WO2007094541A1 - Appareil de surfusion et procédé associé - Google Patents

Appareil de surfusion et procédé associé Download PDF

Info

Publication number
WO2007094541A1
WO2007094541A1 PCT/KR2006/003851 KR2006003851W WO2007094541A1 WO 2007094541 A1 WO2007094541 A1 WO 2007094541A1 KR 2006003851 W KR2006003851 W KR 2006003851W WO 2007094541 A1 WO2007094541 A1 WO 2007094541A1
Authority
WO
WIPO (PCT)
Prior art keywords
contents
supercooling
energy
temperature
freezing
Prior art date
Application number
PCT/KR2006/003851
Other languages
English (en)
Inventor
Su-Cheong Kim
Jong-Min Shin
Su-Won Lee
Cheol-Hwan Kim
Yong-Chol Kwon
Ku-Young Son
Original Assignee
Lg Electronics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020060014692A external-priority patent/KR101284592B1/ko
Priority claimed from KR1020060061698A external-priority patent/KR20080003141A/ko
Priority claimed from KR1020060061695A external-priority patent/KR20080003139A/ko
Application filed by Lg Electronics, Inc. filed Critical Lg Electronics, Inc.
Priority to EP06798934A priority Critical patent/EP2003993A4/fr
Priority to BRPI0621353-7A priority patent/BRPI0621353A2/pt
Priority to AU2006338352A priority patent/AU2006338352A1/en
Priority to US12/279,512 priority patent/US20090064689A1/en
Publication of WO2007094541A1 publication Critical patent/WO2007094541A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/06Controlling according to a predetermined profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/02Sensors detecting door opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/16Sensors measuring the temperature of products

Definitions

  • the present invention relates to an apparatus and method for supercooling, and more particularly, to an apparatus and method for supercooling which can stably maintain the contents in a supercooled state for an extended period of time by controlling energy.
  • foods such as vegetables, fruits, meats and beverages are refrigerated or frozen to be kept fresh.
  • Such foods contain liquid elements such as water. If the liquid elements are cooled below a phase transition temperature, they can be transited to solid elements after a predetermined time.
  • Fig. 1 is a graph showing phase transition by cooling. As shown in Fig. 1, when a keeping temperature of a refrigerator is maintained at about -TC, distilled water is maintained in a supercooled state for 1 to 5 hours in 1 air pressure. Phase transition suddenly occurs after about 5 hours, so that a temperature of water rises to about O 0 C which is a phase transition temperature.
  • Another object of the present invention is to provide an apparatus and method for supercooling which can stably maintain the contents in a supercooled state at a low temperature.
  • Yet another object of the present invention is to provide an apparatus and method for supercooling which can set or control a non-freezing temperature of the contents by adjusting a quantity of energy.
  • Yet another object of the present invention is to provide an apparatus and method for supercooling which can adjust and set applied energy by using relation between a quantity of energy and a non-freezing temperature of the contents.
  • Yet another object of the present invention is to provide an apparatus and method for supercooling which can execute various types of non-freezing modes by enabling the user to select a non-freezing temperature of the contents.
  • Yet another object of the present invention is to provide an apparatus and method for supercooling which can control a quantity of applied energy or a degree of non- freezing by adjusting a degree of cooling.
  • Yet another object of the present invention is to provide an apparatus and method for supercooling which can minimize power consumption in a non-freezing mode for forming a non-frozen state, by controlling an execution time of the non-freezing mode.
  • Yet another object of the present invention is to provide an apparatus and method for supercooling which can maintain a non-frozen state and minimize power consumption in the non-frozen state.
  • an apparatus for supercooling including: a means for taking energy from the contents; and a means for causing at least one of rotation, vibration and translation to water molecules of the contents, by supplying energy smaller than the taken energy, whereby the contents are maintained in a liquid state below a phase transition temperature.
  • the causing means applies an electric field to the contents.
  • the causing means sets the supplied energy by varying at least one of a voltage, a frequency and a current.
  • the taken energy is dependent upon a difference between a cooling temperature applied to the contents and a current temperature of the contents.
  • the taken energy is dependent upon a quantity of the contents.
  • a method for supercooling including the steps of: setting energy taken from the contents; taking the set energy from the contents; and causing at least one of rotation, vibration and translation to water molecules of the contents, by supplying energy smaller than the set energy, the above steps being sequentially or similtaneousry carried out, whereby the contents are maintained in a liquid state below a phase transition temperature.
  • a method for supercooling including the steps of: supplying energy to the contents; and taking more energy than the supplied energy, at least one of rotation, vibration and translation being caused to water molecules of the contents, whereby the contents are maintained in a liquid state below a phase transition temperature.
  • a method for supercooling including the steps of: applying energy to a storing space for storing the contents; and setting a non-freezing temperature of the storing space or the contents according to the quantity of applied energy.
  • a method for supercooling including the steps of: reading a degree of non-freezing of a storing space or the contents; and setting a quantity of applied energy according to the degree of non-freezing.
  • a method for supercooling including the steps of: cooling a storing space or the contents stored in the storing space; and executing a non-freezing mode before a phase transition temperature of the contents.
  • a method for supercooling including the steps of: cooling a storing space or the contents for a set time; and executing a non-freezing mode on the storing space or the contents.
  • a method for supercooling including a step for executing a non-freezing mode on a storing space or the contents stored in the storing space, the step for executing the non-freezing mode being discontinuously carried out.
  • a method for supercooling including the steps of: executing a non-freezing mode; checking a proceeding degree of a non-frozen state; and controlling intensity of the non-freezing mode according to the result of the checking step.
  • FIGS. 2 to 4 are views illustrating principles of an apparatus for supercooling in accordance with the present invention
  • FIG. 5 is a block diagram illustrating the apparatus for supercooling in accordance with the present invention
  • FIG. 13 is a flowchart showing a method for supercooling in accordance with a first embodiment of the present invention
  • Fig. 14 is a flowchart showing a method for supercooling in accordance with a second embodiment of the present invention
  • Figs. 15 and 16 are a flowchart showing a method for supercooling and a resulting control graph in accordance with a third embodiment of the present invention
  • Figs. 17 and 18 are a flowchart showing a method for supercooling and a resulting control graph in accordance with a fourth embodiment of the present invention
  • Fig. 19 is a control graph of a method for supercooling in accordance with a fifth embodiment of the present invention
  • Fig. 20 is a control graph of a method for supercooling in accordance with a sixth embodiment of the present invention.
  • FIGs. 2 to 4 are views illustrating principles of the apparatus for supercooling in accordance with the present invention.
  • the apparatus 100 for supercooling includes a load sensing unit 20 for sensing a state of a storing space A or B, and a state of the contents (not shown) stored in the storing space A or B, a freezing cycle 30 for cooling the storing space A or B, a voltage generating unit 40 for generating a voltage to apply an electric field to the storing space A or B, an electrode unit 50 for receiving the voltage and generating the electric field, a door sensing unit 60 for sensing opening and closing of a door 120, an input unit 70 for enabling the user to input a degree of cooling, execution of a supercooling mode, etc., a display unit 80 for displaying an operating state of the apparatus 100 for supercooling, and a microcomputer 90 for controlling freezing or refrigerating of the apparatus 100 for supercooling, and executing the supercooling mode.
  • a power supply unit (not shown) is essentially installed to supply power to the aforementioned elements. However, power supply is easily recognized by those skilled in the art, and thus explanations thereof are
  • the microcomputer 90 confirms a quantity and a moisture content of the contents according to the resistance value from the load sensing unit 20, and identifies a kind of the contents having the moisture content.
  • the freezing cycle 30 is classified into indirect cooling and direct cooling according to a method of cooling the contents.
  • Fig. 6 shows an indirect cooling type refrigerator and
  • Fig. 7 shows a direct cooling type refrigerator, which will later be explained in detail.
  • the voltage generating unit 40 generates an AC voltage according to a predetermined amplitude and frequency.
  • the voltage generating unit 40 generates the AC voltage by varying at least one of the amplitude of the voltage and the frequency of the voltage.
  • the voltage generating unit 40 applies the AC voltage generated according to the set values (amplitude of voltage, frequency of voltage, etc.) from the microcomputer 90 to the electrode unit 50, so that the resulting electric field can be applied to the storing space A or B.
  • the voltage generating unit 40 can vary the amplitude of the voltage between 500V and 15kV by variably setting the frequency.
  • the voltage generating unit 40 variably sets the frequency of the voltage in a radio frequency region of 1 to 500kHz.
  • the electrode unit 50 converts the AC voltage from the voltage generating unit 40 into the electric field, and applies the electric field to the storing space A or B.
  • the electrode unit 50 is a plate or conductive wire made of Cu or Pt.
  • the door sensing unit 60 stops the operation of the voltage generating unit 40 by opening of the door 120 for opening and closing the storing space A or B.
  • the door sensing unit 60 can notify opening to the microcomputer 90 to perform the stop operation, or stop the voltage generating unit 40 by shorting out power applied to the voltage generating unit 40.
  • the input unit 70 enables the user to input execution of the supercooling mode for the storing space A or B or the contents as well as temperature setting for freezing and refrigerating control, and selection of a service type (flake ice, water, etc.) of a dispenser.
  • the user can input information on the contents such as the kind and quantity of the contents through the input unit 70.
  • the input unit 70 can be a barcode reader or an RFID reader for providing the information on the contents to the microcomputer 90.
  • the input unit 70 enables the user to input or select a supercooling temperature (temperature for maintaining the supercooled state) which is a degree of supercooling of the storing space A or B or the contents.
  • the display unit 80 basically displays a freezing temperature, a refrigerating temperature and the service type of the dispenser, and additionally displays current execution of the supercooling mode.
  • the microcomputer 90 basically controls freezing and refrigerating, and further executes the supercooling mode according to the present invention.
  • the microcomputer 90 stores relation information between the quantity of the energy Ql applied to the storing space A or B or the contents, the quantity of the taken energy Q2 and the cooling temperature. Accordingly, the microcomputer 90 can perform control operations, such as setting and application of energy Ql and Q2 by the supercooling temperature, or calculation of the quantities of energy Ql and Q2 and calculation of the supercooling temperature.
  • energy Q2 can be generated from various energy sources. In accordance with the present invention, energy Q2 is electric field energy.
  • the microcomputer 90 calculates the taken energy Ql by setting the specific heat of water as specific heat, sensing mass by the load sensing unit 20, and operating temperature information by the load sensing unit 20. For example, when the electric field energy is applied, the microcomputer 90 calculates the supplied energy Q2 from functions of current, voltage and frequency, which is easily understood by those skilled in the art.
  • the microcomputer 90 acquires the state of the storing space A or B or the contents from the input unit 70 or the load sensing unit 20, and generates the AC voltage having the frequency and amplitude corresponding to the acquired information or load, thereby executing an artificially-intelligent non-freezing mode.
  • the microcomputer 90 which executes the supercooling mode can set or vary the supercooling temperature for executing the supercooling mode.
  • the microcomputer 90 can perform the setting or varying operation according to the relation between the quantities of energy Ql and Q2 and the supercooling temperature discussed later. For this, the microcomputer 90 adjusts the quantity of energy Q2 by the electric field applied from the electrode unit 50, by controlling the voltage generating unit 40.
  • the quantity of energy Q2 can be adjusted by controlling the amplitude of the voltage (or the amplitude of the current) and the frequency.
  • the quantity of energy can be calculated from the correlation between the voltage, current and frequency. Calculation of energy is apparent to those skilled in the art, and thus not explained.
  • the microcomputer 90 performs efficient control which reduces power consumption of the apparatus 100 for supercooling as in a power save mode and maintains the non-freezing mode, by controlling the operation of the non-freezing operating unit consisting of the voltage generating unit 40 and the electrode unit 50. The control method will be described later.
  • FIGs. 6 and 7 are structure views illustrating examples of the apparatus for supercooling in accordance with the present invention. In these examples, the present invention is applied to a refrigerator.
  • Fig. 6 is a cross-sectional view illustrating an indirect cooling type refrigerator
  • Fig. 7 is a cross-sectional view illustrating a direct cooling type refrigerator.
  • Electrode units 50a and 50b are formed between the inner surfaces 112a and 112c facing the storing space A and the outer surface of the casing 110.
  • the electrode units 50a and 50b are installed to face each other, for applying an electric field to the whole storing space A.
  • the storing space A is separated from the ends of the electrode units 50a and 50b at predetermined intervals in the inner or center directions of the electrode units 50a and 50b, for applying the uniform electric field to the storing space A or the contents.
  • the suction duct 36 and the discharge duct 38 are formed on the inner surface 112b of the casing 110.
  • the inner surfaces 112a, 112b and 112c of the casing 110 are made of a hydrophobic material, and thus not frozen during the supercooling mode due to reduction of surface tension of water.
  • the outer surface and the inner surfaces 112a, 112b and 112c of the casing 110 are made of an insulating material, thereby preventing the user from receiving an electric shock from the electrode units 50a and 50b, and preventing the contents from electrically contacting the electrode units 50a and 50b through the inner surfaces 112a, 112b and 112c.
  • Fig. 7 are identical to those of the indirect cooling type refrigerator of Fig. 6.
  • Inner surfaces 114a, 114b and 114c of the casing 110 are identical to the inner surfaces 112a, 112b and 112c of the casing 110 except for the suction duct 36 and the discharge duct 38.
  • a freezing cycle 30 of the direct cooling type refrigerator of Fig. 7 includes a compressor 32 for compressing refrigerants, and an evaporator 39 installed in the casing 110 around the storing space B adjacently to the inner surfaces 114a, 114b and 114c of the casing 110, for evaporating the refrigerants.
  • the direct cooling type freezing cycle 30 includes a condenser (not shown) and an expansion valve (not shown).
  • electrode units 50a and 50d are inserted between the evaporator 39 and the casing 110, for preventing cool air from being blocked by the evaporator 39.
  • FIGs. 8 and 9 are a structure view and a graph showing supercooling in the apparatus for supercooling in accordance with the present invention.
  • Fig. 8 shows an experiment structure and condition of Fig. 9.
  • a storing space Sl is formed in a casing 111, O.l ⁇ of distilled water is contained in the storing space Sl, and electrodes 50e and 5Of are inserted into the sidewalls of the casing 111 to be symmetrically disposed to the storing space Sl.
  • the electrode surfaces of the electrodes 50e and 50f facing the storing surface Sl are wider than the surface of the storing space Sl .
  • An interval between the electrodes 50e and 50f is 20mm.
  • the casing 111 is made of an acrylic material.
  • the casing 111 is kept and cooled in a storing space uniformly supplying cool air (refrigerating apparatus which does not have an additional electric field generator except the electrodes 50e and 50f).
  • the microcomputer 90 makes the voltage generating unit 40 apply 0.91kV(6.76mA) and 2OkHz of Ac voltage to the electrode unit 50, and the temperature of the storing space is about -7°C. As shown in the supercooling graph of Fig. 9, since the non-freezing refrigerator 100 maintains supercooling at -6.5°C below the phase transition temperature, it keeps the non-frozen state of water over 50 hours.
  • the present inventors investigated the survival rate of Giardias, flagellates causing diarrhea to a human body before and after electric field processing. 408 Giardias were used in a non-nutrient state. The present inventors investigated the survival rate of Giardias with the existence and absence of the electric field. When the electric field was not used, 396 Giardias were left, namely, the survival rate was 96.6%. It means that Giardias were not naturally removed. Conversely, when the electric field was used, no Giardia was left. The above experiment result was obtained in the non- nutrient state. However, it was expected that the similar result would be obtained in the nutrient state, namely, the food keeping state of the refrigerator. As described above, the electric field serves to efficiently remove microorganisms causing decay such as Giardia.
  • Figs. 10 and 11 are graphs showing correlation between power and the non-freezing temperature in the simplified apparatus for supercooling in accordance with the present invention.
  • Figs. 10 and 11 are applied to the experiment structure of Fig. 8.
  • the keeping temperature (control temperature) in the storing space in which the casing 111 is kept, namely, the inside temperature is fixed to -6°C.
  • the microcomputer 90 sets and applies a plurality of quantities of power energy to the voltage generating unit 40, and measures resulting variations of the non-freezing temperature. That is, the taken energy Ql is constant and the supplied energy Q2 is variable.
  • Fig. 11 is a graph showing correlation between the first to fifth energy lines I to V of Fig. 10.
  • the quantity of the energy Q2 applied to water and the supercooling temperature of water have proportional relation. That is, when the quantity of the energy Q2 applied to the contents is large, the supercooling temperature rises, and when the quantity of the energy Q2 applied to the contents is small, the supercooling temperature falls. However, if the quantity of energy Q2 is too small, it does not cause the motion of the water molecules and adjust the supercooled state, thereby reaching the result of the fifth energy line V.
  • the supercooling temperature is determined according to the quantity of energy applied when the keeping temperature (indoor temperature, inside temperature) is -6°C. If the keeping temperature is changed, namely, if the quantity of the taken energy Ql is changed, the quantity of the applied energy Q2 mist be changed.
  • the microcomputer 90 stores the simple correlation information between the quantities of energy Ql and Q2 and the supercooling temperature. In the case that the keeping temperature is adjusted or varied, the microcomputer 90 rmst store the correlation information between the quantities of energy Ql and Q2 and the supercooling temperature in consideration of the variations of the keeping temperature.
  • Fig. 12 is a graph showing relation between intensity of the electric field, the keeping temperature and the supercooling temperature in the method for supercooling in accordance with the present invention.
  • the supercooling temperature Cs of the contents is calculated from the correlation between the intensity of the electric field (supplied energy Q2) and the keeping temperature Cm (taken energy Ql).
  • the taken energy Ql and the supplied energy Q2 can be adjusted from the relations of Figs. 10, 11 and 12, thereby controlling the supercooling temperature Cs of the contents.
  • FIG. 13 is a flowchart showing a method for supercooling in accordance with a first embodiment of the present invention.
  • the microcomputer 90 decides whether the user can select the degree of non-freezing through the input unit 70. If so, the microcomputer 90 goes to S72, and if not, the microcomputer 90 goes to S73.
  • the microcomputer 90 sets the degree of cooling by the freezing cycle 30, and cools the storing space A or B or the contents at the set degree of cooling. That is, in the fixed energy state, the degree of cooling is increased (the control temperature is lowered) to lower the temperature by the degree of non-freezing, and the degree of cooling is decreased (the control temperature is raised) to raise the temperature.
  • the microcomputer 90 cools the storing space A or B or the contents by the constant degree of cooling.
  • the microcomputer 90 cools the storing space A or B by controlling the freezing cycle 30. Since the microcomputer 90 does not yet execute the non-freezing mode, the microcomputer 90 slowly cools the storing space A or B or the contents by turning off the means for forcibly flowing cool air such as the fan 34 of the freezing cycle 30 of the indirect cooling type refrigerator.
  • the microcomputer 90 senses the temperature T of the storing space A or B or the contents by the temperature sensor which is the load sensing unit 20.
  • the microcomputer 90 starts execution of the non-freezing mode by controlling the non-freezing operating unit including the voltage generating unit 40 and the electrode unit 50.
  • the microcomputer 90 uniformly cools the storing space A and the contents by operating the means for forcibly flowing cool air such as the fan 34 of the freezing cycle 30.
  • the microcomputer 90 reduces a cooling speed of the freezing cycle 30, executing the non-freezing mode by the non-freezing operating unit. If a temperature outside the storing space A or B or the contents is sharply varied during the non- freezing mode, the non-freezing mode may be released and phase transition to the frozen state may occur. Accordingly, the microcomputer 90 prevents the sharp variation of the temperature by reducing the cooling speed by controlling the cooling force of the compressor 32, thereby stably executing the non-freezing mode.
  • the microcomputer 90 decides whether the storing space A or B or the contents have been stabilized in the non-frozen state.
  • the microcomputer 90 can decide stabilization on the basis of information on a stabilization time of the non- frozen state by load, or an average time spent to stabilize the storing space A or B or contents in the non-frozen state. After the non-frozen state is stabilized, the microcomputer 90 goes to S97.
  • the microcomputer 90 reduces the frequency of the voltage applied to the electrode unit 50 by controlling the voltage generating unit 40, thereby reducing power consumption.
  • the motion of the water molecules becomes constant. Even if the frequency of the voltage is reduced, it rarely affects the motion. Therefore, the non-frozen state is continuously stabilized.
  • Fig. 17 is a flowchart showing a method for supercooling in accordance with a fourth embodiment of the present invention.
  • the method for supercooling of Fig. 17 controls the starting point of the non-freezing mode according to a set time tl.
  • Fig. 18 is a control graph of the method for supercooling of Fig. 17. The graph of
  • S97 of Fig. 15 and S106 of Fig. 17 can be selectively used after stabilization of the non-frozen state.
  • the microcomputer 90 make the voltage generating unit 40 apply a voltage having a amplitude and a frequency corresponding to region II to the electrode unit 50.
  • the region II has a high frequency high voltage characteristic.
  • a strong electric field is applied to the storing space A or B or the contents.
  • the apparatus and method for supercooling can stably maintain the contents in the supercooled state for the extended period of time.
  • the apparatus and method for supercooling can stably maintain the contents in the supercooled state at a low temperature by adjusting the supplied energy and the taken energy.
  • the apparatus and method for supercooling can execute various types of non- freezing modes by setting or controlling the non-freezing temperature of the contents by adjusting the quantity of energy.
  • the apparatus and method for supercooling can execute various types of non- freezing modes by enabling the user to select the non-freezing temperature of the contents.
  • the apparatus and method for supercooling can execute the non-freezing mode for forming the non-frozen state and minimize power consumption in the non-freezing mode, by controlling the execution time of the non-freezing mode.
  • the apparatus and method for supercooling can maintain the non-frozen state and minimize power consumption at the same time by discontinuously executing the non- freezing mode.

Abstract

L'invention concerne un appareil et un procédé de surfusion qui permettent de maintenir les contenus dans un état surfondu pendant une période prolongée en régulant l'énergie. L'appareil de surfusion comprend un moyen permettant de prendre l'énergie des contenus et un moyen générant une rotation, une vibration ou une translation vers les molécules d'eau des contenus, en fournissant une énergie inférieure à l'énergie prise. Les contenus sont maintenus dans un état liquide en dessous d'une température de transition de phase.
PCT/KR2006/003851 2006-02-15 2006-09-27 Appareil de surfusion et procédé associé WO2007094541A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06798934A EP2003993A4 (fr) 2006-02-15 2006-09-27 Appareil de surfusion et procédé associé
BRPI0621353-7A BRPI0621353A2 (pt) 2006-02-15 2006-09-27 aparelho de super-resfriamento e seu método
AU2006338352A AU2006338352A1 (en) 2006-02-15 2006-09-27 Supercooling apparatus and its method
US12/279,512 US20090064689A1 (en) 2006-02-15 2006-09-27 Supercooling apparatus and its method

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR1020060014692A KR101284592B1 (ko) 2006-02-15 2006-02-15 냉장고
KR10-2006-0014692 2006-02-15
KR10-2006-0061698 2006-07-01
KR20060061696 2006-07-01
KR10-2006-0061696 2006-07-01
KR10-2006-0061695 2006-07-01
KR1020060061698A KR20080003141A (ko) 2006-07-01 2006-07-01 과냉각 장치 및 방법
KR1020060061695A KR20080003139A (ko) 2006-07-01 2006-07-01 냉장고의 제어 방법

Publications (1)

Publication Number Publication Date
WO2007094541A1 true WO2007094541A1 (fr) 2007-08-23

Family

ID=38371701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2006/003851 WO2007094541A1 (fr) 2006-02-15 2006-09-27 Appareil de surfusion et procédé associé

Country Status (5)

Country Link
US (1) US20090064689A1 (fr)
EP (1) EP2003993A4 (fr)
AU (1) AU2006338352A1 (fr)
BR (1) BRPI0621353A2 (fr)
WO (1) WO2007094541A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037125A1 (fr) * 2007-09-17 2009-03-26 BSH Bosch und Siemens Hausgeräte GmbH Appareil à glaçons et procédé pour faire fonctionner un appareil à glaçons
WO2010071324A2 (fr) * 2008-12-16 2010-06-24 엘지전자 주식회사 Réfrigérateur
EP2212636A2 (fr) * 2007-09-14 2010-08-04 LG Electronics Inc. Procédé et dispositif de surfusion

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101143977B1 (ko) * 2008-12-16 2012-05-09 엘지전자 주식회사 냉장고
KR101152049B1 (ko) * 2009-01-08 2012-06-08 엘지전자 주식회사 냉각 장치
US20220252335A1 (en) * 2019-10-09 2022-08-11 Panasonic Intellectual Property Management Co., Ltd. Refrigerator
CN114353422B (zh) * 2021-12-13 2023-01-24 珠海格力电器股份有限公司 分类装置、冰箱、分类方法和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086967A (ja) * 1999-09-22 2001-04-03 Airtech Japan Ltd 磁場,電場の変動を利用した冷凍方法及び冷凍庫
JP2002364968A (ja) * 2001-06-07 2002-12-18 Ekotekkusu:Kk 氷点降下冷蔵装置
US20030068414A1 (en) 1997-03-17 2003-04-10 Akinori Ito Method and equipment for treating electrostatic field and electrode used therein

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139979A (ja) * 1987-11-27 1989-06-01 Matsushita Refrig Co Ltd 製氷器
US5194181A (en) * 1988-07-15 1993-03-16 The United States Of America As Represented By The Secretary Of The Navy Process for shaping articles from electrosetting compositions
US5699668A (en) * 1995-03-30 1997-12-23 Boreaus Technical Limited Multiple electrostatic gas phase heat pump and method
US5946918A (en) * 1998-05-27 1999-09-07 Mutual Of Omaha Insurance Company Cooling of stored water
JP4243924B2 (ja) * 2001-09-17 2009-03-25 株式会社アビー 高機能性冷凍装置および高機能性冷凍方法
JP2003139460A (ja) * 2001-11-01 2003-05-14 Abi:Kk 変動磁場発生装置、冷凍装置および均一な変動磁場の発生方法
US6532751B1 (en) * 2002-03-22 2003-03-18 Whirlpool Corporation Method of maximizing ice production in a refrigeration appliance
CA2488938A1 (fr) * 2002-05-10 2003-11-20 Glocal Co., Ltd. Dispositif frigorifique, procede de surgelation, et objet surgele
US6935124B2 (en) * 2002-05-30 2005-08-30 Matsushita Electric Industrial Co., Ltd. Clear ice making apparatus, clear ice making method and refrigerator
JP4179927B2 (ja) * 2003-06-04 2008-11-12 三洋電機株式会社 冷却装置の冷媒封入量設定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030068414A1 (en) 1997-03-17 2003-04-10 Akinori Ito Method and equipment for treating electrostatic field and electrode used therein
JP2001086967A (ja) * 1999-09-22 2001-04-03 Airtech Japan Ltd 磁場,電場の変動を利用した冷凍方法及び冷凍庫
JP2002364968A (ja) * 2001-06-07 2002-12-18 Ekotekkusu:Kk 氷点降下冷蔵装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2212636A2 (fr) * 2007-09-14 2010-08-04 LG Electronics Inc. Procédé et dispositif de surfusion
EP2212636A4 (fr) * 2007-09-14 2014-09-10 Lg Electronics Inc Procédé et dispositif de surfusion
WO2009037125A1 (fr) * 2007-09-17 2009-03-26 BSH Bosch und Siemens Hausgeräte GmbH Appareil à glaçons et procédé pour faire fonctionner un appareil à glaçons
WO2010071324A2 (fr) * 2008-12-16 2010-06-24 엘지전자 주식회사 Réfrigérateur
WO2010071324A3 (fr) * 2008-12-16 2011-03-31 엘지전자 주식회사 Réfrigérateur

Also Published As

Publication number Publication date
US20090064689A1 (en) 2009-03-12
BRPI0621353A2 (pt) 2011-12-06
EP2003993A4 (fr) 2010-06-02
EP2003993A1 (fr) 2008-12-24
AU2006338352A1 (en) 2007-08-23

Similar Documents

Publication Publication Date Title
KR100862107B1 (ko) 과냉각 장치
WO2007094541A1 (fr) Appareil de surfusion et procédé associé
US20090044544A1 (en) Refrigerator
CN101371090A (zh) 冰箱
US8616008B2 (en) Non-freezing refrigerator
KR101140030B1 (ko) 냉장고의 제어 방법
KR20080003134A (ko) 냉장고의 동결 해제 장치
KR20080003141A (ko) 과냉각 장치 및 방법
KR100844604B1 (ko) 냉장고
KR20100082259A (ko) 과냉각 시스템
KR100844622B1 (ko) 과냉각 제어 방법
KR20100082257A (ko) 과냉각 장치
KR20080102353A (ko) 과냉각 장치
KR20090124496A (ko) 냉장고 및 그 제어방법
KR20080003139A (ko) 냉장고의 제어 방법
KR101097669B1 (ko) 과냉각 장치 및 방법
WO2008150108A2 (fr) Appareil de surfusion
KR101143974B1 (ko) 냉장고
WO2008150102A2 (fr) Appareil de surfusion
MX2008010564A (en) Non-freezing refrigerator
MX2008010565A (en) Refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 3207/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/010571

Country of ref document: MX

Ref document number: 200680052800.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006338352

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2006338352

Country of ref document: AU

Date of ref document: 20060927

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006798934

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12279512

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0621353

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080815