WO2007097456A1 - 微少液量測定装置、及び微少液量測定方法 - Google Patents

微少液量測定装置、及び微少液量測定方法 Download PDF

Info

Publication number
WO2007097456A1
WO2007097456A1 PCT/JP2007/053621 JP2007053621W WO2007097456A1 WO 2007097456 A1 WO2007097456 A1 WO 2007097456A1 JP 2007053621 W JP2007053621 W JP 2007053621W WO 2007097456 A1 WO2007097456 A1 WO 2007097456A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
wells
detected
liquid
resonance frequency
Prior art date
Application number
PCT/JP2007/053621
Other languages
English (en)
French (fr)
Inventor
Kentaro Nakamura
Original Assignee
Tokyo Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute Of Technology filed Critical Tokyo Institute Of Technology
Priority to JP2008501783A priority Critical patent/JPWO2007097456A1/ja
Publication of WO2007097456A1 publication Critical patent/WO2007097456A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2966Acoustic waves making use of acoustical resonance or standing waves

Definitions

  • the present invention relates to a minute liquid amount measuring apparatus and a minute liquid amount measuring method for measuring a minute amount of liquid discharged from a liquid inspection / analytical dispensing apparatus in a non-contact manner.
  • a dispensing apparatus In the fields of medicine, biochemistry, biotechnology, clinical examination, radiation, etc., a dispensing apparatus is used to quantitatively subdivide various test solutions in units of several microliters and several milliliters.
  • the dispensing device sucks the test solution in the container that stores the test solution, and injects the test solution into each sub-container called a well, and the dispensing nozzle is moved by a dispensing head that can move in the XY direction. Holds vertically movable.
  • a plurality of nozzles are attached to the dispensing head.
  • the dispensing device Since the excess or deficiency of the test solution injected into the well affects the test results and analysis results, the dispensing device must inject a certain amount of test solution into the well. However, the amount of the test liquid injected into the well by the dispensing device varies depending on the state of the dispensing nozzle and the variation in the amount of arch I in the test liquid. There is a need.
  • the amount of test liquid injected into the well by the dispensing device was estimated by force such as the amount of cylinder movement at the time of discharge, or the discharged liquid was measured with precision force.
  • the volume of the container is known and the change in the height position of the liquid surface is measured using, for example, an ultrasonic sensor or an optical sensor, or the acoustic characteristics are used.
  • a method for measuring volume and volume is known.
  • Known methods for measuring volume and volume using acoustic characteristics include a method using Helmholtz resonance and a method using the relationship between volume ratio and sound pressure ratio. Disclosure of the invention
  • the conventional method using Helmholtz resonance requires a special container shape with a constricted entrance, uses a specially shaped well with a constricted entrance, or uses a lid with a constricted portion. It must be attached to the well and measured.
  • the method using the relationship between the volume ratio and the sound pressure ratio it is necessary to seal the container, and it is necessary to prepare another container tightly attached to the well.
  • an object of the present invention is to provide a micro liquid volume measuring device capable of simultaneously measuring a small amount of liquid discharged to a plurality of wells quickly and with high accuracy in a non-contact manner. And providing a method for measuring a small amount of liquid.
  • the volume of the liquid in the well is measured by measuring the acoustic resonance frequency of the well using a container called a well of the dispensing apparatus as a resonator as it is. presume.
  • the minute liquid amount measuring apparatus includes a sound generating unit that emits sound waves from a predetermined inclination direction toward each opening of a plurality of wells into which liquid is dispensed by a dispensing apparatus, A sweep unit that supplies a sweep signal that sweeps the frequency of the sound wave emitted from the generation unit to the sound generation unit, and a plurality of acoustic waves that detect the sound wave emitted from the sound generation unit in the vicinity of the openings of the plurality of wells Resonance frequencies of the plurality of wells are detected from the acoustic detection unit composed of an electrical transducer and the detection signals of the sound waves detected by the acoustic detection unit, and are distributed to the plurality of wells from the detected resonance frequencies.
  • An analysis unit that estimates the amount of the liquid that has been detected, sweeps the frequency of the sound wave emitted from the sound generation unit, and each analysis signal force of the sound wave detected by the sound detection unit is analyzed by the analysis unit.
  • Each resonance frequency of the well is detected, and each resonance frequency force detected is estimated each liquid amount dispensed to the plurality of wells.
  • the micro liquid amount measuring apparatus includes, for example, a temperature sensor that detects an environmental temperature, and the analysis unit corrects the influence of the change in sound velocity due to the temperature based on the detection result of the temperature sensor. Each resonance frequency of the plurality of wells is detected.
  • the acoustoelectric converter of the acoustic detection unit in the micro liquid amount measuring device according to the present invention includes, for example, a sound conduit led to a position near the opening of the well.
  • the analysis unit in the micro liquid volume measuring device according to the present invention detects, for example, the resonance frequency of the sound guide tube, and based on the detected resonance frequency of the sound conduit, the influence of the change in sound speed due to temperature is detected. The corrected resonance frequency of the well is detected.
  • the analysis unit in the micro liquid volume measurement device performs, for example, synchronous detection of each detection signal of the sound wave detected by the sound detection unit with the sweep signal supplied by the sweep unit force.
  • the resonance frequencies of the plurality of wells are detected.
  • the method for measuring a minute amount of liquid emits a force wave in a predetermined inclination direction toward each opening of a plurality of wells to which a liquid is dispensed by a dispensing device, and sweeps the frequency of the sound wave.
  • the sound waves are detected in the vicinity of the openings of the plurality of wells, the detection signal forces of the detected sound waves are detected, the resonance frequencies of the plurality of wells are detected, and the plurality of resonance frequencies are detected. It is characterized by estimating the amount of liquid dispensed to the well.
  • FIG. 1 is a block diagram showing a configuration of a minute liquid amount measuring apparatus to which the present invention is applied.
  • FIG. 2A is a diagram showing a specific example of an acoustoelectric converter of an acoustic detection unit in the micro liquid amount measurement device
  • FIG. 2B is an acoustoelectric conversion of an acoustic detection unit in the micro liquid amount measurement device. It is a figure which shows the specific example of a container.
  • FIG. 3 is a schematic view showing an example of use of the micro liquid quantity measuring device.
  • FIG. 4 is a graph showing an example of the detection result of the resonance frequency of the well.
  • FIG. 5 is a schematic diagram for explaining the principle of liquid volume measurement in the above-mentioned micro liquid volume measuring apparatus.
  • FIG. 6 is a characteristic diagram showing frequency characteristics of a detection signal obtained by detecting the sound wave by the acoustoelectric converter.
  • FIG. 7 is a characteristic diagram showing the relationship between the liquid level of the well and the resonance frequency.
  • FIG. 8 is a block diagram showing a configuration example for detecting the dip frequency of the detection signal, that is, the resonant frequency of the well, in the analysis unit of the micro liquid amount measuring apparatus.
  • FIG. 9 is a characteristic diagram showing the synchronous detection output in the configuration example shown in FIG.
  • FIG. 10 is a block diagram showing another configuration example for detecting the dip frequency of the detection signal, that is, the resonance frequency of the well, in the analysis unit of the micro liquid amount measuring apparatus.
  • FIG. 11A is a characteristic diagram showing each synchronous detection output in the configuration example shown in FIG. 6, and FIG. 11B is a characteristic diagram showing each synchronous detection output in the configuration example shown in FIG. [12]
  • Fig. 12 is a characteristic diagram showing the relationship between the length of the sound conduit provided for the acoustoelectric transformation and the resonance.
  • FIG. 13 is a characteristic diagram showing the resonance characteristics of the sound conduit provided for the acoustoelectric transformation.
  • FIG. 14 is a perspective view schematically showing a well used in an experiment for measuring a minute liquid amount.
  • FIG. 15 is a diagram schematically showing an arrangement state of a well, a speaker, and an acoustoelectric converter in an experimental system for measuring a minute liquid amount.
  • FIG. 16 is a characteristic diagram showing the frequency response at each liquid volume when the liquid volume of the well is changed in the experimental system.
  • FIG. 17 is a characteristic diagram showing the results of measuring the resonance frequency at each liquid amount 10 times in the experimental system.
  • FIG. 18 is a characteristic diagram showing the maximum deviation from the average value of 10 pieces of measurement data obtained in the experimental system.
  • the present invention is applied to a dispensing apparatus 100 that simultaneously dispenses a test solution into a plurality of wells.
  • a plurality of nozzles 120A, 120 ⁇ are attached to a dispensing head 110, and each nozzle 120A, 120 ⁇ ... ⁇ Become dispensed into
  • a minute liquid measuring device 90 for measuring the amount of the test liquid dispensed to the plurality of wells 130A, 130, by the dispensing apparatus 100 is provided.
  • a sound generator 10 comprising a speaker 11 that radiates sound waves from a predetermined tilt direction toward each of the plurality of wells 130A, 130 ⁇ ,..., And the speaker 11 force.
  • the acoustic detection unit 20 includes a plurality of acoustoelectric transducers 21A, 21B, which are detected in the vicinity of each of the openings 130A, 130 ⁇ , and the DZA converter 30 connected to the speaker 11 of the acoustic generation unit 10. It is composed of a multi-channel AZD converter 40 to which each acoustic electrical transformation 21A, 21 ⁇ , etc. of the acoustic detection unit 20 is connected, and an analysis device 50 to which the D ZA converter 30 and the multi-channel AZD converter 40 are connected. .
  • the analysis device 50 is, for example, a personal computer force, sweeps the frequency of the sound wave emitted by the sound generation unit 10 force, and detects the plurality of wells 130A, 130 ⁇ from each detection signal of the sound wave detected by the sound detection unit 20.
  • the analysis device 50 functions as a sweep unit 51 that supplies a sweep signal that sweeps the frequency of the sound wave radiated from the speaker 11 of the sound generation unit 10 to the speaker 11 via the DZA converter 30.
  • the detection signals from the respective acoustoelectric converters 21A, 21 ⁇ of the acoustic detection unit 20 are supplied via the multi-channel AZD converter 40, and the sound waves detected by the acoustoelectric converters 21A, 21B.
  • Each detection Functions as the analysis unit 52 that detects the resonance frequency of the plurality of wells 130A, 130 ⁇ from the signal and estimates the amount of liquid dispensed to the plurality of wells 130A, 130 ⁇ ... from the detected resonance frequency. It is like that.
  • a small-sized electric condenser condenser microphone or a further small-sized MEMS microphone unit silicon condenser microphone mouthphone
  • the microphone mouthphone unit 21 including the sound conduit 22 led to the position near the opening of the well 130, or as shown in FIG.
  • the microphone unit 21 is arranged at a position near the opening of the well 130 by being provided at the tip of the support rod 23.
  • the frequency of the sound wave emitted from the speaker 11 of the sound generation unit 10 is swept by the sweep unit 51, and each of the plurality of wells 130A, 130A,.
  • the sound waves are detected by the respective acoustoelectric transducers 21A, 21 ⁇ of the acoustic detection unit 20, and the plurality of wells 130A, 130 ⁇ ,... Are detected from the detection signals of the detected sound waves by the analysis unit 52.
  • the respective resonance frequencies are detected, and the amount of liquid dispensed to the plurality of wells 130A, 130 is estimated from the detected resonance frequencies.
  • This minute liquid amount measuring apparatus 90 can quickly detect the resonance frequency of the well 130 as follows, for example.
  • the minute liquid amount measuring apparatus 90 dispenses the test liquid to the wells 130 arranged on a two-dimensional plane by the dispensing head 110 in which a plurality of nozzles 120 are arranged in a row.
  • the micro liquid quantity measuring device 90 moves the well 130 to which the test liquid has been dispensed in the horizontal direction A perpendicular to the arrangement direction of the nozzles 130, so that one row of wells to which the test liquid has been dispensed is moved.
  • a sound wave is radiated from the speaker 11 toward 130, and the resonance frequency of each well 130 is detected for each column by the acoustic detection unit 20 in which the acoustoelectric change 21 is arranged in one column.
  • the micro liquid quantity measuring device 90 simultaneously detects, for example, the resonance frequencies of the plurality of wells 130 arranged in a line from the sound wave radiated from one speaker by the plurality of acoustoelectric converters 21. be able to. That is, the minute liquid amount measuring apparatus 90 can rapidly detect the resonance frequencies of a number of wells 130 as shown in FIG. 4, for example.
  • the XY axis shows the position coordinates of each well 130
  • the z axis shows the resonance frequency [Hz] of each well 130.
  • insert a metal ball into the well 200 instead of the test solution! Therefore, the resonance frequency is prominently different from the resonance frequency of other wells 130 into which the test solution is poured.
  • this minute liquid measuring device 90 detects the resonance frequency of a plurality of wells 130 at the same time, it includes a well 200 in which a metal ball is inserted into one of the wells 130 arranged on a two-dimensional plane. However, as described above, the detection result as shown in FIG. 4 can be obtained quickly.
  • acoustic waves are radiated from the speaker 11 toward the opening of the well 130, and while the frequency of the emitted sound wave is swept, the acoustic-electric converter 21 near the opening of the well 130
  • the detection signal obtained by detecting the sound wave the sound wave is absorbed by the well 130 in the vicinity of the resonance frequency of the well 130, so that the signal level is lowered, and as shown in FIG. It will have a dip.
  • the well 130 resonates with the liquid surface as a fixed end and the opening as a free end (hereinafter referred to as an open end).
  • the frequency f of the detection signal that is, the resonance frequency of the well 130 changes in proportion to the liquid level.
  • the amount of liquid 130 is estimated by detecting the dip frequency f above.
  • the resonance frequency is f
  • the wavelength of the sound wave is given
  • the speed of sound is c
  • the 1Z4 wavelength resonance in the depth direction of the wel 130 The resonance wavelength L of 130 is ⁇ ⁇ 4.
  • the liquid amount of the well 130 can be estimated.
  • the well 130 resonates at 3/4 wavelength and 5Z4 wavelength in addition to resonating at 1Z4 wavelength in the depth direction.
  • the resonance frequency other than the 1Z4 wavelength detect the resonance wavelength L, and estimate the liquid amount of the detection result force 130.
  • the small liquid volume 130 has a large difference in depth and diameter, but the frequency that resonates in the diameter direction of the well 130 in a frequency band lower than the frequency that resonates at 3Z4 wavelength in the depth direction. There may be bands. For this reason, measurement errors due to resonance phenomena other than in the depth direction can be prevented by setting the resonance frequency of 1Z4 wavelength of the well 130 where resonance occurs at the lowest frequency as a detection target.
  • the acoustoelectric change 21 exists in the vicinity of the opening of the wel 130. By minimizing the effect of the acoustoelectric change 21 on the opening of the wel 130, it approaches the ideal opening end and the liquid level is accurately measured. h can be detected.
  • the opening portion of the well 130 is given a condition of resonating as a more ideal opening end by narrowing the shape of the sound conduit 22 provided for the acoustoelectric change.
  • h D-4cZf
  • the analysis unit 52 responds to the detection result of the resonance frequency of the well 130.
  • a more accurate liquid volume can be obtained by searching the database for the liquid volume of 130.
  • the dip frequency f of the detection signal that is, the resonance frequency f of the well 130 is, for example,
  • the detection signal of the sound wave detected by the acoustoelectric converter 21 is converted into a sweep signal (p COS 2) supplied from the sweep unit 51 by the lock-in amplifier 52A in the analysis unit 52.
  • a sweep signal p COS 2
  • detection can be performed by obtaining a synchronous detection output as shown in FIG.
  • the FM modulated sweep signal (pcos2 f (1 + ⁇ . ⁇ 32 ⁇ ⁇ t) t)
  • the lock-in amplifier 52A The FM modulation components ft and 2f included in the synchronous detection output are oscillated by the lock-in amplifier 52B.
  • Obtained synchronous detection output f t, 2f, and dip frequency f of the detection signal that is,
  • the resonance frequency f of M M 0 L 130 can also be detected.
  • the liquid volume is estimated from the resonance frequency f of the well 130 by detecting the dip frequency f.
  • liquid volume measurement accuracy can be improved by detecting the resonance frequency f corrected for the effect of the change in sound velocity due to temperature.
  • the analysis unit 52 detects the resonance frequency f of the well 130 that has corrected the influence of the change in sound velocity due to the temperature, based on the detection result by the temperature sensor 45. be able to.
  • the analysis unit 52 detects the resonance frequency of the sound conduit 22 and detects the detected sound. Based on the resonance frequency of the conduit 22, the amount of change in temperature can be obtained, and the resonance frequency of the well 130 corrected for the effect of sound velocity change due to temperature can be detected. In this way, by detecting the resonance frequency of the sound conduit 22 and correcting the influence of the change in sound velocity due to the temperature based on the detected resonance frequency of the sound conduit 22, a separate temperature sensor is provided in the vicinity of the opening of the well 130. Therefore, the well 130 can resonate with the opening of the well 130 as a more ideal opening end, so that the resonance frequency of the well 130 can be detected with high accuracy.
  • the output of the acoustoelectric converter 21 shows the dip frequency for 0 / z L, 50 L and 100 L in Fig. 16. As shown, the resonance frequency shifts to a high frequency as the liquid volume increases.
  • the acoustic generator 10 also emits sound waves toward the respective openings of the plurality of wells 130A, 130 ⁇ ,. While sweeping the frequency of the sound wave by the sweep unit 51, the acoustic transducers 21, 21 A, 21 ⁇ of the acoustic detection unit 20 perform the above in the vicinity of the openings of the plurality of wells 130 A, 130 ⁇ ,.
  • each detection signal force of the sound waves detected by the analysis unit 52 of the analysis device 50 is used to detect each resonance frequency of the plurality of wells, and from the detected resonance frequencies, the plurality of wells 130A, 130 ⁇ ⁇ Estimate the amount of liquid dispensed to As a result, a small amount of liquid discharged to the plurality of wells 130A, 130B can be measured simultaneously with high speed and high accuracy without contact.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

 分注装置(100)により液が分注される複数のウエル(130A),(130B)・・・の各開口に向かって所定の傾斜方向から音響発生部(10)により音波を放射し、解析装置(50)の掃引部(51)により上記音波の周波数を掃引しながら、音響検出部(20)の音響電気変換器(21),(21A),(21B)・・・により、上記複数のウエル(130A),(130B)・・・の各開口の近傍において上記音波を検出し、上記解析装置(50)の解析部(52)により上記検出された音波の各検出信号から上記複数のウエルの各共鳴周波数を検出し、検出した各共鳴周波数から上記複数のウエル(130A),(130B)・・・に分注された液量を推定する。

Description

微少液量測定装置、及び微少液量測定方法
技術分野
[0001] 本発明は、液体の検査 ·分析用分注装置から吐出した微少量の液量を非接触で測 定する微少液量測定装置及び微少液量測定方法に関する。
本出願は、日本国において 2006年 2月 27日に出願された日本特許出願番号 200 6— 050359を基礎として優先権を主張するものであり、この出願を参照することによ り、本出願に援用される。
背景技術
[0002] 医療,生化学,バイオ,臨床検査,放射線等の分野で、各種試験液を数マイクロリ ットルカ 数ミリリットルの単位で定量的に小分けするために分注装置が用いられて いる。分注装置は、試験液を貯留した容器力も試験液を吸引し、ゥエルと呼ばれる小 分け容器に試験液をそれぞれ注入するために、 X— Y方向に移動可能な分注ヘッド により分注ノズルを上下動可能に保持している。また、試験液を同時に複数のゥエル に分注する分注装置では、分注ヘッドに複数のノズルが取り付けられて 、る。
ゥエルに注入された試験液の液量の過不足は、検査結果や分析結果に影響を及 ぼすので、分注装置では一定量の試験液をゥエルに注入しなければならない。しか しながら、分注装置によりゥエルに注入される試験液の液量は、分注ノズルの状態や 試験液の吸弓 I量のバラツキなどによって変化するので、ゥエル毎に測定して確認す る必要がある。
従来、分注装置によりゥエルに注入された試験液の液量は、吐出時のシリンダ移動 量など力も推定したり、吐出されたものを精密は力りで測定するようにしていた。
また、液量を非接触で測定する方法としては、容器の容量を既知とし液面の高さ位 置の変化を例えば超音波センサや光センサを用 、て測定したり、音響特性を用 、て 、容積や体積を測定する方法が知られている。
音響特性を用いて、容積や体積を測定する方法として、ヘルムホルツ共鳴を用いる 方法や、体積比と音圧比の関係を用いるものなどが知られている。 発明の開示
発明が解決しょうとする課題
近年、ゥエル数を増大して試験効率を向上させるとともに使用される試薬の消費量 を削減するために内容積を小さくする目的で、ゥエルのサイズが小型化する傾向に あり、ゥエルに注入される試験液の液量はより微少量となっている。
ところで、従来のヘルムホルツ共鳴を用いる方法では、くびれた入り口を有した特 別な容器形状を必要とし、くびれた入り口を有した特別な形状のゥエルを用いたり、 あるいは、くびれ部がついたフタをゥエルにつけて、測定しなければならない。また、 体積比と音圧比の関係を用いる方法では、容器を密閉する必要があり、ゥエルに密 着したもうひとつの容器を準備する必要がある。
上述の如き従来の方法では、液体の検査 '分析用分注装置から吐出した微少量の 液量を測定するには、測定誤差が大き力つたり、その場で測定できない、あるいは、 多数同時計測には不向きであるなどの問題があった。
そこで、本発明の目的は、液体の検査 ·分析用分注装置力も複数のゥエルに吐出 した微少量の液量を非接触で迅速にかつ高精度に同時計測することのできる微少 液量測定装置及び微少液量測定方法を提供することにある。
そこで、本発明では、上述した課題を解決するために、分注装置のゥエルと呼ばれ る容器をそのまま共鳴器として用いて、ゥエルの音響共鳴周波数を測定することでゥ エル内の液量を推定する。
すなわち、本発明に係る微少液量測定装置は、分注装置により液が分注される複 数のゥエルの各開口に向力つて所定の傾斜方向から音波を放射する音響発生部と、 上記音響発生部から放射する音波の周波数を掃引する掃引信号を上記音響発生部 に供給する掃引部と、上記音響発生部から放射された音波を上記複数のゥエルの各 開口の近傍において検出する複数の音響電気変換器からなる音響検出部と、上記 音響検出部により検出された音波の各検出信号から上記複数のゥエルの各共鳴周 波数を検出し、検出した各共鳴周波数から上記複数のゥエルに分注された液量を推 定する解析部とを備え、上記音響発生部から放射する音波の周波数を掃引し、上記 解析部により、上記音響検出部により検出される音波の各検出信号力 上記複数の ゥエルの各共鳴周波数を検出し、検出した各共鳴周波数力 上記複数のゥエルに 分注された各液量を推定することを特徴とする。
また、本発明に係る微少液量測定装置は、例えば、環境温度を検出する温度セン サを備え、上記解析部は、上記温度センサによる検出結果に基づいて、温度による 音速変化の影響を補正した上記複数のゥエルの各共鳴周波数を検出する。
また、本発明に係る微少液量測定装置における上記音響検出部の音響電気変換 器は、例えば、上記ゥエルの開口の近傍位置まで導出された音導管を備える。 また、本発明に係る微少液量測定装置における上記解析部は、例えば、上記音導 管の共鳴周波数を検出し、検出された上記音導管の共鳴周波数に基づいて、温度 による音速変化の影響を補正した上記ゥエルの共鳴周波数を検出する。
さらに、本発明に係る微少液量測定装置における上記解析部は、例えば、上記音 響検出部により検出された音波の各検出信号を上記掃引部力 供給される掃引信 号で同期検波することにより、上記複数のゥエルの各共鳴周波数を検出する。
また、本発明に係る微少液量測定方法は、分注装置により液が分注される複数の ゥエルの各開口に向かって所定の傾斜方向力 音波を放射し、上記音波の周波数 を掃引しながら、上記複数のゥエルの各開口の近傍において上記音波を検出し、上 記検出された音波の各検出信号力 上記複数のゥエルの各共鳴周波数を検出し、 検出した各共鳴周波数カゝら上記複数のゥエルに分注された液量を推定することを特 徴とする。
図面の簡単な説明
[図 1]図 1は、本発明を適用した微少液量測定装置の構成を示すブロック構成図であ る。
[図 2]図 2Aは、上記微少液量測定装置における音響検出部の音響電気変換器の具 体例を示す図であり、図 2Bは、上記微少液量測定装置における音響検出部の音響 電気変換器の具体例を示す図である。
[図 3]図 3は、上記微少液量測定装置の使用例を示す模式図である。
[図 4]図 4は、ゥエルの共鳴周波数の検出結果の一例を示すグラフである。
[図 5]図 5は、上記微少液量測定装置における液量測定の原理の説明に供する模式 図である。
[図 6]図 6は、上記音響電気変換器により上記音波を検出して得られる検出信号の周 波数特性を示す特性図である。
[図 7]図 7は、ゥエルの液位と共鳴周波数の関係を示す特性図である。
[図 8]図 8は、上記微少液量測定装置の解析部において上記検出信号のディップ周 波数すなわちゥエルの共鳴周波数を検出するための構成例を示すブロック図である
[図 9]図 9は、図 6に示した構成例における同期検波出力を示す特性図である。
[図 10]図 10は、上記微少液量測定装置の解析部において上記検出信号のディップ 周波数すなわちゥエルの共鳴周波数を検出するための他の構成例を示すブロック図 である。
[図 11]図 11Aは、図 6に示した構成例における各同期検波出力を示す特性図であり 、図 11Bは、図 6に示した構成例における各同期検波出力を示す特性図である。 圆 12]図 12は、上記音響電気変翻に備えられた音導管の長さと共鳴の関係を示 す特性図である。
圆 13]図 13は、上記音響電気変翻に備えられた音導管の共鳴特性を示す特性図 である。
[図 14]図 14は、微少液量測定の実験に用いたゥエルを模式的に示す斜視図である
[図 15]図 15は、微少液量測定の実験系におけるゥエルとスピーカ及び音響電気変 換器の配置状態を模式的に示す図である。
[図 16]図 16は、上記実験系においてゥエルの液量を変えた場合の各液量における 周波数応答を示す特性図である。
[図 17]図 17は、上記実験系において各液量における共鳴周波数を 10回測定した結 果を示す特性図である。
[図 18]図 18は、上記実験系において得られた 10個の測定データデータの平均値か らの最大ずれを示す特性図である。
発明を実施するための最良の形態 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、本 発明は以下の例に限定されるものではなぐ本発明の要旨を逸脱しない範囲で、任 意に変更可能であることは言うまでもない。
本発明は、例えば図 1に示すように、試験液を同時に複数のゥエルに分注する分 注装置 100に適用される。
この分注装置 100は、分注ヘッド 110に複数のノズル 120A, 120Β· · ·が取り付け られており、各ノズノレ 120A, 120Β· · ·力ら試験液を同時に複数のウエノレ 130A, 13 OB · · ·に分注するようになって 、る。
そして、この分注装置 100により上記複数のゥエル 130A, 130Β· · ·に分注される 試験液の液量を測定するための微少液量測定装置 90が、上記分注装置 100により 試験液が分注される複数のゥエル 130A, 130Β· · ·の各開口に向かって所定の傾 斜方向から音波を放射するスピーカ 11からなる音響発生部 10、上記スピーカ 11力 放射された音波を上記複数のゥエル 130A, 130Β· · ·の各開口の近傍において検 出する複数の音響電気変換器 21A, 21B…を備える音響検出部 20、上記音響発 生部 10のスピーカ 11に接続された DZAコンバータ 30、上記音響検出部 20の各音 響電気変翻 21A, 21Β· ·が接続された多チャンネル AZDコンバータ 40、上記 D ZAコンバータ 30及び多チャンネル AZDコンバータ 40が接続された解析装置 50 により構成されている。
上記解析装置 50は、例えばパーソナルコンピュータ力 なり、上記音響発生部 10 力 放射する音波の周波数を掃引し、上記音響検出部 20により検出される音波の各 検出信号から上記複数のゥエル 130A, 130Β· · ·の各共鳴周波数を検出し、検出し た各共鳴周波数力 上記複数のゥエルに分注された各液量を推定する機能を有す る。
すなわち、上記解析装置 50は、上記音響発生部 10のスピーカ 11から放射する音 波の周波数を掃引する掃引信号を上記 DZAコンバータ 30を介して上記スピーカ 1 1に供給する掃引部 51として機能するとともに、上記音響検出部 20の各音響電気変 換器 21A, 21Β· · ·による検出信号が上記多チャンネル AZDコンバータ 40を介し て供給され、上記各音響電気変換器 21A, 21B…により検出された音波の各検出 信号から上記複数のゥエル 130A, 130Β· · ·の共鳴周波数を検出し、検出した共鳴 周波数から上記複数のゥエル 130A, 130Β· · ·に分注された液量を推定する解析 部 52として機能するようになっている。
ここで、上記音響検出部 20の各音響電気変 21A, 21Β· · ·には、小型のエレ タトレットコンデンサマイクロフォンやさらに小型の MEMSマイクロフォンユニット(シリ コンコンマイク口フォン)が用いられる。この微少液量測定装置 90では、例えば、図 2 Aに示すように、ゥエル 130の開口の近傍位置まで導出された音導管 22を備えるマ イク口フォンユニット 21、あるいは、図 2Bに示すように、支持棒 23の先端に設けること により、ゥエル 130の開口の近傍位置に位置させるようにしたマイクロフォンユニット 2 1からなる。
そして、この微少液量測定装置 90では、上記音響発生部 10のスピーカ 11から放 射する音波の周波数を上記掃引部 51により掃引しながら、上記複数のゥエル 130A , 130Β· · ·の各開口の近傍において上記音響検出部 20の各音響電気変換器 21A , 21Β· · ·により上記音波を検出し、上記解析部 52により、上記検出された音波の各 検出信号から上記複数のゥエル 130A, 130Β· · ·の各共鳴周波数を検出し、検出し た各共鳴周波数カゝら上記複数のゥエル 130A, 130Β· · ·に分注された液量を推定 する。
この微少液量測定装置 90は、例えば、次のようにしてゥエル 130の共鳴周波数の 検出を迅速に行うことができる。すなわち、この微小液量測定装置 90は、図 3に示す ように、 1列に複数のノズル 120が配列された分注ヘッド 110により、二次元平面上に 配列されたゥエル 130に試験液を分注する。続いて、この微少液量測定装置 90は、 ノズル 130の配列方向の直交する水平方向 Aに、試験液が分注されたゥエル 130を 移動させて、試験液が分注された 1列のゥエル 130に向けてスピーカ 11から音波を 放射するとともに、 1列に音響電気変 21が配列された音響検出部 20により、各 ゥエル 130の共鳴周波数を 1列毎に検出する。
このように、この微少液量測定装置 90は、 1つのスピーカから放射された音波から、 複数の音響電気変換器 21により、例えば 1列に配列された複数のゥエル 130の共鳴 周波数を同時に検出することができる。 すなわち、この微少液量測定装置 90は、例えば、図 4に示すように、多数のゥエル 130の共鳴周波数を、迅速に検出することができる。図 4において、 X— y軸は各ゥェ ル 130の位置座標を示し、 z軸は各ゥエル 130の共鳴周波数 [Hz]を示している。こ のグラフにお 、ては、ゥエル 200の中には試験液の代わりに金属球を挿入して!/、る ので、その共鳴周波数が、試験液が注がれている他のゥエル 130の共鳴周波数に 対して、突出して異なる。
この微小液量測定装置 90では、同時に複数のゥエル 130の共鳴周波数を検出す るので、二次元平面上に配列されたゥエル 130の 1つに金属球が挿入されたゥエル 200が含まれていても、上述したように、図 4に示すような検出結果を迅速に得ること ができる。
次に、この微少液量測定装置 90における液量測定の原理について説明する。 図 5に示すように、ゥエル 130の開口に向力つてスピーカ 11から音波を放射し、上 記放射する音波の周波数を掃引しながら、ゥエル 130の開口の近傍において音響電 気変換器 21により上記音波を検出して得られる検出信号は、上記ゥエル 130の共鳴 周波数近傍では上記音波が上記ゥエル 130で吸収されるので、信号レベルが低下 し、図 6に示すように、上記共鳴周波数近傍で周波数ディップを有するものとなる。す なわち、ゥエル 130は、液面を固定端とし、開口部を自由端 (以下、開口端という。)と して、共鳴する。ゥエル 130の開口部を理想的な開口端とすると、上記検出信号のデ イッブ周波数 f すなわち上記ゥエル 130の共鳴周波数は、液位に比例して変化する
0
。したがって、上記ディップ周波数 f を検出することにより、ゥエル 130の液量を推定
0
することができる。
すなわち、ゥエル 130の液位を h、ゥエル 130の高さを D、共鳴周波数を f、音波の 波長をえ、音速を cとし、ゥエル 130の深さ方向に 1Z4波長共振するとした場合、ゥ エル 130の共鳴波長 Lは λ Ζ4である。
共鳴波長 Lは、 L = D—hである。したがって、図 7に示すように、液位 hは共鳴周波 数 fに対して単調に増加し、 h=D— 4c/f〖こて示されるので、上記ディップ周波数 f
0 すなわち上記ゥエル 130の共鳴周波数 fを検出することにより、ゥエル 130の液量を 推定することができる。 なお、ゥエル 130は、その深さ方向に対して 1Z4波長で共振する以外にも、 3/4 波長及び 5Z4波長で共振する。このように、 1Z4波長以外の共鳴周波数を検出し て、共鳴波長 Lを検出して、この検出結果力 ゥエル 130の液量を推定することも可 能である。しかしながら、微少液量のゥエル 130は深さと直径の大きさに大差ないも のが多ぐ深さ方向に 3Z4波長で共鳴する周波数よりも低い周波数帯において、ゥ エル 130の直径方向に共鳴する周波数帯が存在する場合がある。このため、最も低 い周波数で共鳴が生じるゥエル 130の 1Z4波長の共鳴周波数を検出対象とすること により、深さ方向以外の共鳴現象による測定誤りを防止できる。
また、音響電気変 21はゥエル 130の開口近傍に存在するが、この音響電気変 21がゥエル 130の開口部に与える影響を最小にすることで、理想的な開口端に 近づき、精度良く液位 hの検出することができる。
例えば、ゥエル 130の開口部は、上記音響電気変 に備えられている音導管 22の形状をより細くすることにより、より理想的な開口端として共鳴する条件が与えら れる。
また、実際には、ゥエル 130の開口端の外にも共鳴する音場があふれ出ることと、ゥ エル 130の直径方向の音場分布による影響で、 h=D- 4cZfの関係に誤差が生じ る。そこで、微少液量測定装置 90では、予め図 7の共鳴特性を測定したデータべ一 スを作成して解析部 52に記憶させ、解析部 52がゥエル 130の共鳴周波数の検出結 果に応じたゥエル 130の液量をデータベース力 検索することで、より正確な液量を 求めることができる。
上記検出信号のディップ周波数 f すなわち上記ゥエル 130の共鳴周波数 fは、例え
0
ば、図 8に示すように、音響電気変換器 21により検出された音波の検出信号を、上 記解析部 52においてロックインアンプ 52Aで上記掃引部 51から供給される掃引信 号 (pCOS2 ft)で同期検波することにより、図 9に示すような同期検波出力を得ること により、検出することができる。
さらに、例えば、図 10に示すように、発振器 51Aにより与えられる周波数信号 f で
M
FM変調かけた掃引信号 (pcos2 f (1 + Δ。θ32 π ί t) t)を掃引部 51から音響電
M
気変換器 21に供給するようにして、図 11Aに示すように、ロックインアンプ 52Aによる 同期検波出力に含まれる FM変調成分 f t, 2f をロックインアンプ 52Bで上記発振
M M
器 51Aにより与えられる周波数信号 f で同期検波することにより、図 11Bに示すよう
M
な同期検波出力 f t, 2f を得て、上記検出信号のディップ周波数 f すなわち上記ゥ
M M 0 エル 130の共鳴周波数 fを検出することもできる。
ここで、音速 c〖ま、
c = 331 + 0. 6T(m/s)
にて示され、温度 Tに依存して 0. 2%Z°Cの割合で変化するので、上記ディップ周 波数 f を検出することにより、上記ゥエル 130の共鳴周波数 fから液量を推定する際
0
に、温度による音速変化の影響を補正した共鳴周波数 fを検出することにより、液量 の測定精度を向上させることができる。
例えば、環境温度を検出する温度センサ 45を備えることにより、上記解析部 52は、 上記温度センサ 45による検出結果に基づいて、温度による音速変化の影響を補正 したゥエル 130の共鳴周波数 fを検出することができる。
また、上記音響電気変換器 21に備えられている音導管 22の共鳴周波数も温度変 化により変化するので、上記解析部 52は、上記音導管 22の共鳴周波数を検出し、 検出された上記音導管 22の共鳴周波数に基づいて温度の変化量を求め、温度によ る音速変化の影響を補正したゥエル 130の共鳴周波数を検出することができる。 このように、音導管 22の共鳴周波数を検出し、検出された音導管 22の共鳴周波数 に基づいて、温度による音速変化の影響を補正することにより、ゥエル 130の開口部 の近傍に別途温度センサを設けることがないのでゥエル 130の開口部をより理想的 な開口端としてゥエル 130を共鳴させることができるので、精度良くゥエル 130の共鳴 周波数を検出することができる。
例えば、図 12に示すように、音導管 22の長さを 1とした場合、図 13に示す音導管 2 2の共振周波数 f , f の間隔は
1 2
f f =c/21
2 1
で示されるので、上記共振周波数 f , f の間隔力 温度の変化量を求め、温度による
1 2
音速変化の影響を補正したゥエルの共鳴周波数を検出することができる。
ここで、図 14に示すウエノレ 130 (内径 6. 5mm,深さ 10mm容積 300 L)について 、図 15に示すように、スピーカ 11をゥエル開口力も 65mm離れた斜め 50° 上方に 配置し、音響電気変換器 21はゥエル開口近傍 3mmに角度 20° で設置して、スピー 力 11の音の周波数をスイープして、ゥエル 130の共鳴周波数で音響電気変換器 21 の出力のディップ周波数を測定することでゥエルの共鳴周波数を読み取る実験を行 つた。 10 /z L毎に水を注入し、 0〜: L 10 Lでゥエル 130の共鳴周波数を測定したと ころ、ゥエル内の液量に対して周波数が単調に変化しており、 0〜: LOO /z Lの水に対 して 0. 4〜3. 0 Lの誤差で測定することができた。
スピーカ 11から放射する音波の周波数を 6〜: L 1kHzを 10秒でスイープした場合に 、音響電気変換器 21の出力は、 0 /z L, 50 L及び 100 Lに対するディップ周波 数が図 16に示すように変化しており、液量が増加すると共鳴周波数が高周波にシフ トしている。
この音響電気変換器 21の出力のディップ部を 2次曲線でフィッティングし、その頂 点を共鳴周波数とした。各液量における共鳴周波数を 10回測定した結果を図 17に 示す。液量に対して周波数が単調に変化しており、周波数から液量を推定できる。同 図中の実線は 1Z4波長の気中共鳴を仮定した理論値 (音速 345mZs)であり、得ら れた共鳴周波数は、この気中共鳴と同じ傾向である。
図 17の結果をフィッティングすると、: L当り 2. 6Hzの周波数変化に相当するの で、共鳴周波数力も液量を算出した。各液量について 10個の測定値の中から 2つ又 は 3つ選びそれらの平均をとることを 10回行!、、 10個のデータの平均値からの最大 ずれを図 18に示す。 2. 0〜7. 9 Lのばらつき力 平均をとることで、 0. 9〜3. 0 μ のばらつきに抑圧されて!、る。
以上のように、分注装置 100により液が分注される複数のゥエル 130A, 130Β · · · の各開口に向かって所定の傾斜方向力も音響発生部 10により音波を放射し、解析 装置 50の掃引部 51により上記音波の周波数を掃引しながら、音響検出部 20の音響 電気変換器 21 , 21A, 21Β · · ·により、上記複数のゥエル 130A, 130Β · · ·の各開 口の近傍において上記音波を検出し、上記解析装置 50の解析部 52により上記検出 された音波の各検出信号力 上記複数のゥエルの各共鳴周波数を検出し、検出した 各共鳴周波数から上記複数のゥエル 130A, 130Β · · ·に分注された液量を推定す ることにより、複数のゥエル 130A, 130B- · ·に吐出した微少量の液量を非接触で迅 速かつ高精度に同時計測することができる。

Claims

請求の範囲
[1] 1.分注装置により液が分注される複数のゥエルの各開口に向力つて所定の傾斜方 向から音波を放射する音響発生部と、
上記音響発生部から放射する音波の周波数を掃引する掃引信号を上記音響発生 部に供給する掃引部と、
上記音響発生部から放射された音波を上記複数のゥエルの各開口の近傍にぉ ヽ て検出する複数の音響電気変換器からなる音響検出部と、
上記音響検出部により検出された音波の各検出信号から上記複数のゥエルの各共 鳴周波数を検出し、検出した各共鳴周波数から上記複数のゥエルに分注された液量 を推定する解析部とを備え、
上記音響発生部から放射する音波の周波数を掃引し、上記解析部により、上記音 響検出部により検出される音波の各検出信号力 上記複数のゥエルの各共鳴周波 数を検出し、検出した各共鳴周波数から上記複数のゥエルに分注された各液量を推 定することを特徴とする微少液量測定装置。
[2] 2.環境温度を検出する温度センサを備え、
上記解析部は、上記温度センサによる検出結果に基づいて、温度による音速変化 の影響を補正した上記複数のゥエルの各共鳴周波数を検出することを特徴とする請 求の範囲第 1項記載の微少液量測定装置。
[3] 3.上記音響検出部の音響電気変換器は、上記ゥエルの開口の近傍位置まで導出 された音導管を備えることを特徴とする請求の範囲第 1項記載の微少液量測定装置
[4] 4.上記解析部は、上記音導管の共鳴周波数を検出し、検出された上記音導管の共 鳴周波数に基づいて、温度による音速変化の影響を補正した上記ゥエルの共鳴周 波数を検出することを特徴とする請求の範囲第 3項記載の微少液量測定装置。
[5] 5.上記解析部は、上記音響検出部により検出された音波の各検出信号を上記掃引 部から供給される掃引信号で同期検波することにより、上記複数のゥエルの各共鳴 周波数を検出することを特徴とする請求の範囲第 1項記載の微少液量測定装置。
[6] 6.分注装置により液が分注される複数のゥエルの各開口に向力つて所定の傾斜方 向から音波を放射し、
上記音波の周波数を掃引しながら、上記複数のゥエルの各開口の近傍において上 記音波を検出し、
上記検出された音波の各検出信号から上記複数のゥエルの各共鳴周波数を検出 し、
検出した各共鳴周波数力 上記複数のゥエルに分注された液量を推定することを 特徴とする微少液量測定方法。
PCT/JP2007/053621 2006-02-27 2007-02-27 微少液量測定装置、及び微少液量測定方法 WO2007097456A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008501783A JPWO2007097456A1 (ja) 2006-02-27 2007-02-27 微少液量測定装置、及び微少液量測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-050359 2006-02-27
JP2006050359 2006-02-27

Publications (1)

Publication Number Publication Date
WO2007097456A1 true WO2007097456A1 (ja) 2007-08-30

Family

ID=38437491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053621 WO2007097456A1 (ja) 2006-02-27 2007-02-27 微少液量測定装置、及び微少液量測定方法

Country Status (2)

Country Link
JP (1) JPWO2007097456A1 (ja)
WO (1) WO2007097456A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010014061A1 (en) * 2008-07-30 2010-02-04 Hewlett-Packard Development Company, L.P. Method of dispensing liquid
WO2010126015A1 (ja) * 2009-04-27 2010-11-04 株式会社トランスバーチャル 多変量検出装置および多変量検出方法
RU2551435C2 (ru) * 2013-06-19 2015-05-27 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации Способ обнаружения акусто-электрического преобразователя и устройство для его осуществления

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191921A (ja) * 1985-02-20 1986-08-26 Fujitsu Ltd 自動補給装置
JPH02500011A (ja) * 1986-09-19 1990-01-11 ジンマーマン,ボルフギャング 電気的に加熱可能なピンポイントゲート形射出管路
JP2004251823A (ja) * 2003-02-21 2004-09-09 Nohken:Kk 振動式レベルセンサ
WO2005090932A1 (ja) * 2004-03-24 2005-09-29 Kyoto University 体積計測装置及び方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390127U (ja) * 1986-12-02 1988-06-11
JPH03154828A (ja) * 1989-11-14 1991-07-02 Nkk Corp 気柱共鳴式連通管水位計及びその水位測定方法
JPH0682291A (ja) * 1992-09-04 1994-03-22 Mitsubishi Electric Corp 液面検知器
JP2989545B2 (ja) * 1996-06-17 1999-12-13 東レ株式会社 液体分注・吸引用のプローブユニットおよび液体の分注作動の確認検出方法と分注作動後の滴粒の落下検出方法および液体の液面検出方法
DE10010140A1 (de) * 2000-03-03 2001-09-13 Leica Microsystems Vorrichtung zur vorzugsweise automatischen Handhabung und/oder Bearbeitung von Objekten

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191921A (ja) * 1985-02-20 1986-08-26 Fujitsu Ltd 自動補給装置
JPH02500011A (ja) * 1986-09-19 1990-01-11 ジンマーマン,ボルフギャング 電気的に加熱可能なピンポイントゲート形射出管路
JP2004251823A (ja) * 2003-02-21 2004-09-09 Nohken:Kk 振動式レベルセンサ
WO2005090932A1 (ja) * 2004-03-24 2005-09-29 Kyoto University 体積計測装置及び方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010014061A1 (en) * 2008-07-30 2010-02-04 Hewlett-Packard Development Company, L.P. Method of dispensing liquid
WO2010126015A1 (ja) * 2009-04-27 2010-11-04 株式会社トランスバーチャル 多変量検出装置および多変量検出方法
RU2551435C2 (ru) * 2013-06-19 2015-05-27 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации Способ обнаружения акусто-электрического преобразователя и устройство для его осуществления

Also Published As

Publication number Publication date
JPWO2007097456A1 (ja) 2009-07-16

Similar Documents

Publication Publication Date Title
US7289914B2 (en) Ultrasonic flowmeter and ultrasonic flowmetering method
KR101870977B1 (ko) 부유식 탱크들, 칼럼들, 드럼들, 튜브들, 배트들 내에서 폭기된 유체들 및 액체들에 대한 가스 부피 분율(gvf)을 결정하는 방법 및 장치
US20050150300A1 (en) Device and method for ultrasonic inspection using profilometry data
US20170254781A1 (en) A method and a device for acoustic estimation of bubble properties
CN103676240B (zh) 表面检测装置
US20110009745A1 (en) Ultrasonically determining flow parameters of a fluid flowing through a passage, by using far-field analysis
Leighton et al. Acoustic detection of gas bubbles in a pipe
US20090158821A1 (en) Devices, methods and systems for measuring one or more characteristics of a suspension
US11717818B2 (en) Focused acoustic radiation for the ejection of sub wavelength droplets
CN100504311C (zh) 使用超声波传感器阵列确定管道内的流体速度的设备和方法
Zedel et al. Turbulence measurements in a jet: Comparing the Vectrino and VectrinoII
Shanmugam et al. Broad bandwidth air-coupled micromachined ultrasonic transducers for gas sensing
WO2007097456A1 (ja) 微少液量測定装置、及び微少液量測定方法
US20160313170A1 (en) System and method for determining the level of a substance in a container based on measurement of resonance from an acoustic circuit that includes unfilled space within the container that changes size as substance is added or removed from the container
JP2009036634A (ja) 接触角測定装置
US7661289B1 (en) Method for calibrating an acoustic droplet dispensing apparatus
US20090031789A1 (en) Liquid measuring device and automatic analyzer
US7181981B2 (en) Ultrasonic tomograph, system and method for ultrasonic tomographic measurement using same
Kupnik et al. Adaptive pulse repetition frequency technique for an ultrasonic transit-time gas flowmeter for hot pulsating gases
JPH11125638A (ja) 分注装置
CN203053926U (zh) 一种实测空气声速法校准超声仪的检定架
Lenner et al. Single-element ultrasonic transducer for non-invasive measurements
US20150122014A1 (en) System and method for determining the level of a substance in a container based on measurement of resonance from an acoustic circuit that includes unfilled space within the container that changes size as substance is added or removed from the container
JP3573852B2 (ja) 超音波センサ及びこれを用いた分注装置
CN109642892B (zh) 用于补偿超声波测试中的耦合不均匀性的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008501783

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07737423

Country of ref document: EP

Kind code of ref document: A1