WO2007094154A1 - 帯域制限方法及び無線通信システム - Google Patents

帯域制限方法及び無線通信システム Download PDF

Info

Publication number
WO2007094154A1
WO2007094154A1 PCT/JP2007/051041 JP2007051041W WO2007094154A1 WO 2007094154 A1 WO2007094154 A1 WO 2007094154A1 JP 2007051041 W JP2007051041 W JP 2007051041W WO 2007094154 A1 WO2007094154 A1 WO 2007094154A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
roll
rate
transmission
reception
Prior art date
Application number
PCT/JP2007/051041
Other languages
English (en)
French (fr)
Inventor
Yoshikazu Kakura
Shousei Yoshida
Kengo Oketani
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2008500425A priority Critical patent/JP4760904B2/ja
Priority to CN200780005908XA priority patent/CN101385252B/zh
Priority to EP07707292.4A priority patent/EP1988644B1/en
Priority to US12/279,152 priority patent/US7746807B2/en
Publication of WO2007094154A1 publication Critical patent/WO2007094154A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03834Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using pulse shaping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies

Definitions

  • the present invention relates to a bandwidth limiting method for limiting the bandwidth of transmission / reception signals and a wireless communication system using the method.
  • Figure 1 shows a wireless communication system with a root Nyquist filter described in Non-Patent Document 1 (Hiroshi Saito, “Modulation and Demodulation of Digital Wireless Communication”, IEICE, p. 47-57). Use and explain.
  • FIG. 1 is a block diagram showing a configuration of a conventional wireless communication system.
  • the wireless communication system includes a transmission unit 801 and a reception unit 802.
  • Transmitting section 801 includes transmission symbol generating section 103, pilot generating section 104, signal multiplexing section 105, root Nyquist filter 803, and variable gain amplifier 107.
  • Transmission symbol generation section 103 generates transmission information, performs symbol mapping, and outputs transmission symbol sequence S.
  • Pilot generator 104 generates pilot symbol S
  • Signal multiplexing section 105 multiplexes transmission symbol sequence S and pilot symbol S.
  • the multiplexed signal S is output.
  • the root Nyquist filter 803 applies to the multiplexed signal S.
  • the variable gain amplifier 107 converts the filtered transmission signal S into channel quality information.
  • the receiving unit 802 includes a route Nyquist filter 804, a signal separating unit 109, a data reproducing unit 110, and a channel quality estimating unit 111.
  • the root Nyquist filter 804 outputs a route signal to the reception signal S corresponding to the transmission signal S.
  • the signal separator 109 converts the filtered signal S into a received symbol sequence S and a received pilot.
  • the data recovery unit 110 Separated from signal S.
  • the data recovery unit 110 includes the received symbol sequence S and the reception pie
  • the transmission data is reproduced using the transmission signal S and output as reproduced data S.
  • the channel quality estimator 111 estimates the received pilot signal s force propagation path quality
  • the result is output as channel quality information s.
  • the transmission unit 801 and the reception unit 802 filter the transmission / reception signal using the root Nyquist filters 803 and 804, thereby causing no signal distortion in FIG.
  • the signal band can be limited by the roll-off characteristics as shown.
  • an object of the present invention is to provide a bandwidth limiting method and a wireless communication system that can realize high utilization efficiency of radio frequencies and a wide communication range.
  • the channel quality is estimated by the reception unit, and the signal-to-noise power ratio and the transmission power are transmitted from the transmission unit so that the reception unit can obtain a required signal-to-noise power ratio.
  • the signal is amplified and transmitted with a gain proportional to the difference with the propagation path quality information, which is the estimation result of the transport path quality.
  • the receiver or transmitter determines the roll-off rate of the adaptive filter based on the propagation path quality information, and the transmitter uses the adaptive filter having the determined roll-off rate.
  • the signal is filtered and transmitted.
  • FIG. 1 is a block diagram showing a configuration of a conventional wireless communication system.
  • FIG. 2 is a graph showing the characteristics of the root Nyquist filter shown in FIG.
  • FIG. 3 is a block diagram showing a configuration of the first embodiment of the wireless communication system of the present invention.
  • FIG. 4 is a graph showing an example of the relationship between the roll-off rate and PAPR.
  • FIG. 5 is a block diagram showing a configuration of a second embodiment of the wireless communication system of the present invention.
  • FIG. 6 is a block diagram showing the configuration of the third embodiment of the wireless communication system of the present invention.
  • FIG. 7 is a graph showing how a frequency band used in the wireless communication system of the third embodiment is divided.
  • FIG. 8 is a graph showing an example spectrum when a frequency block to be used is selected according to the roll-off rate of the root Nyquist filter.
  • FIG. 9 is a graph showing another example of the spectrum when the frequency block to be used is selected according to the roll-off rate of the root Nyquist filter.
  • FIG. 10 is a block diagram showing the configuration of the fourth embodiment of the wireless communication system of the present invention.
  • FIG. 3 is a block diagram showing the configuration of the first embodiment of the wireless communication system of the present invention.
  • the wireless communication system includes a transmission unit 101 and a reception unit.
  • the configuration includes the part 102.
  • Transmitting section 101 includes transmission symbol generating section 103, pilot generating section 104, and signal multiplexing section 105.
  • a root Nyquist filter 106 and a variable gain amplifier 107 are provided.
  • Transmission symbol generation section 103 generates transmission information, performs symbol mapping, and outputs transmission symbol sequence S.
  • Pilot generator 104 generates pilot symbol S
  • Signal multiplexing section 105 multiplexes transmission symbol sequence S and pilot symbol S.
  • the multiplexed signal S is output.
  • the root Nyquist filter 106 applies to the multiplexed signal S.
  • Transmit signal S is amplified according to propagation path quality information S and output as transmit signal S
  • the receiving unit 102 includes a root Nyquist filter 108, a signal separating unit 109, and a data reproducing unit 110.
  • a channel quality estimation unit 111 and a roll-off rate determination unit 112 are provided.
  • the root Nyquist filter 108 is configured to receive the received signal S corresponding to the transmitted signal S.
  • Filtering with root roll-off characteristics corresponding to off-rate information Salp is performed and filtering signal S is output.
  • the signal separator 109 receives the filtered signal S
  • the symbol sequence S and the received pilot signal S are separated.
  • the transmission data is regenerated using the received signal sequence S and the received pilot signal S, and regenerated.
  • Channel quality estimator 111 receives received pilot signal S or
  • the channel quality is estimated, and the estimation result is output as channel quality information s.
  • the loop-off rate determining unit 112 determines the optimum roll-off rate for the channel quality information S force, and
  • the transmission unit 101 and the reception unit 102 may be configured using, for example, a logic circuit or a memory, for example, except for the variable gain amplifier 107.
  • the variable gain amplifier 107 may be a well-known high-frequency amplifier circuit using an FET, for example. Etc.
  • the roll-off rate determining unit 111 included in the receiving unit 102 uses the roll-off rate of the route Nyquist filter included in the transmitting unit 101 and the receiving unit 102 as the channel quality.
  • the channel quality is In a good case, that is, when the required value of transmission power is small, it is possible to perform transmission with high frequency utilization efficiency by selecting a small roll-off rate.
  • the propagation path quality is poor, that is, if the required value of transmission power is large, the PAPR can be reduced and the communication range can be improved by selecting a large roll-off rate.
  • the relationship between the roll-off rate and PAPR has the characteristics shown in Fig. 4, and the signal-to-noise power ratio is used as the channel quality information S, and the roll-off rate is determined according to the conditions described below.
  • Fig. 4 shows the relationship between PAPR (dB) and the cumulative distribution for each roll-off rate when the roll-off rate (shown as RO in Fig. 4) is changed from 0.1 0 to 0.50. ing.
  • variable gain amplifier 107 compares the difference between the signal-to-noise power ratio and the channel quality information S so that the required signal-to-noise power ratio (for example, 15 dB) can be obtained at the receiving unit 102.
  • the CQI power is greater than or equal to dB, it is assumed that the required signal-to-noise power ratio of 15 dB can be realized by the receiving unit 102 without causing distortion in the transmission signal.
  • the propagation path quality information S becomes 4.5 dB, and variable gain amplification is performed.
  • the root Nyquist filter 106 of the transmission unit 101 selects the roll-off rate ⁇ using the roll-off rate information Salp, and the variable gain amplifier 107 is selected. In order to select the gain using the propagation path quality information S in FIG.
  • the roll-off rate information Salp generated by the rate determining unit 112 may be transmitted from the second radio communication device 2 to the first radio communication device 1 as a control signal.
  • the root Nyquist filter 106 of the transmitter 101 can easily obtain the roll-off rate information Salp
  • the variable gain amplifier 107 can easily obtain the propagation path quality information S.
  • the route Nyquist filter 106 of the transmission unit 101 and the route Nyquist filter 108 of the reception unit 102 may use a predetermined initial value as the roll-off rate ⁇ .
  • the configuration in which the transmission unit 101 and the reception unit 102 are each provided with the route Nyquist filter has been described, but in the present embodiment, the signal filtering by the transmission unit 101 and the reception unit 102 is performed.
  • the root Nyquist filter may be provided only in the transmission unit 101.
  • the receiving unit 102 includes a band-pass filter that passes a wider band than the filter having the roll-off characteristic. It only has to be.
  • the band pass filter may have any configuration.
  • the roll-off rate determining unit 111 included in the receiving unit 102 determines the roll-off rate of the route Nyquist filter included in the transmitting unit 101 and the receiving unit 102 according to the channel quality. By selecting optimally, high frequency utilization efficiency and wide communication range can be realized.
  • FIG. 5 is a block diagram showing a configuration of the second embodiment of the wireless communication system of the present invention.
  • the radio communication system has a configuration including a transmission unit 201 and a reception unit 202.
  • Transmitting section 201 includes transmission symbol generating section 103, pilot generating section 104, and signal multiplexing section 105.
  • a root Nyquist filter 106 A root Nyquist filter 106, a variable gain amplifier 107, and a roll-off rate determination unit 203.
  • Transmission symbol generation section 103 generates transmission information, performs symbol mapping, and outputs transmission symbol sequence S.
  • Pilot generating section 104 generates pilot symbol S
  • Signal multiplexing section 105 multiplexes transmission symbol sequence S and pilot symbol S.
  • the multiplexed signal S is output.
  • the roll-off rate determining unit 111 performs propagation path quality information S
  • the force also determines the roll-off rate and outputs it as roll-off rate information Salp.
  • the root Nyquist filter 106 uses the root roll corresponding to the roll-off rate information Salp to the multiplexed signal S.
  • Filtering with off characteristics is performed and output as a filtered transmission signal s.
  • the variable gain amplifier 107 converts the filtered transmission signal S according to the propagation path quality information S.
  • the receiving unit 202 includes a route Nyquist filter 108, a signal separating unit 109, a data reproducing unit 110, and a channel quality estimating unit 111.
  • the root Nyquist filter 108 receives the received signal S corresponding to the transmitted signal S.
  • TX RX Filtering with the root roll-off characteristic corresponding to the off rate information Salp is performed, and the filtered received signal S is output.
  • the signal separation unit 109 converts the filtered signal S
  • the received symbol sequence S and the received pilot signal S are separated.
  • the channel quality estimation unit 111 receives the received pilot signal
  • the channel quality is estimated based on S, and the estimation result is used as channel quality information S.
  • the transmission unit 201 and the reception unit 202 may be configured using, for example, a logic circuit or a memory except for the variable gain amplifier 107.
  • a logic circuit or a memory except for the variable gain amplifier 107.
  • it can be realized by a known high-frequency amplifier circuit using an FET.
  • the roll-off rate of the root Nyquist filters 106 and 108 provided in the transmission unit 201 and the reception unit 202 is determined by the roll-off rate determination unit 203 provided in the transmission unit 201. This is an example of optimal selection according to propagation path quality.
  • the roll-off rate information Salp is generated by the roll-off rate determination unit 203 of the transmission unit 201. Root Nyquist filter 108 needs to be supplied. Further, it is necessary to supply the channel quality information generated by channel quality estimation section 111 of reception section 202 to roll-off rate determination section 203 and variable gain amplifier 107 of transmission section 201, respectively.
  • the channel quality information S obtained by the channel quality estimation unit 111 of the radio communication device 2 is used as the second radio
  • the roll-off rate information Salp generated by the off-rate determining unit 203 may be transmitted from the first wireless communication device 1 to the second wireless communication device 2 as a control signal. In this way, the receiver 202 root Nyquist filter 108 can easily obtain roll-off rate information Salp.
  • the route Nyquist filter 106 of the transmission unit 201 and the route Nyquist filter 108 of the reception unit 202 may use a predetermined initial value as the roll-off rate ⁇ .
  • the transmission unit 201 and the reception unit 202 are each provided with a root Nyquist filter.
  • the transmission unit 201 and the reception unit 202 perform filtering of signals.
  • the root Nyquist filter may be provided only in the transmission unit 201.
  • the receiving unit 202 only needs to include a band-pass filter that passes a wider band than the filter having the roll-off characteristic.
  • the band pass filter may have any configuration.
  • an example in which the band of the transmission / reception signal is limited using the root Nyquist filter is shown, but an adaptive filter other than the root Nyquist filter may be used if the roll-off rate ⁇ can be changed. .
  • the roll-off rate determination unit 203 provided in the transmission unit 201 uses the route provided in the transmission unit 201 and the reception unit 202.
  • the Nyquist filter roll-off rate optimally according to the channel quality, high V, high frequency utilization efficiency and wide communication range can be realized.
  • FIG. 6 is a block diagram showing the configuration of the third embodiment of the wireless communication system of the present invention.
  • the radio communication system has a configuration including a transmission unit 301 and a reception unit 302.
  • Transmission section 301 includes transmission symbol generation section 103, pilot generation section 104, and signal multiplexing section 105.
  • a root Nyquist filter 106 A root Nyquist filter 106, a variable gain amplifier 107, a frequency resource selection unit 303, and a frequency shift unit 304.
  • Transmission symbol generation section 103 generates transmission information, performs symbol mapping, and outputs transmission symbol sequence S.
  • Pilot generator 104 generates pilot symbol S To do.
  • Signal multiplexing section 105 multiplexes transmission symbol sequence S and pilot symbol S.
  • the multiplexed signal S is output.
  • the root Nyquist filter 106 applies to the multiplexed signal S.
  • the frequency resource selection unit 303 performs roll-off rate information
  • the frequency resource corresponding to Salp is selected, and the frequency resource information S indicating the selected frequency resource is output.
  • the frequency shift unit 304 converts the reference transmission signal S into a frequency resource.
  • the frequency is shifted based on the source information S and output as a filtered transmission signal S.
  • the variable gain amplifier 107 converts the filtered transmission signal S according to the propagation path quality information S.
  • the reception unit 302 includes a frequency shift unit 305, a frequency resource selection unit 306, a root Nyquist filter 108, a signal separation unit 109, a data reproduction unit 110, a channel quality estimation unit 111, and a loop-off rate determination unit 112.
  • Frequency shift section 305 converts received signal S corresponding to transmitted signal S to frequency resource information.
  • the frequency is shifted based on the information S and output as the reference received signal S. Root nike
  • the filter 108 applies a route load corresponding to the roll-off rate information Salp to the reference received signal S.
  • the signal separation unit 109 converts the filtered signal S into a reception symbol sequence S and a reception neuron.
  • the data recovery unit 110 receives the received symbol sequence S and the receive pipe.
  • the transmission data is reproduced using the lot signal S and output as reproduction data S. H
  • the channel quality estimation unit 111 estimates the received pilot signal s force propagation path quality
  • the estimation result is output as channel quality information S.
  • Road quality information S force Determines the roll-off rate and outputs it as roll-off rate information Salp.
  • the frequency resource selection unit 306 selects a frequency resource corresponding to the roll-off rate information Salp, and outputs the frequency resource information S.
  • the transmission unit 301 and the reception unit 302 may be configured by using, for example, a logic circuit or a memory, except for the variable gain amplifier 107.
  • the gain amplifier 107 can be realized by, for example, a well-known high-frequency amplifier circuit using an FET.
  • the wireless communication system of the third exemplary embodiment has a plurality of frequency bands used for communication in a plurality of This is an example in which frequency resources are efficiently used by dividing into frequency blocks and assigning each frequency block to be used for signal transmission / reception according to the roll-off rate value. Since the method for selecting the roll-off rate used in the root Nyquist filters 106 and 108 is the same as that in the first embodiment, the description thereof is omitted.
  • the entire frequency band used in the wireless communication system including the transmission unit 301 and the reception unit 302 shown in FIG. 6 is divided into three frequency blocks having the same bandwidth. Think about the case.
  • the third frequency block is used.
  • the spectrum waveform of each frequency block is as shown in Fig. 8.
  • FIG. 8 shows an example in which a lower frequency block is assigned as the roll-off factor ⁇ is smaller.
  • a higher frequency block may be assigned as the roll-off factor ⁇ is smaller.
  • the spectrum waveform of each frequency block is as shown in FIG.
  • the frequency block located at the band edge of the entire frequency band is assigned to the signal corresponding to the value with the smallest roll-off rate ⁇ , the signal strength sharply attenuates at the band edge. Interference with radio frequencies used by other radio communication systems without compromising frequency utilization efficiency can be suppressed.
  • FIGS. 7 to 9 show an example in which the entire frequency band used in the wireless communication system is divided into three frequency blocks having the same bandwidth.
  • the force division number need not be three. It may be shoes. Further, it is not necessary to equalize the bandwidth of each frequency block, and a different bandwidth may be used for each frequency block. For example, if you assign the widest bandwidth to the frequency block that is used for transmission and reception of signals corresponding to the largest roll-off rate The signal band transmitted and received in the frequency block can be widened.
  • the configuration in which the transmission unit 301 and the reception unit 302 are each provided with a root Nyquist filter has been described.
  • signal filtering by the transmission unit 301 and the reception unit 302 is performed.
  • the root Nyquist filter may be provided only in the transmission unit 301.
  • the receiving unit 302 may be provided with a band-pass filter that passes a wider band than the filter having the roll-off characteristic.
  • the band pass filter may have any configuration.
  • the roll-off rate determining unit 112 included in the receiving unit 302 has the route included in the transmitting unit 301 and the receiving unit 302.
  • the entire frequency band to be used is divided into a plurality of frequency blocks, and the frequency block is optimally allocated according to the roll-off rate of the root Nyquist filter. Frequency resources can be used more efficiently.
  • FIG. 10 is a block diagram showing a configuration of the fourth embodiment of the wireless communication system of the present invention.
  • the radio communication system according to the fourth embodiment has a configuration including a transmission unit 401 and a reception unit 402.
  • the transmitting unit 401 includes a signal processing unit 403 and a variable gain amplifier 107, and includes a signal processing unit 40.
  • 3 is configured by, for example, a computer including a CPU (or DSP) that executes processing according to a program, a storage device that is used for processing of the CPU, and a recording medium that stores the program.
  • a computer including a CPU (or DSP) that executes processing according to a program, a storage device that is used for processing of the CPU, and a recording medium that stores the program.
  • the signal processing unit 403 uses a program stored in a recording medium for various processes of the transmission unit excluding the gain variable amplifier 107 described in the first to third embodiments. It is executed by the CPU (or DSP).
  • the receiving unit 402 includes a signal processing unit 404.
  • the signal processing unit 404 includes a CPU (or DSP) that executes processing according to a program, a storage device used for processing of the CPU, and a program. It is comprised by the computer provided with the stored recording medium, for example.
  • the signal processing unit 404 executes various processes of the receiving unit shown in the first to third embodiments by a CPU (or DSP) according to a program stored in a recording medium.
  • the signal processing unit 403 of the transmission unit 401 and the signal processing unit 404 of the reception unit 402 may be provided separately or may have a common configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Transmitters (AREA)
  • Circuits Of Receivers In General (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

 受信部により伝搬路品質を推定し、受信部にて所要の信号対雑音電力比が得られるように、送信部から信号対雑音電力比と伝搬路品質の推定結果である伝搬路品質情報との差に比例した利得により信号を増幅して送信する。このとき、受信部または送信部にて伝搬路品質情報を基に適応フィルタのロールオフ率を決定し、送信部は該決定したロールオフ率の適応フィルタを用いて信号をフィルタリングして送信する。

Description

帯域制限方法及び無線通信システム
技術分野
[0001] 本発明は送受信信号の帯域幅を制限するための帯域制限方法及び該方法を用い る無線通信システムに関する。
背景技術
[0002] 無線通信システムにおいて、信号歪を生ずることなく送受信信号の帯域幅を制限 する技術としてルートナイキストフィルタを用いる方法がある。以下、非特許文献 1 (斉 藤洋ー著, 「ディジタル無線通信の変復調」,電子情報通信学会, p. 47— 57)に記 載されたルートナイキストフィルタを備えた無線通信システムについて図 1を用いて説 明する。
[0003] 図 1は従来の無線通信システムの構成を示すブロック図である。
[0004] 図 1に示すように、無線通信システムは、送信部 801及び受信部 802を有する構成 である。
[0005] 送信部 801は、送信シンボル生成部 103、パイロット生成部 104、信号多重部 105 、ルートナイキストフィルタ 803及び利得可変増幅器 107を備えて!/、る。
[0006] 送信シンボル生成部 103は、送信情報を生成してシンボルマッピングを行い、送信 シンボル系列 S を出力する。パイロット生成部 104はパイロットシンボル S を生成
TXS PI
する。信号多重部 105は、送信シンボル系列 S とパイロットシンボル S とを多重し
TXS PI
、多重化信号 S を出力する。ルートナイキストフィルタ 803は、多重化信号 S に
MUX MUX
ルートロールオフ特性を有するフィルタリングを施し、フィルタリング送信信号 S を
FTX
出力する。利得可変増幅器 107は、フィルタリング送信信号 S を伝搬路品質情報
FTX
S に応じて増幅し、送信信号 S として出力する。
CQI X
[0007] 受信部 802は、ルートナイキストフィルタ 804、信号分離部 109、データ再生部 110 及びチャネル品質推定部 111を備えて 、る。
[0008] ルートナイキストフィルタ 804は、送信信号 S に対応する受信信号 S にルート口
TX RX
ールオフ特性を有するフィルタリングを施し、フィルタリング信号 S —を出力する。信 号分離部 109は、フィルタリング信号 S を受信シンボル系列 S と受信ノ ィロット
FRX RXS
信号 S とに分離する。データ再生部 110は、受信シンボル系列 S と受信パイ口
RXPI RXS
ット信号 S とを用いて送信データを再生し、再生データ S として出力する。チヤ
RXPI RED
ネル品質推定部 111は、受信パイロット信号 s 力 伝搬路品質を推定し、その推
RXPI
定結果を伝搬路品質情報 s として出力する。
CQI
[0009] 図 1に示した無線通信システムでは、送信部 801及び受信部 802にてルートナイキ ストフィルタ 803、 804を用いて送受信信号にフィルタリングを施すことにより、信号歪 を生ずることなぐ図 2に示すようなロールオフ特性によって信号帯域を制限できる。
[0010] 上述した従来の無線通信システムでは、図 2に示すようにロールオフ率 α (0< α < 1)を小さくするほど信号帯域を急峻に制限できるため、無線周波数の利用効率が向 上する。し力しながら、ロールオフ率を小さくすると、平均送信電力に対するピーク電 力の比である PAPR (Peak to Average Power Ratio)が大きくなり、送信アンプ(図 1に示した利得可変増幅器)が飽和することによる信号歪を回避するために送信電力 を制限する必要が生じる。そのため、送信信号の到達距離が短くなり、通信範囲が狭 くなつてしまう問題がある。
発明の開示
[0011] そこで、本発明は、無線周波数の高い利用効率と広い通信範囲を実現できる帯域 制限方法及び無線通信システムを提供することを目的とする。
[0012] 上記目的を達成するため本発明では、受信部により伝搬路品質を推定し、受信部 にて所要の信号対雑音電力比が得られるように、送信部から信号対雑音電力比と伝 搬路品質の推定結果である伝搬路品質情報との差に比例した利得により信号を増 幅して送信する。このとき、受信部または送信部にて伝搬路品質情報を基に適応フィ ルタのロールオフ率を決定し、送信部は該決定したロールオフ率の適応フィルタを用
V、て信号をフィルタリングして送信する。
[0013] このように適応フィルタのロールオフ率を伝搬路品質に応じて最適に選択すること で、例えば、伝搬路品質が良い場合、すなわち送信電力の所要値が小さい場合は 小さなロールオフ率を選択することで周波数利用効率の高い送信を行うことが可能 である。また、伝搬路品質が悪い場合、すなわち送信電力の所要値が大きい場合は 大きなロールオフ率を選択することで PAPRを低減して通信範囲を向上させることが できる。
[0014] したがって、適応フィルタのロールオフ率を伝搬路品質に応じて最適に選択するこ とで、高 、周波数利用効率と広 、通信範囲を実現できる。
図面の簡単な説明
[0015] [図 1]図 1は従来の無線通信システムの構成を示すブロック図である。
[図 2]図 2は図 1に示したルートナイキストフィルタの特性を示すグラフである。
[図 3]図 3は本発明の無線通信システムの第 1の実施の形態の構成を示すブロック図 である。
[図 4]図 4はロールオフ率と PAPRの関係の一例を示すグラフである。
[図 5]図 5は本発明の無線通信システムの第 2の実施の形態の構成を示すブロック図 である。
[図 6]図 6は本発明の無線通信システムの第 3の実施の形態の構成を示すブロック図 である。
[図 7]図 7は第 3の実施の形態の無線通信システムで使用する周波数帯域を分割す る様子を示すグラフである。
[図 8]図 8はルートナイキストフィルタのロールオフ率に応じて使用する周波数ブロック を選択したときのスペクトラム例を示すグラフである。
[図 9]図 9はルートナイキストフィルタのロールオフ率に応じて使用する周波数ブロック を選択したときのスペクトラムの他の例を示すグラフである。
[図 10]図 10は本発明の無線通信システムの第 4の実施の形態の構成を示すブロック 図である。
発明を実施するための最良の形態
[0016] 次に本発明につ 、て図面を参照して説明する。
(第 1の実施の形態)
図 3は本発明の無線通信システムの第 1の実施の形態の構成を示すブロック図で ある。
[0017] 図 3に示すように、第 1の実施の形態の無線通信システムは送信部 101及び受信 部 102を有する構成である。
[0018] 送信部 101は、送信シンボル生成部 103、パイロット生成部 104、信号多重部 105
、ルートナイキストフィルタ 106及び利得可変増幅器 107を備えている。
[0019] 送信シンボル生成部 103は、送信情報を生成してシンボルマッピングを行 ヽ、送信 シンボル系列 S を出力する。パイロット生成部 104はパイロットシンボル S を生成
TXS PI
する。信号多重部 105は、送信シンボル系列 S とパイロットシンボル S とを多重し
TXS PI
、多重化信号 S を出力する。ルートナイキストフィルタ 106は、多重化信号 S に
MUX MUX
ロールオフ率情報 Salpに対応したルートロールオフ特性を有するフィルタリングを施 し、フィルタリング送信信号 S を出力する。利得可変増幅器 107は、フィルタリング
FTX
送信信号 S を伝搬路品質情報 S に応じて増幅し、送信信号 S として出力する
FTX CQI TX
[0020] 受信部 102は、ルートナイキストフィルタ 108、信号分離部 109、データ再生部 110
、チャネル品質推定部 111及びロールオフ率決定部 112を備えて 、る。
[0021] ルートナイキストフィルタ 108は、送信信号 S に対応する受信信号 S 〖こ、ロール
TX RX
オフ率情報 Salpに対応したルートロールオフ特性を有するフィルタリングを施し、フィ ルタリング信号 S を出力する。信号分離部 109は、フィルタリング信号 S を受信
FRX FRX
シンボル系列 S と受信パイロット信号 S とに分離する。データ再生部 110は、受
RXS RXPI
信シンボル系列 S と受信パイロット信号 S とを用いて送信データを再生し、再生
RXS RXPI
データ S として出力する。チャネル品質推定部 111は、受信パイロット信号 S か
RED RXPI
ら伝搬路品質を推定し、その推定結果を伝搬路品質情報 s として出力する。ロー
CQI
ルオフ率決定部 112は、伝搬路品質情報 S 力も最適なロールオフ率を決定し、口
CQI
ールオフ率情報 Salpとして出力する。
[0022] 送信部 101及び受信部 102は、可変利得増幅器 107を除いて、例えば論理回路 やメモリ等を用いて構成すればよぐ可変利得増幅器 107は、例えば FETを用いた 周知の高周波増幅回路等により実現できる。
[0023] 第 1の実施の形態の無線通信システムは、受信部 102が備えるロールオフ率決定 部 111にて、送信部 101及び受信部 102が備えるルートナイキストフィルタのロール オフ率を伝搬路品質に応じて最適に選択する例である。具体的には、伝搬路品質が 良 、場合、すなわち送信電力の所要値が小さ ヽ場合は小さなロールオフ率を選択 することで周波数利用効率の高い送信を行うことが可能である。一方、伝搬路品質が 悪 、場合、すなわち送信電力の所要値が大き ヽ場合は大きなロールオフ率を選択 することで PAPRを低減して通信範囲を向上させることができる。
[0024] 例えば、ロールオフ率と PAPRの関係が図 4に示すような特性を有し、伝搬路品質 情報 S として信号対雑音電力比を用い、以下に記載する条件によりロールオフ率
CQI
αを選択する場合を考える。なお、図 4は、ロールオフ率(図 4では ROと表記)を 0. 1 0〜0. 50まで変えたときの、 PAPR (dB)とロールオフ率毎の累積分布との関係を示 している。
[0025] S < 4dB … a =0. 5
CQI
4dB≤S < 5dB … a =0. 25
CQI
S ≥5dB … a =0. 1
CQI
ここで、可変利得増幅器 107は、受信部 102にて所要の信号対雑音電力比 (例え ば、 15dB)が得られるように、信号対雑音電力比と伝搬路品質情報 S との差に比
CQI
例した最適な利得を選択しているものと仮定する。また、 α =0. 1のとき、送信信号 には可変利得増幅器 107の利得が 10dBまで歪が生じな 、、すなわち伝搬路品質 情報 (信号対雑音電力比) S
CQI力 dB以上ならば、送信信号に歪を生じることなく受 信部 102にて所要の信号対雑音電力比 15dBが実現できるものとする。
[0026] 今、伝搬路品質情報 (ここでは、信号対雑音電力比) S = 7dBとし、可変利得増
CQI
幅器 107で利得 = 8dBが選択されたとすると、ロールオフ率決定部 112は α =0. 1 を選択する。
[0027] このとき、受信部 102のルートナイキストフィルタ 108は、次回の信号受信時に備え て、ロールオフ率情報 Salpにしたがって α =0. 1を選択する。
[0028] また、送信部 101のルートナイキストフィルタ 106は、ロールオフ率情報 Salpにした がって α =0. 1を選択し、これを用いて次回の送信を行う。
[0029] 次の送受信時刻において、伝搬路品質情報 S =4. 5dBとなり、可変利得増幅
CQI
器 107力 S禾 IJ得 = 10. 5dBを選択すると、ロールオフ率決定部 112は α =0. 25を選 択する。 [0030] このとき、図 4に示すグラフの累積分布(CDF Cumulative Distribution Function) 力 S 10_3となるラインをみると、 α =0. 25を選択した場合、 α =0. 1を選択したとき比 ベて PAPRが約 ldB低下している。したがって、 α =0. 25を選択すると、 α =0. 1 を選択したときに歪が生じない上限の利得 10dBよりも大きい 10. 5dBまで歪を生じ ることなく信号を増幅することが可能になる。
[0031] さらに、 a =0. 5を選択すると、 a =0. 1を選択した場合に比べて PAPRが約 3. 5 dB低下している。そのため、より高い利得での増幅が可能になる。
[0032] ところで、第 1の実施の形態の無線通信システムでは、送信部 101のルートナイキス トフィルタ 106にてロールオフ率情報 Salpを用いてロールオフ率 αを選択し、可変利 得増幅器 107にて伝搬路品質情報 S を用いて利得を選択するため、受信部 102
CQI
から送信部 101へロールオフ率情報 Salp及び伝搬路品質情報 S を供給する必要
CQI
がある。
[0033] そのため、図 3に示した送信部 101及び受信部 102を備えた第 1の無線通信装置 1 と第 2の無線通信装置 2間で通信を行う無線通信システムの場合、例えば第 2の無線 通信装置 2のチャネル品質推定部 111で求めた伝搬路品質情報 S 及びロールォ
CQI
フ率決定部 112で生成したロールオフ率情報 Salpを、第 2の無線通信装置 2から第 1の無線通信装置 1へ制御信号として送信すればよい。このようにすれば、送信部 10 1のルートナイキストフィルタ 106はロールオフ率情報 Salpを容易に入手することが可 能であり、可変利得増幅器 107は伝搬路品質情報 S を容易に入手することができ
CQI
る。
[0034] なお、初回の送受信時、送信部 101のルートナイキストフィルタ 106及び受信部 10 2のルートナイキストフィルタ 108は、予め決められた初期値をロールオフ率 αとして 用いればよい。
[0035] また、本実施形態では、送信部 101と受信部 102とにそれぞれルートナイキストフィ ルタを備える構成を示したが、本実施形態では送信部 101と受信部 102とによる信 号のフィルタリングにロールオフ特性を実現できればょ 、ため、ルートナイキストフィ ルタを送信部 101にのみ備える構成であってもよい。その場合、受信部 102には該ロ ールオフ特性を持つフィルタよりも広い帯域を通過させる帯域通過型フィルタを備え ていればよい。この帯域通過型フィルタの構成はどのようなものでもよい。さらに、本 実施形態では、ルートナイキストフィルタを用いて送受信信号の帯域を制限する例を 示したが、ロールオフ率 αが変更可能であれば、ルートナイキストフィルタ以外の適 応フィルタを用いてもよい。
[0036] 本実施形態の無線通信システムによれば、受信部 102が備えるロールオフ率決定 部 111にて、送信部 101及び受信部 102が備えるルートナイキストフィルタのロール オフ率を伝搬路品質に応じて最適に選択することで、高い周波数利用効率と広い通 信範囲を実現できる。
(第 2の実施の形態)
図 5は本発明の無線通信システムの第 2の実施の形態の構成を示すブロック図で ある。
[0037] 図 5に示すように、第 2の実施の形態の無線通信システムは送信部 201及び受信 部 202を有する構成である。
[0038] 送信部 201は、送信シンボル生成部 103、パイロット生成部 104、信号多重部 105
、ルートナイキストフィルタ 106、利得可変増幅器 107及びロールオフ率決定部 203 を備えている。
[0039] 送信シンボル生成部 103は、送信情報を生成してシンボルマッピングを行 ヽ、送信 シンボル系列 S を出力する。パイロット生成部 104は、パイロットシンボル S を生成
TXS ΡΙ
する。信号多重部 105は、送信シンボル系列 S とパイロットシンボル S とを多重し
TXS ΡΙ
、多重化信号 S を出力する。ロールオフ率決定部 111は、伝搬路品質情報 S
MUX CQI
力もロールオフ率を決定し、ロールオフ率情報 Salpとして出力する。ルートナイキスト フィルタ 106は、多重化信号 S にロールオフ率情報 Salpに対応したルートロール
MUX
オフ特性を有するフィルタリングを施し、フィルタリング送信信号 s として出力する。
FTX
利得可変増幅器 107は、フィルタリング送信信号 S を伝搬路品質情報 S に応じ
FTX CQI
て増幅し、送信信号 s として出力する。
TX
[0040] 受信部 202は、ルートナイキストフィルタ 108、信号分離部 109、データ再生部 110 及びチャネル品質推定部 111を備えて 、る。
[0041] ルートナイキストフィルタ 108は、送信信号 S に対応する受信信号 S 〖こ、ロール
TX RX オフ率情報 Salpに対応したルートロールオフ特性を有するフィルタリングを施し、フィ ルタリング受信信号 S を出力する。信号分離部 109は、フィルタリング信号 S を
FRX FRX
受信シンボル系列 S と受信パイロット信号 S とに分離する。データ再生部 110
RXS RXPI
は、受信シンボル系列 S と受信パイロット信号 S とを用いて送信データを再生し
RXS RXPI
、再生データ S として出力する。チャネル品質推定部 111は、受信ノ ィロット信号
RED
S に基づいて伝搬路品質を推定し、その推定結果を伝搬路品質情報 S として
RXPI CQI
出力する。
[0042] 送信部 201及び受信部 202は、第 1の実施の形態と同様に、可変利得増幅器 107 を除いて、例えば論理回路やメモリ等を用いて構成すればよぐ可変利得増幅器 10 7は、例えば FETを用いた周知の高周波増幅回路等により実現できる。
[0043] 第 2の実施の形態の無線通信システムは、送信部 201が備えるロールオフ率決定 部 203にて、送信部 201及び受信部 202が備えるルートナイキストフィルタ 106、 10 8のロールオフ率を伝搬路品質に応じて最適に選択する例である。
[0044] ルートナイキストフィルタ 106、 108で用いるロールオフ率の選択方法については第 1の実施の形態と同様であるため、その説明は省略する。
[0045] 第 2の実施の形態の無線通信システムでは、送信部 201のロールオフ率決定部 20 3にてロールオフ率情報 Salpを生成するため、該ロールオフ率情報 Salpを受信部 2 01のルートナイキストフィルタ 108へ供給する必要がある。また、受信部 202のチヤネ ル品質推定部 111で生成した伝搬路品質情報を送信部 201のロールオフ率決定部 203及び可変利得増幅器 107にそれぞれ供給する必要がある。
[0046] そのため、図 5に示した送信部 201及び受信部 202を備えた第 1の無線通信装置 1 と第 2の無線通信装置 2間で通信を行う無線通信システムの場合、例えば第 2の無線 通信装置 2のチャネル品質推定部 111で求めた伝搬路品質情報 S を、第 2の無線
CQI
通信装置 2から第 1の無線通信装置 1へ制御信号として送信すればよい。このように すれば、送信部 201のロールオフ率決定部 203及び可変利得増幅器 107は伝搬路 品質情報 S を容易に入手することができる。また、第 1の無線通信装置 1のロール
CQI
オフ率決定部 203で生成したロールオフ率情報 Salpを、第 1の無線通信装置 1から 第 2の無線通信装置 2へ制御信号として送信すればよい。このようにすれば、受信部 202のルートナイキストフィルタ 108はロールオフ率情報 Salpを容易に入手すること ができる。
[0047] なお、初回の送受信時、送信部 201のルートナイキストフィルタ 106及び受信部 20 2のルートナイキストフィルタ 108は、予め決められた初期値をロールオフ率 αとして 用いればよい。
[0048] また、本実施形態では、送信部 201及び受信部 202にそれぞれルートナイキストフ ィルタを備えた構成を示した力 本実施形態では送信部 201と受信部 202とによる信 号のフィルタリングにロールオフ特性を実現できればょ 、ため、ルートナイキストフィ ルタを送信部 201にのみ備える構成であってもよい。その場合、受信部 202には該ロ ールオフ特性を持つフィルタよりも広い帯域を通過させる帯域通過型フィルタを備え ていればよい。この帯域通過型フィルタの構成はどのようなものでもよい。さらに、本 実施形態では、ルートナイキストフィルタを用いて送受信信号の帯域を制限する例を 示したが、ロールオフ率 αが変更可能であれば、ルートナイキストフィルタ以外の適 応フィルタを用いてもよい。
[0049] 本実施形態の無線通信システムによれば、第 1の実施の形態と同様に、送信部 20 1が備えるロールオフ率決定部 203にて、送信部 201及び受信部 202が備えるルー トナイキストフィルタのロールオフ率を伝搬路品質に応じて最適に選択することで、高 V、周波数利用効率と広!、通信範囲を実現できる。
(第 3の実施の形態)
図 6は本発明の無線通信システムの第 3の実施の形態の構成を示すブロック図で ある。
[0050] 図 6に示すように、第 3の実施の形態の無線通信システムは送信部 301及び受信 部 302を有する構成である。
[0051] 送信部 301は、送信シンボル生成部 103、パイロット生成部 104、信号多重部 105
、ルートナイキストフィルタ 106、利得可変増幅器 107、周波数リソース選択部 303及 び周波数シフト部 304を備えて 、る。
[0052] 送信シンボル生成部 103は、送信情報を生成してシンボルマッピングを行 ヽ、送信 シンボル系列 S を出力する。パイロット生成部 104はパイロットシンボル S を生成 する。信号多重部 105は、送信シンボル系列 S とパイロットシンボル S とを多重し
TXS PI
、多重化信号 S を出力する。ルートナイキストフィルタ 106は、多重化信号 S に
MUX MUX
ロールオフ率情報 Salpに対応したルートロールオフ特性を有するフィルタリングを施 し、基準送信信号 S を出力する。周波数リソース選択部 303は、ロールオフ率情報
BTX
Salpに対応する周波数リソースを選択し、選択した周波数リソースを示す周波数リソ ース情報 S を出力する。周波数シフト部 304は、基準送信信号 S を周波数リソー
FR BTX
ス情報 S に基づいて周波数シフトし、フィルタリング送信信号 S として出力する。
FR FTX
利得可変増幅器 107は、フィルタリング送信信号 S を伝搬路品質情報 S に応じ
FTX CQI
て増幅し、送信信号 s として出力する。
TX
[0053] 受信部 302は、周波数シフト部 305、周波数リソース選択部 306、ルートナイキスト フィルタ 108、信号分離部 109、データ再生部 110、チャネル品質推定部 111及び口 ールオフ率決定部 112を備えて ヽる。
[0054] 周波数シフト部 305は、送信信号 S に対応する受信信号 S を周波数リソース情
TX RX
報 S に基づいて周波数シフトし、基準受信信号 S として出力する。ルートナイキス
FR BRX
トフィルタ 108は、基準受信信号 S にロールオフ率情報 Salpに対応したルートロー
BRX
ルオフ特性を有するフィルタリングを施し、フィルタリング受信信号 S を出力する。
FRX
信号分離部 109は、フィルタリング信号 S を受信シンボル系列 S と受信ノ イロッ
FRX RXS
ト信号 S とに分離する。データ再生部 110は、受信シンボル系列 S と受信パイ
RXPI RXS
ロット信号 S とを用いて送信データを再生し、再生データ S として出力する。チ
RXPI RED
ャネル品質推定部 111は、受信パイロット信号 s 力 伝搬路品質を推定し、その
RXPI
推定結果を伝搬路品質情報 S として出力する。ロールオフ率決定部 112は、伝搬
CQI
路品質情報 S 力 ロールオフ率を決定し、ロールオフ率情報 Salpとして出力する。
CQI
周波数リソース選択部 306は、ロールオフ率情報 Salpに対応する周波数リソースを 選択し、周波数リソース情報 S を出力する。
FR
[0055] 送信部 301及び受信部 302は、第 1及び第 2の実施の形態と同様に、可変利得増 幅器 107を除いて、例えば論理回路やメモリ等を用いて構成すればよぐ可変利得 増幅器 107は、例えば FETを用いた周知の高周波増幅回路等により実現できる。
[0056] 第 3の実施の形態の無線通信システムは、通信に使用する全周波数帯域を複数の 周波数ブロックに分割し、ロールオフ率の値に対応して、信号の送受信に使用する 周波数ブロックをそれぞれ割り当てることで、周波数リソースを効率よく利用する例で ある。ルートナイキストフィルタ 106、 108で用いるロールオフ率の選択方法について は第 1の実施の形態と同様であるため、その説明は省略する。
[0057] 以下、図 7に示すように図 6に示した送信部 301と受信部 302を備えた無線通信シ ステムで使用する全周波数帯域を、帯域幅が等しい 3つの周波数ブロックに分割す る場合を考える。
[0058] 例えば第 1の周波数ブロックを α =0. 1が選択された信号の送信に用い、第 2の周 波数ブロックを α =0. 25が選択された信号の送信に用い、第 3の周波数ブロックを a =0. 5が選択された信号の送信に用いる場合を考える。この場合、各周波数プロ ックのスペクトラム波形は、図 8に示すようになる。このようにロールオフ率の値に対応 して、信号の送受信に使用する周波数ブロックをそれぞれ割り当てることで、各周波 数ブロックでは固定のロールオフ率でフィルタリングされた信号が送受信される。なお
、図 8ではロールオフ率 αが小さい程、低い周波数の周波数ブロックを割り当てる例 を示している力 ロールオフ率 αが小さい程、高い周波数の周波数ブロックを割り当 ててもよい。
[0059] また、第 1の周波数ブロックを α =0. 1が選択されたときに用い、第 2の周波数プロ ックを α =0. 5が選択されたときに用い、第 3の周波数ブロックを《=0. 1が選択さ れたときに用いる場合を考える。この場合、各周波数ブロックのスペクトラム波形は図 9に示すようになる。図 9に示すように、全周波数帯域の帯域端に位置する周波数ブ ロックをロールオフ率 αが最も小さい値に対応する信号に割り当てれば、帯域端にて 信号強度が急峻に減衰するため、周波数の利用効率を損なうことなぐ他の無線通 信システムが利用している無線周波数との干渉を抑制できる。
[0060] なお、図 7〜図 9では無線通信システムで使用する全周波数帯域を帯域幅が等し い 3つの周波数ブロックに分割する例を示した力 分割数は 3つである必要はなぐい くつであってもよい。また、各周波数ブロックの帯域幅を等しくする必要はなぐ周波 数ブロック毎に異なる帯域幅であってもよい。例えば、ロールオフ率が最も大きい値 に対応する信号の送受信に用 、る周波数ブロックに最も広 、帯域幅を割り当てれば 、該周波数ブロックにて送受信する信号帯域を広げることができる。
[0061] また、本実施形態では、送信部 301及び受信部 302にそれぞれルートナイキストフ ィルタを備えた構成を示したが、本実施形態では送信部 301と受信部 302とによる信 号のフィルタリングにロールオフ特性を実現できればょ 、ため、ルートナイキストフィ ルタを送信部 301にのみ備える構成であってもよい。その場合、受信部 302には該ロ ールオフ特性を持つフィルタよりも広い帯域を通過させる帯域通過型フィルタを備え ていればよい。この帯域通過型フィルタの構成はどのようなものでもよい。さらに、本 実施形態では、ルートナイキストフィルタを用いて送受信信号の帯域を制限する例を 示したが、ロールオフ率 αが変更可能であれば、ルートナイキストフィルタ以外の適 応フィルタを用いてもよい。
[0062] 本実施形態の無線通信システムによれば、第 1の実施の形態と同様に、受信部 30 2が備えるロールオフ率決定部 112にて、送信部 301及び受信部 302が備えるルー トナイキストフィルタのロールオフ率を伝搬路品質に応じて最適に選択することで、高 V、周波数利用効率と広!、通信範囲を実現できる。
[0063] さらに、本実施形態の無線通信システムでは、使用する全周波数帯域を複数の周 波数ブロックに分割し、ルートナイキストフィルタのロールオフ率に応じて周波数ブロ ックを最適に割り当てることで、周波数リソースをより効率良く利用できる。
(第 4の実施の形態)
図 10は本発明の無線通信システムの第 4の実施の形態の構成を示すブロック図で ある。
[0064] 図 10に示すように、第 4の実施の形態の無線通信システムは送信部 401及び受信 部 402を有する構成である。
[0065] 送信部 401は、信号処理部 403及び利得可変増幅器 107を備え、信号処理部 40
3は、プログラムにしたがって処理を実行する CPU (または DSP)と、 CPUの処理で 用いる記憶装置と、プログラムが格納された記録媒体とを備えた、例えばコンピュータ によって構成される。
[0066] 信号処理部 403は、上記第 1の実施の形態〜第 3の実施の形態で示した、利得可 変増幅器 107を除く送信部の各種処理を記録媒体に格納されたプログラムにしたが つて CPU (または DSP)により実行する。
[0067] 受信部 402は、信号処理部 404を備え、信号処理部 404は、プログラムにしたがつ て処理を実行する CPU (または DSP)と、 CPUの処理で用いる記憶装置と、プロダラ ムが格納された記録媒体とを備えた、例えばコンピュータによって構成される。
[0068] 信号処理部 404は、上記第 1の実施の形態〜第 3の実施の形態で示した受信部の 各種処理を記録媒体に格納されたプログラムにしたがって CPU (または DSP)により 実行する。
[0069] なお、送信部 401の信号処理部 403と受信部 402の信号処理部 404とは、個別に 備えていてもよぐ共通の構成であってもよい。
[0070] 本実施形態の構成においても、第 1の実施の形態〜第 3の実施の形態の無線通信 システムと同様の効果を得ることができる。

Claims

請求の範囲
[1] 送信部及び受信部間で送受信する信号の帯域幅を制限するための帯域制限方法 であって、
前記受信部により伝搬路品質を推定し、
前記受信部にて所要の信号対雑音電力比が得られるように、前記送信部が前記信 号対雑音電力比と前記伝搬路品質の推定結果である伝搬路品質情報との差に比例 した利得により信号を増幅して送信し、
前記送信部と前記受信部とによる信号のフィルタリングをロールオフ特性にするた めの適応フィルタのロールオフ率を、前記受信部が前記伝搬路品質情報を基に決定 し、
前記送信部が、該決定したロールオフ率を持つ前記適応フィルタを用いて信号を フィルタして送信する帯域制限方法。
[2] 送信部及び受信部間で送受信する信号の帯域幅を制限するための帯域制限方法 であって、
前記受信部により伝搬路品質を推定し、
前記受信部にて所要の信号対雑音電力比が得られるように、前記送信部が前記信 号対雑音電力比と前記伝搬路品質の推定結果である伝搬路品質情報との差に比例 した利得により信号を増幅して送信し、
前記送信部と前記受信部とによる信号のフィルタリングをロールオフ特性にするた めの適応フィルタのロールオフ率を、前記送信部が前記伝搬路品質情報を基に決定 し、
前記送信部が、該決定したロールオフ率を持つ前記適応フィルタを用いて信号を フィルタリングして送信する帯域制限方法。
[3] 前記ロールオフ率を、
前記信号の送信電力が大きいほど、大きい値に設定する請求項 1または 2記載の 帯域制限方法。
[4] 前記送信部及び前記受信部間で信号の送受信に使用する全周波数帯域を複数 の周波数ブロックに分割し、 前記決定したロールオフ率の値に対応して、信号の送受信に使用する周波数プロ ックをそれぞれ割り当てる請求項 1から 3のいずれ力 1項記載の帯域制限方法。
[5] 前記複数の周波数ブロックのうち、前記送信部及び前記受信部間の信号の送受信 に使用する全周波数帯域の帯域端に位置する周波数ブロックを、前記ロールオフ率 が最も小さい値に対応する信号の送受信に用いる請求項 4記載の帯域制限方法。
[6] 前記複数の周波数ブロックのうち、前記ロールオフ率が最も大きい値に対応する信 号の送受信に用いる周波数ブロックの帯域幅を最も広くする請求項 4記載の帯域制 限方法。
[7] 送信部及び受信部間で送受信する信号の帯域幅を制限する無線通信システムで あって、
前記受信部は、
伝搬路品質を推定するチャネル品質推定部と、
前記送信部と前記受信部とによる信号のフィルタリングをロールオフ特性にするた めの適応フィルタのロールオフ率を、前記伝搬路品質の推定結果である伝搬路品質 情報を基に決定するロールオフ率決定部と、
を有し、
前記送信部は、
前記受信部にて所要の信号対雑音電力比が得られるように、前記信号対雑音電 力比と前記伝搬路品質情報との差に比例した利得により信号を増幅して送信する可 変利得増幅部と、
前記ロールオフ率決定部で決定したロールオフ率で送信する信号をフィルタリング する適応フィルタと、
を有する無線通信システム。
[8] 送信部及び受信部間で送受信する信号の帯域幅を制限する無線通信システムで あって、
前記受信部は、
伝搬路品質を推定するチャネル品質推定部を有し、
前記送信部は、 前記送信部と前記受信部とによる信号のフィルタリングをロールオフ特性にするた めの適応フィルタのロールオフ率を、前記伝搬路品質の推定結果である伝搬路品質 情報を基に決定するロールオフ率決定部と、
前記受信部にて所要の信号対雑音電力比が得られるように、前記信号対雑音電 力比と前記伝搬路品質情報との差に比例した利得により信号を増幅して送信する可 変利得増幅部と、
前記ロールオフ率決定部で決定したロールオフ率で送信する信号をフィルタリング する適応フィルタと、
を有する無線通信システム。
ロールオフ率決定部は、
前記信号の送信電力が大きいほど、前記ロールオフ率を大きい値に設定する請求 項 7または 8記載の無線通信システム。
前記送信部及び前記受信部は、
信号の送受信に使用する全周波数帯域を複数の周波数ブロックに分割し、 前記決定したロールオフ率の値に対応して、信号の送受信に使用する周波数プロ ックをそれぞれ割り当てる請求項 7から 9の 、ずれ力 1項記載の無線通信システム。 前記送信部及び前記受信部は、
前記複数の周波数ブロックのうち、信号の送受信に使用する全周波数帯域の帯域 端に位置する周波数ブロックを、前記ロールオフ率が最も小さ 、値に対応する信号 の送受信に用いる請求項 10記載の無線通信システム。
前記送信部及び前記受信部は、
前記複数の周波数ブロックのうち、前記ロールオフ率が最も大きい値に対応する信 号の送受信に用いる周波数ブロックの帯域幅を最も広くする請求項 10記載の無線 通信システム。
送受信する信号の帯域幅を制限する処理をコンピュータに実行させるためのプログ ラムであって、
受信した信号の伝搬路品質を推定し、
前記受信した信号で所要の信号対雑音電力比が得られるように、前記信号対雑音 電力比と前記伝搬路品質の推定結果である伝搬路品質情報との差に比例した利得 により可変利得増幅器に信号を増幅して送信させ、
前記伝搬路品質の推定結果である伝搬路品質情報を基に決定したロールオフ率 を持つロールオフ特性にて前記送受信する信号をフィルタリングする処理をコンビュ ータに実行させるためのプログラム。
[14] 前記ロールオフ率を、
前記信号の送信電力が大きいほど、大きい値に設定する処理をコンピュータに実 行させるための請求項 13記載のプログラム。
[15] 信号の送受信に使用する全周波数帯域を複数の周波数ブロックに分割し、
前記決定したロールオフ率の値に対応して、信号の送受信に使用する周波数プロ ックをそれぞれ割り当てる処理をコンピュータに実行させるための請求項 13または 14 記載のプログラム。
[16] 前記複数の周波数ブロックのうち、信号の送受信に使用する全周波数帯域の帯域 端に位置する周波数ブロックを、前記ロールオフ率が最も小さ 、値に対応する信号 の送受信に用いる処理をコンピュータに実行させるための請求項 15記載のプロダラ ム。
[17] 前記複数の周波数ブロックのうち、前記ロールオフ率が最も大きい値に対応する信 号の送受信に用 、る周波数ブロックの帯域幅を最も広くする処理をコンピュータに実 行させるための請求項 15記載のプログラム。
PCT/JP2007/051041 2006-02-17 2007-01-24 帯域制限方法及び無線通信システム WO2007094154A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008500425A JP4760904B2 (ja) 2006-02-17 2007-01-24 帯域制限方法及び無線通信システム
CN200780005908XA CN101385252B (zh) 2006-02-17 2007-01-24 频带限制方法和无线通信系统
EP07707292.4A EP1988644B1 (en) 2006-02-17 2007-01-24 Band limit method and radio communication system
US12/279,152 US7746807B2 (en) 2006-02-17 2007-01-24 Band limiting method and wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006041003 2006-02-17
JP2006-041003 2006-02-17

Publications (1)

Publication Number Publication Date
WO2007094154A1 true WO2007094154A1 (ja) 2007-08-23

Family

ID=38371341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051041 WO2007094154A1 (ja) 2006-02-17 2007-01-24 帯域制限方法及び無線通信システム

Country Status (6)

Country Link
US (1) US7746807B2 (ja)
EP (1) EP1988644B1 (ja)
JP (1) JP4760904B2 (ja)
KR (1) KR101006586B1 (ja)
CN (1) CN101385252B (ja)
WO (1) WO2007094154A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011121926A1 (ja) * 2010-03-31 2011-10-06 パナソニック株式会社 送信装置及び送信方法
WO2013146626A1 (en) * 2012-03-30 2013-10-03 Nec Corporation Improved cyclostationary detection based on estimating the roll-off factor of a transmit filter

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5575805B2 (ja) * 2009-01-19 2014-08-20 スカイワークス ソリューションズ,インコーポレイテッド プログラム可能送信連続時間フィルタ
DE102010001147B4 (de) * 2010-01-22 2016-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mehrfrequenzbandempfänger auf Basis von Pfadüberlagerung mit Regelungsmöglichkeiten
JP2014074782A (ja) * 2012-10-03 2014-04-24 Sony Corp 音声送信装置、音声送信方法、音声受信装置および音声受信方法
US10389506B2 (en) 2016-04-07 2019-08-20 Samsung Electronics Co., Ltd. Method and user equipment for effective signal-to-noise ratio (SNR) computation in rate adaptation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11261481A (ja) * 1998-03-10 1999-09-24 Matsushita Electric Ind Co Ltd Cdma移動通信システム
JP2005524282A (ja) * 2002-04-23 2005-08-11 レイセオン・カンパニー Qpsk信号をパルス整形する方法及びデバイス
JP2005252388A (ja) * 2004-03-01 2005-09-15 Sony Ericsson Mobilecommunications Japan Inc 送信電力制御方法および装置
WO2006013693A1 (ja) * 2004-08-05 2006-02-09 Matsushita Electric Industrial Co., Ltd. 無線送信装置、無線受信装置、無線送信方法および無線受信方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3363465B2 (ja) 1991-11-14 2003-01-08 キヤノン株式会社 データ送信装置及び方法
JP2787894B2 (ja) 1994-05-30 1998-08-20 日本電気株式会社 マルチキャリアディジタル変調用包絡線制御変調装置
JP3476662B2 (ja) * 1997-10-17 2003-12-10 富士通株式会社 ディジタル移動無線通信装置
US6842495B1 (en) * 1998-11-03 2005-01-11 Broadcom Corporation Dual mode QAM/VSB receiver
US6438164B2 (en) * 1998-11-03 2002-08-20 Broadcom Corporation Technique for minimizing decision feedback equalizer wordlength in the presence of a DC component
US6628728B1 (en) * 1999-04-28 2003-09-30 Cyntrust Communications, Inc. Nyquist filter and method
US7027498B2 (en) * 2001-01-31 2006-04-11 Cyntrust Communications, Inc. Data adaptive ramp in a digital filter
KR100400922B1 (ko) * 2001-07-21 2003-10-08 엘지전자 주식회사 디지털 필터의 첨예도 자동 조절 회로 및 방법
WO2003015443A1 (fr) * 2001-08-01 2003-02-20 Mitsubishi Denki Kabushiki Kaisha Systeme mobile de communication, et procede, station de base et station mobile associes
JP3851551B2 (ja) 2001-11-21 2006-11-29 松下電器産業株式会社 送信装置及び受信装置
US7346125B2 (en) * 2002-04-23 2008-03-18 Raytheon Company Method and device for pulse shaping QPSK signals
JP4614829B2 (ja) * 2005-06-20 2011-01-19 株式会社エヌ・ティ・ティ・ドコモ 通信装置及び通信方法
US20070004465A1 (en) * 2005-06-29 2007-01-04 Aris Papasakellariou Pilot Channel Design for Communication Systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11261481A (ja) * 1998-03-10 1999-09-24 Matsushita Electric Ind Co Ltd Cdma移動通信システム
JP2005524282A (ja) * 2002-04-23 2005-08-11 レイセオン・カンパニー Qpsk信号をパルス整形する方法及びデバイス
JP2005252388A (ja) * 2004-03-01 2005-09-15 Sony Ericsson Mobilecommunications Japan Inc 送信電力制御方法および装置
WO2006013693A1 (ja) * 2004-08-05 2006-02-09 Matsushita Electric Industrial Co., Ltd. 無線送信装置、無線受信装置、無線送信方法および無線受信方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011121926A1 (ja) * 2010-03-31 2011-10-06 パナソニック株式会社 送信装置及び送信方法
WO2013146626A1 (en) * 2012-03-30 2013-10-03 Nec Corporation Improved cyclostationary detection based on estimating the roll-off factor of a transmit filter

Also Published As

Publication number Publication date
US20090201950A1 (en) 2009-08-13
CN101385252A (zh) 2009-03-11
CN101385252B (zh) 2012-12-05
EP1988644B1 (en) 2018-04-11
KR20080089492A (ko) 2008-10-06
EP1988644A1 (en) 2008-11-05
US7746807B2 (en) 2010-06-29
KR101006586B1 (ko) 2011-01-07
JPWO2007094154A1 (ja) 2009-07-02
EP1988644A4 (en) 2014-07-02
JP4760904B2 (ja) 2011-08-31

Similar Documents

Publication Publication Date Title
US8208873B2 (en) Method and apparatus for adjusting waveform parameters for an adaptive air interface waveform
JP4614829B2 (ja) 通信装置及び通信方法
WO2007026699A1 (ja) 無線通信システム、無線通信装置、増幅率決定方法、及び記憶媒体
US8805315B2 (en) Apparatus and method for adaptive whitening in a multiple antenna system
WO2007094154A1 (ja) 帯域制限方法及び無線通信システム
CN102223338A (zh) 多载波系统的自适应削峰方法及装置
JP2000252868A (ja) Cdma通信装置とその自動利得制御回路
JP4027565B2 (ja) ディジタル受信機
JP5394882B2 (ja) 受信機及び受信方法
JP4708432B2 (ja) 電力線搬送通信モデム
WO2007077599A1 (ja) 受信装置及び通信システム
CN102638882B (zh) 一种自动增益控制的实现方法和装置
US8477882B2 (en) Radio apparatus
CN110730025A (zh) 一种适用于携能非正交多址通信系统的增量中继方法
CN111435929B (zh) 基于rapp曲线压缩的削峰处理方法及装置、ofdm发射机
US8130866B2 (en) Peak suppressing apparatus, peak suppressing method, and wireless communication device
KR20110052179A (ko) 첨두대평균 전력비 감소 방법, 첨두대평균 전력비 감소 장치, 송신기, 및 수신기
JPH0795141A (ja) 多チャンネル周波数多重信号パワーコントロール方式
JP2017085403A (ja) 無線装置及びその等化方法
JP2023096932A (ja) 無線伝送装置、及びその制御方法
JP4706614B2 (ja) 適応変調システム及びその方法並びにそれを用いた伝送システム
JP2010021603A (ja) デジタル無線の受信装置
JP2010016596A (ja) 送信機及び送信制御方法
JP2013051550A (ja) ダイバーシチ受信機
JPH04284035A (ja) 送信電力制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008500425

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12279152

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780005908.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087020331

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007707292

Country of ref document: EP