高分子の 処理方法。  [6] The method for treating a conductive polymer according to [5], wherein the immersion time is 3 minutes or more.
[7] 請求項 1から 6のいずれかに記載の方法により処理された前記繊維を、絶対圧 ΙΤο rr以下の減圧下で、 0〜50°Cの温度に 1分以上保持する熱処理を行うことを特徴と する導電性高分子の処理方法。  [7] A heat treatment is performed in which the fiber treated by the method according to any one of claims 1 to 6 is held at a temperature of 0 to 50 ° C for 1 minute or more under a reduced pressure of absolute pressure ΙΤο rr or less. A method for treating a conductive polymer characterized by the following.
PCT/JP2007/053467 2006-02-28 2007-02-26 Method of treating conductive polymer WO2007099889A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008502756A JP5256454B2 (en) 2006-02-28 2007-02-26 Method for treating conductive polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006054131 2006-02-28
JP2006-054131 2006-02-28

Publications (1)

Publication Number Publication Date
WO2007099889A1 true WO2007099889A1 (en) 2007-09-07

Family

ID=38458996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053467 WO2007099889A1 (en) 2006-02-28 2007-02-26 Method of treating conductive polymer

Country Status (2)

Country Link
JP (1) JP5256454B2 (en)
WO (1) WO2007099889A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293155A (en) * 2008-06-05 2009-12-17 Nissan Motor Co Ltd Conductive polymer fiber and method for producing the same
JP2010196190A (en) * 2009-02-24 2010-09-09 Nissan Motor Co Ltd Conductive polymer fiber and method for producing the same
JP2011225789A (en) * 2010-04-23 2011-11-10 Oike Ind Co Ltd Electroconductive coating composition
US8107153B2 (en) * 2009-03-31 2012-01-31 The University Of Connecticut Flexible electrochromic devices, electrodes therefor, and methods of manufacture
JP2012212828A (en) * 2011-03-31 2012-11-01 Japan Aviation Electronics Industry Ltd Electrode antioxidation organic device and manufacturing method therefor
CN102808327A (en) * 2012-08-23 2012-12-05 东华大学 Method for preparing nylon-PEDOT (poly(3,4-ethylenedioxythiophene)) compound conductive fabric through in-situ polymerization
WO2013073673A1 (en) * 2011-11-17 2013-05-23 日本電信電話株式会社 Conductive polymer fibers, method and device for producing conductive polymer fibers, biological electrode,device for measuring biological signals, and implanted electrode
WO2016087945A2 (en) 2014-12-03 2016-06-09 King Abdullah University Of Science And Technology Semi-metallic, strong conductive polymer microfiber, method and fast response rate actuators and heating textiles
JPWO2016031872A1 (en) * 2014-08-28 2017-06-15 国立大学法人東北大学 Conductive material, method for producing the same, and bioelectrode
CN107119345A (en) * 2017-06-26 2017-09-01 科耶麟(上海)材料科技有限公司 A kind of preparation method of the conductive polymer nanometer colloid spinning solution of high-compatibility
US10003126B2 (en) 2015-04-23 2018-06-19 The University Of Connecticut Stretchable organic metals, composition, and use
US10002686B2 (en) 2014-03-12 2018-06-19 The University Of Connecticut Method of infusing fibrous substrate with conductive organic particles and conductive polymer; and conductive fibrous substrates prepared therefrom
US10005914B2 (en) 2015-04-23 2018-06-26 The University Of Connecticut Highly conductive polymer film compositions from nanoparticle induced phase segregation of counterion templates from conducting polymers
CN109627700A (en) * 2019-01-03 2019-04-16 郑州大学 A kind of preparation method of highly conductive PEDOT: PSS film
US11043728B2 (en) 2018-04-24 2021-06-22 University Of Connecticut Flexible fabric antenna system comprising conductive polymers and method of making same
US11180867B2 (en) 2019-03-20 2021-11-23 University Of Kentucky Research Foundation Continuous wet-spinning process for the fabrication of PEDOT:PSS fibers with high electrical conductivity, thermal conductivity and Young's modulus
US20220020509A1 (en) * 2020-07-17 2022-01-20 Gwangju Institute Of Science And Technology Conductive polymer microfiber mesh structure, manufacturing method thereof and electrode for flexible electronic device using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433140A (en) * 1986-09-18 1989-02-03 Agency Ind Science Techn Stretched electroconductive conjugated polymer molding composition
JPH01306608A (en) * 1988-06-06 1989-12-11 Toray Ind Inc Production of electro-conductive fiber
JPH03163709A (en) * 1989-08-29 1991-07-15 Achilles Corp Manufacture of conductive fiber base material
JPH04202856A (en) * 1990-11-30 1992-07-23 Achilles Corp Electrically conductive yarn and production thereof
WO1994010371A1 (en) * 1992-10-23 1994-05-11 Achilles Corporation Floc for electrostatic hair transplantation
WO2004042743A1 (en) * 2002-10-30 2004-05-21 Santa Fe Science & Technology, Inc. Spinning, doping, dedoping and redoping polyaniline fiber
JP2005330624A (en) * 2004-05-20 2005-12-02 Univ Of Yamanashi Method for producing vinyl-based conductive polymer fiber and vinyl-based conductive polymer fiber obtained by the method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433140A (en) * 1986-09-18 1989-02-03 Agency Ind Science Techn Stretched electroconductive conjugated polymer molding composition
JPH01306608A (en) * 1988-06-06 1989-12-11 Toray Ind Inc Production of electro-conductive fiber
JPH03163709A (en) * 1989-08-29 1991-07-15 Achilles Corp Manufacture of conductive fiber base material
JPH04202856A (en) * 1990-11-30 1992-07-23 Achilles Corp Electrically conductive yarn and production thereof
WO1994010371A1 (en) * 1992-10-23 1994-05-11 Achilles Corporation Floc for electrostatic hair transplantation
WO2004042743A1 (en) * 2002-10-30 2004-05-21 Santa Fe Science & Technology, Inc. Spinning, doping, dedoping and redoping polyaniline fiber
JP2005330624A (en) * 2004-05-20 2005-12-02 Univ Of Yamanashi Method for producing vinyl-based conductive polymer fiber and vinyl-based conductive polymer fiber obtained by the method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ASHIZAWA S., HORIKAWA R. OKUZAKI H.: "Effects of solvent on carrier transporter in poly(3,4-ethylenedioxythiohpene)/poly(4-styrenesulfonate)", SYNTHETIC METALS, vol. 153, no. 1-3, 21 September 2005 (2005-09-21), pages 5 - 8, XP005066293 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293155A (en) * 2008-06-05 2009-12-17 Nissan Motor Co Ltd Conductive polymer fiber and method for producing the same
JP2010196190A (en) * 2009-02-24 2010-09-09 Nissan Motor Co Ltd Conductive polymer fiber and method for producing the same
US8107153B2 (en) * 2009-03-31 2012-01-31 The University Of Connecticut Flexible electrochromic devices, electrodes therefor, and methods of manufacture
US8908252B2 (en) 2009-03-31 2014-12-09 The University Of Connecticut Flexible electrochromic devices, electrodes therefor, and methods of manufacture
JP2011225789A (en) * 2010-04-23 2011-11-10 Oike Ind Co Ltd Electroconductive coating composition
JP2012212828A (en) * 2011-03-31 2012-11-01 Japan Aviation Electronics Industry Ltd Electrode antioxidation organic device and manufacturing method therefor
US10153065B2 (en) 2011-11-17 2018-12-11 Nippon Telegraph And Telephone Corporation Conductive polymer fibers, method and device for producing conductive polymer fibers, biological electrode, device for measuring biological signals, implantable electrode, and device for measuring biological signals
WO2013073673A1 (en) * 2011-11-17 2013-05-23 日本電信電話株式会社 Conductive polymer fibers, method and device for producing conductive polymer fibers, biological electrode,device for measuring biological signals, and implanted electrode
JP2015037695A (en) * 2011-11-17 2015-02-26 日本電信電話株式会社 Conductive polymer fibers, and biological electrode
JP2015037696A (en) * 2011-11-17 2015-02-26 日本電信電話株式会社 Biological electrode, and device for measuring biological signals
JPWO2013073673A1 (en) * 2011-11-17 2015-04-02 日本電信電話株式会社 Conductive polymer fiber, biological electrode, implantable electrode, and biological signal measuring device
US11862359B2 (en) 2011-11-17 2024-01-02 Nippon Telegraph And Telephone Corporation Conductive polymer fibers, method and device for producing conductive polymer fibers, biological electrode, device for measuring biological signals, implantable electrode, and device for measuring biological signals
CN102808327A (en) * 2012-08-23 2012-12-05 东华大学 Method for preparing nylon-PEDOT (poly(3,4-ethylenedioxythiophene)) compound conductive fabric through in-situ polymerization
US10002686B2 (en) 2014-03-12 2018-06-19 The University Of Connecticut Method of infusing fibrous substrate with conductive organic particles and conductive polymer; and conductive fibrous substrates prepared therefrom
JPWO2016031872A1 (en) * 2014-08-28 2017-06-15 国立大学法人東北大学 Conductive material, method for producing the same, and bioelectrode
WO2016087945A2 (en) 2014-12-03 2016-06-09 King Abdullah University Of Science And Technology Semi-metallic, strong conductive polymer microfiber, method and fast response rate actuators and heating textiles
US10003126B2 (en) 2015-04-23 2018-06-19 The University Of Connecticut Stretchable organic metals, composition, and use
US10005914B2 (en) 2015-04-23 2018-06-26 The University Of Connecticut Highly conductive polymer film compositions from nanoparticle induced phase segregation of counterion templates from conducting polymers
CN107119345A (en) * 2017-06-26 2017-09-01 科耶麟(上海)材料科技有限公司 A kind of preparation method of the conductive polymer nanometer colloid spinning solution of high-compatibility
US11043728B2 (en) 2018-04-24 2021-06-22 University Of Connecticut Flexible fabric antenna system comprising conductive polymers and method of making same
CN109627700A (en) * 2019-01-03 2019-04-16 郑州大学 A kind of preparation method of highly conductive PEDOT: PSS film
US11180867B2 (en) 2019-03-20 2021-11-23 University Of Kentucky Research Foundation Continuous wet-spinning process for the fabrication of PEDOT:PSS fibers with high electrical conductivity, thermal conductivity and Young's modulus
US20220020509A1 (en) * 2020-07-17 2022-01-20 Gwangju Institute Of Science And Technology Conductive polymer microfiber mesh structure, manufacturing method thereof and electrode for flexible electronic device using the same

Also Published As

Publication number Publication date
JPWO2007099889A1 (en) 2009-07-16
JP5256454B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
WO2007099889A1 (en) Method of treating conductive polymer
Levitt et al. Bath electrospinning of continuous and scalable multifunctional MXene‐infiltrated nanoyarns
Tao Handbook of smart textiles
Sarabia-Riquelme et al. Effect of drawing on the electrical, thermoelectrical, and mechanical properties of wet-spun PEDOT: PSS fibers
Kim et al. Polyaniline‐coated pet conductive yarns: Study of electrical, mechanical, and electro‐mechanical properties
US20140093731A1 (en) Conductive fiber materials
Miura et al. Foldable Textile Electronic Devices Using All‐Organic Conductive Fibers
US7897082B2 (en) Spinning, doping, dedoping and redoping polyaniline fiber
WO2011008993A1 (en) Manufacturing of multifunctional electrically conductive/transparent/flexible films
WO2006117967A1 (en) Conductive material and conductive film and process for producing them
Boubée de Gramont et al. Highly stretchable electrospun conducting polymer nanofibers
Eslah et al. Synthesis and characterization of tungsten trioxide/polyaniline/polyacrylonitrile composite nanofibers for application as a counter electrode of DSSCs
CN114657705B (en) Piezoelectric polymer fiber membrane with high-voltage electrical property and preparation method thereof
Sarabia‐Riquelme et al. Highly Conductive n‐Type Polymer Fibers from the Wet‐Spinning of n‐Doped PBDF and Their Application in Thermoelectric Textiles
Asai et al. Effect of spinning condition and fiber alignment on performance of ionic polymer gel actuators with nanofiber mat electrodes
Lu et al. Wet‐spinning fabrication of flexible conductive composite fibers from silver nanowires and fibroin
Cho et al. Electrically conducting high-strength aramid composite fibres prepared by vapour-phase polymerization of pyrrole
KR102063327B1 (en) Organic electrochemical transistor and method of fabricating thereof
Lerond et al. Enhancing the performance of transparent and highly stretchable organic electrochemical transistors by acid treatment and copolymer blending of electrospun PEDOT: PSS fibers
Li et al. Aligned wave-like elastomer fibers with robust conductive layers via electroless deposition for stretchable electrode applications
CN111234304B (en) Polyaniline @ silver nanowire/polyimide porous gradient composite film, preparation method and application
Rosati et al. Iron (III)-Tosylate doped PEDOT and PEG: a nanoscale conductivity study of an electrochemical system with biosensing applications
Pang et al. Ammonia sensing properties of different polyaniline-based composite nanofibres
Reddy et al. Conducting Fibers for Energy Applications
Qiu et al. Effect of thickness of one-dimensional nanofibers by electrospinning on the dielectric properties of PVDF composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008502756

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07714899

Country of ref document: EP

Kind code of ref document: A1