WO2007099396A2 - Antibiotic kit and composition and uses thereof - Google Patents

Antibiotic kit and composition and uses thereof Download PDF

Info

Publication number
WO2007099396A2
WO2007099396A2 PCT/IB2006/003975 IB2006003975W WO2007099396A2 WO 2007099396 A2 WO2007099396 A2 WO 2007099396A2 IB 2006003975 W IB2006003975 W IB 2006003975W WO 2007099396 A2 WO2007099396 A2 WO 2007099396A2
Authority
WO
WIPO (PCT)
Prior art keywords
agent
acid
antibiotic
group
composition
Prior art date
Application number
PCT/IB2006/003975
Other languages
French (fr)
Other versions
WO2007099396A3 (en
Inventor
Doron Friedman
Alex Besonov
Dov Tamarkin
Meir Eini
Original Assignee
Foamix Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foamix Ltd. filed Critical Foamix Ltd.
Priority to AU2006339311A priority Critical patent/AU2006339311A1/en
Priority to CA002611577A priority patent/CA2611577A1/en
Priority to EP06847249A priority patent/EP1919449A2/en
Publication of WO2007099396A2 publication Critical patent/WO2007099396A2/en
Publication of WO2007099396A3 publication Critical patent/WO2007099396A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/12Aerosols; Foams
    • A61K9/122Foams; Dry foams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles

Definitions

  • Antibiotic agents have been used to relieve various systemic and superficial disorders.
  • Classical treatment applications include skin infections, vaginal infections, and other disorders that involve a bacterial infection in their etiological factors.
  • Antibiotic agents are available in topical dosage form.
  • Compositions containing antibiotic agents for topical treatment of dermatological disorders are available primarily in cream, lotion gel and ointment forms. Rubbing creams or ointments into the skin is inherently inefficient and difficult to achieve a constant and balanced application over large area of skin. Therefore, while semi-solid compositions, such as creams, lotions, gels and ointments are commonly used by consumers, new forms are desirable in order to achieve better control of the application, while maintaining or bestowing the skin beneficial properties of such products. Hence, the development of new compositions, having breakable foam consistency when released from a container and liquid properties when applied onto the skin is advantageous.
  • Foams and, in particular, foam emulsions are complicated systems which do not form under all circumstances. Changes in foam emulsion composition, such as by the addition of active ingredients, may destabilize the foam.
  • PCT/AU99/00735 teaches a pharmaceutical foam composition including (a) an active ingredient; (b) an occlusive agent; (c) an aqueous solvent; and (d) an organic cosolvent, in which the active ingredient is insoluble in water and insoluble in both water and the occlusive agent, and wherein there is sufficient occlusive agent to form an occlusive layer on the skin.
  • US Published Application No. 2004/0151671 provides pharmaceutical compositions in a pressurized container, comprising a quick breaking alcoholic foaming agent.
  • the present invention relates to a therapeutic kit to provide a safe and effective dosage of an antibiotic agent, including an aerosol packaging assembly including:
  • the pressurized product comprises a foamable composition including: i. an antibiotic agent; ii. at least one organic carrier selected from the group consisting of a hydrophobic organic carrier, an organic polar solvent, an emollient and mixtures thereof, at a concentration of about 2% to about 50% by weight; iii. a surface-active agent; iv. about 0.01% to about 5% by weight of at least one polymeric additive selected from the group consisting of a bioadhesive agent, a gelling agent, a film forming agent and a phase change agent; v. water; and vi. liquefied or compressed gas propellant at a concentration of about
  • the composition is selected from the group consisting of an oil-in-water emulsion and a water-in-oil emulsion.
  • the kit contains a valve, which is optionally attached to metered dose device.
  • the kit further includes a therapeutically active foam adjuvant is selected from the group consisting of a fatty alcohol having 15 or more carbons in their carbon chain; a fatty acid having 16 or more carbons in their carbon chain; fatty alcohols, derived from beeswax and including a mixture of alcohols, a majority of which has at least 20 carbon atoms in their carbon chain; a fatty alcohol having at least one double bond; a fatty acid having at least one double bond; a branched fatty alcohol; a branched fatty acid and a fatty acid substituted with a hydroxyl group.
  • the composition further contains a penetration enhancer.
  • the kit according to the present invention can optionally further contain at least one additional therapeutic agent selected from the group consisting of a steroidal anti-inflammatory agent, an immunosuppressive agent, an immunomodulator, an immunoregulating agent, a hormonal agent, an antifungal agent, an antiviral agent, an antiparasitic agent, vitamin A, a vitamin A derivative, vitamin B, a vitamin B derivative, vitamin C, a vitamin C derivative, vitamin D, a vitamin D derivative, vitamin E, a vitamin E derivative, vitamin F, a vitamin F derivative, vitamin K, a vitamin K derivative, a wound healing agent, a disinfectant, an anesthetic, an antiallergic agent, an alpha hydroxyl acid, lactic acid, glycolic acid, a beta-hydroxy acid, a protein, a peptide, a neuropeptide, a allergen, an immunogenic substance, a haptene, an oxidizing agent, an antioxidant, a dicarboxylic acid, azelaic acid, sebacic acid, a
  • the present invention provides a method of treating, alleviating or preventing disorders of the skin, body cavity or mucosal surface, wherein the disorder involves inflammation as one of its etiological factors, including administering topically to a subject having the disorder, a foamed composition including:
  • At least one organic carrier selected from a hydrophobic organic carrier, a polar solvent, an emollient and mixtures thereof, at a concentration of about 2% to about 50% by weight;
  • a polymeric additive selected from a bioadhesive agent, a gelling agent, a film forming agent and a phase change agent
  • the disorder to be treated is selected from the group consisting of a dermatose, a dermatitis, a vaginal disorder, a vulvar disorder, an anal disorder, a disorder of a body cavity, an ear disorder, a disorder of the nose, a disorder of the respiratory system, a bacterial infection, fungal infection, viral infection, dermatosis, dermatitis, parasitic infections, disorders of hair follicles and sebaceous glands, scaling papular diseases, benign tumors, malignant tumors, reactions to sunlight, bullous diseases, pigmentation disorders, disorders of cornification, pressure sores, disorders of sweating, inflammatory reactions, xerosis, ichthyosis, allergy, burn, wound, cut, chlamydia infection, gonorrhea infection, hepatitis B, herpes, HIV/AIDS, human papillomavirus (HPV), genital warts, bacterial vagi
  • Figure 1 is a schematic illustration of an aerosol valve suitable for use in the aerosol packaging assembly according to in one or more embodiments of the invention.
  • the present invention provides a therapeutic kit including an antibiotic agent.
  • the kit includes an aerosol packaging assembly having a container accommodating a pressurized product and an outlet capable of releasing the pressurized product as a foam.
  • the aerosol packaging assembly typically includes a container suitable for accommodating a pressurized product and an outlet capable of releasing a foam.
  • the outlet is typically a valve.
  • Figure 1 illustrates a typical aerosol valve 100.
  • the valve is made up of the valve cup 110 typically constructed from tinplated steel, or aluminum, an outer gasket 120, which is the seal between the valve cup and the aerosol can (not shown), a valve housing 130, which contains the valve stem 132, spring 134 and inner gasket 136, and a dip tube 140, which allows the liquid to enter valve.
  • the valve stem is the tap through which the product flows.
  • the inner gasket 136 covers the aperture 150 (hole) in the valve stem.
  • the valve spring 134 is usually made of stainless steel.
  • valve stem is fitted with small apertures 150 (also termed “orifices” and “holes”), through which the product flows.
  • Valves may contain one, two, three, four or more apertures, depending on the nature of the product to be dispensed.
  • the aperture(s) is covered by the inner gasket.
  • the actuator When the actuator is depressed it pushes the valve stem through the inner gasket, and the aperture(s) is uncovered, allowing liquid to pass through the valve and into the actuator.
  • the valve can have a stem with 1 to 4 apertures, or 1 to 2 apertures.
  • Each aperture can have a diameter of about 0.2 mm to about 1 mm, or a diameter of about 0.3 mm to about 0.8 mm.
  • the total aperture area i.e., the sum of areas of all apertures in a given stem, is between about 0.01 mm 2 and 1 mm 2 or the total aperture area is between about 0.04 mm 2 and 0.5 mm 2 .
  • the valve is attached, directly, or through a tube, to a metered dose device, which for dispensing an accurate dose of drug in the form of a foam.
  • the metered dose valve is selected to release a foam in a volume that provides an adequate therapeutic dose to the target site of the skin, a body surface, a body cavity or mucosal surface, e.g., the mucosa of the nose, mouth, eye, ear, respiratory system, vagina or rectum.
  • the meter dose valve provides a unit dose of between about 10 ⁇ L and about 1000 ⁇ l_. Assuming a representative foam density (specific gravity) of 0.06 g/mL, a 10 ⁇ L valve provides a volume of about 0.17 ml_ of foam, and a 1000 ⁇ L metered dose valve provides about 17 mL of foam.
  • a specific metered dosing valve and adjusting the foam density by fine tuning formulation parameters and adjusting the ratio between the liquid components of the composition and the propellant one can design an adequate dosage form according to the specific target site.
  • Exemplary metered dose devices may be found in co-pending application serial no. 11/406,133, entitled “Apparatus and Method for Releasing a Measured Amount of Content from a Container," filed April 18, 2006, which is hereby incorporated in its entirety by reference.
  • the foamable therapeutic composition for administration to the skin, a body surface, a body cavity, a mucosal surface, the nose, the mouth, the eye, the ear canal, the respiratory system, the vagina and the rectum includes:
  • antibiotic agent wherein the antibiotic agent is effective in the treatment of a disorder of the target site
  • At least one organic carrier selected from a hydrophobic organic carrier, a polar solvent, an emollient and mixtures thereof, at a concentration of about 2% to about 5%, or about 5% to about 10%;or about 10% to about 20%; or about 20% to about 50% by weight;
  • a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition.
  • the foamable composition is substantially alcohol-free, i.e., free of short chain alcohols.
  • Short chain alcohols having up to 5 carbon atoms in their carbon chain skeleton and one hydroxyl group, such as ethanol, propanol, isopropanol, butanol, iso-butanol, t-butanol and pentanol, are considered less desirable solvents or polar solvents due to their skin-irritating effect.
  • the composition is substantially alcohol-free and includes less than about 5% final concentration of lower alcohols, preferably less than about 2%, more preferably less than about 1%.
  • the foam composition is formulated as an oil-in-water emulsion or oil-in-water microemulsion, yet, in additional embodiments, the foam composition is formulated as an water-in-oil emulsion or water-in-oil microemulsion.
  • the concentration of surface-active agent about 0.1% to about 5%, or from about 0.2% to about 2%.
  • an antibiotic agent is a substance that has the capacity to inhibit the growth of or to destroy bacteria and other microorganisms.
  • the antibiotic agent is selected from the classes consisting of beta-lactam antibiotics, aminoglycosides, ansa-type antibiotics, anthraquinones, antibiotic azoles, antibiotic glycopeptides, macrolides, antibiotic nucleosides, antibiotic peptides, antibiotic polyenes, antibiotic polyethers, quinolones, antibiotic steroids, sulfonamides, tetracycline, dicarboxylic acids, antibiotic metals, oxidizing agents, substances that release free radicals and/or active oxygen, cationic antimicrobial agents, quaternary ammonium compounds, biguanides, triguanides, bisbiguanides and analogs and polymers thereof and naturally occurring antibiotic compounds.
  • Beta-lactam antibiotics include, but are not limited to, 2-(3- alanyl)clavam, 2-hydroxymethylclavam, 8-epi-thienamycin, acetyl-thienamycin, amoxicillin, amoxicillin sodium, amoxicillin trihydrate, amoxicillin-potassium clavulanate combination, ampicillin, ampicillin sodium, ampicillin trihydrate, ampicillin-sulbactam, apalcillin, aspoxicillin, azidocillin, azlocillin, aztreonam, bacampicillin, biapenem, carbenicillin, carbenicillin disodium, carfecillin, carindacillin, carpetimycin, cefacetril, cefaclor, cefadroxil, cefalexin, cefaloridine, cefalotin, cefamandole, cefamandole, cefapirin, cefatrizine, cefatrizine propylene glycol, cefaze
  • Aminoglycosides include, but are not limited to, 1 ,2'-N-DL-isoseryl- 3',4'-dideoxykanamycin B, 1 ,2'-N-DL-isoseryl-kanamycin B, 1 ,2'-N-[(S)-4-amino- 2-hydroxybutyryl]-3',4'-dideoxykanamycin B, 1 ,2'-N-[(S)-4-amino-2- hydroxybutyryl]-kanamycin B, 1 -N-(2-Aminobutanesulfonyl) kanamycin A, 1-N-(2- aminoethanesulfonyOS' ⁇ '-dideoxyribostamycin, 1-N-(2-Aminoethanesulfonyl)3'- deoxyribostamycin, 1-N-(2-aminoethanesulfonyl)3'4 l -dideoxykanamycin B, 1-N
  • Ansa-type antibiotics include, but are not limited to, 21-hydroxy-25- demethyl-25-methylthioprotostreptovaricin, 3-methylthiorifamycin, ansamitocin, atropisostreptovaricin, awamycin, halomicin, maytansine, naphthomycin, rifabutin, rifamide, rifampicin, rifamycin, rifapentine, rifaximin, rubradirin, streptovaricin, tolypomycin and analogs, salts and derivatives thereof.
  • Antibiotic anthraquinones include, but are not limited to, auramycin, cinerubin, ditrisarubicin, ditrisarubicin C, figaroic acid fragilomycin, minomycin, rabelomycin, rudolfomycin, sulfurmycin and analogs, salts and derivatives thereof.
  • Antibiotic azoles include, but are not limited to, azanidazole, bifonazole, butoconazol, chlormidazole, chlormidazole hydrochloride, cloconazole, cloconazole monohydrochloride, clotrimazol, dimetridazole, econazole, econazole nitrate, enilconazole, fenticonazole, fenticonazole nitrate, fezatione, fluconazole, flutrimazole, isoconazole, isoconazole nitrate, itraconazole, ketoconazole, lanoconazole, metronidazole, metronidazole benzoate, miconazole, miconazole nitrate, neticonazole, nimorazole, niridazole, omoconazol, omidazole, oxiconazole, oxiconazole nitrate, prop
  • Antibiotic glycopeptides include, but are not limited to, acanthomycin, actaplanin, avoparcin, balhimycin, bleomycin B (copper bleomycin), chloroorienticin, chloropolysporin, demethylvancomycin, enduracidin, galacardin, guanidylfungin, hachimycin, demethylvancomycin, N-nonanoyl-teicoplanin, phleomycin, platomycin, ristocetin, staphylocidin, talisomycin, teicoplanin, vancomycin, victomycin, xylocandin, zorbamycin and analogs, salts and derivatives thereof.
  • Macrolides include, but are not limited to, acetylleucomycin, acetylkitasamycin, angolamycin, azithromycin, bafilomycin, brefeldin, carbomycin, chalcomycin, cirramycin, clarithromycin, concanamycin, deisovaleryl-niddamycin, demycinosyl-mycinamycin, Di-O-methyltiacumicidin, dirithromycin, erythromycin, erythromycin estolate, erythromycin ethyl succinate, erythromycin lactobionate, erythromycin stearate, flurithromycin, focusin, foromacidin, haterumalide, haterumalide, josamycin, josamycin ropionate, juvenimycin, juvenimycin, kitasamycin, ketotiacumicin, lankavacidin, lankavamycin, leucomycin, machecin, maridomycin,
  • Antibiotic nucleosides include, but are not limited to, amicetin, angustmycin, azathymidine, blasticidin S, epiroprim, flucytosine, gougerotin, mildiomycin, nikkomycin, nucleocidin, oxanosine, oxanosine, puromycin, pyrazomycin, showdomycin, sinefungin, sparsogenin, spicamycin, tunicamycin, uracil polyoxin, vengicide and analogs, salts and derivatives thereof.
  • Antibiotic peptides include, but are not limited to, actinomycin, aculeacin, alazopeptin, amfomycin, amythiamycin, antifungal from Zalerion arboricola, antrimycin, apid, apidaecin, aspartocin, auromomycin, bacileucin, bacillomycin, bacillopeptin, bacitracin, bagacidin, berninamycin, beta-alanyl-L- tyrosine, bottromycin, capreomycin, caspofungine, cepacidine, cerexin, cilofungin, circulin, colistin, cyclodepsipeptide, cytophagin, dactinomycin, daptomycin, decapeptide, desoxymulundocandin, echanomycin, echinocandin B, echinomycin, ecomycin, enniatin, etamycin, fabatin, ferri
  • the antibiotic peptide is a naturally- occurring peptide that possesses an antibacterial and/or an antifungal activity. Such peptide can be obtained from a herbal or a vertebrate source.
  • Polyenes include, but are not limited to, amphotericin, amphotericin, aureofungin, ayfactin, azalomycin, blasticidin, candicidin, candicidin methyl ester, candimycin, candimycin methyl ester, chinopricin, filipin, flavofungin, fradicin, hamycin, hydropricin, levorin, lucensomycin, lucknomycin, mediocidin, mediocidin methyl ester, mepartricin, methylamphotericin, natamycin, niphimycin, nystatin, nystatin methyl ester, oxypricin, partricin, pentamycin, perimycin, pimar
  • Polyethers include, but are not limited to, 20-deoxy-epi-narasin, 20- deoxysalinomycin, carriomycin, dianemycin, dihydrolonomycin, etheromycin, ionomycin, iso-lasalocid, lasalocid, lenoremycin, Ionomycin, lysocellin, monensin, narasin, oxolonomycin, a polycyclic ether antibiotic, salinomycin and analogs, salts and derivatives thereof.
  • Quinolones include, but are not limited to, an alkyl-methylendioxy- 4(1H)-oxocinnoline-3-carboxylic acid, alatrofloxacin, cinoxacin, ciprofloxacin, ciprofloxacin hydrochloride, danofloxacin, dermofongin A, enoxacin, enrofloxacin, fleroxacin, flumequine, gatifloxacin, gemifloxacin, grepafloxacin, levofloxacin, lomefloxacin, lomefloxacin, hydrochloride, miloxacin, moxifloxacin, nadifloxacin, nalidixic acid, nifuroquine, norfloxacin, ofloxacin, orbifloxacin, oxolinic acid, pazufloxacine, pefloxacin, pefloxacin mesylate
  • Antibiotic steroids include, but are not limited to, aminosterol, ascosteroside, cladosporide A, dihydrofusidic acid, dehydro-dihydrofusidic acid, dehydrofusidic acid, fusidic acid, squalamine and analogs, salts and derivatives thereof.
  • Sulfonamides include, but are not limited to, chloramine, dapsone, mafenide, phthalylsulfathiazole, succinylsulfathiazole, sulfabenzamide, sulfacetamide, sulfachlorpyridazine, sulfadiazine, sulfadiazine silver, sulfadicramide, sulfadimethoxine, sulfadoxine, sulfaguanidine, sulfalene, sulfamazone, sulfamerazine, sulfamethazine, sulfamethizole, sulfamethoxazole, sulfamethoxypyridazine, sulfamonomethoxine, sulfamoxol, sulfanilamide, sulfaperine, sulfaphenazol, s
  • Tetracyclines include, but are not limited to, dihydrosteffimycin, demethyltetracycline, aclacinomycin, akrobomycin, baumycin, bromotetracycline, cetocyclin, chlortetracycline, clomocycline, daunorubicin, demeclocycline, doxorubicin, doxorubicin hydrochloride, doxycycline, lymecyclin, marcellomycin, meclocycline, meclocycline sulfosalicylate, methacycline, minocycline, minocycline hydrochloride, musettamycin, oxytetracycline, rhodirubin, rolitetracycline, rubomycin, serirubicin, steffimycin, tetracycline and analogs, salts and derivatives thereof.
  • Dicarboxylic acids having between about 6 and about 14 carbon atoms in their carbon atom skeleton are particularly useful in the treatment of disorders of the skin and mucosal membranes that involve microbial.
  • Suitable dicarboxylic acid moieties include, but are not limited to, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1 ,11-undecanedioic acid, 1 ,12- dodecanedioic acid, 1 ,13-tridecanedioic acid and 1 ,14-tetradecanedioic acid.
  • dicarboxylic acids having between about 6 and about 14 carbon atoms in their carbon atom skeleton, as well as their salts and derivatives (e.g., esters, amides, mercapto- derivatives, anhydraides), are useful immunomodulators in the treatment of disorders of the skin and mucosal membranes that involve inflammation.
  • Azelaic acid and its salts and derivatives are preferred. It has antibacterial effects on both aerobic and anaerobic organisms, particularly propionibacterium acnes and staphylococcus epidermidis, normalizes keratinization, and has a cytotoxic effect on malignant or hyperactive melanocytes.
  • the dicarboxylic acid is azelaic acid in a concentration greater than 10%.
  • concentration of azelaic acid is between about 10% and about 25%.
  • azelaic acid is suitable for the treatment of a variety of skin disorders, such as acne, rosacea and hyperpigmentation.
  • the antibiotic agent is an antibiotic metal.
  • a number of metals ions been shown to possess antibiotic activity, including silver, copper, zinc, mercury, tin, lead, bismutin, cadmium, chromium and ions thereof. It has been theorized that these antibiotic metal ions exert their effects by disrupting respiration and electron transport systems upon absorption into bacterial or fungal cells.
  • Anti-microbial metal ions of silver, copper, zinc, and gold, in particular, are considered safe for in vivo use. Anti-microbial silver and silver ions are particularly useful due to the fact that they are not substantially absorbed into the body.
  • the antibiotic metal consists of an elemental metal, selected from the group consisting of silver, copper, zinc, mercury, tin, lead, bismutin, cadmium, chromium and gold, which is suspended in the composition as particles, microparticles, nanoparticles or colloidal particles.
  • the antibiotic metal can further be intercalated in a chelating substrate.
  • the antibiotic metal is ionic.
  • the ionic antibiotic metal can be presented as an inorganic or organic salt (coupled with a counterion), an organometallic complex or an intercalate.
  • Non binding examples of counter inorganic and organic ions are sulfadiazine, acetate, benzoate, carbonate, iodate, iodide, lactate, laurate, nitrate, oxide, palmitate, a negatively charged protein.
  • the antibiotic metal salt is a silver salt, such as silver acetate, silver benzoate, silver carbonate, silver iodate, silver iodide, silver lactate, silver laurate, silver nitrate, silver oxide, silver palmitate, silver protein, and silver sulfadiazine.
  • the antibiotic metal or metal ion is embedded into a substrate, such as a polymer, a mineral (such as zeolite, clay and silica).
  • the antibiotic agent comprises strong oxidants and free radical liberating compounds, such as oxygen, hydrogen peroxide, benzoyl peroxide, elemental halogen species, as well as oxygenated halogen species, bleaching agents (e.g., sodium, calcium or magnesium hypochloride and the like), perchlorite species, iodine, iodate, and benzoyl peroxide.
  • strong oxidants and free radical liberating compounds such as oxygen, hydrogen peroxide, benzoyl peroxide, elemental halogen species, as well as oxygenated halogen species, bleaching agents (e.g., sodium, calcium or magnesium hypochloride and the like), perchlorite species, iodine, iodate, and benzoyl peroxide.
  • bleaching agents e.g., sodium, calcium or magnesium hypochloride and the like
  • perchlorite species iodine, iodate
  • benzoyl peroxide Organic oxidizing agents are also included in the definition
  • the antibiotic agent is a cationic antimicrobial agent.
  • the outermost surface of bacterial cells universally carries a net negative charge, making them sensitive to cationic substances.
  • cationic antibiotic agents include: quaternary ammonium compounds (QACs) - QACs are surfactants, generally containing one quaternary nitrogen associated with at least one major hydrophobic moiety; alkyltrimethyl ammonium bromides are mixtures of where the alkyl group is between 8 and 18 carbons long, such as cetrimide (tetradecyltrimethylammonium bromide); benzalkonium chloride, which is a mixture of n-alkyldimethylbenzyl ammonium chloride where the alkyl groups (the hydrophobic moiety) can be of variable length; dialkylmethyl ammonium halides; dialkylbenzyl ammonium halides; and QAC dimmers, which bear bi-polar positive charges in conjunction with interstitial hydrophobic regions.
  • QACs quatern
  • the antibiotic agent is selected from the group of biguanides, triguanides, bisbiguanides and analogs thereof.
  • Guanides, biguanides, biguanidines and triguanides are unsaturated nitrogen containing molecules that readily obtain one or more positive charges, which make them effective antimicrobial agents.
  • the basic structures a guanide, a biguanide, a biguanidine and a triguanide are provided below.
  • the guanide, biguanide, biguanidine or triguanide provide bi-polar configurations of cationic and hydrophobic domains within a single molecule. «
  • Examples of guanides, biguanides, biguanidines and triguanides that are currently been used as antibacterial agents include chlorhexidine and chlorohexidine salts, analogs and derivatives, such as chlorhexidine acetate, chlorhexidine gluconate and chlorhexidine hydrochloride, picloxydine, alexidine and polihexanide.
  • guanides, biguanides, biguanidines and triguanides that can conceivably be used according to the present invention are chlorproguanil hydrochloride, proguanil hydrochloride (currently used as antimalarial agents), metformin hydrochloride, phenformin and buformin hydrochloride (currently used as antidiabetic agents).
  • the cationic antimicrobial agent is a polymer.
  • Cationic antimicrobial polymers include, for example, guanide polymers, biguanide polymers, or polymers having side chains containing biguanide moieties or other cationic functional groups, such as benzalkonium groups or quartemium groups (e.g., quaternary amine groups).
  • polymer as used herein includes any organic material comprising three or more repeating units, and includes oligomers, polymers, copolymers, block copolymers, terpolymers, etc.
  • the polymer backbone may be, for example a polyethylene, ploypropylene or polysilane polymer.
  • the cationic antimicrobial polymer is a polymeric biguanide compound. When applied to a substrate, such a polymer is known to form a barrier film that can engage and disrupt a microorganism.
  • An exemplary polymeric biguanide compound is polyhexamethylene biguanide (PHMB) salts.
  • PHMB polyhexamethylene biguanide
  • Other exemplary biguanide polymers include, but are not limited to poly(hexamethylenebiguanide), poly(hexamethylenebiguanide) hydrochloride, poly(hexamethylenebiguanide) gluconate, poly(hexamethylenebiguanide) stearate, or a derivative thereof.
  • the antimicrobial material is substantially water-insoluble.
  • the antibiotic is a non-classified antibiotic agent, including, without limitation, aabomycin, acetomycin, acetoxycycloheximide, acetylnanaomycin, an actinoplanes sp.
  • the antibiotic agent is a naturally occurring antibiotic compound.
  • naturally-occurring antibiotic agent includes all antibiotic that are obtained, derived or extracted from plant or vertebrate sources.
  • families of naturally- occurring antibiotic agents include phenol, resorcinol, antibiotic aminoglycosides, anamycin, quinines, anthraquinones, antibiotic glycopeptides, azoles, macrolides, avilamycin, agropyrene, cnicin, aucubin antibioticsaponin fractions, berberine (isoquinoline alkaloid), arctiopicrin (sesquiterpene lactone), lupulone, humulone (bitter acids), allicin, hyperforin, echinacoside, coniosetin, tetramic acid, imanine and novoimanine.
  • Ciclopirox and ciclopiroxolamine possess fungicidal, fungistatic and sporicidal activity. They are active against a broad spectrum of dermatophytes, yeasts, moulds and other fungi, such as trichophyton species, microsporum species, epidermophyton species and yeasts (Candida albicans, Candida glabrata, other Candida species and cryptococcus neoformans). Some aspergillus species are sensitive to ciclopirox as are some penicillium.
  • ciclopirox is effective against many gram-positive and gram-negative bacteria (e.g., escherichia coli, proteus mirabilis, pseudomonas aeruginosa, staphylococcus and streptococcus species), as well as mycoplasma species, trichomonas vaginalis and actinomyces.
  • gram-positive and gram-negative bacteria e.g., escherichia coli, proteus mirabilis, pseudomonas aeruginosa, staphylococcus and streptococcus species
  • mycoplasma species e.g., escherichia coli, proteus mirabilis, pseudomonas aeruginosa, staphylococcus and streptococcus species
  • mycoplasma species e.g., escherichia coli, proteus mirabilis, pseudomonas aeruginosa, staphylococcus and streptococcus species
  • Plant oils and extracts which contain antibiotic agents are also useful.
  • Non limiting examples of plants that contain agents include thyme, perilla, lavender, tea tree, terfezia claveryi, Micromonospora, putterlickia verrucosa , putterlickia pyracantha putterlickia retrospinosa, Maytenus ilicifolia , maytenus evonymoides., maytenus aquifolia, taenia interjecta, cordyceps sinensis, couchgrass, holy thistle, plantain, burdock, hops, echinacea, buchu, chaparral, myrrh, red clover and yellow dock, garlic and St. John's wort.
  • the antibiotic agent is “soluble”, “freely soluble” or “very soluble” (as defined above) in the aqueous phase of the emulsion.
  • the antibiotic agent is “soluble”, “freely soluble” or “very soluble” in the oil phase of the emulsion.
  • the antibiotic agent is “very slightly soluble”, “slightly soluble” or “sparingly soluble” in either the water phase or oil phase of the emulsion.
  • the antibiotic agent is insoluble i.e., "requires 10,000 parts or more of a solvent to be solubilized", in either the water phase of the composition, or the oil phase of the composition, but not in both.
  • the antibiotic agent is not fully dissolved in both the aqueous phase of the oil phase of the emulsion concurrently, and thus, it is suspended in the emulsion (i.e., at least a portion of the antibiotic agent portion remains in solid state in the final composition).
  • the polymeric agents that are listed herein serve as suspension-stabilizing agents to stabilize the composition.
  • composition and properties of the aqueous phase of the emulsion e.g., pH, electrolyte concentration and chelating agents
  • the composition of the oil phase of the emulsion are adjusted to attain a desirable solubility profile of the active agent.
  • Antibiotic agents are useful for the treatment of skin infections and infections of other target sites, such as the vagina and rectum.
  • the pH of the composition is adjusted for optimal efficacy, according to the specific infection and in light of the specific target site.
  • the pH of the composition is between 3.5 and 8.5, and more preferably between about 4.5 and about 7.0, which is preferable for skin therapy.
  • the pH of the composition is between about 3 and about 4.5, which is suitable for vaginal therapy.
  • the pH of the composition can be lower than 3.
  • Two exemplary antibiotic agents that are being used both in skin therapy and vaginal therapy are metronidazole and clindamycin.
  • the pH of the foamable composition is adjusted between about 4.5 and about 7.0 for skin treatment and about 3 and about 4.5 for vaginal treatment.
  • the adjustment of the pH can performed, as needed by the addition of an acid, a base or a buffering agent.
  • the antibiotic agent is included in the composition of the present invention in a concentration that provides a desirable ratio between the efficacy and safety.
  • antibiotic agents are included in the composition in a concentration between about 0.005% and about 12%.
  • the antibiotic agent is encapsulated in particles, microparticles, nanoparticles, microcapsules, spheres, microsphres, nanocapsules, nanospheres, liposomes, niosomes, polymer matrix, nanocrystals or microsponges.
  • the antibiotic agent is an antibiotic agent precursor present at a concentration between about 0.05% and about 12%.
  • the antibiotic agent is a compound that is positively identified using a laboratory method, suitable of detecting an antibiotic agent.
  • the antibiotic agent is a substance that is positively identified using a competitive nuclear retinoic acid receptor-binding assay.
  • etiological factors some of which are related to a microbiological infection (that can be affected by an antibiotic agent); and other etiological factors that require an additional therapeutic modality.
  • impetigo involves bacterial infection as well as inflammation, and therefore combined treatment with an antibiotic agent and an anti-inflammatory agent would be beneficial.
  • chronic ulcers involve poor blood supply and potential bacterial, fungal and viral infections, which warrants a beneficial effect of a combination of an antibiotic agent and a vasoactive agent.
  • the inclusion of an additional therapeutic agent in the foamable composition of the present invention contributes to the clinical activity of the antibiotic agent.
  • the foamable composition further includes at least one additional therapeutic agent, in a therapeutically effective concentration.
  • the at least one additional therapeutic agent is selected from the group consisting of a steroidal anti-inflammatory agent, a nonsteroidal anti-inflammatory drug, an immunosuppressive agent, an immunomodulator, an immunoregulating agent, a hormonal agent, an antifungal agent, an antiviral agent, an antiparasitic agent, a vasoactive agent, a vasoconstrictor, a vasodilator, vitamin A, a vitamin A derivative, vitamin B, a vitamin B derivative, vitamin C, a vitamin C derivative, vitamin D, a vitamin D derivative, vitamin E, a vitamin E derivative, vitamin F, a vitamin F derivative, vitamin K, a vitamin K derivative, a wound healing agent, a disinfectant, an anesthetic, an antiallergic agent, an alpha hydroxyl acid, lactic acid, glycolic acid, a beta-hydroxy acid, a protein, a peptide, a neuropeptide, a allergen, an immunogenic substance, a haptene
  • the disorder to be treated involves unaesthetic lesions that need to be masked.
  • rosacea involves papules and pustules, which can be treated with an antibiotic agent, as well as erythema, telangiectasia and redness, which partially respond to treatment with an antibiotic agent.
  • the additional active agent is a masking agent, i.e., a pigment.
  • suitable pigments include brown, yellow or red iron oxide or hydroxides, chromium oxides or hydroxides, titanium oxides or hydroxides, zinc oxide, FD&C Blue No. 1 aluminum lake, FD&C Blue No. 2 aluminum lake and FD&C Yellow No. 6 aluminum lake.
  • the foamable composition of the present invention can be an emulsion, or microemulsion, including an aqueous phase and an organic carrier phase.
  • the organic carrier is selected from a hydrophobic organic carrier (also termed herein "hydrophobic solvent"), an emollient, a polar solvent, and a mixture thereof.
  • a "hydrophobic organic carrier” as used herein refers to a material having solubility in distilled water at ambient temperature of less than about 1 gm per 100 ml_, more preferable less than about 0.5 gm per 100 ml_, and most preferably less than about 0.1 gm per 100 mL. It is liquid at ambient temperature.
  • the identification of a hydrophobic organic carrier or "hydrophobic solvent”, as used herein, is not intended to characterize the solubilization capabilities of the solvent for any specific active agent or any other component of the foamable composition. Rather, such information is provided to aid in the identification of materials suitable for use as a hydrophobic carrier in the foamable compositions described herein.
  • the hydrophobic organic carrier is an oil, such as mineral oil.
  • Mineral oil (Chemical Abstracts Service Registry number 8012-95-1) is a mixture of aliphatic, naphthalenic, and aromatic liquid hydrocarbons that derive from petroleum. It is typically liquid; its viscosity is in the range of between about 35 CST and about 100 CST (at 40°C), and its pour point (the lowest temperature at which an oil can be handled without excessive amounts of wax crystals forming so preventing flow) is below 0°C.
  • hydrophobic organic carrier does not include thick or semi-solid materials, such as white petrolatum, also termed "Vaseline", which, in certain compositions is disadvantageous due to its waxy nature and semi-solid texture.
  • hydrophobic solvents are liquid oils originating from vegetable, marine or animal sources. Suitable liquid oil includes saturated, unsaturated or polyunsaturated oils.
  • the unsaturated oil may be olive oil, corn oil, soybean oil, canola oil, cottonseed oil, coconut oil, sesame oil, sunflower oil, borage seed oil, syzigium aromaticum oil, hempseed oil, herring oil, cod-liver oil, salmon oil, flaxseed oil, wheat germ oil, evening primrose oils or mixtures thereof, in any proportion.
  • Suitable hydrophobic solvents also include polyunsaturated oils containing poly-unsatu rated fatty acids.
  • the unsaturated fatty acids are selected from the group of omega-3 and omega-6 fatty acids.
  • examples of such polyunsaturated fatty acids are linoleic and linolenic acid, gamma-linoleic acid (GLA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).
  • GLA gamma-linoleic acid
  • EPA eicosapentaenoic acid
  • DHA docosahexaenoic acid
  • the hydrophobic solvent can include at least 6% of an oil selected from omega-3 oil, omega-6 oil, and mixtures thereof.
  • oils that possess therapeutically beneficial properties are termed "therapeutically active oil”.
  • Another class of hydrophobic solvents is the essential oils, which are also considered therapeutically active oil, which contain active biologically occurring molecules and, upon topical application, exert a therapeutic effect, which is conceivably synergistic to the beneficial effect of the antibiotic agent in the composition.
  • Another class of therapeutically active oils includes liquid hydrophobic plant-derived oils, which are known to possess therapeutic benefits when applied topically.
  • Silicone oils also may be used and are desirable due to their known skin protective and occlusive properties.
  • Suitable silicone oils include nonvolatile silicones, such as polyalkyl siloxanes, polyaryl siloxanes, polyalkylaryl siloxanes and polyether siloxane copolymers, polydimethylsiloxanes (dimethicones) and poly(dimethylsiloxane)-(diphenyl-siloxane) copolymers. These are chosen from cyclic or linear polydimethylsiloxanes containing from about 3 to about 9, preferably from about 4 to about 5, silicon atoms. Volatile silicones such as cyclomethicones can also be used. Silicone oils are also considered therapeutically active oil, due to their barrier retaining and protective properties.
  • the hydrophobic carrier includes at least 2% by weight silicone oil or at least 5% by weight.
  • the solvent may be a mixture of two or more of the above hydrophobic solvents in any proportion.
  • a further class of solvents includes "emollients" that have a softening or soothing effect, especially when applied to body areas, such as the skin and mucosal surfaces.
  • Emollients are not necessarily hydrophobic.
  • suitable emollients include hexyleneglycol, propylene glycol, isostearic acid derivatives, isopropyl palmitate, isopropyl isostearate, diisopropyl adipate, diisopropyl dimerate, maleated soybean oil, octyl palmitate, cetyl lactate, cetyl ricinoleate, tocopheryl acetate, acetylated lanolin alcohol, cetyl acetate, phenyl trimethicone, glyceryl oleate, tocopheryl linoleate, wheat germ glycerides, arachidyl propionate, myristyl lactate, decyl oleate, propylene
  • An additional class of emollients suitable according to the present invention consists of polypropylene glycol (PPG) alkyl ethers, such as PPG stearyl ethers and PPG Butyl Ether, which are polypropylene ethers of stearyl ether that function as skin-conditioning agent in pharmaceutical and cosmetic formulations.
  • PPG alkyl ethers can be incorporated in the foamable composition of the present invention in a concentration between about 1 % and about 20%. The sensory properties of foams containing PPG alkyl ethers are favorable, as revealed by consumer panel tests.
  • the hydrophobic organic carrier includes a mixture of a hydrophobic solvent and an emollient.
  • the foamable composition is a mixture of mineral oil and an emollient in a ratio between 2:8 and 8:2 on a weight basis.
  • a "polar solvent” is an organic solvent, typically soluble in both water and oil.
  • polar solvents include polyols, such as glycerol (glycerin), propylene glycol, hexylene glycol, diethylene glycol, propylene glycol n-alkanols, terpenes, di-terpenes, tri-terpenes, terpen-ols, limonene, terpene-ol, 1 -menthol, dioxolane, ethylene glycol, other glycols, sulfoxides, such as dimethylsulfoxide (DMSO), dimethylformanide, methyl dodecyl sulfoxide, dimethylacetamide, monooleate of ethoxylated glycerides (with 8 to 10 ethylene oxide units), azone (1-dodecylazacycloheptan-2-one), 2-(n-nonyl)-1 ,3-dioxolane
  • the polar solvent is a polyethylene glycol (PEG) or PEG derivative that is liquid at ambient temperature, including PEG200 (MW (molecular weight) about 190-210 kD), PEG300 (MW about 285-315 kD), PEG400 (MW about 380-420 kD), PEG600 (MW about 570- 630 kD) and higher MW PEGs such as PEG 4000, PEG 6000 and PEG 10000 and mixtures thereof.
  • PEG200 MW (molecular weight) about 190-210 kD
  • PEG300 MW about 285-315 kD
  • PEG400 MW about 380-420 kD
  • PEG600 MW about 570- 630 kD
  • higher MW PEGs such as PEG 4000, PEG 6000 and PEG 10000 and mixtures thereof.
  • the polymeric agent serves to stabilize the foam composition and to control drug residence in the target organ.
  • Exemplary polymeric agents are classified below in a non-limiting manner. In certain cases, a given polymer can belong to more than one of the classes provided below.
  • the composition of the present invention includes at least one gelling agent.
  • a gelling agent controls the residence of a therapeutic composition in the target site of treatment by increasing the viscosity of the composition, thereby limiting the rate of its clearance from the site.
  • Many gelling agents are known in the art to possess mucoadhesive properties.
  • the gelling agent can be a natural gelling agent, a synthetic gelling agent and an inorganic gelling agent.
  • Exemplary gelling agents that can be used in accordance with one or more embodiments of the present invention include, for example, naturally-occurring polymeric materials, such as locust bean gum, sodium alginate, sodium caseinate, egg albumin, gelatin agar, carrageenin gum, sodium alginate, xanthan gum, quince seed extract, tragacanth gum, guar gum, starch, chemically modified starches and the like, semi-synthetic polymeric materials such as cellulose ethers (e.g.
  • hydroxyethyl cellulose methyl cellulose, carboxymethyl cellulose, hydroxy propylmethyl cellulose
  • guar gum hydroxypropyl guar gum
  • soluble starch cationic celluloses, cationic guars, and the like
  • synthetic polymeric materials such as carboxyvinyl polymers, polyvinylpyrrolidone, polyvinyl alcohol, polyacrylic acid polymers, polymethacrylic acid polymers, polyvinyl acetate polymers, polyvinyl chloride polymers, polyvinylidene chloride polymers and the like. Mixtures of the above compounds are contemplated.
  • Further exemplary gelling agents include the acrylic acid/ethyl acrylate copolymers and the carboxyvinyl polymers sold, for example, by the B.F. Goodrich Company under the trademark of Carbopol® resins. These resins consist essentially of a colloidal water-soluble polyalkenyl polyether crosslinked polymer of acrylic acid crosslinked with from 0.75% to 2% of a crosslinking agent such as polyallyl sucrose or polyallyl pentaerythritol. Examples include Carbopol® 934, Carbopol® 940, Carbopol® 950, Carbopol® 980, Carbopol® 951 and Carbopol® 981. Carbopol® 934 is a water-soluble polymer of acrylic acid crosslinked with about 1% of a polyallyl ether of sucrose having an average of about 5.8 allyl groups for each sucrose molecule.
  • the composition of the present invention includes at least one polymeric agent, which is a water-soluble cellulose ether.
  • the water-soluble cellulose ether is selected from the group consisting of methylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose (Methocel), hydroxyethyl cellulose, methylhydroxyethylcellulose, methylhydroxypropylcellulose, hydroxyethylcarboxymethylcellulose, carboxymethylcellulose and carboxymethylhydroxyethylcellulose. More preferably, the water-soluble cellulose ether is selected from the group consisting of methylcellulose, hydroxypropyl cellulose and hydroxypropyl methylcellulose (Methocel).
  • the composition includes a combination of a water-soluble cellulose ether; and a naturally occurring polymeric materials, selected from the group including xanthan gum, guar gum, carrageenan gum, locust bean gum and tragacanth gum.
  • the gelling agent includes inorganic gelling agents, such as silicone dioxide (fumed silica).
  • Mucoadhesive/bioadhesion has been defined as the attachment of synthetic or biological macromolecules to a biological tissue.
  • Mucoadhesive agents are a class of polymeric biomaterials that exhibit the basic characteristic of a hydrogel, i.e. swell by absorbing water and interacting by means of adhesion with the mucous that covers epithelia.
  • Compositions of the present invention may contain a mucoadhesive macromolecule or polymer in an amount sufficient to confer bioadhesive properties.
  • the bioadhesive macromolecule enhances the delivery of biologically active agents on or through the target surface.
  • the mucoadhesive macromolecule may be selected from acidic synthetic polymers, preferably having at least one acidic group per four repeating or monomeric subunit moieties, such as poly(acrylic)- and/or poly(methacrylic) acid (e.g., Carbopol®, Carbomer®), poly(methylvinyl ether/maleic anhydride) copolymer, and their mixtures and copolymers; acidic synthetically modified natural polymers, such as carboxymethylcellulose (CMC); neutral synthetically modified natural polymers, such as (hydroxypropyl)methylcellulose; basic amine-bearing polymers such as chitosan; acidic polymers obtainable from natural sources, such as alginic acid, hyaluronic acid, pectin, gum tragacanth, and karaya gum; and neutral synthetic polymers, such as polyvinyl alcohol or their mixtures.
  • acidic synthetic polymers preferably having at least one acidic group per four repeating or monomeric subunit moie
  • An additional group of mucoadhesive polymers includes natural and chemically modified cyclodextrin, especially hydroxypropyl- ⁇ -cyclodextrin.
  • Such polymers may be present as free acids, bases, or salts, usually in a final concentration of about 0.01% to about 0.5% by weight.
  • a suitable bioadhesive macromolecule is the family of acrylic acid polymers and copolymers, (e.g., Carbopol®). These polymers contain the general structure -[CH2-CH(COOH)-] n . Hyaluronic acid and other biologically- derived polymers may be used.
  • bioadhesive or mucoadhesive macromolecules have a molecular weight of at least 50 kDa, or at least 300 kDa, or at least 1 ,000 kDa.
  • Favored polymeric ionizable macromolecules have not less than 2 mole percent acidic groups (e.g., COOH, SO 3 H) or basic groups (NH 2 , NRH, NFfe), relative to the number of monomeric units.
  • the acidic or basic groups can constitute at least 5 mole percent, or at least 10 mole percent, or at least 25, at least 50 more percent, or even up to 100 mole percent relative to the number of monomeric units of the macromolecule.
  • another group of mucoadhesive agent includes inorganic gelling agents such as silicon dioxide (fumed silica), including but not limited to, AEROSIL 200 (DEGUSSA).
  • the foam composition may contain a film-forming component.
  • the film-forming component may include at least one water-insoluble alkyl cellulose or hydroxyalkyl cellulose.
  • Exemplary alkyl cellulose or hydroxyalkyl cellulose polymers include ethyl cellulose, propyl cellulose, butyl cellulose, cellulose acetate, hydroxypropyl cellulose, hydroxybutyl cellulose, and ethylhydroxyethyl cellulose, alone or in combination.
  • a plasticizer or a cross-linking agent may be used to modify the polymer's characteristics.
  • esters such as dibutyl or diethyl phthalate, amides such as diethyldiphenyl urea, vegetable oils, fatty acids and alcohols such as oleic and myristyl acid may be used in combination with the cellulose derivative.
  • the composition of the present invention includes a phase change polymer, which alters the composition behavior from fluid-like prior to administration to solid-like upon contact with the target mucosal surface.
  • phase change results from external stimuli, such as changes in temperature or pH and exposure to specific ions (e.g., Ca 2+ ).
  • phase change polymers include poly(N-isopropylamide) and Poloxamer 407®.
  • the polymeric agent is present in an amount in the range of about 0.01 % to about 5.0% by weight of the foam composition. In one or more embodiments, it is typically less than about 1 wt% of the foamable composition.
  • Surface-active agents include any agent linking oil and water in the composition, in the form of emulsion.
  • a surfactant's hydrophilic/lipophilic balance (HLB) describes the emulsifier's affinity toward water or oil.
  • the HLB scale ranges from 1 (totally lipophilic) to 20 (totally hydrophilic), with 10 representing an equal balance of both characteristics.
  • Lipophilic emulsifiers form water-in-oil (w/o) emulsions; hydrophilic surfactants form oil-in-water (o/w) emulsions.
  • the HLB of a blend of two emulsifiers equals the weight fraction of emulsifier A times its HLB value plus the weight fraction of emulsifier B times its HLB value (weighted average).
  • the surface-active agent has a hydrophilic lipophilic balance (HLB) between about 9 and about 14, which is the required HLB (the HLB required to stabilize an O/W emulsion of a given oil) of most oils and hydrophobic solvents.
  • HLB hydrophilic lipophilic balance
  • the composition contains a single surface active agent having an HLB value between about 9 and 14, and in one or more embodiments, the composition contains more than one surface active agent and the weighted average of their HLB values is between about 9 and about 14.
  • the composition when a water in oil emulsion is desirable, contains one or more surface active agents, having an HLB value between about 2 and about 9.
  • the surface-active agent is selected from anionic, cationic, nonionic, zwitterionic, amphoteric and ampholytic surfactants, as well as mixtures of these surfactants.
  • Such surfactants are well known to those skilled in the therapeutic and cosmetic formulation art.
  • Nonlimiting examples of possible surfactants include polysorbates, such as polyoxyethylene (20) sorbitan monostearate (Tween 60) and poly(oxyethylene) (20) sorbitan monooleate (Tween 80); poly(oxyethylene) (POE) fatty acid esters, such as Myrj 45, Myrj 49, Myrj 52 and Myrj 59; poly(oxyethylene) alkylyl ethers, such as poly(oxyethylene) cetyl ether, poly(oxyethylene) palmityl ether, polyethylene oxide hexadecyl ether, polyethylene glycol cetyl ether, brij 38, brij 52, brij 56 and brij W1 ; sucrose esters, partial esters of sorbitol and its anhydrides, such as sorbitan monolaurate and sorbitan monolaurate; mono or diglycerides, isoceteth-20, sodium methyl cocoyl taurate, sodium methyl oleoyl taurate, sodium la
  • the surface- active agent includes at least one non-ionic surfactant.
  • Ionic surfactants are known to be irritants. Therefore, non-ionic surfactants are preferred in applications including sensitive tissue such as found in most mucosal tissues, especially when they are infected or inflamed. We have surprisingly found that non-ionic surfactants alone provide foams of excellent quality, i.e. a score of "E" according to the grading scale discussed herein below.
  • the surface active agent includes a mixture of at least one non-ionic surfactant and at least one ionic surfactant in a ratio in the range of about 100:1 to 6:1. In one or more embodiments, the non- ionic to ionic surfactant ratio is greater than about 6:1 , or greater than about 8:1 ; or greater than about 14:1 , or greater than about 16:1 , or greater than about 20:1.
  • a combination of a non-ionic surfactant and an ionic surfactant is employed, at a ratio of between 1:1 and 20:1 , or at a ratio of 4:1 to 10:1.
  • the resultant foam has a low specific gravity, e.g., less than 0.1 g/ml.
  • the surface active agent consistst of essentially a non-ionic surfactant or a combination of non-ionic surfactants.
  • the stability of the composition is especially pronounced when a combination of at least one non- ionic surfactant having HLB of less than 9 and at least one non-ionic surfactant having HLB of equal or more than 9 is employed.
  • the ratio between the at least one non-ionic surfactant having HLB of less than 9 and the at least one non-ionic surfactant having HLB of equal or more than 9, is between 1 :8 and 8:1 , or at a ratio of 4:1 to 1 :4.
  • the resultant HLB of such a blend of at least two emulsifiers is between about 9 and about 14.
  • a combination of at least one non-ionic surfactant having HLB of less than 9 and at least one non-ionic surfactant having HLB of equal or more than 9 is employed, at a ratio of between 1 :8 and 8:1 , or at a ratio of 4:1 to 1 :4, wherein the HLB of the combination of emulsifiers is between about 9 and about 14.
  • the surface- active agent includes mono-, di- and tri-esters of sucrose with fatty acids (sucrose esters), prepared from sucrose and esters of fatty acids or by extraction from sucro-glycerides.
  • sucrose esters include those having high monoester content, which have higher HLB values.
  • the total surface active agent is in the range of about 0.1 to about 5% of the foamable composition, and is typically less than about 2% or less than about 1 %.
  • a therapeutically effective foam adjuvant is included in the foamable compositions of the present invention to increase the foaming capacity of surfactants and/or to stabilize the foam.
  • the foam adjuvant agent includes fatty alcohols having 15 or more carbons in their carbon chain, such as cetyl alcohol and stearyl alcohol (or mixtures thereof).
  • fatty alcohols are arachidyl alcohol (C20), behenyl alcohol (C22), 1-triacontanol (C30), as well as alcohols with longer carbon chains (up to C50).
  • Fatty alcohols derived from beeswax and including a mixture of alcohols, a majority of which has at least 20 carbon atoms in their carbon chain, are especially well suited as foam adjuvant agents.
  • the amount of the fatty alcohol required to support the foam system is inversely related to the length of its carbon chains.
  • Foam adjuvants, as defined herein are also useful in facilitating improved spreadability and absorption of the composition.
  • the foam adjuvant agent includes fatty acids having 16 or more carbons in their carbon chain, such as hexadecanoic acid (C16) stearic acid (C18), arachidic acid (C20), behenic acid (C22), octacosanoic acid (C28), as well as fatty acids with longer carbon chains (up to C50), or mixtures thereof.
  • fatty acids having 16 or more carbons in their carbon chain, such as hexadecanoic acid (C16) stearic acid (C18), arachidic acid (C20), behenic acid (C22), octacosanoic acid (C28), as well as fatty acids with longer carbon chains (up to C50), or mixtures thereof.
  • fatty acids having 16 or more carbons in their carbon chain such as hexadecanoic acid (C16) stearic acid (C18), arachidic acid (C20), behenic acid (C22), octacosanoic
  • a combination of a fatty acid and a fatty ester is employed.
  • the carbon atom chain of the fatty alcohol or the fatty acid may have at least one double bond.
  • a further class of foam adjuvant agent includes a branched fatty alcohol or fatty acid.
  • the carbon chain of the fatty acid or fatty alcohol also can be substituted with a hydroxyl group, such as 12-hydroxy stearic acid.
  • fatty alcohols and fatty acids used in context of the composition of the present invention is related to their therapeutic properties per se.
  • Long chain saturated and mono unsaturated fatty alcohols e.g., stearyl alcohol, erucyl alcohol, arachidyl alcohol and behenyl alcohol (docosanol) have been reported to possess antiviral, antiinfective, antiproliferative and anti-inflammatory properties (see, U.S. Patent No. 4,874,794).
  • Longer chain fatty alcohols e.g., tetracosanol, hexacosanol, heptacosanol, octacosanol, triacontanol, etc.
  • tetracosanol hexacosanol
  • heptacosanol heptacosanol
  • octacosanol triacontanol, etc.
  • Long chain fatty acids have also been reported to possess anti-infective characteristics.
  • a combined and enhanced therapeutic effect is attained by including both an antibiotic agent and a therapeutically effective foam adjuvant in the same composition, thus providing a simultaneous anti-inflammatory and antiinfective effect from both components.
  • the composition concurrently comprises an antibiotic agent, a therapeutically effective foam adjuvant and a therapeutically active oil, as detailed above.
  • the foamable carrier, containing the foam adjuvant provides an extra therapeutic benefit in comparison with currently used vehicles, which are inert and non-active.
  • the foam adjuvant according to one or more preferred embodiments of the present invention includes a mixture of fatty alcohols, fatty acids and hydroxy fatty acids and derivatives thereof in any proportion, providing that the total amount is 0.1% to 5% (w/w) of the carrier mass. More preferably, the total amount is 0.4% - 2.5% (w/w) of the carrier mass.
  • the composition further contains a penetration enhancer.
  • penetration enhancers include propylene glycol, butylene glycols, glycerol, pentaerythritol, sorbitol, mannitol, oligosaccharides, dimethyl isosorbide, monooleate of ethoxylated glycerides having about 8 to 10 ethylene oxide units, polyethylene glycol 200-600, transcutol, glycofurol and cyclodextrins.
  • the therapeutic foam of the present invention may further optionally include a variety of formulation excipients, which are added in order to fine-tune the consistency of the formulation, protect the formulation components from degradation and oxidation and modify their consistency.
  • formulation excipients may be selected, for example, from stabilizing agents, antioxidants, humectants, preservatives, colorant and odorant agents and other formulation components, used in the art of formulation.
  • Aerosol propellants are used to generate and administer the foamable composition as a foam.
  • the total composition including propellant, foamable compositions and optional ingredients is referred to as the foamable carrier.
  • the propellant makes up about 3% to about 25 wt% of the foamable carrier.
  • suitable propellants include volatile hydrocarbons such as butane, propane, isobutane or mixtures thereof, and fluorocarbon gases.
  • a pharmaceutical or cosmetic composition manufactured using the foam carrier according to one or more embodiments of the present invention is very easy to use. When applied onto the afflicted body surface of mammals, i.e., humans or animals, it is in a foam state, allowing free application without spillage. Upon further application of a mechanical force, e.g., by rubbing the composition onto the body surface, it freely spreads on the surface and is rapidly absorbed.
  • the foam composition of the present invention creates a stable emulsion having an acceptable shelf life of at least one year, or at least two years at ambient temperature.
  • a feature of a product for cosmetic or medical use is long-term stability.
  • Propellants which are a mixture of low molecular weight hydrocarbons, tend to impair the stability of emulsions. It has been observed, however, that emulsion foam compositions according to the present invention are surprisingly stable. Following accelerated stability studies, they demonstrate desirable texture; they form fine bubble structures that do not break immediately upon contact with a surface, spread easily on the treated area and absorb quickly.
  • compositions containing semi-solid hydrophobic solvents e.g., white petrolatum, as the main ingredients of the oil phase of the o emulsion, exhibit high viscosity and poor flowability and are inappropriate candidates for a foamable composition.
  • Foam quality can be graded as follows:
  • Grade E excellent: very rich and creamy in appearance, does not show any bubble structure or shows a very fine (small) bubble structure; does not rapidly become dull; upon spreading on the skin, the foam retains the creaminess property and does not appear watery.
  • Grade G good: rich and creamy in appearance, very small bubble size, "dulls" more rapidly than an excellent foam, retains creaminess upon spreading on the skin, and does not become watery.
  • Grade FG (fairly good): a moderate amount of creaminess noticeable, bubble structure is noticeable; upon spreading on the skin the product dulls rapidly and becomes somewhat lower in apparent viscosity.
  • Grade F very little creaminess noticeable, larger bubble structure than a "fairly good” foam, upon spreading on the skin it becomes thin in appearance and watery.
  • Grade P no creaminess noticeable, large bubble structure, and when spread on the skin it becomes very thin and watery in appearance.
  • Grade VP dry foam, large very dull bubbles, difficult to spread on the skin.
  • Topically administratable foams are typically of quality grade E or G, when released from the aerosol container. Smaller bubbles are indicative of more stable foam, which does not collapse spontaneously immediately upon discharge from the container. The finer foam structure looks and feels smoother, thus increasing its usability and appeal.
  • a further aspect of the foam is breakability.
  • the breakable foam is thermally stable, yet breaks under sheer force. Sheer-force breakability of the foam is clearly advantageous over thermally induced breakability. Thermally sensitive foams immediately collapse upon exposure to skin temperature and, therefore, cannot be applied on the hand and afterwards delivered to the afflicted area.
  • foams Another property of the foam is specific gravity, as measured upon release from the aerosol can. Typically, foams have specific gravity of less than 0.1 g/mL or less than 0.05 g/mL.
  • the foamable composition of the present invention is suitable for administration to an inflicted area, in need of treatment, including, but not limited to the skin, a body surface, a body cavity, a mucosal surface, the nose, the mouth, the eye, the ear canal, the respiratory system, the vagina and the rectum (severally and interchangeably termed herein "target site").
  • Antibiotic agents are initially thought to affect disorders that involve blood circulation abnormalities, yet, in many case, circulation lays a secondary, yet influential role, which must be taken into account in order to optimize treatment.
  • cutaneous malignant tumors are characterized by poor blood circulation, which make them less responsive to drug treatment, and therefore usage of an antibiotic agent would be beneficial to the cancer therapy.
  • kits and the composition of the present invention are useful in treating an animal or a patient having one of a variety of dermatological disorders (also termed “dermatoses”) and/or having any secondary condition resulting from infections, which disorders and/or conditions are classified in a non-limiting exemplary manner according to the following groups:
  • An infection selected from the group of a bacterial infection, a fungal infection, a yeast infection, a viral infection and a parasitic infection.
  • any one of a variety of dermatological disorders including dermatological pain, dermatological inflammation, acne, acne vulgaris, inflammatory acne, non-inflammatory acne, acne fulminans, nodular papulopustular acne, acne conglobata, dermatitis, bacterial skin infections, fungal skin infections, viral skin infections, parasitic skin infections, skin neoplasia, skin neoplasms, pruritis, cellulitis, acute lymphangitis, lymphadenitis, erysipelas, cutaneous abscesses, necrotizing subcutaneous infections, scalded skin syndrome, folliculitis, furuncles, hydradenitis suppurativa, carbuncles, paronychial infections, rashes, erythrasma, impetigo, ecthyma, yeast skin infections, warts, molluscum contagiosum, trauma or injury to the skin, post-operative or postsurgical skin conditions, scabies, pediculos
  • Dermatitis including contact dermatitis, atopic dermatitis, seborrheic dermatitis, nummular dermatitis, chronic dermatitis of the hands and feet, generalized exfoliative dermatitis, stasis dermatitis; lichen simplex chronicus; diaper rash;
  • Bacterial infections including cellulitis, acute lymphangitis, lymphadenitis, erysipelas, cutaneous abscesses, necrotizing subcutaneous infections, staphylococcal scalded skin syndrome, folliculitis, furuncles, hidradenitis suppurativa, carbuncles, paronychial infections, erythrasma;
  • Fungal Infections including dermatophyte infections, yeast Infections; parasitic Infections including scabies, pediculosis, creeping eruption;
  • Viral Infections including, but not limited to herpes genitalis and herpes labialis; Disorders of hair follicles and sebaceous glands including acne, rosacea, perioral dermatitis, hypertrichosis (hirsutism), alopecia, including male pattern baldness, alopecia areata, alopecia universalis and alopecia totalis; pseudofolliculitis barbae, keratinous cyst;
  • Scaling papular diseases including psoriasis, pityriasis rosea, lichen planus, pityriasis rubra pilaris;
  • Benign tumors «including moles, dysplastic nevi, skin tags, lipomas, angiomas, pyogenic granuloma, seborrheic keratoses, dermatofibroma, keratoacanthoma, keloid;
  • Malignant tumors including basal cell carcinoma, squamous cell carcinoma, malignant melanoma, Paget's disease of the nipples, Kaposi's sarcoma;
  • Bullous diseases including pemphigus, bullous pemphigoid, dermatitis herpetiformis, linear immunoglobulin A disease;
  • Pigmentation disorders including hypopigmentation such as vitiligo, albinism and postinflammatory hypopigmentation and hyperpigmentation such as melasma (chloasma), drug-induced hyperpigmentation, postinflammatory hyperpigmentation;
  • compositions are also useful in the therapy of non-dermatological disorders by providing transdermal delivery of an active antibiotic agent that is effective against non-dermatological disorders.
  • composition is topically applied to a body cavity or mucosal surface (e.g., the mucosa of the nose and mouth, the eye, the ear canal, vagina or rectum) to treat conditions such aschlamydia infection, gonorrhea infection, hepatitis B, herpes, HIV/AIDS, human papillomavirus (HPV), genital warts, bacterial vaginosis, candidiasis, chancroid, granuloma Inguinale, lymphogranloma venereum, mucopurulent cervicitis (MPC), molluscum contagiosum, nongonococcal urethritis (NGU), trichomoniasis, vulvar disorders, vulvodynia, vulvar pain, yeast infection, vulvar dystrophy, vulvar intraepithelial neoplasia (VIN), contact dermatitis, pelvic inflammation
  • the composition is useful for the treatment of wound, ulcer and burn. This use is particularly important since the composition of the present invention preads easily on the afflicted area, without the need of extensive rubbing.
  • An emulsion base was prepared by incorporating Phase A and Phase B with thorough mixing at elevated temperature (60-8O 0 C) 1 followed by homogenization and gradual cooling to RT.
  • the emulsion base was used to produce foamable antibiotic compositions as detailed below.
  • the compositions were further examined for emulsion uniformity, emulsion stability, foam quality and density and found stable, and meeting the requirements of density between 0.01 and 0.1 g/mL and excellent (E) quality, as shown in the table below.
  • Example 2 Foamable oil in water emulsion base antibiotic compositions comprising ciclopiroxolamine
  • compositions contain ciclopiroxolamine, as example of an antibiotic foams comprising different emulsion compositions.
  • the liquefied or gas propellant can be added at a concentration of about 3% to about 25%.
  • compositions contain a variety of organic carriers.
  • the surface active agents are solely non- ionic.
  • Example 3 Non-flammable foamable oil in water emulsion base antibiotic compositions, containing PPG alky ether and comprising ciclopiroxolamine
  • the liquefied or gas propellant can be added at a concentration of about 3% to about 25%.
  • compositions contain a variety of organic carriers.
  • the surface active agents are solely non- ionic.
  • the formulations contain glycerin and/or propylene glycol (polar solvents), which contribute to skin penetration of the antibiotic agent
  • a test according to European Standard prEN 14851 , titled "Aerosol containers - Aerosol foam flammability test” was performed on foam compositions CPO32, CPO33 and CPO41. Approximately 5 g of foam, mousse gel or paste is sprayed from the aerosol container on to a watch glass. An ignition source (a lighter) was placed at the base of the watch glass and any ignition and sustained combustion of the foam, mousse, gel or paste was observed. The test was carried out in a draught-free environment capable of ventilation, with the temperature controlled at 20 ⁇ 5°C and relative humidity in the range of 30% to 80%. According to the standard, appearance of a stable flame which is at least 4 cm high and which is maintained for at least 2 seconds defines a product as "inflammable”.
  • Example 5 Foamable oil in water emulsion base antibiotic compositions, containing a combination of hexylene glycol and propylene glycol and comprising ciclopiroxolamine
  • the liquefied or gas propellant can be added at a concentration of about 3% to about 25%.
  • the surface active agents are solely non-ionic.
  • the formulation contains hexylene glycol and propylene glycol (polar solvents), which contribute to skin penetration of the antibiotic agent
  • Example 6 Foamable oil in water emulsion base antibiotic compositions, containing azelaic acid
  • the liquefied or gas propellant can be added at a concentration of about 3% to about 25%.
  • the surface active agents are solely non-ionic.
  • the formulation contains PEG-400 or propylene glycol (polar solvents), which contribute to skin penetration of the antibiotic agent
  • Example 7 Foamable oil in water emulsion base antibiotic compositions, containing metronidazole
  • the liquefied or gas propellant can be added at a concentration of about 3% to about 25%.
  • Formulations MZ4, MZ5 and MZ6 contain urea and lactic acid, which are keratolytic. PEG-400 or propylene glycol (polar solvents), which contribute to skin penetration of the antibiotic agent
  • Formulation MZ6 contains hexylene glycol, which contribute to skin penetration of the antibiotic agent
  • the concentration of metronidazole in the composition may be altered in the range of about 0.75% and about 2%.
  • metronidazole is substantially dissolved in the foamable composition of the present invention, up to a concentration of about 1.8%, while it is known that the soluble concentration of Metronidazole is 0.75% and higher concentrations of metrnidazole are expected to be in suspension

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Dermatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Dispersion Chemistry (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Medicinal Preparation (AREA)

Abstract

The present invention relates to a therapeutic kit to provide a safe and effective dosage of an antibiotic agent, including an aerosol packaging assembly including: a container accommodating a pressurized product; and an outlet capable of releasing the pressurized product as a foam, wherein the pressurized product comprises a foamable composition including: an antibiotic agent; at least one organic carrier selected from the group consisting of a hydrophobic organic carrier, an organic polar solvent, an emollient and mixtures thereof, at a concentration of about 2 % to about 50 % by weight, a surface- active agent, about 0.01 % to about 5 % by weight of at least one polymeric additive selected from the group consisting of a bioadhesive agent, a gelling agent, a film forming agent and a phase change agent, water; and liquefied or compressed gas propellant at a concentration of about 3 % to about 25 % by weight of the total composition.

Description

ANTIBIOTIC KIT AND COMPOSITION AND USES THEREOF
BACKGROUND OF THE INVENTION
[0001] Antibiotic agents have been used to relieve various systemic and superficial disorders. Classical treatment applications include skin infections, vaginal infections, and other disorders that involve a bacterial infection in their etiological factors.
[0002] Antibiotic agents are available in topical dosage form. Compositions containing antibiotic agents for topical treatment of dermatological disorders are available primarily in cream, lotion gel and ointment forms. Rubbing creams or ointments into the skin is inherently inefficient and difficult to achieve a constant and balanced application over large area of skin. Therefore, while semi-solid compositions, such as creams, lotions, gels and ointments are commonly used by consumers, new forms are desirable in order to achieve better control of the application, while maintaining or bestowing the skin beneficial properties of such products. Hence, the development of new compositions, having breakable foam consistency when released from a container and liquid properties when applied onto the skin is advantageous.
[0003] Foams and, in particular, foam emulsions are complicated systems which do not form under all circumstances. Changes in foam emulsion composition, such as by the addition of active ingredients, may destabilize the foam.
[0004] PCT/AU99/00735 teaches a pharmaceutical foam composition including (a) an active ingredient; (b) an occlusive agent; (c) an aqueous solvent; and (d) an organic cosolvent, in which the active ingredient is insoluble in water and insoluble in both water and the occlusive agent, and wherein there is sufficient occlusive agent to form an occlusive layer on the skin. [0005] US Published Application No. 2004/0151671 provides pharmaceutical compositions in a pressurized container, comprising a quick breaking alcoholic foaming agent.
SUMMARY OF THE INVENTION
[0006] The present invention relates to a therapeutic kit to provide a safe and effective dosage of an antibiotic agent, including an aerosol packaging assembly including:
a) a container accommodating a pressurized product; and b) an outlet capable of releasing the pressurized product as a foam; wherein the pressurized product comprises a foamable composition including: i. an antibiotic agent; ii. at least one organic carrier selected from the group consisting of a hydrophobic organic carrier, an organic polar solvent, an emollient and mixtures thereof, at a concentration of about 2% to about 50% by weight; iii. a surface-active agent; iv. about 0.01% to about 5% by weight of at least one polymeric additive selected from the group consisting of a bioadhesive agent, a gelling agent, a film forming agent and a phase change agent; v. water; and vi. liquefied or compressed gas propellant at a concentration of about
3% to about 25% by weight of the total composition.
[0007] In one or more embodiments, the composition is selected from the group consisting of an oil-in-water emulsion and a water-in-oil emulsion.
[0008] In one or more embodiments the kit contains a valve, which is optionally attached to metered dose device. [0009] In one or more embodiments the kit further includes a therapeutically active foam adjuvant is selected from the group consisting of a fatty alcohol having 15 or more carbons in their carbon chain; a fatty acid having 16 or more carbons in their carbon chain; fatty alcohols, derived from beeswax and including a mixture of alcohols, a majority of which has at least 20 carbon atoms in their carbon chain; a fatty alcohol having at least one double bond; a fatty acid having at least one double bond; a branched fatty alcohol; a branched fatty acid and a fatty acid substituted with a hydroxyl group.
[0010] In one or more embodiments, the composition further contains a penetration enhancer.
[0011] The kit according to the present invention can optionally further contain at least one additional therapeutic agent selected from the group consisting of a steroidal anti-inflammatory agent, an immunosuppressive agent, an immunomodulator, an immunoregulating agent, a hormonal agent, an antifungal agent, an antiviral agent, an antiparasitic agent, vitamin A, a vitamin A derivative, vitamin B, a vitamin B derivative, vitamin C, a vitamin C derivative, vitamin D, a vitamin D derivative, vitamin E, a vitamin E derivative, vitamin F, a vitamin F derivative, vitamin K, a vitamin K derivative, a wound healing agent, a disinfectant, an anesthetic, an antiallergic agent, an alpha hydroxyl acid, lactic acid, glycolic acid, a beta-hydroxy acid, a protein, a peptide, a neuropeptide, a allergen, an immunogenic substance, a haptene, an oxidizing agent, an antioxidant, a dicarboxylic acid, azelaic acid, sebacic acid, adipic acid, fumaric acid, a retinoid, an antiproliferative agent, an anticancer agent, a photodynamic therapy agent, benzoyl chloride, calcium hypochlorite, magnesium hypochlorite, an anti-wrinkle agent, a radical scavenger, a metal, silver, a metal oxide, titanium dioxide, zinc oxide, zirconium oxide, iron oxide, silicone oxide, talc, carbon, an anti wrinkle agent, a skin whitening agent, a skin protective agent, a masking agent, an anti-wart agent, a refatting agent, a lubricating agent and mixtures thereof. [0012] In further embodiments, the present invention provides a method of treating, alleviating or preventing disorders of the skin, body cavity or mucosal surface, wherein the disorder involves inflammation as one of its etiological factors, including administering topically to a subject having the disorder, a foamed composition including:
(1) an antibiotic agent;
(2) at least one organic carrier selected from a hydrophobic organic carrier, a polar solvent, an emollient and mixtures thereof, at a concentration of about 2% to about 50% by weight;
(3) about 0.1 % to about 5% by weight of a surface-active agent;
(4) about 0.01% to about 5% by weight of a polymeric additive selected from a bioadhesive agent, a gelling agent, a film forming agent and a phase change agent; and
(5) water, wherein the antibiotic agent is administered in a therapeutically effective amount.
[0013] In one or more embodiments, the disorder to be treated is selected from the group consisting of a dermatose, a dermatitis, a vaginal disorder, a vulvar disorder, an anal disorder, a disorder of a body cavity, an ear disorder, a disorder of the nose, a disorder of the respiratory system, a bacterial infection, fungal infection, viral infection, dermatosis, dermatitis, parasitic infections, disorders of hair follicles and sebaceous glands, scaling papular diseases, benign tumors, malignant tumors, reactions to sunlight, bullous diseases, pigmentation disorders, disorders of cornification, pressure sores, disorders of sweating, inflammatory reactions, xerosis, ichthyosis, allergy, burn, wound, cut, chlamydia infection, gonorrhea infection, hepatitis B, herpes, HIV/AIDS, human papillomavirus (HPV), genital warts, bacterial vaginosis, candidiasis, chancroid, granuloma Inguinale, lymphogranloma venereum, mucopurulent cervicitis (MPC), molluscum contagiosum, nongonococcal urethritis (NGU), trichomoniasis, vulvar disorders, vulvodynia, vulvar pain, yeast infection, vulvar dystrophy, vulvar intraepithelial neoplasia (VIN), contact dermatitis, osteoarthritis, joint pain, hormonal disorder, pelvic inflammation, endometritis, salpingitis, oophoritis, genital cancer, cancer of the cervix, cancer of the vulva, cancer of the vagina, vaginal dryness, dyspareυnia, anal and rectal disease, anal abscess/fistula, anal cancer, anal fissure, anal warts, Crohn's disease, hemorrhoids, anal itch, pruritus ani, fecal incontinence, constipation, polyps of the colon and rectum;
BRIEF DESCRIPTION OF THE DRAWING
[0014] The invention is described with reference to the figure which is presented for the purpose of illustration and are not intended to be limiting of the invention.
[0015] Figure 1 is a schematic illustration of an aerosol valve suitable for use in the aerosol packaging assembly according to in one or more embodiments of the invention.
DETAILED DESCRIPTION OF THE INVENTION
[0016] The present invention provides a therapeutic kit including an antibiotic agent. The kit includes an aerosol packaging assembly having a container accommodating a pressurized product and an outlet capable of releasing the pressurized product as a foam.
Aerosol packaging assembly
[0017] The aerosol packaging assembly typically includes a container suitable for accommodating a pressurized product and an outlet capable of releasing a foam. The outlet is typically a valve. Figure 1 illustrates a typical aerosol valve 100. The valve is made up of the valve cup 110 typically constructed from tinplated steel, or aluminum, an outer gasket 120, which is the seal between the valve cup and the aerosol can (not shown), a valve housing 130, which contains the valve stem 132, spring 134 and inner gasket 136, and a dip tube 140, which allows the liquid to enter valve. The valve stem is the tap through which the product flows. The inner gasket 136 covers the aperture 150 (hole) in the valve stem. The valve spring 134 is usually made of stainless steel.
[0018] The valve stem is fitted with small apertures 150 (also termed "orifices" and "holes"), through which the product flows. Valves may contain one, two, three, four or more apertures, depending on the nature of the product to be dispensed. In the closed position, the aperture(s) is covered by the inner gasket. When the actuator is depressed it pushes the valve stem through the inner gasket, and the aperture(s) is uncovered, allowing liquid to pass through the valve and into the actuator.
[0019] The valve can have a stem with 1 to 4 apertures, or 1 to 2 apertures. Each aperture can have a diameter of about 0.2 mm to about 1 mm, or a diameter of about 0.3 mm to about 0.8 mm. The total aperture area, i.e., the sum of areas of all apertures in a given stem, is between about 0.01 mm2 and 1 mm2 or the total aperture area is between about 0.04 mm2 and 0.5 mm2.
[0020] In order to provide proper therapy, precise dosing is desired. According to one or more embodiments, the valve is attached, directly, or through a tube, to a metered dose device, which for dispensing an accurate dose of drug in the form of a foam. The metered dose valve is selected to release a foam in a volume that provides an adequate therapeutic dose to the target site of the skin, a body surface, a body cavity or mucosal surface, e.g., the mucosa of the nose, mouth, eye, ear, respiratory system, vagina or rectum.
[0021] In one or more embodiments, the meter dose valve provides a unit dose of between about 10 μL and about 1000 μl_. Assuming a representative foam density (specific gravity) of 0.06 g/mL, a 10 μL valve provides a volume of about 0.17 ml_ of foam, and a 1000 μL metered dose valve provides about 17 mL of foam. Thus, by selecting a specific metered dosing valve and adjusting the foam density by fine tuning formulation parameters and adjusting the ratio between the liquid components of the composition and the propellant, one can design an adequate dosage form according to the specific target site. Exemplary metered dose devices may be found in co-pending application serial no. 11/406,133, entitled "Apparatus and Method for Releasing a Measured Amount of Content from a Container," filed April 18, 2006, which is hereby incorporated in its entirety by reference.
Pharmaceutical Composition
[0022] All % values are provided on a weight (w/w) basis.
[0023] According to one or more embodiments of the present invention, the foamable therapeutic composition for administration to the skin, a body surface, a body cavity, a mucosal surface, the nose, the mouth, the eye, the ear canal, the respiratory system, the vagina and the rectum (severally and interchangeably termed herein "target site") includes:
(1) an antibiotic agent, wherein the antibiotic agent is effective in the treatment of a disorder of the target site;
(2) at least one organic carrier selected from a hydrophobic organic carrier, a polar solvent, an emollient and mixtures thereof, at a concentration of about 2% to about 5%, or about 5% to about 10%;or about 10% to about 20%; or about 20% to about 50% by weight;
(3) about 0.1 % to about 5% by weight of a surface-active agent;
(4) about 0.01% to about 5% by weight of at least one polymeric agent selected from a bioadhesive agent, a gelling agent, a film forming agent and a phase change agent; and
(5) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition.
[0024] Water and optional ingredients are added to complete the total mass to 100%. Upon release from an aerosol container, the foamable composition forms an expanded foam suitable for topical administration. [0025] According to one or more embodiments, the foamable composition is substantially alcohol-free, i.e., free of short chain alcohols. Short chain alcohols, having up to 5 carbon atoms in their carbon chain skeleton and one hydroxyl group, such as ethanol, propanol, isopropanol, butanol, iso-butanol, t-butanol and pentanol, are considered less desirable solvents or polar solvents due to their skin-irritating effect. This disadvantage is particularly meaningful in the case of an antibiotic treatment, which is often directed to open wounds and damaged skin and mucosal tissues. Thus, in one or more embodiments, the composition is substantially alcohol-free and includes less than about 5% final concentration of lower alcohols, preferably less than about 2%, more preferably less than about 1%.
[0026] In one or more embodiments, the foam composition is formulated as an oil-in-water emulsion or oil-in-water microemulsion, yet, in additional embodiments, the foam composition is formulated as an water-in-oil emulsion or water-in-oil microemulsion.
[0027] In one or more embodiments, the concentration of surface-active agent about 0.1% to about 5%, or from about 0.2% to about 2%.
[0028] In the context of the present invention, an antibiotic agent is a substance that has the capacity to inhibit the growth of or to destroy bacteria and other microorganisms.
[0029] In one or more embodiments, the antibiotic agent is selected from the classes consisting of beta-lactam antibiotics, aminoglycosides, ansa-type antibiotics, anthraquinones, antibiotic azoles, antibiotic glycopeptides, macrolides, antibiotic nucleosides, antibiotic peptides, antibiotic polyenes, antibiotic polyethers, quinolones, antibiotic steroids, sulfonamides, tetracycline, dicarboxylic acids, antibiotic metals, oxidizing agents, substances that release free radicals and/or active oxygen, cationic antimicrobial agents, quaternary ammonium compounds, biguanides, triguanides, bisbiguanides and analogs and polymers thereof and naturally occurring antibiotic compounds. [0030] Beta-lactam antibiotics include, but are not limited to, 2-(3- alanyl)clavam, 2-hydroxymethylclavam, 8-epi-thienamycin, acetyl-thienamycin, amoxicillin, amoxicillin sodium, amoxicillin trihydrate, amoxicillin-potassium clavulanate combination, ampicillin, ampicillin sodium, ampicillin trihydrate, ampicillin-sulbactam, apalcillin, aspoxicillin, azidocillin, azlocillin, aztreonam, bacampicillin, biapenem, carbenicillin, carbenicillin disodium, carfecillin, carindacillin, carpetimycin, cefacetril, cefaclor, cefadroxil, cefalexin, cefaloridine, cefalotin, cefamandole, cefamandole, cefapirin, cefatrizine, cefatrizine propylene glycol, cefazedone, cefazolin, cefbuperazone, cefcapene, cefcapene pivoxil hydrochloride, cefdinir, cefditoren, cefditoren pivoxil, cefepime, cefetamet, cefetamet pivoxil, cefixime, cefmenoxime, cefmetazole, cefminox, cefminox, cefmolexin, cefodizime, cefonicid, cefoperazone, ceforanide, cefoselis, cefotaxime, cefotetan, cefotiam, cefoxitin, cefozopran, cefpiramide, cefpirome, cefpodoxime, cefpodoxime proxetil, cefprozil, cefquinome, cefradine, cefroxadine, cefsulodin, ceftazidime, cefteram, cefteram pivoxil, ceftezole, ceftibuten, ceftizoxime, ceftriaxone, cefuroxime, cefuroxime axetil, cephalosporin, cephamycin, chitinovorin, ciclacillin, clavulanic acid, clometocillin, cloxacillin, cycloserine, deoxy pluracidomycin, dicloxacillin, dihydro pluracidomycin, epicillin, epithienamycin, ertapenem, faropenem, flomoxef, flucloxacillin, hetacillin, imipenem, lenampicillin, loracarbef, mecillinam, meropenem, metampicillin, meticillin, mezlocillin, moxalactam, nafcillin, northienamycin, oxacillin, panipenem, penamecillin, penicillin, phenethicillin, piperacillin, tazobactam, pivampicillin, pivcefalexin, pivmecillinam, pivmecillinam hydrochloride, pluracidomycin, propicillin, sarmoxicillin, sulbactam, sulbenicillin, talampicillin, temocillin, terconazole, thienamycin, ticarcillin and analogs, salts and derivatives thereof.
[0031] Aminoglycosides include, but are not limited to, 1 ,2'-N-DL-isoseryl- 3',4'-dideoxykanamycin B, 1 ,2'-N-DL-isoseryl-kanamycin B, 1 ,2'-N-[(S)-4-amino- 2-hydroxybutyryl]-3',4'-dideoxykanamycin B, 1 ,2'-N-[(S)-4-amino-2- hydroxybutyryl]-kanamycin B, 1 -N-(2-Aminobutanesulfonyl) kanamycin A, 1-N-(2- aminoethanesulfonyOS'^'-dideoxyribostamycin, 1-N-(2-Aminoethanesulfonyl)3'- deoxyribostamycin, 1-N-(2-aminoethanesulfonyl)3'4l-dideoxykanamycin B, 1-N- (2-aminoethanesulfonyl)kanamycin A, 1-N-(2-aminoethanesulfonyl)kanamycin B, 1-N-(2-aminoethanesulfonyl)ribostamycin, 1 -N-(2-aminopropanesυlf onyl)3'- deoxykanamycin B, 1-N-(2-aminopropanesulfonyl)3'4I-dideoxykanamycin B, 1-N- (2-aminopropanesulfonyl)kanamycin A, 1 -N-(2-aminopropanesulfonyl)kanamycin B, 1-N-(L-4-amino-2-hydroxy-butyryl)2J'3l-dideoxy-2l-fluorokanamycin A, 1-N-(L- 4-amino-2-hydroxy-propionyl)2,'3'-dideoxy-2l-f luorokanamycin A, 1 -N-DL-3',41- dideoxy-isoserylkanamycin B,1-N-DL-isoserylkanamycin, 1 -N-DL- isoserylkanamycin B, 1 -N-[L-(-)-(alpha-hydroxy-gamma-aminobutyryl)]-XK-62-2, 2',3l-dideoxy-2'-fluorokanamycin A,2-hydroxygentamycin A3, 2- hydroxygentamycin B, 2-hydroxygentamycin B1, 2-hydroxygentamycin JI-20A, 2- hydroxygentamycin JI-20B, 3"-N-methyl-4"-C-methyl-3',4l-dodeoxy kanamycin A, ^'-N-methyW-C-methyl-S'^'-dodeoxy kanamycin B, 3"-N-methyl-4"-C-methyl- S'^'-dodeoxy-β'-methyl kanamycin B, S'^'-Dideoxy-S'-eno-ribostamycin.S1,^- dideoxyneamine.S'^'-dideoxyribostamycin, 3'-deoxy-6'-N-methyl-kanamycin B,3'- deoxyneamine,3'-deoxyribostamycin, S'-oxysaccharocin.S.S1- nepotrehalosadiamine, 3-demethoxy-2"-N-formimidoylistamycin B disulfate tetrahydrate, 3-demethoxyistamycin B,3-O-demethyl-2-N-formimidoylistamycin B, 3-O-demethylistamycin B,3-trehalosamine,4", 6"-dideoxydibekacin, 4-N-glycyl- KA-6606VI, 5"-Amino-3',4l,5"-trideoxy-butirosin A, 6"-deoxydibekacin,6'- epifortimicin A, 6-deoxy-neomycin (structure 6-deoxy-neomycin B),6-deoxy- neomycin B, 6-deoxy-neomycin C, 6-deoxy-paromomycin, acmimycin, AHB-3',41- dideoxyribostamycin,AHB-3'-deoxykanamycin B, AHB-S'-deoxyneamine.AHB-S1- deoxyribostamycin,AHB-4"-6"-dideoxydibekacin, AHB-6"-deoxydibekacin,AHB- dideoxyneamine.AHB-kanamycin B, AHB-methyl-3'-deoxykanamycin B, amikacin, amikacin sulfate, apramycin, arbekacin, astromicin, astromicin sulfate, bekanamycin, bluensomycin, boholmycin, butirosin, butirosin B, catenulin, coumamidine gammal , coumamidine gamma2,D,L-1-N-(alpha-hydroxy-beta- aminopropionyl)-XK-62-2, dactimicin,de-O-methyl-4-N-glycyl-KA-6606VI,de-O- methyl-KA-6606l, de-O-methyl-KA-7038l,destomycin A, destomycin B, di-N6',O3- demethylistamycin A, dibekacin, dibekacin sulfate, dihydrostreptomycin, dihydrostreptomycin sulfate, epi-formamidoylglycidylfortimicin B, epihygromycin, formimidoyl-istamycin A1 formimidoyl-istamycin B, fortimicin B, fortimicin C1 fortimicin D, fortimicin KE, fortimicin KF, fortimicin KG, fortimicin KG1 (stereoisomer KG1/KG2), fortimicin KG2 (stereoisomer KG1/KG2), fortimicin KG3, framycetin, framycetin sulphate, gentamicin, gentamycin sulfate, globeomycin, hybrimycin A1, hybrimycin A2, hybrimycin B1 , hybrimycin B2, hybrimycin C1 , hybrimycin C2, hydroxystreptomycin, hygromycin, hygromycin B, isepamicin, isepamicin sulfate, istamycin, kanamycin, kanamycin sulphate, kasugamycin, lividomycin, marcomycin, micronomicin, micronomicin sulfate, mutamicin, myomycin, N-demethyl-7-O-demethylcelesticetin, demethylcelesticetin, methanesulfonic acid derivative of istamycin, nebramycin, nebramycin, neomycin, netilmicin, oligostatin, paromomycin, quintomycin, ribostamycin, saccharocin, seldomycin, sisomicin, sorbistin, spectinomycin, streptomycin, tobramycin, trehalosmaine, trestatin, validamycin, verdamycin, xylostasin, zygomycin and analogs, salts and derivatives thereof.
[0032] Ansa-type antibiotics include, but are not limited to, 21-hydroxy-25- demethyl-25-methylthioprotostreptovaricin, 3-methylthiorifamycin, ansamitocin, atropisostreptovaricin, awamycin, halomicin, maytansine, naphthomycin, rifabutin, rifamide, rifampicin, rifamycin, rifapentine, rifaximin, rubradirin, streptovaricin, tolypomycin and analogs, salts and derivatives thereof.
[0033] Antibiotic anthraquinones include, but are not limited to, auramycin, cinerubin, ditrisarubicin, ditrisarubicin C, figaroic acid fragilomycin, minomycin, rabelomycin, rudolfomycin, sulfurmycin and analogs, salts and derivatives thereof.
[0034] Antibiotic azoles include, but are not limited to, azanidazole, bifonazole, butoconazol, chlormidazole, chlormidazole hydrochloride, cloconazole, cloconazole monohydrochloride, clotrimazol, dimetridazole, econazole, econazole nitrate, enilconazole, fenticonazole, fenticonazole nitrate, fezatione, fluconazole, flutrimazole, isoconazole, isoconazole nitrate, itraconazole, ketoconazole, lanoconazole, metronidazole, metronidazole benzoate, miconazole, miconazole nitrate, neticonazole, nimorazole, niridazole, omoconazol, omidazole, oxiconazole, oxiconazole nitrate, propenidazole, secnidazol, sertaconazole, sertaconazole nitrate, sulconazole, sulconazole nitrate, tinidazole, tioconazole, voriconazol and analogs, salts and derivatives thereof.
[0035] Antibiotic glycopeptides include, but are not limited to, acanthomycin, actaplanin, avoparcin, balhimycin, bleomycin B (copper bleomycin), chloroorienticin, chloropolysporin, demethylvancomycin, enduracidin, galacardin, guanidylfungin, hachimycin, demethylvancomycin, N-nonanoyl-teicoplanin, phleomycin, platomycin, ristocetin, staphylocidin, talisomycin, teicoplanin, vancomycin, victomycin, xylocandin, zorbamycin and analogs, salts and derivatives thereof.
[0036] Macrolides include, but are not limited to, acetylleucomycin, acetylkitasamycin, angolamycin, azithromycin, bafilomycin, brefeldin, carbomycin, chalcomycin, cirramycin, clarithromycin, concanamycin, deisovaleryl-niddamycin, demycinosyl-mycinamycin, Di-O-methyltiacumicidin, dirithromycin, erythromycin, erythromycin estolate, erythromycin ethyl succinate, erythromycin lactobionate, erythromycin stearate, flurithromycin, focusin, foromacidin, haterumalide, haterumalide, josamycin, josamycin ropionate, juvenimycin, juvenimycin, kitasamycin, ketotiacumicin, lankavacidin, lankavamycin, leucomycin, machecin, maridomycin, megalomicin, methylleucomycin, methymycin, midecamycin, miocamycin, mycaminosyltylactone, mycinomycin, neutramycin, niddamycin, nonactin, oleandomycin, phenylacetyldeltamycin, pamamycin, picromycin, rokitamycin, rosaramicin, roxithromycin, sedecamycin, shincomycin, spiramycin, swalpamycin, tacrolimus, telithromycin, tiacumicin, tilmicosin, treponemycin, troleandomycin, tylosin, venturicidin and analogs, salts and derivatives thereof.
[0037] Antibiotic nucleosides include, but are not limited to, amicetin, angustmycin, azathymidine, blasticidin S, epiroprim, flucytosine, gougerotin, mildiomycin, nikkomycin, nucleocidin, oxanosine, oxanosine, puromycin, pyrazomycin, showdomycin, sinefungin, sparsogenin, spicamycin, tunicamycin, uracil polyoxin, vengicide and analogs, salts and derivatives thereof.
[0038] Antibiotic peptides include, but are not limited to, actinomycin, aculeacin, alazopeptin, amfomycin, amythiamycin, antifungal from Zalerion arboricola, antrimycin, apid, apidaecin, aspartocin, auromomycin, bacileucin, bacillomycin, bacillopeptin, bacitracin, bagacidin, berninamycin, beta-alanyl-L- tyrosine, bottromycin, capreomycin, caspofungine, cepacidine, cerexin, cilofungin, circulin, colistin, cyclodepsipeptide, cytophagin, dactinomycin, daptomycin, decapeptide, desoxymulundocandin, echanomycin, echinocandin B, echinomycin, ecomycin, enniatin, etamycin, fabatin, ferrimycin, ferrimycin, ficellomycin, fluoronocathiacin, fusaricidin, gardimycin, gatavalin, globopeptin, glyphomycin, gramicidin, herbicolin, iomycin, iturin, iyomycin, izupeptin, janiemycin, janthinocin, jolipeptin, katanosin, killertoxin, lipopeptide antibiotic, lipopeptide from Zalerion sp., lysobactin, lysozyme, macromomycin, magainin, melittin, mersacidin, mikamycin, mureidomycin, mycoplanecin, mycosubtilin, neopeptifluorin, neoviridogrisein, netropsin, nisin, nocathiacin, nocathiacin 6- deoxyglycoside, nosiheptide, octapeptin, pacidamycin, pentadecapeptide, peptifluorin, permetin, phytoactin, phytostreptin, planothiocin, plusbacin, polcillin, polymyxin antibiotic complex, polymyxin B, polymyxin B1 , polymyxin F, preneocarzinostatin, quinomycin, quinupristin-dalfopristin, safracin, salmycin, salmycin, salmycin, sandramycin, saramycetin, siomycin, sperabillin, sporamycin, a streptomyces compound, subtilin, teicoplanin aglycone, telomycin, thermothiocin, thiopeptin, thiostrepton, tridecaptin, tsushimycin, tuberactinomycin, tuberactinomycin, tyrothricin, valinomycin, viomycin, virginiamycin, zervacin and analogs, salts and derivatives thereof.
[0039] In one or more embodiments, the antibiotic peptide is a naturally- occurring peptide that possesses an antibacterial and/or an antifungal activity. Such peptide can be obtained from a herbal or a vertebrate source. [0040] Polyenes include, but are not limited to, amphotericin, amphotericin, aureofungin, ayfactin, azalomycin, blasticidin, candicidin, candicidin methyl ester, candimycin, candimycin methyl ester, chinopricin, filipin, flavofungin, fradicin, hamycin, hydropricin, levorin, lucensomycin, lucknomycin, mediocidin, mediocidin methyl ester, mepartricin, methylamphotericin, natamycin, niphimycin, nystatin, nystatin methyl ester, oxypricin, partricin, pentamycin, perimycin, pimaricin, primycin, proticin, rimocidin, sistomycosin, sorangicin, trichomycin and analogs, salts and derivatives thereof.
[0041] Polyethers include, but are not limited to, 20-deoxy-epi-narasin, 20- deoxysalinomycin, carriomycin, dianemycin, dihydrolonomycin, etheromycin, ionomycin, iso-lasalocid, lasalocid, lenoremycin, Ionomycin, lysocellin, monensin, narasin, oxolonomycin, a polycyclic ether antibiotic, salinomycin and analogs, salts and derivatives thereof.
[0042] Quinolones include, but are not limited to, an alkyl-methylendioxy- 4(1H)-oxocinnoline-3-carboxylic acid, alatrofloxacin, cinoxacin, ciprofloxacin, ciprofloxacin hydrochloride, danofloxacin, dermofongin A, enoxacin, enrofloxacin, fleroxacin, flumequine, gatifloxacin, gemifloxacin, grepafloxacin, levofloxacin, lomefloxacin, lomefloxacin, hydrochloride, miloxacin, moxifloxacin, nadifloxacin, nalidixic acid, nifuroquine, norfloxacin, ofloxacin, orbifloxacin, oxolinic acid, pazufloxacine, pefloxacin, pefloxacin mesylate, pipemidic acid, piromidic acid, premafloxacin, rosoxacin, rufloxacin, sparfloxacin, temafloxacin, tosufloxacin, trovafloxacin and analogs, salts and derivatives thereof.
[0043] Antibiotic steroids include, but are not limited to, aminosterol, ascosteroside, cladosporide A, dihydrofusidic acid, dehydro-dihydrofusidic acid, dehydrofusidic acid, fusidic acid, squalamine and analogs, salts and derivatives thereof.
[0044] Sulfonamides include, but are not limited to, chloramine, dapsone, mafenide, phthalylsulfathiazole, succinylsulfathiazole, sulfabenzamide, sulfacetamide, sulfachlorpyridazine, sulfadiazine, sulfadiazine silver, sulfadicramide, sulfadimethoxine, sulfadoxine, sulfaguanidine, sulfalene, sulfamazone, sulfamerazine, sulfamethazine, sulfamethizole, sulfamethoxazole, sulfamethoxypyridazine, sulfamonomethoxine, sulfamoxol, sulfanilamide, sulfaperine, sulfaphenazol, sulfapyridine, sulfaquinoxaline, sulfasuccinamide, sulfathiazole, sulfathiourea, sulfatolamide, sulfatriazin, sulfisomidine, sulfisoxazole, sulfisoxazole acetyl, sulfacarbamide and analogs, salts and derivatives thereof.
[0045] Tetracyclines include, but are not limited to, dihydrosteffimycin, demethyltetracycline, aclacinomycin, akrobomycin, baumycin, bromotetracycline, cetocyclin, chlortetracycline, clomocycline, daunorubicin, demeclocycline, doxorubicin, doxorubicin hydrochloride, doxycycline, lymecyclin, marcellomycin, meclocycline, meclocycline sulfosalicylate, methacycline, minocycline, minocycline hydrochloride, musettamycin, oxytetracycline, rhodirubin, rolitetracycline, rubomycin, serirubicin, steffimycin, tetracycline and analogs, salts and derivatives thereof.
[0046] Dicarboxylic acids, having between about 6 and about 14 carbon atoms in their carbon atom skeleton are particularly useful in the treatment of disorders of the skin and mucosal membranes that involve microbial. Suitable dicarboxylic acid moieties include, but are not limited to, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1 ,11-undecanedioic acid, 1 ,12- dodecanedioic acid, 1 ,13-tridecanedioic acid and 1 ,14-tetradecanedioic acid. Thus, in one or more embodiments of the present invention, dicarboxylic acids, having between about 6 and about 14 carbon atoms in their carbon atom skeleton, as well as their salts and derivatives (e.g., esters, amides, mercapto- derivatives, anhydraides), are useful immunomodulators in the treatment of disorders of the skin and mucosal membranes that involve inflammation. Azelaic acid and its salts and derivatives are preferred. It has antibacterial effects on both aerobic and anaerobic organisms, particularly propionibacterium acnes and staphylococcus epidermidis, normalizes keratinization, and has a cytotoxic effect on malignant or hyperactive melanocytes. In a preferred embodiment, the dicarboxylic acid is azelaic acid in a concentration greater than 10%. Preferably, the concentration of azelaic acid is between about 10% and about 25%. In such concentrates, azelaic acid is suitable for the treatment of a variety of skin disorders, such as acne, rosacea and hyperpigmentation.
[0047] In one or more embodiments, the antibiotic agent is an antibiotic metal. A number of metals ions been shown to possess antibiotic activity, including silver, copper, zinc, mercury, tin, lead, bismutin, cadmium, chromium and ions thereof. It has been theorized that these antibiotic metal ions exert their effects by disrupting respiration and electron transport systems upon absorption into bacterial or fungal cells. Anti-microbial metal ions of silver, copper, zinc, and gold, in particular, are considered safe for in vivo use. Anti-microbial silver and silver ions are particularly useful due to the fact that they are not substantially absorbed into the body.
[0048] Thus, in one or more embodiment, the antibiotic metal consists of an elemental metal, selected from the group consisting of silver, copper, zinc, mercury, tin, lead, bismutin, cadmium, chromium and gold, which is suspended in the composition as particles, microparticles, nanoparticles or colloidal particles. The antibiotic metal can further be intercalated in a chelating substrate.
[0049] In further embodiments, the antibiotic metal is ionic. The ionic antibiotic metal can be presented as an inorganic or organic salt (coupled with a counterion), an organometallic complex or an intercalate. Non binding examples of counter inorganic and organic ions are sulfadiazine, acetate, benzoate, carbonate, iodate, iodide, lactate, laurate, nitrate, oxide, palmitate, a negatively charged protein. In preferred embodiments, the antibiotic metal salt is a silver salt, such as silver acetate, silver benzoate, silver carbonate, silver iodate, silver iodide, silver lactate, silver laurate, silver nitrate, silver oxide, silver palmitate, silver protein, and silver sulfadiazine. [0050] In one or more embodiments, the antibiotic metal or metal ion is embedded into a substrate, such as a polymer, a mineral (such as zeolite, clay and silica).
[0051] Oxidizing agents and substances that release free radicals and/or active oxygen. In one or more embodiments, the antibiotic agent comprises strong oxidants and free radical liberating compounds, such as oxygen, hydrogen peroxide, benzoyl peroxide, elemental halogen species, as well as oxygenated halogen species, bleaching agents (e.g., sodium, calcium or magnesium hypochloride and the like), perchlorite species, iodine, iodate, and benzoyl peroxide. Organic oxidizing agents are also included in the definition of "oxidizing agent" according to the present invention, such as quinones. Such agents possess a potent broad-spectrum activity
[0052] In one or more embodiments the antibiotic agent is a cationic antimicrobial agent. The outermost surface of bacterial cells universally carries a net negative charge, making them sensitive to cationic substances. Examples of cationic antibiotic agents include: quaternary ammonium compounds (QACs) - QACs are surfactants, generally containing one quaternary nitrogen associated with at least one major hydrophobic moiety; alkyltrimethyl ammonium bromides are mixtures of where the alkyl group is between 8 and 18 carbons long, such as cetrimide (tetradecyltrimethylammonium bromide); benzalkonium chloride, which is a mixture of n-alkyldimethylbenzyl ammonium chloride where the alkyl groups (the hydrophobic moiety) can be of variable length; dialkylmethyl ammonium halides; dialkylbenzyl ammonium halides; and QAC dimmers, which bear bi-polar positive charges in conjunction with interstitial hydrophobic regions.
[0053] In one or more embodiments, the antibiotic agent is selected from the group of biguanides, triguanides, bisbiguanides and analogs thereof.
[0054] Guanides, biguanides, biguanidines and triguanides are unsaturated nitrogen containing molecules that readily obtain one or more positive charges, which make them effective antimicrobial agents. The basic structures a guanide, a biguanide, a biguanidine and a triguanide are provided below.
H2 NH2
Figure imgf000019_0001
Biguanidine
[0055] In one or more preferred embodiments, the guanide, biguanide, biguanidine or triguanide, provide bi-polar configurations of cationic and hydrophobic domains within a single molecule. «
[0056] Examples of guanides, biguanides, biguanidines and triguanides that are currently been used as antibacterial agents include chlorhexidine and chlorohexidine salts, analogs and derivatives, such as chlorhexidine acetate, chlorhexidine gluconate and chlorhexidine hydrochloride, picloxydine, alexidine and polihexanide. Other examples of guanides, biguanides, biguanidines and triguanides that can conceivably be used according to the present invention are chlorproguanil hydrochloride, proguanil hydrochloride (currently used as antimalarial agents), metformin hydrochloride, phenformin and buformin hydrochloride (currently used as antidiabetic agents).
[0057] In one or more embodiments, the cationic antimicrobial agent is a polymer.
[0058] Cationic antimicrobial polymers include, for example, guanide polymers, biguanide polymers, or polymers having side chains containing biguanide moieties or other cationic functional groups, such as benzalkonium groups or quartemium groups (e.g., quaternary amine groups). It is understood that the term "polymer" as used herein includes any organic material comprising three or more repeating units, and includes oligomers, polymers, copolymers, block copolymers, terpolymers, etc. The polymer backbone may be, for example a polyethylene, ploypropylene or polysilane polymer.
[0059] In one or more embodiments, the cationic antimicrobial polymer is a polymeric biguanide compound. When applied to a substrate, such a polymer is known to form a barrier film that can engage and disrupt a microorganism. An exemplary polymeric biguanide compound is polyhexamethylene biguanide (PHMB) salts. Other exemplary biguanide polymers include, but are not limited to poly(hexamethylenebiguanide), poly(hexamethylenebiguanide) hydrochloride, poly(hexamethylenebiguanide) gluconate, poly(hexamethylenebiguanide) stearate, or a derivative thereof. In one or more embodiments, the antimicrobial material is substantially water-insoluble.
[0060] Yet, in one or more embodiment, the antibiotic is a non-classified antibiotic agent, including, without limitation, aabomycin, acetomycin, acetoxycycloheximide, acetylnanaomycin, an actinoplanes sp. Compound, actinopyrone, aflastatin, albacarcin, albacarcin, albofungin, albofungin, alisamycin, alpha-R,S-methoxycarbonylbenzylmonate, altromycin, amicetin, amycin, amycin demanoyl compound, amycine, amycomycin, anandimycin, anisomycin, anthramycin, anti-syphilis imune substance, anti-tuberculosis imune substance, antibiotic from Eschericia coli, antibiotics from Streptomyces refuineus, anticapsin, antimycin, aplasmomycin, aranorosin, aranorosinol, arugomycin, ascofuranone, ascomycin, ascosin, Aspergillus flavus antibiotic, asukamycin, aurantinin, an Aureolic acid antibiotic substance, aurodox, avilamycin, azidamfenicol, azidimycin, bacillaene, a Bacillus larvae antibiotic, bactobolin, benanomycin, benzanthrin, benzylmonate, bicozamycin, bravomicin, brodimoprim, butalactin, calcimycin, calvatic acid, candiplanecin, carumonam, carzinophilin, celesticetin, cepacin, cerulenin, cervinomycin, chartreusin, chloramphenicol, chloramphenicol palmitate, chloramphenicol succinate sodium, chlorflavonin, chlorobiocin, chlorocarcin, chromomycin, ciclopirox, ciclopirox olamine, citreamicin, cladosporin, clazamycin, clecarmycin, clindamycin, coliformin, collinomycin, copiamycin, corallopyronin, corynecandin, coumermycin, culpin, cuprimyxin, cyclamidomycin, cycloheximide, dactylomycin, danomycin, danubomycin, delaminomycin, demethoxyrapamycin, demethylscytophycin, dermadin, desdamethine, dexylosyl-benanomycin, pseudoaglycone, dihydromocimycin, dihydronancimycin, diumycin, dnacin, dorrigocin, dynemycin, dynemycin triacetate, ecteinascidin, efrotomycin, endomycin, ensanchomycin, equisetin, ericamycin, esperamicin, ethylmonate, everninomicin, feldamycin, flambamycin, flavensomycin, florfenicol, fluvomycin, fosfomycin, fosfonochlorin, fredericamycin, frenolicin, fumagillin, fumifungin, funginon, fusacandin, fusafungin, gelbecidine, glidobactin, grahamimycin, granaticin, griseofulvin, griseoviridin, grisonomycin, hayumicin, hayumicin, hazymicin, hedamycin, heneicomycin, heptelicid acid, holomycin, humidin, isohematinic acid, karnatakin, kazusamycin, kristenin, L-dihydrophenylalanine, a L-isoleucyl-L-2-amino-4-(4'- amino-21, δ'-cycloRexadienyl) derivative, lanomycin, leinamycin, leptomycin, libanomycin, lincomycin, lomofungin, lysolipin, magnesidin, manumycin, melanomycin, methoxycarbonylmethylmonate, methoxycarbonylethylmonate, methoxycarbonylphenylmonate, methyl pseudomonate, methylmonate, microcin, mitomalcin, mocimycin, moenomycin, monoacetyl cladosporin, monomethyl cladosporin, mupirocin, mupirocin calcium, mycobacidin, myriocin, myxopyronin, pseudoaglycone, nanaomycin, nancimycin, nargenicin, neocarcinostatin, neoenactin, neothramycin, nifurtoinol, nocardicin, nogalamycin, novobiocin, octylmonate, olivomycin, orthosomycin, oudemansin, oxirapentyn, oxoglaucine methiodide, pacfacin, pactamycin, papulacandin, paulomycin, phaedramularia fungicide, phenelfamycin, phenyl, cerulenin, phenylmonate, pholipomycin, pirlimycin, pleuromutilin, a polylactone derivative, polynitroxin, polyoxin, porfiromycin, pradimicin, prenomycin, prop-2-enylmonate, protomycin, pseudomonas antibiotic, pseudomonic acid, purpuromycin, pyrinodemin, pyrrolnitrin, pyrrolomycin, amino, chloro pentenedioic acid, rapamycin, rebeccamycin, resistomycin, reuterin, reveromycin, rhizocticin, roridin, rubiflavin, naphthyridinomycin, saframycin, saphenamycin, sarkomycin, sarkomycin, sclopularin, selenomycin, siccanin, spartanamicin, spectinomycin, spongistatin, stravidin, streptolydigin, streptomyces arenae antibiotic complex, streptonigrin, streptothricins, streptovitacin, streptozotocine, a strobilurin derivative, stubomycin, sulfamethoxazol-trimethoprim, sakamycin, tejeramycin, terpentecin, tetrocarcin, thermorubin, thermozymocidin, thiamphenicol, thioaurin, thiolutin, thiomarinol, thiomarinol, tirandamycin, tolytoxin, trichodermin, trienomycin, trimethoprim, trioxacarcin, tyrissamycin, umbrinomycin, unphenelfamycin, urauchimycin, usnic acid, uredolysin, variotin, vermisporin, verrucarin and analogs, salts and derivatives thereof.
[0061] In one or more embodiments, the antibiotic agent is a naturally occurring antibiotic compound. As used herein, the term "naturally-occurring antibiotic agent" includes all antibiotic that are obtained, derived or extracted from plant or vertebrate sources. Non-limiting examples of families of naturally- occurring antibiotic agents include phenol, resorcinol, antibiotic aminoglycosides, anamycin, quinines, anthraquinones, antibiotic glycopeptides, azoles, macrolides, avilamycin, agropyrene, cnicin, aucubin antibioticsaponin fractions, berberine (isoquinoline alkaloid), arctiopicrin (sesquiterpene lactone), lupulone, humulone (bitter acids), allicin, hyperforin, echinacoside, coniosetin, tetramic acid, imanine and novoimanine.
[0062] Ciclopirox and ciclopiroxolamine possess fungicidal, fungistatic and sporicidal activity. They are active against a broad spectrum of dermatophytes, yeasts, moulds and other fungi, such as trichophyton species, microsporum species, epidermophyton species and yeasts (Candida albicans, Candida glabrata, other Candida species and cryptococcus neoformans). Some aspergillus species are sensitive to ciclopirox as are some penicillium. Likewise, ciclopirox is effective against many gram-positive and gram-negative bacteria (e.g., escherichia coli, proteus mirabilis, pseudomonas aeruginosa, staphylococcus and streptococcus species), as well as mycoplasma species, trichomonas vaginalis and actinomyces.
[0063] Plant oils and extracts which contain antibiotic agents are also useful. Non limiting examples of plants that contain agents include thyme, perilla, lavender, tea tree, terfezia claveryi, Micromonospora, putterlickia verrucosa , putterlickia pyracantha putterlickia retrospinosa, Maytenus ilicifolia , maytenus evonymoides., maytenus aquifolia, taenia interjecta, cordyceps sinensis, couchgrass, holy thistle, plantain, burdock, hops, echinacea, buchu, chaparral, myrrh, red clover and yellow dock, garlic and St. John's wort.
[0064] Mixtures of these antibiotic agents may also be employed according to the present invention.[0065] Solubility of the antibiotic agent is an important factor in the development of a stable foamable composition according to the present invention.
[0066] For definition purposes, in the context of the present invention, the descriptive terminology for solubility according to the US Pharmacopoeia (USP 23, 1995, p. 10), the European Pharmacopoeia (EP, 5th Edition (2004), page 7) and several other textbooks used in the art of pharmaceutical sciences (see for example, Martindale, The Extra Pharmacopoeia, 30th Edition (1993), page xiv of the Preface; and Remington's Pharmaceutical Sciences, 18th Edition (1990), page 208) is adapted:
Figure imgf000023_0001
[0067] Thus, in one or more embodiments, the antibiotic agent is "soluble", "freely soluble" or "very soluble" (as defined above) in the aqueous phase of the emulsion. In other embodiments, where the agent possesses hydrophobic characteristics, the antibiotic agent is "soluble", "freely soluble" or "very soluble" in the oil phase of the emulsion. In other cases, the antibiotic agent is "very slightly soluble", "slightly soluble" or "sparingly soluble" in either the water phase or oil phase of the emulsion.
[0068] In other embodiments, the antibiotic agent is insoluble i.e., "requires 10,000 parts or more of a solvent to be solubilized", in either the water phase of the composition, or the oil phase of the composition, but not in both.
[0069] In yet other embodiments, the antibiotic agent is not fully dissolved in both the aqueous phase of the oil phase of the emulsion concurrently, and thus, it is suspended in the emulsion (i.e., at least a portion of the antibiotic agent portion remains in solid state in the final composition). In such a case, the polymeric agents that are listed herein serve as suspension-stabilizing agents to stabilize the composition.
[0070] In certain embodiments of the present invention, the composition and properties of the aqueous phase of the emulsion (e.g., pH, electrolyte concentration and chelating agents) and/or the composition of the oil phase of the emulsion are adjusted to attain a desirable solubility profile of the active agent.
[0071] Antibiotic agents are useful for the treatment of skin infections and infections of other target sites, such as the vagina and rectum. The pH of the composition is adjusted for optimal efficacy, according to the specific infection and in light of the specific target site. In certain embodiments, the pH of the composition is between 3.5 and 8.5, and more preferably between about 4.5 and about 7.0, which is preferable for skin therapy. Yet, in other exemplary embodiments, the pH of the composition is between about 3 and about 4.5, which is suitable for vaginal therapy. In certain embodiments, the pH of the composition can be lower than 3. Two exemplary antibiotic agents that are being used both in skin therapy and vaginal therapy are metronidazole and clindamycin. For both agents, the pH of the foamable composition is adjusted between about 4.5 and about 7.0 for skin treatment and about 3 and about 4.5 for vaginal treatment. The adjustment of the pH can performed, as needed by the addition of an acid, a base or a buffering agent.
[0072] The antibiotic agent is included in the composition of the present invention in a concentration that provides a desirable ratio between the efficacy and safety. Typically, antibiotic agents are included in the composition in a concentration between about 0.005% and about 12%. However, in some embodiments, the concentration of between about 0.005% and about 0.5%, in other embodiment between about 0.5% and about 2%, and in additional embodiments between about 2% and about 5% or between about 5% and about 12%.
[0073] In one or more embodiments, the antibiotic agent is encapsulated in particles, microparticles, nanoparticles, microcapsules, spheres, microsphres, nanocapsules, nanospheres, liposomes, niosomes, polymer matrix, nanocrystals or microsponges.
[0074] In one or more embodiments, the antibiotic agent is an antibiotic agent precursor present at a concentration between about 0.05% and about 12%.
[0075] In one or more embodiments, the antibiotic agent is a compound that is positively identified using a laboratory method, suitable of detecting an antibiotic agent.
[0076] In one or more embodiments, the antibiotic agent is a substance that is positively identified using a competitive nuclear retinoic acid receptor-binding assay.
[0077] Several disorders of the target site (such as the skin, a body surface, a body cavity, a mucosal surface, the nose, the mouth, the eye, the ear canal, the respiratory system, the vagina and the rectum), involve a combination of etiological factors, some of which are related to a microbiological infection (that can be affected by an antibiotic agent); and other etiological factors that require an additional therapeutic modality. For example, impetigo involves bacterial infection as well as inflammation, and therefore combined treatment with an antibiotic agent and an anti-inflammatory agent would be beneficial. Likewise, chronic ulcers involve poor blood supply and potential bacterial, fungal and viral infections, which warrants a beneficial effect of a combination of an antibiotic agent and a vasoactive agent.
[0078] Additional non-limiting examples of combinations of an antibiotic agent and an additional active agent are provided in the following table:
Figure imgf000026_0001
Hence, in many cases, the inclusion of an additional therapeutic agent in the foamable composition of the present invention, contributes to the clinical activity of the antibiotic agent. Thus, in one or more embodiments, the foamable composition further includes at least one additional therapeutic agent, in a therapeutically effective concentration.
[0079] In one or more embodiments, the at least one additional therapeutic agent is selected from the group consisting of a steroidal anti-inflammatory agent, a nonsteroidal anti-inflammatory drug, an immunosuppressive agent, an immunomodulator, an immunoregulating agent, a hormonal agent, an antifungal agent, an antiviral agent, an antiparasitic agent, a vasoactive agent, a vasoconstrictor, a vasodilator, vitamin A, a vitamin A derivative, vitamin B, a vitamin B derivative, vitamin C, a vitamin C derivative, vitamin D, a vitamin D derivative, vitamin E, a vitamin E derivative, vitamin F, a vitamin F derivative, vitamin K, a vitamin K derivative, a wound healing agent, a disinfectant, an anesthetic, an antiallergic agent, an alpha hydroxyl acid, lactic acid, glycolic acid, a beta-hydroxy acid, a protein, a peptide, a neuropeptide, a allergen, an immunogenic substance, a haptene, an oxidizing agent, an antioxidant, a dicarboxylic acid, azelaic acid, sebacic acid, adipic acid, fumaric acid, an antibiotic agent, an antiproliferative agent, an anticancer agent, a photodynamic therapy agent, an anti-wrinkle agent, a radical scavenger, a metal oxide (e.g., titanium dioxide, zinc oxide, zirconium oxide, iron oxide), silicone oxide, an anti wrinkle agent, a skin whitening agent, a skin protective agent, a masking agent, an anti-wart agent, a refatting agent, a lubricating agent and mixtures thereof.
[0080] In certain cases, the disorder to be treated involves unaesthetic lesions that need to be masked. For example, rosacea involves papules and pustules, which can be treated with an antibiotic agent, as well as erythema, telangiectasia and redness, which partially respond to treatment with an antibiotic agent. Thus, in one or more embodiments, the additional active agent is a masking agent, i.e., a pigment. Non limiting examples of suitable pigments include brown, yellow or red iron oxide or hydroxides, chromium oxides or hydroxides, titanium oxides or hydroxides, zinc oxide, FD&C Blue No. 1 aluminum lake, FD&C Blue No. 2 aluminum lake and FD&C Yellow No. 6 aluminum lake. [0081] The foamable composition of the present invention can be an emulsion, or microemulsion, including an aqueous phase and an organic carrier phase. The organic carrier is selected from a hydrophobic organic carrier (also termed herein "hydrophobic solvent"), an emollient, a polar solvent, and a mixture thereof. The identification of a "solvent", as used herein, is not intended to characterize the solubilization capabilities of the solvent for any specific active agent or any other component of the foamable composition. Rather, such information is provided to aid in the identification of materials suitable for use as a carrier in the foamable compositions described herein.
[0082] A "hydrophobic organic carrier" as used herein refers to a material having solubility in distilled water at ambient temperature of less than about 1 gm per 100 ml_, more preferable less than about 0.5 gm per 100 ml_, and most preferably less than about 0.1 gm per 100 mL. It is liquid at ambient temperature. The identification of a hydrophobic organic carrier or "hydrophobic solvent", as used herein, is not intended to characterize the solubilization capabilities of the solvent for any specific active agent or any other component of the foamable composition. Rather, such information is provided to aid in the identification of materials suitable for use as a hydrophobic carrier in the foamable compositions described herein.
[0083] In one or more embodiments, the hydrophobic organic carrier is an oil, such as mineral oil. Mineral oil (Chemical Abstracts Service Registry number 8012-95-1) is a mixture of aliphatic, naphthalenic, and aromatic liquid hydrocarbons that derive from petroleum. It is typically liquid; its viscosity is in the range of between about 35 CST and about 100 CST (at 40°C), and its pour point (the lowest temperature at which an oil can be handled without excessive amounts of wax crystals forming so preventing flow) is below 0°C. The hydrophobic organic carrier does not include thick or semi-solid materials, such as white petrolatum, also termed "Vaseline", which, in certain compositions is disadvantageous due to its waxy nature and semi-solid texture. [0084] According to one or more embodiments, hydrophobic solvents are liquid oils originating from vegetable, marine or animal sources. Suitable liquid oil includes saturated, unsaturated or polyunsaturated oils. By way of example, the unsaturated oil may be olive oil, corn oil, soybean oil, canola oil, cottonseed oil, coconut oil, sesame oil, sunflower oil, borage seed oil, syzigium aromaticum oil, hempseed oil, herring oil, cod-liver oil, salmon oil, flaxseed oil, wheat germ oil, evening primrose oils or mixtures thereof, in any proportion.
[0085] Suitable hydrophobic solvents also include polyunsaturated oils containing poly-unsatu rated fatty acids. In one or more embodiments, the unsaturated fatty acids are selected from the group of omega-3 and omega-6 fatty acids. Examples of such polyunsaturated fatty acids are linoleic and linolenic acid, gamma-linoleic acid (GLA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Such unsaturated fatty acids are known for their skin-conditioning effect, which contribute to the therapeutic benefit of the present foamable composition. Thus, the hydrophobic solvent can include at least 6% of an oil selected from omega-3 oil, omega-6 oil, and mixtures thereof. In the
® context of the present invention, oils that possess therapeutically beneficial properties are termed "therapeutically active oil".
[0086] Another class of hydrophobic solvents is the essential oils, which are also considered therapeutically active oil, which contain active biologically occurring molecules and, upon topical application, exert a therapeutic effect, which is conceivably synergistic to the beneficial effect of the antibiotic agent in the composition.
[0087] Another class of therapeutically active oils includes liquid hydrophobic plant-derived oils, which are known to possess therapeutic benefits when applied topically.
[0088] Silicone oils also may be used and are desirable due to their known skin protective and occlusive properties. Suitable silicone oils include nonvolatile silicones, such as polyalkyl siloxanes, polyaryl siloxanes, polyalkylaryl siloxanes and polyether siloxane copolymers, polydimethylsiloxanes (dimethicones) and poly(dimethylsiloxane)-(diphenyl-siloxane) copolymers. These are chosen from cyclic or linear polydimethylsiloxanes containing from about 3 to about 9, preferably from about 4 to about 5, silicon atoms. Volatile silicones such as cyclomethicones can also be used. Silicone oils are also considered therapeutically active oil, due to their barrier retaining and protective properties.
[0089] In one or more embodiments, the hydrophobic carrier includes at least 2% by weight silicone oil or at least 5% by weight.
[0090] The solvent may be a mixture of two or more of the above hydrophobic solvents in any proportion.
[0091] A further class of solvents includes "emollients" that have a softening or soothing effect, especially when applied to body areas, such as the skin and mucosal surfaces. Emollients are not necessarily hydrophobic. Examples of suitable emollients include hexyleneglycol, propylene glycol, isostearic acid derivatives, isopropyl palmitate, isopropyl isostearate, diisopropyl adipate, diisopropyl dimerate, maleated soybean oil, octyl palmitate, cetyl lactate, cetyl ricinoleate, tocopheryl acetate, acetylated lanolin alcohol, cetyl acetate, phenyl trimethicone, glyceryl oleate, tocopheryl linoleate, wheat germ glycerides, arachidyl propionate, myristyl lactate, decyl oleate, propylene glycol ricinoleate, isopropyl lanolate, pentaerythrityl tetrastearate, neopentylglycol dicaprylate/dicaprate, isononyl isononanoate, isotridecyl isononanoate, myristyl myristate, triisocetyl citrate, octyl dodecanol, sucrose esters of fatty acids, octyl hydroxystearate and mixtures thereof.
[0092] An additional class of emollients, suitable according to the present invention consists of polypropylene glycol (PPG) alkyl ethers, such as PPG stearyl ethers and PPG Butyl Ether, which are polypropylene ethers of stearyl ether that function as skin-conditioning agent in pharmaceutical and cosmetic formulations. PPG alkyl ethers can be incorporated in the foamable composition of the present invention in a concentration between about 1 % and about 20%. The sensory properties of foams containing PPG alkyl ethers are favorable, as revealed by consumer panel tests. Surprisingly, it has been discovered that foams comprising PPG alkyl ethers are non-flammable, as shown in a test according to European Standard prEN 14851, titled "Aerosol containers - Aerosol foam flammability test", while foams containing other oils are inflammable. [0093] According to one or more embodiments of the present invention, the hydrophobic organic carrier includes a mixture of a hydrophobic solvent and an emollient. According to one or more embodiments, the foamable composition is a mixture of mineral oil and an emollient in a ratio between 2:8 and 8:2 on a weight basis.
[0094] A "polar solvent" is an organic solvent, typically soluble in both water and oil. Examples of polar solvents include polyols, such as glycerol (glycerin), propylene glycol, hexylene glycol, diethylene glycol, propylene glycol n-alkanols, terpenes, di-terpenes, tri-terpenes, terpen-ols, limonene, terpene-ol, 1 -menthol, dioxolane, ethylene glycol, other glycols, sulfoxides, such as dimethylsulfoxide (DMSO), dimethylformanide, methyl dodecyl sulfoxide, dimethylacetamide, monooleate of ethoxylated glycerides (with 8 to 10 ethylene oxide units), azone (1-dodecylazacycloheptan-2-one), 2-(n-nonyl)-1 ,3-dioxolane, esters, such as isopropyl myristate/palmitate, ethyl acetate, butyl acetate, methyl proprionate, capric/caprylic triglycerides, octylmyristate, dodecyl-myristate; myristyl alcohol, lauryl alcohol, lauric acid, lauryl lactate ketones; amides, such as acetamide oleates such as triolein; various alkanoic acids such as caprylic acid; lactam compounds, such as azone; alkanols, such as dialkylamino acetates, and admixtures thereof.
[0095] According to one or more embodiments, the polar solvent is a polyethylene glycol (PEG) or PEG derivative that is liquid at ambient temperature, including PEG200 (MW (molecular weight) about 190-210 kD), PEG300 (MW about 285-315 kD), PEG400 (MW about 380-420 kD), PEG600 (MW about 570- 630 kD) and higher MW PEGs such as PEG 4000, PEG 6000 and PEG 10000 and mixtures thereof.
[0096] The polymeric agent serves to stabilize the foam composition and to control drug residence in the target organ. Exemplary polymeric agents are classified below in a non-limiting manner. In certain cases, a given polymer can belong to more than one of the classes provided below.
[0097] In one or more embodiments, the composition of the present invention includes at least one gelling agent. A gelling agent controls the residence of a therapeutic composition in the target site of treatment by increasing the viscosity of the composition, thereby limiting the rate of its clearance from the site. Many gelling agents are known in the art to possess mucoadhesive properties.
[0098] The gelling agent can be a natural gelling agent, a synthetic gelling agent and an inorganic gelling agent. Exemplary gelling agents that can be used in accordance with one or more embodiments of the present invention include, for example, naturally-occurring polymeric materials, such as locust bean gum, sodium alginate, sodium caseinate, egg albumin, gelatin agar, carrageenin gum, sodium alginate, xanthan gum, quince seed extract, tragacanth gum, guar gum, starch, chemically modified starches and the like, semi-synthetic polymeric materials such as cellulose ethers (e.g. hydroxyethyl cellulose,, methyl cellulose, carboxymethyl cellulose, hydroxy propylmethyl cellulose), guar gum, hydroxypropyl guar gum, soluble starch, cationic celluloses, cationic guars, and the like, and synthetic polymeric materials, such as carboxyvinyl polymers, polyvinylpyrrolidone, polyvinyl alcohol, polyacrylic acid polymers, polymethacrylic acid polymers, polyvinyl acetate polymers, polyvinyl chloride polymers, polyvinylidene chloride polymers and the like. Mixtures of the above compounds are contemplated.
[0099] Further exemplary gelling agents include the acrylic acid/ethyl acrylate copolymers and the carboxyvinyl polymers sold, for example, by the B.F. Goodrich Company under the trademark of Carbopol® resins. These resins consist essentially of a colloidal water-soluble polyalkenyl polyether crosslinked polymer of acrylic acid crosslinked with from 0.75% to 2% of a crosslinking agent such as polyallyl sucrose or polyallyl pentaerythritol. Examples include Carbopol® 934, Carbopol® 940, Carbopol® 950, Carbopol® 980, Carbopol® 951 and Carbopol® 981. Carbopol® 934 is a water-soluble polymer of acrylic acid crosslinked with about 1% of a polyallyl ether of sucrose having an average of about 5.8 allyl groups for each sucrose molecule.
[0100] In one or more embodiment, the composition of the present invention includes at least one polymeric agent, which is a water-soluble cellulose ether. Preferably, the water-soluble cellulose ether is selected from the group consisting of methylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose (Methocel), hydroxyethyl cellulose, methylhydroxyethylcellulose, methylhydroxypropylcellulose, hydroxyethylcarboxymethylcellulose, carboxymethylcellulose and carboxymethylhydroxyethylcellulose. More preferably, the water-soluble cellulose ether is selected from the group consisting of methylcellulose, hydroxypropyl cellulose and hydroxypropyl methylcellulose (Methocel). In one or more embodiments, the composition includes a combination of a water-soluble cellulose ether; and a naturally occurring polymeric materials, selected from the group including xanthan gum, guar gum, carrageenan gum, locust bean gum and tragacanth gum.
[0101] Yet, in other embodiments, the gelling agent includes inorganic gelling agents, such as silicone dioxide (fumed silica).
[0102] Mucoadhesive/bioadhesion has been defined as the attachment of synthetic or biological macromolecules to a biological tissue. Mucoadhesive agents are a class of polymeric biomaterials that exhibit the basic characteristic of a hydrogel, i.e. swell by absorbing water and interacting by means of adhesion with the mucous that covers epithelia. Compositions of the present invention may contain a mucoadhesive macromolecule or polymer in an amount sufficient to confer bioadhesive properties. The bioadhesive macromolecule enhances the delivery of biologically active agents on or through the target surface. The mucoadhesive macromolecule may be selected from acidic synthetic polymers, preferably having at least one acidic group per four repeating or monomeric subunit moieties, such as poly(acrylic)- and/or poly(methacrylic) acid (e.g., Carbopol®, Carbomer®), poly(methylvinyl ether/maleic anhydride) copolymer, and their mixtures and copolymers; acidic synthetically modified natural polymers, such as carboxymethylcellulose (CMC); neutral synthetically modified natural polymers, such as (hydroxypropyl)methylcellulose; basic amine-bearing polymers such as chitosan; acidic polymers obtainable from natural sources, such as alginic acid, hyaluronic acid, pectin, gum tragacanth, and karaya gum; and neutral synthetic polymers, such as polyvinyl alcohol or their mixtures. An additional group of mucoadhesive polymers includes natural and chemically modified cyclodextrin, especially hydroxypropyl-β-cyclodextrin. Such polymers may be present as free acids, bases, or salts, usually in a final concentration of about 0.01% to about 0.5% by weight.
[0103] A suitable bioadhesive macromolecule is the family of acrylic acid polymers and copolymers, (e.g., Carbopol®). These polymers contain the general structure -[CH2-CH(COOH)-]n. Hyaluronic acid and other biologically- derived polymers may be used.
[0104] Exemplary bioadhesive or mucoadhesive macromolecules have a molecular weight of at least 50 kDa, or at least 300 kDa, or at least 1 ,000 kDa. Favored polymeric ionizable macromolecules have not less than 2 mole percent acidic groups (e.g., COOH, SO3H) or basic groups (NH2, NRH, NFfe), relative to the number of monomeric units. The acidic or basic groups can constitute at least 5 mole percent, or at least 10 mole percent, or at least 25, at least 50 more percent, or even up to 100 mole percent relative to the number of monomeric units of the macromolecule. [0105] Yet, another group of mucoadhesive agent includes inorganic gelling agents such as silicon dioxide (fumed silica), including but not limited to, AEROSIL 200 (DEGUSSA).
[0106] Many mucoadhesive agents are known in the art to also possess gelling properties.
[0107] The foam composition may contain a film-forming component. The film-forming component may include at least one water-insoluble alkyl cellulose or hydroxyalkyl cellulose. Exemplary alkyl cellulose or hydroxyalkyl cellulose polymers include ethyl cellulose, propyl cellulose, butyl cellulose, cellulose acetate, hydroxypropyl cellulose, hydroxybutyl cellulose, and ethylhydroxyethyl cellulose, alone or in combination. In addition, a plasticizer or a cross-linking agent may be used to modify the polymer's characteristics. For example, esters such as dibutyl or diethyl phthalate, amides such as diethyldiphenyl urea, vegetable oils, fatty acids and alcohols such as oleic and myristyl acid may be used in combination with the cellulose derivative.
[0108] In one or more embodiments, the composition of the present invention includes a phase change polymer, which alters the composition behavior from fluid-like prior to administration to solid-like upon contact with the target mucosal surface. Such phase change results from external stimuli, such as changes in temperature or pH and exposure to specific ions (e.g., Ca2+). Non- limiting examples of phase change polymers include poly(N-isopropylamide) and Poloxamer 407®.
[0109] The polymeric agent is present in an amount in the range of about 0.01 % to about 5.0% by weight of the foam composition. In one or more embodiments, it is typically less than about 1 wt% of the foamable composition.
[0110] Surface-active agents (also termed "surfactants") include any agent linking oil and water in the composition, in the form of emulsion. A surfactant's hydrophilic/lipophilic balance (HLB) describes the emulsifier's affinity toward water or oil. The HLB scale ranges from 1 (totally lipophilic) to 20 (totally hydrophilic), with 10 representing an equal balance of both characteristics. Lipophilic emulsifiers form water-in-oil (w/o) emulsions; hydrophilic surfactants form oil-in-water (o/w) emulsions. The HLB of a blend of two emulsifiers equals the weight fraction of emulsifier A times its HLB value plus the weight fraction of emulsifier B times its HLB value (weighted average).
[0111] According to one or more embodiments of the present invention, the surface-active agent has a hydrophilic lipophilic balance (HLB) between about 9 and about 14, which is the required HLB (the HLB required to stabilize an O/W emulsion of a given oil) of most oils and hydrophobic solvents. Thus, in one or more embodiments, the composition contains a single surface active agent having an HLB value between about 9 and 14, and in one or more embodiments, the composition contains more than one surface active agent and the weighted average of their HLB values is between about 9 and about 14. Yet, in other embodiments, when a water in oil emulsion is desirable, the composition contains one or more surface active agents, having an HLB value between about 2 and about 9.
[0112] The surface-active agent is selected from anionic, cationic, nonionic, zwitterionic, amphoteric and ampholytic surfactants, as well as mixtures of these surfactants. Such surfactants are well known to those skilled in the therapeutic and cosmetic formulation art. Nonlimiting examples of possible surfactants include polysorbates, such as polyoxyethylene (20) sorbitan monostearate (Tween 60) and poly(oxyethylene) (20) sorbitan monooleate (Tween 80); poly(oxyethylene) (POE) fatty acid esters, such as Myrj 45, Myrj 49, Myrj 52 and Myrj 59; poly(oxyethylene) alkylyl ethers, such as poly(oxyethylene) cetyl ether, poly(oxyethylene) palmityl ether, polyethylene oxide hexadecyl ether, polyethylene glycol cetyl ether, brij 38, brij 52, brij 56 and brij W1 ; sucrose esters, partial esters of sorbitol and its anhydrides, such as sorbitan monolaurate and sorbitan monolaurate; mono or diglycerides, isoceteth-20, sodium methyl cocoyl taurate, sodium methyl oleoyl taurate, sodium lauryl sulfate, triethanolamine lauryl sulfate and betaines.
[0113] In one or more embodiments of the present invention, the surface- active agent includes at least one non-ionic surfactant. Ionic surfactants are known to be irritants. Therefore, non-ionic surfactants are preferred in applications including sensitive tissue such as found in most mucosal tissues, especially when they are infected or inflamed. We have surprisingly found that non-ionic surfactants alone provide foams of excellent quality, i.e. a score of "E" according to the grading scale discussed herein below.
[0114] In one or more embodiments, the surface active agent includes a mixture of at least one non-ionic surfactant and at least one ionic surfactant in a ratio in the range of about 100:1 to 6:1. In one or more embodiments, the non- ionic to ionic surfactant ratio is greater than about 6:1 , or greater than about 8:1 ; or greater than about 14:1 , or greater than about 16:1 , or greater than about 20:1.
[0115] In one or more embodiments of the present invention, a combination of a non-ionic surfactant and an ionic surfactant (such as sodium lauryl sulphate and cocamidopropylbetaine) is employed, at a ratio of between 1:1 and 20:1 , or at a ratio of 4:1 to 10:1. The resultant foam has a low specific gravity, e.g., less than 0.1 g/ml.
[0116] In certain preferred embodiments, the surface active agent consistst of essentially a non-ionic surfactant or a combination of non-ionic surfactants. [0117] It has been surprisingly discovered that the stability of the composition is especially pronounced when a combination of at least one non- ionic surfactant having HLB of less than 9 and at least one non-ionic surfactant having HLB of equal or more than 9 is employed. The ratio between the at least one non-ionic surfactant having HLB of less than 9 and the at least one non-ionic surfactant having HLB of equal or more than 9, is between 1 :8 and 8:1 , or at a ratio of 4:1 to 1 :4. The resultant HLB of such a blend of at least two emulsifiers is between about 9 and about 14. [0118] Thus, in an exemplary embodiment, a combination of at least one non-ionic surfactant having HLB of less than 9 and at least one non-ionic surfactant having HLB of equal or more than 9 is employed, at a ratio of between 1 :8 and 8:1 , or at a ratio of 4:1 to 1 :4, wherein the HLB of the combination of emulsifiers is between about 9 and about 14.
[0119] In one or more embodiments of the present invention, the surface- active agent includes mono-, di- and tri-esters of sucrose with fatty acids (sucrose esters), prepared from sucrose and esters of fatty acids or by extraction from sucro-glycerides. Suitable sucrose esters include those having high monoester content, which have higher HLB values.
[0120] The total surface active agent is in the range of about 0.1 to about 5% of the foamable composition, and is typically less than about 2% or less than about 1 %.
[0121] Preferably, a therapeutically effective foam adjuvant is included in the foamable compositions of the present invention to increase the foaming capacity of surfactants and/or to stabilize the foam. In one or more embodiments of the present invention, the foam adjuvant agent includes fatty alcohols having 15 or more carbons in their carbon chain, such as cetyl alcohol and stearyl alcohol (or mixtures thereof). Other examples of fatty alcohols are arachidyl alcohol (C20), behenyl alcohol (C22), 1-triacontanol (C30), as well as alcohols with longer carbon chains (up to C50). Fatty alcohols, derived from beeswax and including a mixture of alcohols, a majority of which has at least 20 carbon atoms in their carbon chain, are especially well suited as foam adjuvant agents. The amount of the fatty alcohol required to support the foam system is inversely related to the length of its carbon chains. Foam adjuvants, as defined herein are also useful in facilitating improved spreadability and absorption of the composition.
[0122] In one or more embodiments of the present invention, the foam adjuvant agent includes fatty acids having 16 or more carbons in their carbon chain, such as hexadecanoic acid (C16) stearic acid (C18), arachidic acid (C20), behenic acid (C22), octacosanoic acid (C28), as well as fatty acids with longer carbon chains (up to C50), or mixtures thereof. As for fatty alcohols, the amount of fatty acids required to support the foam system is inversely related to the length of its carbon chain.
[0123] In one or more embodiments, a combination of a fatty acid and a fatty ester is employed.
[0124] Optionally, the carbon atom chain of the fatty alcohol or the fatty acid may have at least one double bond. A further class of foam adjuvant agent includes a branched fatty alcohol or fatty acid. The carbon chain of the fatty acid or fatty alcohol also can be substituted with a hydroxyl group, such as 12-hydroxy stearic acid.
[0125] An important property of the fatty alcohols and fatty acids used in context of the composition of the present invention is related to their therapeutic properties per se. Long chain saturated and mono unsaturated fatty alcohols, e.g., stearyl alcohol, erucyl alcohol, arachidyl alcohol and behenyl alcohol (docosanol) have been reported to possess antiviral, antiinfective, antiproliferative and anti-inflammatory properties (see, U.S. Patent No. 4,874,794). Longer chain fatty alcohols, e.g., tetracosanol, hexacosanol, heptacosanol, octacosanol, triacontanol, etc., are also known for their metabolism modifying properties and tissue energizing properties. Long chain fatty acids have also been reported to possess anti-infective characteristics.
[0126] Thus, in preferred embodiments of the present invention, a combined and enhanced therapeutic effect is attained by including both an antibiotic agent and a therapeutically effective foam adjuvant in the same composition, thus providing a simultaneous anti-inflammatory and antiinfective effect from both components. Furthermore, in a further preferred embodiment, the composition concurrently comprises an antibiotic agent, a therapeutically effective foam adjuvant and a therapeutically active oil, as detailed above. Such combination provides an even more enhanced therapeutic benefit. Thus, the foamable carrier, containing the foam adjuvant provides an extra therapeutic benefit in comparison with currently used vehicles, which are inert and non-active.
[0127] The foam adjuvant according to one or more preferred embodiments of the present invention includes a mixture of fatty alcohols, fatty acids and hydroxy fatty acids and derivatives thereof in any proportion, providing that the total amount is 0.1% to 5% (w/w) of the carrier mass. More preferably, the total amount is 0.4% - 2.5% (w/w) of the carrier mass.
[0128] Optionally, the composition further contains a penetration enhancer. Non limiting examples of penetration enhancers include propylene glycol, butylene glycols, glycerol, pentaerythritol, sorbitol, mannitol, oligosaccharides, dimethyl isosorbide, monooleate of ethoxylated glycerides having about 8 to 10 ethylene oxide units, polyethylene glycol 200-600, transcutol, glycofurol and cyclodextrins.
[0129] The therapeutic foam of the present invention may further optionally include a variety of formulation excipients, which are added in order to fine-tune the consistency of the formulation, protect the formulation components from degradation and oxidation and modify their consistency. Such excipients may be selected, for example, from stabilizing agents, antioxidants, humectants, preservatives, colorant and odorant agents and other formulation components, used in the art of formulation.
[0130] Aerosol propellants are used to generate and administer the foamable composition as a foam. The total composition including propellant, foamable compositions and optional ingredients is referred to as the foamable carrier. The propellant makes up about 3% to about 25 wt% of the foamable carrier. Examples of suitable propellants include volatile hydrocarbons such as butane, propane, isobutane or mixtures thereof, and fluorocarbon gases. Composition and Foam Physical Characteristics
[0131] A pharmaceutical or cosmetic composition manufactured using the foam carrier according to one or more embodiments of the present invention is very easy to use. When applied onto the afflicted body surface of mammals, i.e., humans or animals, it is in a foam state, allowing free application without spillage. Upon further application of a mechanical force, e.g., by rubbing the composition onto the body surface, it freely spreads on the surface and is rapidly absorbed.
[0132] The foam composition of the present invention creates a stable emulsion having an acceptable shelf life of at least one year, or at least two years at ambient temperature. A feature of a product for cosmetic or medical use is long-term stability. Propellants, which are a mixture of low molecular weight hydrocarbons, tend to impair the stability of emulsions. It has been observed, however, that emulsion foam compositions according to the present invention are surprisingly stable. Following accelerated stability studies, they demonstrate desirable texture; they form fine bubble structures that do not break immediately upon contact with a surface, spread easily on the treated area and absorb quickly.
[0133] The composition should also be free flowing, to allow it to flow through the aperture of the container, e.g., and aerosol container, and create an acceptable foam. Compositions containing semi-solid hydrophobic solvents, e.g., white petrolatum, as the main ingredients of the oil phase of theo emulsion, exhibit high viscosity and poor flowability and are inappropriate candidates for a foamable composition.
[0134] Foam quality can be graded as follows:
Grade E (excellent): very rich and creamy in appearance, does not show any bubble structure or shows a very fine (small) bubble structure; does not rapidly become dull; upon spreading on the skin, the foam retains the creaminess property and does not appear watery. Grade G (good): rich and creamy in appearance, very small bubble size, "dulls" more rapidly than an excellent foam, retains creaminess upon spreading on the skin, and does not become watery.
Grade FG (fairly good): a moderate amount of creaminess noticeable, bubble structure is noticeable; upon spreading on the skin the product dulls rapidly and becomes somewhat lower in apparent viscosity.
Grade F (fair): very little creaminess noticeable, larger bubble structure than a "fairly good" foam, upon spreading on the skin it becomes thin in appearance and watery.
Grade P (poor): no creaminess noticeable, large bubble structure, and when spread on the skin it becomes very thin and watery in appearance.
Grade VP (very poor): dry foam, large very dull bubbles, difficult to spread on the skin.
[0135] Topically administratable foams are typically of quality grade E or G, when released from the aerosol container. Smaller bubbles are indicative of more stable foam, which does not collapse spontaneously immediately upon discharge from the container. The finer foam structure looks and feels smoother, thus increasing its usability and appeal.
[0136] A further aspect of the foam is breakability. The breakable foam is thermally stable, yet breaks under sheer force. Sheer-force breakability of the foam is clearly advantageous over thermally induced breakability. Thermally sensitive foams immediately collapse upon exposure to skin temperature and, therefore, cannot be applied on the hand and afterwards delivered to the afflicted area.
[0137] Another property of the foam is specific gravity, as measured upon release from the aerosol can. Typically, foams have specific gravity of less than 0.1 g/mL or less than 0.05 g/mL. Fields of Pharmaceutical Applications
[0138] The foamable composition of the present invention is suitable for administration to an inflicted area, in need of treatment, including, but not limited to the skin, a body surface, a body cavity, a mucosal surface, the nose, the mouth, the eye, the ear canal, the respiratory system, the vagina and the rectum (severally and interchangeably termed herein "target site").
[0139] Antibiotic agents are initially thought to affect disorders that involve blood circulation abnormalities, yet, in many case, circulation lays a secondary, yet influential role, which must be taken into account in order to optimize treatment. For example, cutaneous malignant tumors are characterized by poor blood circulation, which make them less responsive to drug treatment, and therefore usage of an antibiotic agent would be beneficial to the cancer therapy.
[0140] Thus, by including an appropriate antibiotic agent and optionally, additional active agents in the composition, the kit and the composition of the present invention are useful in treating an animal or a patient having one of a variety of dermatological disorders (also termed "dermatoses") and/or having any secondary condition resulting from infections, which disorders and/or conditions are classified in a non-limiting exemplary manner according to the following groups:
Any disorders that involve a microbiological infection, or disorders that respond to treatment with an antibiotic agent,
An infection, selected from the group of a bacterial infection, a fungal infection, a yeast infection, a viral infection and a parasitic infection.
Any one of a variety of dermatological disorders, including dermatological pain, dermatological inflammation, acne, acne vulgaris, inflammatory acne, non-inflammatory acne, acne fulminans, nodular papulopustular acne, acne conglobata, dermatitis, bacterial skin infections, fungal skin infections, viral skin infections, parasitic skin infections, skin neoplasia, skin neoplasms, pruritis, cellulitis, acute lymphangitis, lymphadenitis, erysipelas, cutaneous abscesses, necrotizing subcutaneous infections, scalded skin syndrome, folliculitis, furuncles, hydradenitis suppurativa, carbuncles, paronychial infections, rashes, erythrasma, impetigo, ecthyma, yeast skin infections, warts, molluscum contagiosum, trauma or injury to the skin, post-operative or postsurgical skin conditions, scabies, pediculosis, creeping eruption, eczemas, psoriasis, pityriasis rosea, lichen planus, pityriasis rubra pilaris, edematous, erythema multiforme, erythema nodosum, grannuloma annulare, epidermal necrolysis, sunburn, photosensitivity, pemphigus, bullous pemphigoid, dermatitis herpetiformis, keratosis pilaris, callouses, corns, ichthyosis, skin ulcers, ischemic necrosis, miliaria, hyperhidrosis, moles, Kaposi's sarcoma, melanoma, malignant melanoma, basal cell carcinoma, squamous cell carcinoma, poison ivy, poison oak, contact dermatitis, atopic dermatitis, rosacea, purpura, moniliasis, candidiasis, baldness, alopecia, Behcet's syndrome, cholesteatoma, Dercum disease, ectodermal dysplasia, gustatory sweating, nail patella syndrome, lupus, hives, hair loss, Hailey-Hailey disease, chemical or thermal skin burns, scleroderma, aging skin, wrinkles, sun spots, necrotizing fasciitis, necrotizing myositis, gangrene, scarring, and vitiligo.
Dermatitis including contact dermatitis, atopic dermatitis, seborrheic dermatitis, nummular dermatitis, chronic dermatitis of the hands and feet, generalized exfoliative dermatitis, stasis dermatitis; lichen simplex chronicus; diaper rash;
Bacterial infections including cellulitis, acute lymphangitis, lymphadenitis, erysipelas, cutaneous abscesses, necrotizing subcutaneous infections, staphylococcal scalded skin syndrome, folliculitis, furuncles, hidradenitis suppurativa, carbuncles, paronychial infections, erythrasma;
Fungal Infections including dermatophyte infections, yeast Infections; parasitic Infections including scabies, pediculosis, creeping eruption;
Viral Infections, including, but not limited to herpes genitalis and herpes labialis; Disorders of hair follicles and sebaceous glands including acne, rosacea, perioral dermatitis, hypertrichosis (hirsutism), alopecia, including male pattern baldness, alopecia areata, alopecia universalis and alopecia totalis; pseudofolliculitis barbae, keratinous cyst;
Scaling papular diseases including psoriasis, pityriasis rosea, lichen planus, pityriasis rubra pilaris;
Benign tumors«including moles, dysplastic nevi, skin tags, lipomas, angiomas, pyogenic granuloma, seborrheic keratoses, dermatofibroma, keratoacanthoma, keloid;
Malignant tumors including basal cell carcinoma, squamous cell carcinoma, malignant melanoma, Paget's disease of the nipples, Kaposi's sarcoma;
Reactions to sunlight including sunburn, chronic effects of sunlight, photosensitivity;
Bullous diseases including pemphigus, bullous pemphigoid, dermatitis herpetiformis, linear immunoglobulin A disease;
Pigmentation disorders including hypopigmentation such as vitiligo, albinism and postinflammatory hypopigmentation and hyperpigmentation such as melasma (chloasma), drug-induced hyperpigmentation, postinflammatory hyperpigmentation;
Disorders of comification including ichthyosis, keratosis pilaris, calluses and corns, actinic keratosis;
Pressure sores; Disorders of sweating; and
Inflammatory reactions including drug eruptions, toxic epidermal necrolysis; erythema multiforme, erythema nodosum, granuloma annulare. [0141] According to one or more embodiments of the present invention, the compositions are also useful in the therapy of non-dermatological disorders by providing transdermal delivery of an active antibiotic agent that is effective against non-dermatological disorders.
[0142] The same advantage is expected when the composition is topically applied to a body cavity or mucosal surface (e.g., the mucosa of the nose and mouth, the eye, the ear canal, vagina or rectum) to treat conditions such aschlamydia infection, gonorrhea infection, hepatitis B, herpes, HIV/AIDS, human papillomavirus (HPV), genital warts, bacterial vaginosis, candidiasis, chancroid, granuloma Inguinale, lymphogranloma venereum, mucopurulent cervicitis (MPC), molluscum contagiosum, nongonococcal urethritis (NGU), trichomoniasis, vulvar disorders, vulvodynia, vulvar pain, yeast infection, vulvar dystrophy, vulvar intraepithelial neoplasia (VIN), contact dermatitis, pelvic inflammation, endometritis, salpingitis, oophoritis, genital cancer, cancer of the cervix, cancer of the vulva, cancer of the vagina, vaginal dryness, dyspareunia, anal and rectal disease, anal abscess/fistula, anal cancer, anal fissure, anal warts, Crohn's disease, hemorrhoids, anal itch, pruritus ani, fecal incontinence, constipation, polyps of the colon and rectum.
[0143] In an embodiment of the present invention, the composition is useful for the treatment of wound, ulcer and burn. This use is particularly important since the composition of the present invention preads easily on the afflicted area, without the need of extensive rubbing.
[0144] In light of the expansion of the foam upon administration, it is further suitable for the treatment and prevention of post-surgical adhesions. Adhesions are scars that form abnormal connections between tissue surfaces. Post-surgical adhesion formation is a natural consequence of surgery, resulting when tissue repairs itself following incision, cauterization, suturing, or other means of trauma. When comprising an antibiotic agent an optionally, appropriate protective agents, the foam is suitable for the treatment or prevention of post surgical adhesions. [0145] The invention is described with reference to the following examples. This invention is not limited to these examples and experiments. Many variations will suggest themselves and are within the full-intended scope of the appended claims.
EXAMPLES Example 1 - Foamable oil in water emulsion antibiotic compositions
[0146] An emulsion base was prepared by incorporating Phase A and Phase B with thorough mixing at elevated temperature (60-8O0C)1 followed by homogenization and gradual cooling to RT.
Figure imgf000047_0001
[0147] The emulsion base was used to produce foamable antibiotic compositions as detailed below. The compositions were further examined for emulsion uniformity, emulsion stability, foam quality and density and found stable, and meeting the requirements of density between 0.01 and 0.1 g/mL and excellent (E) quality, as shown in the table below.
Figure imgf000047_0002
Example 2 - Foamable oil in water emulsion base antibiotic compositions comprising ciclopiroxolamine
The following compositions contain ciclopiroxolamine, as example of an antibiotic foams comprising different emulsion compositions.
Figure imgf000048_0001
Figure imgf000049_0001
Notes:
- The liquefied or gas propellant can be added at a concentration of about 3% to about 25%.
- The compositions contain a variety of organic carriers.
- In the majotrity of the compositions the surface active agents are solely non- ionic.
- The same vehicles can be used as vehicle of several additional antibiotic agents, listed in the embodiments of the present invention Example 3 - Non-flammable foamable oil in water emulsion base antibiotic compositions, containing PPG alky ether and comprising ciclopiroxolamine
Figure imgf000050_0001
Figure imgf000051_0001
Notes:
- The liquefied or gas propellant can be added at a concentration of about 3% to about 25%.
- The compositions contain a variety of organic carriers.
- In the majority of the compositions the surface active agents are solely non- ionic.
- The formulations contain glycerin and/or propylene glycol (polar solvents), which contribute to skin penetration of the antibiotic agent
- The same vehicles can be used as vehicle of several additional antibiotic agents, listed in the embodiments of the present invention Example 4 - Inflammability test
[0148] A test according to European Standard prEN 14851 , titled "Aerosol containers - Aerosol foam flammability test" was performed on foam compositions CPO32, CPO33 and CPO41. Approximately 5 g of foam, mousse gel or paste is sprayed from the aerosol container on to a watch glass. An ignition source (a lighter) was placed at the base of the watch glass and any ignition and sustained combustion of the foam, mousse, gel or paste was observed. The test was carried out in a draught-free environment capable of ventilation, with the temperature controlled at 20±5°C and relative humidity in the range of 30% to 80%. According to the standard, appearance of a stable flame which is at least 4 cm high and which is maintained for at least 2 seconds defines a product as "inflammable".
Results: foam compositions CPO32, CPO33 and CPO41 were found "nonflammable".
Example 5 - Foamable oil in water emulsion base antibiotic compositions, containing a combination of hexylene glycol and propylene glycol and comprising ciclopiroxolamine
Figure imgf000052_0001
Notes:
- The liquefied or gas propellant can be added at a concentration of about 3% to about 25%.
- The surface active agents are solely non-ionic.
- The formulation contains hexylene glycol and propylene glycol (polar solvents), which contribute to skin penetration of the antibiotic agent
- The same vehicle can be used as vehicle of several additional antibiotic agents, listed in the embosiments of the present invention
Example 6 - Foamable oil in water emulsion base antibiotic compositions, containing azelaic acid
Figure imgf000053_0001
Notes:
- The liquefied or gas propellant can be added at a concentration of about 3% to about 25%.
- The surface active agents are solely non-ionic.
- The formulation contains PEG-400 or propylene glycol (polar solvents), which contribute to skin penetration of the antibiotic agent
Example 7 - Foamable oil in water emulsion base antibiotic compositions, containing metronidazole
Figure imgf000054_0001
Figure imgf000055_0001
Notes:
The liquefied or gas propellant can be added at a concentration of about 3% to about 25%.
Formulations MZ4, MZ5 and MZ6 contain urea and lactic acid, which are keratolytic. PEG-400 or propylene glycol (polar solvents), which contribute to skin penetration of the antibiotic agent
Formulation MZ6 contains hexylene glycol, which contribute to skin penetration of the antibiotic agent
All formulations are of "Excellent" quality foam
The concentration of metronidazole in the composition may be altered in the range of about 0.75% and about 2%.
It was found that formulations, comprising up to 2% metronidazole produced stable foams with "Good" to "Excellent" quality.
It was further surprisingly found that metronidazole is substantially dissolved in the foamable composition of the present invention, up to a concentration of about 1.8%, while it is known that the soluble concentration of Metronidazole is 0.75% and higher concentrations of metrnidazole are expected to be in suspension

Claims

What is claimed is:
1. A therapeutic kit to provide a safe and effective dosage of an antibiotic agent, including an aerosol packaging assembly including: a) a container accommodating a pressurized product; and b) an outlet capable of releasing the pressurized product as a foam; wherein the pressurized product comprises a foamable composition comprising: i. an antibiotic agent; ii. at least one organic carrier selected from the group consisting of a hydrophobic organic carrier, an organic polar solvent, an emollient and mixtures thereof, at a concentration of about 2% to about 50% by weight; iii. a surface-active agent; iv. about 0.01 % to about 5% by weight of at least one polymeric additive selected from the group consisting of a bioadhesive agent, a gelling agent, a film forming agent and a phase change agent; v. water; and vi. liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition.
2. The kit of claim 1 , wherein the foamable composition is selected from the group consisting of an oil-in-water emulsion and a water-in-oil emulsion.
3. The kit of claim 1 , wherein the outlet comprises a valve, containing a stem with 1 to 4 apertures formed in the stem.
4. The kit of claim 3, wherein each aperture formed in the stem has a diameter, selected from the group consisting of (i) about 0.2 mm to about 1 mm; (ii) about 0.3 mm to about 0.8 mm; and (iii) about 0.01 mm2 and 1 mm2.
5. The kit of claim 3, wherein the sum of cross-sectional areas of all apertures in the stem is between about 0.04 mm2 and 0.5 mm2.
6. The kit of claim 3, wherein the valve is attached to metered dose device.
7. The kit of claim 1 , wherein the at least one organic carrier is present in an amount selected from the group consisting of (i) about 2% to about 5%; (ii) about 5% to about 10%; (iii) about 10% to about 20%; and (iv) about 20% to about 50% by weight.
8. The kit of claim 1 , wherein the foamable composition is substantially alcohol- free.
9. The kit of claim 1 , further including about 0.1% to about 5% by weight of a therapeutically active foam adjuvant is selected from the group consisting of fatty alcohols having 15 or more carbons in their carbon chain; fatty acids having 16 or more carbons in their carbon chain; fatty alcohols derived from beeswax and including a mixture of alcohols, a majority of which has at least 20 carbon atoms in their carbon chain; fatty alcohols having at least one double bond; fatty acids having at least one double bond; branched fatty alcohols; branched fatty acids; fatty acids substituted with a hydroxyl group; cetyl alcohol; stearyl alcohol; arachidyl alcohol; behenyl alcohol; 1- triacontanol; hexadecanoic acid; stearic acid; arachidic acid; behenic acid; octacosanoic acid; 12-hydroxy stearic acid and mixtures thereof.
10. The kit of claim 1 or 9, wherein the antibiotic agent is selected from the group consisting of beta-lactam antibiotics, aminoglycosides, ansa-type antibiotics, anthraquinones, antibiotic azoles, antibiotic glycopeptides, macrolides, antibiotic nucleosides, antibiotic peptides, antibiotic polyenes, antibiotic polyethers, quinolones, antibiotic steroides, sulfonamides, tetracycline, dicarboxylic acids, antibiotic metals, oxidizing agents, substances that release free radicals and/or active oxygen, cationic antimicrobial agents, quaternary ammonium compounds, biguanides, triguanides, bisbiguanides and analogs and polymers thereof and naturally occurring antibiotic compounds.
11. The kit of claim 10, wherein the antibiotic agent is selected from the group consisting of
i. A beta-lactam, selected from the group consisting of 2-(3- alanyl)clavam, 2-hydroxymethylclavam, 8-epi-thienamycin, acetyl- thienamycin, amoxicillin, amoxicillin sodium, amoxicillin trihydrate, amoxicillin-potassium clavulanate combination, ampicillin, ampicillin sodium, ampicillin trihydrate, ampicillin-sulbactam, apalcillin, aspoxicillin, azidocillin, azlocillin, aztreonam, bacampicillin, biapenem, carbenicillin, carbenicillin disodium, carfecillin, carindacillin, carpetimycin, cefacetril, cefaclor, cefadroxil, cefalexin, cefaloridine, cefalotin, cefamandole, cefamandole, cefapirin, cefatrizine, cefatrizine propylene glycol, cefazedone, cefazolin, cefbuperazone, cefcapene, cefcapene pivoxil hydrochloride, cefdinir, cefditoren, cefditoren pivoxil, cefepime, cefetamet, cefetamet pivoxil, cefixime, cefmenoxime, cefmetazole, cefminox, cefminox, cefmolexin, cefodizime, cefonicid, cefoperazone, ceforanide, cefoselis, cefotaxime, cefotetan, cefotiam, cefoxitin, cefozopran, cefpiramide, cefpirome, cefpodoxime, cefpodoxime proxetil, cefprozil, cefquinome, cefradine, cefroxadine, cefsulodin, ceftazidime, cefteram, cefteram pivoxil, ceftezole, ceftibuten, ceftizoxime, ceftriaxone, cefuroxime, cefuroxime axetil, cephalosporin, cephamycin, chitinovorin, ciclacillin, clavulanic acid, clometocillin, cloxacillin, cycloserine, deoxy pluracidomycin, dicloxacillin, dihydro pluracidomycin, epicillin, epithienamycin, ertapenem, faropenem, flomoxef, flucloxacillin, hetacillin, imipenem, lenampicillin, loracarbef, mecillinam, meropenem, metampicillin, meticillin, mezlocillin, moxalactam, nafcillin, northienamycin, oxacillin, panipenem, penamecillin, penicillin, phenethicillin, piperacillin, tazobactam, pivampicillin, pivcefalexin, pivmecillinam, pivmecillinam hydrochloride, pluracidomycin, propicillin, sarmoxicillin, sulbactam, sulbenicillin, talampicillin, temocillin, terconazole, thienamycin, ticarcillin; An aminoglycosides, selected from the group consisting of 1 ,2'-N-DL- isoseryl-S'^'-dideoxykanamycin B, 1 ,2'-N-DL-isoseryl-kanamycin B, 1 ,2'-N-[(S)-4-amino-2-hydroxybutyryl]-3l,4'-dideoxykanamycin B, 1 ,2'- N-[(S)-4-amino-2-hydroxybutyryl]-kanamycin B, 1-N-(2- Aminobutanesulfonyl) kanamycin A, 1-N-(2- aminoethanesulfonyl^'^'-dideoxyribostamycin, 1 -N-(2- Aminoethanesulfonyl)3'-deoxyribostamycin, 1 -N-(2- aminoethanesulfonyl)3'4'-dideoxykanamycin B, 1-N-(2- aminoethanesulfonyl)kanamycin A, 1-N-(2- aminoethanesulfonyl)kanamycin B, 1 -N-(2- aminoethanesulfonyl)ribostamycin, 1-N-(2-aminopropanesulfonyl)3'- deoxykanamycin B, 1-N-(2-aminopropanesulfonyl)3'4'- dideoxykanamycin B, 1-N-(2-aminopropanesulfonyl)kanamycin A, 1- N-(2-aminopropanesulfonyl)kanamycin B, 1 -N-(L-4-amino-2-hydroxy- butyryl)2,'3'-dideoxy-2'-f luorokanamycin A, 1 -N-(L-4-amino-2-hydroxy- propiony^.'S'-dideoxy^'-f luorokanamycin A, 1 -N-DL-3',4'-dideoxy- isoserylkanamycin B,1-N-DL-isoserylkanamycin, 1 -N-DL- isoserylkanamycin B, 1-N-[L-(-)-(alpha-hydroxy-gamma- aminobutyryl)]-XK-62-2, 2',3'-dideoxy-2'-fluorokanamycin A,2- hydroxygentamycin A3, 2-hydroxygentamycin B, 2- hydroxygentamycin B1 , 2-hydroxygentamycin JI-20A, 2- hydroxygentamycin JI-20B, 3"-N-methyl-4"-C-methyl-3',4'-dodeoxy kanamycin A, S'^N-methyl-^'-C-methyl-S'^'-dodeoxy kanamycin B, S'^N-methyl-^'-C-methyl-S'^'-dodeoxy-β'-methyl kanamycin B, 3',4'- Dideoxy-S'-eno-ribostamycin.S'^'-dideoxyneamine.S',^- dideoxyribostamycin, 3'-deoxy-6'-N-methyl-kanamycin B,3'- deoxyneamine,3'-deoxyribostamycin, S'-oxysaccharocin.S.S1- nepotrehalosadiamine, 3-demethoxy-2"-N-formimidoylistamycin B disulfate tetrahydrate, 3-demethoxyistamycin B,3-O-demethyl-2-N- formimidoylistamycin B, 3-O-demethylistamycin B,3- trehalosamine,4", 6"-dideoxydibekacin, 4-N-glycyl-KA-6606VI, 5"- Amino-3',4',5"-trideoxy-butirosin A, 6"-deoxydibekacin,6'-epifortimicin
A, 6-deoxy-neomycin (structure 6-deoxy-neomycin B),6-deoxy- neomycin B, 6-deoxy-neomycin C, 6-deoxy-paromomycin, acmimycin, AHB-S'^'-dideoxyribostamycin.AHB-S'-deoxykanamycin
B, AHB-3'-deoxyneamine,AHB-31-deoxyribostamycin,AHB-4"-6"- dideoxydibekacin, AHB-6"-deoxydibekacin,AHB- dideoxyneamine.AHB-kanamycin B, AHB-methyl-3'-deoxykanamycin B, amikacin, amikacin sulfate, apramycin, arbekacin, astromicin, astromicin sulfate, bekanamycin, bluensomycin, boholmycin, butirosin, butirosin B, catenulin, coumamidine gammal , coumamidine gamma2,D,L-1-N-(alpha-hydroxy-beta-aminopropionyl)-XK-62-2, dactimicin.de-O-methyl^-N-glycyl-KA-eeOβVl.de-O-methyl-KA-eβoei, de-O-methyl-KA-7038l,destomycin A, destomycin B, di-N6',O3- demethylistamycin A, dibekacin, dibekacin sulfate, dihydrostreptomycin, dihydrostreptomycin sulfate, epi- formamidoylglycidylfortimicin B, epihygromycin, formimidoyl-istamycin A, formimidoyl-istamycin B, fortimicin B, fortimicin C, fortimicin D, fortimicin KE, fortimicin KF, fortimicin KG, fortimicin KG1 (stereoisomer KG1/KG2), fortimicin KG2 (stereoisomer KG1/KG2), fortimicin KG3, framycetin, framycetin sulphate, gentamicin, gentamycin sulfate, globeomycin, hybrimycin A1 , hybrimycin A2, hybrimycin B1 , hybrimycin B2, hybrimycin C1 , hybrimycin C2, hydroxystreptomycin, hygromycin, hygromycin B, isepamicin, isepamicin sulfate, istamycin, kanamycin, kanamycin sulphate, kasugamycin, lividomycin, marcomycin, micronomicin, micronomicin sulfate, mutamicin, myomycin, N-demethyl-7-O-demethylcelesticetin, demethylcelesticetin, methanesulfonic acid derivative of istamycin, nebramycin, nebramycin, neomycin, netilmicin, oligostatin, paromomycin, quintomycin, ribostamycin, saccharocin, seldomycin, sisomicin, sorbistin, spectinomycin, streptomycin, tobramycin, trehalosmaine, trestatin, validamycin, verdamycin, xylostasin, zygomycin; iii. an ansa-type antibiotics, selected from the group consisting of 21 - hydroxy-25-demethyl-25-methylthioprotostreptovaricin, 3- methylthiorifamycin, ansamitocin, atropisostreptovaricin, awamycin, halomicin, maytansine, naphthomycin, rifabutin, rifamide, rifampicin, rifamycin, rifapentine, rifaximin, rubradirin, streptovaricin, tolypomycin; iv. an anthraquinone, selected from the group consisting of auramycin, cinerubin, ditrisarubicin, ditrisarubicin C, figaroic acid fragilomycin, minomycin, rabelomycin, rudolfomycin, sulfurmycin; v. an azole, selected from the group consisting of azanidazole, bifonazole, butoconazol, chlormidazole, chlormidazole hydrochloride, cloconazole, cloconazole monohydrochloride, clotrimazol, dimetridazole, econazole, econazole nitrate, enilconazole, fenticonazole, fenticonazole nitrate, fezatione, fluconazole, flutrimazole, isoconazole, isoconazole nitrate, itraconazole, ketoconazole, lanoconazole, metronidazole, metronidazole benzoate, miconazole, miconazole nitrate, neticonazole, nimorazole, niridazole, omoconazol, ornidazole, oxiconazole, oxiconazole nitrate, propenidazole, secnidazol, sertaconazole, sertaconazole nitrate, sulconazole, sulconazole nitrate, tinidazole, tioconazole, voriconazol; vi. a glycopeptide, selected from the group consisting of acanthomycin, actaplanin, avoparcin, balhimycin, bleomycin B (copper bleomycin), chloroorienticin, chloropolysporin, demethylvancomycin, enduracidin, galacardin, guanidylfungin, hachimycin, demethylvancomycin, N- nonanoyl-teicoplanin, phleomycin, platomycin, ristocetin, staphylocidin, talisomycin, teicoplanin, vancomycin, victomycin, xylocandin, zorbamycin; vii. a macrolidθ, selected from the group consisting of acetylleucomycin, acetylkitasamycin, angolamycin, azithromycin, bafilomycin, brefeldin, carbomycin, chalcomycin, cirramycin, clarithromycin, concanamycin, deisovaleryl-niddamycin, demycinosyl-mycinamycin, Di-O- methyltiacumicidin, dirithromycin, erythromycin, erythromycin estolate, erythromycin ethyl succinate, erythromycin lactobionate, erythromycin stearate, flurithromycin, focusin, foromacidin, haterumalide, haterumalide, josamycin, josamycin ropionate, juvenimycin, juvenimycin, kitasamycin, ketotiacumicin, lankavacidin, lankavamycin, leucomycin, machecin, maridomycin, megalomicin, methylleucomycin, methymycin, midecamycin, miocamycin, mycaminosyltylactone, mycinomycin, neutramycin, niddamycin, nonactin, oleandomycin, phenylacetyldeltamycin, pamamycin, picromycin, rokitamycin, rosaramicin, roxithromycin, sedecamycin, shincomycin, spiramycin, swalpamycin, tacrolimus, telithromycin, tiacumicin, tilmicosin, treponemycin, troleandomycin, tylosin, venturicidin; viii. a nucleoside, selected from the group consisting of amicetin, angustmycin, azathymidine, blasticidin S, epiroprim, flucytosine, gougerotin, mildiomycin, nikkomycin, nucleocidin, oxanosine, oxanosine, puromycin, pyrazomycin, showdomycin, sinefungin, sparsogenin, spicamycin, tunicamycin, uracil polyoxin, ven^icide; ix. apeptide, selected from the group consisting of actinomycin, aculeacin, alazopeptin, amfomycin, amythiamycin, antifungal from Zalerion arboricola, antrimycin, apid, apidaecin, aspartocin, auromomycin, bacileucin, bacillomycin, bacillopeptin, bacitracin, bagacidin, berninamycin, beta-aianyl-L-tyrosine, bottromycin, capreomycin, caspofungine, cepacidine, cerexin, cilofungin, circulin, colistin, cyclodepsipeptide, cytophagin, dactinomycin, daptomycin, decapeptide, desoxymulundocandin, echanomycin, echinocandin B, echinomycin, ecomycin, enniatin, etamycin, fabatin, ferrimycin, ferrimycin, ficellomycin, fluoronocathiacin, fusaricidin, gardimycin, gatavalin, globopeptin, glyphomycin, gramicidin, herbicolin, iomycin, iturin, iyomycin, izupeptin, janiemycin, janthinocin, jolipeptin, katanosin, killertoxin, lipopeptide antibiotic, lipopeptide from Zalerion sp., lysobactin, lysozyme, macromomycin, magainin, melittin, mersacidin, mikamycin, mureidomycin, mycoplanecin, mycosubtilin, neopeptifluorin, neoviridogrisein, netropsin, nisin, nocathiacin, nocathiacin 6-deoxyglycoside, nosiheptide, octapeptin, pacidamycin, pentadecapeptide, peptifluorin, permetin, phytoactin, phytostreptin, planothiocin, plusbacin, polcillin, polymyxin antibiotic complex, polymyxin B, polymyxin B1 , polymyxin F, preneocarzinostatin, quinomycin, quinupristin-dalfopristin, safracin, salmycin, salmycin, salmycin, sandramycin, saramycetin, siomycin, sperabillin, sporamycin, a streptomyces compound, subtilin, teicoplanin aglycone, telomycin, thermothiocin, thiopeptin, thiostrepton, tridecaptin, tsushimycin, tuberactinomycin, tuberactinomycin, tyrothricin, valinomycin, viomycin, virginiamycin, zervacin; x. a naturally-occurring peptide that possesses an antibacterial and/or an antifungal activity; xi. a peptide obtained from a herbal or a vertebrate source; xii. a polyene, selected from the group consisting of include, but are not limited to amphotericin, amphotericin, aureofungin, ayfactin, azalomycin, blasticidin, candicidin, candicidin methyl ester, candimycin, candimycin methyl ester, chinopricin, filipin, flavofungin, fradicin, hamycin, hydropricin, levorin, lucensomycin, lucknomycin, mediocidin, mediocidin methyl ester, mepartricin, methylamphotericin, natamycin, niphimycin, nystatin, nystatin methyl ester, oxypricin, partricin, pentamycin, perimycin, pimaricin, primycin, proticin, rimocidin, sistomycosin, sorangicin, trichomycin; xiii. a polyether, selected from the group consisting of 20-deoxy-epi- narasin, 20-deoxysalinomycin, carriomycin, dianemycin, dihydrolonomycin, etheromycin, ionomycin, iso-lasalocid, lasalocid, lenoremycin, Ionomycin, lysocellin, monensin, narasin, oxolonomycin, a polycyclic ether antibiotic, salinomycin; xiv. a quinolone, selected from the group consisting of alkyl- methylendioxy-4(1 H)-oxocinnoline-3-carboxylic acid, alatrofloxacin, cinoxacin, ciprofloxacin, ciprofloxacin hydrochloride, danofloxacin, dermofongin A, enoxacin, enrofloxacin, fleroxacin, flumequine, gatifloxacin, gemifloxacin, grepafloxacin, levofloxacin, lomefloxacin, lomefloxacin, hydrochloride, miloxacin, moxifloxacin, nadifloxacin, nalidixic acid, nifuroquine, norfloxacin, ofloxacin, orbifloxacin, oxolinic acid, pazufloxacine, pefloxacin, pefloxacin mesylate, pipemidic acid, piromidic acid, premafloxacin, rosoxacin, rufloxacin, sparfloxacin, temafloxacin, tosufloxacin, trovafloxacin;
XV. a steroid, selected from the group consisting of aminosterol, ascosteroside, cladosporide, dihydrofusidic acid, dehydro- dihydrofusidic acid, dehydrofusidic acid, fusidic acid and squalamine; xvi. asulfonamide, selected from the group consisting of chloramine, dapsone, mafenide, phthalylsulfathiazole, succinylsulfathiazole, sulfabenzamide, sulfacetamide, sulfachlorpyridazine, sulfadiazine, sulfadiazine silver, sulfadicramide, sulfadimethoxine, sulfadoxine, sulfaguanidine, sulfalene, sulfamazone, sulfamerazine, sulfamethazine, sulfamethizole, sulfamethoxazole, sulfamethoxypyridazine, sulfamonomethoxine, sulfamoxol, sulfanilamide, sulfaperine, sulfaphenazol, sulfapyridine, sulfaquinoxaline, sulfasuccinamide, sulfathiazole, sulfathiourea, sulfatolamide, sulfatriazin, sulfisomidine, sulfisoxazole, sulfisoxazole acetyl and sulfacarbamide; xvii. a tetracycline, selected from the group consisting of dihydrosteffimycin, demethyltetracycline, aclacinomycin, akrobomycin, baumycin, bromotetracycline, cetocyclin, chlortetracycline, clomocycline, daunorubicin, demeclocycline, doxorubicin, doxorubicin hydrochloride, doxycycline, lymecyclin, marcellomycin, meclocycline, meclocycline sulfosalicylate, methacycline, minocycline, minocycline hydrochloride, musettamycin, oxytetracycline, rhodirubin, rolitetracycline, rubomycin, serirubicin, steffimycin and tetracycline; xviii. a dicarboxylic acid, selected from the group consisting of adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1 ,11- undecanedioic acid, 1 ,12-dodecanedioic acid, 1 ,13-tridecanedioic acid and 1,14-tetradecanedioic acid. xix. an antibiotic metal or a metal ion, wherein the metal is selected from the group consisting of silver, copper, zinc, mercury, tin, lead, bismutin, cadmium, chromium and gold; xx. a silver compound, selected from the group consisting of silver acetate, silver benzoate, silver carbonate, silver iodate, silver iodide, silver lactate, silver laurate, silver nitrate, silver oxide, silver palmitate, silver protein, and silver sulfadiazine; xxi. an oxidizing agent or a substance that release free radicals and/or active oxygen, selected from the group consisting of oxygen, hydrogen peroxide, benzoyl peroxide, elemental halogen species, as well as oxygenated halogen species, bleaching agents (e.g., sodium, calcium or magnesium hypochloride and the like), perchlorite species, iodine, iodate, and benzoyl peroxide; xxii. a cationic antimicrobial agent, selected from the group consisting of quaternary ammonium compounds, alkyltrimethyl ammonium bromide, cetrimide, benzalkonium chloride, n-alkyldimethylbenzyl ammonium chloride, dialkylmethyl ammonium halide and dialkylbenzyl ammonium halide; xxiii. a biguanide, a biguanidine or a triguanide having a skeleton selected from:
Figure imgf000067_0001
Biguanidine
xxiv. a compound, selected from the group consisting of chlorhexidine acetate, chlorhexidine gluconate and chlorhexidine hydrochloride, picloxydine, alexidine, polihexanide, chlorproguanil hydrochloride, proguanil hydrochloride, metformin hydrochloride, phenformin and buformin hydrochloride; xxv. a cationic polymeric antimicrobial agent; xxvi. a polymeric biguanide; xxvii. an agent, selected from the group consisting of, abomycin, acetomycin, acetoxycycloheximide, acetylnanaomycin, an actinoplanes sp. Compound, actinopyrone, aflastatin, albacarcin, albacarcin, albofungin, albofungin, alisamycin, alpha-R,S- methoxycarbonylbenzylmonate, altromycin, amicetin, amycin, amycin demanoyl compound, amycine, amycomycin, anandimycin, anisomycin, anthramycin, anti-syphilis imune substance, antituberculosis imune substance, antibiotic from Eschericia coli, antibiotics from Streptomyces refuineus, anticapsin, antimycin, aplasmomycin, aranorosin, aranorosinol, arugomycin, ascofuranone, ascomycin, ascosin, Aspergillus flavus antibiotic, asukamycin, aurantinin, an Aureolic acid antibiotic substance, aurodox, avilamycin, azidamfenicol, azidimycin, bacillaene, a Bacillus larvae antibiotic, bactobolin, benanomycin, benzanthrin, benzylmonate, bicozamycin, bravomicin, brodimoprim, butalactin, calcimycin, calvatic acid, candiplanecin, carumonam, carzinophilin, celesticetin, cepacin, cerulenin, cervinomycin, chartreusin, chloramphenicol, chloramphenicol palmitate, chloramphenicol succinate sodium, chlorflavonin, chlorobiocin, chlorocarcin, chromomycin, ciclopirox, ciclopirox olamine, citreamicin, cladosporin, clazamycin, clecarmycin, clindamycin, coliformin, collinomycin, copiamycin, corallopyronin, corynecandin, coumermycin, culpin, cuprimyxin, cyclamidomycin, cycloheximide, dactylomycin, danomycin, danubomycin, delaminomycin, demethoxyrapamycin, demethylscytophycin, dermadin, desdamethine, dexylosyl-benanomycin, pseudoaglycone, dihydromocimycin, dihydronancimycin, diumycin, dnacin, dorrigocin, dynemycin, dynemycin triacetate, ecteinascidin, efrotomycin, endomycin, ensanchomycin, equisetin, ericamycin, esperamicin, ethylmonate, everninomicin, feldamycin, flambamycin, flavensomycin, florfenicol, fluvomycin, fosfomycin, fosfonochlorin, fredericamycin, frenolicin, fumagillin, fumifungin, funginon, fusacandin, fusafungin, gelbecidine, glidobactin, grahamimycin, granaticin, griseofulvin, griseoviridin, grisonomycin, hayumicin, hayumicin, hazymicin, hedamycin, heneicomycin, heptelicid acid, holomycin, humidin, isohematinic acid, karnatakin, kazusamycin, kristenin, L- dihydrophenylalanine, a L-isoleucyl-L-2-amino-4-(4'-annino-2', 5'- cyclohexadienyl) derivative, lanomycin, leinamycin, leptomycin, libanomycin, lincomycin, lomofungin, lysolipin, magnesidin, manumycin, melanomycin, methoxycarbonyl methyl monate, methoxycarbonylethylmonate, methoxycarbonylphenylmonate, methyl pseudomonate, methylmonate, microcin, mitomalcin, mocimycin, moenomycin, monoacetyl cladosporin, monomethyl cladosporin, mupirocin, mupirocin calcium, mycobacidin, myriocin, myxopyronin, pseudoaglycone, nanaomycin, nancimycin, nargenicin, neocarcinostatin, neoenactin, neothramycin, nifurtoinol, nocardicin, nogalamycin, novobiocin, octylmonate, olivomycin, orthosomycin, oudemansin, oxirapentyn, oxoglaucine methiodide, pactacin, pactamycin, papulacandin, paulomycin, phaeoramularia fungicide, phenelfamycin, phenyl, cerulenin, phenylmonate, pholipomycin, pirlimycin, pleuromutilin, a polylactone derivative, polynitroxin, polyoxin, porfiromycin, pradimicin, prenomycin, Prop-2-enylmonate, protomycin, Pseudomonas antibiotic, pseudomonic acid, purpuromycin, pyrinodemin, pyrrolnitrin, pyrrolomycin, amino, chloro pentenedioic acid, rapamycin.rebeccamycin, resistomycin, reuterin, reveromycin, rhizocticin, roridin, rubiflavin, naphthyridinomycin, saframycin, saphenamycin, sarkomycin, sarkomycin, sciopularin, selenomycin, siccanin, spartanamicin, spectinomycin, spongistatin, stravidin, streptolydigin, streptomyces arenae antibiotic complex, streptonigrin, streptothricins, streptovitacin, streptozotocine, a strobilurin derivative, stubomycin, sulfamethoxazol-trimethoprim, sakamycin, tejeramycin, terpentecin, tetrocarcin, thermorubin, thermozymocidin, thiamphenicol, thioaurin, thiolutin, thiomarinol, thiomarinol, tirandamycin, tolytoxin, trichodermin, trienomycin, trimethoprim, trioxacarcin, tyrissamycin, umbrinomycin, unphenelfamycin, urauchimycin, usnic acid, uredolysin, variotin, vermisporin, verrucarin and analogs, salts and derivatives thereof. xxviii. a naturally occurring antibiotic compound, selected from the group consisting of phenol, resorcinol, antibiotic aminoglycosides, anamycin, quinines, anthraquinones, antibiotic glycopeptides, azoles, macrolides, avilamycin, agropyrene, cnicin, aucubin antibioticsaponin fractions, berberine (isoquinoline alkaloid), arctiopicrin (sesquiterpene lactone), lupulone, humulone (bitter acids), allicin, hyperforin, echinacoside, coniosetin, tetramic acid, imanine and novoimanine; xxix. a plant oil or extracts which contain antibiotic agents; xxx. an oil or extract of a plant selected from the group consisting of thyme, perilla, lavender, tea tree, terfezia claveryi, Micromonospora, putterlickia verrucosa, putterlickia pyracantha putterlickia retrospinosa, Maytenus ilicifolia, maytenus evonymoides, maytenus aquifolia, taenia interjecta, cordyceps sinensis, couchgrass, holy thistle, plantain, burdock, hops, echinacea, buchu, chaparral, myrrh, red clover and yellow dock, garlic and St. John's wort; and esters and salts thereof.
12. The kit of claim 1 or 9, wherein the concentration range of the antibiotic agent is selected from the group of (i) between about 0.005% and about 0.5%; (ii) between about 0.5% and about 2%; (iii) between about 2% and about 5%; and (iv) between about 5% and about 12%.
13. The kit of claim 1 or 9, wherein the antibiotic agent is a vasodilator.
14. The kit of claim 1 or 9, wherein upon release from the container, a shear- sensitive foam, having a density range selected from (1) between about 0.02 gr/mL and about 0.1 gr/mL; and (2) between about 0.02 gr/mL and about 0.1 gr/mL, is produced.
15. The kit of claim 2, wherein the graded of solubility of the antibiotic agent in the aqueous phase of the emulsion is selected from the groups consisting of:
(i) less than 1 parts of solvent required for 1 part of solute;
(ii) from 1 to 10 parts of solvent required for 1 part of solute;
(iii) from 10 to 30 parts of solvent required for 1 part of solute;
(iv) from 30 to 100 parts of solvent required for 1 part of solute;
(v) from 100 to 1000 parts of a solvent required for 1 part of solute; and
(vi) 10,000 parts or more of a solvent required for 1 part of solute.
16. The kit of claim 2, wherein the antibiotic agent is dissolved in at least one phase of the emulsion.
17. The kit of claim 1 , wherein the foamable composition further contains at least one additional therapeutic agent selected from the group consisting of an a steroidal anti-inflammatory agent, an immunosuppressive agent, an immunomodulator, an immunoregulating agent, a hormonal agent, an antifungal agent, an antiviral agent, an antiparasitic agent, vitamin A, a vitamin A derivative, vitamin B, a vitamin B derivative, vitamin C, a vitamin C derivative, vitamin D, a vitamin D derivative, vitamin E, a vitamin E derivative, vitamin F, a vitamin F derivative, vitamin K, a vitamin K derivative, a wound healing agent, a disinfectant, an anesthetic, an antiallergic agent, an alpha hydroxyl acid, lactic acid, glycolic acid, a beta-hydroxy acid, a protein, a peptide, a neuropeptide, a allergen, an immunogenic substance, a haptene, an oxidizing agent, an antioxidant, a dicarboxylic acid, azelaic acid, sebacic acid, adipic acid, fumaric acid, a retinoid, an antiproliferative agent, an anticancer agent, a photodynamic therapy agent, benzoyl chloride, calcium hypochlorite, magnesium hypochlorite, an anti-wrinkle agent, a radical scavenger, a metal, silver, a metal oxide, titanium dioxide, zinc oxide, zirconium oxide, iron oxide, silicone oxide, talc, carbon, an anti wrinkle agent, a skin whitening agent, a skin protective agent, a masking agent, an anti-wart agent, a refatting agent, a lubricating agent and mixtures thereof.
18. The kit of claim 1 , wherein the concentration of the surface active agent is between about 0.1% and about 5%.
19. The kit of claim 1 , wherein the surface active agent includes a mixture of at least one non-ionic surfactant and at least one ionic surfactant in a ratio in the range of about 100:1 to 1 :1.
20. The kit of claim 1 , wherein the surface active agent comprises a combination of a non-ionic surfactant and an ionic surfactant, at a ratio of between 1 :1 and 20:1.
21.The kit of claim 1 , wherein the surface active agent consists essentially of a non-ionic surfactant.
22. The kit of claim 2, wherein the emulsion is selected from: i. an oil-in-water emulsion and wherein the HLB range of the surface active agent is between about 9 and about 14; and
ii. a water-in-oil emulsion and wherein the HLB range of the surface active agent is between about 2 and about 9.
23. The kit of claim 1, wherein the surface active agent comprises a combination of at least one non-ionic surfactant having HLB of less than 9 and at least one non-ionic surfactant having HLB of equal or more than 9, wherein the ratio between the at least one non-ionic surfactant having HLB of less than 9 and the at least one non-ionic surfactant having HLB of equal or more than 9, is between 1:8 and 8:1.
O
24. The kit of claim 1 , wherein the polymeric agent is selected from the group consisting of a water-soluble polymer, a water-insoluble polymer, a gelling agent, an inorganic gelling agent, a mucoadhesive macromolecule and a film forming polymer.
25. The kit of claim 24, wherein the water-soluble polymer is selected from the group consisting of methylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose (Methocel), hydroxyethyl cellulose, methylhydroxyethylcellulose, methylhydroxypropylcellulose, hydroxyethylcarboxymethylcellulose, carboxymethylcellulose, carboxymethylhydroxyethylcellulose, xanthan gum, guar gum, carrageenin gum, locust bean gum and tragacanth gum.
26. The kit of claim 1, wherein the foamable composition contains at least one therapeutically active oil.
27. The kit of claim 1 or 9, wherein the composition further contains a penetration enhancer.
28. The kit of claim 27, wherein the penetration enhancer is selected from the group consisting of propylene glycol, butylene glycols, hexylene glycol, glycerol, pentaerythritol, sorbitol, mannitol, oligosaccharides, dimethyl isosorbide, monooleate of ethoxylated glycerides having about 8 to 10 ethylene oxide units, polyethylene glycol 200-600, transcutol, glycofurol and cyclodextrins.
29. The kit of claim 1, wherein the pH of the foamable composition is selected from the group consisting of (i) between about 4.5 and about 7.0, wherein the composition is intended for skin treatment; and (ii) between about 3 and about 4.5, wherein the composition is intended for vaginal treatment.
30. The kit of claim 29, wherein pH of the composition is adjusted using an agent, selected from the group consisting of an acid, a base and a buffering agent.
31.The kit of claim 1 , wherein the organic carrier contains a PPG alkyl ether.
32. The kit of claim 31 , wherein the concentration of the PPG alkyl ether is between about 1 % and about 20%.
33. The kit of claim 32, wherein the foam is non-flammable, when tested according to European Standard prEN 14851.
34. A therapeutic foamable composition including: i. an antibiotic agent; ii. a therapeutically active oil; iii. a surface-active agent; iv. about 0.01 % to about 5% by weight of at least one polymeric additive selected from the group consisting of a bioadhesive agent, a gelling agent, a film forming agent and a phase change agent; v. water; and vi. liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition.
35. The composition of claim 34, further including about 0.1% to about 5% by weight of a therapeutically active foam adjuvant is selected from the group consisting of fatty alcohols having 15 or more carbons in their carbon chain; fatty acids having 16 or more carbons in their carbon chain; fatty alcohols derived from beeswax and including a mixture of alcohols, a majority of which has at least 20 carbon atoms in their carbon chain; fatty alcohols having at least one double bond; fatty acids having at least one double bond; branched fatty alcohols; branched fatty acids; fatty acids substituted with a hydroxyl group; cetyl alcohol; stearyl alcohol; arachidyl alcohol; behenyl alcohol; 1- triacontanol; hexadecanoic acid; stearic acid; arachidic acid; behenic acid; octacosanoic acid; 12-hydroxy stearic acid and mixtures thereof.
36. The composition of claim 34, wherein the concentration of the surface active agent is between about 0.1% and about 5% by weight.
37. The composition of claim 34 or 35, wherein the antibiotic agent is selected from the group consisting of beta-lactam antibiotics, aminoglycosides, ansa- type antibiotics, anthraquinones, antibiotic azoles, antibiotic glycopeptides, macrolides, antibiotic nucleosides, antibiotic peptides, antibiotic polyenes, antibiotic polyethers, quinolones, antibiotic steroides, sulfonamides, tetracycline, dicarboxylic acids, antibiotic metals, oxidizing agents, substances that release free radicals and/or active oxygen, cationic antimicrobial agents, quaternary ammonium compounds, biguanides, triguanides, bisbiguanides and analogs and polymers thereof and naturally occurring antibiotic compounds.
38. The composition of claim 37, wherein the antibiotic agent is selected from the group consisting of
i. A beta-lactam, selected from the group consisting of 2-(3- alanyl)clavam, 2-hydroxymethylclavam, 8-epi-thienamycin, acetyl- thienamycin, amoxicillin, amoxicillin sodium, amoxicillin trihydrate, amoxicillin-potassium clavulanate combination, ampicillin, ampicillin sodium, ampicillin trihydrate, ampicillin-sulbactam, apalcillin, aspoxicillin, azidocillin, azlocillin, aztreonam, bacampicillin, biapenem, carbenicillin, carbenicillin disodium, carfecillin, carindacillin, carpetimycin, cefacetril, cefaclor, cefadroxil, cefalexin, cefaloridine, cefalotin, cefamandole, cefamandole, cefapirin, cefatrizine, cefatrizine propylene glycol, cefazedone, cefazolin, cefbuperazone, cefcapene, cefcapene pivoxil hydrochloride, cefdinir, cefditoren, cefditoren pivoxil, cefepime, cefetamet, cefetamet pivoxil, cefixime, cefmenoxime, cefmetazole, cefminox, cefminox, cefmolexin, cefodizime, cefonicid, cefoperazone, ceforanide, cefoselis, cefotaxime, cefotetan, cefotiam, cefoxitin, cefozopran, cefpiramide, cefpirome, cefpodoxime, cefpodoxime proxetil, cefprozil, cefquinome, cefradine, cefroxadine, cefsulodin, ceftazidime, cefteram, cefteram pivoxil, ceftezole, ceftibuten, ceftizoxime, ceftriaxone, cefuroxime, cefuroxime axetil, cephalosporin, cephamycin, chitinovorin, ciclacillin, clavulanic acid, clometocillin, cloxacillin, cycloserine, deoxy pluracidomycin, dicloxacillin, dihydro pluracidomycin, epicillin, epithienamycin, ertapenem, faropenem, flomoxef, flucloxacillin, hetacillin, imipenem, lenampicillin, loracarbef, mecillinam, meropenem, metampicillin, meticillin, mezlocillin, moxalactam, nafcillin, northienamycin, oxacillin, panipenem, penamecillin, penicillin, phenethicillin, piperacillin, tazobactam, pivampicillin, pivcefalexin, pivmecillinam, pivmecillinam hydrochloride, pluracidomycin, propicillin, sarmoxicillin, sulbactam, sulbenicillin, talampicillin, temocillin, terconazole, thienamycin, ticarcillin; An aminoglycosides, selected from the group consisting of 1 ,2'-N-DL- isoseryl-3',4'-dideoxykanamycin B, 1 ,2'-N-DL-isoseryl-kanamycin B, 1 ,2'-N-[(S)-4-amino-2-hydroxybutyryl]-31,4'-dideoxykanamycin B, 1 ,2'- N-[(S)-4-amino-2-hydroxybutyryl]-kanamycin B, 1-N-(2- Aminobutanesulfonyl) kanamycin A, 1-N-(2- aminoethanesulfonyOS'^'-dideoxyribostamycin, 1 -N-(2- Aminoethanesulfonyl)3'-deoxyribostamycin, 1 -N-(2- aminoethanesulfonyl)3'4'-dideoxykanamycin B, 1-N-(2- aminoethanesulfonyl)kanamycin A, 1-N-(2- aminoethanesulfonyl)kanamycin B, 1-N-(2- aminoethanesulfonyl)ribostamycin, 1-N-(2-aminopropanesulfonyl)3'- deoxykanamycin B, 1-N-(2-aminopropanesulfonyl)3'4'- dideoxykanamycin B, 1-N-(2-aminopropanesulfonyl)kanamycin A, 1- N-(2-aminopropanesulfonyl)kanamycin B, 1 -N-(L-4-amino-2-hydroxy- butyryl)2,'3l-dideoxy-2'-f luorokanamycin A, 1 -N-(L-4-amino-2-hydroxy- propionyl^/S'-dideoxy^'-fluorokanamycin A, 1-N-DL-3',4'-dideoxy- isoserylkanamycin B,1-N-DL-isoserylkanamycin, 1 -N-DL- isoserylkanamycin B, 1-N-[L-(-)-(alpha-hydroxy-gamma- aminobutyryl)]-XK-62-2, 2',3'-dideoxy-21-fluorokanamycin A,2- hydroxygentamycin A3, 2-hydroxygentamycin B, 2- hydroxygentamycin B1 , 2-hydroxygentamycin JI-20A, 2- hydroxygentamycin JI-20B, S'^N-methyW-C-methyl-S'^'-dodeoxy kanamycin A, 3"-N-methyl-4"-C-methyl-3',4'-dodeoxy kanamycin B, 3"-N-methyl-4"-C-methyl-31,4'-dodeoxy-6'-methyl kanamycin B, 3',4'- Dideoxy-S'-eno-ribostamycin.S'^'-dideoxyneamine.S1,^- dideoxyribostamycin, 3'-deoxy-6'-N-methyl-kanamycin B,3'- deoxyneamine,3'-deoxyribostamycin, 3'-oxysaccharocin,3,3'- nepotrehalosadiamine, 3-demethoxy-2"-N-formimidoylistamycin B disulfate tetrahydrate, 3-demethoxyistamycin B,3-O-demethyl-2-N- formimidoylistamycin B, 3-O-demethylistamycin B,3- trehalosamine,4", 6"-dideoxydibekacin, 4-N-glycyl-KA-6606VI, 5"- Amino-3l,4l,5"-trideoxy-butirosin A, 6"-deoxydibekacin,6'-epifortimicin
A, 6-deoxy-neomycin (structure 6-deoxy-neomycin B),6-deoxy- neomycin B, 6-deoxy-neomycin C, 6-deoxy-paromomycin, acmimycin, AHB-S'^'-dideoxyribostamycin.AHB-S'-deoxykanamycin
B, AHB-S'-deoxyneamine.AHB-S'-deoxyribostamycin.AHB-^'-e11- dideoxydibekacin, AHB-6"-deoxydibekacin,AHB- dideoxyneamine.AHB-kanamycin B, AHB-methyl-3'-deoxykanamycin B, amikacin, amikacin sulfate, apramycin, arbekacin, astromicin, astromicin sulfate, bekanamycin, bluensomycin, boholmycin, butirosin, butirosin B, catenulin, coumamidine gammal , coumamidine gamma2,D,L-1-N-(alpha-hydroxy-beta-aminopropionyl)-XK-62-2, dactimicin.de-O-methyl^-N-glycyl-KA-eeOβVl.de-O-methyl-KA-eβOei, de-O-methyl-KA-7038l,destomycin A, destomycin B, di-N6',O3- demethylistamycin A, dibekacin, dibekacin sulfate, dihydrostreptomycin, dihydrostreptomycin sulfate, epi- formamidoylglycidylfortimicin B, epihygromycin, formimidoyl-istamycin A, formimidoyl-istamycin B, fortimicin B, fortimicin C, fortimicin D, fortimicin KE, fortimicin KF, fortimicin KG, fortimicin KG1 (stereoisomer KG1/KG2), fortimicin KG2 (stereoisomer KG1/KG2), fortimicin KG3, framycetin, framycetin sulphate, gentamicin, gentamycin sulfate, globeomycin, hybrimycin A1 , hybrimycin A2, hybrimycin B1 , hybrimycin B2, hybrimycin C1 , hybrimycin C2, hydroxystreptomycin, hygromycin, hygromycin B, isepamicin, isepamicin sulfate, istamycin, kanamycin, kanamycin sulphate, kasugamycin, lividomycin, marcomycin, micronomicin, micronomicin sulfate, mutamicin, myomycin, N-demethyl-7-O-demethylcelesticetin, demethylcelesticetin, methanesulfonic acid derivative of istamycin, nebramycin, nebramycin, neomycin, netilmicin, oligostatin, paromomycin, quintomycin, ribostamycin, saccharocin, seldomycin, sisomicin, sorbistin, spectinomycin, streptomycin, tobramycin, trehalosmaine, trestatin, validamycin, verdamycin, xylostasin, zygomycin; an ansa-type antibiotics, selected from the group consisting of 21- hydroxy-25-demethyl-25-methylthioprotostreptovaricin, 3- methylthiorifamycin, ansamitocin, atropisostreptovaricin, awamycin, halomicin, maytansine, naphthomycin, rifabutin, rifamide, rifampicin, rifamycin, rifapentine, rifaximin, rubradirin, streptovaricin, tolypomycin; iv. an anthraquinone, selected from the group consisting of auramycin, cinerubin, ditrisarubicin, ditrisarubicin C, figaroic acid fragilomycin, minomycin, rabelomycin, rudolfomycin, sulfurmycin; v. an azole, selected from the group consisting of azanidazole, bifonazole, butoconazol, chlormidazole, chlormidazole hydrochloride, cloconazole, cloconazole monohydrochloride, clotrimazol, dimetridazole, econazole, econazole nitrate, enilconazole, fenticonazole, fenticonazole nitrate, fezatione, fluconazole, flutrimazole, isoconazole, isoconazole nitrate, itraconazole, ketoconazole, lanoconazole, metronidazole, metronidazole benzoate, miconazole, miconazole nitrate, neticonazole, nimorazole, niridazole, omoconazol, ornidazole, oxiconazole, oxiconazole nitrate, propenidazole, secnidazol, sertaconazole, sertaconazole nitrate, sulconazole, sulconazole nitrate, tinidazole, tioconazole, voriconazol; vi. a glycopeptide, selected from the group consisting of acanthomycin, actaplanin, avoparcin, balhimycin, bleomycin B (copper bleomycin), chloroorienticin, chloropolysporin, demethylvancomycin, enduracidin, galacardin, guanidylfungin, hachimycin, demethylvancomycin, N- nonanoyl-teicoplanin, phleomycin, platomycin, ristocetin, staphylocidin, talisomycin, teicoplanin, vancomycin, victomycin, xylocandin, zorbamycin; vii. a macrolide, selected from the group consisting of acetylleucomycin, acetyl kitasamycin, angolamycin, azithromycin, bafilomycin, brefeldin, carbomycin, chalcomycin, cirramycin, clarithromycin, concanamycin, deisovaleryl-niddamycin, demycinosyl-mycinamycin, Di-O- methyltiacumicidin, dirithromycin, erythromycin, erythromycin estolate, erythromycin ethyl succinate, erythromycin lactobionate, erythromycin stearate, flurithromycin, focusin, foromacidin, haterumalide, haterumalide, josamycin, josamycin ropionate, juvenimycin, juvenimycin, kitasamycin, ketotiacumicin, lankavacidin, lankavamycin, leucomycin, machecin, maridomycin, megalomicin, methylleucomycin, methymycin, midecamycin, miocamycin, mycaminosyltylactone, mycinomycin, neutramycin, niddamycin, nonactin, oleandomycin, phenylacetyldeltamycin, pamamycin, picromycin, rokitamycin, rosaramicin, roxithromycin, sedecamycin, shincomycin, spiramycin, swalpamycin, tacrolimus, telithromycin, tiacumicin, tilmicosin, treponemycin, troleandomycin, tylosin, venturicidin; viii. a nucleoside, selected from the group consisting of amicetin, angustmycin, azathymidine, blasticidin S1 epiroprim, flucytosine, gougerotin, mildiomycin, nikkomycin, nucleocidin, oxanosine, oxanosine, puromycin, pyrazomycin, showdomycin, sinefungin, sparsogenin, spicamycin, tunicamycin, uracil polyoxin, vengicide; ix. apeptide, selected from the group consisting of actinomycin, aculeacin, alazopeptin, amfomycin, amythiamycin, antifungal from Zalerion arboricola, antrimycin, apid, apidaecin, aspartocin, auromomycin, bacileucin, bacillomycin, bacillopeptin, bacitracin, bagacidin, beminamycin, beta-alanyl-L-tyrosine, bottromycin, capreomycin, caspofungine, cepacidine, cerexin, cilofungin, circulin, colistin, cyclodepsipeptide, cytophagin, dactinomycin, daptomycin, decapeptide, desoxymulundocandin, echanomycin, echinocandin B, echinomycin, ecomycin, enniatin, etamycin, fabatin, ferrimycin, ferrimycin, ficellomycin, fluoronocathiacin, fusaricidin, gardimycin, gatavalin, globopeptin, glyphomycin, gramicidin, herbicolin, iomycin, iturin, iyomycin, izupeptin, janiemycin, janthinocin, jolipeptin, katanosin, killertoxin, lipopeptide antibiotic, lipopeptide from Zalerion sp., lysobactin, lysozyme, macromomycin, magainin, melittin, mersacidin, mikamycin, mureidomycin, mycoplanecin, mycosubtilin, neopeptifluorin, neoviridogrisein, netropsin, nisin, nocathiacin, nocathiacin 6-deoxyglycoside, nosiheptide, octapeptin, pacidamycin, pentadecapeptide, peptifluorin, permetin, phytoactin, phytostreptin, planothiocin, plusbacin, polcillin, polymyxin antibiotic complex, polymyxin B, polymyxin B1 , polymyxin F, preneocarzinostatin, quinomycin, quinupristin-dalfopristin, safracin, salmycin, salmycin, salmycin, sandramycin, saramycetin, siomycin, sperabillin, sporamycin, a streptomyces compound, subtilin, teicoplanin aglycone, telomycin, thermothiocin, thiopeptin, thiostrepton, tridecaptin, tsushimycin, tuberactinomycin, tuberactinomycin, tyrothricin, valinomycin, viomycin, virginiamycin, zervacin; x. a naturally-occurring peptide that possesses an antibacterial and/or an antifungal activity; xi. a peptide obtained from a herbal or a vertebrate source; xii. a polyene, selected from the group consisting of include, but are not limited to amphotericin, amphotericin, aureofungin, ayfactin, azalomycin, blasticidin, candicidin, candicidin methyl ester, candimycin, candimycin methyl ester, chinopricin, filipin, flavofungin, fradicin, hamycin, hydropricin, levorin, lucensomycin, lucknomycin, mediocidin, mediocidin methyl ester, mepartricin, methylamphotericin, natamycin, niphimycin, nystatin, nystatin methyl ester, oxypricin, partricin, pentamycin, perimycin, pimaricin, primycin, proticin, rimocidin, sistomycosin, sorangicin, trichomycin; xiii. a polyether, selected from the group consisting of 20-deoxy-epi- narasin, 20-deoxysalinomycin, carriomycin, dianemycin, dihydrolonomycin, etheromycin, ionomycin, iso-lasalocid, lasalocid, lenoremycin, Ionomycin, lysocellin, monensin, narasin, oxolonomycin, a polycyclic ether antibiotic, salinomycin; xiv. a quinolone, selected from the group consisting of alkyl- methylendioxy-4(1 H)-oxocinnoline-3-carboxylic acid, alatrofloxacin, cinoxacin, ciprofloxacin, ciprofloxacin hydrochloride, danofloxacin, dermofongin A, enoxacin, enrofloxacin, fleroxacin, flumequine, gatifloxacin, gemifloxacin, grepafloxacin, levofloxacin, lomefloxacin, lomefloxacin, hydrochloride, miloxacin, moxifloxacin, nadifloxacin, nalidixic acid, nifuroquine, norfloxacin, ofloxacin, orbifloxacin, oxolinic acid, pazufloxacine, pefloxacin, pefloxacin mesylate, pipemidic acid, piromidic acid, premafloxacin, rosoxacin, rufloxacin, sparfloxacin, temafloxacin, tosufloxacin, trovafloxacin; xv. a steroid, selected from the group consisting of aminosterol, ascosteroside, cladosporide, dihydrofusidic acid, dehydro- dihydrofusidic acid, dehydrofusidic acid, fusidic acid and squalamine; xvi. asulfonamide, selected from the group consisting of chloramine, dapsone, mafenide, phthalylsulfathiazole, succinylsulfathiazole, sulfabenzamide, sulfacetamide, sulfachlorpyridazine, sulfadiazine, sulfadiazine silver, sulfadicramide, sulfadimethoxine, sulfadoxine, sulfaguanidine, sulfalene, sulfamazone, sulfamerazine, sulfamethazine, sulfamethizole, sulfamethoxazole, sulfamethoxypyridazine, sulfamonomethoxine, sulfamoxol, sulfanilamide, sulfaperine, sulfaphenazol, sulfapyridine, sulfaquinoxaline, sulfasuccinamide, sulfathiazole, sulfathiourea, sulfatolamide, sulfatriazin, sulfisomidine, sulfisoxazole, sulfisoxazole acetyl and sulfacarbamide; xvii. a tetracycline, selected from the group consisting of dihydrosteffimycin, demethyltetracycline, aclacinomycin, akrobomycin, baumycin, bromotetracycline, cetocyclin, chlortetracycline, clomocycline, daunorubicin, demeclocycline, doxorubicin, doxorubicin hydrochloride, doxycycline, lymecyclin, marcellomycin, meclocycline, meclocycline sulfosalicylate, methacycline, minocycline, minocycline hydrochloride, musettamycin, oxytetracycline, rhodirubin, rolitetracycline, rubomycin, serirubicin, steffimycin and tetracycline; xviii. a dicarboxylic acid, selected from the group consisting of adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1 ,11- undecanedioic acid, 1 ,12-dodecanedioic acid, 1,13-tridecanedioic acid and 1,14-tetradecanedioic acid. xix. an antibiotic metal or a metal ion, wherein the metal is selected from the group consisting of silver, copper, zinc, mercury, tin, lead, bismutin, cadmium, chromium and gold; xx. a silver compound, selected from the group consisting of silver acetate, silver benzoate, silver carbonate, silver iodate, silver iodide, silver lactate, silver laurate, silver nitrate, silver oxide, silver palmitate, silver protein, and silver sulfadiazine; xxi. an oxidizing agent or a substance that release free radicals and/or active oxygen, selected from the group consisting of oxygen, hydrogen peroxide, benzoyl peroxide, elemental halogen species, as well as oxygenated halogen species, bleaching agents (e.g., sodium, calcium or magnesium hypochloride and the like), perchlorite species, iodine, iodate, and benzoyl peroxide; xxii. a cationic antimicrobial agent, selected from the group consisting of quaternary ammonium compounds, alkyltrimethyl ammonium bromide, cetrimide, benzalkonium chloride, n-alkyldimethylbenzyl ammonium chloride, dialkylmethyl ammonium halide and dialkylbenzyl ammonium halide; xxiii. a biguanide, a biguanidine or a triguanide having a skeleton selected from:
Figure imgf000082_0001
Biguanidine
xxiv. a compound, selected from the group consisting of chlorhexidine acetate, chlorhexidine gluconate and chlorhexidine hydrochloride, picloxydine, alexidine, polihexanide, chlorproguanil hydrochloride, proguanil hydrochloride, metformin hydrochloride, phenformin and buformin hydrochloride; xxv. a cationic polymeric antimicrobial agent; xxvi. a polymeric biguanide; xxvii. an agent, selected from the group consisting of, abomycin, acetomycin, acetoxycycloheximide, acetyl nanaomycin, an actinoplanes sp. Compound, actinopyrone, aflastatin, albacarcin, albacarcin, albofungin, albofungin, alisamycin, alpha-R,S- methoxycarbonylbenzylmonate, altromycin, amicetin, amycin, amycin demanoyl compound, amycine, amycomycin, anandimycin, anisomycin, anthramycin, anti-syphilis imune substance, antituberculosis imune substance, antibiotic from Eschericia coli, antibiotics from Streptomyces refuineus, anticapsin, antimycin, aplasmomycin, aranorosin, aranorosinol, arugomycin, ascofuranone, ascomycin, ascosin, Aspergillus flavus antibiotic, asukamycin, aurantinin, an Aureolic acid antibiotic substance, aurodox, avilamycin, azidamfenicol, azidimycin, bacillaene, a Bacillus larvae antibiotic, bactobolin, benanomycin, benzanthrin, benzylmonate, bicozamycin, bravomicin, brodimoprim, butalactin, calcimycin, calvatic acid, candiplanecin, carumonam, carzinophilin, celesticetin, cepacin, cerulenin, cervinomycin, chartreusin, chloramphenicol, chloramphenicol palmitate, chloramphenicol succinate sodium, chlorflavonin, chlorobiocin, chlorocarcin, chromomycin, ciclopirox, ciclopirox olamine, citreamicin, cladosporin, clazamycin, clecarmycin, clindamycin, coliformin, collinomycin, copiamycin, corallopyronin, corynecandin, coumermycin, culpin, cuprimyxin, cyclamidomycin, cycloheximide, dactylomycin, danomycin, danubomycin, delaminomycin, demethoxyrapamycin, demethylscytophycin, dermadin, desdamethine, dexylosyl-benanomycin, pseudoaglycone, dihydromocimycin, dihydronancimycin, diumycin, dnacin, dorrigocin, dynemycin, dynemycin triacetate, ecteinascidin, efrotomycin, endomycin, ensanchomycin, equisetin, ericamycin, esperamicin, ethylmonate, everninomicin, feldamycin, flambamycin, flavensomycin, florfenicol, fluvomycin, fosfomycin, fosfonochlorin, fredericamycin, frenolicin, fumagillin, fumifungin, funginon, fusacandin, fusafungin, gelbecidine, glidobactin, grahamimycin, granaticin, griseofulvin, griseoviridin, grisonomycin, hayumicin, hayumicin, hazymicin, hedamycin, heneicomycin, heptelicid acid, holomycin, humidin, isohematinic acid, karnatakin, kazusamycin, kristenin, L- dihydrophenylalanine, a L-isoleucyl-L-2-amino-4-(4'-amino-2l, 5'- cyclohexadienyl) derivative, lanomycin, leinamycin, leptomycin, libanomycin, lincomycin, lomofungin, lysolipin, magnesidin, manumycin, melanomycin, methoxycarbonylmethylmonate, methoxycarbonylethylmonate, methoxycarbonylphenylmonate, methyl pseudomonate, methylmonate, microcin, mitomalcin, mocimycin, moenomycin, monoacetyl cladosporin, monomethyl cladosporin, mupirocin, mupirocin calcium, mycobacidin, myriocin, myxopyronin, pseudoaglycone, nanaomycin, nancimycin, nargenicin, neocarcinostatin, neoenactin, neothramycin, nifurtoinol, nocardicin, nogalamycin, novobiocin, octylmonate, olivomycin, orthosomycin, oudemansin, oxirapentyn, oxoglaucine methiodide, pactacin, pactamycin, papulacandin, paulomycin, phaeoramularia fungicide, phenelfamycin, phenyl, cerulenin, phenylmonate, pholipomycin, pirlimycin, pleuromutilin, a polylactone derivative, polynitroxin, polyoxin, porfiromycin, pradimicin, prenomycin, Prop-2-enylmonate, protomycin, Pseudomonas antibiotic, pseudomonic acid, purpuromycin, pyrinodemin, pyrrolnitrin, pyrrolomycin, amino, chloro pentenedioic acid, rapamycin.rebeccamycin, resistomycin, reuterin, reveromycin, rhizocticin, roridin, rubiflavin, naphthyridinomycin, saframycin, saphenamycin, sarkomycin, sarkomycin, sclopularin, selenomycin, siccanin, spartanamicin, spectinomycin, spongistatin, stravidin, streptolydigin, streptomyces arenae antibiotic complex, streptonigrin, streptothricins, streptovitacin, streptozotocine, a strobilurin derivative, stubomycin, sulfamethoxazol-trimethoprim, sakamycin, tejeramycin, terpentecin, tetrocarcin, thermorubin, thermozymocidin, thiamphenicol, thioaurin, thiolutin, thiomarinol, thiomarinol, tirandamycin, tolytoxin, trichodermin, trienomycin, trimethoprim, trioxacarcin, tyrissamycin, umbrinomycin, unphenelfamycin, urauchimycin, usnic acid, uredolysin, variotin, vermisporin, verrucarin and analogs, salts and derivatives thereof. xxviii. a naturally occurring antibiotic compound, selected from the group consisting of phenol, resorcinol, antibiotic aminoglycosides, anamycin, quinines, anthraquinones, antibiotic glycopeptides, azoles, macrolides, avilamycin, agropyrene, cnicin, aucubin antibioticsaponin fractions, berberine (isoquinoline alkaloid), arctiopicrin (sesquiterpene lactone), lupulone, humulone (bitter acids), allicin, hyperforin, echinacoside, coniosetin, tetramic acid, imanine and novoimanine; xxix. a plant oil or extracts which contain antibiotic agents; xxx. an oil or extract of a plant selected from the group consisting of thyme, perilla, lavender, tea tree, terfezia claveryi, Micromonospora, putterlickia verrucosa , putterlickia pyracantha putterlickia retrospinosa, Maytenus ilicifolia , maytenus evonymoides., maytenus aquifolia, taenia interjecta, cordyceps sinensis, couchgrass, holy thistle, plantain, burdock, hops, echinacea, buchu, chaparral, myrrh, red clover and yellow dock, garlic and St. John's wort; and esters and salts thereof.
39. The composition of claim 34, wherein the foamable composition further comprises at least one additional therapeutic agent.
40. The composition of claim 39, wherein the additional therapeutic agent is selected from the group consisting of a steroidal anti-inflammatory agent, an immunosuppressive agent, an immunomodulator, an immunoregulating agent, a hormonal agent, an antifungal agent, an antiviral agent, an antiparasitic agent, vitamin A, a vitamin A derivative, vitamin B, a vitamin B derivative, vitamin C, a vitamin C derivative, vitamin D, a vitamin D derivative, vitamin E, a vitamin E derivative, vitamin F, a vitamin F derivative, vitamin K, a vitamin K derivative, a wound healing agent, a disinfectant, an anesthetic, an antiallergic agent, an alpha hydroxyl acid, lactic acid, glycolic acid, a beta- hydroxy acid, a protein, a peptide, a neuropeptide, a allergen, an immunogenic substance, a haptene, an oxidizing agent, an antioxidant, a dicarboxylic acid, azelaic acid, sebacic acid, adipic acid, fumaric acid, a retinoid, an antiproliferative agent, an anticancer agent, a photodynamic therapy agent, benzoyl chloride, calcium hypochlorite, magnesium hypochlorite, an anti-wrinkle agent, a radical scavenger, a metal, silver, a metal oxide, titanium dioxide, zinc oxide, zirconium oxide, iron oxide, silicone oxide, talc, carbon, an anti wrinkle agent, a skin whitening agent, a skin protective agent, a masking agent, an anti-wart agent, a refatting agent, a lubricating agent and mixtures thereof.
41.The foamable composition of claim 40, wherein the composition further contains a penetration enhancer.
42. The foamable composition of claim 41 , wherein the penetration enhancer is selected from the group consisting of propylene glycol, butylene glycols, hexylene glycol, glycerol, pentaerythritol, sorbitol, mannitol, oligosaccharides, dimethyl isosorbide, monooleate of ethoxylated glycerides having about 8 to 10 ethylene oxide units, polyethylene glycol 200-600, transcutol, glycofurol and cyclodextrins.
43. The composition of claim 34, wherein the pH of the foamable composition is selected from the group consiting of (i) between about 4.5 and about 7.0, wherein the composition is intended for skin treatment; and (ii) between about 3 and about 4.5, wherein the composition is intended for vaginal treatment.
44. The composition of claim 43, wherein pH of the composition is adjusted using an agent selected from the group consisting of an acid, a base and a buffering agent.
45. The composition of claim 34, wherein the organic carrier contains a PPG alkyl ether.
46.The composition of claim 45, wherein the concentration of the PPG alkyl ether is between about 1% and about 20%.
47. The composition of claim 45, wherein the foam is non-flammable, when tested according to European Standard prEN 14851.
48. The composition of claim 41 , wherein the antibiotic agent is an antibiotic azole and wherein the penetration enhancer is selected from the group consisting of propylene glycol, hexylene glycol, glycerol, and dimethyl isosorbide.
49. The composition of claim 42, wherein the antibiotic agent is an antibiotic azote and wherein the penetration enhancer is selected from the group consisting of propylene glycol, hexylene glycol, glycerol, polyethylene glycol and dimethyl isosorbide.
50. The composition of claim 49, wherein the antibiotic azole is metronidazole; and wherein the concentration of metronidazole is greater than 0.75%.
51. The composition of claim 50, wherein the concentration of metronidazole is between 0.9% and about 2%.
52. The composition of claim 42, wherein the additional therapeutic agent is a dicarboxylic acid and wherein the penetration enhancer is selected from the group consisting of propylene glycol, hexylene glycol, glycerol, polyethylene glycol and dimethyl isosorbide
53. The composition of claim 34, wherein the antibiotic agent is azelaic acid; and wherein the concentration of azelaic acid is greater than 10%.
54. The composition of claim 53, wherein the concentration of azelaic acid is between about 10% and about 25%.
55. The composition of claim 39, wherein the antibiotic agent is suitable for the treatment of impetigo and the additional active agent is an anti-inflammatory agent
56. The composition of claim 39, wherein the antibiotic agent is suitable for the treatment of chronic ulcer and the additional active agent is selected from the group consisting of a topical anesthetic agent, an antifungal, an anti viral infections and a vasoactive agent.
57. The composition of claim 39, wherein the antibiotic agent is suitable for the treatment of acne and the additional active agent is selected from the group consisting of a retinoid; a keratolytic acid, an alpha-hydroxy acid and derivatives thereof, a beta-hydroxy acid and derivatives thereof, a skin-drying agent, a corticosteroid, a non-steroidal anti-inflammatory agent, and an anti- seborrhea agent.
58. The composition of claim 39, wherein the antibiotic agent is suitable for the treatment of rosacea and the additional active agent is selected from the group consisting of a retinoid; a keratolytic acid, an alpha-hydroxy acid, a beta-hydroxy acid, a corticosteroid and a non-steroidal anti-inflammatory agent.
59. The composition of claim 39, wherein the antibiotic agent is suitable for the treatment of otitis and the additional active agent is selected from the group consisting of an antifungal agent, a topical anesthetic agent, a corticosteroid and a non-steroidal anti-inflammatory agent.
60. A method of treating, alleviating or preventing disorders of the skin, body cavity or mucosal surface, wherein the disorder involves inflammation as one of its etiological factors, the method comprising: administering topically to a subject having the disorder, a foamed composition including: (i) an antibiotic agent;
(ii) at least one organic carrier selected from a hydrophobic organic carrier, a polar solvent, an emollient and mixtures thereof, at a concentration of about 2% to about 50% by weight; (iii) a surface-active agent; (iv) about 0.01 % to about 5% by weight of a polymeric additive selected from a bioadhesive agent, a gelling agent, a film forming agent and a phase change agent; and (v) water, wherein the antibiotic agent is administered in a therapeutically effective amount.
61.The method of claim 60, wherein the concentration of the surface active agent is between about 0.1% and about 5% by weight.
62. The method of claim 60, wherein the composition further comprises about 0.1 % to about 5% by weight of a therapeutically active foam adjuvant is selected from the group consisting of fatty alcohols having 15 or more carbons in their carbon chain; fatty acids having 16 or more carbons in their carbon chain; fatty alcohols derived from beeswax and including a mixture of alcohols, a majority of which has at least 20 carbon atoms in their carbon chain; fatty alcohols having at least one double bond; fatty acids having at least one double bond; branched fatty alcohols; branched fatty acids; fatty acids substituted with a hydroxyl group; cetyl alcohol; stearyl alcohol; arachidyl alcohol; behenyl alcohol; 1-triacontanol; hexadecanoic acid; stearic acid; arachidic acid; behenic acid; octacosanoic acid; 12-hydroxy stearic acid and mixtures thereof.
63. The composition of claim 60 or 62, wherein the antibiotic agent is selected from the group consisting of beta-lactam antibiotics, aminoglycosides, ansa- type antibiotics, anthraquinones, antibiotic azoles, antibiotic glycopeptides, macrolides, antibiotic nucleosides, antibiotic peptides, antibiotic polyenes, antibiotic polyethers, quinolones, antibiotic steroids, sulfonamides, tetracycline, dicarboxylic acids, antibiotic metals, oxidizing agents, substances that release free radicals and/or active oxygen, cationic antimicrobial agents, quaternary ammonium compounds, biguanides, triguanides, bisbiguanides and analogs and polymers thereof and naturally occurring antibiotic compounds.
64. The method of claim 60, wherein the disorder is selected from the group consisting of a dermatose, a dermatitis, a vaginal disorder, a vulvar disorder, an anal disorder, a disorder of a body cavity, an ear disorder, a disorder of the nose, a disorder of the respiratory system, a bacterial infection, fungal infection, viral infection, dermatosis, dermatitis, parasitic infections, disorders of hair follicles and sebaceous glands, scaling papular diseases, benign tumors, malignant tumors, reactions to sunlight, bullous diseases, pigmentation disorders, disorders of cornification, pressure sores, disorders of sweating, inflammatory reactions, xerosis, ichthyosis, allergy, burn, wound, cut, chlamydia infection, gonorrhea infection, hepatitis B, herpes, HIV/AIDS, human papillomavirus (HPV), genital warts, bacterial vaginosis, candidiasis, chancroid, granuloma Inguinale, lymphogranloma venereum, mucopurulent cervicitis (MPC), molluscum contagiosum, nongonococcal urethritis (NGU), trichomoniasis, vulvar disorders, vulvodynia, vulvar pain, yeast infection, vulvar dystrophy, vulvar intraepithelial neoplasia (VIN), contact dermatitis, osteoarthritis, joint pain, hormonal disorder, pelvic inflammation, endometritis, salpingitis, oophoritis, genital cancer, cancer of the cervix, cancer of the vulva, cancer of the vagina, vaginal dryness, dyspareunia, anal and rectal disease, anal abscess/fistula, anal cancer, anal fissure, anal warts, Crohn's disease, hemorrhoids, anal itch, pruritus ani, fecal incontinence, constipation, polyps of the colon and rectum; and wherein the disorder is responsive to treatment with the antibiotic agent.
65. The method of claim 60, wherein the composition further comprises at least one additional therapeutic agent, selected from the group consisting of a steroidal anti-inflammatory agent, an immunosuppressive agent, an immunomodulator, an immunoregulating agent, a hormonal agent, an antifungal agent, an antiviral agent, an antiparasitic agent, vitamin A, a vitamin A derivative, vitamin B, a vitamin B derivative, vitamin C, a vitamin C derivative, vitamin D, a vitamin D derivative, vitamin E, a vitamin E derivative, vitamin F, a vitamin F derivative, vitamin K, a vitamin K derivative, a wound healing agent, a disinfectant, an anesthetic, an antiallergic agent, an alpha hydroxyl acid, lactic acid, glycolic acid, a beta-hydroxy acid, a protein, a peptide, a neuropeptide, a allergen, an immunogenic substance, a haptene, an oxidizing agent, an antioxidant, a dicarboxylic acid, azelaic acid, sebacic acid, adipic acid, fumaric acid, a retinoid, an antiproliferative agent, an anticancer agent, a photodynamic therapy agent, benzoyl chloride, calcium hypochlorite, magnesium hypochlorite, an anti-wrinkle agent, a radical scavenger, a metal, silver, a metal oxide, titanium dioxide, zinc oxide, zirconium oxide, iron oxide, silicone oxide, talc, carbon, an anti wrinkle agent, a skin whitening agent, a skin protective agent, a masking agent, an anti-wart agent, a refatting agent, a lubricating agent and mixtures thereof.
66. The method of claim 36, wherein the composition further contains a penetration enhancer.
67. The method of claim 41 , wherein the penetration enhancer is selected from the group consisting of propylene glycol, butylene glycols, hexylene glycol, glycerol, pentaerythritol, sorbitol, mannitol, oligosaccharides, dimethyl isosorbide, monooleate of ethoxylated glycerides having about 8 to 10 ethylene oxide units, polyethylene glycol 200-600, transcutol, glycofurol and cyclodextrins.
68. The method of claim 60, wherein the pH of the foamable composition is selected from the group consisting of (i) between about 4.5 and about 7.0, wherein the composition is intended for skin treatment; and (ii) between about 3 and about 4.5, wherein the composition is intended for vaginal treatment.
69. The method of claim 60, wherein the organic carrier contains a PPG alkyl ether.
70. The method of claim 69, wherein the foam is non-flammable, when tested according to European Standard prEN 14851.
71.The method of claim 66, wherein the active agent is an antibiotic azole and wherein the penetration enhancer is selected from the group consisting of propylene glycol, hexylene glycol, glycerol, and dimethyl isosorbide.
72. The method of claim 67, wherein the antibiotic agent is an antibiotic azole and wherein the penetration enhancer is selected from the group consisting of propylene glycol, hexylene glycol, glycerol, polyethylene glycol and dimethyl isosorbide.
73. The method of claim 72, wherein the antibiotic azole is metronidazole; and wherein the concentration of metronidazole is greater than 0.75%.
74. The method of claim 73, wherein the concentration of metronidazole is between 0.9% and about 2%.
75. The method of claim 67, wherein the additional therapeutic agent is a dicarboxylic acid and wherein the penetration enhancer is selected from the group consisting of propylene glycol, hexylene glycol, glycerol, polyethylene glycol and dimethyl isosorbide
76. The method of claim 60, wherein the antibiotic agent is azelaic acid; and wherein the concentration of azelaic acid is greater than 10%.
77. The method of claim 76, wherein the concentration of azelaic acid is between about 10% and about 25%.
78. The method of claim 65, wherein the antibiotic agent is suitable for the treatment of impetigo and the additional active agent is an anti-inflammatory agent
79. The method of claim 65, wherein the antibiotic agent is suitable for the treatment of chronic ulcer and the additional active agent is selected from the group consisting of a topical anesthetic agent, an antifungal, an anti viral infections and a vasoactive agent.
80. The method of claim 65, wherein the antibiotic agent is suitable for the treatment of acne and the additional active agent is selected from the group consisting of a retinoid; a keratolytic acid, an alpha-hydroxy acid and derivatives thereof, a beta-hydroxy acid and derivatives thereof, a skin-drying agent, a corticosteroid, a non-steroidal anti-inflammatory agent, and an anti- seborrhea agent.
81.The method of claim 65, wherein the antibiotic agent is suitable for the treatment of rosacea and the additional active agent is selected from the group consisting of a retinoid; a keratolytic acid, an alpha-hydroxy acid, a beta-hydroxy acid, a corticosteroid and a non-steroidal anti-inflammatory agent.
82. The method of claim 65, wherein the antibiotic agent is suitable for the treatment of otitis and the additional active agent is selected from the group consisting of an antifungal agent, a topical anesthetic agent, a corticosteroid and a non-steroidal anti-inflammatory agent.
83. The kit of claim 1 , wherein the surface-active agent comprises a combination of at least one non-ionic surfactant having HLB of less than 9 and at least one non-ionic surfactant having HLB of equal or more than 9, wherein the ratio between the at least one non-ionic surfactant having HLB of less than 9 and the at least one non-ionic surfactant having HLB of equal or more than 9, is between 1 :4 and 4:1.
84. The kit of claim 83, wherein the resulting HLB value of the combination of at least one non-ionic surfactant having HLB of less than 9 and at least one non- ionic surfactant having HLB of equal or more than 9 is between about 9 and about 14.
85. The composition of claim 34, wherein the surface-active agent consists of one or more non-ionic surfactants.
86. The composition of claim 34, wherein the surface-active agent comprises a combination of at least one non-ionic surfactant having HLB of less than 9 and at least one non-ionic surfactant having HLB of equal or more than 9, wherein the ratio between the at least one non-ionic surfactant having HLB of less than 9 and the at least one non-ionic surfactant having HLB of equal or more than 9, is between 1 :8 and 8:1.
87. The composition of claim 86, wherein the resulting HLB value of the combination of at least one non-ionic surfactant having HLB of less than 9 and at least one non-ionic surfactant having HLB of equal or more than 9 is between about 9 and about 14.
88. The composition of claim 34, wherein the surface-active agent comprises a combination of a non-ionic surfactant and an ionic surfactant, at a ratio of between about 4:1 and about 1 :4.
89. The method of claim 60, wherein the surface-active agent comprises a combination of at least one non-ionic surfactant having HLB of less than 9 and at least one non-ionic surfactant having HLB of equal or more than 9, wherein the ratio between the at least one non-ionic surfactant having HLB of less than 9 and the at least one non-ionic surfactant having HLB of equal or more than 9, is between 1 :8 and 8:1.
90. The method of claim 89, wherein the resulting HLB value of the combination of at least one non-ionic surfactant having HLB of less than 9 and at least one non-ionic surfactant having HLB of equal or more than 9 is between about 9 and about 14.
91.The method of claim 60, wherein the surface-active agent comprises a combination of a non-ionic surfactant and an ionic surfactant, at a ratio of between about 4:1 and about 1:4.
PCT/IB2006/003975 2005-06-07 2006-06-07 Antibiotic kit and composition and uses thereof WO2007099396A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2006339311A AU2006339311A1 (en) 2005-06-07 2006-06-07 Antibiotic kit and composition and uses thereof
CA002611577A CA2611577A1 (en) 2005-06-07 2006-06-07 Antibiotic kit and composition and uses thereof
EP06847249A EP1919449A2 (en) 2005-06-07 2006-06-07 Antibiotic kit and composition and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US68824405P 2005-06-07 2005-06-07
US60/688244 2005-06-07

Publications (2)

Publication Number Publication Date
WO2007099396A2 true WO2007099396A2 (en) 2007-09-07
WO2007099396A3 WO2007099396A3 (en) 2008-03-13

Family

ID=38459394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2006/003975 WO2007099396A2 (en) 2005-06-07 2006-06-07 Antibiotic kit and composition and uses thereof

Country Status (4)

Country Link
EP (1) EP1919449A2 (en)
AU (1) AU2006339311A1 (en)
CA (1) CA2611577A1 (en)
WO (1) WO2007099396A2 (en)

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038140A2 (en) * 2006-06-07 2008-04-03 Foamix Ltd. Foamable vehicle comprising polypropylene glycol alkyl ether and pharmaceutical compositions thereof
WO2008075207A2 (en) * 2006-04-04 2008-06-26 Foamix Ltd. Anti-infection augmentation foamable compositions and kit and uses thereof
WO2008137632A1 (en) * 2007-05-04 2008-11-13 The Procter & Gamble Company Antimicrobial compositions, products, and methods of use
WO2009103069A1 (en) * 2008-02-15 2009-08-20 Osborne David W Skin penetration enhancing systems for polar drugs
EP2174650A1 (en) * 2008-10-08 2010-04-14 Polichem SA Modified release emulsions for application to skin or vaginal mucosa
FR2943914A1 (en) * 2009-04-06 2010-10-08 Fabre Pierre Dermo Cosmetique MOISTURE BOTTLE COMPRISING A PHARMACEUTICAL COMPOSITION
WO2011061155A1 (en) * 2009-11-17 2011-05-26 Bayer Consumer Care Ag Antifungal formulations and their use
US8119150B2 (en) 2002-10-25 2012-02-21 Foamix Ltd. Non-flammable insecticide composition and uses thereof
CN102526398A (en) * 2012-01-17 2012-07-04 肖文辉 Externally-used traditional Chinese medicinal preparation for treating chronic pelvic inflammation
US8343945B2 (en) 2007-12-07 2013-01-01 Foamix Ltd. Carriers, formulations, methods for formulating unstable active agents for external application and uses thereof
WO2013042121A1 (en) 2011-09-21 2013-03-28 Cohen Irun R Beta-lactam compounds for treating diabetes
WO2013042122A1 (en) 2011-09-21 2013-03-28 Cohen Irun R Beta-lactam compounds for enhancing t cell -mediated immune responses
US8435498B2 (en) 2002-10-25 2013-05-07 Foamix Ltd. Penetrating pharmaceutical foam
WO2013074044A1 (en) * 2011-11-18 2013-05-23 Agency For Science, Technology And Research (A*Star) Methods for diagnosis and/or prognosis of gynecological cancer
US8476425B1 (en) 2012-09-27 2013-07-02 Cubist Pharmaceuticals, Inc. Tazobactam arginine compositions
US8486375B2 (en) 2003-04-28 2013-07-16 Foamix Ltd. Foamable compositions
US8512718B2 (en) 2000-07-03 2013-08-20 Foamix Ltd. Pharmaceutical composition for topical application
US8518376B2 (en) 2007-12-07 2013-08-27 Foamix Ltd. Oil-based foamable carriers and formulations
US8518378B2 (en) 2003-08-04 2013-08-27 Foamix Ltd. Oleaginous pharmaceutical and cosmetic foam
US8618081B2 (en) 2009-10-02 2013-12-31 Foamix Ltd. Compositions, gels and foams with rheology modulators and uses thereof
US8709385B2 (en) 2008-01-14 2014-04-29 Foamix Ltd. Poloxamer foamable pharmaceutical compositions with active agents and/or therapeutic cells and uses
US8722021B2 (en) 2002-10-25 2014-05-13 Foamix Ltd. Foamable carriers
US8795635B2 (en) 2006-11-14 2014-08-05 Foamix Ltd. Substantially non-aqueous foamable petrolatum based pharmaceutical and cosmetic compositions and their uses
US8835382B2 (en) 2009-11-23 2014-09-16 Cubist Pharmaceuticals, Inc. Lipopeptide compositions and related methods
US8900554B2 (en) 2002-10-25 2014-12-02 Foamix Pharmaceuticals Ltd. Foamable composition and uses thereof
US8906898B1 (en) 2013-09-27 2014-12-09 Calixa Therapeutics, Inc. Solid forms of ceftolozane
US8946276B2 (en) 2011-06-28 2015-02-03 Watson Laboratories, Inc. High dosage mucoadhesive metronidazole aqueous-based gel formulations and their use to treat bacterial vaginosis
US8968753B2 (en) 2013-03-15 2015-03-03 Calixa Therapeutics, Inc. Ceftolozane-tazobactam pharmaceutical compositions
US9044485B2 (en) 2013-03-15 2015-06-02 Calixa Therapeutics, Inc. Ceftolozane antibiotic compositions
US9072667B2 (en) 2009-07-29 2015-07-07 Foamix Pharmaceuticals Ltd. Non surface active agent non polymeric agent hydro-alcoholic foamable compositions, breakable foams and their uses
US9101662B2 (en) 2003-08-04 2015-08-11 Foamix Pharmaceuticals Ltd. Compositions with modulating agents
US9167813B2 (en) 2009-07-29 2015-10-27 Foamix Pharmaceuticals Ltd. Non surfactant hydro-alcoholic foamable compositions, breakable foams and their uses
US9211259B2 (en) 2002-11-29 2015-12-15 Foamix Pharmaceuticals Ltd. Antibiotic kit and composition and uses thereof
US9265725B2 (en) 2002-10-25 2016-02-23 Foamix Pharmaceuticals Ltd. Dicarboxylic acid foamable vehicle and pharmaceutical compositions thereof
US9320705B2 (en) 2002-10-25 2016-04-26 Foamix Pharmaceuticals Ltd. Sensation modifying topical composition foam
CN105726545A (en) * 2016-03-22 2016-07-06 史飞 Cephradine for prevention and/or treatment of TOPK (T-LAK cell-originated protein kinase) activity abnormally increased skin inflammations by inhibition of TOPK
US9439857B2 (en) 2007-11-30 2016-09-13 Foamix Pharmaceuticals Ltd. Foam containing benzoyl peroxide
CN106045875A (en) * 2016-06-25 2016-10-26 仇颖超 Preparation method of occrycetin
US9539208B2 (en) 2002-10-25 2017-01-10 Foamix Pharmaceuticals Ltd. Foam prepared from nanoemulsions and uses
WO2017009870A1 (en) * 2015-07-13 2017-01-19 Ahir Pramodbhai N A topical formulation for chronic skin and hair disease
US9622947B2 (en) 2002-10-25 2017-04-18 Foamix Pharmaceuticals Ltd. Foamable composition combining a polar solvent and a hydrophobic carrier
US9636405B2 (en) 2003-08-04 2017-05-02 Foamix Pharmaceuticals Ltd. Foamable vehicle and pharmaceutical compositions thereof
US9662298B2 (en) 2007-08-07 2017-05-30 Foamix Pharmaceuticals Ltd. Wax foamable vehicle and pharmaceutical compositions thereof
US9668972B2 (en) 2002-10-25 2017-06-06 Foamix Pharmaceuticals Ltd. Nonsteroidal immunomodulating kit and composition and uses thereof
US9849142B2 (en) 2009-10-02 2017-12-26 Foamix Pharmaceuticals Ltd. Methods for accelerated return of skin integrity and for the treatment of impetigo
US9872906B2 (en) 2013-03-15 2018-01-23 Merck Sharp & Dohme Corp. Ceftolozane antibiotic compositions
US9884017B2 (en) 2009-04-28 2018-02-06 Foamix Pharmaceuticals Ltd. Foamable vehicles and pharmaceutical compositions comprising aprotic polar solvents and uses thereof
US9918998B2 (en) 2015-03-23 2018-03-20 BioPharmX, Inc. Pharmaceutical tetracycline composition for dermatological use
WO2019067860A1 (en) * 2017-09-29 2019-04-04 The Regents Of The University Of California Compositions and methods for modulating hair growth
US10376496B2 (en) 2013-09-09 2019-08-13 Merck, Sharp & Dohme Corp. Treating infections with ceftolozane/tazobactam in subjects having impaired renal function
US10398641B2 (en) 2016-09-08 2019-09-03 Foamix Pharmaceuticals Ltd. Compositions and methods for treating rosacea and acne
US11213513B2 (en) 2017-02-24 2022-01-04 The Regents Of The University Of California Compositions and methods for promoting hair growth with Mpc1 inhibitors
WO2022007284A1 (en) * 2020-07-10 2022-01-13 深圳市臻质医疗科技有限公司 Use of calcium channel inhibitor oxoglaucine in osteoarthritis
US11312714B2 (en) 2017-06-30 2022-04-26 The Regents Of The University Of California Compositions and methods for modulating hair growth
CN114632075A (en) * 2022-05-19 2022-06-17 奥信阳光(北京)药业科技有限公司 Voriconazole aerosol inhalation and application
CN115463091A (en) * 2022-10-27 2022-12-13 新基元(北京)医药科技有限公司 Minocycline foaming agent with improved stability
CN115739051A (en) * 2022-11-30 2023-03-07 浙江工业大学 Hydrophobic membrane and preparation method and application thereof
US11660350B2 (en) 2014-09-05 2023-05-30 University Of Lincoln Antibacterial products

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2273989A4 (en) * 2008-04-07 2013-05-01 Interface Biologics Inc Combination therapy for the treatment of bacterial infections
MX352760B (en) 2011-09-09 2017-12-07 Merck Sharp & Dohme Corp Star Methods for treating intrapulmonary infections.
US8809314B1 (en) 2012-09-07 2014-08-19 Cubist Pharmacueticals, Inc. Cephalosporin compound

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004037225A2 (en) * 2002-10-25 2004-05-06 Foamix Ltd. Cosmetic and pharmaceutical foam
WO2004064833A1 (en) * 2003-01-24 2004-08-05 Connetics Australia Pty Ltd. Clindamycin phosphate foam
US20040241099A1 (en) * 2003-05-28 2004-12-02 Popp Karl F. Foamable pharmaceutical compositions and methods for treating a disorder
WO2005011567A2 (en) * 2003-08-04 2005-02-10 Foamix Ltd. Foam carrier containing amphiphilic copolymeric gelling agent
WO2005018530A2 (en) * 2003-08-25 2005-03-03 Foamix Ltd. Penetrating pharmaceutical foam

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004037225A2 (en) * 2002-10-25 2004-05-06 Foamix Ltd. Cosmetic and pharmaceutical foam
WO2004064833A1 (en) * 2003-01-24 2004-08-05 Connetics Australia Pty Ltd. Clindamycin phosphate foam
US20040241099A1 (en) * 2003-05-28 2004-12-02 Popp Karl F. Foamable pharmaceutical compositions and methods for treating a disorder
WO2005011567A2 (en) * 2003-08-04 2005-02-10 Foamix Ltd. Foam carrier containing amphiphilic copolymeric gelling agent
WO2005018530A2 (en) * 2003-08-25 2005-03-03 Foamix Ltd. Penetrating pharmaceutical foam

Cited By (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8512718B2 (en) 2000-07-03 2013-08-20 Foamix Ltd. Pharmaceutical composition for topical application
US9668972B2 (en) 2002-10-25 2017-06-06 Foamix Pharmaceuticals Ltd. Nonsteroidal immunomodulating kit and composition and uses thereof
US10117812B2 (en) 2002-10-25 2018-11-06 Foamix Pharmaceuticals Ltd. Foamable composition combining a polar solvent and a hydrophobic carrier
US8900554B2 (en) 2002-10-25 2014-12-02 Foamix Pharmaceuticals Ltd. Foamable composition and uses thereof
US10322085B2 (en) 2002-10-25 2019-06-18 Foamix Pharmaceuticals Ltd. Dicarboxylic acid foamable vehicle and pharmaceutical compositions thereof
US8741265B2 (en) 2002-10-25 2014-06-03 Foamix Ltd. Penetrating pharmaceutical foam
US9539208B2 (en) 2002-10-25 2017-01-10 Foamix Pharmaceuticals Ltd. Foam prepared from nanoemulsions and uses
US8722021B2 (en) 2002-10-25 2014-05-13 Foamix Ltd. Foamable carriers
US10821077B2 (en) 2002-10-25 2020-11-03 Foamix Pharmaceuticals Ltd. Dicarboxylic acid foamable vehicle and pharmaceutical compositions thereof
US9622947B2 (en) 2002-10-25 2017-04-18 Foamix Pharmaceuticals Ltd. Foamable composition combining a polar solvent and a hydrophobic carrier
US9320705B2 (en) 2002-10-25 2016-04-26 Foamix Pharmaceuticals Ltd. Sensation modifying topical composition foam
US8119150B2 (en) 2002-10-25 2012-02-21 Foamix Ltd. Non-flammable insecticide composition and uses thereof
US9713643B2 (en) 2002-10-25 2017-07-25 Foamix Pharmaceuticals Ltd. Foamable carriers
US9265725B2 (en) 2002-10-25 2016-02-23 Foamix Pharmaceuticals Ltd. Dicarboxylic acid foamable vehicle and pharmaceutical compositions thereof
US8840869B2 (en) 2002-10-25 2014-09-23 Foamix Ltd. Body cavity foams
US11033491B2 (en) 2002-10-25 2021-06-15 Vyne Therapeutics Inc. Dicarboxylic acid foamable vehicle and pharmaceutical compositions thereof
US8435498B2 (en) 2002-10-25 2013-05-07 Foamix Ltd. Penetrating pharmaceutical foam
US9211259B2 (en) 2002-11-29 2015-12-15 Foamix Pharmaceuticals Ltd. Antibiotic kit and composition and uses thereof
US8486375B2 (en) 2003-04-28 2013-07-16 Foamix Ltd. Foamable compositions
US9101662B2 (en) 2003-08-04 2015-08-11 Foamix Pharmaceuticals Ltd. Compositions with modulating agents
US9636405B2 (en) 2003-08-04 2017-05-02 Foamix Pharmaceuticals Ltd. Foamable vehicle and pharmaceutical compositions thereof
US8518378B2 (en) 2003-08-04 2013-08-27 Foamix Ltd. Oleaginous pharmaceutical and cosmetic foam
US8703105B2 (en) 2003-08-04 2014-04-22 Foamix Ltd. Oleaginous pharmaceutical and cosmetic foam
WO2008075207A3 (en) * 2006-04-04 2009-01-29 Foamix Ltd Anti-infection augmentation foamable compositions and kit and uses thereof
WO2008075207A2 (en) * 2006-04-04 2008-06-26 Foamix Ltd. Anti-infection augmentation foamable compositions and kit and uses thereof
WO2008038140A3 (en) * 2006-06-07 2008-09-04 Foamix Ltd Foamable vehicle comprising polypropylene glycol alkyl ether and pharmaceutical compositions thereof
WO2008038140A2 (en) * 2006-06-07 2008-04-03 Foamix Ltd. Foamable vehicle comprising polypropylene glycol alkyl ether and pharmaceutical compositions thereof
US9682021B2 (en) 2006-11-14 2017-06-20 Foamix Pharmaceuticals Ltd. Substantially non-aqueous foamable petrolatum based pharmaceutical and cosmetic compositions and their uses
US8795635B2 (en) 2006-11-14 2014-08-05 Foamix Ltd. Substantially non-aqueous foamable petrolatum based pharmaceutical and cosmetic compositions and their uses
WO2008137632A1 (en) * 2007-05-04 2008-11-13 The Procter & Gamble Company Antimicrobial compositions, products, and methods of use
US11103454B2 (en) 2007-08-07 2021-08-31 Vyne Therapeutics Inc. Wax foamable vehicle and pharmaceutical compositions thereof
US10369102B2 (en) 2007-08-07 2019-08-06 Foamix Pharmaceuticals Ltd. Wax foamable vehicle and pharmaceutical compositions thereof
US9662298B2 (en) 2007-08-07 2017-05-30 Foamix Pharmaceuticals Ltd. Wax foamable vehicle and pharmaceutical compositions thereof
US9439857B2 (en) 2007-11-30 2016-09-13 Foamix Pharmaceuticals Ltd. Foam containing benzoyl peroxide
US9795564B2 (en) 2007-12-07 2017-10-24 Foamix Pharmaceuticals Ltd. Oil-based foamable carriers and formulations
US9549898B2 (en) 2007-12-07 2017-01-24 Foamix Pharmaceuticals Ltd. Oil and liquid silicone foamable carriers and formulations
US8900553B2 (en) 2007-12-07 2014-12-02 Foamix Pharmaceuticals Ltd. Oil and liquid silicone foamable carriers and formulations
US8518376B2 (en) 2007-12-07 2013-08-27 Foamix Ltd. Oil-based foamable carriers and formulations
US11433025B2 (en) 2007-12-07 2022-09-06 Vyne Therapeutics Inc. Oil foamable carriers and formulations
US8343945B2 (en) 2007-12-07 2013-01-01 Foamix Ltd. Carriers, formulations, methods for formulating unstable active agents for external application and uses thereof
US8709385B2 (en) 2008-01-14 2014-04-29 Foamix Ltd. Poloxamer foamable pharmaceutical compositions with active agents and/or therapeutic cells and uses
WO2009103069A1 (en) * 2008-02-15 2009-08-20 Osborne David W Skin penetration enhancing systems for polar drugs
US10441530B2 (en) 2008-02-15 2019-10-15 AmDerma Pharmaceuticals, LLC Skin penetration enhancing systems for polar drugs
EP2174650A1 (en) * 2008-10-08 2010-04-14 Polichem SA Modified release emulsions for application to skin or vaginal mucosa
WO2010040632A1 (en) * 2008-10-08 2010-04-15 Polichem Sa Modified release emulsions for application to skin or vaginal mucosa
FR2943914A1 (en) * 2009-04-06 2010-10-08 Fabre Pierre Dermo Cosmetique MOISTURE BOTTLE COMPRISING A PHARMACEUTICAL COMPOSITION
WO2010116078A1 (en) * 2009-04-06 2010-10-14 Pierre Fabre Dermo-Cosmetique Foaming pharmaceutical composition that does not contain a propellant gas
US10213384B2 (en) 2009-04-28 2019-02-26 Foamix Pharmaceuticals Ltd. Foamable vehicles and pharmaceutical compositions comprising aprotic polar solvents and uses thereof
US9884017B2 (en) 2009-04-28 2018-02-06 Foamix Pharmaceuticals Ltd. Foamable vehicles and pharmaceutical compositions comprising aprotic polar solvents and uses thereof
US10588858B2 (en) 2009-04-28 2020-03-17 Foamix Pharmaceuticals Ltd. Foamable vehicles and pharmaceutical compositions comprising aprotic polar solvents and uses thereof
US10363216B2 (en) 2009-04-28 2019-07-30 Foamix Pharmaceuticals Ltd. Foamable vehicles and pharmaceutical compositions comprising aprotic polar solvents and uses thereof
US11219631B2 (en) 2009-07-29 2022-01-11 Vyne Pharmaceuticals Inc. Foamable compositions, breakable foams and their uses
US9572775B2 (en) 2009-07-29 2017-02-21 Foamix Pharmaceuticals Ltd. Non surfactant hydro-alcoholic foamable compositions, breakable foams and their uses
US9167813B2 (en) 2009-07-29 2015-10-27 Foamix Pharmaceuticals Ltd. Non surfactant hydro-alcoholic foamable compositions, breakable foams and their uses
US9072667B2 (en) 2009-07-29 2015-07-07 Foamix Pharmaceuticals Ltd. Non surface active agent non polymeric agent hydro-alcoholic foamable compositions, breakable foams and their uses
US10092588B2 (en) 2009-07-29 2018-10-09 Foamix Pharmaceuticals Ltd. Foamable compositions, breakable foams and their uses
US10350166B2 (en) 2009-07-29 2019-07-16 Foamix Pharmaceuticals Ltd. Non surface active agent non polymeric agent hydro-alcoholic foamable compositions, breakable foams and their uses
US8865139B1 (en) 2009-10-02 2014-10-21 Foamix Pharmaceuticals Ltd. Topical tetracycline compositions
US10137200B2 (en) 2009-10-02 2018-11-27 Foamix Pharmaceuticals Ltd. Surfactant-free water-free foamable compositions, breakable foams and gels and their uses
US10322186B2 (en) 2009-10-02 2019-06-18 Foamix Pharmaceuticals Ltd. Topical tetracycline compositions
US10967063B2 (en) 2009-10-02 2021-04-06 Vyne Therapeutics Inc. Surfactant-free, water-free formable composition and breakable foams and their uses
US10265404B2 (en) 2009-10-02 2019-04-23 Foamix Pharmaceuticals Ltd. Compositions, gels and foams with rheology modulators and uses thereof
US10946101B2 (en) 2009-10-02 2021-03-16 Vyne Therapeutics Inc. Surfactant-free water-free foamable compositions, breakable foams and gels and their uses
US9675700B2 (en) 2009-10-02 2017-06-13 Foamix Pharmaceuticals Ltd. Topical tetracycline compositions
US10835613B2 (en) 2009-10-02 2020-11-17 Foamix Pharmaceuticals Ltd. Compositions, gels and foams with rheology modulators and uses thereof
US10821187B2 (en) 2009-10-02 2020-11-03 Foamix Pharmaceuticals Ltd. Compositions, gels and foams with rheology modulators and uses thereof
US10238746B2 (en) 2009-10-02 2019-03-26 Foamix Pharmaceuticals Ltd Surfactant-free water-free foamable compositions, breakable foams and gels and their uses
US9849142B2 (en) 2009-10-02 2017-12-26 Foamix Pharmaceuticals Ltd. Methods for accelerated return of skin integrity and for the treatment of impetigo
US10610599B2 (en) 2009-10-02 2020-04-07 Foamix Pharmaceuticals Ltd. Topical tetracycline compositions
US8618081B2 (en) 2009-10-02 2013-12-31 Foamix Ltd. Compositions, gels and foams with rheology modulators and uses thereof
US10213512B2 (en) 2009-10-02 2019-02-26 Foamix Pharmaceuticals Ltd. Topical tetracycline compositions
US10517882B2 (en) 2009-10-02 2019-12-31 Foamix Pharmaceuticals Ltd. Method for healing of an infected acne lesion without scarring
US10029013B2 (en) 2009-10-02 2018-07-24 Foamix Pharmaceuticals Ltd. Surfactant-free, water-free formable composition and breakable foams and their uses
US10086080B2 (en) 2009-10-02 2018-10-02 Foamix Pharmaceuticals Ltd. Topical tetracycline compositions
US10463742B2 (en) 2009-10-02 2019-11-05 Foamix Pharmaceuticals Ltd. Topical tetracycline compositions
US8992896B2 (en) 2009-10-02 2015-03-31 Foamix Pharmaceuticals Ltd. Topical tetracycline compositions
US8871184B2 (en) 2009-10-02 2014-10-28 Foamix Ltd. Topical tetracycline compositions
WO2011061155A1 (en) * 2009-11-17 2011-05-26 Bayer Consumer Care Ag Antifungal formulations and their use
US9138456B2 (en) 2009-11-23 2015-09-22 Cubist Pharmaceuticals Llc Lipopeptide compositions and related methods
US8835382B2 (en) 2009-11-23 2014-09-16 Cubist Pharmaceuticals, Inc. Lipopeptide compositions and related methods
US9662397B2 (en) 2009-11-23 2017-05-30 Merck Sharp & Dohme Corp. Lipopeptide compositions and related methods
US10596155B2 (en) 2011-06-28 2020-03-24 Chemo Research, S.L. Aqueous-based metronidazole gel formulations
US9198858B2 (en) 2011-06-28 2015-12-01 Watson Pharmaceuticals, Inc. Methods of treating bacterial vaginosis with aqueous-based metronidazole gel formulations
US10238634B2 (en) 2011-06-28 2019-03-26 Chemo Research, S.L. Aqueous-based metronidazole gel formulations
US8946276B2 (en) 2011-06-28 2015-02-03 Watson Laboratories, Inc. High dosage mucoadhesive metronidazole aqueous-based gel formulations and their use to treat bacterial vaginosis
WO2013042122A1 (en) 2011-09-21 2013-03-28 Cohen Irun R Beta-lactam compounds for enhancing t cell -mediated immune responses
US9474744B2 (en) 2011-09-21 2016-10-25 Stem Cell Medicine Ltd. Beta-lactam compounds for treating diabetes
US9345691B2 (en) 2011-09-21 2016-05-24 Stem Cell Medicine Ltd. Beta-lactam compounds for enhancing T cell-mediated immune responses
WO2013042121A1 (en) 2011-09-21 2013-03-28 Cohen Irun R Beta-lactam compounds for treating diabetes
WO2013074044A1 (en) * 2011-11-18 2013-05-23 Agency For Science, Technology And Research (A*Star) Methods for diagnosis and/or prognosis of gynecological cancer
CN102526398A (en) * 2012-01-17 2012-07-04 肖文辉 Externally-used traditional Chinese medicinal preparation for treating chronic pelvic inflammation
US8476425B1 (en) 2012-09-27 2013-07-02 Cubist Pharmaceuticals, Inc. Tazobactam arginine compositions
US10420841B2 (en) 2013-03-15 2019-09-24 Merck, Sharp & Dohme Corp. Ceftolozane antibiotic compositions
US9925196B2 (en) 2013-03-15 2018-03-27 Merck Sharp & Dohme Corp. Ceftolozane-tazobactam pharmaceutical compositions
US8968753B2 (en) 2013-03-15 2015-03-03 Calixa Therapeutics, Inc. Ceftolozane-tazobactam pharmaceutical compositions
US9044485B2 (en) 2013-03-15 2015-06-02 Calixa Therapeutics, Inc. Ceftolozane antibiotic compositions
US9872906B2 (en) 2013-03-15 2018-01-23 Merck Sharp & Dohme Corp. Ceftolozane antibiotic compositions
US11278622B2 (en) 2013-03-15 2022-03-22 Merck Sharp & Dohme Corp. Ceftolozane antibiotic compositions
US9320740B2 (en) 2013-03-15 2016-04-26 Merck Sharp & Dohme Corp. Ceftolozane-tazobactam pharmaceutical compositions
US10933053B2 (en) 2013-09-09 2021-03-02 Merck Sharp & Dohme Corp. Treating infections with ceftolozane/tazobactam in subjects having impaired renal function
US10376496B2 (en) 2013-09-09 2019-08-13 Merck, Sharp & Dohme Corp. Treating infections with ceftolozane/tazobactam in subjects having impaired renal function
US8906898B1 (en) 2013-09-27 2014-12-09 Calixa Therapeutics, Inc. Solid forms of ceftolozane
US11660350B2 (en) 2014-09-05 2023-05-30 University Of Lincoln Antibacterial products
US9918998B2 (en) 2015-03-23 2018-03-20 BioPharmX, Inc. Pharmaceutical tetracycline composition for dermatological use
US10881672B2 (en) 2015-03-23 2021-01-05 BioPharmX, Inc. Pharmaceutical tetracycline composition for dermatological use
US10391108B2 (en) 2015-03-23 2019-08-27 BioPharmX, Inc. Pharmaceutical tetracycline composition for dermatological use
WO2017009870A1 (en) * 2015-07-13 2017-01-19 Ahir Pramodbhai N A topical formulation for chronic skin and hair disease
CN105726545A (en) * 2016-03-22 2016-07-06 史飞 Cephradine for prevention and/or treatment of TOPK (T-LAK cell-originated protein kinase) activity abnormally increased skin inflammations by inhibition of TOPK
CN106045875A (en) * 2016-06-25 2016-10-26 仇颖超 Preparation method of occrycetin
US11324691B2 (en) 2016-09-08 2022-05-10 Journey Medical Corporation Compositions and methods for treating rosacea and acne
US10849847B2 (en) 2016-09-08 2020-12-01 Foamix Pharamaceuticals Ltd. Compositions and methods for treating rosacea and acne
US10398641B2 (en) 2016-09-08 2019-09-03 Foamix Pharmaceuticals Ltd. Compositions and methods for treating rosacea and acne
US11213513B2 (en) 2017-02-24 2022-01-04 The Regents Of The University Of California Compositions and methods for promoting hair growth with Mpc1 inhibitors
US11472804B2 (en) 2017-06-30 2022-10-18 The Regents Of The University Of California Compositions and methods for modulating hair growth
US11312714B2 (en) 2017-06-30 2022-04-26 The Regents Of The University Of California Compositions and methods for modulating hair growth
US11787804B2 (en) 2017-06-30 2023-10-17 The Regents Of The University Of California Compositions and methods for modulating hair growth
WO2019067860A1 (en) * 2017-09-29 2019-04-04 The Regents Of The University Of California Compositions and methods for modulating hair growth
WO2022007284A1 (en) * 2020-07-10 2022-01-13 深圳市臻质医疗科技有限公司 Use of calcium channel inhibitor oxoglaucine in osteoarthritis
CN114632075A (en) * 2022-05-19 2022-06-17 奥信阳光(北京)药业科技有限公司 Voriconazole aerosol inhalation and application
CN114632075B (en) * 2022-05-19 2022-07-15 奥信阳光(北京)药业科技有限公司 Voriconazole aerosol inhalation and application
CN115463091A (en) * 2022-10-27 2022-12-13 新基元(北京)医药科技有限公司 Minocycline foaming agent with improved stability
CN115739051A (en) * 2022-11-30 2023-03-07 浙江工业大学 Hydrophobic membrane and preparation method and application thereof

Also Published As

Publication number Publication date
WO2007099396A3 (en) 2008-03-13
CA2611577A1 (en) 2007-09-07
EP1919449A2 (en) 2008-05-14
AU2006339311A2 (en) 2007-09-07
AU2006339311A1 (en) 2007-09-07

Similar Documents

Publication Publication Date Title
US20190076451A1 (en) Antibiotic Kit and Composition and Uses Thereof
US9211259B2 (en) Antibiotic kit and composition and uses thereof
EP1919449A2 (en) Antibiotic kit and composition and uses thereof
US20190022000A1 (en) Anti-infection augmentation foamable compositions and kit and uses thereof
WO2008075207A2 (en) Anti-infection augmentation foamable compositions and kit and uses thereof
US10588858B2 (en) Foamable vehicles and pharmaceutical compositions comprising aprotic polar solvents and uses thereof
US7645803B2 (en) Saccharide foamable compositions
US8343945B2 (en) Carriers, formulations, methods for formulating unstable active agents for external application and uses thereof
US20190307685A1 (en) Nonsteroidal immunomodulating kit and composition and uses thereof
US20140182585A1 (en) Aerosol container for foamable compositions
US20070292461A1 (en) Oleaginous pharmaceutical and cosmetic foam
US20080206161A1 (en) Quiescent foamable compositions, steroids, kits and uses thereof
US20090130029A1 (en) Glycerol ethers vehicle and pharmaceutical compositions thereof
MX2007014106A (en) Saccharide foamable compositions

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2611577

Country of ref document: CA

NENP Non-entry into the national phase in:

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2006847249

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006339311

Country of ref document: AU

Ref document number: 564272

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 4925/KOLNP/2007

Country of ref document: IN

ENP Entry into the national phase in:

Ref document number: 2006339311

Country of ref document: AU

Date of ref document: 20060607

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006339311

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006847249

Country of ref document: EP