WO1994010371A1 - Floc for electrostatic hair transplantation - Google Patents

Floc for electrostatic hair transplantation Download PDF

Info

Publication number
WO1994010371A1
WO1994010371A1 PCT/JP1993/001481 JP9301481W WO9410371A1 WO 1994010371 A1 WO1994010371 A1 WO 1994010371A1 JP 9301481 W JP9301481 W JP 9301481W WO 9410371 A1 WO9410371 A1 WO 9410371A1
Authority
WO
WIPO (PCT)
Prior art keywords
floc
fiber
fibers
polymer layer
conductive polymer
Prior art date
Application number
PCT/JP1993/001481
Other languages
French (fr)
Japanese (ja)
Inventor
Ikuo Mizoguchi
Mamoru Ito
Original Assignee
Achilles Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Achilles Corporation filed Critical Achilles Corporation
Priority to DE69319738T priority Critical patent/DE69319738T2/en
Priority to EP93922635A priority patent/EP0667413B1/en
Priority to KR1019950701572A priority patent/KR950704564A/en
Publication of WO1994010371A1 publication Critical patent/WO1994010371A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/12Applying particulate materials
    • B05D1/14Flocking
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/356Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/35Heterocyclic compounds
    • D06M13/352Heterocyclic compounds having five-membered heterocyclic rings
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/356Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms
    • D06M15/3562Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms containing nitrogen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/356Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms
    • D06M15/3566Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms containing sulfur
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06QDECORATING TEXTILES
    • D06Q1/00Decorating textiles
    • D06Q1/04Decorating textiles by metallising
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes

Definitions

  • the present invention relates to a floc for use in electrostatic flocking, and more particularly, it does not require moisture adjustment in the process of electrostatic flocking, so it is repeatedly used in a process of electrostatic flocking in a constantly dry environment. And a flock for electrostatic flocking.
  • the present invention relates to a method for producing such flocks, and an electrostatic flocking product in which the flocks (which have intrinsic conductivity) are planted on the surface.
  • electrostatic flocking means that a short cut floc is caused to fly by electrostatic attraction in an electric field formed by applying a high voltage, and is planted on a substrate to which an adhesive has been applied in advance.
  • This technology refers to various types of natural, regenerated or synthetic staple fibers cut to a length of about 0.5 to about 5 weeks.
  • the cut short fibers are treated with tannin, tartar, etc., to retain the water of the tannin compound formed on the fiber surface.
  • a method of maintaining surface electrical conductivity by using a surface active agent, soda silicate, colloidal silica, etc. to the cut short fibers, and using the water of crystallization to make the surface conductive. There is a way to keep.
  • the former method is mainly used in Europe, while the latter method is used in Japan.
  • the electric leakage resistance value of the fiber surface during electrostatic flocking is the electric leakage resistance value of the fiber surface during electrostatic flocking
  • Suitable as 0 5 to 1 0 8 QZcm those forces electrostatic flocking flock that are within the scope of, and is sufficient flying force.
  • the function of the conventional electrodeposition agent is easily affected by moisture, and the conductivity of the surface of the coated fiber fluctuates considerably sharply due to changes in ambient humidity. (4) It requires disadvantageous after-conditioning, and it is difficult to carry out stable work throughout the year. In particular, in the case of hydrophobic fibers, for example, polyester fibers, aromatic polyamide fibers, etc., it was particularly difficult to control moisture, and the quality was not stable.
  • the first flocking should be performed. At this time, even if the flock is conditioned to the optimal condition of a humidity of about 80%, after the flocking of the unused floc after the electrostatic flocking, the floc is in a remarkably dry state. To reuse for the next flocking, adjust the water content of the floc again There was a disadvantage that it was necessary.
  • Conventional electrodeposition agents not only cause or cause such inconveniences and defects, but also have low color fastness in the case of tannins, and flocking in the case of sodium silicate and the like.
  • they In addition to the hardened texture of the fibers, they have the disadvantages of weakening the adhesive strength of the adhesive and promoting fiber aging. Further, in the latter case, there is a problem that a so-called white powder made of silicate powder or the like is generated during the electrostatic flocking process.
  • White powder may be harmful to human health due to absorption by respiration. For example, it can be removed only under severe conditions such as -5% sodium hydroxide aqueous solution at 60 ° C for 30 minutes.
  • the present inventor has found that the entire surface including the end face of the floc fiber is now substantially or completely covered with a single layer of a conductive polymer such as polypyrrol, preferably the conductive polymer.
  • a conductive polymer such as polypyrrol
  • the charge and separability of the floc are always kept good without being substantially affected by the surrounding moisture, and therefore, the static state can be improved. It has been found that a satisfactory flying force can be obtained by electro-flocking, and a hook for electrostatic flocking that can perform continuous electrostatic flocking smoothly and stably in a dry environment can be obtained. Disclosure of the invention
  • One object of the present invention is to provide an electrostatic flocking floc that can stably perform electrostatic flocking in a dry environment and can be repeatedly used for electrostatic flocking. It is in.
  • An object of the present invention is to make continuous electrostatic flocking in such a dry environment possible, thereby making it unnecessary to adjust the water content of flocs during the conventional electrostatic flocking process. It is also to provide flocks for electric flocking.
  • the present invention eliminates the need for such water content adjustment, and thereby eliminates the necessity of installing a humidity control device in the electrostatic flocking machine or making the water content adjustment process of the raw material floc as a pretreatment unnecessary. It is intended to provide flocking for flocking.
  • Another object of the present invention is to provide a method of manufacturing a flocking for electrostatic flocking, which can reliably and easily manufacture a strong flocking for electrostatic flocking. It is in.
  • Another object of the present invention is to provide an electrostatic flocking product which is planted using such a conductive floc, in particular, the floc is uniformly and stably flocculated without entanglement and finally has a high conductivity.
  • An object of the present invention is to provide an electrostatic flocking product having a property.
  • the present invention relates to an electrostatic flocking floc characterized in that all surfaces including short fiber end faces are substantially or completely covered with a conductive polymer layer.
  • the proportion of the portion of the flock surface not covered by one layer of conductive polymer to the total surface is not more than 3%.
  • the floc according to the present invention is preferably tuned by the coating of the conductive polymer layer such that the surface electrical leakage resistance is in the range of 10 5 to 10 8 QZcni.
  • the staple fibers comprise natural, semi-synthetic or synthetic fibers, and preferably have an aspect ratio of the fibers in the range of 1:30 to 1: 100.
  • the short fibers may be dyed.
  • the conductive polymer layer is formed by polymerizing one or two or more monomers selected from the group consisting of pyrrole, N-methylpyrrol, aniline, thiophene and thiophene-13-sulfonic acid.
  • a particularly preferred conductive polymer layer is a polymer layer obtained by polymerizing pyrrole as a monomer.
  • the thickness of the conductive polymer layer is preferably or required to be in the range of 0.1 ⁇ to 0.1 ⁇ on average. A more preferred thickness is approximately 0.011 11 to 0.03) Ltm on average when the short fibers are permeable fibers, and on average when the short fibers are non-permeable fibers. It is about 0.02 m to 0.05 ⁇ .
  • the present invention relates to a polymerization reaction of a monomer in a treatment solution containing short fibers (or long fibers), using a chemical oxidizing polymerizing agent as a catalyst, and optionally adding a dopant and / or a surface tension reduction.
  • the coated conductive polymer is coated on the surface of the fibers in the treatment liquid, and in the case of long fibers, thereafter, the coated long fibers are cut into short fibers.
  • the present invention relates to a method for manufacturing flocks for electrostatic flocking.
  • the present invention uses the above-mentioned floc as a raw material, for example, according to an up-type electrostatic flocking method, a down-type electrostatic flocking method, an up-down type electrostatic flocking method or a side type electrostatic flocking method, or a fluidized tank type static flocking method.
  • the present invention relates to an electrostatic flocking product manufactured by using an electro flocking machine.
  • Fig. 1 shows a photomicrograph of a conventional flocking floc for electrostatic flocking in which the electrodeposition treatment using sodium silicate was applied to a polyester fiber, using an electron microscope to enlarge the tip of the floc.
  • the length of the white line in the lower right part of the photograph is 50 / zm.
  • Fig. 2 shows an electron microscopy of the flocking for electrostatic flocking according to the present invention, in which the entire surface including the end face of the polyester fiber (fineness: 1.5 denier) is completely covered with a single layer of polymer. A micrograph of the tip of the block magnified using this is shown. The length of the white line in the lower right part of the photograph represents 20 ⁇ .
  • FIG. 3 shows a micrograph of an enlarged tip of the original yarn of the polyester fiber of FIG. 2 (with no pyrrole polymer layer formed on its surface) using an electron microscope.
  • the length of the white line in the lower right part of the photograph is 20.
  • Floc according to the invention do not substantially by circumferential surface and the front-rear both end faces in the longitudinal direction of the fibers conductive polymer layer is completely covered, thus this coating, the electric leakage resistance value of the surface 1 0 5 to so that the can be adjusted to be within the scope of 1 0 8 ⁇ / cm.
  • the ratio of the portion of the floc surface not covered by the conductive polymer layer to the entire surface is not more than 3%.
  • the type of fiber may be any of natural, regenerated (semi-synthetic) or synthetic fiber.
  • Preferred fibers include aromatic polyamide fiber (trade names Kevlar, Nomex, Conex, etc.) and other polyamide fibers.
  • Regula-polyester fiber (6-nylon, 6,6-nylon, 4,6-nylon, etc.), Regula-polyester fiber, basic dyeable dyeable polyester fiber, acrylic fiber, vinylon fiber, regenerated cellulose fiber (rayon), wool fiber , Cotton fibers, hemp fibers, and polyethylene, polypropylene and other multi-spun fibers.
  • the fiber may be dyed, and a so-called original fiber colored by mixing a pigment or the like at the spinning stage can be used.
  • the raw fibers of the electrostatic flocking floc are as follows: denier number: about 1 to 65 d, fiber length: 0.3 to 6.0 mm, and aspect ratio: 1: 30 to 1: 1
  • the above-mentioned fibers having a property of 100 are preferred. If the fiber has an aspect ratio exceeding 1: 100, uniform electrostatic flocking may not be achieved. The larger the fiber diameter, the higher the aspect ratio fiber can be used.However, if the fiber diameter is small, it is necessary to select and use a fiber with a smaller value. is there. ⁇ In general, it is said that a fiber having a fiber length 0.3 times the denier number ( ⁇ ) is most suitable as a raw material fiber for electrostatic flocking.
  • the conductive polymer layer may be, for example, a polymer or a copolymer layer formed by polymerizing pyrrole, N-methylvirol, aniline, thiophene, thiophene-13-sulfonic acid, or a derivative thereof as a monomer. Any polymer may be used as long as it is a polymer layer that imparts the above-described conductivity.
  • Monomers used to form this conductive polymer layer include, for example, aniline, o-chloroaniline, m-chloroaniline, P-chloroaniline, o-methoxyaniline, m-methoxyaniline, P-methaniline.
  • Aniline derivatives such as xianiline, o-ethoxyaniline, m-ethoxyaniline, p-ethoxyaniline, o-methylaniline, m-methylaniline, p-methylaniline; thiophene, and 3-methylthiophene, 3-methoxythiophene, etc.
  • Thiophene derivatives of pyrrole 3,5-substituted pyrroles such as 3,5-dimethylpyrrole; 3,4-substituted pyrroles such as 4-methylpyrroyl-3-methylpyruvate; N-methylbilol Of 3-substituted pyrroles such as N-substituted pyrrol, 3-methylpyrrol, Various substituted pyrroles can be mentioned.
  • a preferred conductive polymer layer is a polymer or copolymer layer formed by polymerizing pyrrole, N-methylpyrrole, aniline, thiophene, thiophene-13-sulfonic acid as a monomer.
  • a particularly preferred conductive polymer layer is a polymer layer obtained by polymerizing pyrrole as a monomer.
  • the thickness of the conductive polymer layer is basically arbitrary as long as it exhibits the above-mentioned conductivity and appropriate separation properties.
  • the conductive polymer layer must be formed to a uniform thickness due to the surface roughness of the fiber itself. As a result, in many cases, the conductivity required for obtaining satisfactory flying power cannot be imparted to the floc.
  • the average thickness of the conductive polymer layer exceeds 0.1 m, even if the required conductivity is secured, the frictional robustness of the conductive polymer layer is reduced, or the conductive polymer layer is As the thickness increases, the resistance becomes lower than the required resistance value and the conductivity increases.Therefore, at the time of electrostatic flocking, sparks are generated due to the approach or contact between the flocks, and as a result, in flocking products, Shading unevenness may appear clearly on the flocking density on the surface.
  • the thickness of the conductive polymer layer be in the range of 0.1 ⁇ or 0.1 / Ltm on average. Since it is an ultra-thin film, the original texture and flexibility of the fiber are not greatly impaired by the presence of the conductive polymer layer. For example, when used in a user strip of an automobile window glass, since the fiber hardens very little, the inherent elasticity of the fiber is maintained and a stable sliding resistance value can be obtained.
  • the monomer used for producing the polymer has a somewhat different force depending on the type of the fiber. It must be added at a rate of 0.3 to about 1.0%. For example, when pyrrol, a kind of monomer, is added at a weight ratio of 0.75% to polyester fiber (specific gravity 1, 34) of 3 denier and 0.8 mm in length, the average thickness is about 0.7%. 044 (Calculated value) A m-layer of a pyropolymer is formed on the peripheral surface and both end surfaces of the fiber.
  • the thickness of the conductive polymer layer formed on the fiber surface varies depending on the fiber surface shape (roughness), porosity, fiber composition, and the like.
  • a conductive polymer layer having an average thickness substantially equal to the average thickness calculated from the amount of the added monomer is formed.
  • a conductive polymer layer having an average thickness somewhat smaller than the average thickness calculated from the amount of the added monomer is formed.
  • the thickness of the conductive polymer layer also varies depending on the conditions for dispersing the fibers in the treatment solution described below.
  • the preferred thickness of the conductive polymer layer is generally about 0.01 to 0.03 for permeable fibers such as nylon fiber, vinylon fiber, and cellulose fiber, and polyester fiber, aramide fiber, and acrylic. In the case of non-permeable fibers such as fibers, it is generally 0.02 to 0.05 m
  • the conductive polymer layer formed on the fibers in the treatment solution is formed on the conductive polymer layer as described above. It is formed by bonding and covering its surface.
  • the present invention relates to a method in which a polymerization reaction of a monomer is carried out in a treatment solution containing short fibers (which may be dyed) using a chemical oxidizing polymerization agent as a catalyst
  • the present invention relates to a method for producing a floc for electrostatic flocking, which comprises coating a formed conductive polymer on the surface of a fiber in a treatment liquid by proceeding with Z or a surface tension reducing agent.
  • the addition of the monomer and the chemical oxidizing polymer to the treatment liquid may be performed by a procedure of adding both together, or by a procedure of adding the monomer first and then adding the chemical oxidizing polymer. . Further, the chemical oxidation polymer of the catalyst may be added all at once, may be added in several portions, or may be added continuously in small amounts.
  • the polymerization reaction of the monomer proceeds as slowly as possible.
  • the temperature condition is preferably a low temperature, 2 to 35, more preferably 2 to 25 ° C.
  • the reaction in the aqueous phase proceeds rapidly (in an instant), making it difficult for the polymer to adhere to the surface of the fiber and forming free polymer particles in the water tank.
  • the polymerization reaction is performed while stirring or circulating the treatment liquid. As the polymerization of the monomers progresses and the solubility decreases over time, the resulting polymer will selectively precipitate or adhere, especially on the fiber surface. For this reason, this reaction is extremely quantitative.
  • the entire surface including the end face of the short fiber is substantially covered with a conductive polymer layer. It is desirable to coat substantially all surfaces of the fiber with a conductive polymer to a uniform thickness.
  • the floc of the present invention forms a conductive polymer layer on the fiber surface by polymerizing a monomer for electrodeposition treatment while stirring or circulating it in a slurry-type processing solution containing fibers.
  • the fibers are processed in a slurry-type processing solution for a weight of 1. It is particularly preferred that the physical solution is present in a weight ratio of 8 to 15.
  • the stirring speed is not particularly limited, but since it is necessary to prevent floc sedimentation, for example, the stirring speed in the case of using polyester fibers needs to be higher than in the case of using polyamide fibers.
  • the floc of the present invention can use a long fiber, perform a so-called electrodeposition treatment of the long fiber, and then cut the treated long fiber into a predetermined size to be a short fiber.
  • a circular tow is cut to make a straight line and then cut to a predetermined size to form a floc
  • no conductive polymer layer will be formed on the cut surface, that is, the end surface of the floc.
  • Polyamide fiber, vinylon fiber, etc. have monomer diffused into the fiber. Therefore, even if the towel is subjected to electrodeposition treatment and then cut, the obtained floc is In some cases, the entire surface of the part or the end face may be made conductive. In this case, the ratio of the non-conductive area to the entire surface of the floc is further reduced.
  • the bundled state of the fibers is a close-packed state, so that it is difficult to uniformly coat the surface of the fiber with a single layer of the conductive polymer. If a floc is used, a loss will occur. Therefore, in consideration of the cost of the electrodeposition process, it is also preferable to cut long fibers and then perform the electrodeposition process in a slurry-type processing solution.
  • the present invention also relates to a method for polymerizing a monomer, which is carried out in a treatment solution containing long fibers (which may be dyed) by using a chemical oxidizing polymerization agent as a catalyst and adding a dopant and / or With surface tension reducing agent
  • a method for producing flocks for electrostatic flocking which comprises proceeding together to coat the generated conductive polymer on the surface of the fibers in the treatment liquid, and then cutting the coated long fibers into short fibers.
  • preferred monomers include pyrrole, N-methylpyrrol, aniline, thiophene and thiophene-3-sulfonic acid. Monomers selected from are applied singly or in combination of two or more. Pyrrole is particularly preferred.
  • any substance which promotes the polymerization of the above monomers can be used in general, and examples thereof include persulfates such as persulfuric acid, ammonium persulfate, persulfuric acid rim, and sodium persulfate; Alternatively, ferric chloride, ferric perchlorate, ferric sulfate, ferric nitrate, ferric periodate, ferric citrate, ferric P-toluenesulfonate, etc.
  • Iron salts such as permanganic acid and permanganate potassium chromium; Chromic acids such as chromium trioxide; or halogens such as chlorine, bromine and iodine; hydrogen peroxide and benzoyl peroxide Peroxides; metal chlorides such as copper chloride; Particularly, a water-soluble ferric salt is preferable.
  • the chemical oxidative polymerization agent is used alone or in an appropriate combination of the above-mentioned compounds, usually in a ratio of about 1 to about 3 mol per mol of monomer.
  • a dopant can be used in combination to increase the conductivity of the fiber.
  • the dopant is suitably used under conditions of PH 1-5, more preferably PH 1-3.
  • Suitable dopants include, for example, P-toluene sulfonic acid, benzene sulfonic acid, benzenesulfonic acid of monochrome mouth, dichlorobenzenes Sulfonic acid, trichlorobenzene sulfonic acid, naphthalene sulfonic acid, diphenyl sulfonic acid, naphthalene trisulfonic acid, sulfosalicylic acid and other aromatic sulfonic acids; or perchloric acid, hydrochloric acid, sulfuric acid, nitric acid, trifluoroacetic acid Sulfonic acid and the like.
  • aromatic sulfonic acid or its metal salt is preferred.
  • the treatment liquid may further include a surface tension reducing agent in order to uniformly form the conductive polymer film on the fiber surface.
  • Examples of surface tension reducing agents include surfactants, organic solvents, and defoaming agents such as silicones, acetylene glycols, and fluorines.
  • surfactants improve the wettability of the fiber surface, and alcohols are additionally mixed with water to improve the wettability of the fiber surface by mixing with water.
  • surfactant examples include anionic type such as sodium alkyl sulfate, sodium alkyl benzene sulfonate, sodium alkyl sulfosuccinate, sodium polyoxyalkylene sulfonate, sodium alkyl naphthylene sulfonate and the like.
  • Surfactants; and nonionic surfactants such as polyethylene glycol, polypropylene glycol, block copolymer, polyethylene glycol alkyl ether, and polyethylene glycol alkyl phenyl ether.
  • organic solvents examples include alcohols such as methanol, ethanol, isopropyl alcohol, n-propyl alcohol, n-butanol, isobutanol, and isoamyl alcohol, dimethylformamide, tetrahydrofuran, and dioxane. Acetonyltril, cyclohexanone, methylethylketone, acetone and the like.
  • the addition amount of the surface tension reducing agent is generally very small or small.For example, in the case of a surfactant, an amount in the range of about 0.01 to about 2% based on the total weight of the processing solution is sufficient. In the case of alcohols, the range of about 0.1 to about 5.0% is sufficient for the total weight of the processing solution.
  • the polymerization of the above-mentioned monomer advantageously proceeds in a state of PH 1 to 4, and a desired conductive polymer can be efficiently obtained within that range.
  • the fibers are washed with water.At that time, the entanglement of the flocks is prevented as necessary, and the fibers are transported by a screw or the like in the supply path from the storage tank in the electrostatic flocking machine.
  • a softening agent or a leveling agent such as stearic acid amide may be added in a small amount in order to improve the quality.
  • a surfactant or an oily substance that oozes out from the inside of the fibers into the treatment solution for the polymerization reaction is used in advance. It is preferable to wash and remove them.
  • the electrodeposition treatment (formation of the conductive polymer layer) of the present invention may be performed after dyeing or may be performed before dyeing.
  • alkaline dyeing of polyester fibers causes de-doping and lowers conductivity, so when alkaline dyeing is performed, it is necessary to perform the dyeing before the above electrodeposition treatment. It is preferable to perform acid washing just in case. Staining after electrodeposition treatment must be performed under acidic conditions.
  • the color of the dye and the color of the conductive polymer are combined, so that a variety of colors of flocs can be obtained.
  • Dyes used vary depending on the fiber, but acid dyes and black And metal complex salt dyes such as dye complexes, disperse dyes, cationic dyes, and reactive dyes.
  • dyeing with a disperse dye is a force that requires reduction cleaning. Since reduction cleaning promotes de-doping of the conductive polymer, it is necessary to make the fibers conductive after dyeing. No reduction cleaning is required for other polyamide fibers and acrylic fibers.
  • the fibers are dried, but in the case of flocks, the fibers are dried in a slurry state or a state where they are dehydrated by centrifugation in order to minimize the entanglement between flocks.
  • a fluidized-bed drying method is used, in which the flocs are dried by contact with a stream of hot air in a fluidized-bed.
  • the conditions of a temperature of about 120 to about 180 ° C and a tank residence time of 0.1 to 5 seconds may be adopted. When dried under these conditions, the floc of the present invention having a water content of about 1 to 5% can be easily obtained.
  • the floc of the present invention is manufactured through the above-described processes. Its moisture content is usually about 1 to 5%, which is about the official moisture content, and is significantly lower than the moisture content of the conventional floc, 20 to 25% (the value after flocking after conditioning). Therefore, the weight is reduced, which is convenient for transportation and handling. Since the conductive polymer layer is substantially unaffected by moisture, the moisture content of about 1 to 5% is maintained almost unchanged even when the surrounding outside air is in a high humidity range. Is almost absolutely dry It is kept dry. Therefore, the dyeing fastness of the floc is improved, and the transportation cost is further reduced.
  • Single yarn fineness D about 1 to about 65 denier
  • Moisture content about 1 to about 5%
  • Thickness of conductive polymer layer about 0.01 1 11 about 0.1 lm
  • the amount of raw material monomer to be added (weight ratio to fiber) since the raw fiber has a large aspect ratio, the area of both end faces is at most 1 to 3% of the total surface area. Very small and can be ignored enough. Therefore, when a raw fiber having a fineness of 1 to 65 denier and a fiber length of 0.3 to 6 mm, which is generally used, is preferably used, the amount obtained according to the following relational expression (1) should be used. Is led.
  • the DZM ratio is about 2 to 4, 15 For denier raw fibers, the DZM ratio is about 10 to 20; and for 65 denier raw fibers, the DZM ratio is about 150 to 250, respectively. It should be noted that the above relational expression is particularly suitable for polyester fiber, nylon fiber, acrylic fiber and the like.
  • the floc of the present invention can be used for the same electrostatic flocking as in the past, and thus various kinds of flocking products can be manufactured.
  • the method of electrostatic flocking is not particularly limited, and the up-type electrostatic flocking method (place the hook on the lower electrode and the flocking object on the upper electrode, and apply the voltage between the upper and lower electrodes)
  • the flocking method in which the flocks fly upward by performing the method.
  • the down-type electrostatic flocking method (A state in which the material to be planted is provided on the lower electrode and a grid or linear upper electrode is used, and voltage is applied between the upper and lower electrodes.
  • the flocking method in which the flocks fly down by dropping the flocs through the grid of the upper electrode, or the side-type electrostatic flocking method (prepared by connecting the object to be implanted to the electrode beside the electric field)
  • the flocking method is to drop the floc into the electric field from the hopper under the application of a voltage so that the floc flies first downward and then laterally from the middle.
  • Fluid tank type electrostatic flocking machine (flocking machine of the type that uses a fluidized tank with a structure in which a perforated plate is stretched in the tank and vibration is applied as a flock supply tank.
  • There are an up-down type and a side type. ) May be used to manufacture electrostatic flocking such as automobile interior parts from the floc of the present invention.
  • the present invention further provides an up-type electrostatic flocking method, a down-type electrostatic flocking method, an up-down type electrostatic flocking method, or a side-type electrostatic flocking method using the above-mentioned flocking for electrostatic flocking as a raw material. Or by using a fluidized-bed electrostatic flocking machine to electrostatically flocking the surface of the substrate to be flocking. After the completion of the electrostatic flocking, an appropriate doping treatment, for example, acid concentration
  • the surface of the floc is substantially covered with the conductive polymer layer, the surface electric leakage resistance value can be easily adjusted to a range suitable for electrostatic flocking.
  • this floc obtained in an almost absolutely dry state can be used for electrostatic flocking.
  • the floc itself is less susceptible to moisture due to the nature of the coating layer, which is a conductive polymer, and its good antistatic function is almost constant irrespective of the ambient humidity (wet, dry). Will be kept. Therefore, a satisfactory flying force can be obtained with any of the up-type and down-type electrostatic flocking without performing after-conditioning as in the related art.
  • the floc in the case of a floc in which not only the peripheral surface of the floc but also all the surfaces including the front and rear end surfaces are coated with the conductive polymer layer, the floc is located on the surface of the base material on which the floc is to be implanted.
  • the planting in a right angle direction can be made more reliable, thus reducing the incidence of product defects and enabling the production of higher quality flocked products.
  • the conductive polymer which is hardly affected by moisture is used. Due to the nature of the layers, the separation of the flock is not adversely affected by ambient moisture and moisture levels. Therefore, there are no inconveniences such as sticking of the flock surface, tangling of the flock, generation of dumplings due to entanglement, and generation of sparks due to contact between the flocks.
  • the charging and separating properties of the floc can be stably maintained within the intended range and conditions without being substantially affected by the surrounding moisture. As a result, a satisfactory flying force can be always obtained, and therefore, stable electrostatic flocking can be performed in any of the flocking methods.
  • the floc since the floc is almost in an absolutely dry state, the floc can be repeatedly used for the electrostatic flocking in a dry environment, so that the continuous electrostatic flocking can be performed smoothly and stably. Can be performed.
  • the present invention eliminates the need for water conditioning (after-conditioning) of flocs during the conventional electrostatic flocking process. For example, it is not necessary to install a humidity control device in an electrostatic flocking machine, or to perform a step of adjusting the moisture content of a raw material hook as a pretreatment.
  • the floc of the present invention is used, the flocks are electrostatically planted in a state of being orderly and standing upright on the surface of the base material, and the distribution thereof is even and uniform in density, and defects such as entanglement and entanglement also occur. No, high quality electrostatic flocking is provided.
  • Cut 6,6-nylon fiber (fineness: 3 denier, fiber length: 0.5 mm) was dyed with a metal complex dye Kayakalan Black (manufactured by Nippon Kayaku Co., Ltd.) at 95 ° C. for 60 minutes, and then thoroughly washed with water.
  • a pyrrole monomer was used in an amount of 0.63% by weight based on the weight of the fiber, and this was stirred in water together with the dyed 6,6-nylon fiber while using a catalyst of ammonium persulfate as a catalyst.
  • the polymerization reaction was continued for 240 minutes. Thereafter, the 6,6-nylon fibers were thoroughly washed with water and then dried until the water content became 2.5%.
  • the surface electric leakage resistance of the obtained floc was measured to be 3X
  • the cut acrylic fiber (fineness: 1.3 denier, fiber length: 0.4 concealed) is thoroughly washed with water in advance to remove surfactants, oils, etc., then put into water, and then as monomer Add 0.35% (by weight to fiber) of N-methylpyrrole and 0.3% (by weight of fiber) of pyrrole, and stir with ferric chloride as a catalyst for 200 minutes at 5 ° C. During the period, the polymerization reaction was connected. After that, the acrylic fiber was thoroughly washed with water and then dried until the water content became 2.5%.
  • the surface electric leakage resistance of the obtained floc was measured to be 7 X
  • Example 1 electrostatic flocking was performed under the same conditions as in Example 1 using this floc. As a result, as in Example 1, good flying properties were obtained for all the flocking methods and satisfactory results were obtained.
  • the cut 6-nylon fiber (fineness: 1.5 denier, fiber length: 0.5 concealed) is turned 90 ° by a milling type acidic dye and a dyeing black dye (Nippon Kayaku Co., Ltd.).
  • the cells were stained under the conditions of Cx for 60 minutes, and then sufficiently washed with water.
  • aniline P-toluenesulfonate was used in an amount of 1.0% in terms of fiber weight ratio, and this was mixed with dyed 6-nylon fiber in water using potassium persulfate as a catalyst. While stirring together, the polymerization reaction was continued at 5 ° C for an appropriate time. Thereafter, the 6-nylon fiber was thoroughly washed with water, and then dried until the water content became 3.5%.
  • the surface electric leakage resistance value of the obtained floc was measured and found to be IX 10 ⁇ QZcm.
  • the cut para-aromatic polyamide fiber (fineness: 2.0 denier, fiber length: 0.5 dia.) And pyrrole monomer in an amount of 0.5% by weight relative to the fiber are put in water and stirred.
  • the polymerization reaction was continued at 3 ° C. for 240 minutes using ammonium persulfate as a catalyst. Thereafter, the above fibers were sufficiently washed with water, and then dried until the water content became 0%.
  • the obtained floc was dark green, and its surface electric leakage resistance was measured to be 3 ⁇ 10 7 QZcm.
  • the flocking was used to carry out electrostatic flocking under the same conditions as in Example 1, good flying properties were obtained for all the flocking methods as in Example 1, and satisfactory results were obtained. .
  • Polyethylene terephthalate fiber fineness: 15 denier, fiber length: 2. lmm
  • a disperse dye Yaron Polyester Black (manufactured by Nippon Kayaku Co., Ltd.) at 130 ° C for 60 minutes. Reduced washing was performed with 6 CTCX for 20 minutes using a mixture of mouth sulfate and sodium hydroxide.
  • electrodeposition treatment was performed using sodium silicate according to a conventional method to produce flocks for flocking.
  • the moisture content of the floc was adjusted to 0.5%, 3.0% and 18%, and the flocking was performed on the same substrate as in Example 1 (applied voltage: 60kV).
  • the moisture content of 0.5% and 3.0% insufficient flying power was obtained and uniform flocking could not be achieved, and in the case of moisture content of 18%, some flocking could be achieved, but flocking Continuous hair transplantation, which involves repeated collection and reuse, was not possible.
  • Example 4 1.0% fluidized bed method 60 kV ⁇ No.13 Comparative example 1 0.5% Fluidized tank method 60 kV x No.14 Comparative example 1 3.0% Fluidized tank method 60 kV x No .15 Comparative Example 1 18% fluidized-bed method 60 kV ⁇ Note) ⁇ indicates that sufficient flying force was obtained for flocs, and that electrostatic flocking was uniform and very good.
  • polyester fiber cut to fixed length coarseness: 3.0 denier, fiber length: 0.8 dia.
  • 8.3 g of pyrolmonomer (0.83%, relative to fiber weight) was poured into water, and the polymerization reaction was continued for 3 hours while stirring at a liquid temperature of 3 ° C. using 50.2 g of ferric chloride as a catalyst. Thereafter, the polyester fiber was sufficiently washed with water, and then dried by 16 (TC) according to a fluidized-bed drying method.
  • the obtained floc had a surface electric leak resistance of 4.0 ⁇ 10 ⁇ QZcm and a water content of 1.5%.
  • electrostatic flocking (applied voltage: 50 to 8 OkV) was performed on the flocks using an up-type flocking machine, a down-type flocking device, a flow tank type side flocking device, and a fluidized tank type up flocking device.
  • all of the flocking methods showed sufficiently high flight performance without special after-conditioning, and high-quality electrostatic flocking products were obtained.
  • FIG. 1 to FIG. 3 of the drawings show micrographs of the tip of a floc or the like enlarged by using an electron microscope in connection with the above-described examples and the like.
  • the length of the white line in the lower right part of the photo is 50
  • FIG. 1 shows a conventional flocking flock for electrostatic flocking in which electrodeposition treatment using sodium silicate was applied to polyester fibers.
  • Fig. 2 shows polyester fibers (denier: 1.5 denier).
  • FIG. 3 shows the flocking for electrostatic flocking of the present invention corresponding to Example 5 in which all surfaces are completely covered with a layer of a pyropolymer; and
  • FIG. 3 shows the flocking of FIG.
  • the raw yarn of the polyester fiber which is the raw material for (there is no pyrrole polymer layer formed on the surface).
  • a 6,6-nain continuous fiber (denier: 3 denier) is wound around a bobbin, which is then wound on 20 liters of water and pyrrol 13.
  • 4 g and ferric chloride 64.9 g were placed in a bath together with a treatment solution at 18 ° C, and the treatment solution was repeatedly passed through the fiber gap into the bobbin to conduct the conductivity, and the surface was treated.
  • a long fiber having an electric leakage resistance of 1.0 ⁇ 10 6 ⁇ was obtained.
  • the conductive 6,6-nylon filaments were cut to a length of 0.5, and then were subjected to electrostatic flocking using the same method and conditions as in Example 1.
  • the flocking of the product some fibers were not planted in the direction perpendicular to the surface of the base material, but a sufficient flying force was obtained, and continuous electrostatic flocking was possible.
  • the floc of the present invention can be used for electrostatic flocking in general, and can be used for building interior materials (wallpaper, curtains, power supplies, mats, etc.), footwear (sandals, thongs, etc.), daily miscellaneous goods (decoration). Covers, decorative cords, jewelry boxes, stationery, etc.), automatic car accessories (dashboards, sun visors, leather strips, floppy yarns for car seats, etc.), cooling and heating equipment (kotatsu, foot warmers, etc.), clothing (hats, hats, etc.) It is suitable for the manufacture of various types of electrostatic flocking products in a wide range of applications, such as jackets, gloves, etc., and electronic equipment (brush rolls, etc.).

Abstract

A floc for electrostatic hair transplantation wherein the entire surface (inclusive of the front and rear end faces) of a short fiber is covered substantially or completely (not more than 3 % of non-coated portions) with an electrically conductive polymer layer (preferred thickness: 0.01 to 0.1 νm on an average), a production method thereof, and an electrostatic hair transplantation product using the former. A preferred polymer layer comprises a polymer or a copolymer using pyrrole, N-methylpyrrole, aniline or thiophene as a monomer. Chargeability and separability of this floc are not affected by surrounding moisture and satisfactory flying force can be stably provided during an electrostatic hair transplantation process. Accordingly, the floc can be utilized repeatedly for electrostatic hair transplantation in a dry environment under any hair transplantation systems, and post-conditioning, etc. that has conventionally been necessary, can be eliminated. The resulting hair transplantation product has a uniform density of transplanted hairs and is free from entanglement of fibers.

Description

明 細 書 静電植毛用 フ ロ ッ ク 技術分野  Description Technical Field for Electrostatic Flocking Block
本発明は、 静電植毛に使用するためのフロックに係り、 より詳しく は、 静電植毛の過程での水分調整が不要であるため、 常に乾燥した環境 で静電植毛プ口セスに繰り返し利用することができるところの静電植毛 用フロックに関する。  The present invention relates to a floc for use in electrostatic flocking, and more particularly, it does not require moisture adjustment in the process of electrostatic flocking, so it is repeatedly used in a process of electrostatic flocking in a constantly dry environment. And a flock for electrostatic flocking.
また本発明は、 かかるフロックの製造方法、 並びに、 該フロック (本 来的に導電性を有する。 ) が表面に植毛された静電植毛品に関する。 背景技術  Further, the present invention relates to a method for producing such flocks, and an electrostatic flocking product in which the flocks (which have intrinsic conductivity) are planted on the surface. Background art
—般に、 静電植毛とは、 短くカツ卜されたフロックを、 高電圧の印加 によって形成された電界内で、 静電気的な吸引力により飛翔させ、 予め 接着剤の塗布された基材に植え付ける技術をいうが、 この技術に用いる フロックとしては、 通常、 長さ約 0 . 5〜約 5醒にカツ卜された天然、 再生または合成の各種短繊維が使用されている。  In general, electrostatic flocking means that a short cut floc is caused to fly by electrostatic attraction in an electric field formed by applying a high voltage, and is planted on a substrate to which an adhesive has been applied in advance. This technology refers to various types of natural, regenerated or synthetic staple fibers cut to a length of about 0.5 to about 5 weeks.
しかし、 繊維をかかる長さにカツ卜しただけでは、 高電圧の電界内で もその帯電が十分なものとならず、 従って飛翔力が生まれない。 また、 繊維同士が絡まり合いやすく、 分離性 (さばき) が不良である。 そこ で、 帯電性、 分離性等を良好にして飛翔力の向上を図るために、 従来一 般に、 カツ卜された繊維には、 いわゆる電着処理が施されている。  However, simply cutting the fiber to such a length does not provide sufficient charge even in a high-voltage electric field, and therefore does not generate flying power. In addition, the fibers are easily entangled with each other, and the separability is poor. Here, so-called electrodeposition treatment is generally applied to cut fibers in order to improve the chargeability, the separability and the like and improve the flying power.
従来通常行われている電着処理には、 カツ 卜された短繊維にタン二 ン、 吐酒石等を処理して、 繊維表面に生成したタンニン化合物の保水性 を利用して表面の通電性を保つ方法と、 カツ卜された短繊維に、 界面活 性剤、 珪酸ソ一ダ、 コロイダルシリカ等を付着させ、 それらの結晶水を 利用して表面の通電性を保つ方法とがある。 前者の方法は主に欧州で行 われており、 一方、 後者の方法は我国で行われている。 In the conventional electrodeposition process, the cut short fibers are treated with tannin, tartar, etc., to retain the water of the tannin compound formed on the fiber surface. A method of maintaining surface electrical conductivity by using a surface active agent, soda silicate, colloidal silica, etc. to the cut short fibers, and using the water of crystallization to make the surface conductive. There is a way to keep. The former method is mainly used in Europe, while the latter method is used in Japan.
また、 一般に、 静電植毛の際において繊維表面の電気漏洩抵抗値が In general, the electric leakage resistance value of the fiber surface during electrostatic flocking
1 0 5 ないし 1 0 8 QZcmの範囲内にあるもの力 静電植毛用フロック として適し、 十分な飛翔力が得られるとされている。 Suitable as 0 5 to 1 0 8 QZcm those forces electrostatic flocking flock that are within the scope of, and is sufficient flying force.
けれども、 かかる電着処理を行なっても、 静電植毛時に上記の抵抗値 の条件を常に満足することが保証されるわけではないので、 従来は、 植毛をする前にフロック中の水分を 2 0〜2 5 %に正確に調整すること However, even if such electrodeposition treatment is performed, it is not guaranteed that the above-described resistance value condition is always satisfied at the time of electrostatic flocking. Adjust to exactly 25%
(アフターコンディショニング) により、 表面の電気漏洩抵抗値が上記 の範囲に収まるようにしてから、 植毛加工に入るという方法が普通採ら れていた。 (After-conditioning), it was common practice to set the surface electric leakage resistance within the above range and then start flocking.
しかし、 従来の電着処理剤はその機能が水分の影響をうけやすく、 こ れを被覆した繊維の表面の通電性が周囲の湿度変化により相当鋭敏に変 動するため、 上記の方法は、 微¾なアフターコンディショニングを必要 とし、 年間を通して安定した作業を進めにくいという不利がある。 特に 疎水性繊維、 例えばポリエステル繊維、 芳香族ポリアミド繊維等におい ては、 水分のコントロールが特に難かしく、 品質が安定しなかった。  However, the function of the conventional electrodeposition agent is easily affected by moisture, and the conductivity of the surface of the coated fiber fluctuates considerably sharply due to changes in ambient humidity. (4) It requires disadvantageous after-conditioning, and it is difficult to carry out stable work throughout the year. In particular, in the case of hydrophobic fibers, for example, polyester fibers, aromatic polyamide fibers, etc., it was particularly difficult to control moisture, and the quality was not stable.
また、 基材への植毛に利用されなかったフロックを回収し、 これを、 夾雑物の除去の後、 再び静電植毛に利用するところの連続式静電植毛を 行なう場合は、 最初の植毛の際、 フロックを仮に湿度 8 0 %程度の最適 条件に調湿したとしても、 静電植毛後、 未利用のフロックをサイクロン 等で回収した後においては、 該フロックは著しい乾燥状態にあり、 これ を次回の植毛に再利用するためには、 改めてフロックの水分調整を行う 必要があるという欠点があった。 In addition, if flocks that were not used for flocking to the base material are collected, and they are removed, and then used for continuous electrostatic flocking, which is used again for electrostatic flocking, the first flocking should be performed. At this time, even if the flock is conditioned to the optimal condition of a humidity of about 80%, after the flocking of the unused floc after the electrostatic flocking, the floc is in a remarkably dry state. To reuse for the next flocking, adjust the water content of the floc again There was a disadvantage that it was necessary.
その上、 連続式静電植毛の場合は、 フロックを何度か再利用して静電 植毛を繰り返すうちに、 使用するフ口ックは水分率が高低いろいろのも のが混じり合い、 不均一な組成となるため、 やがて不均質な静電植毛の 発生をひきおこす場合があるという問題もあった。  In addition, in the case of continuous electrostatic flocking, as the flocks are reused several times and the electrostatic flocking is repeated, the hook used has a high and low moisture content and is mixed, causing unevenness. As a result, there is a problem that a non-uniform electrostatic flocking may occur over time.
また、 最近では、 調湿装置を備えた静電植毛機も開発されている。 し かし、 原料フロックの水分率や周囲環境の湿度等は何らかの要因により 変動する場合があり、 その装置は、 かかる変動に対して満足に対処する ことができないので、 それの実際の運転においては、 フロックを常に最 適の範囲に調湿するのが必ずしも容易でないという欠点がある。 例え ば、 フロックが過乾燥の状態になると、 その飛翔力が大きく低下し、 一 方、 フロックが必要以上に湿潤になると、 フロック同士が絡まり合い、 ベとつきが見られ、 時にはだんご状の物が生じる場合があり、 分離性が 著しく低下する。  Recently, an electrostatic flocking machine equipped with a humidity control device has also been developed. However, the moisture content of the raw material flocks and the humidity of the surrounding environment may fluctuate for some reason, and the equipment cannot cope with such fluctuations satisfactorily. However, there is a disadvantage that it is not always easy to adjust the flock to the optimal range. For example, if the flock is over-dried, its flying power will be greatly reduced.On the other hand, if the flock becomes unnecessarily wet, the flock will become entangled, sticky, and sometimes a dumpling. May occur, and the separability decreases significantly.
以上の不都合、 不具合は、 いずれも、 絶対乾燥またはそれに近い状態 ではその機能が全く発揮されず、 一定範囲の加湿状態にて初めてその機 能が十分に発揮されるという従来の電着処理剤の性能に由来するもので あつ 7こ。  All of the above inconveniences and inconveniences are caused by the conventional electrodeposition treatment agent, which does not exhibit its function at all in the condition of absolute drying or in a state close to it, and fully demonstrates its function only in a certain range of humidified conditions. It comes from performance.
また、 従来の電着処理剤は、 かかる不都合、 不具合の素因または誘因 となるだけでなく、 タンニン等の場合には、 染色堅牢度が低く、 また、 珪酸ソ一ダ等の場合には、 植毛された繊維の風合いが硬いものとなる上 に、 接着剤の接着力を弱めかつ繊維の老化をも促進するという欠点があ つた。 さらに、 後者の場合は、 静電植毛過程において、 珪酸塩粉末等よ りなる所謂白粉の発生がみられるという問題もあった。 白粉は、 呼吸に よる吸収により人の健康を害することもあり、 高温高濃度アル力リ処 理、 例えば- 5 %水酸化ナトリウム水溶液で 6 0 °C、 3 0分等の苛酷な条 件下でのみ除去できるものである。 Conventional electrodeposition agents not only cause or cause such inconveniences and defects, but also have low color fastness in the case of tannins, and flocking in the case of sodium silicate and the like. In addition to the hardened texture of the fibers, they have the disadvantages of weakening the adhesive strength of the adhesive and promoting fiber aging. Further, in the latter case, there is a problem that a so-called white powder made of silicate powder or the like is generated during the electrostatic flocking process. White powder may be harmful to human health due to absorption by respiration. For example, it can be removed only under severe conditions such as -5% sodium hydroxide aqueous solution at 60 ° C for 30 minutes.
本発明者は、 鋭意研究の結果、 今、 フロック繊維の端面を含む全ての 表面をポリピロ一ル等の導電性ポリマ一層により実質的にないし完全に 被覆することにより、 好ましくは、 該導電性ポリマー層の平均厚さを 0 . 0 1ないし 0 . 1 /i mとすることにより、 フロックの帯電性および 分離性が周囲の水分の影響を実質的に受けることなく常に良好に保た れ、 従って静電植毛にて満足な飛翔力が得られ、 乾燥した環境で連続式 静電植毛を円滑にかつ安定に行なうことができるところの静電植毛用フ 口ックが得られることを見出した。 発明の開示  As a result of intensive studies, the present inventor has found that the entire surface including the end face of the floc fiber is now substantially or completely covered with a single layer of a conductive polymer such as polypyrrol, preferably the conductive polymer. By setting the average thickness of the layer to 0.01 to 0.1 / im, the charge and separability of the floc are always kept good without being substantially affected by the surrounding moisture, and therefore, the static state can be improved. It has been found that a satisfactory flying force can be obtained by electro-flocking, and a hook for electrostatic flocking that can perform continuous electrostatic flocking smoothly and stably in a dry environment can be obtained. Disclosure of the invention
本発明の一つの目的は、 乾燥した環境で常に安定して静電植毛を行な うことを可能とし、 よって静電植毛に繰り返し利用することができると ころの静電植毛用フロックを提供することにある。  One object of the present invention is to provide an electrostatic flocking floc that can stably perform electrostatic flocking in a dry environment and can be repeatedly used for electrostatic flocking. It is in.
そして、 本発明の目的は、 かように乾燥した環境での連続静電植毛を 可能とすることにより、 従来行なわれてきた静電植毛過程でのフロック の水分調整を一切不要にするところの静電植毛用フロックを提供するこ とでもある。  An object of the present invention is to make continuous electrostatic flocking in such a dry environment possible, thereby making it unnecessary to adjust the water content of flocs during the conventional electrostatic flocking process. It is also to provide flocks for electric flocking.
したがって、 本発明は、 かかる水分調整の不要化により、 静電植毛機 における調湿装置の設置、 あるいは、 前処理としての原料フロックの水 分調整工程を不必要なものにならしめるところの静電植毛用フロックを 提供するものである。  Accordingly, the present invention eliminates the need for such water content adjustment, and thereby eliminates the necessity of installing a humidity control device in the electrostatic flocking machine or making the water content adjustment process of the raw material floc as a pretreatment unnecessary. It is intended to provide flocking for flocking.
また、 本発明の他の目的は、 力かる静電植毛用フロックを確実にかつ 容易に製造することができる静電植毛用フロックの製造方法を提供する ことにある。 Another object of the present invention is to provide a method of manufacturing a flocking for electrostatic flocking, which can reliably and easily manufacture a strong flocking for electrostatic flocking. It is in.
さらに、 本発明のもう一つの目的は、 かかる導電性フロックを用いて 植毛された静電植毛品、 とりわけ該フロックがむらなく均一に、 かつ、 もつれ等なく安定に植毛され、 最終的に高い導電性を有する静電植毛品 を提供することにある。  Further, another object of the present invention is to provide an electrostatic flocking product which is planted using such a conductive floc, in particular, the floc is uniformly and stably flocculated without entanglement and finally has a high conductivity. An object of the present invention is to provide an electrostatic flocking product having a property.
本発明は、 短繊維の端面を含む全ての表面が、 導電性ポリマー層によ り実質的にないし完全に被覆されていることを特徴とする静電植毛用フ ロックに関する。 好ましくは、 フロック表面のうち導電性ポリマ一層に より被覆されていない部分の全表面に対する比率は、 3%以下である。 従って、 本発明によるフロックは、 導電性ポリマー層の被覆により、 好ましくは表面の電気漏洩抵抗値が 105 ないし 108 QZcniの範囲内 にあるように調整されている。 The present invention relates to an electrostatic flocking floc characterized in that all surfaces including short fiber end faces are substantially or completely covered with a conductive polymer layer. Preferably, the proportion of the portion of the flock surface not covered by one layer of conductive polymer to the total surface is not more than 3%. Accordingly, the floc according to the present invention is preferably tuned by the coating of the conductive polymer layer such that the surface electrical leakage resistance is in the range of 10 5 to 10 8 QZcni.
短繊維は天然、 半合成または合成繊維より成り、 力つ、 好ましくは、 繊維のアスペクト比は 1 : 30〜1 : 100の範囲内のものである。 な お、 短繊維は染色されているものでもよい。  The staple fibers comprise natural, semi-synthetic or synthetic fibers, and preferably have an aspect ratio of the fibers in the range of 1:30 to 1: 100. The short fibers may be dyed.
好ましい態様として、 導電性ポリマ一層はピロ一ル、 N—メチルピロ ール、 ァニリン、 チォフェンおよびチォフェン一 3—スルホン酸からな る群から選択された一種または二種以上のモノマ一を重合して形成され たポリマ一層またはコポリマー層であり、 特に好ましい導電性ポリマ一 層はピロールをモノマーとして重合して得られるボリマ一層である。  In a preferred embodiment, the conductive polymer layer is formed by polymerizing one or two or more monomers selected from the group consisting of pyrrole, N-methylpyrrol, aniline, thiophene and thiophene-13-sulfonic acid. A particularly preferred conductive polymer layer is a polymer layer obtained by polymerizing pyrrole as a monomer.
また導電性ポリマー層の厚さは、 平均として 0. Ο ΐ μπιないし 0. 1 μπιの範囲であることが好ましいかまたは必要とされる。 より好適な 厚さは、 短繊維が浸透性繊維であるときは、 平均としておよそ 0. 01 11なぃし0. 03)Ltmであり、 短繊維が非浸透性繊維であるときは、 平均としておよそ 0. 02 mないし 0. 05μπιである。 また、 本発明はモノマーの重合反応を、 短繊維 (または長繊維) を含 む処理液中において、 化学酸化重合剤を触媒として、 所望により添加さ れたド一パン卜および/または表面張力低下剤とともに進行させて、 生 成した導電性ポリマーを処理液中の繊維の表面に被覆し、 そして長繊維 の場合は、 その後被覆された長繊維を切断して短繊維とすることより成 る、 静電植毛用フロックの製造方法に関する。 The thickness of the conductive polymer layer is preferably or required to be in the range of 0.1 μπι to 0.1 μπι on average. A more preferred thickness is approximately 0.011 11 to 0.03) Ltm on average when the short fibers are permeable fibers, and on average when the short fibers are non-permeable fibers. It is about 0.02 m to 0.05 μπι. In addition, the present invention relates to a polymerization reaction of a monomer in a treatment solution containing short fibers (or long fibers), using a chemical oxidizing polymerizing agent as a catalyst, and optionally adding a dopant and / or a surface tension reduction. The coated conductive polymer is coated on the surface of the fibers in the treatment liquid, and in the case of long fibers, thereafter, the coated long fibers are cut into short fibers. The present invention relates to a method for manufacturing flocks for electrostatic flocking.
さらに、 本発明は、 上述のフロックを原料とし、 例えばアップ式静電 植毛法、 ダウン式静電植毛法、 アップダウン式静電植毛法もしくはサイ ド式静電植毛法に従って、 または流動槽型静電植毛機を用いて、 製造さ れる静電植毛品に関する。 図面の簡単な説明  Further, the present invention uses the above-mentioned floc as a raw material, for example, according to an up-type electrostatic flocking method, a down-type electrostatic flocking method, an up-down type electrostatic flocking method or a side type electrostatic flocking method, or a fluidized tank type static flocking method. The present invention relates to an electrostatic flocking product manufactured by using an electro flocking machine. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 珪酸ソ一ダを用いた電着処理がポリエステル繊維について施 された従来の静電植毛用フロックについて、 電子顕微鏡を用いて拡大さ れたフロック先端部を撮影した顕微鏡写真を示す。 尚、 写真の右下部分 における白線の長さは 5 0 /z mを表わす。  Fig. 1 shows a photomicrograph of a conventional flocking floc for electrostatic flocking in which the electrodeposition treatment using sodium silicate was applied to a polyester fiber, using an electron microscope to enlarge the tip of the floc. The length of the white line in the lower right part of the photograph is 50 / zm.
図 2は、 ポリエステル繊維 (繊度: 1 . 5デニール) の端面を含めす ベての表面がピ口一ルポリマ一層により完全に被覆されている、 本発明 による静電植毛用フロックについて、 電子顕微鏡を用いて拡大されたフ ロック先端部を撮影した顕微鏡写真を示す。 尚、 写真の右下部分におけ る白線の長さは 2 0 μ ηιを表わす。  Fig. 2 shows an electron microscopy of the flocking for electrostatic flocking according to the present invention, in which the entire surface including the end face of the polyester fiber (fineness: 1.5 denier) is completely covered with a single layer of polymer. A micrograph of the tip of the block magnified using this is shown. The length of the white line in the lower right part of the photograph represents 20 μηι.
図 3は、 図 2のポリエステル繊維の原着糸 (その表面にピロールポリ マー層が形成されていない。 ) について、 電子顕微鏡を用いて拡大され た先端部を撮影した顕微鏡写真を示す。 尚、 写真の右下部分における白 線の長さは 2 0 を表わす。 発明を実施するための最良の形態 FIG. 3 shows a micrograph of an enlarged tip of the original yarn of the polyester fiber of FIG. 2 (with no pyrrole polymer layer formed on its surface) using an electron microscope. The length of the white line in the lower right part of the photograph is 20. BEST MODE FOR CARRYING OUT THE INVENTION
本発明によるフロックは、 繊維の長さ方向の周面および先後両端面が 導電性ポリマー層により実質的にないし完全に被覆されており、 従って この被覆により、 表面の電気漏洩抵抗値が 1 0 5 ないし 1 0 8 Ω/cmの 範囲内にあるように調整されうるようになっている。 Floc according to the invention, do not substantially by circumferential surface and the front-rear both end faces in the longitudinal direction of the fibers conductive polymer layer is completely covered, thus this coating, the electric leakage resistance value of the surface 1 0 5 to so that the can be adjusted to be within the scope of 1 0 8 Ω / cm.
好ましくは、 フロック表面のうち導電性ポリマー層により被覆されて いない部分の全表面に対する比率は、 3 %以下である。  Preferably, the ratio of the portion of the floc surface not covered by the conductive polymer layer to the entire surface is not more than 3%.
繊維の種類としては、 天然、 再生 (半合成) または合成繊維のいずれ でもよいが、 好都合な繊維としては、 芳香族ポリアミド繊維 (商品名 ケブラ一、 ノーメックス、 コ一ネックス等) 、 その他のポリアミド繊維 The type of fiber may be any of natural, regenerated (semi-synthetic) or synthetic fiber. Preferred fibers include aromatic polyamide fiber (trade names Kevlar, Nomex, Conex, etc.) and other polyamide fibers.
( 6—ナイロン、 6, 6—ナイロン、 4 , 6—ナイロン等) 、 レギユラ —ポリエステル繊維、 塩基性染科可染型ポリエステル繊維、 アクリル繊 維、 ビニロン繊維、 再生セルロース繊維 (レーヨン) 、 羊毛繊維、 木綿 繊維、 麻繊維、 並びにポリエチレン、 ポリプロピレンおよびその他の複 合紡糸繊維などが挙げられる。 また繊維は、 染色されていてもよく、 紡 糸の段階で顔料等を混入して着色した所謂原着繊維を用いることができ る。 (6-nylon, 6,6-nylon, 4,6-nylon, etc.), Regula-polyester fiber, basic dyeable dyeable polyester fiber, acrylic fiber, vinylon fiber, regenerated cellulose fiber (rayon), wool fiber , Cotton fibers, hemp fibers, and polyethylene, polypropylene and other multi-spun fibers. The fiber may be dyed, and a so-called original fiber colored by mixing a pigment or the like at the spinning stage can be used.
そして、 静電植毛フロックの原料繊維としては、 デニール数;約 1〜 6 5 d、 繊維長; 0 . 3〜6 . 0瞧、 そしてァスぺク卜比; 1 : 3 0〜 1 : 1 0 0の特性を有するところの上記の繊維が好ましい。 アスペクト 比が 1 : 1 0 0を超える繊維であると、 均一な静電植毛を行なうことが できない場合がある。 繊維の径が大きいほど、 アスペクト比がより大き い値の繊維をも使用することができるが、 繊維の径が小さい場合には、 卜比のより小さい値の繊維を選択して使用する必要がある。 ― 般に、 繊維長がデニール数の 0 . 3倍の長さ (瞧) である繊維が、 静電 植毛の原料繊維として最も適当であるといわれている。 The raw fibers of the electrostatic flocking floc are as follows: denier number: about 1 to 65 d, fiber length: 0.3 to 6.0 mm, and aspect ratio: 1: 30 to 1: 1 The above-mentioned fibers having a property of 100 are preferred. If the fiber has an aspect ratio exceeding 1: 100, uniform electrostatic flocking may not be achieved. The larger the fiber diameter, the higher the aspect ratio fiber can be used.However, if the fiber diameter is small, it is necessary to select and use a fiber with a smaller value. is there. ― In general, it is said that a fiber having a fiber length 0.3 times the denier number (瞧) is most suitable as a raw material fiber for electrostatic flocking.
また、 導電性ポリマー層としては、 例えば、 ピロ一ル、 N—メチルビ ロール、 ァニリン、 チォフェン、 チォフェン一 3—スルホン酸またはこ れらの誘導体をモノマーとして重合して作られたポリマーまたはコポリ マ一層が挙げられる力 上記導電性を賦与するポリマ一層ならば、 いか なるものでもよい。  The conductive polymer layer may be, for example, a polymer or a copolymer layer formed by polymerizing pyrrole, N-methylvirol, aniline, thiophene, thiophene-13-sulfonic acid, or a derivative thereof as a monomer. Any polymer may be used as long as it is a polymer layer that imparts the above-described conductivity.
この導電性ポリマ一層を形成するのに使用されるモノマーとしては、 例えば、 ァニリン、 および o—クロルァニリン、 m—クロルァニリン、 P—クロルァニリン、 o—メ卜キシァニリン、 m—メ卜キシァニリン、 P—メ 卜キシァニリン、 o—エトキシァ二リン、 m—エトキシァニリ ン、 p—エトキシァ二リン、 o—メチルァニリン、 m—メチルァニリ ン、 p—メチルァニリン等のァニリン誘導体;チォフェン、 および 3— メチルチオフェン、 3—メトキシチォフェン等のチォフェン誘導体; ピ ロール、 および 3 , 5—ジメチルビロール等の 3, 5—置換ピロール、 4一メチルピロ一ルー 3—力ルボン酸メチル等の 3 , 4—置換ピロ一 ル、 N—メチルビロール等の N—置換ピロ一ル、 3—メチルピロ一ル、 3—才クチルビロール等の 3—置換ピロールなどの各種の置換ピロ一ル が挙げられる。  Monomers used to form this conductive polymer layer include, for example, aniline, o-chloroaniline, m-chloroaniline, P-chloroaniline, o-methoxyaniline, m-methoxyaniline, P-methaniline. Aniline derivatives such as xianiline, o-ethoxyaniline, m-ethoxyaniline, p-ethoxyaniline, o-methylaniline, m-methylaniline, p-methylaniline; thiophene, and 3-methylthiophene, 3-methoxythiophene, etc. Thiophene derivatives of pyrrole; 3,5-substituted pyrroles such as 3,5-dimethylpyrrole; 3,4-substituted pyrroles such as 4-methylpyrroyl-3-methylpyruvate; N-methylbilol Of 3-substituted pyrroles such as N-substituted pyrrol, 3-methylpyrrol, Various substituted pyrroles can be mentioned.
好ましい導電性ポリマー層は、 ピロ一ル、 N—メチルピロ一ル、 ァニ リン、 チォフェン、 チォフェン一 3—スルホン酸をモノマ一として重合 して作られたポリマーまたはコポリマー層である。 しかしながら、 繊維 との接着強度、 導電性の程度、 加工性の良否等の点から、 特に好ましい 導電性ポリマ一層は、 ピロールをモノマーとして重合して得られるポリ マー層である。 また、 導電性ポリマー層の厚さは、 上記の導電性並びに適度の分離性 等を発揮する限り、 基本的には任意である。 し力 しながら、 導電性ポリ マ一層が平均として 0. 01 urn未満の厚さであると、 繊維自体の表面 粗さ等が関係して、 導電性ポリマ一層を均一の厚さに形成することが困 難となり、 この結果、 満足な飛翔力を得るのに必要な導電性をフロック に付与できない場合が多くなる。 一方、 導電性ポリマー層が平均として 0. 1 mを超える厚さであると、 所要の導電性は確保されていても、 導電性ポリマ一層の摩擦堅牢度が低下したり、 また導電性ポリマ一層が 厚くなることで、 所要の抵抗値よりも小さくなって導電性が大きくなる ことから、 静電植毛の際、 フロック同士の接近または接触によりスパ一 ク火花が発生し、 このため、 植毛製品において表面の植毛密度に濃淡の むらが明瞭に表われる場合がある。 A preferred conductive polymer layer is a polymer or copolymer layer formed by polymerizing pyrrole, N-methylpyrrole, aniline, thiophene, thiophene-13-sulfonic acid as a monomer. However, in view of the adhesive strength to the fiber, the degree of conductivity, the quality of workability, and the like, a particularly preferred conductive polymer layer is a polymer layer obtained by polymerizing pyrrole as a monomer. The thickness of the conductive polymer layer is basically arbitrary as long as it exhibits the above-mentioned conductivity and appropriate separation properties. If the average thickness of the conductive polymer layer is less than 0.01 urn, the conductive polymer layer must be formed to a uniform thickness due to the surface roughness of the fiber itself. As a result, in many cases, the conductivity required for obtaining satisfactory flying power cannot be imparted to the floc. On the other hand, if the average thickness of the conductive polymer layer exceeds 0.1 m, even if the required conductivity is secured, the frictional robustness of the conductive polymer layer is reduced, or the conductive polymer layer is As the thickness increases, the resistance becomes lower than the required resistance value and the conductivity increases.Therefore, at the time of electrostatic flocking, sparks are generated due to the approach or contact between the flocks, and as a result, in flocking products, Shading unevenness may appear clearly on the flocking density on the surface.
したがって、 導電性ポリマ一層の厚さは平均として 0. Ο ΐ μηιない し 0. 1 /Ltmの範囲内であること力 より好ましいかまたは必要とされ る。 かように極薄膜であるため、 導電性ポリマ一層の存在によって、 繊 維本来の風合い、 柔軟さ等が大して損ねることもない。 例えば自動車窓 ガラスのゥヱザ一ス卜リップに用いた場合、 繊維の硬化が極めて少ない ために、 繊維本来の弾性が保持され、 摺動抵抗値の安定したものが得ら れる。  Therefore, it is more preferable or required that the thickness of the conductive polymer layer be in the range of 0.1Ομηι or 0.1 / Ltm on average. Since it is an ultra-thin film, the original texture and flexibility of the fiber are not greatly impaired by the presence of the conductive polymer layer. For example, when used in a user strip of an automobile window glass, since the fiber hardens very little, the inherent elasticity of the fiber is maintained and a stable sliding resistance value can be obtained.
そして、 上記範囲内の厚さを有する導電性ポリマ一層を繊維の表面に 形成するためには、 当該ポリマーの生成に用いるモノマーは、 繊維の種 類により多少異なる力 一般に、 対繊維重量比で約 0. 3ないし約 1. 0%の割合で添加する必要がある。 例えば、 モノマーの一種であるピロ —ルを 3デニール、 長さ 0. 8mmのポリエステル繊維 (比重 1 , 34) に対して重量比 0. 75%で添加した場合には、 平均厚さ約 0. 044 (計算値) mのピロ一ルポリマー層が繊維の周面および両端面に形成 される。 In order to form a conductive polymer layer having a thickness within the above range on the surface of the fiber, the monomer used for producing the polymer has a somewhat different force depending on the type of the fiber. It must be added at a rate of 0.3 to about 1.0%. For example, when pyrrol, a kind of monomer, is added at a weight ratio of 0.75% to polyester fiber (specific gravity 1, 34) of 3 denier and 0.8 mm in length, the average thickness is about 0.7%. 044 (Calculated value) A m-layer of a pyropolymer is formed on the peripheral surface and both end surfaces of the fiber.
もっとも、 等量のモノマーを使用しても、 繊維表面に形成される導電 性ポリマー層の厚さは、 繊維の表面形状 (粗さ) 、 多孔性、 繊維組成等 によって異なる。 例えば、 ポリエステル繊維、 ァラミド繊維等の非浸透 性繊維の場合には、 添加モノマー量から算出した平均厚さにほぼ等しい 平均厚さの導電性ポリマー層が形成されるが、 6—ナイロン繊維、 6 , However, even when an equal amount of monomer is used, the thickness of the conductive polymer layer formed on the fiber surface varies depending on the fiber surface shape (roughness), porosity, fiber composition, and the like. For example, in the case of non-permeable fibers such as polyester fiber and aramide fiber, a conductive polymer layer having an average thickness substantially equal to the average thickness calculated from the amount of the added monomer is formed. ,
6—ナイロン繊維、 ビニロン繊維等の浸透性繊維の場合には、 添加モノ マ一量から算出した平均厚さよりもある程度少ない平均厚さの導電性ポ リマー層が形成される。 また、 導電性ポリマー層の厚さは、 下記の処理 液中の繊維の分散条件等によっても変動する。 In the case of permeable fibers such as 6-nylon fibers and vinylon fibers, a conductive polymer layer having an average thickness somewhat smaller than the average thickness calculated from the amount of the added monomer is formed. In addition, the thickness of the conductive polymer layer also varies depending on the conditions for dispersing the fibers in the treatment solution described below.
好適な導電性ポリマ一層の厚さは、 ナイロン繊維、 ビニロン繊維、 セ ルロース繊維等の浸透性繊維の場合は一般に 0 . 0 1ないし 0 . 0 3 程度であり、 またポリエステル繊維、 ァラミド繊維、 アクリル繊維 等の非浸透性繊維の場合は一般に 0 . 0 2なぃし0 . 0 5 m程度であ る  The preferred thickness of the conductive polymer layer is generally about 0.01 to 0.03 for permeable fibers such as nylon fiber, vinylon fiber, and cellulose fiber, and polyester fiber, aramide fiber, and acrylic. In the case of non-permeable fibers such as fibers, it is generally 0.02 to 0.05 m
以上のような導電性ポリマー層は、 一般に、 繊維を含む処理液中にお いて、 酸化重合剤を触媒にしてモノマーの重合反応を行なうと、 生成し た導電性ポリマーが処理液中の繊維に結合しその表面を被覆することに より、 形成される。  In general, when a polymerization reaction of a monomer is carried out in a treatment solution containing fibers using an oxidizing polymerization agent as a catalyst, the conductive polymer layer formed on the fibers in the treatment solution is formed on the conductive polymer layer as described above. It is formed by bonding and covering its surface.
従って、 明確には、 本発明は、 モノマーの重合反応を、 短繊維 (染色 されていてもよい。 ) を含む処理液中において、 化学酸化重合剤を触媒 として、 所望により添加されたドーパン卜および Zまたは表面張力低 下剤とともに進行させて、 生成した導電性ポリマーを処理液中の繊維 の表面に被覆することより成る、 静電植毛用フロックの製造方法に関す る。 Therefore, clearly, the present invention relates to a method in which a polymerization reaction of a monomer is carried out in a treatment solution containing short fibers (which may be dyed) using a chemical oxidizing polymerization agent as a catalyst, The present invention relates to a method for producing a floc for electrostatic flocking, which comprises coating a formed conductive polymer on the surface of a fiber in a treatment liquid by proceeding with Z or a surface tension reducing agent. You.
処理液へのモノマーおよび化学酸化重合剤の添加は、 両者を一緒に添 加するという手順で、 あるいは、 先にモノマーを添加しその後化学酸ィ匕 重合剤を添加するという手順で行なってもよい。 また触媒の化学酸化重 合剤は、 一括添加してもよく、 あるいは数回に分けて添加しても、 少量 ずつ連続して添加してもよい。  The addition of the monomer and the chemical oxidizing polymer to the treatment liquid may be performed by a procedure of adding both together, or by a procedure of adding the monomer first and then adding the chemical oxidizing polymer. . Further, the chemical oxidation polymer of the catalyst may be added all at once, may be added in several portions, or may be added continuously in small amounts.
モノマーの重合反応はできるだけゆつく りと進行させるのが好まし レ、。 その温度条件は低温であることが好ましく、 2で〜 3 5で、 より好 ましくは 2で〜 2 5 °Cである。  Preferably, the polymerization reaction of the monomer proceeds as slowly as possible. The temperature condition is preferably a low temperature, 2 to 35, more preferably 2 to 25 ° C.
重合速度が著しく速いと、 水相中での反応が急速に (一瞬のうちに) 進行し、 重合体が繊維の表面に付着し難くなり、 水槽中に遊離した重合 体粒子が形成される。  If the polymerization rate is extremely high, the reaction in the aqueous phase proceeds rapidly (in an instant), making it difficult for the polymer to adhere to the surface of the fiber and forming free polymer particles in the water tank.
重合反応は、 処理液を攪拌または循環しながら行なわれる。 モノマー の重合が進行し、 そのうちに溶解度が低下してくると、 生成したポリマ —が特に繊維表面に選択的に析出または付着する。 このため、 本反応は 極めて定量的である。  The polymerization reaction is performed while stirring or circulating the treatment liquid. As the polymerization of the monomers progresses and the solubility decreases over time, the resulting polymer will selectively precipitate or adhere, especially on the fiber surface. For this reason, this reaction is extremely quantitative.
また、 フロックにっき下記に述べるいずれの静電植毛方式においても 満足な飛翔力が生まれるようにするためには、 短繊維の端面を含む全て の表面が導電性ポリマー層により、 実質的に被覆されている必要があ り、 繊維の実質的に全ての表面を導電性ポリマーで均一な厚さに被覆す ることが望ましい。  In order to generate satisfactory flying power in any of the flocked electrostatic flocking methods described below, the entire surface including the end face of the short fiber is substantially covered with a conductive polymer layer. It is desirable to coat substantially all surfaces of the fiber with a conductive polymer to a uniform thickness.
この観点から、 本発明のフロックは、 繊維を含むスラリー形態の処理 液中で、 これを攪拌または循環しながら、 電着処理用のモノマーを重合 反応させて、 導電性ポリマー層を繊維表面に形成するのが最も好まし レ、。 この場合、 スラリー形態の処理液中、 繊維をその重量 1に対して処 理液の重量 8ないし 1 5の割合で存在せしめるのが特に好ましい。 攪拌 速度は特に限定されないが、 フロックの沈降を防止する必要があること から、 例えばポリエステル繊維の使用の場合における攪拌速度はポリァ ミド繊維の使用の場合よりもより高速にする必要がある。 From this point of view, the floc of the present invention forms a conductive polymer layer on the fiber surface by polymerizing a monomer for electrodeposition treatment while stirring or circulating it in a slurry-type processing solution containing fibers. Most preferred to do. In this case, the fibers are processed in a slurry-type processing solution for a weight of 1. It is particularly preferred that the physical solution is present in a weight ratio of 8 to 15. The stirring speed is not particularly limited, but since it is necessary to prevent floc sedimentation, for example, the stirring speed in the case of using polyester fibers needs to be higher than in the case of using polyamide fibers.
本発明のフロックは、 長い繊維を使用し、 これのいわゆる電着処理を 行ない、 その後、 処理された長繊維を所定寸法に切断して短繊維とする こともできる。  The floc of the present invention can use a long fiber, perform a so-called electrodeposition treatment of the long fiber, and then cut the treated long fiber into a predetermined size to be a short fiber.
例えば円形状のトウを切開して直線状とした後、 所定寸法に切断して フロックとした場合、 カツ卜面即ちフロックの端面には導電性ポリマー 層が形成されないことになるが、 端面の面積は、 フロックの全表面積に 対して 0 . 3〜1 . 2 %程度であり、 フロックの飛翔性には実質的に影 響を与えるものではない。 ポリアミド繊維、 ビニロン繊維等は、 モノマ —の繊維内部への拡散があるために、 卜ゥの状態のものを電着処理しそ の後これをカツ卜しても、 得られたフロックは端面の外周部若しくは端 面の全面が導電化される場合がある。 この場合、 フロック全表面に対す る導電化されていない面積の比率は更に小さくなる。  For example, if a circular tow is cut to make a straight line and then cut to a predetermined size to form a floc, no conductive polymer layer will be formed on the cut surface, that is, the end surface of the floc. Is about 0.3 to 1.2% of the total surface area of the flock, and does not substantially affect the flightability of the flock. Polyamide fiber, vinylon fiber, etc., have monomer diffused into the fiber. Therefore, even if the towel is subjected to electrodeposition treatment and then cut, the obtained floc is In some cases, the entire surface of the part or the end face may be made conductive. In this case, the ratio of the non-conductive area to the entire surface of the floc is further reduced.
卜ゥの状態で電着処理を行なうとき、 繊維の集束状態は最密充填の状 態となるため、 繊維の表面を導電性ポリマ一層で均一に被覆することは 難しく、 また、 これをカツ卜してフロックとする場合にはロスが発生す る。 従って、 電着処理によるコスト等を考慮するに、 長い繊維をカツ卜 し、 続いてこれの電着処理をスラリー形態の処理液中で行なうこと力撮 も好ましい。  When the electrodeposition treatment is performed in the state of the torsion, the bundled state of the fibers is a close-packed state, so that it is difficult to uniformly coat the surface of the fiber with a single layer of the conductive polymer. If a floc is used, a loss will occur. Therefore, in consideration of the cost of the electrodeposition process, it is also preferable to cut long fibers and then perform the electrodeposition process in a slurry-type processing solution.
従って、 本発明はまた、 モノマーの重合反応を、 長繊維 (染色されて いてもよい。 ) を含む処理液中において、 化学酸化重合剤を触媒とし て、 所望により添加されたドーパン卜および/または表面張力低下剤と ともに進行させて、 生成した導電性ポリマーを処理液中の繊維の表面に 被覆し、 そしてその後被覆された長繊維を切断して短繊維とすることよ り成る、 静電植毛用フロックの製造方法に関する。 Therefore, the present invention also relates to a method for polymerizing a monomer, which is carried out in a treatment solution containing long fibers (which may be dyed) by using a chemical oxidizing polymerization agent as a catalyst and adding a dopant and / or With surface tension reducing agent A method for producing flocks for electrostatic flocking, which comprises proceeding together to coat the generated conductive polymer on the surface of the fibers in the treatment liquid, and then cutting the coated long fibers into short fibers. About.
短繊維を原料とする製法の場合も、 長繊維を原料とする製法の場合 も、 好ましいモノマ一としては、 ピロ一ル、 N—メチルピロ一ル、 ァニ リン、 チォフェンおよびチォフェン一 3—スルホン酸から選ばれたモノ マーが、 単独でまたは二種以上の組合せで、 適用される。 ピロールが特 に好ましい。  In both the production method using short fibers as a raw material and the production method using long fibers as a raw material, preferred monomers include pyrrole, N-methylpyrrol, aniline, thiophene and thiophene-3-sulfonic acid. Monomers selected from are applied singly or in combination of two or more. Pyrrole is particularly preferred.
触媒の化学酸化重合剤としては、 上記モノマーの重合を促進する物質 一般が使用することができ、 例えば、 過硫酸、 過硫酸アンモニゥム、 過 硫酸力リゥム、 過硫酸ナ卜リゥム等の過硫酸塩類;あるいは、 塩化第二 鉄、 過塩素酸第二鉄、 硫酸第二鉄、 硝酸第二鉄、 過沃素酸第二鉄、 クェ ン酸第二鉄、 P—トルエンスルホン酸第二鉄等の第二鉄塩;あるいは、 過マンガン酸、 過マンガン酸力リゥム等の過マンガン酸塩;三酸化クロ ム等のクロム酸類;あるいは塩素、 臭素、 沃素等のハロゲン;過酸化水 素、 過酸化ベンゾィル等の過酸化物;塩化銅等の金属塩化物などが挙げ られる。 特に水溶性第二鉄塩が好ましい。  As the chemical oxidative polymerization agent for the catalyst, any substance which promotes the polymerization of the above monomers can be used in general, and examples thereof include persulfates such as persulfuric acid, ammonium persulfate, persulfuric acid rim, and sodium persulfate; Alternatively, ferric chloride, ferric perchlorate, ferric sulfate, ferric nitrate, ferric periodate, ferric citrate, ferric P-toluenesulfonate, etc. Iron salts; or permanganates such as permanganic acid and permanganate potassium chromium; Chromic acids such as chromium trioxide; or halogens such as chlorine, bromine and iodine; hydrogen peroxide and benzoyl peroxide Peroxides; metal chlorides such as copper chloride; Particularly, a water-soluble ferric salt is preferable.
化学酸化重合剤は、 上述した各化合物単独で、 またはそれら化合物の 適当な組合せで、 通常、 モノマー 1モル当り約 1ないし約 3モルの割合 で使用される。  The chemical oxidative polymerization agent is used alone or in an appropriate combination of the above-mentioned compounds, usually in a ratio of about 1 to about 3 mol per mol of monomer.
また、 上記モノマーの重合には、 必要ならば、 繊維の導電性を高める ために、 ドーパン卜を併用することができる。 このドーパントは、 好適 には P H 1〜5、 より好ましくは P H 1〜3の条件下で使用される。 適するドーパン卜としては、 例えば、 P—トルエンスルホン酸、 ベン ゼンスルホン酸、 モノクロ口ベンゼンスルホン酸、 ジクロロベンゼンス ルホン酸、 卜リクロロベンゼンスルホン酸、 ナフタレンスルホン酸、 ィ 夕レンジスルホン酸、 ナフタレン卜リスルホン酸、 スルホサリチル酸お よびその他の芳香族スルホン酸;あるいは過塩素酸、 塩酸、 硫酸、 硝 酸、 トリフルォロスルホン酸などが挙げられる。 特に芳香族スルホン酸 またはそのアル力リ金属塩が好ましい。 Further, in the polymerization of the above monomer, if necessary, a dopant can be used in combination to increase the conductivity of the fiber. The dopant is suitably used under conditions of PH 1-5, more preferably PH 1-3. Suitable dopants include, for example, P-toluene sulfonic acid, benzene sulfonic acid, benzenesulfonic acid of monochrome mouth, dichlorobenzenes Sulfonic acid, trichlorobenzene sulfonic acid, naphthalene sulfonic acid, diphenyl sulfonic acid, naphthalene trisulfonic acid, sulfosalicylic acid and other aromatic sulfonic acids; or perchloric acid, hydrochloric acid, sulfuric acid, nitric acid, trifluoroacetic acid Sulfonic acid and the like. In particular, aromatic sulfonic acid or its metal salt is preferred.
また、 処理液は、 繊維表面への導電性ポリマー皮膜の形成を均一なも のとするために、 さらに表面張力低下剤を添加することができる。  Further, the treatment liquid may further include a surface tension reducing agent in order to uniformly form the conductive polymer film on the fiber surface.
表面張力低下剤としては、 界面活性剤のほか、 有機溶媒、 並びにシリ コーン系、 アセチレングリコ一ル系またはフッ素系等の消泡剤などが挙 げられる。 界面活性剤は、 繊維表面のぬれ性を改良するものであり、 ま た、 アルコール類も、 水との混和により繊維表面のぬれ性を改良するた めに付加的に混合されるものである。  Examples of surface tension reducing agents include surfactants, organic solvents, and defoaming agents such as silicones, acetylene glycols, and fluorines. Surfactants improve the wettability of the fiber surface, and alcohols are additionally mixed with water to improve the wettability of the fiber surface by mixing with water.
上記の界面活性剤としては、 例えば、 アルキル硫酸ナトリウム、 アル キルベンゼンスルホン酸ナ卜リゥム、 アルキルスルホコハク酸ナ卜リウ ム、 ポリオキシアルキレンスルホン酸ナトリウム、 アルキルナフ夕レン スルホン酸ナ卜リゥムなどのァニオン型界面活性剤;あるいは、 ポリエ チレングリコール ポリプロピレングリコール ブロックコポリマ一、 ポリエチレングリコールアルキルエーテル、 ポリエチレングリコールァ ルキルフエニルエーテルなどのノニオン型界面活性剤が挙げられる。  Examples of the above surfactant include anionic type such as sodium alkyl sulfate, sodium alkyl benzene sulfonate, sodium alkyl sulfosuccinate, sodium polyoxyalkylene sulfonate, sodium alkyl naphthylene sulfonate and the like. Surfactants; and nonionic surfactants such as polyethylene glycol, polypropylene glycol, block copolymer, polyethylene glycol alkyl ether, and polyethylene glycol alkyl phenyl ether.
また、 上言己の有機溶媒としては、 例えば、 メタノール、 エタノール、 イソプロピルアルコール、 n—プロピルアルコール、 n—ブ夕ノール、 イソブ夕ノール、 イソアミルアルコール等のアルコール類、 ジメチルホ ルムアミド、 テ卜ラヒドロフラン、 ジォキサン、 ァセ卜二卜リル、 シク 口へキサノン、 メチルェチルケトン、 アセトン等が挙げられる。 表面張力低下剤の添加量は、 一般に極少量ないし少量で足り、 例え ば、 界面活性剤の場合は処理液の全重量に対して約 0 . 0 1〜約 2 %の 範囲内の量で十分であり、 またアルコール類の場合は、 処理液の全重量 に対して約 0 . 1〜約 5 . 0 %の範囲で十分である。 Examples of the above organic solvents include alcohols such as methanol, ethanol, isopropyl alcohol, n-propyl alcohol, n-butanol, isobutanol, and isoamyl alcohol, dimethylformamide, tetrahydrofuran, and dioxane. Acetonyltril, cyclohexanone, methylethylketone, acetone and the like. The addition amount of the surface tension reducing agent is generally very small or small.For example, in the case of a surfactant, an amount in the range of about 0.01 to about 2% based on the total weight of the processing solution is sufficient. In the case of alcohols, the range of about 0.1 to about 5.0% is sufficient for the total weight of the processing solution.
また、 上記モノマーの重合は、 好都合には、 P H 1〜4の状態で進行 し、 その範囲で所望の導電性ポリマーが効率よく得られる。  In addition, the polymerization of the above-mentioned monomer advantageously proceeds in a state of PH 1 to 4, and a desired conductive polymer can be efficiently obtained within that range.
そして、 重合反応の終了後、 繊維は水洗いされるが、 その際、 必要に よりフロック同志の絡み合いを防止し、 静電植毛機中のス卜レージタン クよりの供給路におけるスクリュ一等による搬送性を向上させために、 ステアリン酸アミド等の、 柔軟剤または平滑剤等を少量添加使用しても よい。  After the completion of the polymerization reaction, the fibers are washed with water.At that time, the entanglement of the flocks is prevented as necessary, and the fibers are transported by a screw or the like in the supply path from the storage tank in the electrostatic flocking machine. A softening agent or a leveling agent such as stearic acid amide may be added in a small amount in order to improve the quality.
また、 原料繊維としてポリエステル等の原繊維を使用する場合には、 導電性ポリマー層の形成の前に、 繊維内部より重合反応の処理液中に滲 出するところの界面活性剤や油状物を予め洗浄、 除去しておくことが好 ましい。  In addition, when using raw fibers such as polyester as raw material fibers, before forming the conductive polymer layer, a surfactant or an oily substance that oozes out from the inside of the fibers into the treatment solution for the polymerization reaction is used in advance. It is preferable to wash and remove them.
さらに、 本発明の電着処理 (導電性ポリマー層の形成) は、 染色の後 に行なってもよく、 また染色の前に行なってもよい。 但し、 ポリエステ ル繊維のアルカリ染色は、 脱ドープをひき起こし、 導電性を低下せしめ るので、 アルカリ染色を行なう場合には、 その染色を上記の電着処理の 前に行なう必要があり、 染色後念のため酸洗することが好ましい。 ま た、 電着処理後の染色は、 酸性下で行なう必要がある。  Further, the electrodeposition treatment (formation of the conductive polymer layer) of the present invention may be performed after dyeing or may be performed before dyeing. However, alkaline dyeing of polyester fibers causes de-doping and lowers conductivity, so when alkaline dyeing is performed, it is necessary to perform the dyeing before the above electrodeposition treatment. It is preferable to perform acid washing just in case. Staining after electrodeposition treatment must be performed under acidic conditions.
原着繊維を用いること、 あるいは繊維を染色することによって、 染料 による色相と導電性ポリマーの色相とが相俟って、 バラエティ一に富む 色調のフロックが得られる。  By using the original fibers or by dyeing the fibers, the color of the dye and the color of the conductive polymer are combined, so that a variety of colors of flocs can be obtained.
用いられる染料としては、 繊維によっても異なるが、 酸性染料、 クロ ム錯体等の金属錯塩染料、 分散染料、 カチオン染料、 反応性染料等が挙 け'られる。 Dyes used vary depending on the fiber, but acid dyes and black And metal complex salt dyes such as dye complexes, disperse dyes, cationic dyes, and reactive dyes.
特に、 ポリエステル繊維では、 分散染料による染色は、 還元洗浄を必 要とする力 この還元洗浄が導電性ポリマーの脱ドープを促進すること から、 染色処理後に導電化する必要がある。 他のポリアミド繊維、 ァク リル繊維等については、 還元洗浄は必要としない。  In particular, for polyester fibers, dyeing with a disperse dye is a force that requires reduction cleaning. Since reduction cleaning promotes de-doping of the conductive polymer, it is necessary to make the fibers conductive after dyeing. No reduction cleaning is required for other polyamide fibers and acrylic fibers.
そして、 上記の電着処理の後、 繊維は乾燥されるが、 フロックの場合 の乾燥には、 フロック同士の絡み合いを最小限に抑えるために、 スラリ —状態ないしはこれを遠心分離で脱水した状態のフロックを流動槽内で 熱空気流との接触により乾燥させるところの流動槽乾燥法を用いるのが 最も好ましい。 この乾燥法による場合において、 より好都合で運転する ためには、 温度約 1 2 0〜約 1 8 0 °C、 槽滞留時間 0 . 1〜5秒という 条件を採用するとよい。 この条件で乾燥すると、 1〜5 %程度の水分量 を有する本発明のフロックを容易に得ることができる。 これに対して、 遠心分離による脱水を経て袋詰めされたフロックを回転ドラムの中に入 れ、 熱風循環により加熱するという乾燥法の場合には、 長い乾燥時間を 必要とするだけでなく、 フロックのさばき (分離性) が悪くなるという 欠点があるので、 好ましくない。  After the above electrodeposition treatment, the fibers are dried, but in the case of flocks, the fibers are dried in a slurry state or a state where they are dehydrated by centrifugation in order to minimize the entanglement between flocks. Most preferably, a fluidized-bed drying method is used, in which the flocs are dried by contact with a stream of hot air in a fluidized-bed. In the case of this drying method, in order to operate more conveniently, the conditions of a temperature of about 120 to about 180 ° C and a tank residence time of 0.1 to 5 seconds may be adopted. When dried under these conditions, the floc of the present invention having a water content of about 1 to 5% can be easily obtained. On the other hand, in the case of a drying method in which flocks packed in bags through dehydration by centrifugation are put into a rotating drum and heated by circulating hot air, not only a long drying time is required, but also flocks are required. It is not preferable because it has a drawback that the processing (separability) is deteriorated.
本発明のフロックは、 以上述べた諸過程を経て製造される。 その水分 率は、 通常、 約 1ないし 5 %と公定水分率程度であり、 従来フロックの 水分率 2 0〜2 5 % (アフターコンディショニングされた植毛時の値) に比して著しく低いものとなっており、 よって軽量化され、 運搬、 取扱 いにも好都合である。 導電性ポリマ一層は水分の影響を実質的に受けな いため、 周囲の外気が高湿度の範囲にあっても、 約 1ないし 5 %という 水分率は殆ど変化せずに維持され、 本発明のフロックは常にほぼ絶対乾 燥の状態に保たれる。 従って、 フロックの染色堅牢度も改善され、 さら に、 輸送コストの低減にもつながる。 The floc of the present invention is manufactured through the above-described processes. Its moisture content is usually about 1 to 5%, which is about the official moisture content, and is significantly lower than the moisture content of the conventional floc, 20 to 25% (the value after flocking after conditioning). Therefore, the weight is reduced, which is convenient for transportation and handling. Since the conductive polymer layer is substantially unaffected by moisture, the moisture content of about 1 to 5% is maintained almost unchanged even when the surrounding outside air is in a high humidity range. Is almost absolutely dry It is kept dry. Therefore, the dyeing fastness of the floc is improved, and the transportation cost is further reduced.
なお、 本発明のフロックにっき理解を容易にすべく、 以下にその典型 的なフロックの諸特性を示す。  In order to facilitate understanding of the flock of the present invention, typical characteristics of the flock are shown below.
単糸繊度 D ;約 1ないし約 65デニール Single yarn fineness D: about 1 to about 65 denier
繊維長 ; 0. 3ないし 6誦 Fiber length; 0.3 or 6 recitation
ァスぺク卜比 ;約 1 : 30ないし約 1 ; 100 Aspect ratio; approx. 1:30 to approx. 1; 100
表面電気漏洩抵抗値 ; 105 ないし 108 QZcmに設定する。 Surface electric leakage resistance value: Set to 10 5 to 10 8 QZcm.
(日本フロックェ業会測定法に基づく。 )  (Based on the Japan Flocke Industry Association measurement method.)
水分量 ;約 1ないし約 5% Moisture content; about 1 to about 5%
導電性ポリマー層の厚さ;約 0. 01 11なぃし約0. l m 導電性ボリマーの原料 Thickness of conductive polymer layer: about 0.01 1 11 about 0.1 lm Raw material of conductive polymer
モノマーの添加量 M ; 0. 3ないし 1. 0% (対繊維重量比) 導電性ポリマー層被覆の Addition amount of monomer M; 0.3 to 1.0% (weight ratio to fiber) of conductive polymer layer coating
際に用いた純水の導電率; 5 μ S以下 Conductivity of pure water used at the time: 5 μS or less
D/M. 比 ; 2. 5ないし 250  D / M. Ratio; 2.5 to 250
原料モノマーの添加量 (対繊維重量比) を決定するにあたっては、 原 料繊維はアスペクト比が大きいため、 その両端面の面積は、 全体の表面 積に比して高々 1〜3%であるので大変小さく、 十分無視することがで きる。 従って、 一般に使用されるところの繊度 1〜65デニール、 繊維 長 0. 3〜6mmの原料繊維を使用する場合には、 より好ましくは、 次の 関係式 (1) に従い得られる量を用いるべきことが導かれる。  In determining the amount of raw material monomer to be added (weight ratio to fiber), since the raw fiber has a large aspect ratio, the area of both end faces is at most 1 to 3% of the total surface area. Very small and can be ignored enough. Therefore, when a raw fiber having a fineness of 1 to 65 denier and a fiber length of 0.3 to 6 mm, which is generally used, is preferably used, the amount obtained according to the following relational expression (1) should be used. Is led.
D/M=2. 5x … ( i )  D / M = 2.5x… (i)
(式中、 Xは 1ないし 100の範囲を表わす。 )  (In the formula, X represents a range of 1 to 100.)
従って、 3デニールの原料繊維では、 DZM比は約 2ないし 4、 15 デニールの原料繊維では、 D ZM比は約 1 0ないし 2 0、 そして 6 5デ ニールの原料繊維では、 DZM比は約 1 5 0ないし 2 5 0の範囲がそれ ぞれ好ましい範囲である。 なお、 上記の関係式は、 ポリエステル繊維、 ナイロン繊維、 アクリル繊維等について特に合致する。 Therefore, for 3 denier raw fiber, the DZM ratio is about 2 to 4, 15 For denier raw fibers, the DZM ratio is about 10 to 20; and for 65 denier raw fibers, the DZM ratio is about 150 to 250, respectively. It should be noted that the above relational expression is particularly suitable for polyester fiber, nylon fiber, acrylic fiber and the like.
そして、 本発明のフロックは、 従来と同様の静電植毛に利用すること ができ、 これにより種々多様な静電植毛品を製造することができる。 静 電植毛の方式は、 特に限定されるものでなく、 アップ式静電植毛法 (フ 口ックを下部電極の上に置きそして被植毛物を上部電極に備え、 電圧 を上下電極間に印加することによりフロックを上方へ飛翔させる植毛 法) 、 ダウン式静電植毛法 (被植毛物を下部電極に備えるとともに格子 状または線状の上部電極を使用し、 電圧を上下電極間に印加する状態の 下、 フロックを上部電極の格子目に通して落下させることによりフッロ クを下方へ飛翔させる植毛法) またはサイド式静電植毛法 (被植毛物を 電界の側方に電極と接続して備え、 電圧印加の下、 フロックをホッパー より電界の中に落下させることにより、 フロックを最初下方へそして途 中より横方向に飛翔させる植毛法) のいずれでもよい。 また、 流動槽型 静電植毛機 (多孔板が槽の中に張られかつ振動が加えられる構造の流動 槽をフロックの供給槽として用いる型式の植毛機で、 ァップダウン式、 サイド式等がある。 ) を用いて本発明のフロックより自動車内装部品等 の静電植毛品を製造してもよい。  The floc of the present invention can be used for the same electrostatic flocking as in the past, and thus various kinds of flocking products can be manufactured. The method of electrostatic flocking is not particularly limited, and the up-type electrostatic flocking method (place the hook on the lower electrode and the flocking object on the upper electrode, and apply the voltage between the upper and lower electrodes) The flocking method in which the flocks fly upward by performing the method. The down-type electrostatic flocking method. (A state in which the material to be planted is provided on the lower electrode and a grid or linear upper electrode is used, and voltage is applied between the upper and lower electrodes. The flocking method in which the flocks fly down by dropping the flocs through the grid of the upper electrode, or the side-type electrostatic flocking method (prepared by connecting the object to be implanted to the electrode beside the electric field) The flocking method is to drop the floc into the electric field from the hopper under the application of a voltage so that the floc flies first downward and then laterally from the middle. Fluid tank type electrostatic flocking machine (flocking machine of the type that uses a fluidized tank with a structure in which a perforated plate is stretched in the tank and vibration is applied as a flock supply tank. There are an up-down type and a side type. ) May be used to manufacture electrostatic flocking such as automobile interior parts from the floc of the present invention.
従って、 本発明はさらに、 上記の静電植毛用フロックを原料とし、 ァ ップ式静電植毛法、 ダウン式静電植毛法、 アップダウン式静電植毛法も しくはサイド式静電植毛法に従って、 または流動槽型静電植毛機を用い て、 基材の植毛すべき表面に静電植毛することにより、 作られてなる静 電植毛品に関する。 なお、 静電植毛の終了後に、 適当なドープ処理、 例えば、 酸濃度Therefore, the present invention further provides an up-type electrostatic flocking method, a down-type electrostatic flocking method, an up-down type electrostatic flocking method, or a side-type electrostatic flocking method using the above-mentioned flocking for electrostatic flocking as a raw material. Or by using a fluidized-bed electrostatic flocking machine to electrostatically flocking the surface of the substrate to be flocking. After the completion of the electrostatic flocking, an appropriate doping treatment, for example, acid concentration
0 . 0 1〜: L mol/L 、 好ましくは温度 1 0〜 9 (TCの溶液への浸漬処理 を行なうことにより、 ドーパン卜を植毛品のフロックに賦与せしめて導 電性をより高めることも可能である。 0.01 to: L mol / L, preferably at a temperature of 10 to 9 (By immersion treatment in TC solution, it is possible to impart dopants to flocks of flocks to further improve conductivity. It is possible.
本発明では、 フロックの表面が導電性ポリマー層により実質的に被覆 されているので、 その表面電気漏洩抵抗値を静電植毛に好適とされてい る範囲に容易に調整することができ、 よって、 力かる帯電防止機能の発 揮により、 ほぼ絶対乾燥の状態で得られる本フロックを静電植毛に利用 することができる。  In the present invention, since the surface of the floc is substantially covered with the conductive polymer layer, the surface electric leakage resistance value can be easily adjusted to a range suitable for electrostatic flocking. By virtue of the powerful antistatic function, this floc obtained in an almost absolutely dry state can be used for electrostatic flocking.
とりわけ、 導電性ポリマーという被覆層の性質から、 フロック自体が 水分の影響を受けにくいものとなるため、 その良好な帯電防止機能は周 囲外気の湿度条件 (湿潤、 乾燥) に関係なくほぼ一定に保たれる。 従つ て、 従来のようなアフターコンディショニングを行なうことなく、 アツ プ式、 ダウン式等いずれの方式の静電植毛においても満足な飛翔力が得 られる。  In particular, the floc itself is less susceptible to moisture due to the nature of the coating layer, which is a conductive polymer, and its good antistatic function is almost constant irrespective of the ambient humidity (wet, dry). Will be kept. Therefore, a satisfactory flying force can be obtained with any of the up-type and down-type electrostatic flocking without performing after-conditioning as in the related art.
また、 特に、 本発明では、 フロックの周面のみならず先後両端面を含 む全ての表面に導電性ポリマー層が被覆されているフロックにあって は、 フロックを植毛すべき基材表面に対し直角の方向で植え付けること をより確実なものとすることができ、 従って、 製品不良の発生率を抑 え、 力つより高品質の植毛品の生産を可能とする。 これは、 静電植毛過 程において、 高電圧印加の際、 十の電荷がフロックの一方の端面に、 そ して一の電荷が他方の端面に生じ、 分極がよりはっきりと現われ、 従つ て、 フロックが植毛すべき基材表面に対して直角な方向で当って植え付 けられることによるものと思われる。  Further, in particular, in the present invention, in the case of a floc in which not only the peripheral surface of the floc but also all the surfaces including the front and rear end surfaces are coated with the conductive polymer layer, the floc is located on the surface of the base material on which the floc is to be implanted. The planting in a right angle direction can be made more reliable, thus reducing the incidence of product defects and enabling the production of higher quality flocked products. This is because during the electrostatic flocking process, when a high voltage is applied, ten charges are generated on one end face of the floc and one charge is generated on the other end face, so that polarization appears more clearly. This is probably due to the fact that the flocks are implanted in a direction perpendicular to the surface of the substrate to be implanted.
さらに、 本発明では、 水分の影響を受けにくいという導電性ポリマー 層の特質により、 フロックの分離性 (さばき) は、 周囲の水分、 湿気の 高低によって問題となるような悪影響を受けない。 従って、 フロック表 面のベとつき、 フロックのもつれ、 絡まりによるだんご状物の発生、 あ るいはフロック間の接触によるスパーク発生などの不都合は生じない。 要するに、 本発明によれば、 フロックの帯電性および分離性が、 周囲 の水分の影響を実質的に受けることなく、 目的とする範囲、 条件の中に 安定に保たれうるため、 静電植毛過程で満足な飛翔力が常に得られ、 従 つて、 いずれの植毛方式においても安定した静電植毛を行なうことがで きる。 特に本発明によれば、 本フロックがほぼ絶対乾燥の状態にあるた め、 これを乾燥した環境で静電植毛に繰り返し利用することができ、 従 つて連続式の静電植毛を円滑にかつ安定に行なうことができる。 Furthermore, in the present invention, the conductive polymer which is hardly affected by moisture is used. Due to the nature of the layers, the separation of the flock is not adversely affected by ambient moisture and moisture levels. Therefore, there are no inconveniences such as sticking of the flock surface, tangling of the flock, generation of dumplings due to entanglement, and generation of sparks due to contact between the flocks. In short, according to the present invention, the charging and separating properties of the floc can be stably maintained within the intended range and conditions without being substantially affected by the surrounding moisture. As a result, a satisfactory flying force can be always obtained, and therefore, stable electrostatic flocking can be performed in any of the flocking methods. In particular, according to the present invention, since the floc is almost in an absolutely dry state, the floc can be repeatedly used for the electrostatic flocking in a dry environment, so that the continuous electrostatic flocking can be performed smoothly and stably. Can be performed.
したがって、 乾燥した環境での連続静電植毛が可能となったことによ り、 本発明では、 従来行なわれてきた静電植毛過程でのフロックの水分 調整 (アフターコンディショニング) が一切不要となり、 さらに、 例え ば静電植毛機における調湿装置の設置、 あるいは前処理としての原料フ 口ックの水分調整工程などが不必要になる。  Therefore, since continuous electrostatic flocking in a dry environment has become possible, the present invention eliminates the need for water conditioning (after-conditioning) of flocs during the conventional electrostatic flocking process. For example, it is not necessary to install a humidity control device in an electrostatic flocking machine, or to perform a step of adjusting the moisture content of a raw material hook as a pretreatment.
また、 本発明のフロックを用いるならば、 整然としかつ基材表面に対 し直立した状態にて静電植毛され、 しかもその分布が濃淡のむらなく均 —であり、 またもつれ、 絡まり等の欠陥も無い、 高品質の静電植毛品が 提供される。 実施例  In addition, if the floc of the present invention is used, the flocks are electrostatically planted in a state of being orderly and standing upright on the surface of the base material, and the distribution thereof is even and uniform in density, and defects such as entanglement and entanglement also occur. No, high quality electrostatic flocking is provided. Example
以下、 本発明を実施例に従って詳細に説明する。  Hereinafter, the present invention will be described in detail with reference to Examples.
実施例 1  Example 1
カツ 卜された 6, 6—ナイロン繊維 (繊度: 3デニール、 繊維長: 0. 5mm) を金属錯塩染料 Kayakalan Black (日本化薬株式会社製) に より 95°Cx 60分間という条件で染色し、 その後十分に水洗浄を行な つた。 次に、 ピロールモノマーを対繊維重量比で 0. 63%の量使用 し、 これを水中において、 染色された 6, 6—ナイロン繊維をも一緒に 攪拌しながら、 過硫酸ァンモニゥムを触媒として 5 Cにて 240分間の 間重合反応を継続した。 その後、 6, 6—ナイロン繊維を充分に水洗 し、 次いで水分 2. 5%となるまで乾燥した。 Cut 6,6-nylon fiber (fineness: 3 denier, fiber length: 0.5 mm) was dyed with a metal complex dye Kayakalan Black (manufactured by Nippon Kayaku Co., Ltd.) at 95 ° C. for 60 minutes, and then thoroughly washed with water. Next, a pyrrole monomer was used in an amount of 0.63% by weight based on the weight of the fiber, and this was stirred in water together with the dyed 6,6-nylon fiber while using a catalyst of ammonium persulfate as a catalyst. The polymerization reaction was continued for 240 minutes. Thereafter, the 6,6-nylon fibers were thoroughly washed with water and then dried until the water content became 2.5%.
得られたフロックの表面電気漏洩抵抗値は、 測定したところ、 3X The surface electric leakage resistance of the obtained floc was measured to be 3X
106 ΩΖαηであった。 It was 10 6 ΩΖαη.
また、 このフロックを用いて、 アップ式、 ダウン式および流動槽型の 3種類の静電植毛 (印加電圧: 50〜80 kV) を行なったところ'、 い ずれの植毛方式についても、 フロックの飛翔力が十分高く、 接着剤塗布 済の 2/1 緯織り生地 (ポリエステル Z木綿 =65Z35、 厚さ 0. 15 mm) への植毛も均一で良好なものであった。  Using this floc, three types of electrostatic flocking (applied voltage: 50-80 kV) were performed: up-type, down-type, and fluidized-bed type. The force was high enough, and the flocking on 2/1 weft-woven fabric (polyester Z cotton = 65Z35, 0.15 mm thick) coated with adhesive was uniform and good.
実施例 2  Example 2
カツ卜されたアクリル繊維 (繊度: 1. 3デニール、 繊維長: 0. 4 隱) を予め十分に水洗浄して界面活性剤、 油剤分等を除去した後、 水中 に入れ、 続いてモノマーとして 0. 35% (対繊維重量比) の N—メチ ルビロールおよび 0. 3% (対繊維重量比) のピロールを添加し、 攪拌 しながら、 塩化第二鉄を触媒として 5°Cにて 200分間の間重合反応を 接続した。 その後、 アクリル繊維を充分に水洗し、 次いで水分 2. 5% となるまで草乞燥した。  The cut acrylic fiber (fineness: 1.3 denier, fiber length: 0.4 concealed) is thoroughly washed with water in advance to remove surfactants, oils, etc., then put into water, and then as monomer Add 0.35% (by weight to fiber) of N-methylpyrrole and 0.3% (by weight of fiber) of pyrrole, and stir with ferric chloride as a catalyst for 200 minutes at 5 ° C. During the period, the polymerization reaction was connected. After that, the acrylic fiber was thoroughly washed with water and then dried until the water content became 2.5%.
得られたフロックの表面電気漏洩抵抗値は、 測定したところ、 7 X The surface electric leakage resistance of the obtained floc was measured to be 7 X
107 ΩΖαηであった。 10 7 ΩΖαη.
また、 このフロックを用いて実施例 1と同様の条件で静電植毛を行な つたところ、 いずれの植毛方式についても実施例 1と同様、 良好な飛翔 性が得られ、 満足な結果であった。 In addition, electrostatic flocking was performed under the same conditions as in Example 1 using this floc. As a result, as in Example 1, good flying properties were obtained for all the flocking methods and satisfactory results were obtained.
実施例 3  Example 3
カツ 卜された 6—ナイロン繊維 (繊度: 1. 5デニール、 繊維長: 0. 5隱) をミーリング型酸性染料、 染料力ヤノ一ルミ一リングブラッ ク (日本化薬株式会社製) により 90°Cx 60分間の条件で染色し、 そ してその後十分に水洗浄を行なった。 次に、 モノマ一として P—卜ルェ ンスルホン酸ァニリンを対繊維重量比で 1. 0%の量使用し、 これを水 中にて、 過硫酸カリウムを触媒として、 染色された 6—ナイロン繊維と 一緒に攪拌しながら、 5°Cにて適当な時間の間重合反応を継続した。 そ の後、 6—ナイロン繊維を充分に水洗し、 次いで水分 3. 5%となるま で乾燥した。  The cut 6-nylon fiber (fineness: 1.5 denier, fiber length: 0.5 concealed) is turned 90 ° by a milling type acidic dye and a dyeing black dye (Nippon Kayaku Co., Ltd.). The cells were stained under the conditions of Cx for 60 minutes, and then sufficiently washed with water. Next, as a monomer, aniline P-toluenesulfonate was used in an amount of 1.0% in terms of fiber weight ratio, and this was mixed with dyed 6-nylon fiber in water using potassium persulfate as a catalyst. While stirring together, the polymerization reaction was continued at 5 ° C for an appropriate time. Thereafter, the 6-nylon fiber was thoroughly washed with water, and then dried until the water content became 3.5%.
得られたフロックの表面電気漏洩抵抗値は、 測定したところ、 I X 10β QZcmであった。 The surface electric leakage resistance value of the obtained floc was measured and found to be IX 10 β QZcm.
また、 このフロックを用いて実施例 1と同様の条件で静電植毛を行な つたところ、 いずれの植毛方式についても実施例 1と同様、 良好な飛翔 性が得られ、 満足な結果であった。  In addition, when the flocking was used to carry out electrostatic flocking under the same conditions as in Example 1, good flying properties were obtained for all the flocking methods as in Example 1, and satisfactory results were obtained. .
実施例 4  Example 4
カツ卜されたパラ系芳香族ポリアミド繊維 (繊度: 2. 0デニール、 繊維長: 0. 5議) 、 および対繊維重量比で 0. 5%の量のピロールモ ノマ一を水中に入れ、 攪拌しながら、 過硫酸アンモニゥムを触媒として 3°Cにて 240分間の間重合反応を継続した。 その後、 上記の繊維を充 分に水洗し、 次いで、 水分 0%となるまで乾燥した。  The cut para-aromatic polyamide fiber (fineness: 2.0 denier, fiber length: 0.5 dia.) And pyrrole monomer in an amount of 0.5% by weight relative to the fiber are put in water and stirred. The polymerization reaction was continued at 3 ° C. for 240 minutes using ammonium persulfate as a catalyst. Thereafter, the above fibers were sufficiently washed with water, and then dried until the water content became 0%.
得られたフロックは、 暗緑色であり、 その表面電気漏洩抵抗値は、 測 定したところ、 3x l 07 QZcmであった。 また、 このフロックを用いて実施例 1と同様の条件で静電植毛を行な つたところ、 いずれの植毛方式についても実施例 1と同様、 良好な飛翔 性が得られ、 満足な結果であった。 The obtained floc was dark green, and its surface electric leakage resistance was measured to be 3 × 10 7 QZcm. In addition, when the flocking was used to carry out electrostatic flocking under the same conditions as in Example 1, good flying properties were obtained for all the flocking methods as in Example 1, and satisfactory results were obtained. .
比較例 1  Comparative Example 1
ポリエチレンテレフタレ一卜繊維 (繊度: 15デニール、 繊維長: 2. lmm) を分散染料力ヤロンポリエステルブラック (日本化薬株式会 社製) により 130°Cx 60分間という条件で染色し、 その後、 ハイド 口サルフアイ卜/水酸化ナ卜リゥムの混合液により 6 CTCX 20分間還 元洗浄を行なった。 次いで、 珪酸ソーダを用いて電着処理を従来の常法 に従い行ない、 植毛用フロックを製造した。  Polyethylene terephthalate fiber (fineness: 15 denier, fiber length: 2. lmm) is dyed with a disperse dye, Yaron Polyester Black (manufactured by Nippon Kayaku Co., Ltd.) at 130 ° C for 60 minutes. Reduced washing was performed with 6 CTCX for 20 minutes using a mixture of mouth sulfate and sodium hydroxide. Next, electrodeposition treatment was performed using sodium silicate according to a conventional method to produce flocks for flocking.
流動槽型静電植毛機を用いて、 フロックの水分率を 0.' 5%、 3. 0 %そして 18%に整えて、 実施例 1と同じ基材に対して静電植毛 (印加 電圧: 60kV) を行なった。 水分率 0. 5%および 3. 0%の場合は、 不十分な飛翔力しか得られず、 均一な植毛が行なえず、 また水分率 18 %の場合は、 ある程度の植毛は行なえたが、 フロックの回収と再利用を 繰り返す連続式植毛は不可能であった。  Using a fluidized tank type electrostatic flocking machine, the moisture content of the floc was adjusted to 0.5%, 3.0% and 18%, and the flocking was performed on the same substrate as in Example 1 (applied voltage: 60kV). In the case of moisture content of 0.5% and 3.0%, insufficient flying power was obtained and uniform flocking could not be achieved, and in the case of moisture content of 18%, some flocking could be achieved, but flocking Continuous hair transplantation, which involves repeated collection and reuse, was not possible.
以上の各例についての静電植毛試験の結果を下言己の表 1に要約して示 す。 The results of the electrostatic flocking test for each of the above examples are summarized in Table 1 below.
フ□ック 水分率 静電植毛方式 印加電圧 o.l 実施例 1 2. 5% ァップ方式 60 kV Hook Moisture ratio Electrostatic flocking method Applied voltage o.l Example 1 2.5% up method 60 kV
No.2 実施例 1 2 5% ダウン方式 60 kV No.2 Example 1 2 5% down method 60 kV
No.3 実施例 1 2 5% 流動槽方式 60 kV No.3 Example 1 2 5% Fluidized tank method 60 kV
No.4 実施例 2 2 5% ァップ方式 60 kV No.4 Example 2 2 5% up method 60 kV
No.5 実施例 2 2 5% ダウン方式 60 kV No.5 Example 2 2 5% down method 60 kV
No.6 実施例 2 2 5% 流動槽方式 60 kV No.6 Example 2 25% Fluidized tank method 60 kV
No.7 実施例 3 3 5% ァップ方式 60 kV No.7 Example 3 3 5% up method 60 kV
No.8 実施例 3 3. 5% ダウン方式 60 kV No.8 Example 3 3.5% down method 60 kV
No.9 実施例 3 3. 5% 流動槽方式 60 kV No.9 Example 3 3.5% Fluidized tank method 60 kV
No.10 実施例 4 . 0% ァップ方式 60 kV No.10 Example 4.0 4.0% up method 60 kV
No.11 実施例 4 1. 0% ダウン方式 60 kV No.11 Example 4 1.0% down method 60 kV
No.12 実施例 4 1. 0% 流動槽方式 60 kV © No.13 比較例 1 0. 5% 流動槽方式 60 k V x No.14 比較例 1 3. 0% 流動槽方式 60 kV x No.15 比較例 1 18% 流動槽方式 60 kV 〇 注) ◎は、 フロックについて十分な飛翔力が得られ、 静電植毛が均一で 大変良好であることを示す。 No.12 Example 4 1.0% fluidized bed method 60 kV © No.13 Comparative example 1 0.5% Fluidized tank method 60 kV x No.14 Comparative example 1 3.0% Fluidized tank method 60 kV x No .15 Comparative Example 1 18% fluidized-bed method 60 kV 〇 Note) ◎ indicates that sufficient flying force was obtained for flocs, and that electrostatic flocking was uniform and very good.
〇は、 フロックについて必要な飛翔力は得られ、 静電植毛は良好で あるが、 連続式静電植毛は不可能であることを示す。  〇 indicates that the required flying force was obtained for flocks, and electrostatic flocking was good, but continuous electrostatic flocking was not possible.
Xは、 フロックについて必要な飛翔力が得られず、 静電植毛は不良 であることを示す。 実施例 5 ' An X indicates that the required flying power for the flock was not obtained and the electrostatic flocking was defective. Example 5 '
—定長にカツ卜されたポリエステル繊維 (繊度: 3. 0デニール、 繊 維長: 0. 8議) 1kgとピロ一ルモノマ一 8. 3 g (0. 83%、 対繊 維重量比で) とを水中に投入し、 そして塩化第二鉄 50. 2 gを触媒と して、 液温 3°Cにて攪拌しながら、 3時間の間重合反応を継続した。 そ の後、 ポリエステル繊維を充分に水洗し、 次いで流動槽乾燥法に従い 1 6 (TCにて乾燥した。  —Polyester fiber cut to fixed length (fineness: 3.0 denier, fiber length: 0.8 dia.) 1 kg and 8.3 g of pyrolmonomer (0.83%, relative to fiber weight) Was poured into water, and the polymerization reaction was continued for 3 hours while stirring at a liquid temperature of 3 ° C. using 50.2 g of ferric chloride as a catalyst. Thereafter, the polyester fiber was sufficiently washed with water, and then dried by 16 (TC) according to a fluidized-bed drying method.
得られたフロックは、 表面電気漏洩抵抗値が 4. 0x 10ε QZcmで あり、 水分率が 1. 5%であった。 The obtained floc had a surface electric leak resistance of 4.0 × 10 ε QZcm and a water content of 1.5%.
また、 このフロックについて、 アップ式植毛機、 ダウン式植毛機、 流 動槽型サイド式植毛機および流動槽型ァップダウン植毛機を使用して、 静電植毛 (印加電圧: 50〜8 OkV) を行なったところ、 いずれの植毛 方式についても、 特別なアフターコンディショニング無しで、 十分高い 飛翔性を示し、 高品質の静電植毛品が得られた。  In addition, electrostatic flocking (applied voltage: 50 to 8 OkV) was performed on the flocks using an up-type flocking machine, a down-type flocking device, a flow tank type side flocking device, and a fluidized tank type up flocking device. As a result, all of the flocking methods showed sufficiently high flight performance without special after-conditioning, and high-quality electrostatic flocking products were obtained.
なお、 図面の図 1ないし図 3は、 以上の実施例等に関連して、 電子顕 微鏡を用いて拡大されたフロック等の先端部を撮影した顕微鏡写真を示 すものである。 ここで、 写真の右下部分における白線の長さは 50  FIG. 1 to FIG. 3 of the drawings show micrographs of the tip of a floc or the like enlarged by using an electron microscope in connection with the above-described examples and the like. Here, the length of the white line in the lower right part of the photo is 50
(図 1) または 20μπι (図 2、 図 3) を表わす。  (Figure 1) or 20μπι (Figure 2, Figure 3).
図 1に示すは、 珪酸ソーダを用いた電着処理がポリエステル繊維につ いて施された従来の静電植毛用フロックであり、 図 2に示すは、 ポリエ ステル繊維 (繊度: 1. 5デニール) のすベての表面がピロ一ルポリマ 一層により完全に被覆されている、 実施例 5に相当するところの本発明 の静電植毛用フロックであり、 さらに、 図 3に示すは、 図 2のフロック の原料であるポリエステル繊維の原着糸 (その表面にピロ一ルポリマ一 層が形成されていない。 ) である。 実施例 6 Fig. 1 shows a conventional flocking flock for electrostatic flocking in which electrodeposition treatment using sodium silicate was applied to polyester fibers. Fig. 2 shows polyester fibers (denier: 1.5 denier). FIG. 3 shows the flocking for electrostatic flocking of the present invention corresponding to Example 5 in which all surfaces are completely covered with a layer of a pyropolymer; and FIG. 3 shows the flocking of FIG. The raw yarn of the polyester fiber, which is the raw material for (there is no pyrrole polymer layer formed on the surface). Example 6
特開平 3-163709 号公報の実施例 1の方法に準じて、 6, 6—ナイ口 ン連続繊維 (繊度: 3デニール) をボビンに巻き、 これを、 水 2 0リツ トル、 ピロール 1 3 . 4 gおよび塩化第二鉄 6 4 . 9 gからなる 1 8 °C の処理液とともに槽の中に入れ、 該処理液をボビン内に繊維間隙に反復 通過させて、 導電化処理を行ない、 表面電気漏洩抵抗値 1 . O x 1 06 ΩΖαηの長い繊維を得た。 According to the method of Example 1 in JP-A-3-163709, a 6,6-nain continuous fiber (denier: 3 denier) is wound around a bobbin, which is then wound on 20 liters of water and pyrrol 13. 4 g and ferric chloride 64.9 g were placed in a bath together with a treatment solution at 18 ° C, and the treatment solution was repeatedly passed through the fiber gap into the bobbin to conduct the conductivity, and the surface was treated. A long fiber having an electric leakage resistance of 1.0 × 10 6 ΩΖαη was obtained.
その後、 導電化処理された 6, 6—ナイロン長繊維を 0 . 5 の長さ にカツ卜し、 次いで、 これを実施例 1と同様の方法、 条件により静電植 毛したところ、 得られた製品の植毛は、 基材表面に対して直角の方向で 植え付けられていない繊維がわずかに認められたが、 充分な飛翔力が得 られ、 連続式静電植毛が可能であった。 産業上の利用可能性  Thereafter, the conductive 6,6-nylon filaments were cut to a length of 0.5, and then were subjected to electrostatic flocking using the same method and conditions as in Example 1. As for the flocking of the product, some fibers were not planted in the direction perpendicular to the surface of the base material, but a sufficient flying force was obtained, and continuous electrostatic flocking was possible. Industrial applicability
本発明のフロックは、 静電植毛一般に利用することができ、 建築用内 装材 (壁紙、 カーテン、 力一ぺッ 卜、 マツ 卜等) 、 履物 (草履、 鼻緒 等) 、 日用雑貨 (装飾カバー、 装飾コード、 宝石箱、 文房具等) 、 自動 車用品 (ダッシュボード、 サンバイザー、 ゥヱザ一ストリップ、 カーシ 一卜用フロッキーヤーン等) 、 冷暖房機器 (こたつ、 足温器等) 、 衣料 (帽子、 ジャケッ 卜、 手袋等) および電子機器 (ブラシロール等) な ど、 広範な用途における各種の静電植毛品の製造に適するものである。  The floc of the present invention can be used for electrostatic flocking in general, and can be used for building interior materials (wallpaper, curtains, power supplies, mats, etc.), footwear (sandals, thongs, etc.), daily miscellaneous goods (decoration). Covers, decorative cords, jewelry boxes, stationery, etc.), automatic car accessories (dashboards, sun visors, leather strips, floppy yarns for car seats, etc.), cooling and heating equipment (kotatsu, foot warmers, etc.), clothing (hats, hats, etc.) It is suitable for the manufacture of various types of electrostatic flocking products in a wide range of applications, such as jackets, gloves, etc., and electronic equipment (brush rolls, etc.).

Claims

請 求 の 範 囲 The scope of the claims
1. 短繊維の端面を含む全ての表面が、 導電性ポリマー層により実質 的にないし完全に被覆されていることを特徴とする静電植毛用フロッ ク。 1. An electrostatic flocking floc characterized in that all surfaces including short fiber end surfaces are substantially or completely covered with a conductive polymer layer.
1. フロック表面のうち導電性ポリマ一層により被覆されていない部分 の全表面に対する比率は、 3 %以下であることを特徴とする請求項 1 に記載のフロック。  1. The floc according to claim 1, wherein a ratio of a portion of the floc surface that is not covered by the conductive polymer layer to the entire surface is 3% or less.
3. 短繊維は染色されていることを特徴とする請求項 1または請求項 2 に記載のフロック。  3. Flock according to claim 1 or claim 2, wherein the short fibers are dyed.
4. 導電性ポリマー層の厚さは、 平均として 0. O l jLtmないし 0. 1 / mの範囲であることを特徴とする請求項 1ないし請求項 3のうちい ずれか一項に記載のフロック。  4. The method according to any one of claims 1 to 3, wherein the thickness of the conductive polymer layer is in a range of 0.1 to 0.1 / m on average. Flock.
5. 導電性ポリマー層は、 ピロ一ル、 N—メチルビロール、 ァニリン、 チォフェンおよびチォフェン一 3—スルホン酸からなる群から選択さ れた一種または二種以上のモノマーを重合して形成されたポリマ一層 またはコポリマ一層であることを特徴とする請求項 1ないし請求項 4 のうちいずれか一項に言己載のフロック。  5. The conductive polymer layer is a polymer layer formed by polymerizing one or two or more monomers selected from the group consisting of pyrrole, N-methylbilol, aniline, thiophene and thiophene-13-sulfonic acid. 5. The flock according to claim 1, wherein the flock is a single-layer copolymer.
6. 導電性ポリマ一層は、 ピロールをモノマーとして重合して得られる ポリマー層であることを特徴とする請求項 5に記載のフロック。  6. The floc according to claim 5, wherein the conductive polymer layer is a polymer layer obtained by polymerizing pyrrole as a monomer.
7. 導電性ポリマー層の厚さは、 短繊維が浸透性繊維であるときは、 平 均としておよそ、 0. O l mないし 0. 03 mであり、 短繊維が 非浸透性繊維であるときは、 平均としておよそ、 0. 02 "mないし 0. 05 mであることを特徴とする請求項 1ないし請求項 4のうち いずれか一項に記載のフロック。 δ. 短繊維は天然繊維または半合成繊維もしくは合成繊維より成り、 か つ、 繊維のアスペクト比は 1 : 3 0〜1 : 1 0 0の範囲内のものであ ることを特徴とする請求項 1ないし請求項 7のうちいずれか一項に記 載のフロック。 7. The thickness of the conductive polymer layer is, on average, about 0.0 Olm to 0.03 m when the short fibers are permeable fibers, and when the short fibers are non-permeable fibers. The floc according to any one of claims 1 to 4, wherein the average is approximately 0.02 "m to 0.05 m. δ. The short fiber is made of natural fiber, semi-synthetic fiber or synthetic fiber, and the aspect ratio of the fiber is in the range of 1:30 to 1: 100. The flock according to any one of claims 1 to 7.
9. フロックの表面漏洩抵抗値は、 1 0 5 QZcmないし 1 08 ΩΖαηの 範囲内であることを特徴とする請求項 1ないし請求項 8のうちいずれ か一項に記載のフロック。 9. surface leakage resistance value of the flock, 1 0 5 QZcm to 1 0 8 floc as claimed in any one of claims 1 to 8, characterized in that in the range of Omegazetaarufaita.
10. モノマーの重合反応を、 短繊維を含む処理液中において、 化学酸化 重合剤を触媒として、 所望により添加されたドーパントおよび/また は表面張力低下剤とともに進行させて、 生成した導電性ポリマーを処 理液中の繊維の表面に被覆することより成る、 請求項 1または請求項 2に記載の静電植毛用フロックの製造方法。  10. The polymerization reaction of the monomer proceeds in the treatment solution containing the short fibers using the chemical oxidation polymerization agent as a catalyst together with the dopant and / or the surface tension lowering agent that are added as required, and the formed conductive polymer is formed. 3. The method for producing a floc for electrostatic flocking according to claim 1, comprising coating the surface of the fiber in the treatment liquid.
11. モノマーの重合反応を、 長繊維を含む処理液中において、 化学酸化 重合剤を触媒として、 所望により添加されたドーパン卜および また は表面張力低下剤とともに進行させて、 生成した導電性ポリマ一を処 理液中の繊維の表面に被覆し、 そしてその後被覆された長繊維を切断 して短繊維とすることより成る、 請求項 1または請求項 2に記載の静 電植毛用フロックの製造方法。  11. The polymerization reaction of the monomer proceeds in a treatment solution containing long fibers using a chemical oxidizing polymerizing agent as a catalyst together with a dopant and / or a surface tension lowering agent added as required. 3. The method for producing a floc for electrostatic flocking according to claim 1, comprising coating the surface of the fiber in the treatment liquid with the surface of the fiber and then cutting the coated long fiber into a short fiber. .
12. モノマーとしては、 ピロール、 Ν—メチルピロ一ル、 ァニリン、 チ ォフェンおよびチォフェン一 3—スルホン酸からなる群から選択され た一種または二種以上のモノマーが使用されるところの請求項 1 0ま たは請求項 1 1に記載の製造方法。  12. The method according to claim 10, wherein one or more monomers selected from the group consisting of pyrrole, dimethylpyrrolyl, aniline, thiophene and thiophene-13-sulfonic acid are used as monomers. Or the production method according to claim 11.
13. モノマーとしては、 ピロールが使用されるところの請求項 1 2に記 載の製造方法。  13. The production method according to claim 12, wherein pyrrole is used as the monomer.
14. 用いる短繊維または長繊維は、 染色された繊維であるところの請求 項 1 0ないし請求項 1 3のうちいずれか一項に記載の製造方法。14. Claim that the short or long fibers used are dyed fibers The production method according to any one of claims 10 to 13.
15. 触媒として使用される化学酸化重合剤は、 水溶性第二鉄塩であると ころの請求項 1 0ないし請求項 1 4のうちいずれか一項に記載の製造 方法。 15. The method according to any one of claims 10 to 14, wherein the chemical oxidative polymerization agent used as a catalyst is a water-soluble ferric salt.
16. 重合反応の終了後、 被覆された繊維をさらに柔軟剤または平滑剤と ともに水洗することより成る、 請求項 1 0ないし請求項 1 5のうちい ずれか一項に記載の製造方法。  16. The method according to any one of claims 10 to 15, further comprising washing the coated fiber with a softener or a leveling agent after the polymerization reaction.
17. 請求項 1 0ないし請求項 1 6のうちいずれか一項に記載された方法 に従い、 製造された静電植毛用フロック。  17. An electrostatic flocking floc manufactured by the method according to any one of claims 10 to 16.
18. 請求項 1ないし請求項 9および請求項 1 7のうちいずれか一項に記 載の静電植毛用フロックを原料とし、 アップ式静電植毛法、 ダウン 式静電植毛法、 ァップダウン式静電植毛法もしくはサイド式静電植毛 法に従って、 または流動槽型静電植毛機を用いて、 基材の植毛すべき 表面に静電植毛することにより、 作られてなる静電植毛品。 18. Using the flocking for electrostatic flocking described in any one of claims 1 to 9 and claim 17 as a raw material, an up-type electrostatic flocking, a down-type electrostatic flocking, an up-down static An electrostatic flocking product made by electrostatic flocking on the surface of a substrate to be flocking, according to the electro flocking method or the side-type electrostatic flocking method, or using a fluidized-bed electrostatic flocking machine.
補正された請求の範囲 Amended claims
[1994年 3月 15日(15.03.94)国際事務局受理;出顧当初の請求の範囲 1-18は新しい請求の範囲 1-22に置 きかえられた。 (3頁)]  [Accepted by the International Bureau on March 15, 1994 (15.03.94); Claims 1-18 originally referred to were replaced by new claims 1-22. (Page 3)]
1. 短繊維の端面を含む全ての表面が、 導電性ポリマー層により実質 的にないし完全に被覆されていることを特徴とする静電植毛用フロッ ク。 1. An electrostatic flocking floc characterized in that all surfaces including short fiber end surfaces are substantially or completely covered with a conductive polymer layer.
2. フロック表面のうち導電性ポリマー層により被覆されていない部分 の全表面に対する比率は、 3 %以下であることを特徴とする請求項 1 に記載のフロック。  2. The floc according to claim 1, wherein a ratio of a portion of the floc surface not covered with the conductive polymer layer to the entire surface is 3% or less.
3. 導電性ポリマー層は、 ピロ一ル、 N—メチルピロ一ル、 ァニリン、 チォフェンおよびチォフェン一 3—スルホン酸からなる群から選択さ れた一種または二種以上のモノマーを重合して形成されたポリマ一層 またはコポリマー層であることを特徴とする請求項 1に記載のフロッ ク。  3. The conductive polymer layer is formed by polymerizing one or more monomers selected from the group consisting of pyrrole, N-methylpyrroyl, aniline, thiophene and thiophene-13-sulfonic acid. The floc according to claim 1, wherein the floc is a polymer layer or a copolymer layer.
4. 導電性ポリマー層は、 ピロ一ル、 N—メチルピロ一ル、 ァニリン、 チォフェンおよびチォフェン一 3—スルホン酸からなる群から選択さ れた一種または二種以上のモノマーを重合して形成されたポリマ一層 またはコボリマ一層であることを特徴とする請求項 2に記載のフ口ッ ク。  4. The conductive polymer layer is formed by polymerizing one or more monomers selected from the group consisting of pyrrole, N-methylpyrrol, aniline, thiophene and thiophene-13-sulfonic acid. 3. The hook according to claim 2, wherein the hook is a single layer of polymer or single layer of Kobolima.
5. 導電性ポリマー層は、 ピロ一ルをモノマーとして重合して得られる ポリマー層であることを特徴とする請求項 4に記載のフロック。  5. The floc according to claim 4, wherein the conductive polymer layer is a polymer layer obtained by polymerizing pyrrole as a monomer.
6. 導電性ポリマー層の厚さは、 平均として 0 . 0 1 mないし 0 . 1 H mの範囲であることを特徴とする請求項 1ないし請求項 4のうちい ずれか一項に記載のフロック。  6. The method according to claim 1, wherein the conductive polymer layer has an average thickness in the range of 0.01 m to 0.1 Hm. Flock.
7. 導電性ポリマー層の厚さは、 平均として 0 . Ο ΐ μ ηιないし 0 . 1 μ mの範囲であることを特徴とする請求項 5に記載のフロック。 7. The floc according to claim 5, wherein the thickness of the conductive polymer layer is in the range of 0.1Ομηι to 0.1 μm on average.
8. 導電性ポリマー層の厚さは、 短繊維が浸透性繊維であるときは、 平 \ 均としておよそ、 0. O l i mないし 0. 03^mであり、 短繊維が 非浸透性繊維であるときは、 平均としておよそ、 0. 02 μηないし 0. 05 /xmであることを特徴とする請求項 1ないし請求項 5のうち いずれか一項に言己載のフロック。 8. The thickness of the conductive polymer layer is approximately 0.0 Olim to 0.03 ^ m on average when the short fibers are permeable fibers, and the short fibers are non-permeable fibers. 6. The floc described in any one of claims 1 to 5, wherein the average is approximately 0.02 μη to 0.05 / xm.
9. 短繊維は天然繊維または半合成繊維もしくは合成繊維より成り、 か つ、 繊維のアスペクト比は 1 : 30〜1 : 100の範囲内のものであ ることを特徴とする請求項 1ないし請求項 5および請求項 7のうちい ずれか一項に記載のフロック。  9. The staple fiber is made of natural fiber, semi-synthetic fiber or synthetic fiber, and the aspect ratio of the fiber is in the range of 1:30 to 1: 100. The floc according to any one of claims 5 and 7.
10. フロックの表面漏洩抵抗値は、 10s Ω/cmないし 108 Q/cmの 範囲内であることを特徴とする請求項 1ないし請求項 5および請求項 7のうちいずれか一項に記載のフロック。 10. surface leakage resistance value of the flock, 10 s Ω / cm to claimed in any one of claims 1 to 5 and claim 7, characterized in that in the range of 10 8 Q / cm Flock.
11. フロックの表面漏洩抵抗値は、 10s ΩΖαηないし 108 QZcmの 範囲内であることを特徴とする請求項 9に記載のフロック。 11. surface leakage resistance value of the flock, 10 s ΩΖαη to floc of claim 9, characterized in that in the range of 10 8 QZcm.
12. 短繊維は染色されていることを特徴とする請求項 1ないし請求項 5 および請求項 7のうちいずれか一項に記載のフロック。  12. The floc according to any one of claims 1 to 5, wherein the short fibers are dyed.
13. 短繊維は染色されていることを特徴とする請求項 9に記載のフ口ッ ク。  13. The hook according to claim 9, wherein the staple fibers are dyed.
14. 短繊維は染色されていることを特徴とする請求項 1 1に記載のフロ ック。  14. The floc of claim 11, wherein the short fibers are dyed.
15. モノマーの重合反応を、 短繊維を含む処理液中において、 化学酸化 重合剤を触媒として、 所望により添加されたドーパン卜および Zまた は表面張力低下剤とともに進行させて、 生成した導電性ポリマ一を処 理液中の繊維の表面に被覆することより成る、 請求項 1または請求項 2に記載の静電植毛用フロックの製造方法。 15. The polymerization reaction of the monomer proceeds in a treatment solution containing short fibers using a chemical oxidation polymerizing agent as a catalyst together with a dopant and Z or a surface tension-lowering agent added as required to form a conductive polymer. 3. The method for producing a floc for electrostatic flocking according to claim 1 or 2, comprising coating one of the fibers with a surface of a fiber in the treatment liquid.
16. モノマ一としては、 ピロール、 N—メチルピロ一ル、 ァニリン、 チ ォフェンおよびチォフェン一 3—スルホン酸からなる群から選択され た一種または二種レ: LLのモノマーが使用されるところの請求項 1 5に 記載の製造方法。 16. One or two kinds of monomers selected from the group consisting of pyrrole, N-methylpyrrol, aniline, thiophene and thiophene-13-sulfonic acid: Claim: wherein LL monomer is used. 15. The production method according to 15.
17. モノマ一としては、 ピロールが使用されるところの請求項 1 6に記 載の製造方法。  17. The method according to claim 16, wherein pyrrole is used as the monomer.
18. 用いる短繊維は、 染色された繊維であるところの請求項 1 5ないし 請求項 1 7のうちいずれか一項に記載の製造方法。  18. The production method according to any one of claims 15 to 17, wherein the staple fibers used are dyed fibers.
19. 触媒として使用される化学酸化重合剤は、 水溶性第二鉄塩であると ころの請求項 1 5ないし請求項 1 7のうちいずれか一項に記載の製造 方法。  19. The method according to any one of claims 15 to 17, wherein the chemical oxidative polymerization agent used as a catalyst is a water-soluble ferric salt.
20. 重合反応の終了後、 被覆された繊維をさらに柔軟剤または平滑剤と ともに水洗することより成る、 請求項 1 5ないし請求項 1 7のうちい ずれか一項に記載の製造方法。  20. The method according to any one of claims 15 to 17, further comprising washing the coated fiber with a softening agent or a leveling agent after the polymerization reaction.
21. 請求項 1 5ないし請求項 2 0のうちいずれか一項に記載された方法 に従い、 製造された静電植毛用フロック。  21. An electrostatic flocking floc manufactured according to the method according to any one of claims 15 to 20.
22. 請求項 1ないし請求項 1 4および請求項 2 1のうちいずれか一項に 言己載の静電植毛用フロックを原料とし、 基材の植毛すべき表面に静電 植毛することにより、 作られてなる静電植毛品。  22. The flock for electrostatic flocking described in any one of claims 1 to 14 and claim 21 is used as a raw material, and the flocking is performed on the surface of the base material where the flocking is to be performed. Electrostatic flocking products made.
PCT/JP1993/001481 1992-10-23 1993-10-15 Floc for electrostatic hair transplantation WO1994010371A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69319738T DE69319738T2 (en) 1992-10-23 1993-10-15 FLOCCLE FOR ELECTROSTATIC FIBER TRANSPLANTATION
EP93922635A EP0667413B1 (en) 1992-10-23 1993-10-15 Floc for electrostatic pile planting
KR1019950701572A KR950704564A (en) 1992-10-23 1993-10-15 FLOCK FOR ELECTROSTATIC PILE PLANTING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP30952192 1992-10-23
JP4/309521 1992-10-23

Publications (1)

Publication Number Publication Date
WO1994010371A1 true WO1994010371A1 (en) 1994-05-11

Family

ID=17994010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001481 WO1994010371A1 (en) 1992-10-23 1993-10-15 Floc for electrostatic hair transplantation

Country Status (6)

Country Link
EP (1) EP0667413B1 (en)
KR (1) KR950704564A (en)
CN (1) CN1111170A (en)
DE (1) DE69319738T2 (en)
TW (1) TW253920B (en)
WO (1) WO1994010371A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099889A1 (en) * 2006-02-28 2007-09-07 University Of Yamanashi Method of treating conductive polymer

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7891022B2 (en) 2002-06-28 2011-02-22 S.T. Chemical Co., Ltd. Moisture retentive gloves and process for producing the same
CN1295731C (en) * 2002-11-25 2007-01-17 财团法人工业技术研究院 Method for implanting metal nano wire or nano tube into field emission source assembly
WO2009069086A2 (en) 2007-11-27 2009-06-04 Stroemme Maria Composite materials including an intrinsically conducting polymer, and methods and devices
GB2475714A (en) * 2009-11-27 2011-06-01 Pangaea Lab Ltd Hair building solids
CN101844872B (en) * 2010-05-07 2012-05-02 上海长悦涂料有限公司 Preparation method of flocking liquid
CN109023989A (en) * 2018-09-06 2018-12-18 山东领潮新材料有限公司 A kind of flaxen fiber electrostatic flocking fabric and preparation method thereof that natural antibacterial is mould proof
CN109763317A (en) * 2019-01-16 2019-05-17 广东顺德贰发毛绒有限公司 A kind of electricity of dust-proof villus treatment process
CN109734905B (en) * 2019-02-13 2022-02-08 东北大学 Preparation method and application of partially crystalline copolymer for enhancing performance of electrocatalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497647A (en) * 1978-01-19 1979-08-01 Unitika Ltd Electrostatic flocking
JPH0233381A (en) * 1987-08-03 1990-02-02 Milliken Res Corp Conductive fiber material and method for its manufacture
JPH03163709A (en) * 1989-08-29 1991-07-15 Achilles Corp Manufacture of conductive fiber base material
JPH03294580A (en) * 1990-04-11 1991-12-25 Achilles Corp Electrically conductive fiber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975317A (en) * 1987-08-03 1990-12-04 Milliken Research Corporation Electrically conductive textile materials and method for making same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497647A (en) * 1978-01-19 1979-08-01 Unitika Ltd Electrostatic flocking
JPH0233381A (en) * 1987-08-03 1990-02-02 Milliken Res Corp Conductive fiber material and method for its manufacture
JPH03163709A (en) * 1989-08-29 1991-07-15 Achilles Corp Manufacture of conductive fiber base material
JPH03294580A (en) * 1990-04-11 1991-12-25 Achilles Corp Electrically conductive fiber

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Newest Dyeing & Finishing Technique", edited by "The Textile Machinery Soc. of Japan", September 25, 1973 (25.09.73), The Textile Machinery Soc. of Japan, pages 333 to 341, particularly page 336. *
See also references of EP0667413A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099889A1 (en) * 2006-02-28 2007-09-07 University Of Yamanashi Method of treating conductive polymer
JP5256454B2 (en) * 2006-02-28 2013-08-07 国立大学法人山梨大学 Method for treating conductive polymer

Also Published As

Publication number Publication date
EP0667413A4 (en) 1995-12-27
KR950704564A (en) 1995-11-20
CN1111170A (en) 1995-11-08
DE69319738D1 (en) 1998-08-20
EP0667413B1 (en) 1998-07-15
EP0667413A1 (en) 1995-08-16
TW253920B (en) 1995-08-11
DE69319738T2 (en) 1999-01-07

Similar Documents

Publication Publication Date Title
US3958066A (en) Conductive synthetic fibers
US4267233A (en) Electrically conductive fiber and method for producing the same
WO1994010371A1 (en) Floc for electrostatic hair transplantation
CN105980624B (en) The corona treatment of coloring for textile
JP3284705B2 (en) Flock for electrostatic flocking
CN111155201A (en) Polyacrylonitrile/carbon nanotube composite fiber and preparation method and application thereof
JP3502961B2 (en) Flock for electrostatic flocking
US5431856A (en) Conductive fibres
JPH10305506A (en) Flock for electrostatic flocking and manufacture thereof
JP4825772B2 (en) Conductive animal hair fiber sliver and production method thereof, conductive spun yarn obtained from the sliver, and fiber product using the conductive spun yarn
JP3855208B2 (en) Method for producing conductive composite
JPS6241266A (en) Electrically conductive high-molecular material
JP4188127B2 (en) Leather-like sheet having ultrafine fiber napping and method for producing the same
JP2929162B2 (en) Luminescent pigment modification method
EP3978666B1 (en) Method for producing woven fabric of recycled pet and modified with carbon nantubes and such a fabric
JPS6330432B2 (en)
KR20030018753A (en) Flocking yarn and manufacturing method thereof
JP3604163B2 (en) Fabric with improved texture and method for producing the same
JPH05331767A (en) Nonwoven fabric
CN108286079A (en) A kind of high intensity item does uniform mono- steps of polyester monofilament FDY and spins preparation process
JPS6375113A (en) Polyester yarn for flock processing
JPS5831168A (en) White conductive fiber
JPH05106173A (en) Production of suede-like synthetic leather
JPS62110917A (en) Electrically-conductive conjugated filamentous material
JP2005054324A (en) Suede-tone artificial leather and method for producing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1993922635

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1993922635

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1995 424336

Date of ref document: 19951103

Kind code of ref document: A

Format of ref document f/p: F

WWG Wipo information: grant in national office

Ref document number: 1993922635

Country of ref document: EP