WO2007098308A1 - Acid imhibitor compositions for metal cleaning and/or pickling - Google Patents
Acid imhibitor compositions for metal cleaning and/or pickling Download PDFInfo
- Publication number
- WO2007098308A1 WO2007098308A1 PCT/US2007/061420 US2007061420W WO2007098308A1 WO 2007098308 A1 WO2007098308 A1 WO 2007098308A1 US 2007061420 W US2007061420 W US 2007061420W WO 2007098308 A1 WO2007098308 A1 WO 2007098308A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solution
- acid
- acid inhibitor
- aldehyde
- inhibitor concentrate
- Prior art date
Links
- 239000002253 acid Substances 0.000 title claims abstract description 123
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 107
- 239000002184 metal Substances 0.000 title claims abstract description 107
- 238000004140 cleaning Methods 0.000 title claims abstract description 68
- 238000005554 pickling Methods 0.000 title claims abstract description 56
- 239000000203 mixture Substances 0.000 title description 22
- 239000012141 concentrate Substances 0.000 claims abstract description 108
- 239000003112 inhibitor Substances 0.000 claims abstract description 83
- 150000001875 compounds Chemical class 0.000 claims abstract description 65
- 150000001299 aldehydes Chemical class 0.000 claims abstract description 46
- 150000001412 amines Chemical class 0.000 claims abstract description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 31
- -1 amine salts Chemical class 0.000 claims abstract description 27
- 239000011347 resin Substances 0.000 claims abstract description 26
- 229920005989 resin Polymers 0.000 claims abstract description 26
- 229940015043 glyoxal Drugs 0.000 claims abstract description 22
- 150000001298 alcohols Chemical class 0.000 claims abstract description 14
- 239000000243 solution Substances 0.000 claims description 160
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 39
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 33
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 claims description 25
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 22
- 150000003839 salts Chemical class 0.000 claims description 21
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 17
- 239000007864 aqueous solution Substances 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 229910052742 iron Inorganic materials 0.000 claims description 11
- 235000010299 hexamethylene tetramine Nutrition 0.000 claims description 10
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 239000004312 hexamethylene tetramine Substances 0.000 claims description 8
- 239000011701 zinc Substances 0.000 claims description 8
- 229910052725 zinc Inorganic materials 0.000 claims description 8
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 claims description 7
- 229940073608 benzyl chloride Drugs 0.000 claims description 7
- 230000001590 oxidative effect Effects 0.000 claims description 7
- DLDJFQGPPSQZKI-UHFFFAOYSA-N but-2-yne-1,4-diol Chemical compound OCC#CCO DLDJFQGPPSQZKI-UHFFFAOYSA-N 0.000 claims description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims 1
- GYHFUZHODSMOHU-UHFFFAOYSA-N nonanal Chemical compound CCCCCCCCC=O GYHFUZHODSMOHU-UHFFFAOYSA-N 0.000 claims 1
- 239000011260 aqueous acid Substances 0.000 abstract description 17
- 230000002829 reductive effect Effects 0.000 abstract description 3
- 229920000768 polyamine Polymers 0.000 description 22
- 239000000080 wetting agent Substances 0.000 description 16
- 239000000126 substance Substances 0.000 description 15
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 12
- 239000010953 base metal Substances 0.000 description 12
- 230000005764 inhibitory process Effects 0.000 description 12
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 230000002401 inhibitory effect Effects 0.000 description 9
- 229910000838 Al alloy Inorganic materials 0.000 description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- 235000019256 formaldehyde Nutrition 0.000 description 8
- 125000004433 nitrogen atom Chemical group N* 0.000 description 8
- 150000007513 acids Chemical class 0.000 description 7
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 6
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 6
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- 229960004011 methenamine Drugs 0.000 description 6
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 6
- 239000003760 tallow Substances 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 5
- 125000002947 alkylene group Chemical group 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 235000011054 acetic acid Nutrition 0.000 description 4
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 4
- 239000003929 acidic solution Substances 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 239000010960 cold rolled steel Substances 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- 239000012085 test solution Substances 0.000 description 4
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000007859 condensation product Substances 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229960004275 glycolic acid Drugs 0.000 description 3
- 150000002466 imines Chemical class 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- AIJULSRZWUXGPQ-UHFFFAOYSA-N Methylglyoxal Chemical compound CC(=O)C=O AIJULSRZWUXGPQ-UHFFFAOYSA-N 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 159000000021 acetate salts Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- GZUXJHMPEANEGY-UHFFFAOYSA-N bromomethane Chemical compound BrC GZUXJHMPEANEGY-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- 239000012456 homogeneous solution Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 159000000014 iron salts Chemical class 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 238000006384 oligomerization reaction Methods 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- 235000021110 pickles Nutrition 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- TVDSBUOJIPERQY-UHFFFAOYSA-N prop-2-yn-1-ol Chemical compound OCC#C TVDSBUOJIPERQY-UHFFFAOYSA-N 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical compound NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical compound OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 description 2
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- BGJSXRVXTHVRSN-UHFFFAOYSA-N 1,3,5-trioxane Chemical compound C1OCOCO1 BGJSXRVXTHVRSN-UHFFFAOYSA-N 0.000 description 1
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- CGKKDGMMKSOGLM-UHFFFAOYSA-N 1-chloroethyl acetate Chemical compound CC(Cl)OC(C)=O CGKKDGMMKSOGLM-UHFFFAOYSA-N 0.000 description 1
- URWVQQSVEPXYET-UHFFFAOYSA-N 1-chloropropane-1,2,3-triol Chemical compound OCC(O)C(O)Cl URWVQQSVEPXYET-UHFFFAOYSA-N 0.000 description 1
- QYLFHLNFIHBCPR-UHFFFAOYSA-N 1-ethynylcyclohexan-1-ol Chemical compound C#CC1(O)CCCCC1 QYLFHLNFIHBCPR-UHFFFAOYSA-N 0.000 description 1
- IHJUECRFYCQBMW-UHFFFAOYSA-N 2,5-dimethylhex-3-yne-2,5-diol Chemical compound CC(C)(O)C#CC(C)(C)O IHJUECRFYCQBMW-UHFFFAOYSA-N 0.000 description 1
- SZIFAVKTNFCBPC-UHFFFAOYSA-N 2-chloroethanol Chemical compound OCCCl SZIFAVKTNFCBPC-UHFFFAOYSA-N 0.000 description 1
- CEBKHWWANWSNTI-UHFFFAOYSA-N 2-methylbut-3-yn-2-ol Chemical compound CC(C)(O)C#C CEBKHWWANWSNTI-UHFFFAOYSA-N 0.000 description 1
- KYFHXDKJPIEIIU-UHFFFAOYSA-N 3-methyl-4-phenylbut-1-yn-1-ol Chemical compound OC#CC(C)CC1=CC=CC=C1 KYFHXDKJPIEIIU-UHFFFAOYSA-N 0.000 description 1
- JQZGUQIEPRIDMR-UHFFFAOYSA-N 3-methylbut-1-yn-1-ol Chemical compound CC(C)C#CO JQZGUQIEPRIDMR-UHFFFAOYSA-N 0.000 description 1
- CUUQUEAUUPYEKK-UHFFFAOYSA-N 4-ethyloct-1-yn-3-ol Chemical compound CCCCC(CC)C(O)C#C CUUQUEAUUPYEKK-UHFFFAOYSA-N 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- WSMYVTOQOOLQHP-UHFFFAOYSA-N Malondialdehyde Chemical compound O=CCC=O WSMYVTOQOOLQHP-UHFFFAOYSA-N 0.000 description 1
- 239000002262 Schiff base Substances 0.000 description 1
- 150000004753 Schiff bases Chemical class 0.000 description 1
- PCSMJKASWLYICJ-UHFFFAOYSA-N Succinic aldehyde Chemical compound O=CCCC=O PCSMJKASWLYICJ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000005228 aryl sulfonate group Chemical group 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- VEZXCJBBBCKRPI-UHFFFAOYSA-N beta-propiolactone Chemical compound O=C1CCO1 VEZXCJBBBCKRPI-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- RDHPKYGYEGBMSE-UHFFFAOYSA-N bromoethane Chemical compound CCBr RDHPKYGYEGBMSE-UHFFFAOYSA-N 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- NEHMKBQYUWJMIP-NJFSPNSNSA-N chloro(114C)methane Chemical compound [14CH3]Cl NEHMKBQYUWJMIP-NJFSPNSNSA-N 0.000 description 1
- VXIVSQZSERGHQP-UHFFFAOYSA-N chloroacetamide Chemical compound NC(=O)CCl VXIVSQZSERGHQP-UHFFFAOYSA-N 0.000 description 1
- BULLHNJGPPOUOX-UHFFFAOYSA-N chloroacetone Chemical compound CC(=O)CCl BULLHNJGPPOUOX-UHFFFAOYSA-N 0.000 description 1
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 150000008050 dialkyl sulfates Chemical class 0.000 description 1
- LMEDOLJKVASKTP-UHFFFAOYSA-N dibutyl sulfate Chemical class CCCCOS(=O)(=O)OCCCC LMEDOLJKVASKTP-UHFFFAOYSA-N 0.000 description 1
- DENRZWYUOJLTMF-UHFFFAOYSA-N diethyl sulfate Chemical compound CCOS(=O)(=O)OCC DENRZWYUOJLTMF-UHFFFAOYSA-N 0.000 description 1
- 229940008406 diethyl sulfate Drugs 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- 150000004862 dioxolanes Chemical class 0.000 description 1
- JYCKNDWZDXGNBW-UHFFFAOYSA-N dipropyl sulfate Chemical class CCCOS(=O)(=O)OCCC JYCKNDWZDXGNBW-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229960003750 ethyl chloride Drugs 0.000 description 1
- VEUUMBGHMNQHGO-UHFFFAOYSA-N ethyl chloroacetate Chemical compound CCOC(=O)CCl VEUUMBGHMNQHGO-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 125000005283 haloketone group Chemical group 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- HVTICUPFWKNHNG-UHFFFAOYSA-N iodoethane Chemical compound CCI HVTICUPFWKNHNG-UHFFFAOYSA-N 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229940118019 malondialdehyde Drugs 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- VUQUOGPMUUJORT-UHFFFAOYSA-N methyl 4-methylbenzenesulfonate Chemical compound COS(=O)(=O)C1=CC=C(C)C=C1 VUQUOGPMUUJORT-UHFFFAOYSA-N 0.000 description 1
- CZXGXYBOQYQXQD-UHFFFAOYSA-N methyl benzenesulfonate Chemical compound COS(=O)(=O)C1=CC=CC=C1 CZXGXYBOQYQXQD-UHFFFAOYSA-N 0.000 description 1
- 229940102396 methyl bromide Drugs 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 229920000847 nonoxynol Polymers 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical class CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- SQYNKIJPMDEDEG-UHFFFAOYSA-N paraldehyde Chemical compound CC1OC(C)OC(C)O1 SQYNKIJPMDEDEG-UHFFFAOYSA-N 0.000 description 1
- 229960003868 paraldehyde Drugs 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229920000083 poly(allylamine) Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229960000380 propiolactone Drugs 0.000 description 1
- 238000005956 quaternization reaction Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- VRYGRLBNIVQXMY-UHFFFAOYSA-M sodium;acetic acid;chloride Chemical compound [Na+].[Cl-].CC(O)=O VRYGRLBNIVQXMY-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 150000008053 sultones Chemical class 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 125000004417 unsaturated alkyl group Chemical group 0.000 description 1
- 239000012224 working solution Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/02—Polyamines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G12/00—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
- C08G12/02—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
- C08G12/04—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
- C08G12/06—Amines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/02—Polyamines
- C08G73/0206—Polyalkylene(poly)amines
- C08G73/0213—Preparatory process
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/42—Amino alcohols or amino ethers
- C11D1/44—Ethers of polyoxyalkylenes with amino alcohols; Condensation products of epoxyalkanes with amines
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/0073—Anticorrosion compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/042—Acids
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/164—Organic compounds containing a carbon-carbon triple bond
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2075—Carboxylic acids-salts thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3703—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/04—Cleaning or pickling metallic material with solutions or molten salts with acid solutions using inhibitors
- C23G1/06—Cleaning or pickling metallic material with solutions or molten salts with acid solutions using inhibitors organic inhibitors
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/08—Iron or steel
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/10—Other heavy metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/12—Light metals
- C23G1/125—Light metals aluminium
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/10—Objects to be cleaned
- C11D2111/14—Hard surfaces
- C11D2111/16—Metals
Definitions
- This invention relates to acid inhibitor concentrates and solutions prepared therefrom which are useful for the acid pickling and/or cleaning of metal surfaces.
- Acids generally used in such metal cleaning or pickling solutions are the so-called "non-oxidizing" acids. Included in this category are inorganic (mineral) acids such as hydrochloric acid, phosphoric acid, sulphamic acid, sulphonic acid and sulfuric acid and organic acids such as acetic acid, citric acid, formic acid, glycolic acid and oxalic acid.
- the acid component of the cleaning solution is effective in removing undesirable deposits from metal surfaces, but unfortunately it also tends to attack and corrode the base metal. Such corrosion is obviously very undesirable.
- acid inhibitors are added to the cleaning solution.
- An effective inhibitor must disperse throughout the pickling solution, in low concentrations, must suppress hydrogen evolution, and must not leave excessive smut or residual film on the surface of the metal. It must also maintain effectiveness over a range of acid and iron concentrations and temperatures, with such effectiveness being long lasting so that the metal pickling or cleaning solution need not be frequently discarded or replenished.
- Acid inhibitor concentrates must remain stable over prolonged periods of time so that they may be safely stored until being combined with aqueous acid to form or replenish a metal pickling or cleaning solution. That is, the concentrate should remain a homogeneous solution (e.g., no phase separation or precipitation of solids) and should not deteriorate or degrade in effectiveness to a significant extent. Moreover, the solutions prepared from such concentrates must meet stringent customer requirements with respect to cost and performance (e.g., inhibition of metal etching), both immediately and overtime (e.g., as iron levels in the solution increase upon continued use of the solution).
- the present invention provides an acid inhibitor concentrate comprising water, at least one polyamino-aldehyde resin and at least one compound selected from the group consisting of acetyl enic alcohols, ethoxylated fatty amines, ethoxylated fatty amine salts and aldehyde-releasing compounds.
- Such concentrates form useful metal cleaning and pickling' solutions when combined with aqueous acid.
- These solutions when contacted with a metal surface such as a steel, aluminum alloy, or zinc surface, are effective in removing scale and other deposits from the metal surface while exhibiting a reduced tendency for the aqueous acid to attack or etch the metal itself.
- the metal cleaning and pickling solutions of the present invention as compared to solutions prepared using conventional types of acid inhibitors, exhibit particularly good protection against base metal etching when the solution contains high levels of iron and is maintained at a relatively high temperature over an extended period of time.
- the acid inhibitor concentrates of the present invention may contain one or more polyamino-aldehyde resins.
- Such resins may be described as the reaction products of polyamine compounds and aldehydes and preferably are sufficiently water soluble at.25 degrees C so as to permit their incorporation into the concentrates at levels of at least about 1 weight %, preferably at least about 2 weight %, most preferably at least about 3 weight %.
- acid inhibitor concentrates based on non-modified polyamines i.e., polyamines that have not been reacted with aldehyde
- modify the polyamine with aldehyde has been found to provide significant enhancement in performance.
- the enhancement is particularly pronounced, for example, where an iron-containing substrate is contacted with an HCl-containing solution at elevated temperatures and/or in the presence of dissolved iron and where an aluminum- containing substrate is contacted with an HCl-containing solution at elevated temperatures.
- the polyamino-aldehyde resins may be in cationic, salt and/or quaternized form so as to increase their water solubility and/or effectiveness to the desired extent.
- Water-miscible organic solvents such as glycol ethers, glycols, ketones, alcohols, esters and the like may also be used to solubilize the polyamino-aldehyde resin (and other organic components) in the concentrate, but preferred concentrates in accordance with the present invention contain no or essentially no (e.g.. less than 1 weight %) volatile organic. solvents.
- the components of the acid inhibitor concentrate are selected such that the closed cup flash point of the concentrate is greater than 80 degrees C (alternatively, greater than 100 degrees C).
- the polyamine compounds suitable as starting materials for the polyamino- aldehyde resin may be generally described as organic compounds containing two or more (e.g., three, four, five or six or more) nitrogen atoms per molecule and preferably are water soluble.
- the polyamine compound may be prepared by polymerization or oligomerization of one or more nitrogen-containing monomers or by condensation of two or more nitrogen-containing substances. Such polymerization, oligomerization or condensation may involve other molecules in addition to the nitrogen-containing monomers or nitrogen-containing substances.
- non-nitrogen containing compounds may be utilized as comonomers and/or as polymerization initiators.
- the polyamine compound it is desirable for the polyamine compound to contain a plurality of nitrogen atoms (e.g., three or more or four or more or five or more nitrogen atoms) in the backbone of a polymeric chain containing covalently bonded repeating units or moieties.
- the ratio of nitrogen atoms to carbon atoms preferably may be at least about 0.2, more preferably at least about 0.4.
- Tt will generally be preferred for the nitrogen atoms to be present in the form of amine groups, which may be primary, secondary, tertiary or quaternary in structure.
- the number average molecular weight of the polyamine is not believed to be particularly critical and may, for example, be as low as 200, 400, 600, 800, 1000 or 2000 daltons and as high as 2,000,000, 1,000,000, 750,000, 500,000, 250,000 or 100,000 daltons.
- Polyalkylenepolyamines (sometimes also referred to as polyalkyleneimines or polyalkylenimines) represent a particularly desirable type of polyamine compound for use in preparing the polyamino-aldehyde resin.
- Such materials are well-known in the art and are described, for example, in U.S. Pat Nos. 2,182,306; 3,033,746; 2,208,095; 2,806,839; 2,553,696; and 3,251,778, each of which is incorporated herein by reference in its entirety.
- the polyalkylenepolyamines which can be used as starting materials for the polyamino- aldehyde resins used in the acid inhibitor concentrates contemplated by the present invention include the oligomeric and polymeric materials that can be prepared by reacting ammonia or other nitrogen-containing compounds with alkylene dihalides (e.g., ethylene dichloride) or by the ring-opening polymerization of substituted or unsubstituted 1,2- alkyleneimines (e.g., ethyl eneimine).
- alkylene dihalides e.g., ethylene dichloride
- substituted or unsubstituted 1,2- alkyleneimines e.g., ethyl eneimine
- the polyalkylenepolyamine may be linear or branched in structure and may contain some crosslinking.
- the nitrogen atoms present in the polyalkylenepolyamine may be primary, secondary, tertiary, and/or quaternary (i.e., ammonium).
- Polyethylenepolyamines may be obtained from commercial sources such as BASF, which sells certain polyethylenepolyamines under the trademarks "Polymin” and "Lupasol”.
- Suitable polyethylenepolyamines include oligomers and polymers comprised of repeating units having the structure (-CH 2 CH 2 NH-), although other types of repeating units may also be present.
- Suitable polyalkylenepolyamines also include copolymers of different imines as well as copolymers of imines with non-imine monomers.
- the polyalkylenepolyamine may be modified or derivatized before being reacted with the aldehyde to form the polyamino-aldehyde resin utilized as a component of the acid inhibitor concentrates and metal cleaning and pickling solutions of the present invention.
- the term "polyalkylenepolyamine” includes all such modified or derivatized substances.
- the polyalkylenepolyamine may be alkoxylated (e.g., ethoxylated, propoxylated) by reacting with an alkylene oxide such as ethylene oxide and/or propylene oxide.
- the polyalkylenepolyamine may also be acylated, alkylated, and/or olefinated.
- Salts of the polyalkylenepolyamine or other polyamine may also be utilized, with such salts generally being formed by adding an acid to an aqueous solution of the polyamine compound.
- polyamine compounds may include, for example, polyvinylamines, polyallylamines, polyvinylguanidines, and the like.
- the polyamine compound is quaternized (prior to reaction with aldehyde) in a known manner such as, for example, by the reaction thereof with one or more quaternizing agents.
- Suitable quaternizing agents for reaction with the polyamine compound include the lower (Cl-ClO) alkyl or alkenyl halides such as methyl chloride, methyl bromide, or methyl iodide; ethyl chloride, ethyl bromide, or ethyl iodide; or alpha chloroglycerol; dialkyl sulfates such as dimethyl sulfate, diethyl sulfate, dipropyl sulfates, or dibutyl sulfates; aralkyl halides such as benzyl chloride (an especially preferred quaternizing agent); lower alkyl esters of aryl sulfonates such as methyl toluene sulfonate and methyl benzene sulfonate; alkylhalo esters such as ethyl-chloroacetate; alkylene halohydrins such as e
- Particularly preferred polyamine compounds suitable for use in preparing the polyamino-aldehyde resins include those substances classified as CAS 68603-67-8 ("Amines, polyethylenepoly-, reaction products with benzyl chloride").
- Quaternized polyamine compounds suitable for use in the present invention are also available from commercial sources, including, for example, CHEMQUAT SP-1060 and CHEMQUAT SP-2O60 (available from C&F Chemicals, Inc. of Exton, Pennsylvania).
- the aldehyde (aldehydes) which is (are) reacted with the polyamine compound or compounds to form the polyamino-aldehyde resin may be selected from the group of organic compounds containing one or more aldehyde (-CHO) functional groups (or equivalents or precursors thereof) per molecule.
- the aldehyde may be aliphatic, aromatic or araliphatic in character.
- aldehydes include formaldehyde, C2-C6 aliphatic aldehydes (including dialdehydes), benzaldehyde, glutaraldehyde, acetaldehyde, paraformaldehyde, glyoxal, furfural, methylglyoxal, malondialdehyde, succindialdehyde, and the like, with glyoxal being particularly preferred.
- aldehyde as used herein includes not only compounds containing one or more -CHO groups per molecule, but also equivalents and related derivatives, precursors or forms thereof (including groups capable of forming aldehyde groups in situ).
- glyoxal exists mainly in the form of a hydrated monomer, together with a dioxolane dimer and two bis(dioxolane) trimers.
- aqueous solutions of glyoxal may conveniently be used in the preparation of the polyamino-aldehyde resins which can be a component of the acid inhibitor concentrates and metal cleaning and pickling solutions of the present invention.
- Reaction of the aldehyde(s) and polyamine com ⁇ ound(s) to obtain the polyamino- aldehyde resins utilized in the acid inhibitor concentrates of the present invention may be carried out under any suitable conditions known in the art for reacting such types of substances. However, it will generally be desirable to utilize conditions effective to yield resins having a relatively high degree of water solubility. That is, it is preferred that the resin produced be capable of being dissolved in water at 25 degrees C at concentrations of at least 5 weight %, alternatively at least 10 weight % or at least 20 weight %.
- One method of preparing the resins is to combine aqueous solutions of the aldehyde(s) and polyamine compound(s) in the desired ratio at ambient temperature. Exothermic reaction of these components will generally take place, with reaction generally being substantially complete within about 1 hour. If desired, catalysts and/or heating could be utilized to accelerate the rate of reaction.
- the polyamine compound is not reacted with any other type of compound other than the aldehyde(s).
- the polyamine compound is not reacted with a ketone or is not reacted with a fatty acid, but with the aldehyde(s) alone.
- Particularly preferred polyamine-aldehyde resins suitable for use in the present invention include those substances classified as CAS 78330-33-3 ("Amines, polyethylenepoly-, benzyl chloride-quaternized, polymers with glyoxal").
- Such substances are also obtainable from commercial sources, such as the resin sold under the tradename "Chemquat JL-1060” by C&F Chemicals Inc., of Exton, Pennsylvania, as well as the resin sold under the tradename "Corrosion Inhibitor CES -90” by Consulting Engineering Services, LLC, of Spartanburg, South Carolina.
- acid inhibitor concentrates of the present invention contain from about 0.5 to about 15 weight % (e.g., from about 1 to about 10 weight %) of polyamino- aldehyde resin.
- concentration of resin may be varied as needed or desired depending, among other factors, the extent to which the concentrate will be diluted with aqueous acid to form a metal cleaning or pickling solution as well as the desired concentration of resin in the metal cleaning or pickling solution.
- the acid inhibitor concentrates of the present invention may contain at least one aldehyde-releasing compound and/or at least one ethoxylated fatty amine and/or at least one ethoxylated fatty amine salt and/or at least one acetylenic alcohol.
- the concentrate and the metal pickling and cleaning solution prepared therefrom are free of acetylenic alcohol.
- the aldehyde-releasing compound is a compound which releases an aldehyde when formulated into a metal pickling or cleaning solution containing aqueous acid and having a relatively low pH (e.g., less than about 4 or less than about 3) and used to pickle and/or clean metal surfaces having scale or other unwanted material deposited thereon.
- a relatively low pH e.g., less than about 4 or less than about 3
- the aldehyde which is so released or formed in situ is formaldehyde.
- the aldehyde-releasing compound preferably is water-soluble.
- aldehyde-releasing compounds include, but are not limited to, Schiff bases, formal, acetaldehyde dialkyl acetals, trioxane, polyoxymethylenes, paraformaldehyde, paraldehyde, condensation products of ammonia or primary amines with aldehydes, and the like.
- the aldehyde-releasing compound has high water solubility and low volatility.
- condensation products of ammonia or primary amines such as methyl amine with formaldehyde are preferred, condensation products of ammonia with formaldehyde are more preferred, and hexamethylenetetramine (also sometimes referred to as hexamine, methenamine, urotropin, or urotropine) in particular is most preferred. Salts of such compounds may also be utilized.
- acid inhibitor concentrates of the present invention may contain from about 1 to about 40 weight % (e.g., from about 5 to about 40 weight %) of aldehyde- releasing compound.
- concentration of aldehyde-releasing compound maybe varied as needed or desired depending upon, among other factors, the extent to which the concentrate will be diluted with aqueous acid to form a metal cleaning or pickling solution as well as the desired concentration of aldehyde-releasing compound in the metal cleaning or pickling solution.
- the weight ratio of aldehyde- releasing compound to polyamino-aldehyde resin in the concentrate (and in metal cleaning and pickling solutions prepared from the concentrate) is within the range of from about 0.5:1 to about 20:1 (e.g., about 1 :1 to about 10:1).
- Suitable acetylenic alcohols for purposes of the present invention include those organic compounds containing both at least one —OH group and at least one carbon-carbon triple bond per molecule.
- Preferred acetylenic alcohols are water-soluble and include C3- ClO acetylenic alcohols such as, for example, l-propyn-3-ol, l-butyn-3-ol, l-pentyn-3-ol, l-heptyn-3-ol, l-octyn-3-ol, l-nonyl-3-ol, l-decyn-3-ol, 1-ethynylcyclohexanol, methylbutynol, 2-butyne-l,4-diol (a particularly preferred acetylenic alcohol), 2-methyl-3- butyn-2-ol, 2,5-dimethyl-3-hexyn-2,5-diol., benzyl butyn
- acid inhibitor concentrates of the present invention may contain from about 0.5 to about 15 weight % (e.g., from about 1 to about 10 weight %) of acetyl enic alcohol.
- the concentration of acetylenic alcohol may be varied as needed or desired depending, among other factors, the extent to which the concentrate will be diluted with aqueous acid to form a metal cleaning or pickling solution as well as the desired concentration of acetylenic alcohol in the metal cleaning or pickling solution.
- the acid inhibitor concentrate and the solution prepared therefrom do not contain any acetylenic alcohol.
- the concentrate may be formulated with one or more acids selected from the group consisting of hydrochloric acid, phosphoric acid, acetic acid, hydroxyacetic acid or other inorganic or organic acids. It will be understood by those skilled in the art that typically at least a portion of the added acid or base will combine with other substances used in the concentrate formulation to form salts, although some free acid or base may also be present in solution.
- the acid inhibitor concentrate includes one or more wetting agents, which generally help to improve the performance of the cleaning and pickling solutions prepared from the concentrate.
- wetting agents typically are surfactants, including in particular non-ionic and cationic surfactants.
- the wetting agent can, if desired, be selected so as to impart foaming properties to the metal cleaning and pickling solutions prepared from the acid inhibitor concentrates of the present invention.
- one or more wetting agents are selected such that the resulting solution is essentially non-foaming (i.e., exhibits substantially no propensity to form foam when the solution is being used to treat metal substrates).
- Ethoxylated fatty amines and salts thereof represent a class of especially preferred wetting agents, as at least some members of this class appear to impart synergistic performance improvements to the acid inhibitor concentrates and acidic solutions prepared therefrom.
- pickling or cleaning solutions containing at least certain ethoxylated fatty amines or salts thereof are particularly effective in inhibiting base metal loss (i.e., lowering the etch rate) when the solutions contain relatively high concentrations of iron salts, especially when the solution is being ⁇ utilized at a relatively high temperature.
- ethoxylated fatty amines or salts thereof tends to reduce the tendency of the pickling or cleaning solution to attack the base metal more aggressively as the solution is repeatedly used and builds up higher levels of iron salts.
- Illustrative ethoxylated fatty amines include amines substituted with one or more C6-C22 linear as well as branched aliphatic groups (including alkyl groups as well as alkylene groups containing one or more carbon-carbon double bonds per alkylene group) that have been reacted (ethoxylated) with from about 2 to about 20 moles ⁇ f ethylene oxide per mole of amine as well as salts thereof (e.g., carboxylate salts such as acetate salts).
- the ethoxylated fatty amine may be based on a diamine (e.g., a compound containing two nitrogen atoms per molecule, at least one of which is substituted with one or more C6-C22 saturated and/or unsaturated alkyl groups).
- a diamine e.g., a compound containing two nitrogen atoms per molecule, at least one of which is substituted with one or more C6-C22 saturated and/or unsaturated alkyl groups.
- ethoxylated fatty amines include ethoxylated coco amines, ethoxylated tallow amines, ethoxylated hydrogenated tallow amines, ethoxylated dodecyl amines, ethoxylated octadecyl amines, ethoxylated soya amines, ethoxylated oleyl amines, ethoxylated stearic amines, ethoxylated N-tallow diamines, ethoxylated N-oleyl diamines, and salts thereof (for example, carboxylate salts such as acetate salts).
- wetting agents are readily available as commercial products, including surfactants sold under the rradename “Chemeen” by Chemex, Inc., surfactants sold under the tradename “Varonic” by the Goldschmidt Chemical Corporation, as well as surfactants sold under the tradenames "Ethomeen” and "Ethoduomeen” by Akzo Nobel.
- Other types of wetting agents that can be utilized include, for example, ethoxylated nonylphenols, ethoxylated alcohols, ethoxylated fatty acids, fhiorosurfactants and the like. In one embodiment of the invention, however, the concentrate and the metal cleaning and pickling solution are free of fluorosurfactant.
- Suitable ethoxylated fatty amines can have the formula:
- R is a straight-chain or branched, saturated or unsaturated aliphatic group having from 6 to 22 carbon atoms
- n and m are the same or different and each preferably are at least 1 and n + m is from 2 to 20. Mixtures of such compounds may also be utilized.
- acid inhibitor concentrates of the present invention contain from about 0.1 to about 5 weight % (e.g., from about 0.5 to about 3 weight %) of wetting agent (in particular, ethoxylated fatty amine).
- wetting agent in particular, ethoxylated fatty amine
- concentration of wetting agent maybe varied as needed or desired depending, among other factors, the extent to which the concentrate will be diluted with aqueous acid to form a metal cleaning or pickling solution as well as the desired concentration of wetting agent in the metal cleaning or pickling solution.
- the weight ratio of wetting agent to polyamino-aldehyde resin in the concentrate (and in metal cleaning and pickling solutions prepared from the concentrate) is from about 0.05:1 to about 3:1 (e.g., about 0.1 to about 2:1). In other desirable embodiments of the invention, the weight ratio of wetting agent to aldehyde-releasing compound in the concentrate (and in metal cleaning and pickling solutions prepared from the concentrate) is from about 0.005:1 to about 1 :1 (e.g., about 0.02 to about 0.5:1).
- the concentrate may be desirable to acidify the concentrate by adding an acid such as hydrochloric acid (at least a portion of the added acid may form salts with the amine groups of the polyamino-aldehyde resin).
- an acid such as hydrochloric acid
- a highly acidic solution may tend to accelerate the decomposition of the aldehyde-releasing compound to an unacceptable extent (thereby releasing aldehyde prematurely, that is, prior to the time the concentrate is used to make up a cleaning or pickling solution by combining with aqueous acid).
- the aldehyde-releasing compound releases formaldehyde (a regulated substance), for example, this may mean that the concentrate has to be specially handled to order to avoid building up unacceptably high concentrations of formaldehyde.
- a wetting agent such solution having a pH that is moderately alkaline, e.g., about 9 to about 10
- the second part comprises an acidified aqueous solution comprising the polyamino-aldehyde resin (i.e., the aldehyde-releasing compound and the polyamino-aldehyde resin are kept separate until shortly before use, when the two parts of the concentrate are combined and diluted with aqueous acid to prepare the metal cleaning or pickling solution).
- the second part may optionally contain a wetting agent.
- the acid inhibitor concentrates of the present invention will find use in preparing acid cleaning and pickling solutions that are effective in cleaning metal surfaces of unwanted metal oxide scale and other undesirable corrosion products.
- cleaning solutions are those containing mineral and/or organic acids such as, for example, hydrochloric acid, phosphoric acid, hydrofluoric acid, sulphamic acid, sulphonic acid, sulphuric acid, acetic acid, citric acid, formic acid, glycolic acid, oxalic acid and mixtures thereof.
- the concentration of acid in the metal cleaning or pickling solution may be adjusted as needed in order to achieve the desired level of cleaning activity.
- hydrochloric acid typically the HCl content of the solution is maintained within the range of from about 1 to about 30 % (e.g., about 5 to about 20 %) on a weight/volume basis.
- the acid(s) selected and the concentration of such acid(s) in the metal cleaning or pickling solution are effective to provide a highly acidic solution, e.g. a solution having a pH of less than about 3, less than about 2, or less than about 1.
- the acid inhibitor concentrates described herein can be utilized to particularly good advantage in applications involving strip line, continuous, and batch hydrochloric acid pickling of ferrous surfaces, that is, in applications wherein iron tends to build up in the cleaning solution.
- Various types of steel may be effectively cleaned of scale and the like by treatment with HCl-containing solutions prepared from the present acid inhibitor concentrates, for example.
- the acid inhibitor concentrates are also useful in other types of cleaning and pickling solutions, such as those, for example, that are used to clean aluminum or aluminum alloy surfaces or zinc or zinc alloy surfaces.
- the acid inhibitor concentrates of the present invention are incorporated into acidic cleaning solutions in any amount effective to reduce the tendency of the acid to attack and corrode without significantly interfering with the cleaning operation performed by the acid.
- the optimum amount of acid inhibitor concentrate to be combined with an aqueous acid solution will vary depending on a number of factors, including the particular active components present in the concentrate (e.g., the particular polyamino-aldehyde resin, the particular aldehyde-releasing compound, the particular wetting agent, etc.), the type and concentration of acid, the type of metal being treated, as well as the treatment conditions (e.g., contact time, temperature).
- one part by volume of the acid inhibitor concentrates of the present invention is diluted with about 50 to about 50,000 parts by volume of aqueous acid. That is, the acid inhibitor concentrate typically is combined with an aqueous acid solution at a concentration of from about 0.001 to about 2 (e.g., about 0.005 to about 0.5) % on a volume/volume basis. If the metal cleaning or pickling solution is to be utilized at a relatively high temperature, the amount of concentrate present in the solution will generally be higher than if the solution is to be contacted with metal surfaces at relatively low temperatures.
- the concentrate may first be combined with a relatively concentrated acid solution (e.g., 37% concentrated HCl) and the resulting mixture then diluted with water to yield the working solution that will be used to clean and/or pickle a metal surface.
- a relatively concentrated acid solution e.g., 37% concentrated HCl
- Such a mixture may also conveniently be used to replenish an existing solution where the acid concentration and/or the concentrations of acid inhibiting substances have fallen below the desired levels.
- the concentrate may be combined directly with an aqueous solution having the acid concentration desired for purposes of the cleaning and pickling solution.
- the metal cleaning or pickling solution may contain concentrations of components within the following ranges:
- Polyamino-aldehyde resin 0.5-500 ppm (e.g., 1-200 ppm)
- Aldehyde-releasing compound 0-1000 ppm e.g., 5-500 ppm
- Wetting agent 0-200 ppm e.g., 0.5-100 ppm
- Acetylenic alcohol 0-700 ppm e.g., 5-300 ppm
- the above-stated concentration ranges are based on the amounts of the individual components as initially charged to the solution.
- Certain of the components, in particular the aldehyde-releasing compound are believed to undergo chemical reaction or transformation once the solution has been formed and/or once the solution is placed into use for cleaning and/or pickling metal surfaces.
- the aldehyde-releasing compound decomposes to form aldehydes and other decomposition products after being combined with aqueous acid to form the metal pickling or cleaning solution, since such solutions are typically highly acidic and the aldehyde-releasing compound is known to be unstable at low pH (e.g., where the pH is less than 3).
- cleaning and pickling solutions containing the acid inhibitor concentrates of the present invention can be utilized to treat any of a variety of metals.
- metal surfaces include both pure metals and alloys such as, for example, aluminum (including aluminum alloys), magnesium, zinc, titanium, iron, copper, steel (including, for example, cold rolled steel, hot rolled steel, galvanized steel, alloy steel, carbon steel), bronze, stainless steel, brass and the like.
- the substrate to be contacted with the solution may be comprised of at least 50 percent by weight of aluminum, zinc or iron.
- the substrate comprising the metal surface to be treated in accordance with the present invention can take any form, including, for example, wire, wire mesh, sheets, strips, panels, shields, vehicle components, casings, covers, furniture components, aircraft components, appliance components, profiles, moldings, pipes, frames, tool components, bolts, nuts, screws, springs or the like.
- the metal substrate can contain a single type of metal or different types of metal joined or fastened together in some manner.
- the substrate to be treated in accordance with the process of the present invention may contain metallic portions in combination with portions that are non- metallic, such as plastic, resin, glass or ceramic portions.
- the metal cleaning or pickling solutions prepared from the acid inhibitor concentrates of the present invention exhibit good consistent inhibition of metal etching even when the solution is operated at relatively high temperatures over an extended period of time and/or contains a high iron loading leveL
- the solution maybe maintained at temperatures of from ambient (i.e., about 20 degrees C) to about 100 degrees C.
- the metal surface with scale or other material deposited or adhered thereon which is to be cleaned and/or pickled is contacted with the solution for a time and at a temperature effective to remove the desired amount of scale or other material from the metal surface, leaving a cleaned and/or descaled and/or pickled surface with reduced loss (etching) of the metal itself as compared to contacting with the same type of solution which does not contain an acid inhibitor concentrate in accordance with the present invention.
- the solution may be brought into contact with the metal surface using any suitable or known method such as, for example, dipping (immersion), brushing, spraying, roll coating, wiping, and the like.
- the substrate having the metal surface may be removed from contact with the bulk of the solution (for example, by extracting the substrate from a tank or vat containing the solution). Residual solution clinging to the metal surface may be allowed to drain off the surface or removed by other means such as wiping.
- the metal surface may be rinsed with water or another solution to remove any remaining solution and/or to neutralize any residual acid and/or to prevent "flash rusting" of the freshly exposed metal surface.
- the metal pickling or cleaning solutions of the present invention are capable of producing easy to rinse metal surfaces exhibiting the "water sheeting" phenomena that clean, non-fouled, high energy metal surfaces typically exhibit.
- water sheeting exhibited by rinsed metal surfaces processed in accordance with the present invention distinguishes the present invention from many acid inhibitor technologies known in the prior art, which tend to produce a very hydrophobic "water beading" surface (i.e., a metal surface on which water forms distinct separate beads).
- "Water beading" on cleaned or pickled metal surfaces indicates that thin organic films have remained on the surface after the rinse step; such residual films may adversely affect and/or complicate further downstream processing of the metal-containing article.
- compositions of the present invention include, but are not limited to, chemical and electrolytic pickling operations, acid dipping processes, plant wash-out procedures, cleaning of metal surfaces of industrial equipment (e.g., cleaning industrial boilers, heat exchangers and condensers), and oil well acidizing operations.
- Example 1 To prepare a poly amino- aldehyde resin for use in formulating an acid inhibitor concentrate in accordance with the present invention, 100 parts by weight of an aqueous solution of CHEMQUAT SP- 1060 (a polyethylenepolyamine quaternized with benzyl chloride; 60% solids) is combined with 30 parts by weight of a 40 weight % aqueous solution of glyoxal. An exothermic reaction is observed, producing a dark colored solution exhibiting a strong absorption at 1640 cm "1 in the FTIR spectrum.
- CHEMQUAT SP- 1060 a polyethylenepolyamine quaternized with benzyl chloride; 60% solids
- Example 2 To prepare an acid inhibitor concentrate in accordance with the present invention, the following components are combined and mixed (preferably in the following order of addition) to yield a homogeneous solution:
- 1 part by volume of the above-described acid inhibitor concentrate may, for example, be combined with from 200 to 20,000 parts by volume of an aqueous solution containing 10 % weight/volume HCl.
- Other acids as well as other concentrations of HCl may also be utilized.
- Solution A was prepared by combining 0.171O g CHEMQUAT SP-1060 quaternized polyethylenepolyamine with 2 L 10% weight/volume aqueous hydrochloric acid.
- Solution B was prepared by combining 0.222 g of the polyamino-aldehyde resin of Example 1 with 2 L 10% weight/volume aqueous hydrochloric acid.
- Solution C was prepared by first preparing a mixture of 130 parts by weight of the polyamino-aldehyde resin of Example 1 with 20 parts by weight of CHEMEEN C-12G ethoxylated fatty amine and then combining 0.257 g of this mixture with 2 L 10% weight/volume hydrochloric acid.
- test panels were immediately rinsed in a fresh overflowing water bath, wetted with isopropyl alcohol and then firmly wiped clean/dry with a fresh clean soft paper wiper before re-weighing:
- the test panels exhibited the following amount of base metal loss: Solution A: 0.5040 Ib/ft 2 /hr Solution B: 0.2935 Ib/ft 2 /hr Solution C: 0.2773 Ib/ft 2 /hr
- Solutions A-I, B-I, and C-I were prepared by adding 0.69 g hexamethylenetetramine to each of Solutions A, B, and C, respectively, in Example 3.
- Solution A-1 0.1606 Ib/ft 2 /hr
- Solution B-1 0.1220 lb/ftVhr
- Solution C-1 0.0824 Ib/ft 2 /hr
- Solutions B-2 and C-2 were prepared by adding 0.24 g 1 ,4-butynediol to each of Solutions B-I and C-I, respectively. [0061] Following the same test protocol described above, cold rolled steel coupons exposed to Solutions B-2 and C-2 exhibited the following amount of base metal loss:
- Solution B-2 0.0710 Ib/ft 2 /hr
- Solution C-2 0.0494 Ib/ft 2 /hr
- Bath 2 20 mL of an inhibitor/acid mixture (the mixture being prepared from 13.4 g deionized water, 72.6 mL 37% HCl, and 0.475 g of an acid inhibitor concentrate in accordance with Example 2) diluted in 180 g deionized water.
- Each bath was placed in a glass beaker at room temperature.
- Aluminum panels (3003 aluminum alloy; 2" x 4" x 0.025") were cleaned with SCOTCH-BRITE pads and water, then wiped with isopropanol, wiped dry and then weighed (to nearest 0.0001 g). The panels were then placed in each of the beakers so that about two-thirds of each panel was immersed in the bath.
- the panel immersed in Bath 1 exhibited significantly more gas evolution than the panel immersed in Bath 2. After 6 minutes of immersion, the weight of the panel in Bath 1 had decreased by 0.0066 g, while the weight of the panel in Bath 2 had decreased by 0.0006 g (91 % inhibition). Prior to weighing, the panels were rinsed and then wiped with isopropanol ; After an additional 60 minutes of immersion, the weight loss of the panel in Bath 1 (which was cloudy and grey and had attained a temperature of 36 degrees C due to the exotherm created by dissolution of the metal) was 1.4436 g and the weight loss of the panel in Bath 2 (which was clear and 67 degrees F in temperature) was 0.0137 g (99.05% inhibition). The panel that had been immersed in Bath 1 had a significant amount of smut on its surface, while the panel that had been immersed in Bath 2 had very little smut on its surface.
- Example 2 The acid inhibitor concentrate of Example 2 was diluted to 0.05% (v/v) in 2.0
- Test panels of various aluminum alloys measuring 2" by 4" were cleaned using a SCOTCH-BRITE pad and water, then dried and weighed to 0.1 mg accuracy. The panels were thereafter placed in 2 liters of the agitated test solutions (freshly prepared for each test and maintained at the temperatures shown in Table 1) for the times shown in Table 1. The panels were then cleaned, dried and the metal loss in Ibs/ft 2 /day calculated and compared to the control to determine the % inhibition attained.
- Table 1 demonstrate that the bath in accordance with the invention generally exhibited a much higher degree of acid etch inhibition as compared to the control over a range of temperatures typically encountered during metal cleaning operations, no matter what type of aluminum alloy substrate was employed.
- Control 5.0 % (w/v) phosphoric acid.
- Example 2 The acid inhibitor concentrate of Example 2 was diluted to 0.05% (v/v) in 5.0
- Test panels of pure zinc metal measuring 2" by 2" were cleaned using a SCOTCH-BRITE pad and water, then dried and weighed to 0.1 mg accuracy. The panels were subsequently suspended in 2 liters of the agitated test solutions (freshly prepared for each test) maintained at the temperatures shown in Table 2 for the times also shown in Table 2. The panels were then cleaned and dried and the average metal loss in Ibs/ft 2 /day was calculated and compared to the control to determine the % inhibition attained. The results shown in Table 2 demonstrate that the bath in accordance with the invention exhibited an exceptionally high degree of acid etch inhibition as compared to the control. Table 2.
- compositions in accordance with the present invention illustrates the effectiveness of compositions in accordance with the present invention in inhibiting the acid etch of aluminum surfaces, particularly when such compositions contain both an aldehyde-releasing compound and an ethoxylated fatty amine.
- Invention A 0.0742 g CES-90 (supplied by Consulting Engineering Services, LLC; reported to contain 59-61% benzyl chloride quaternized polyethylenepolyamine polymers with glyoxal (CAS 78330-33-3), less than 4% tetraethylenepentamine, less than 1% triethylenetetramine, and 39-41 % water) and 0.1696 g HMTA in 2 liters of 2.0 % (w/v)
- Invention B - 0.0186 g CHEMEEN C-12G ethoxylated coco amine was added to the bath of Invention A after such bath had been used (some acid consumed).
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Inorganic Chemistry (AREA)
- Emergency Medicine (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
- Detergent Compositions (AREA)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2007217257A AU2007217257B2 (en) | 2006-02-23 | 2007-02-01 | Acid inhibitor compositions for metal cleaning and/or pickling |
MX2008010116A MX2008010116A (es) | 2006-02-23 | 2007-02-01 | Composiciones de inhibidor de acido para limpiar y/o decapar metal. |
BRPI0708058-1A BRPI0708058A2 (pt) | 2006-02-23 | 2007-02-01 | concentrado de inibidor ácido, solução, e, método de limpeza ou decapagem de um substrato tendo uma superfìcie de metal |
CA2642715A CA2642715C (en) | 2006-02-23 | 2007-02-01 | Acid inhibitor compositions for metal cleaning and/or pickling |
CN2007800063352A CN101389707B (zh) | 2006-02-23 | 2007-02-01 | 用于金属清洁和/或酸洗的酸抑制剂组合物 |
US12/196,657 US8278258B2 (en) | 2007-02-01 | 2008-08-22 | Acid inhibitor compositions for metal cleaning and/or pickling |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US77588306P | 2006-02-23 | 2006-02-23 | |
US60/775,883 | 2006-02-23 | ||
US79906506P | 2006-05-09 | 2006-05-09 | |
US60/799,065 | 2006-05-09 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/196,657 Continuation US8278258B2 (en) | 2007-02-01 | 2008-08-22 | Acid inhibitor compositions for metal cleaning and/or pickling |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007098308A1 true WO2007098308A1 (en) | 2007-08-30 |
Family
ID=38437707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/061420 WO2007098308A1 (en) | 2006-02-23 | 2007-02-01 | Acid imhibitor compositions for metal cleaning and/or pickling |
Country Status (6)
Country | Link |
---|---|
CN (1) | CN101389707B (pt) |
AU (1) | AU2007217257B2 (pt) |
BR (1) | BRPI0708058A2 (pt) |
CA (1) | CA2642715C (pt) |
MX (1) | MX2008010116A (pt) |
WO (1) | WO2007098308A1 (pt) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015171698A1 (en) * | 2014-05-06 | 2015-11-12 | Case Western Reserve University | Alloy surface activation by immersion in aqueous acid solution |
US9382139B2 (en) | 2011-04-14 | 2016-07-05 | Basf Se | Method of dissolving and/or inhibiting the deposition of scale on a surface of a system |
WO2017186931A1 (de) * | 2016-04-29 | 2017-11-02 | Chemetall Gmbh | Verfahren zur korrosionsschützenden behandlung einer metallischen oberfläche mit vermindertem beizabtrag |
CN114717565A (zh) * | 2022-05-23 | 2022-07-08 | 大连民族大学 | 一种新型酸洗液制备方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11124884B2 (en) * | 2016-04-29 | 2021-09-21 | Chemetall Gmbh | Composition for reducing the removal of material by pickling in the pickling of metal surfaces that contain galvanized and/or ungalvanized steel |
JP7176089B2 (ja) | 2018-07-20 | 2022-11-21 | インテグリス・インコーポレーテッド | 腐食防止剤を含む洗浄組成物 |
CN109055946B (zh) * | 2018-09-27 | 2021-02-02 | 山西太钢不锈钢股份有限公司 | 碳素钢和低合金钢切割面氧化层酸洗液及酸洗方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4310435A (en) * | 1979-12-06 | 1982-01-12 | The Dow Chemical Co. | Method and composition for removing sulfide-containing scale from metal surfaces |
US4670186A (en) * | 1982-12-17 | 1987-06-02 | Petrolite Corporation | Acid inhibitor composition |
US6192987B1 (en) * | 1999-04-06 | 2001-02-27 | Halliburton Energy Services, Inc. | Metal corrosion inhibitors, inhibited acid compositions and methods |
US20050126427A1 (en) * | 2001-12-27 | 2005-06-16 | Gonzalez Monica F. | Polymer derivatives for treating metals |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4312999A (en) * | 1979-01-09 | 1982-01-26 | Ashland Oil, Inc. | Glyoxal-polyamine reaction products and process for their preparation |
-
2007
- 2007-02-01 AU AU2007217257A patent/AU2007217257B2/en not_active Ceased
- 2007-02-01 CN CN2007800063352A patent/CN101389707B/zh not_active Expired - Fee Related
- 2007-02-01 BR BRPI0708058-1A patent/BRPI0708058A2/pt not_active Application Discontinuation
- 2007-02-01 CA CA2642715A patent/CA2642715C/en active Active
- 2007-02-01 MX MX2008010116A patent/MX2008010116A/es unknown
- 2007-02-01 WO PCT/US2007/061420 patent/WO2007098308A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4310435A (en) * | 1979-12-06 | 1982-01-12 | The Dow Chemical Co. | Method and composition for removing sulfide-containing scale from metal surfaces |
US4670186A (en) * | 1982-12-17 | 1987-06-02 | Petrolite Corporation | Acid inhibitor composition |
US6192987B1 (en) * | 1999-04-06 | 2001-02-27 | Halliburton Energy Services, Inc. | Metal corrosion inhibitors, inhibited acid compositions and methods |
US20050126427A1 (en) * | 2001-12-27 | 2005-06-16 | Gonzalez Monica F. | Polymer derivatives for treating metals |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9382139B2 (en) | 2011-04-14 | 2016-07-05 | Basf Se | Method of dissolving and/or inhibiting the deposition of scale on a surface of a system |
WO2015171698A1 (en) * | 2014-05-06 | 2015-11-12 | Case Western Reserve University | Alloy surface activation by immersion in aqueous acid solution |
US10450658B2 (en) | 2014-05-06 | 2019-10-22 | Case Western Reserve University | Alloy surface activation by immersion in aqueous acid solution |
WO2017186931A1 (de) * | 2016-04-29 | 2017-11-02 | Chemetall Gmbh | Verfahren zur korrosionsschützenden behandlung einer metallischen oberfläche mit vermindertem beizabtrag |
CN114717565A (zh) * | 2022-05-23 | 2022-07-08 | 大连民族大学 | 一种新型酸洗液制备方法 |
CN114717565B (zh) * | 2022-05-23 | 2024-03-29 | 大连民族大学 | 一种酸洗液制备方法 |
Also Published As
Publication number | Publication date |
---|---|
AU2007217257A1 (en) | 2007-08-30 |
CA2642715A1 (en) | 2007-08-30 |
CN101389707A (zh) | 2009-03-18 |
AU2007217257B2 (en) | 2013-08-01 |
MX2008010116A (es) | 2009-01-15 |
CN101389707B (zh) | 2010-12-22 |
CA2642715C (en) | 2014-05-06 |
BRPI0708058A2 (pt) | 2011-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8278258B2 (en) | Acid inhibitor compositions for metal cleaning and/or pickling | |
AU2007217257B2 (en) | Acid inhibitor compositions for metal cleaning and/or pickling | |
US3627687A (en) | Cleaning of ferrous metal surfaces | |
US4541945A (en) | Inhibitor-containing acid cleaning compositions and processes | |
JP4944181B2 (ja) | 防食剤としての炭酸第四級アンモニウムおよび重炭酸第四級アンモニウムの使用、腐食を抑制するための方法、およびこれら薬剤を用いる防食性コーティング | |
US7485612B2 (en) | Electronic parts cleaning solution | |
US20070034606A1 (en) | Method for pickling metallic surfaces by using alkoxylated alkynols | |
EP0289665A1 (en) | Process and composition for inhibiting iron and steel corrosion | |
WO2007096711A2 (en) | Multipurpose, non-corrosive cleaning compositions and methods of use | |
US8765021B2 (en) | Aqueous treatment composition for inhibiting corrosion and acid attack on metallic surfaces | |
US20050123437A1 (en) | Methods and compositions for inhibiting metal corrosion | |
JP5691039B2 (ja) | 酸洗浄用腐食抑制剤組成物 | |
TW538138B (en) | Process for treating and producing the parts made of magnesium and/or magnesium alloy | |
EP2661518B1 (en) | Method of inhibiting vapor phase corrosion and staining on stainless steel | |
JP2006169595A (ja) | キレート剤・有機酸洗浄用腐食抑制剤組成物 | |
US3819527A (en) | Composition and method for inhibiting acid attack of metals | |
US3188292A (en) | Pickling inhibiting compositions | |
US3907699A (en) | Composition and process for the removal of copper during acid cleaning of ferrous alloys | |
JP3022054B2 (ja) | 洗浄剤組成物および洗浄方法 | |
KR101381849B1 (ko) | 금속부식억제 조성물 및 이를 이용한 금속 산세용액 | |
US3458354A (en) | Method of removing copper-containing scale from metal surfaces | |
US3579447A (en) | Method of removing copper deposits from ferrous metal surfaces using hydroxyalkyl thiourea | |
JPH06116768A (ja) | 金属低温清浄用無燐アルカリ脱脂液 | |
WO2007034155A1 (en) | Corrosion inhibitor compositions and associated methods | |
US3585142A (en) | Method of removing copper-containing incrustations from ferrous metal surfaces using an aqueous acid solution of aminoalkyl thiourea |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2008/010116 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2642715 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4375/CHENP/2008 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007217257 Country of ref document: AU Ref document number: 200780006335.2 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2007217257 Country of ref document: AU Date of ref document: 20070201 Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07717495 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: PI0708058 Country of ref document: BR Kind code of ref document: A2 Effective date: 20080818 |