WO2007094040A1 - Seatbelt retractor and seatbelt device - Google Patents

Seatbelt retractor and seatbelt device Download PDF

Info

Publication number
WO2007094040A1
WO2007094040A1 PCT/JP2006/302480 JP2006302480W WO2007094040A1 WO 2007094040 A1 WO2007094040 A1 WO 2007094040A1 JP 2006302480 W JP2006302480 W JP 2006302480W WO 2007094040 A1 WO2007094040 A1 WO 2007094040A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
flag
collision
control
detection
Prior art date
Application number
PCT/JP2006/302480
Other languages
French (fr)
Japanese (ja)
Inventor
Yukinori Midorikawa
Original Assignee
Autoliv Development Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Autoliv Development Ab filed Critical Autoliv Development Ab
Priority to PCT/JP2006/302480 priority Critical patent/WO2007094040A1/en
Priority to CN200680052792.0A priority patent/CN101370692B/en
Publication of WO2007094040A1 publication Critical patent/WO2007094040A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/34Belt retractors, e.g. reels
    • B60R22/46Reels with means to tension the belt in an emergency by forced winding up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/34Belt retractors, e.g. reels
    • B60R22/46Reels with means to tension the belt in an emergency by forced winding up
    • B60R2022/4666Reels with means to tension the belt in an emergency by forced winding up characterised by electric actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/34Belt retractors, e.g. reels
    • B60R22/46Reels with means to tension the belt in an emergency by forced winding up
    • B60R2022/4685Reels with means to tension the belt in an emergency by forced winding up with means to adjust or regulate the tensioning force in relation to external parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • B60R21/01512Passenger detection systems
    • B60R21/01544Passenger detection systems detecting seat belt parameters, e.g. length, tension or height-adjustment
    • B60R21/01548Passenger detection systems detecting seat belt parameters, e.g. length, tension or height-adjustment sensing the amount of belt winded on retractor

Definitions

  • the present invention relates to a seat belt retractor and a seat belt device.
  • the electric retractors described in Patent Document 1 and Patent Document 2 include a frame, and a reel shaft that winds up a seat belt is rotatably installed in the frame.
  • the frame is fixed with a lock mechanism that locks the withdrawal of the seat belt when a predetermined deceleration acts on the vehicle or when the seat belt is pulled out at a predetermined acceleration.
  • the central axis of the reel shaft is connected to the central axis of the reel shaft pulley, and the reel shaft pulley is connected to the DC motor pulley via a power transmission belt.
  • the central axis of the DC motor pulley is connected to the DC motor.
  • the direct current motor has a configuration in which various controls are performed by a pulse width modulation (PWM) signal having a power of MPU (micro processing unit) through a direct current motor driving unit.
  • PWM pulse width modulation
  • MPU micro processing unit
  • the MPU has a vehicle speed detection unit that detects the traveling speed of the host vehicle, a collision prediction detection unit that detects whether or not there is a possibility of a collision, and whether or not a user connects a knock belt. Connected to the detector, the DC motor is driven based on each detection result.
  • Patent Document 1 and Patent Document 2 are controlled so as to always give a predetermined slack to the webbing, or the webbing force gradually decreases as the webbing is wound. It is designed to provide a comfortable seat belt installation environment. If it is detected that a collision is inevitable, the PWM signal is input to the DC motor drive unit, and the DC motor is rotated to the seat belt retracting side.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-38110
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-334913
  • the generated power of the motor is not only the PWM value, but the fluctuation of the voltage supplied to the motor, the cumulative usage time of the motor, or Force that fluctuates due to factors such as changes in motor temperature
  • PWM pulse width modulation
  • the present invention has been made in view of the above-described problems, and its purpose is to wind up webbing so that there is no possibility of a collision and normally an extra burden is not placed on the occupant.
  • An object of the present invention is to provide a seatbelt retractor and a seatbelt device that can generate a large amount of power and enable high-speed webbing in an emergency where a collision is predicted. Means for solving the problem
  • Power generating means for generating power for rotating the spindle in a desired direction, and power generated by the power generating means when the power generating means generates the power for rotating the spindle in the scraping direction of the rubbing. Can be transmitted to the spindle.
  • Power transmission means for making it impossible to transmit the power of the power generation means to the spindle when the power generation means generates power in a direction opposite to the power for rotating the spindle in the scraping direction;
  • a seat belt retractor comprising: a control unit that drives and controls the power generation unit;
  • An operating environment detecting means for detecting an operating environment of the power generating means, and the control means detects the operating environment detecting means when determining that the collision predicting means is in a collision avoidable state. Based on the determined operating environment. Controlling the amount of current supplied to the force generating means to a predetermined current value;
  • the current supply amount to the power generation unit is set to the predetermined current without being based on the operation environment detected by the operation environment detection unit.
  • a retractor for a seat belt which is controlled to be larger than the value.
  • the power generation means is driven by pulse width modulation control
  • control means determines that the collision prediction means is in a collision avoidable state
  • the control means changes the pulse width modulation control value based on the operating environment detected by the operating environment detection means,
  • the operating environment detecting means includes: a supply voltage detecting means for detecting a supply voltage to the power generating means; a temperature detecting means for detecting a temperature in the vicinity of the power generating means; and At least one of the accumulated usage time detection means for detecting the accumulated usage time,
  • control means determines that the collision prediction means is in a collision avoidable state, the voltage fluctuation detected by the supply voltage detection means, and the temperature change of the power generation means detected by the temperature detection means And a current supply amount to the power generation means is controlled to a predetermined current value based on at least one of the cumulative use times of the power generation means detected by the cumulative use time detection means.
  • the retractor for a seat belt according to (1) or (2).
  • a seat belt apparatus comprising the seat belt retractor according to any one of (1) to (3).
  • the control of the power generating means for scooping up the webbing is based on the operating environment detected by the operating environment detecting means at the normal time when there is no possibility of collision. Then, the amount of current supplied to the power generation means is controlled to a predetermined current value. As a result, regardless of the change in the operating environment, the power generating means generates a predetermined power to wind up the webbing and apply an appropriate tension to the webbing. Provide a comfortable and comfortable seat belt wearing environment. In an emergency where a collision is predicted, the webbing can be controlled by controlling the current supply amount to the power generation means to be larger than the predetermined current value without being based on the operating environment detected by the operation environment detection means. Wind up quickly to protect the passengers.
  • ⁇ 1 It is a schematic configuration diagram of a seat belt device of the present invention.
  • FIG. 2 is a schematic configuration diagram of the seatbelt retractor in FIG. 1.
  • FIG. 3 is a basic control flowchart of a seat belt retractor.
  • FIG. 4 is a flowchart of initial parameter setting.
  • FIG. 5 is a flowchart of stored origin set driving.
  • FIG. 6 is a flowchart of stop detection.
  • FIG. 7 is a flowchart of clutch release.
  • FIG. 8 is a flowchart of drawer detection.
  • FIG. 9 is a flowchart of timer interrupt.
  • FIG. 10 is a flowchart of door opening / closing detection.
  • FIG. 11 is a flowchart of buckle wearing detection.
  • FIG. 12 is a flowchart of collision prediction control.
  • FIG. 14 is a flowchart of pre-mounting control.
  • FIG. 15 is a flowchart of winding availability detection.
  • FIG. 16 is a flowchart of storage control.
  • FIG. 18 is a flowchart of stop driving.
  • FIG. 19 is a flowchart of control during mounting.
  • FIG. 20 is a flowchart for detecting whether the seat moves back and forth.
  • FIG. 21 is a flowchart for detecting whether there is a change in seatback angle.
  • FIG. 22 is a flowchart of sleep IN control.
  • FIG. 23 is a flowchart of sleep OUT control.
  • FIG. 24 is a longitudinal sectional view of the power transmission means, (A) showing the clutch engaged state, and (B) showing the clutch released state.
  • FIG. 1 is a schematic configuration diagram of a seat belt apparatus according to an embodiment of the present invention
  • FIG. 2 is a schematic configuration diagram of a seat belt retractor in FIG. 3 to 23 are control flowcharts of the seat belt retractor.
  • FIG. 24 is a longitudinal sectional view of the power transmission means, where (A) shows the clutch engaged state and (B) shows the clutch released state.
  • the seatbelt device 1 includes a seatbelt retractor 100 and a webbing 302 of the present invention in which one end side of a webbing 3 02 for restraining the passenger 2 to the seat 301 is fixed in the vicinity of the shoulder of the passenger.
  • the seatbelt retractor 100 of the present invention includes a frame 101.
  • the frame 101 is provided with a spindle 103 for winding the webbing 302 and a spindle shaft 103 a that is coupled to the left end side of the spindle 103 and serves as a rotation center axis of the spindle 103.
  • a drawer preventing means 102 for locking the bow of the web 302.
  • the pull-out prevention means 102 is a conventionally known means, and when a deceleration greater than a predetermined value is applied to the vehicle 3, the VSI operation that locks the bow I of the rubbing 302 and the acceleration at which the rubbing 302 is greater than the predetermined value. It has a WSI action that locks the bow of the webbing 302 when pulled out.
  • the bow I sticking prevention means 102 is configured so that the webbing 302 can be taken up by the electric motor 110 which is the power generation means of the present invention even in the webbing drawer lock state.
  • the spindle 103 is driven by the electric motor 110 via the power transmission means 104 and rotates in the webbing scraping direction. Further, the spindle 103 is connected to the scraping spring 111, and a rotational force in the scraping direction of the webbing 302 is always applied.
  • the seatbelt retractor 100 includes a control unit 200 that controls the electric motor 110, and the electric motor 110 moves in the forward and reverse directions based on a command from a drive circuit 201 described later in the control unit 200.
  • a DC motor that can rotate.
  • the electric motor 110 is rotated by an electric motor stop state detecting means (stop state detecting means) 118 that detects that no drive signal is input from the drive circuit 201 to the electric motor 110, and the electric motor 110.
  • An electric motor drawing direction rotation detecting means (drawing direction rotation detecting means) 119 for detecting that the electric motor 110 is rotated in the drawing direction of the webbing 302 by an electromotive force generated when the electric motor 110 is generated is connected.
  • the electric motor 110 is supplied with temperature detecting means 121 for detecting the temperature in the vicinity of the motor as an operating environment detecting means for detecting the operating environment of the electric motor 110 and a battery (not shown) force.
  • Supply voltage detection means 122 for detecting the voltage to be detected and cumulative use time detection means 123 for detecting the cumulative use time of the electric motor 110 are provided.
  • the power transmission means 104 includes a spindle-side pulley 115 fixed to the spindle shaft 103a, a motor-side pulley 106 fixed to the rotating shaft 110a of the electric motor 110, and a timing belt 107 disposed between both pulleys. And a later-described clutch 150 (see FIG. 24) built in the spindle-side pulley 115. And the electric motor 110 is the webbing 302 When rotating in the scraping direction, a clutch 150 built in the spindle-side pulley 115 is engaged, and the power of the electric motor 110 is transmitted to the spindle 103 to rotate, and the webbing 302 is scraped off.
  • the power transmission means 104 accommodates the clutch 150 and receives the force of the spindle side pulley 115 and the spindle shaft 103a configured in the spindle side pulley 115 that cushions the spindle shaft 103a only on the winding side.
  • a fixed power transmission buffer (not shown).
  • a magnetic disk 116 in which N poles and S poles are alternately formed is fixed to the spindle shaft 103a, and further, a magnetic field detecting means 117 is fixed to the frame 101, and as the spindle shaft 103a rotates.
  • the magnetic field detection means 117 By detecting the changing magnetic field of the magnetic disk 116 by the magnetic field detection means 117, the rotation direction and the rotation speed (rotation angle) of the spindle shaft 103 a are detected, and the detection signal is transmitted to the control means 200.
  • the rotation of the spindle 103 is detected by two Hall sensors (not shown) arranged so as to generate an output whose phase is shifted by four periods, and two-phase pulse trains ⁇ 1 and ⁇ 2 are generated, and the rotation direction
  • the rotation number (rotation angle) is transmitted to the control means 200.
  • the pulse trains ⁇ 1 and ⁇ 2 are digitized by an up / down counter (not shown) in the input / output interface (not shown) of the control means 200 and converted into an output corresponding to the amount of webbing 302 drawn. .
  • a buckle switch 307 which is a seat belt wearing presence / absence detecting means of the present invention, is built in the buckle 304, detects whether or not the seat belt 302 is worn, and supplies a signal corresponding to the wearing or not to the control means 200.
  • the collision prediction unit 120 is a detection unit that determines the possibility of collision with an obstacle (not shown) in front of the vehicle 3 and Z or behind the vehicle 3 and Z or side of the vehicle 3. (Not shown) detects the distance to the obstacle, calculates the relative speed obtained from the time change of the distance, and the time from the distance to the obstacle to the collision. It is determined that the vehicle is in an unavoidable state, and a signal corresponding to the collision unavoidable state is supplied to the control means 200.
  • the control means 200 includes, for example, a microcontroller including a CPU that executes a control program, a RAM that stores processing data, a ROM that stores programs, a built-in timer, an input / output interface that performs signal conversion, and the like (see FIG. And a drive circuit 201 that drives the electric motor 110 in accordance with the output from the microcontroller.
  • the input / output interface sets a belt attachment flag and a collision flag in a flag register (or RAM), not shown.
  • the CPU also monitors the webbing drawer amount via the I / O interface and sets various flags in the flag register.
  • the withdrawal flag indicating the withdrawal of the webbing 302 or the winding of the webbing 302 is calculated from the difference between the previous value at the previous monitoring and the current value at the current monitoring.
  • a winding flag shown or a stop flag where the webbing 302 is not pulled out or wound is set in the flag register.
  • the control unit 200 can determine whether the webbing 302 is pulled out, wound up, stopped, whether or not a seat belt is attached, and the possibility of collision.
  • the control means 200 controls the electric motor 110 based on such information.
  • the electric motor 110 is controlled by comparing the amplitude of the input signal and the amplitude of the carrier signal (triangular wave) with a comparator and binarizing them.
  • Pulse width modulation control (hereinafter also referred to as “PWM control”).
  • the control means 200 and the electric motor 110 are also supplied with the power of the notch line force of the vehicle 3.
  • the basic control flow shown in FIG. 3 is executed when the retractor 100 of the present invention is assembled to the vehicle 3 or when the control means 200 is connected to the battery line for repair or the like. Therefore, the initial parameter set S1 and the timer interrupt enable S3 are not normally performed, but only when the vehicle is assembled at the initial stage or when the battery is removed and reattached for repair or the like.
  • the initial parameter set S1 is a control for setting an initial parameter. As shown in FIG. 4, various status flags related to belt operation are cleared (S51), and then a failure flag is cleared (S 53), each threshold value is then set to a predetermined value (S55), and then a storage origin setting drive (S57) for setting the storage origin is performed.
  • the retracted origin set drive (S57) first sets the drive force of the electric motor 110 so that the tension of the webbing 302 at the shoulder of the occupant 2 is equivalent to ION, as shown in FIG. (S101).
  • the PWM duty ratio that gives a predetermined amount of tension to the webbing 302 differs depending on the electric motor 110 used and the reduction ratio of the power transmission unit from the electric motor 110 to the spindle 103.
  • the PWM duty ratio that gives 10N equivalent tension to the webbing 3 02 at the shoulder is about 5%.
  • the winding drive signal is turned ON (S103), and the motor is wound up with a predetermined winding force.
  • stop detection S107 (FIG. 6) described later is performed.
  • S109 it is determined whether or not the stop flag is set (S109). If it is not set (S109: No), the process returns to before stop detection (S107), and if it is set (S109: Yes) stops the motor drive (S111), performs clutch release (S113) (Fig. 7) described later, releases the clutch, and stores the amount of rotation of the spindle 103 detected by the rotation sensor at that position.
  • Set the stored origin as the origin (S115) and return
  • the timer interrupt is then permitted (S3).
  • the timer interrupt time is 20 ms
  • an interrupt is generated every 20 ms, and the processing shown in FIG. 9 is performed.
  • door opening / closing detection (S 151) is performed.
  • the door opening / closing detection is performed and a predetermined flag is set.
  • the door opening / closing detection counter is incremented (S61).
  • This door open / close detection counter is installed at a predetermined location in the RAM and is incremented every time door open / close detection is performed.
  • the door opening / closing signal from the door switch mounted on the vehicle 3 is read (S63), and it is determined whether or not the door opening / closing detection counter has reached 5 (S65). If the door open / close detection counter reaches 5 (S6 5: No), the door open / close signal from the door switch determines whether the door is closed (S67). If the door is closed (S67: Yes), the door is closed. The counter is incremented (S69) and the process returns.
  • the closed counter is installed at a predetermined location in the RAM. If door closing is not detected (S67: No), the process returns. If the door open / close detection counter has reached 5 (S65: Yes), it is determined whether the door close counter is 3 or more (S71). If it is 3 or more (S71: Yes), the door close flag is set ( If it is not 3 or more (S71: No), the door close flag is cleared (S75). Then, the door opening / closing detection counter is cleared (S77), the door closing counter is cleared (S79), and the process returns.
  • buckle wearing detection (S 153) is performed based on a signal from the seat belt wearing presence / absence detecting means 307.
  • it is determined how many times the buckle wearing counter has been detected as being attached to the buckle until it reaches the predetermined number of times, detects whether the buckle is attached to Z, and compares this detection result with the previous result.
  • Judge whether there is a change in the wearing of the buckle and set a predetermined flag.
  • the buckle wearing detection (S 153) is first incremented by a buckle wearing counter force installed at a predetermined location in the RAM (S 161), from the seat belt wearing presence / absence detecting means 307.
  • a buckle mounting presence / absence signal is measured (S163).
  • the buckle mounting flag is set (S 1 73). Then, compared with the previous buckle mounting flag (S175), if it is different (S175: Yes), the mounting transition flag is also set for the buckle non-mounting force (S177), and the door open / close detection counter is reset (S179). Further, the buckle mounting counter is cleared (S181) and the process returns. If it is the same as the previous buckle wearing flag (S175: No), the knocking continuation flag is set (S183) and the process returns.
  • the knocker mounting counter is not 3 or more (S171: No)
  • the knocker mounting flag is cleared (S185), then compared with the previous buckle mounting flag (S187), and different (S187: Yes). ) Will also return with the buckle wearing power set to the non-wearing transition flag (S189) If it is the same as the previous buckle wearing flag (S187: No), the buckle non-wearing continuation flag is set (S191) and the process returns.
  • Collision prediction control (S155) is one of the main parts of the present invention.
  • the control flow first determines whether the knocking continuation flag is set (S201). If it is not set (S201: No), it returns. If it is set (S201: Yes), a collision prediction signal is read from the collision prediction means 120 (S203), and whether the signal force is also an inevitable collision force is determined (S205).
  • collision unavoidable means that a collision cannot be avoided by a passenger operation.
  • the seat belt is driven to take up at a high speed (S207) with a large power, for example, 90% of the maximum driving force, and then returns. This operation is performed with priority over other operations.
  • the time of 3 seconds is an example, and it is desirable to set it to a time that requires occupant restraint in a collision unavoidable state.
  • the take-off drive (including intermittent take-off drive) of the electric motor 110 is constant-current controlled by PWM control in all other cases than the case where it is determined that the collision is inevitable.
  • the PWM duty ratio is changed so as to generate the power that gives the webbing 302 the tension corresponding to the predetermined scene.
  • the step of “PWM duty set and winding signal ON ⁇ ⁇ ⁇ ⁇ in retracted origin set drive (Fig. 5) the step of ⁇ PWM duty set and pull-out drive signal ON ⁇ ⁇ ⁇ ⁇ in clutch release (Fig. 7), collision “Preliminary control” (Fig. 12) “Intermittent take-up drive rod step” and initial mounting control (Fig.
  • the power generated by the electric motor 110 is not limited to a notch (not shown) force, the voltage fluctuation of the electric power supplied to the electric motor 110, the temperature change of the electric motor 110, It also varies depending on the operating environment of the electric motor 110, such as the cumulative usage time of the electric motor 110. Therefore, the PWM duty ratio needs to be changed in consideration of these fluctuations in order to make the generated power to a predetermined magnitude.
  • the constant current control is performed by changing the PWM duty ratio based on the voltage value detected by the supply voltage detecting means 122. Specifically, when the voltage changes so as to increase, the PWM duty ratio is made smaller than the PWM duty ratio before the change, and when the voltage changes so as to decrease, the PWM duty ratio is changed from the PWM duty ratio before the change. Increase the power and control to obtain a predetermined power.
  • the electric motor 110 has a temperature characteristic, and the generated power changes depending on the temperature of the electric motor 110 even if constant current control is performed.
  • the electric motor 110 is a DC motor that operates with a permanent magnet such as a bright magnet and a coil magnet (a magnet that generates a magnetic force by passing a current through the coil)
  • the magnetic force of the permanent magnet decreases at a high temperature.
  • It has a temperature characteristic that magnetic force increases at low temperatures. Therefore, the power of the electric motor 110 decreases as the temperature of the electric motor 110 (permanent magnet) increases, and increases as the temperature decreases.
  • the temperature characteristic of the electric motor 110 is corrected by measuring the temperature of the electric motor 110 by the temperature detecting means 121 and changing the PWM duty ratio based on the measured temperature. That is, when the temperature detected by the temperature detecting means 121 changes so as to increase, the PWM duty ratio before the change If the WM duty ratio is increased and the temperature changes so as to decrease, the PWM duty ratio is controlled to be smaller than the PWM duty ratio before the change so that a predetermined power can be obtained.
  • the PWM is detected when the detected temperature force of the temperature detecting means 121 is 3 ⁇ 40 ° C.
  • the duty ratio to 5.5% and change the PWM duty ratio to 4.5% at 30 ° C to perform temperature compensation.
  • the electric power generated by the electric motor 110 decreases in proportion to the cumulative usage time. This is thought to be due to the fact that the brush of the DC motor is worn with use, which increases the electrical resistance of the brush part. For example, when the cumulative usage time reaches 150 hours, the power decreases by about 30%.
  • the fluctuation of the power accompanying the accumulated usage time is corrected by changing the PWM duty ratio based on the accumulated usage time detected by the accumulated usage time detecting means 123, and constant current control is performed. That is, as the accumulated usage time of the electric motor 110 increases, the PWM duty ratio is increased so that predetermined power is obtained.
  • a current detection circuit (not shown) is used as the operating environment detection means, and the current value flowing through the electric motor 110 is detected by the current detection circuit, and the PWM duty ratio is set so as to obtain a current supply amount of a predetermined current value. It is also possible to change the to perform constant current control.
  • S157 This is done by setting a 500 ms counter in the RAM (register) and incrementing every 20 ms timer interrupt. This count value determines whether 500 ms has been reached. If it is determined that 500 ms has elapsed (S157: Yes), a drive unit failure diagnosis (S159) is performed and the process returns. If 500ms has not elapsed (S157: No), the drive unit failure diagnosis is not performed and the process returns.
  • the drive unit failure diagnosis (S159) is detected based on whether or not the motor is continuously driven for a predetermined time or more.
  • the current flowing through the electric motor 110 is detected by a current detection circuit (not shown) to detect whether or not the motor is driven (S267). Depending on whether or not the current exceeds a predetermined value (5A), the motor is detected.
  • the driving force is determined (S269). If the motor drive is not determined (S269: No), the drive set in the RAM Clear the abnormal part flag (S271) and return.
  • the state power of the buckle is determined by the buckle attachment detection performed for each timer interrupt (S5), and the flag is cleared accordingly (S15, S17, S19, S21). After this, each control of pre-mounting control (S23), initial mounting control (S25), in-mounting control (S27) or storage control (S29) is executed.
  • buckle attachment detection (S5) the state of the buckle is detected according to the set state of each flag indicating the state of the knock.
  • the pre-mounting control (S23) shown in FIG. 14 is performed after the flag is cleared (S15).
  • the flag is cleared (S17), and then the initial mounting control (S25) shown in FIG. 17 is performed.
  • the knocking is to be continued (S11) the flag is cleared (S19), and then the mounting control (S27) shown in FIG. 19 is performed.
  • a drawer detection (S 251) for detecting whether or not the webbing 302 is pulled out is performed.
  • the drawer detection (S251) reads the rotation of the spindle 103 by the rotation sensor (magnetic disk 116 and magnetic field detection means 117) (S301), and the read value is compared to the previous reading. Then, it is determined whether or not the force has moved to the drawer side for a predetermined amount (for example, 5 mm) (S303).
  • the drawer flag is set (S305), then the rotation sensor reading is recorded in a predetermined location in the RAM (S307) and the process returns. If it is determined that there is no withdrawal exceeding the specified amount (S303: No), the withdrawal flag is (S309), the reading value of the rotation sensor is recorded in a predetermined location in the RAM (S307), and the process returns.
  • the stop detection (S107) shown in FIG. 6 is executed. As shown in FIG. 6, the stop detection (S107) detects whether or not the webbing 302 is stopped (a state where the drawer is not pulled out or wound up). First, the output of the rotation sensor that detects the amount of rotation of the spindle is read (S351).
  • the read rotation amount is compared with the previous rotation amount, and it is determined whether or not a predetermined amount (for example, 5 mm) has changed (S353). If there is a difference between the previous rotation amount and the current rotation amount (S353: Yes), it is determined that the webbing 302 has not stopped, and the stop flag is cleared (S355). On the other hand, if there is a difference between the previous rotation amount and the current rotation amount (S353: No), it is determined that the webbing 302 has stopped, the stop flag is set (S357), and the rotation sensor The read value is recorded in a predetermined location in the RAM (S359), and the process returns.
  • a predetermined amount for example, 5 mm
  • stop detection After detection by stop detection (S107), it is determined whether the stop flag is set to V or not (S257). If the stop flag is not set (S257: NO), it is determined whether the knock non-mounting continuation flag is set (S259), and if it is set (S259: Yes), the stop detection is performed again. Return to (S107). If not set (S259: No), return. When the stop flag is set (S257: Yes), after waiting for a predetermined time (S261), the winding availability detection (S263) shown in FIG. 15 is performed.
  • the winding drive (S401) is first performed with a force equivalent to 10N, and then the rotation sensor is read (S403).
  • the electric motor 110 is subjected to PWM control in which the voltage fluctuation, the temperature change of the electric motor 110 and the accumulated usage time are corrected as described above.
  • the enable flag is set (S409) and the process returns.
  • the duty ratio of the PWM signal applied to the electric motor 110 that sets the force by the electric motor 110 to be equivalent to 10 N is set (S4 51).
  • the drawer drive signal is turned on (S453).
  • the duty ratio set (S451) is performed in consideration of voltage fluctuation, temperature change of the electric motor 110, and correction for the accumulated usage time. Then, for example, wait for 0.3 seconds (S455) so that the drawer is not detected until the pretension is released.
  • the drawer detection (S251) already described in FIG. 8 is performed, and it is determined whether the drawer flag is set (S459).
  • the clutch 150 includes a gear 151, a clutch housing 152, a pawl 153, a friction spring 154, and a rotating shaft 155.
  • the gear 151 includes a gear 151 a that is driven in mesh with a motor-side gear (not shown) driven by the electric motor 110, and rotates with the rotation of the electric motor 110.
  • the clutch housing 152 is coupled to the spindle 103, and an internal gear 152a is formed on the inner diameter surface.
  • a guide portion 15 lb for allowing the pawl 153 to be slidably fitted is provided on a portion of the gear 151 disposed on the inner diameter side of the clutch housing 152.
  • An engaging tooth 153 a that engages with the internal gear 152 a of the clutch housing 152 is formed at the tip of the pole 153.
  • an intermediate portion of a friction spring 154 disposed with the rotation shaft 155 interposed therebetween is engaged with the projecting portion 153b of the pole 153, so that a resistance in the rotational direction is applied to the pole 153. It is.
  • the pawl 153 slides along the guide portion 151b and the engaging tooth 153a protrudes from the gear 151 the protrusion portion 153a is engaged with the internal gear 152a and the clutch is engaged (FIG. 24 (A ))
  • the engaging tooth 153a is buried in the gear 151, the engagement is released and the clutch is released (see FIG. 24 (B)).
  • the electric motor 110 causes the gear 151 force S-subbing 302 to move away from the scraping direction (that is, the dubbing pull-out direction, opposite in the figure). If the pole 153 is rotated in the clockwise direction, the force of the pole 153 trying to rotate in the opposite direction is also controlled by the friction spring 154. Therefore, the rotation of the pole 153 is suppressed, and the pole 153 gradually moves to the inside of the gear 151. Thus, the engagement between the engagement teeth 153a and the internal gear 152a of the clutch housing 152 is released, and the clutch 150 is released.
  • the winding drive (S501) is performed, and after the stop detection (S107) shown in FIG. 6 is performed, the stop flag is set. It is determined whether or not (S505). If the stop flag is set (S505: Yes), the process proceeds to drive stop (S549) described later. When it is determined that the stop flag has not been set (S 505: No), it is determined whether a predetermined amount (Xmm) has been wound (S507), and the predetermined amount (Xmm) has not been wound (S507: No) Return to the winding drive (S501).
  • Predetermined amount (Xmm ) If it is determined that the door has been wiped off (S507: Yes), it is determined whether or not the door closing flag is set (S509).
  • the door close flag is set (S509: Yes)
  • the winding drive at the time of door closing (low-speed winding drive) (S511) is performed and the door closing flag is not set (S509: No) Winding drive when the door is open (medium speed winding drive) (S513) is performed.
  • both the low-speed winding drive (S511) and the medium-speed winding drive (S513) are performed by PWM control that takes into account the corrections for the voltage fluctuation, temperature change of the electric motor 110, and cumulative usage time. Is called. This is to prevent the webbing 302 from being caught in the door.
  • the storage is completed when the door is closed, and the webbing 302 in the state is prevented from being caught in the door. It is.
  • the winding drive (S511) or (S513) After the winding drive (S511) or (S513) is performed, detection by the rotation sensor (S515) is performed, and it is determined whether or not the force has reached a predetermined amount (Ymm) to the storage origin (S517). Is done.
  • the position of the predetermined amount (Ymm) is a position where the webbing pulling amount force from the storage origin cannot be inserted into the webbing. This action can cause damage to the interior material during the retracting webbing take-up, which can be caused by the tinder plate 305 moving with the webbing 302 and hitting the interior of the vehicle at a certain speed.
  • the purpose is to stop winding at one position and prevent it from hitting.
  • the predetermined position where the one-stop operation is performed is a position where at least the webbing 302 is not sandwiched by the door.
  • stop flag counter 1 If stop flag counter 1 is not 10 (S529: No), the process returns to determination of door closing flag setting (S509). If the stop flag counter 1 is 10 (S529: Yes), the stop flag counter 1 is cleared (S531), the all storage unreachable flag is set (S533), and the process returns.
  • step S517 when the position reaches the predetermined amount (Ymm) to the storage origin (S517: Yes), the driving is stopped (S535) and the web winding is stopped. Thereafter, the above-described clutch release (S113) shown in FIG. 7 is performed. Then, after the drive is stopped for another T seconds (S539), the winding drive (S541) is performed, and it is determined whether or not the storage origin has been reached (S543). If it is determined that the storage origin has been reached (S543: Yes), the stop flag counters 1 and 2 are cleared (S545), the all storage unachieved flags are reset (S547), and the drive is stopped (S549).
  • step S543 if the storage origin has not been reached (S543: No), it is determined whether or not the stop flag is set after the above-described stop detection (S107) shown in FIG. 6 is performed (S559). ) When the stop flag is set, the flow returns to (S559: No) and the winding drive (S541). If the stop flag is set (S559: Yes), the stop flag counter 2 is incremented (S561), the drive is stopped (S563) and the webbing is stopped. S113) is performed. Next, it is determined whether or not the stop flag counter 2 is 3 (S567). If the stop flag counter 2 is not 3 (S567: No), the process returns to the winding drive (S541). If the stop flag counter 2 is 3 (S567: Yes), the stop flag counter 2 is cleared (S569), the all storage unreachable flag is set (S571), and the process returns.
  • the PWM duty ratio is duty-down every 20ms (S681), and it is determined whether or not the PWM duty ratio has become a predetermined value or less (S683). If it is determined that it is not less than the predetermined value (S683: No), it returns to before the duty down (S681), and if it is determined that it is less than the predetermined value (S683: Yes), the motor drive signal is turned off. Stop driving (S685) and return.
  • each numerical value is an example, and it is desirable to set the value so that the spindle 103 rotating in the winding direction can be stopped slowly so that it does not lock by WSI.
  • the reason for stopping slowly is to prevent malfunction of WSI, which is part of the main lock.
  • the WSI is known in the art, and locks the rotation of the spindle 103 so that the pulling of the rubbing 302 is prevented when the rubbing 302 is pulled out at a predetermined acceleration or more.
  • the buckle mounting continuation flag is set in the buckle state (Sl l)
  • the flag is cleared (S19), and the mounting control (S27) is performed.
  • the mounting control (S27) first, through anchor movement presence / absence detection (S651) is performed as shown in FIG. In the detection of the presence or absence of a single anchor movement, a sliding potentiometer is used to detect the movement of the shoulder in the downward direction above the vehicle, and the control means 200 reads and detects the output. This detection is performed at predetermined intervals by a timer interrupt. Next, it is determined whether or not the through anchor movement flag is set (S653), and if it is set! /, (S653: Yes), the initial mounting control already explained in FIG. 17 (S25) Execute and return. On the other hand, if the through-anchor movement flag is set (S653: No), the seat back-and-forth movement presence / absence detection (S655) is performed.
  • the seat back-and-forth movement presence / absence detection (S655) is performed by detecting the seat back-and-forth position (S663) and determining whether the seat is moving (S665). If it is done (S665: Yes), the process returns to the position before the seat front / rear position detection (S663). If it is determined that the seat is not moving! Or (stopped) (S665: No), the seat back-and-forth movement flag is set (S667) and the process returns. Returning to Fig. 19, it is checked if the seat back-and-forth movement flag is set. If it is determined (S657) and set (S657: Yes), the above-described initial mounting control (S25) shown in FIG. 17 is executed, and the process returns.
  • seat back angle change presence / absence detection S659
  • the seat back angle change presence / absence detection S659 detects the angle between the seat seat surface and the seat back using an angle detection potentiometer, and outputs a signal corresponding to the angle to the control means 200 ( S671)
  • the control means 200 reads the output at every predetermined timer interrupt, determines whether there is a difference between the angle of the previous timer interrupt and the angle of the current timer interrupt, and determines whether the angle is changing (S673).
  • the knocking state shifts from knocking force to non-mounting, the door signal changes and the all-stored unsatisfied flag set, or the door open and all-stored unsatisfied flag set and winding detection are performed.
  • the flag force corresponding to any of the knowledge is also determined (S13)
  • the flag is cleared (S21), and the storage control (S29) shown in FIG. 16 is performed.
  • the sleep IN control (S31) determines whether the drawer detection flag is set (S361), and if it is set (S361: Yes), clears the sleep IN flag (S363) And return. If it is set! / ⁇ (S361: No), it is judged whether the door of the target seatbelt is closed based on whether the door close flag is set (S365), and the door close flag is not set. If it is determined that the door is open (S365: No), the sleep IN flag is cleared (S363) and the process returns.
  • the sleep IN control (S31) it is determined whether the sleep IN flag is set (S33). If it is not set (S33: No), the buckle state determination ( Return to S5). If it is set (S33: Yes), it shifts to the sleep mode (S35). This is done for the purpose of reducing current consumption by making no preparations other than to prepare for returning to sleep mode.
  • a sleep OUT determination (S37) is performed. As shown in FIG. 23, the sleep OUT control (S37) determines whether the drawer detection flag is set (S381), and if it is set (S381: Yes), sets the sleep OUT flag (S383). And return.
  • the sleep OUT flag is set (S383) and the process returns.
  • V ⁇ is (S387: No)
  • the sleep OUT flag is cleared (S389) and the process returns. That is, if any drawer detection, door open or IG ON is detected, the sleep output flag is set, otherwise the sleep output flag is cleared.
  • the spindle 103 that rotates the webbing 302 and the electric power that generates the power for rotating the spindle 103 in a desired direction.
  • the motor 110 and the electric motor 110 generate power to rotate the spindle 103 in the webbing 302 take-off direction
  • the power of the electric motor 110 can be transmitted to the spindle 103, and the electric motor 110 takes up the spindle 103.
  • a power transmission unit 104 that disables transmission of the power of the electric motor 110 to the spindle 103 when power in the direction opposite to the direction of rotation is generated, and a control unit 200 that drives and controls the electric motor 110.
  • the seat belt retractor 100 detects the operating environment of the electric motor 110 as the operating environment detecting means, the supply voltage detecting means 122 for detecting the supply voltage to the electric motor 110, and detects the temperature in the vicinity of the electric motor 110. At least one of temperature detection means 121 for detecting the accumulated use time of the electric motor 110, and a collision prediction means 120 for determining the possibility of collision.
  • the control unit 200 determines whether the current state is a collision avoidance state or a collision avoidance state, and the situation
  • the electric motor 110 is optimally driven and controlled according to the conditions. That is, when the collision avoidance is possible, the electric power supplied to the power generation means 110 is detected by the voltage fluctuation detected by the supply voltage detection means 122 and the temperature change of the electric motor 110 detected by the Z or temperature detection means 121. , And Z or based on the accumulated usage time of the electric motor 110 detected by the accumulated usage time detecting means 123, the pulse width modulation control value is changed so that the current supply amount to the electric motor 110 becomes a predetermined current value. Constant current control.
  • the electric motor 110 always generates a predetermined amount of power according to the situation by correcting the power fluctuation associated with each fluctuation factor. Further, when the collision avoidance is impossible, the electric motor 110 is controlled so that the current supply amount to the electric motor 110 becomes larger than a predetermined current value without performing the pulse width modulated constant current control. 110 generates more power than the predetermined size
  • the electric motor 110 always generates a predetermined amount of power regardless of voltage fluctuation, temperature change of the electric motor 110, and accumulated usage time. Wind up. In an emergency where a collision is expected, the electric motor 110 generates power larger than a predetermined magnitude and winds the web 302 at a high speed.
  • the webbing 302 is always wound with a predetermined take-up force, and a comfortable seat belt wearing environment can be obtained.
  • the webbing 302 is wound at a high speed with a power larger than a predetermined magnitude, for example, the maximum power to protect the occupant 2.
  • the seatbelt retractor and seatbelt device of the present invention can be applied to any vehicle, and the same effects as described above can be obtained even in the case of V and deviation.

Abstract

A seatbelt retractor (100) has collision prediction means (120) for predicting a collision possibility and also has operation environment detection means for detecting an operation environment of an electric motor (110) for taking up a webbing. When a collision is avoidable, the amount of electricity supply to the electric motor (110) is controlled to a predetermined current value based on the operation environment detected by the operation environment detection means. Also, when a collision is not avoidable, the amount of electricity supply to the electric motor (110) is controlled to a value greater than the predetermined current value without based on the operation environment detected by the operation environment detection means.

Description

明 細 書  Specification
シートベルト用リトラクタおよびシートベルト装置  Seat belt retractor and seat belt device
技術分野  Technical field
[0001] 本発明は、シートベルト用リトラクタおよびシートベルト装置に関する。  The present invention relates to a seat belt retractor and a seat belt device.
背景技術  Background art
[0002] 従来のシートベルト用リトラクタとしては、必要時にモータによってスピンドルを回転 させてシートベルトを巻き取り、乗員を座席に拘束するようにしたものが知られている( 例えば、特許文献 1および特許文献 2参照。 ) 0 [0002] Conventional retractors for seat belts are known in which a spindle is rotated by a motor when necessary to wind up a seat belt and restrain an occupant to a seat (for example, Patent Document 1 and Patent See reference 2.) 0
[0003] 特許文献 1および特許文献 2に記載の電動リトラクタは、フレームを備え、このフレ ームには、シートベルトを巻き取るリールシャフトが回動自在に設置されている。また フレームには、車両に所定の減速度が作用したとき、またはシートベルトが所定の加 速度で引き出されたときにシートベルトの引き出しをロックするロック機構が固定され ている。リールシャフトの中心軸はリールシャフト用プーリの中心軸に連結され、リー ルシャフト用プーリは動力伝達ベルトを介して直流モータ用プーリに連結している。 直流モータ用プーリの中心軸は、直流モータに連結される。  [0003] The electric retractors described in Patent Document 1 and Patent Document 2 include a frame, and a reel shaft that winds up a seat belt is rotatably installed in the frame. The frame is fixed with a lock mechanism that locks the withdrawal of the seat belt when a predetermined deceleration acts on the vehicle or when the seat belt is pulled out at a predetermined acceleration. The central axis of the reel shaft is connected to the central axis of the reel shaft pulley, and the reel shaft pulley is connected to the DC motor pulley via a power transmission belt. The central axis of the DC motor pulley is connected to the DC motor.
[0004] 更に、直流モータは、直流モータ駆動部を介して、 MPU(Micro Processing Unit) 力ものパルス幅変調(PWM)信号により、各種制御がなされる構成となっている。 MP Uは、自車両の走行速度を検出する車速検出部、および衝突の可能性がある力否 かを検出する衝突予知検出部、および使用者がシートベルトの装着有無を検出する ノ ックル接続有無検出部に接続され、それぞれの検出結果に基づいて、直流モータ を駆動する。  [0004] Furthermore, the direct current motor has a configuration in which various controls are performed by a pulse width modulation (PWM) signal having a power of MPU (micro processing unit) through a direct current motor driving unit. The MPU has a vehicle speed detection unit that detects the traveling speed of the host vehicle, a collision prediction detection unit that detects whether or not there is a possibility of a collision, and whether or not a user connects a knock belt. Connected to the detector, the DC motor is driven based on each detection result.
[0005] そして、特許文献 1および特許文献 2に記載の電動リトラクタは、ゥヱビングに必ず 所定の弛みを与えるように制御し、或いは、ゥ ビングが巻き取られるに従って卷取り 力が徐々に減少するように制御して、快適なシートベルトの装着環境を図ったもので ある。また、衝突不可避であることが検出された場合には、 PWM信号を直流モータ 駆動部に入力し、直流モータをシートベルトの巻き取り側に回転させている。  [0005] The electric retractors described in Patent Document 1 and Patent Document 2 are controlled so as to always give a predetermined slack to the webbing, or the webbing force gradually decreases as the webbing is wound. It is designed to provide a comfortable seat belt installation environment. If it is detected that a collision is inevitable, the PWM signal is input to the DC motor drive unit, and the DC motor is rotated to the seat belt retracting side.
特許文献 1:特開 2000 - 38110号公報 特許文献 2 :特開 2001— 334913号公報 Patent Document 1: Japanese Patent Laid-Open No. 2000-38110 Patent Document 2: Japanese Patent Laid-Open No. 2001-334913
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しカゝしながら、モータがパルス幅変調(PWM)制御により駆動される場合、モータの 発生動力は、 PWM値だけでなぐモータに供給される電圧変動、モータの累積使用 時間、或いは、モータの温度変化などの要因によっても変動する力 これらの要因の 変動にも係わらず所定の PWM値でモータを駆動した場合、ゥヱビングが所望の卷 取り力で巻き取られず、卷取り力が大き過ぎたり、或いは小さ過ぎて快適なシートべ ルト装着環境が得られな 、虞があった。  [0006] However, when the motor is driven by pulse width modulation (PWM) control, the generated power of the motor is not only the PWM value, but the fluctuation of the voltage supplied to the motor, the cumulative usage time of the motor, or Force that fluctuates due to factors such as changes in motor temperature When the motor is driven at the specified PWM value regardless of fluctuations in these factors, the webbing is not wound with the desired winding force, and the winding force is large. There is a concern that a comfortable seat belt mounting environment cannot be obtained because it is too small or too small.
[0007] 本発明は、前述した課題に鑑みてなされたものであり、その目的は、衝突の可能性 がな 、通常時には、乗員に余分の負担をかけることのな 、ようにゥェビングを巻き取り 、衝突が予測される緊急時には、大きな動力を発生して高速でのゥヱビングの卷取り を可能とするシートベルト用リトラクタおよびシートベルト装置を提供することにある。 課題を解決するための手段  [0007] The present invention has been made in view of the above-described problems, and its purpose is to wind up webbing so that there is no possibility of a collision and normally an extra burden is not placed on the occupant. An object of the present invention is to provide a seatbelt retractor and a seatbelt device that can generate a large amount of power and enable high-speed webbing in an emergency where a collision is predicted. Means for solving the problem
[0008] 本発明の上記目的は、下記の構成により達成される。 [0008] The above object of the present invention is achieved by the following constitution.
(1) ゥェビングを卷回するスピンドノレと、  (1) Spind Nore who turns webbing,
該スピンドルを所望の方向に回転させる動力を発生する動力発生手段と、 該動力発生手段が前記スピンドルを前記ゥ ビングの卷取り方向に回転させる前 記動力を発生した時に、前記動力発生手段の動力を前記スピンドルに伝達可能にし Power generating means for generating power for rotating the spindle in a desired direction, and power generated by the power generating means when the power generating means generates the power for rotating the spindle in the scraping direction of the rubbing. Can be transmitted to the spindle.
、前記動力発生手段が前記スピンドルを前記卷取り方向に回転させる前記動力と逆 方向の動力を発生した時に、前記動力発生手段の前記動力を前記スピンドルに伝 達不可能にする動力伝達手段と、 Power transmission means for making it impossible to transmit the power of the power generation means to the spindle when the power generation means generates power in a direction opposite to the power for rotating the spindle in the scraping direction;
前記動力発生手段を駆動制御する制御手段と、を備えたシートベルト用リトラクタで あって、  A seat belt retractor comprising: a control unit that drives and controls the power generation unit;
衝突可能性を判断する衝突予測手段と、  A collision prediction means for determining the possibility of collision;
前記動力発生手段の作動環境を検出する作動環境検出手段と、を更に備え、 前記制御手段は、前記衝突予測手段が衝突回避可能状態であると判断する場合 には、前記作動環境検出手段により検出された前記作動環境に基づいて、前記動 力発生手段への電流供給量を所定の電流値に制御し、 An operating environment detecting means for detecting an operating environment of the power generating means, and the control means detects the operating environment detecting means when determining that the collision predicting means is in a collision avoidable state. Based on the determined operating environment. Controlling the amount of current supplied to the force generating means to a predetermined current value;
前記衝突予測手段が衝突回避不可能状態であると判断する場合には、前記作動 環境検出手段により検出された前記作動環境に基づかずに、前記動力発生手段へ の電流供給量を前記所定の電流値より大きくなるように制御することを特徴とするシ ートベルト用リトラクタ。  When it is determined that the collision prediction unit is in a state where collision cannot be avoided, the current supply amount to the power generation unit is set to the predetermined current without being based on the operation environment detected by the operation environment detection unit. A retractor for a seat belt, which is controlled to be larger than the value.
(2) 前記動力発生手段は、パルス幅変調制御により駆動され、  (2) The power generation means is driven by pulse width modulation control,
前記制御手段は、前記衝突予測手段が衝突回避可能状態であると判断する場合 には、前記作動環境検出手段により検出された前記作動環境に基づいて、パルス幅 変調制御値を変更することで、前記動力発生手段への電流供給量を所定の電流値 に制御することを特徴とする(1)に記載のシートベルト用リトラクタ。  When the control means determines that the collision prediction means is in a collision avoidable state, the control means changes the pulse width modulation control value based on the operating environment detected by the operating environment detection means, The retractor for a seat belt according to (1), wherein the amount of current supplied to the power generation means is controlled to a predetermined current value.
(3) 前記作動環境検出手段は、前記動力発生手段への供給電圧を検出する供 給電圧検出手段、前記動力発生手段の近傍の温度を検出する温度検出手段、およ び前記動力発生手段の累積使用時間を検出する累積使用時間検出手段の少なくと も 1つであり、  (3) The operating environment detecting means includes: a supply voltage detecting means for detecting a supply voltage to the power generating means; a temperature detecting means for detecting a temperature in the vicinity of the power generating means; and At least one of the accumulated usage time detection means for detecting the accumulated usage time,
前記制御手段は、前記衝突予測手段が衝突回避可能状態であると判断する場合 には、前記供給電圧検出手段により検出された電圧変動、前記温度検出手段により 検出された前記動力発生手段の温度変化、及び前記累積使用時間検出手段により 検出された前記動力発生手段の累積使用時間の少なくとも一つに基づいて、前記 動力発生手段への電流供給量を所定の電流値に制御することを特徴とする(1)又は (2)に記載のシートベルト用リトラクタ。  When the control means determines that the collision prediction means is in a collision avoidable state, the voltage fluctuation detected by the supply voltage detection means, and the temperature change of the power generation means detected by the temperature detection means And a current supply amount to the power generation means is controlled to a predetermined current value based on at least one of the cumulative use times of the power generation means detected by the cumulative use time detection means. The retractor for a seat belt according to (1) or (2).
(4) (1)〜(3)のいずれかに記載のシートベルト用リトラクタを備えたことを特徴と するシートベルト装置。  (4) A seat belt apparatus comprising the seat belt retractor according to any one of (1) to (3).
発明の効果 The invention's effect
本発明のシートベルト用リトラクタおよびシートベルト装置によれば、ゥェビングを卷 き取る動力発生手段の制御は、衝突の可能性がない通常時には、作動環境検出手 段により検出された前記作動環境に基づいて、前記動力発生手段への電流供給量 を所定の電流値に制御する。これにより上記作動環境の変化に拘わらず動力発生手 段が所定の動力を発生してゥ ビングを巻き取り、ゥ ビングに適度の張力を付与し て快適なシートベルト装着環境を提供する。また、衝突が予測される緊急時には、作 動環境検出手段により検出された作動環境に基づかずに、動力発生手段への電流 供給量を所定の電流値より大きくなるように制御することで、ゥェビングを急速に巻き 取り、乗員を保護する。 According to the seatbelt retractor and the seatbelt device of the present invention, the control of the power generating means for scooping up the webbing is based on the operating environment detected by the operating environment detecting means at the normal time when there is no possibility of collision. Then, the amount of current supplied to the power generation means is controlled to a predetermined current value. As a result, regardless of the change in the operating environment, the power generating means generates a predetermined power to wind up the webbing and apply an appropriate tension to the webbing. Provide a comfortable and comfortable seat belt wearing environment. In an emergency where a collision is predicted, the webbing can be controlled by controlling the current supply amount to the power generation means to be larger than the predetermined current value without being based on the operating environment detected by the operation environment detection means. Wind up quickly to protect the passengers.
図面の簡単な説明 Brief Description of Drawings
圆 1]本発明のシートベルト装置の概略構成図である。 圆 1] It is a schematic configuration diagram of a seat belt device of the present invention.
[図 2]図 1におけるシートベルト用リトラクタの概略構成図である。  2 is a schematic configuration diagram of the seatbelt retractor in FIG. 1. FIG.
[図 3]シートベルト用リトラクタの基本制御フローチャートである。  FIG. 3 is a basic control flowchart of a seat belt retractor.
[図 4]初期パラメータセットのフローチャートである。  FIG. 4 is a flowchart of initial parameter setting.
[図 5]格納原点セット駆動のフローチャートである。  FIG. 5 is a flowchart of stored origin set driving.
[図 6]停止検知のフローチャートである。  FIG. 6 is a flowchart of stop detection.
[図 7]クラッチ解除のフローチャートである。  FIG. 7 is a flowchart of clutch release.
[図 8]引出し検知のフローチャートである。  FIG. 8 is a flowchart of drawer detection.
[図 9]タイマ割り込みのフローチャートである。  FIG. 9 is a flowchart of timer interrupt.
[図 10]ドア開閉検知のフローチャートである。  FIG. 10 is a flowchart of door opening / closing detection.
[図 11]バックル装着検知のフローチャートである。  FIG. 11 is a flowchart of buckle wearing detection.
[図 12]衝突予知制御のフローチャートである。  FIG. 12 is a flowchart of collision prediction control.
圆 13]駆動部故障診断のフローチャートである。 13] A flowchart of drive unit failure diagnosis.
[図 14]装着前制御のフローチャートである。  FIG. 14 is a flowchart of pre-mounting control.
[図 15]巻き取り可否検知のフローチャートである。  FIG. 15 is a flowchart of winding availability detection.
[図 16]格納制御のフローチャートである。  FIG. 16 is a flowchart of storage control.
圆 17]装着初期制御のフローチャートである。 圆 17] Flow chart of initial mounting control.
[図 18]停止駆動のフローチャートである。  FIG. 18 is a flowchart of stop driving.
[図 19]装着中制御のフローチャートである。  FIG. 19 is a flowchart of control during mounting.
[図 20]シート前後移動有無検知のフローチャートである。  FIG. 20 is a flowchart for detecting whether the seat moves back and forth.
[図 21]シートバック角度変化有無検知のフローチャートである。  FIG. 21 is a flowchart for detecting whether there is a change in seatback angle.
[図 22]スリープ IN制御のフローチャートである。  FIG. 22 is a flowchart of sleep IN control.
[図 23]スリープ OUT制御のフローチャートである。 圆 24]動力伝達手段の縦断面図であり、(A)はクラッチ係合状態を示し、(B)はクラッ チ解除状態を示す図である。 FIG. 23 is a flowchart of sleep OUT control. FIG. 24 is a longitudinal sectional view of the power transmission means, (A) showing the clutch engaged state, and (B) showing the clutch released state.
符号の説明  Explanation of symbols
1 シートべノレト装置  1 Seat benoret equipment
100 シートベルト用リトラクタ  100 Seat belt retractor
103 スピンドノレ  103 Spin Donore
104 動力伝達手段  104 Power transmission means
110 電動モータ (動力発生手段)  110 Electric motor (Power generation means)
120 衝突予測手段  120 Collision prediction means
121 温度検出手段  121 Temperature detection means
122 供給電圧検出手段  122 Supply voltage detection means
123 累積使用時間検出手段  123 Cumulative usage time detection means
200 制御手段  200 Control means
302 ゥ ビング  302 u bing
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、本発明に係るシートベルト用リトラクタおよびシートベルト装置の実施形態を 図面に基づいて詳細に説明する。  Hereinafter, embodiments of a seat belt retractor and a seat belt device according to the present invention will be described in detail with reference to the drawings.
[0013] 図 1は本発明の実施形態であるシートベルト装置の概略構成図、図 2は図 1におけ るシートベルト用リトラクタの概略構成図である。図 3から図 23はシートベルト用リトラク タの制御フローチャートである。図 24は動力伝達手段の縦断面図であり、(A)はクラ ツチ係合状態を示し、(B)はクラッチ解除状態を示す。  FIG. 1 is a schematic configuration diagram of a seat belt apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic configuration diagram of a seat belt retractor in FIG. 3 to 23 are control flowcharts of the seat belt retractor. FIG. 24 is a longitudinal sectional view of the power transmission means, where (A) shows the clutch engaged state and (B) shows the clutch released state.
[0014] 図 1に示すように、シートベルト装置 1は、乗員 2を座席 301に拘束するゥェビング 3 02の一端側が固着された本発明のシートベルト用リトラクタ 100、ゥェビング 302を乗 員の肩近傍で折り返すスルーアンカ 303、ゥェビング 302を揷通して腰部に配置され るバックル 304と係合するタンダプレート 305、ゥェビング 302の他端部を車体に固定 するアンカープレート 306、バックル 304に内蔵されてゥェビング装着を検出するバッ クルスイッチ 307を含んで構成される。  As shown in FIG. 1, the seatbelt device 1 includes a seatbelt retractor 100 and a webbing 302 of the present invention in which one end side of a webbing 3 02 for restraining the passenger 2 to the seat 301 is fixed in the vicinity of the shoulder of the passenger. Folding through anchor 303, webbing 302, tuck plate 305 engaged with buckle 304 placed at waist, anchor plate 306 fixed on the other end of webbing 302, buckle 304 built in buckle 304 It includes a bag switch 307 for detecting
[0015] 図 2に示すように、本考案のシートベルト用リトラクタ 100はフレーム 101を備えてい る。このフレーム 101にはゥェビング 302を卷回するスピンドル 103と、スピンドル 103 の左端側で結合して、スピンドル 103の回転中心軸となるスピンドルシャフト 103aが 回転自在に設けられる。スピンドルシャフト 103aの右端側にはゥヱビング 302の弓 |き 出しをロックする引出し防止手段 102が設けられている。引出し防止手段 102は従来 公知のものであり、車両 3に所定値以上の減速度が作用したときゥ ビング 302の弓 I き出しをロックする VSI動作と、ゥ ビング 302が所定値以上の加速度で引き出され たときにゥェビング 302の弓 Iき出しをロックする WSI動作とを備えて 、る。弓 I出し防止 手段 102は、ゥェビング引き出しロック状態でも、本発明の動力発生手段である電動 モータ 110によるゥェビング 302の巻き取りが可能に構成されている。 As shown in FIG. 2, the seatbelt retractor 100 of the present invention includes a frame 101. The The frame 101 is provided with a spindle 103 for winding the webbing 302 and a spindle shaft 103 a that is coupled to the left end side of the spindle 103 and serves as a rotation center axis of the spindle 103. On the right end side of the spindle shaft 103a, there is provided a drawer preventing means 102 for locking the bow of the web 302. The pull-out prevention means 102 is a conventionally known means, and when a deceleration greater than a predetermined value is applied to the vehicle 3, the VSI operation that locks the bow I of the rubbing 302 and the acceleration at which the rubbing 302 is greater than the predetermined value. It has a WSI action that locks the bow of the webbing 302 when pulled out. The bow I sticking prevention means 102 is configured so that the webbing 302 can be taken up by the electric motor 110 which is the power generation means of the present invention even in the webbing drawer lock state.
[0016] スピンドル 103は、必要時、動力伝達手段 104を介して電動モータ 110によって駆 動されてゥェビング卷取り方向に回転する。また、スピンドル 103は、卷取りばね 111 に連結されており、ゥ ビング 302の卷取り方向の回転力が常に付加されている。  [0016] When necessary, the spindle 103 is driven by the electric motor 110 via the power transmission means 104 and rotates in the webbing scraping direction. Further, the spindle 103 is connected to the scraping spring 111, and a rotational force in the scraping direction of the webbing 302 is always applied.
[0017] シートベルト用リトラクタ 100は、電動モータ 110を制御する制御手段 200を備えて おり、電動モータ 110は、制御手段 200内の後述する駆動回路 201からの指令に基 づいて正逆方向に回転可能な、例えば直流モータである。また、電動モータ 110に は、電動モータ 110に駆動回路 201から駆動信号が入力されていないことを検出す る電動モータ停止状態検出手段 (停止状態検出手段) 118と、および電動モータ 11 0が回転させられるときに発生する起電力によって電動モータ 110がゥェビング 302 の引出し方向に回転していることを検出する電動モータ引出し方向回転検出手段( 引出し方向回転検出手段) 119とが連結されている。更に、電動モータ 110には、電 動モータ 110の作動環境を検出する作動環境検出手段として、モータ近傍の温度を 検出する温度検出手段 121と、バッテリー (図示せず)力も電動モータ 110に供給され る電圧を検出する供給電圧検出手段 122と、電動モータ 110の累積使用時間を検 出する累積使用時間検出手段 123とが配設されている。  The seatbelt retractor 100 includes a control unit 200 that controls the electric motor 110, and the electric motor 110 moves in the forward and reverse directions based on a command from a drive circuit 201 described later in the control unit 200. For example, a DC motor that can rotate. In addition, the electric motor 110 is rotated by an electric motor stop state detecting means (stop state detecting means) 118 that detects that no drive signal is input from the drive circuit 201 to the electric motor 110, and the electric motor 110. An electric motor drawing direction rotation detecting means (drawing direction rotation detecting means) 119 for detecting that the electric motor 110 is rotated in the drawing direction of the webbing 302 by an electromotive force generated when the electric motor 110 is generated is connected. Further, the electric motor 110 is supplied with temperature detecting means 121 for detecting the temperature in the vicinity of the motor as an operating environment detecting means for detecting the operating environment of the electric motor 110 and a battery (not shown) force. Supply voltage detection means 122 for detecting the voltage to be detected and cumulative use time detection means 123 for detecting the cumulative use time of the electric motor 110 are provided.
[0018] 動力伝達手段 104は、スピンドルシャフト 103aに固定されたスピンドル側プーリ 11 5と、電動モータ 110の回転軸 110aに固定されたモータ側プーリ 106と、両プーリ間 に配置されたタイミングベルト 107と、スピンドル側プーリ 115内に内蔵された後述す るクラッチ 150 (図 24参照。)とを有する。そして、電動モータ 110がゥェビング 302の 卷取り方向に回転するとスピンドル側プーリ 115内に内蔵されたクラッチ 150が係合 し、電動モータ 110の動力をスピンドル 103に伝達して回転させ、ゥェビング 302を卷 き取る。また、電動モータ 110がゥェビング 302の引出し方向に回転すると、クラッチ の係合が解除され、電動モータ 110の動力をスピンドル 103に伝達不可能としている 。さらに、動力伝達手段 104は、クラッチ 150を収容し、スピンドル側プーリ 115の力 を受けるクラッチハウジングとスピンドルシャフト 103aを巻き取り側のみ緩衝する、ス ピンドル側プーリ 115内に構成されたスピンドルシャフト 103aに固定された動力伝達 緩衝部(図示せず)とを備える。 [0018] The power transmission means 104 includes a spindle-side pulley 115 fixed to the spindle shaft 103a, a motor-side pulley 106 fixed to the rotating shaft 110a of the electric motor 110, and a timing belt 107 disposed between both pulleys. And a later-described clutch 150 (see FIG. 24) built in the spindle-side pulley 115. And the electric motor 110 is the webbing 302 When rotating in the scraping direction, a clutch 150 built in the spindle-side pulley 115 is engaged, and the power of the electric motor 110 is transmitted to the spindle 103 to rotate, and the webbing 302 is scraped off. Further, when the electric motor 110 rotates in the pulling direction of the webbing 302, the engagement of the clutch is released, and the power of the electric motor 110 cannot be transmitted to the spindle 103. Further, the power transmission means 104 accommodates the clutch 150 and receives the force of the spindle side pulley 115 and the spindle shaft 103a configured in the spindle side pulley 115 that cushions the spindle shaft 103a only on the winding side. A fixed power transmission buffer (not shown).
[0019] また、スピンドルシャフト 103aには N極、 S極が交互に形成された磁化ディスク 116 が固定され、更に、フレーム 101には磁界検出手段 117が固定されており、スピンド ルシャフト 103aの回転と共に変化する磁ィ匕ディスク 116の磁界を磁界検出手段 117 で検出することによって、スピンドルシャフト 103aの回転方向および回転数(回転角 度)が検出され、該検出信号は制御手段 200に伝達される。  [0019] In addition, a magnetic disk 116 in which N poles and S poles are alternately formed is fixed to the spindle shaft 103a, and further, a magnetic field detecting means 117 is fixed to the frame 101, and as the spindle shaft 103a rotates. By detecting the changing magnetic field of the magnetic disk 116 by the magnetic field detection means 117, the rotation direction and the rotation speed (rotation angle) of the spindle shaft 103 a are detected, and the detection signal is transmitted to the control means 200.
[0020] 具体的には、スピンドルシャフト 103aに設けられた磁化ディスク 116と、互いに lZ  [0020] Specifically, the magnetic disk 116 provided on the spindle shaft 103a and the lZ
4周期位相がずれた出力を発生するように配置された 2つのホールセンサ(図示せず )とによってスピンドル 103の回転を検出して、 2相のパルス列 φ 1および φ 2を発生し 、回転方向および回転数(回転角度)を制御手段 200に伝える。パルス列 φ 1および φ 2は制御手段 200の入出力インターフェース(図示せず)内のアップダウンカウンタ (図示せず)によってデジタル値ィ匕され、ゥェビング 302の引出し量に応じた出力に変 換される。  The rotation of the spindle 103 is detected by two Hall sensors (not shown) arranged so as to generate an output whose phase is shifted by four periods, and two-phase pulse trains φ 1 and φ 2 are generated, and the rotation direction The rotation number (rotation angle) is transmitted to the control means 200. The pulse trains φ 1 and φ 2 are digitized by an up / down counter (not shown) in the input / output interface (not shown) of the control means 200 and converted into an output corresponding to the amount of webbing 302 drawn. .
[0021] 本発明のシートベルト装着有無検出手段であるバックルスィッチ 307はバックル 30 4内に内蔵され、シートベルト 302装着の有無を検出し、装着の有無に応じた信号を 制御手段 200に供給する。衝突予測手段 120は、車両 3の前方および Zあるいは車 両 3の後方および Zあるいは車両 3の側方の障害物(図示せず)との衝突可能性を 判断する検出手段であり、距離センサ(図示せず)により障害物との距離を検出し、そ の距離の時間的変化から求められる相対速度と、障害物までの距離から衝突までの 時間を計算し、その時間が所定時間以下なら衝突不可避状態にあると判断し、衝突 不可避状態に応じた信号を制御手段 200に供給する。 [0022] 制御手段 200は、例えば、制御プログラムを実行する CPU、処理データを記憶する RAM,プログラム等を記憶した ROM、内蔵タイマ、信号変換等を行う入出力インター フェース等を備えるマイクロコントローラ(図示せず)と、マイクロコントローラからの出 力に応じて電動モータ 110を駆動する駆動回路 201から構成される。入出力インタ 一フェースはバックルスィッチ 307および衝突予測手段 120からの信号に応じて、そ れぞれベルト装着フラグおよび衝突フラグを図示しな 、フラグレジスタ(ある 、は RAM )に設定する。また、 CPUは入出力インターフェースを介してゥェビング引出し量を監 視し、フラグレジスタに各種のフラグを設定する。 [0021] A buckle switch 307, which is a seat belt wearing presence / absence detecting means of the present invention, is built in the buckle 304, detects whether or not the seat belt 302 is worn, and supplies a signal corresponding to the wearing or not to the control means 200. . The collision prediction unit 120 is a detection unit that determines the possibility of collision with an obstacle (not shown) in front of the vehicle 3 and Z or behind the vehicle 3 and Z or side of the vehicle 3. (Not shown) detects the distance to the obstacle, calculates the relative speed obtained from the time change of the distance, and the time from the distance to the obstacle to the collision. It is determined that the vehicle is in an unavoidable state, and a signal corresponding to the collision unavoidable state is supplied to the control means 200. [0022] The control means 200 includes, for example, a microcontroller including a CPU that executes a control program, a RAM that stores processing data, a ROM that stores programs, a built-in timer, an input / output interface that performs signal conversion, and the like (see FIG. And a drive circuit 201 that drives the electric motor 110 in accordance with the output from the microcontroller. In accordance with signals from the buckle switch 307 and the collision prediction means 120, the input / output interface sets a belt attachment flag and a collision flag in a flag register (or RAM), not shown. The CPU also monitors the webbing drawer amount via the I / O interface and sets various flags in the flag register.
[0023] 例えば、周期的に監視されるゥェビング引出し量から、前回監視時の前回値と今回 監視時の今回値との差から、ゥヱビング 302の引き出しを示す引出しフラグ、あるいは ゥェビング 302の巻き取りを示す巻き取りフラグ、あるいはゥヱビング 302が引き出し および巻き取りが行われてない停止フラグ等を、フラグレジスタに設定する。制御手 段 200は各種フラグを参照することによって、ゥ ビング 302の引き出し、巻き取り、停 止、シートベルト装着の有無、衝突可能性等を判別可能である。制御手段 200は、こ れらの情報に基づいて、電動モータ 110の制御を行う。尚、電動モータ 110の制御 は、入力信号の振幅とキャリア信号 (三角波)の振幅をコンパレータで比較して 2値ィ匕 して制御す [0023] For example, based on the webbing drawer amount monitored periodically, the withdrawal flag indicating the withdrawal of the webbing 302 or the winding of the webbing 302 is calculated from the difference between the previous value at the previous monitoring and the current value at the current monitoring. A winding flag shown or a stop flag where the webbing 302 is not pulled out or wound is set in the flag register. By referring to various flags, the control unit 200 can determine whether the webbing 302 is pulled out, wound up, stopped, whether or not a seat belt is attached, and the possibility of collision. The control means 200 controls the electric motor 110 based on such information. The electric motor 110 is controlled by comparing the amplitude of the input signal and the amplitude of the carrier signal (triangular wave) with a comparator and binarizing them.
るパルス幅変調制御 (以下、「PWM制御」とも言う)により行われる。  Pulse width modulation control (hereinafter also referred to as “PWM control”).
[0024] 次に、制御手段 200によるシートベルト用リトラクタ 100の制御について図 3から図 2 3に示すフローチャートに基づいて詳細に説明する。 Next, the control of the seatbelt retractor 100 by the control means 200 will be described in detail based on the flowcharts shown in FIGS.
制御手段 200および電動モータ 110は、車両 3のノ ッテリライン力も電源供給を受 ける。図 3に示す基本制御フローは、本発明のリトラクタ 100を車両 3に組み付けると き、或いは修理など、制御手段 200をバッテリラインに接続したときに実行される。し たがって、初期パラメータセット S1およびタイマ割り込み許可 S3は、通常は行われず 、初期の車両組み付け時、あるいは修理などでバッテリを外し再度取り付けたときに のみ行われる。  The control means 200 and the electric motor 110 are also supplied with the power of the notch line force of the vehicle 3. The basic control flow shown in FIG. 3 is executed when the retractor 100 of the present invention is assembled to the vehicle 3 or when the control means 200 is connected to the battery line for repair or the like. Therefore, the initial parameter set S1 and the timer interrupt enable S3 are not normally performed, but only when the vehicle is assembled at the initial stage or when the battery is removed and reattached for repair or the like.
[0025] 初期パラメータセット S1は、初期パラメータをセットする制御であり、図 4に示すよう に、ベルト動作に関わる各種状態フラグをクリア(S51)し、次に故障フラグをクリア(S 53)し、次に各種閾値をそれぞれ所定の値にセット(S55)し、次に格納原点をセット するための格納原点セット駆動(S57)を行う。 [0025] The initial parameter set S1 is a control for setting an initial parameter. As shown in FIG. 4, various status flags related to belt operation are cleared (S51), and then a failure flag is cleared (S 53), each threshold value is then set to a predetermined value (S55), and then a storage origin setting drive (S57) for setting the storage origin is performed.
[0026] 格納原点セット駆動(S57)は、図 5に示すように、まず、 PWMデューティ比を乗員 2 の肩部におけるゥェビング 302の張力が ION相当となるように電動モータ 110の駆動 力をセット(S101)する。尚、ゥェビング 302に所定の大きさの張力を与える PWMデュ 一ティ比は、使用される電動モータ 110、および電動モータ 110からスピンドル 103 までの動力伝達部の減速比により異なり、例えば、乗員 2の肩部におけるゥェビング 3 02に 10N相当の張力を与える PWMデューティ比は略 5%である。次に巻き取り駆動 信号を ON (S103)してモータを所定の卷取り力で巻き取り駆動する。そして駆動部 のディレイ時間を考慮して、例えば、 200msの所定時間経過後(S105)、後述の停 止検知(S 107) (図 6)を行う。次に停止フラグがセットされているかどうかが判断され( S 109)、セットされていない場合(S 109 : No)は停止検知(S107)の前に戻り、セット されて 、る場合 (S 109: Yes)はモータの駆動を停止(S 111)し、後述のクラッチ解除 (S113) (図 7)を行ってクラッチを解除し、その位置の回転センサにより検知されたス ピンドル 103の回転量を格納原点として格納原点セット(S 115)を行ってリターンする As shown in FIG. 5, the retracted origin set drive (S57) first sets the drive force of the electric motor 110 so that the tension of the webbing 302 at the shoulder of the occupant 2 is equivalent to ION, as shown in FIG. (S101). Note that the PWM duty ratio that gives a predetermined amount of tension to the webbing 302 differs depending on the electric motor 110 used and the reduction ratio of the power transmission unit from the electric motor 110 to the spindle 103. The PWM duty ratio that gives 10N equivalent tension to the webbing 3 02 at the shoulder is about 5%. Next, the winding drive signal is turned ON (S103), and the motor is wound up with a predetermined winding force. Then, considering the delay time of the drive unit, for example, after a predetermined time of 200 ms has elapsed (S105), stop detection (S107) (FIG. 6) described later is performed. Next, it is determined whether or not the stop flag is set (S109). If it is not set (S109: No), the process returns to before stop detection (S107), and if it is set (S109: Yes) stops the motor drive (S111), performs clutch release (S113) (Fig. 7) described later, releases the clutch, and stores the amount of rotation of the spindle 103 detected by the rotation sensor at that position. Set the stored origin as the origin (S115) and return
[0027] 図 3に戻り、次にタイマ割り込みを許可する(S3)。例えば、タイマ割り込み時間を 20 msとし、 20ms毎に割り込みが入り、図 9に示す処理が行われる。まず、ドアの開閉検 知(S 151)が行われる。ここでは、ドア開閉検知カウンタが所定回数に達するまでの ドア閉の検知が何回行われたかにより、ドアの開閉検知を行い、所定のフラグをセット する。 Returning to FIG. 3, the timer interrupt is then permitted (S3). For example, the timer interrupt time is 20 ms, an interrupt is generated every 20 ms, and the processing shown in FIG. 9 is performed. First, door opening / closing detection (S 151) is performed. Here, depending on how many times the door closing is detected until the door opening / closing detection counter reaches a predetermined number of times, the door opening / closing detection is performed and a predetermined flag is set.
[0028] ドアの開閉検知(S151)は、図 10に示すように、先ずドア開閉検知カウンタがインク リメントされる(S61)。このドア開閉検知カウンタは、 RAM内の所定箇所に設置され ており、ドア開閉検出が行われるごとにインクリメントされる。次に、車両 3に装着され たドアスィッチからのドア開閉信号を読み取り(S63)、ドア開閉検知カウンタが 5に達 した力どうかが判断される(S65)。ドア開閉検知カウンタが 5に達して ヽな 、場合 (S6 5 : No)は、ドアスィッチからのドア開閉信号によりドア閉かどうか判断し (S67)、ドア 閉であれば(S67: Yes)ドア閉カウンタがインクリメント(S69)されてリターンする。ドア 閉カウンタは、 RAM内の所定箇所に設置されている。ドア閉が検出されない場合 (S 67 : No)は、そのままリターンする。ドア開閉検知カウンタが 5に達している場合 (S65 : Yes)は、ドア閉カウンタが 3以上かどうかが判断され (S71)、 3以上であれば(S71 : Yes)ドア閉フラグがセットされ (S 73)、 3以上でなければ(S71 :No)ドア閉フラグがク リアされる(S75)。そして、ドア開閉検知カウンタがクリア(S77)され、更にドア閉カウ ンタがクリア(S79)されてリターンする。 In the door opening / closing detection (S151), as shown in FIG. 10, first, the door opening / closing detection counter is incremented (S61). This door open / close detection counter is installed at a predetermined location in the RAM and is incremented every time door open / close detection is performed. Next, the door opening / closing signal from the door switch mounted on the vehicle 3 is read (S63), and it is determined whether or not the door opening / closing detection counter has reached 5 (S65). If the door open / close detection counter reaches 5 (S6 5: No), the door open / close signal from the door switch determines whether the door is closed (S67). If the door is closed (S67: Yes), the door is closed. The counter is incremented (S69) and the process returns. door The closed counter is installed at a predetermined location in the RAM. If door closing is not detected (S67: No), the process returns. If the door open / close detection counter has reached 5 (S65: Yes), it is determined whether the door close counter is 3 or more (S71). If it is 3 or more (S71: Yes), the door close flag is set ( If it is not 3 or more (S71: No), the door close flag is cleared (S75). Then, the door opening / closing detection counter is cleared (S77), the door closing counter is cleared (S79), and the process returns.
[0029] 図 9に戻り、次に、シートベルト装着有無検出手段 307からの信号により、バックル 装着検知(S153)が行われる。ここでは、バックル装着カウンタが所定回数に達する までにバックル装着と検知された回数が何回あるかを判断し、バックル装着 Z非装着 を検出し、この検出結果の前回と今回の結果を比較し、バックル装着に変化があった 力どうかを判断し、所定のフラグをセットする。  Returning to FIG. 9, next, buckle wearing detection (S 153) is performed based on a signal from the seat belt wearing presence / absence detecting means 307. Here, it is determined how many times the buckle wearing counter has been detected as being attached to the buckle until it reaches the predetermined number of times, detects whether the buckle is attached to Z, and compares this detection result with the previous result. Judge whether there is a change in the wearing of the buckle and set a predetermined flag.
[0030] バックル装着検知(S 153)は、図 11に示すように、先ず、 RAM内の所定箇所に設 置されたバックル装着カウンタ力インクリメントされ (S161)、シートベルト装着有無検 出手段 307からバックル装着有無信号を測定する(S163)。次に、バックル装着カウ ンタが 5に達したかどうかが判断され (S165)、バックル装着カウンタが 5に達していな い場合、測定されたバックル装着有無信号によりバックル装着力どうかが判断される ( S167)。バックル装着(S167: Yes)ならバックル装着カウンタがインクリメントされて ( S169)リターンし、バックル装着でなければ(S167 :No)そのままリターンする。バッ クル装着カウンタが 5に達している場合、ノ ックル装着カウンタが 3以上かどうかが判 断され (S 171)、 3以上の場合(S 171: Yes)はバックル装着フラグがセットされる(S 1 73)。そして、前回のバックル装着フラグと比較され (S 175)、異なる場合 (S 175 : Ye s)はバックル非装着力も装着移行フラグがセットされ (S177)、ドア開閉検知カウンタ カ^リア(S179)され、更にバックル装着カウンタがクリア(S181)されてリターンする。 前回のバックル装着フラグと同じであれば (S 175 : No)、ノ ックル装着継続フラグが セット(S 183)されてリターンする。  As shown in FIG. 11, the buckle wearing detection (S 153) is first incremented by a buckle wearing counter force installed at a predetermined location in the RAM (S 161), from the seat belt wearing presence / absence detecting means 307. A buckle mounting presence / absence signal is measured (S163). Next, it is determined whether or not the buckle mounting counter has reached 5 (S165), and if the buckle mounting counter has not reached 5, whether or not the buckle mounting force is determined from the measured buckle mounting presence / absence signal ( S167). If the buckle is mounted (S167: Yes), the buckle mounting counter is incremented (S169) and the process returns. If the buckle is not mounted (S167: No), the process returns. When the bucket mounting counter reaches 5, it is determined whether the knock mounting counter is 3 or more (S 171), and when it is 3 or more (S 171: Yes), the buckle mounting flag is set (S 1 73). Then, compared with the previous buckle mounting flag (S175), if it is different (S175: Yes), the mounting transition flag is also set for the buckle non-mounting force (S177), and the door open / close detection counter is reset (S179). Further, the buckle mounting counter is cleared (S181) and the process returns. If it is the same as the previous buckle wearing flag (S175: No), the knocking continuation flag is set (S183) and the process returns.
[0031] ノ ックル装着カウンタが 3以上でない場合(S171 :No)は、ノ ックル装着フラグがク リアされ (S185)、次いで前回のバックル装着フラグと比較され (S187)、異なる場合 (S187 :Yes)はバックル装着力も非装着移行フラグがセットされて(S189)リターンし 、前回のバックル装着フラグと同じであれば (S187 :No)、バックル非装着継続フラグ がセット(S191)されてリターンする。 [0031] If the knocker mounting counter is not 3 or more (S171: No), the knocker mounting flag is cleared (S185), then compared with the previous buckle mounting flag (S187), and different (S187: Yes). ) Will also return with the buckle wearing power set to the non-wearing transition flag (S189) If it is the same as the previous buckle wearing flag (S187: No), the buckle non-wearing continuation flag is set (S191) and the process returns.
[0032] 再び図 9に戻り、次に衝突予知制御(S155)が行われる。衝突予知制御(S155)は 、本発明の主要部分の 1つであり、制御フローを図 12に示すように、まず、ノ ックル装 着継続フラグがセットされているかどうかが判断され (S201)、セットされていない場 合 (S201 :No)はリターンする。セットされている場合 (S201 : Yes)は、衝突予測手 段 120から衝突予知信号が読み取られ (S203)、その信号力も衝突不可避力どうか 判断される(S205)。ここで衝突不可避とは、乗員操作によって衝突が避けられない ことを意味する。衝突不可避と判断された場合 (S205 : Yes)、例えば 3秒間、シート ベルトが、大きな動力、例えば最大駆動力の 90%の駆動力で高速巻き取り駆動(S2 07)され、リターンする。この動作は、他の動作に優先して行われる。また、 3秒間とい う時間は一例であり、衝突不可避状態における乗員拘束が必要な時間に設定される ことが望ましい。 Returning to FIG. 9 again, next, collision prediction control (S155) is performed. Collision prediction control (S155) is one of the main parts of the present invention. As shown in FIG. 12, the control flow first determines whether the knocking continuation flag is set (S201). If it is not set (S201: No), it returns. If it is set (S201: Yes), a collision prediction signal is read from the collision prediction means 120 (S203), and whether the signal force is also an inevitable collision force is determined (S205). Here, collision unavoidable means that a collision cannot be avoided by a passenger operation. If it is determined that the collision is inevitable (S205: Yes), for example, for 3 seconds, the seat belt is driven to take up at a high speed (S207) with a large power, for example, 90% of the maximum driving force, and then returns. This operation is performed with priority over other operations. In addition, the time of 3 seconds is an example, and it is desirable to set it to a time that requires occupant restraint in a collision unavoidable state.
[0033] 衝突回避可能 (衝突不可避ではな!ヽ)と判断された場合 (S205: No)は、警告信号 が入力されているかどうかが判断され (S209)、警告信号が入力されていると判断さ れた場合(S209 :Yes)は、シートベルト 302の間欠卷取り駆動(S211)が行われる。 これにより、乗員 2への危険を知らせ、リターンする。警告信号が入力されていないと 判断された場合 (S209 :No)は、解除信号が入力されているかどうかが判断され (S2 13)、解除信号が入力されていると判断された場合 (S213 :Yes)は、最大駆動力で の卷取り駆動と後述するクラッチ解除と(S215)を行ってクラッチを解除し、リターンす る。  [0033] If it is determined that collision avoidance is possible (no collision unavoidable! 衝突) (S205: No), it is determined whether a warning signal is input (S209), and it is determined that a warning signal is input. If it is determined (S209: Yes), the intermittent removal driving (S211) of the seat belt 302 is performed. This informs passenger 2 of the danger and returns. If it is determined that the warning signal is not input (S209: No), it is determined whether the release signal is input (S213), and if it is determined that the release signal is input (S213: If “Yes”, the scraping drive at the maximum driving force and the clutch release described later (S215) are performed to release the clutch, and the process returns.
[0034] ここで、電動モータ 110の卷取り駆動(間欠卷取り駆動を含む)は、衝突不可避と判 断された場合を除く他の全ての場合に、 PWM制御により定電流制御されており、所 定の場面に応じた張力をゥ ビング 302に付与する動力を発生するように PWMデュ 一ティ比が変更される。具体的には、格納原点セット駆動(図 5)における" PWMデュ 一ティセットと巻き取り信号 ON〃のステップ、クラッチ解除(図 7)における〃 PWMデュ 一ティセットと引き出し駆動信号 ON〃のステップ、衝突予知制御(図 12)における"間 欠巻き取り駆動〃のステップ、装着初期制御(図 17)における "巻き取り駆動〃のステツ プ、格納制御(図 16)における "巻き取り駆動〃のステップ、卷取り可否検知(図 15)に おける〃巻き取り駆動〃のステップの各制御は、電動モータ 110への電流供給量を所 定の電流値にし、所定の大きさの動力を発生するように PWM制御により定電流制御 される。 [0034] Here, the take-off drive (including intermittent take-off drive) of the electric motor 110 is constant-current controlled by PWM control in all other cases than the case where it is determined that the collision is inevitable. The PWM duty ratio is changed so as to generate the power that gives the webbing 302 the tension corresponding to the predetermined scene. Specifically, the step of “PWM duty set and winding signal ON に お け る in retracted origin set drive (Fig. 5), the step of 〃 PWM duty set and pull-out drive signal ON ク ラ ッ チ in clutch release (Fig. 7), collision “Preliminary control” (Fig. 12) “Intermittent take-up drive rod step” and initial mounting control (Fig. 17) “Take-up drive rod step” Each control of the “winding drive” step in the storage control (FIG. 16) and the “winding drive” step in the detection of whether or not winding (FIG. 15) determines the current supply amount to the electric motor 110. The constant current control is performed by PWM control so that a predetermined amount of power is generated.
[0035] PWMデューティ比の変更は本発明の主要部分の 1つであり、以下に詳述する。  [0035] Changing the PWM duty ratio is one of the main parts of the present invention, and will be described in detail below.
電動モータ 110の発生する動力は、所定の PWMデューティ比で電動モータ 110 を制御した場合、ノ ッテリー (図示せず)力も電動モータ 110に供給される電力の電圧 変動、電動モータ 110の温度変化、および電動モータ 110の累積使用時間等、電動 モータ 110の作動環境によって変動する。従って、発生する動力の大きさを所定の 大きさにするためには、 PWMデューティ比は、これらの変動をも考慮して変更される 必要がある。  When the electric motor 110 is controlled with a predetermined PWM duty ratio, the power generated by the electric motor 110 is not limited to a notch (not shown) force, the voltage fluctuation of the electric power supplied to the electric motor 110, the temperature change of the electric motor 110, It also varies depending on the operating environment of the electric motor 110, such as the cumulative usage time of the electric motor 110. Therefore, the PWM duty ratio needs to be changed in consideration of these fluctuations in order to make the generated power to a predetermined magnitude.
[0036] 即ち、ノ ッテリー力も供給される電力の電圧変動に対しては、供給電圧検出手段 1 22により検出された電圧値に基づいて PWMデューティ比を変更して定電流制御を 行う。具体的には、電圧が上昇するように変化する場合は変化前の PWMデューティ 比より PWMデューティ比を小さくし、電圧が低下するように変化する場合は変化前の PWMデューティ比より PWMデューティ比を大きくして、所定の動力が得られるように 制御する。  That is, with respect to the voltage fluctuation of the electric power supplied also with the knottery force, the constant current control is performed by changing the PWM duty ratio based on the voltage value detected by the supply voltage detecting means 122. Specifically, when the voltage changes so as to increase, the PWM duty ratio is made smaller than the PWM duty ratio before the change, and when the voltage changes so as to decrease, the PWM duty ratio is changed from the PWM duty ratio before the change. Increase the power and control to obtain a predetermined power.
[0037] また、電動モータ 110は温度特性を有しており、定電流制御されていても電動モー タ 110の温度により発生する動力が変化する。例えば、電動モータ 110がフ ライト 磁石などの永久磁石およびコイル磁石 (コイルに電流を流して磁力を発生する磁石) により動作する直流モータの場合、永久磁石の磁力は、高温だと磁力が低下し、低 温だと磁力が上昇する温度特性を有する。従って、電動モータ 110の動力は、電動 モータ 110 (永久磁石)の温度が高温になるほど低下し、低温になるほど上昇するこ とになる。例えば、電動モータ 110の温度が 25°Cのときの発生動力を基準とすると、 80°Cでは約 10%低下し、—30°Cでは約 10%上昇する。電動モータ 110の温度特 性の補正は、温度検出手段 121により電動モータ 110の温度を測定し、これに基づ いて PWMデューティ比を変更することにより行われる。即ち、温度検出手段 121によ り検出された温度が上昇するように変化する場合変化前の PWMデューティ比より P WMデューティ比を大きくし、温度が低下するように変化する場合は変化前の PWM デューティ比より PWMデューティ比を小さくして所定の動力が得られるように制御す る。具体的には、例えば PWMデューティ比 5%、温度 25°Cのとき、 10N相当の張力 となるように設定された電動モータ 110においては、温度検出手段 121の検出温度 力 ¾0°Cのとき PWMデューティ比を 5. 5%とし、また 30°Cのとき PWMデューティ 比を 4. 5%に変更して温度補正を行う。 [0037] In addition, the electric motor 110 has a temperature characteristic, and the generated power changes depending on the temperature of the electric motor 110 even if constant current control is performed. For example, if the electric motor 110 is a DC motor that operates with a permanent magnet such as a bright magnet and a coil magnet (a magnet that generates a magnetic force by passing a current through the coil), the magnetic force of the permanent magnet decreases at a high temperature. It has a temperature characteristic that magnetic force increases at low temperatures. Therefore, the power of the electric motor 110 decreases as the temperature of the electric motor 110 (permanent magnet) increases, and increases as the temperature decreases. For example, based on the generated power when the temperature of the electric motor 110 is 25 ° C, it decreases by about 10% at 80 ° C and increases by about 10% at -30 ° C. The temperature characteristic of the electric motor 110 is corrected by measuring the temperature of the electric motor 110 by the temperature detecting means 121 and changing the PWM duty ratio based on the measured temperature. That is, when the temperature detected by the temperature detecting means 121 changes so as to increase, the PWM duty ratio before the change If the WM duty ratio is increased and the temperature changes so as to decrease, the PWM duty ratio is controlled to be smaller than the PWM duty ratio before the change so that a predetermined power can be obtained. Specifically, for example, in the case of an electric motor 110 set to have a tension equivalent to 10 N when the PWM duty ratio is 5% and the temperature is 25 ° C, the PWM is detected when the detected temperature force of the temperature detecting means 121 is ¾0 ° C. Set the duty ratio to 5.5% and change the PWM duty ratio to 4.5% at 30 ° C to perform temperature compensation.
[0038] また、電動モータ 110は、累積使用時間に比例して発生動力が低下することが知ら れている。これは、直流モータのブラシが使用に伴って摩耗し、これによりブラシ部の 電気抵抗が上昇することに起因すると考えられ、例えば、累積使用時間が 150時間 になると動力は約 30%低下する。累積使用時間に伴う動力の変動は、累積使用時 間検出手段 123によって検出された累積使用時間に基づいて PWMデューティ比を 変更することにより補正され、定電流制御される。即ち、電動モータ 110の累積使用 時間が大きくなるにしたがって PWMデューティ比を大きくして所定の動力が得られる ように制御する。 [0038] Further, it is known that the electric power generated by the electric motor 110 decreases in proportion to the cumulative usage time. This is thought to be due to the fact that the brush of the DC motor is worn with use, which increases the electrical resistance of the brush part. For example, when the cumulative usage time reaches 150 hours, the power decreases by about 30%. The fluctuation of the power accompanying the accumulated usage time is corrected by changing the PWM duty ratio based on the accumulated usage time detected by the accumulated usage time detecting means 123, and constant current control is performed. That is, as the accumulated usage time of the electric motor 110 increases, the PWM duty ratio is increased so that predetermined power is obtained.
尚、作動環境検出手段として電流検出回路(図示せず)を使用し、電流検出回路に より電動モータ 110に流れる電流値を検出して所定の電流値の電流供給量となるよ うに PWMデューティ比を変更して定電流制御を行うようにしてもょ ヽ。  Note that a current detection circuit (not shown) is used as the operating environment detection means, and the current value flowing through the electric motor 110 is detected by the current detection circuit, and the PWM duty ratio is set so as to obtain a current supply amount of a predetermined current value. It is also possible to change the to perform constant current control.
[0039] 図 9に戻り、衝突予知制御(S155)が終わると、次に 500ms経過したかが判断される [0039] Returning to FIG. 9, when the collision prediction control (S155) ends, it is determined whether 500 ms has passed next.
(S157)。これは RAM (レジスタ)内に 500msカウンタが設定され、タイマ割り込み 20ms 毎にインクリメントされ、このカウント値により 500msに達したかどうかが判断される。そ して、 500ms経過したと判断される(S 157 : Yes)と、駆動部故障診断 (S 159)が行わ れ、リターンする。 500ms経過していない場合 (S 157 : No)は、駆動部故障診断が行 われずにリターンする。  (S157). This is done by setting a 500 ms counter in the RAM (register) and incrementing every 20 ms timer interrupt. This count value determines whether 500 ms has been reached. If it is determined that 500 ms has elapsed (S157: Yes), a drive unit failure diagnosis (S159) is performed and the process returns. If 500ms has not elapsed (S157: No), the drive unit failure diagnosis is not performed and the process returns.
[0040] 駆動部故障診断 (S159)は、図 13に示すように、モータ駆動が連続で所定時間以 上行われていないかどうかで検出される。先ず、電動モータ 110に流れる電流を電 流検出回路 (図示せず)で検出することによりモータ駆動有無検知が行われ (S267) 、この電流が所定値(5A)以上であるか否かによりモータ駆動力、どうかが判断される ( S269)。モータ駆動と判断されない場合 (S269 : No)は、 RAM内に設定された駆動 部異常フラグをクリア(S271)してリターンする。モータ駆動と判断された場合 (S269 : Yes)は、駆動が 10秒以上継続したかどうかが判断され (S273)、 10秒以上継続し た場合 (S273 :Yes)は駆動部異常フラグをセット(S275)してリターンする。 10秒以 上継続していない場合(S273 : No)はそのままリターンする。ここで 10秒は一例であ り、通常のモータ駆動で行われる駆動の最大継続時間以上に設定されることが望ま しい。 As shown in FIG. 13, the drive unit failure diagnosis (S159) is detected based on whether or not the motor is continuously driven for a predetermined time or more. First, the current flowing through the electric motor 110 is detected by a current detection circuit (not shown) to detect whether or not the motor is driven (S267). Depending on whether or not the current exceeds a predetermined value (5A), the motor is detected. The driving force is determined (S269). If the motor drive is not determined (S269: No), the drive set in the RAM Clear the abnormal part flag (S271) and return. If it is determined that the motor is driven (S269: Yes), it is determined whether the drive has continued for 10 seconds or longer (S273), and if it has continued for 10 seconds or longer (S273: Yes), the drive unit abnormality flag is set ( S275) and return. If it has not continued for more than 10 seconds (S273: No), it returns. Here, 10 seconds is an example, and it is desirable to set it to be longer than the maximum duration of drive performed by normal motor drive.
[0041] 再び図 3に戻り、バックルの状態力 前述のタイマ割り込み毎に行われるバックル装 着検知により判断され (S5)、それに応じて、当該フラグがクリア(S15, S17, S19, S 21)された後、装着前制御(S23)あるいは装着初期制御(S25)あるいは装着中制 御(S27)ある 、は格納制御(S29)の各制御が実行される。バックル装着検知(S5) では、ノ ックルの状態を示す各フラグのセット状態により、バックルの状態が検知され る。  [0041] Returning to Fig. 3 again, the state power of the buckle is determined by the buckle attachment detection performed for each timer interrupt (S5), and the flag is cleared accordingly (S15, S17, S19, S21). After this, each control of pre-mounting control (S23), initial mounting control (S25), in-mounting control (S27) or storage control (S29) is executed. In buckle attachment detection (S5), the state of the buckle is detected according to the set state of each flag indicating the state of the knock.
[0042] バックル非装着継続 (S7)と判断された場合、当該フラグがクリア(S15)された後、 図 14に示す装着前制御 (S23)が行われる。バックル非装着力 装着へ移行 (S9)と 判断された場合、当該フラグがクリア (S17)された後、図 17に示す装着初期制御 (S 25)が行われる。ノ ックル装着継続 (S11)と判断された場合、当該フラグがクリア (S1 9)された後、図 19に示す装着中制御(S27)が行われる。また、それ以外の場合 (バ ックル装着力 非装着に移行、ドア信号が変化し且つ全格納未達フラグセット、ドア 開且つ全格納未達フラグセット且つ巻き取り検出の場合) (S13)には、当該フラグが クリア(S21)された後、図 16に示す格納制御(S29)が行われる。  When it is determined that buckle non-continuation is continued (S7), the pre-mounting control (S23) shown in FIG. 14 is performed after the flag is cleared (S15). When it is determined that the buckle non-mounting force shifts to mounting (S9), the flag is cleared (S17), and then the initial mounting control (S25) shown in FIG. 17 is performed. When it is determined that the knocking is to be continued (S11), the flag is cleared (S19), and then the mounting control (S27) shown in FIG. 19 is performed. In other cases (shifting to non-attachment of the buckle attachment force, the door signal changes and the all-stored unachieved flag set, the door opened and all-stored unachieved flag set, and winding detection is detected) (S13) After the flag is cleared (S21), the storage control (S29) shown in FIG. 16 is performed.
[0043] 先ず、装着前制御(S23)は、図 14に示すように、まずはゥ ビング 302が引き出さ れた力どうかを検知する引出し検知(S251)が行われる。引出し検知(S251)は、図 8に示すように、回転センサ (磁ィ匕ディスク 116および磁界検出手段 117)によってス ピンドル 103の回転を読み取り(S301)、読み取った値が前回の読取り値に対して所 定量 (例えば、 5mm)以上引き出し側に移動した力どうかが判断される(S303)。所定 量以上引き出されたと判断されると(S303 : Yes)、引き出しフラグをセット(S305)し た後、回転センサの読み取り値を RAM内の所定箇所に記録して(S307)リターンす る。所定量以上の引き出しがないと判断されると(S303 :No)、引き出しフラグをタリ ァし (S309)、回転センサの読み取り値を RAM内の所定箇所に記録して(S307)リ ターンする。 First, in the pre-mounting control (S 23), as shown in FIG. 14, first, a drawer detection (S 251) for detecting whether or not the webbing 302 is pulled out is performed. As shown in FIG. 8, the drawer detection (S251) reads the rotation of the spindle 103 by the rotation sensor (magnetic disk 116 and magnetic field detection means 117) (S301), and the read value is compared to the previous reading. Then, it is determined whether or not the force has moved to the drawer side for a predetermined amount (for example, 5 mm) (S303). If it is determined that a predetermined amount or more has been pulled out (S303: Yes), the drawer flag is set (S305), then the rotation sensor reading is recorded in a predetermined location in the RAM (S307) and the process returns. If it is determined that there is no withdrawal exceeding the specified amount (S303: No), the withdrawal flag is (S309), the reading value of the rotation sensor is recorded in a predetermined location in the RAM (S307), and the process returns.
[0044] 図 14に戻って、引出し検知(S251)により検知されたのち、引出しフラグがセットさ れて 、るかどうか判断される(S253)。引出しフラグがセットされて ヽな 、場合 (S253 : No)は、装着前制御(S23)はリターンされる。一方、引出しフラグがセットされている 場合 (S253 :Yes)は、図 6に示す停止検知(S107)が実行される。停止検知(S107 )は、図 6に示すように、ゥ ビング 302の停止有無(引き出しも巻き取りもされていな い状態)を検知する。まず、スピンドルの回転量を検知する回転センサの出力を読み 取る(S351)。次に読み取りされた回転量と前回の回転量を比較し、所定量 (例えば 、 5mm)の変化があつたかどうかを判断する(S353)。前回の回転量と今回の回転量 に所定量の違いがあった場合(S353 : Yes)、ゥェビング 302は停止していないと判 断し、停止フラグをクリア(S355)する。一方、前回の回転量と今回の回転量に所定 量の違いがな力つた場合(S353 : No)には、ゥェビング 302は停止したと判断し、停 止フラグがセット(S357)され、回転センサ読み取り値を RAM内の所定箇所に記録( S359)し、リターンする。  Referring back to FIG. 14, after detection by the drawer detection (S251), it is determined whether or not the drawer flag is set (S253). If the drawer flag is set (S253: No), the pre-mounting control (S23) is returned. On the other hand, when the drawer flag is set (S253: Yes), the stop detection (S107) shown in FIG. 6 is executed. As shown in FIG. 6, the stop detection (S107) detects whether or not the webbing 302 is stopped (a state where the drawer is not pulled out or wound up). First, the output of the rotation sensor that detects the amount of rotation of the spindle is read (S351). Next, the read rotation amount is compared with the previous rotation amount, and it is determined whether or not a predetermined amount (for example, 5 mm) has changed (S353). If there is a difference between the previous rotation amount and the current rotation amount (S353: Yes), it is determined that the webbing 302 has not stopped, and the stop flag is cleared (S355). On the other hand, if there is a difference between the previous rotation amount and the current rotation amount (S353: No), it is determined that the webbing 302 has stopped, the stop flag is set (S357), and the rotation sensor The read value is recorded in a predetermined location in the RAM (S359), and the process returns.
[0045] 再び図 14に戻り、停止検知(S107)により検知された後、停止フラグはセットされて V、るかどうか判断される (S257)。停止フラグがセットされて 、な 、場合 (S257: NO) 、ノ ックル非装着継続フラグはセットされているかどうか判断され (S259)、セットされ ている場合(S259 :Yes)には、再び停止検知(S 107)に戻り、セットされていない場 合(S259 :No)にはリターンする。停止フラグがセットされている場合(S257 : Yes) は、所定時間待機(S261)した後、図 15に示す巻き取り可否検知(S263)を行う。  Returning again to FIG. 14, after detection by stop detection (S107), it is determined whether the stop flag is set to V or not (S257). If the stop flag is not set (S257: NO), it is determined whether the knock non-mounting continuation flag is set (S259), and if it is set (S259: Yes), the stop detection is performed again. Return to (S107). If not set (S259: No), return. When the stop flag is set (S257: Yes), after waiting for a predetermined time (S261), the winding availability detection (S263) shown in FIG. 15 is performed.
[0046] 巻き取り可否検知(S263)は、図 15に示すように、まず、 10N相当の力で巻き取り 駆動(S401)され、次いで回転センサの読み取り(S403)が行われる。尚、巻き取り 駆動(S401)において、電動モータ 110は前述したように電圧変動、電動モータ 110 の温度変化および累積使用時間に対して補正が行われた PWM制御される。次に、 所定値 (例えば 30mm)以上巻き取られたかどうかが判断 (S405)され、所定値以上 巻き取られたと判断された場合 (S405 :Yes)は、駆動停止(S407)した後、巻き取り 可フラグをセット(S409)してリターンする。所定値以上巻き取られて 、な 、と判断さ れた場合(S405 :No)は、 500ms経過したかどうかが判断(S411)され、 500ms経 過していない(S411 : No)場合には、回転センサの読み取り(S403)に戻る。一方、 500ms経過している(S411 : Yes)場合には、駆動停止(S413)した後、図 7に示す クラッチ解除 (S 113)を行 、、卷取り可フラグをクリア(S417)してリターンする。 In the winding availability detection (S263), as shown in FIG. 15, the winding drive (S401) is first performed with a force equivalent to 10N, and then the rotation sensor is read (S403). In the winding drive (S401), the electric motor 110 is subjected to PWM control in which the voltage fluctuation, the temperature change of the electric motor 110 and the accumulated usage time are corrected as described above. Next, it is determined whether or not winding has been performed for a predetermined value (for example, 30 mm) or more (S405). If it is determined that winding has been performed for a predetermined value or more (S405: Yes), the drive is stopped (S407) and then wound. The enable flag is set (S409) and the process returns. It is judged that it has been wound up more than a predetermined value. If it is determined (S405: No), it is determined whether 500 ms has passed (S411). If 500 ms has not passed (S411: No), the process returns to reading of the rotation sensor (S403). On the other hand, if 500 ms has elapsed (S411: Yes), the drive is stopped (S413), then the clutch release (S113) shown in Fig. 7 is performed, the saddle removal enable flag is cleared (S417) and the process returns. To do.
[0047] クラッチ解除(S113)は、図 7に示すように、まずは、電動モータ 110による力を 10 N相当に設定すベぐ電動モータ 110に与える PWM信号のデューティ比をセット(S4 51)した後、引出し駆動信号をオン (S453)する。尚、デューティ比セット(S451)に おいては、電圧変動、電動モータ 110の温度変化および累積使用時間に対する補 正が考慮されて行われることは前述の通りである。その後、予張力解除まで引出し検 知しないように、例えは 0. 3秒間待機(S455)する。次に、図 8において既に説明し た引出し検知(S251)を行い、引出しフラグがセットされているかどうかが判断 (S459 )される。引出しフラグがセットされていると判断される(S459 : Yes)と、 PWM信号の デューティ比をアップ (S461)して、引出し検知(S251)に戻る。引出しフラグがセット されていないと判断される(S459 : No)と、引出し駆動力 0. 5秒経過したかどうかが 判断(S463)され、 0. 5秒経過していない(S463 : No)場合には、引出し検知(S25 1)に戻る。一方、 0. 5秒経過していると判断される(S463 : Yes)場合には、駆動信 号をオフ(S465)してリターンする。  In the clutch release (S113), as shown in FIG. 7, first, the duty ratio of the PWM signal applied to the electric motor 110 that sets the force by the electric motor 110 to be equivalent to 10 N is set (S4 51). Thereafter, the drawer drive signal is turned on (S453). As described above, the duty ratio set (S451) is performed in consideration of voltage fluctuation, temperature change of the electric motor 110, and correction for the accumulated usage time. Then, for example, wait for 0.3 seconds (S455) so that the drawer is not detected until the pretension is released. Next, the drawer detection (S251) already described in FIG. 8 is performed, and it is determined whether the drawer flag is set (S459). If it is determined that the drawer flag is set (S459: Yes), the duty ratio of the PWM signal is increased (S461), and the process returns to the drawer detection (S251). If it is determined that the drawer flag is not set (S459: No), it is determined whether the drawer driving force has elapsed for 0.5 seconds (S463), and if 0.5 seconds has not elapsed (S463: No) Return to the drawer detection (S25 1). On the other hand, if it is determined that 0.5 seconds have elapsed (S463: Yes), the drive signal is turned off (S465) and the process returns.
[0048] ここで、図 24を参照して、スピンドル側プーリ 115内に内蔵されているクラッチ 150 について説明する。クラッチ 150は、ギヤ 151と、クラッチハウジング 152と、ポール 1 53と、フリクションスプリング 154と、回転軸 155とを有する。ギヤ 151は、電動モータ 110で駆動されるモータ側ギヤ(図示せず)と嚙合して駆動される歯車 151aを外周 面に備えており、電動モータ 110の回転に伴って回転する。また、クラッチハウジング 152はスピンドル 103に連結されており、内径面には内歯車 152aが形成されている 。ギヤ 151のクラッチハウジング 152の内径側に配置された部分には、ポール 153を スライド移動可能に嵌合させるガイド部 15 lbが設けられて 、る。ポール 153の先端 には、クラッチハウジング 152の内歯車 152aと係合する係合歯 153aが形成されてい る。また、ポール 153の突起部 153bには、回転軸 155を挟み込んで配設されたフリ クシヨンスプリング 154の中間部が係合しており、ポール 153に回転方向の抵抗を与 えている。そして、ポール 153がガイド部 151bに沿ってスライド移動して係合歯 153a をギヤ 151から突出させたとき、内歯車 152aに突起部 153aを係合させてクラッチ係 合状態とし (図 24 (A)参照)、係合歯 153aをギヤ 151内に埋没させたとき、係合を解 除してクラッチ解除状態となる(図 24 (B)参照)。 Here, with reference to FIG. 24, the clutch 150 incorporated in the spindle pulley 115 will be described. The clutch 150 includes a gear 151, a clutch housing 152, a pawl 153, a friction spring 154, and a rotating shaft 155. The gear 151 includes a gear 151 a that is driven in mesh with a motor-side gear (not shown) driven by the electric motor 110, and rotates with the rotation of the electric motor 110. The clutch housing 152 is coupled to the spindle 103, and an internal gear 152a is formed on the inner diameter surface. A guide portion 15 lb for allowing the pawl 153 to be slidably fitted is provided on a portion of the gear 151 disposed on the inner diameter side of the clutch housing 152. An engaging tooth 153 a that engages with the internal gear 152 a of the clutch housing 152 is formed at the tip of the pole 153. In addition, an intermediate portion of a friction spring 154 disposed with the rotation shaft 155 interposed therebetween is engaged with the projecting portion 153b of the pole 153, so that a resistance in the rotational direction is applied to the pole 153. It is. Then, when the pawl 153 slides along the guide portion 151b and the engaging tooth 153a protrudes from the gear 151, the protrusion portion 153a is engaged with the internal gear 152a and the clutch is engaged (FIG. 24 (A )), When the engaging tooth 153a is buried in the gear 151, the engagement is released and the clutch is released (see FIG. 24 (B)).
[0049] 即ち、図 24 (B)に示すクラッチ解除状態のとき、電動モータ 110によってギヤ 151 力 Sゥ ビング 302の卷取り方向(図において時計方向)に回転すると、ポール 153も 回転しょうとする力 フリクションスプリング 154のフリクション作用によってポール 153 の回転が抑制され、徐々に外周方向に移動してやがて係合歯 153aがクラッチハウジ ング 152の内歯車 152aに係合し、ギヤ 151の回転がクラッチハウジング 152に伝達 される。即ち、モータ電動 110がゥ ビング 302の卷取り方向に回転すると、スピンド ル側プーリ 115内に内蔵されたクラッチ 150がオンとなって、モータ電動 110の動力 をスピンドル 103に伝達して回転させ、ゥェビング 302を巻き取る。  That is, in the clutch disengaged state shown in FIG. 24 (B), when the electric motor 110 rotates the gear 151 force S-sub 302 in the scraping direction (clockwise in the figure), the pole 153 also tries to rotate. Force The friction of the friction spring 154 suppresses the rotation of the pole 153, gradually moves in the outer circumferential direction, and eventually the engaging tooth 153a engages with the internal gear 152a of the clutch housing 152, and the rotation of the gear 151 causes the clutch housing to rotate. To 152. That is, when the motor electric 110 rotates in the scraping direction of the web 302, the clutch 150 built in the spindle pulley 115 is turned on, and the power of the motor electric 110 is transmitted to the spindle 103 for rotation. Wind up Webbing 302.
[0050] 次に、図 24 (A)に示すクラッチ係合状態のとき、電動モータ 110によってギヤ 151 力 Sゥ ビング 302の卷取り方向と逆方向(即ち、ゥ ビングの引出し方向、図において 反時計方向)に回転すると、これに伴ってポール 153も逆方向に回転しょうとする力 フリクションスプリング 154によってポール 153の回転が抑制されているので、ポール 153は徐々にギヤ 151の内側へと移動して係合歯 153aとクラッチハウジング 152の 内歯車 152aとの係合が外れ、クラッチ 150が解除される。  Next, in the clutch engagement state shown in FIG. 24 (A), the electric motor 110 causes the gear 151 force S-subbing 302 to move away from the scraping direction (that is, the dubbing pull-out direction, opposite in the figure). If the pole 153 is rotated in the clockwise direction, the force of the pole 153 trying to rotate in the opposite direction is also controlled by the friction spring 154. Therefore, the rotation of the pole 153 is suppressed, and the pole 153 gradually moves to the inside of the gear 151. Thus, the engagement between the engagement teeth 153a and the internal gear 152a of the clutch housing 152 is released, and the clutch 150 is released.
[0051] 図 14に戻り、巻き取り可否検知(S263)した後、卷取り可フラグがセットされている かにより巻き取り可かどうかが判断(S265)され、巻き取り不可(S265 : No)であれば 停止検知(S107)に戻り、巻き取り可と判断される(S265 : Yes)場合には、図 16に 示す格納制御(S29)を行い、リターンする。  [0051] Returning to FIG. 14, after detecting whether or not winding is possible (S263), it is determined whether or not winding is possible (S265) depending on whether the take-up flag is set, and winding is not possible (S265: No). If there is, the process returns to the stop detection (S107), and if it is determined that winding is possible (S265: Yes), the storage control (S29) shown in FIG. 16 is performed and the process returns.
[0052] 格納制御(S29)は、図 16に示すように、先ず、巻き取り駆動(S501)して、図 6に 示す前述の停止検知(S107)を行った後、停止フラグがセットされているかどうかが 判断 (S505)される。停止フラグがセットされている場合 (S505 : Yes)は、後述する 駆動停止(S549)に移行する。停止フラグがセットされていないと判断された場合 (S 505 : No)は、所定量 (Xmm)巻き取ったかが判断(S507)され、所定量 (Xmm)卷 き取っていない(S507 : No)場合には、巻き取り駆動(S501)に戻る。所定量 (Xmm )卷き取っていると判断された場合 (S507 :Yes)は、ドア閉フラグがセットされている 力どうかが判断 (S509)される。ドア閉フラグがセットされている(S509 : Yes)とドアク ローズ時の巻き取り駆動 (低速の巻き取り駆動)(S511)が行われ、ドア閉フラグがセ ットされていない(S509: No)とドアオープン時の巻き取り駆動(中速の巻き取り駆動 ) (S513)が行われる。尚、低速の巻き取り駆動(S511)、中速の巻き取り駆動(S51 3)は、共に前述した電圧変動、電動モータ 110の温度変化および累積使用時間に 対する補正が考慮された PWM制御により行われる。これは、ドアへのゥヱビング 302 の挟み込みを防止するため、ドアが開いている場合は、ドアを閉めたとき格納が完了 して 、な 、状態のゥェビング 302がドアへ挟み込まれるのを防止するためである。 In the storage control (S29), as shown in FIG. 16, first, the winding drive (S501) is performed, and after the stop detection (S107) shown in FIG. 6 is performed, the stop flag is set. It is determined whether or not (S505). If the stop flag is set (S505: Yes), the process proceeds to drive stop (S549) described later. When it is determined that the stop flag has not been set (S 505: No), it is determined whether a predetermined amount (Xmm) has been wound (S507), and the predetermined amount (Xmm) has not been wound (S507: No) Return to the winding drive (S501). Predetermined amount (Xmm ) If it is determined that the door has been wiped off (S507: Yes), it is determined whether or not the door closing flag is set (S509). When the door close flag is set (S509: Yes), the winding drive at the time of door closing (low-speed winding drive) (S511) is performed and the door closing flag is not set (S509: No) Winding drive when the door is open (medium speed winding drive) (S513) is performed. Note that both the low-speed winding drive (S511) and the medium-speed winding drive (S513) are performed by PWM control that takes into account the corrections for the voltage fluctuation, temperature change of the electric motor 110, and cumulative usage time. Is called. This is to prevent the webbing 302 from being caught in the door. When the door is open, the storage is completed when the door is closed, and the webbing 302 in the state is prevented from being caught in the door. It is.
[0053] 巻き取り駆動(S511)または(S513)が行われた後、回転センサによる検知(S515 )が行われ、格納原点まで所定量 (Ymm)の位置に到達した力どうかが判断 (S517) される。ここで所定量 (Ymm)の位置とは格納原点からのゥェビング引出し量力 ドア へのゥェビング挟み込みが出来ない位置であることが望ましい。この動作は、格納の ゥェビング巻き取り最中に、ゥェビング 302と一緒にタンダプレート 305も移動し、ある 速度で車内内装材にぶつ力る事によって引き起こされる可能性がある内装材への傷 つけを防止するために、ある位置で一端巻き取りを止め、ぶつ力るのを防ぐ目的があ る。しかし、巻き取りを止めたちょうどその時に、もしもタンダプレート 305ごとゥェビン グ 302が車外にたまたま存在し、ドアなどを締めた場合に、ゥヱビング 302をドアに挟 み込むことになつてしまい、この場合、ゥェビング 302に傷等が付く恐れがあり、その 後のゥヱビング強度上好ましくはない。これを防ぐため、前述のように、一端停止する 所定位置は、少なくともゥェビング 302をドアで挟み込むことがな 、位置であることが 望ましい。 [0053] After the winding drive (S511) or (S513) is performed, detection by the rotation sensor (S515) is performed, and it is determined whether or not the force has reached a predetermined amount (Ymm) to the storage origin (S517). Is done. Here, it is desirable that the position of the predetermined amount (Ymm) is a position where the webbing pulling amount force from the storage origin cannot be inserted into the webbing. This action can cause damage to the interior material during the retracting webbing take-up, which can be caused by the tinder plate 305 moving with the webbing 302 and hitting the interior of the vehicle at a certain speed. To prevent this, the purpose is to stop winding at one position and prevent it from hitting. However, just when the winding is stopped, if the twelve plate 305 and the webbing 302 happen to exist outside the vehicle, and the door is tightened, the webbing 302 will be caught in the door. There is a risk that the webbing 302 may be scratched, which is not preferable in terms of the subsequent webbing strength. In order to prevent this, as described above, it is desirable that the predetermined position where the one-stop operation is performed is a position where at least the webbing 302 is not sandwiched by the door.
[0054] 格納原点まで所定量 (Ymm)の位置に到達していない場合(S517 :No)には、図 6に示す前述の停止検知(S107)された後、停止フラグがセットされているかどうかが 判断 (S521)される。停止フラグがセットされていない(S521: No)とドア閉フラグセッ トの判断 (S509)に戻る。停止フラグがセットされている場合 (S521 : Yes)は停止フ ラグカウンタ 1をインクリメント(S523)し、駆動停止(S525)してゥェビング巻き取りを 止めた後、図 7において既に説明したクラッチ解除 (S113)を行う。次に、停止フラグ カウンタ 1は 10かどうかが判断 (S529)され、停止フラグカウンタ 1が 10でない場合( S529 :No)は、ドア閉フラグセットの判断 (S509)に戻る。停止フラグカウンタ 1が 10 の場合 (S529 :Yes)は、停止フラグカウンタ 1をクリア(S531)し、全格納未達フラグ をセット(S533)してリターンする。 [0054] If the position of the predetermined amount (Ymm) has not been reached to the storage origin (S517: No), whether the stop flag is set after the above-mentioned stop detection (S107) shown in FIG. 6 is detected. Is judged (S521). If the stop flag is not set (S521: No), the process returns to the determination of the door close flag set (S509). When the stop flag is set (S521: Yes), the stop flag counter 1 is incremented (S523), the drive is stopped (S525) and the webbing is stopped. S113) is performed. Next, stop flag Whether counter 1 is 10 is determined (S529). If stop flag counter 1 is not 10 (S529: No), the process returns to determination of door closing flag setting (S509). If the stop flag counter 1 is 10 (S529: Yes), the stop flag counter 1 is cleared (S531), the all storage unreachable flag is set (S533), and the process returns.
[0055] 一方、ステップ S517にお 、て、格納原点まで所定量 (Ymm)の位置に到達して ヽ る場合 (S517 :Yes)には、駆動停止(S535)してゥヱビング巻き取りを止めた後、図 7に示す前述のクラッチ解除 (S113)を行う。そして、更に T秒間駆動停止(S539)し た後、巻き取り駆動(S541)を行い、格納原点に達したかどうかが判断 (S543)され る。格納原点に達したと判断される(S543 : Yes)と、停止フラグカウンタ 1, 2をクリア( S545)し、全格納未達フラグをリセット(S547)して駆動停止(S549)する。次に、図 7に示す前述のクラッチ解除 (S113)を行 、、格納原点よりも巻き取られた力どうかが 判断 (S553)され、格納原点よりも巻き取られていなければ(S553 : No)、そのままリ ターンする。格納原点よりも巻き取られている場合(S553 : Yes)は、改めて、その位 置での回転センサにより検知されたスピンドル回転量を格納原点として再セット(S55 5)してリターンする。 [0055] On the other hand, in step S517, when the position reaches the predetermined amount (Ymm) to the storage origin (S517: Yes), the driving is stopped (S535) and the web winding is stopped. Thereafter, the above-described clutch release (S113) shown in FIG. 7 is performed. Then, after the drive is stopped for another T seconds (S539), the winding drive (S541) is performed, and it is determined whether or not the storage origin has been reached (S543). If it is determined that the storage origin has been reached (S543: Yes), the stop flag counters 1 and 2 are cleared (S545), the all storage unachieved flags are reset (S547), and the drive is stopped (S549). Next, the above-described clutch release (S113) shown in FIG. 7 is performed, and it is determined whether the force has been wound from the storage origin (S553). If it has not been wound from the storage origin (S553: No) Return as it is. If it is wound from the storage origin (S553: Yes), the spindle rotation amount detected by the rotation sensor at that position is set again as the storage origin (S555) and the process returns.
[0056] ステップ S543において、格納原点に達していない場合(S543 : No)には、図 6に 示す前述の停止検知(S107)を行った後、停止フラグがセットされているかどうかが 判断 (S559)される。停止フラグがセットされて 、な 、(S559 :No)と巻き取り駆動(S 541)に戻る。停止フラグがセットされている場合(S559 : Yes)は、停止フラグカウン タ 2をインクリメント(S561)し、駆動停止(S563)してゥェビング巻き取りを止めた後、 図 7に示す前述のクラッチ解除 (S113)を行う。次に、停止フラグカウンタ 2が 3かどう かが判断 (S567)され、停止フラグカウンタ 2が 3でない場合(S567 : No)は、巻き取 り駆動(S541)に戻る。停止フラグカウンタ 2が 3の場合 (S567 : Yes)は、停止フラグ カウンタ 2をクリア(S569)し、全格納未達フラグをセット (S571)してリターンする。  [0056] In step S543, if the storage origin has not been reached (S543: No), it is determined whether or not the stop flag is set after the above-described stop detection (S107) shown in FIG. 6 is performed (S559). ) When the stop flag is set, the flow returns to (S559: No) and the winding drive (S541). If the stop flag is set (S559: Yes), the stop flag counter 2 is incremented (S561), the drive is stopped (S563) and the webbing is stopped. S113) is performed. Next, it is determined whether or not the stop flag counter 2 is 3 (S567). If the stop flag counter 2 is not 3 (S567: No), the process returns to the winding drive (S541). If the stop flag counter 2 is 3 (S567: Yes), the stop flag counter 2 is cleared (S569), the all storage unreachable flag is set (S571), and the process returns.
[0057] 図 3に戻り、ノ ックルの状態フラグ力バックル非装着力も装着へ移行したことを示す フラグがセットされたことが判断された場合 (S9)は、当該フラグはクリア(S17)され、 その後、装着初期制御 (S25)が行われる。装着初期制御 (S25)は図 17に示すよう に、まず、 20N相当の力で巻き取り駆動(S601)を行い、 2秒間待機(S603)してこ の間 20N相当の力でゥヱビング 302を巻き取る。そして、停止駆動(S605)してゥヱ ビング 302の巻き取りを止めた後、図 7に示す前述のクラッチ解除 (S113)を行ってリ ターンする。 [0057] Returning to FIG. 3, if it is determined that the flag indicating that the knock state flag force buckle non-mounting force has also shifted to mounting is set (S9), the flag is cleared (S17), Thereafter, initial mounting control (S25) is performed. In the initial mounting control (S25), as shown in FIG. 17, first, the winding drive (S601) is performed with a force equivalent to 20N, and the system waits for 2 seconds (S603). Wind up the web 302 with a force equivalent to 20N. Then, stop driving (S605) is performed to stop winding 302, and then the clutch is released (S113) shown in FIG. 7 to return.
[0058] 停止駆動(S605)は、図 18に示すように、 20ms毎に PWMデューティ比をデュー ティダウンし (S681)、 PWMデューティ比が所定値以下になったかどうかが判断され (S683)、所定値以下になっていないと判断されると(S683 :No)、デューティダウン (S681)の前に戻り、所定値以下になったと判断されると(S683 : Yes)、モータ駆動 信号を OFFして駆動停止(S685)してリターンする。ここで各数値は一例であり、巻き 取り方向に回転中のスピンドル 103を WSIが働き、ロックしない程度にゆっくり停止さ せることができる値に設定されることが望ましい。ゆっくり停止させる理由は、メインロッ クの一部である WSIの誤作動を防ぐためである。 WSIは、従来公知であり、ゥ ビン グ 302を所定の加速度以上で引き出すとゥ ビング 302の引き出しが防止されるべく スピンドル 103の回転をロックするものである。  [0058] As shown in FIG. 18, in the stop drive (S605), the PWM duty ratio is duty-down every 20ms (S681), and it is determined whether or not the PWM duty ratio has become a predetermined value or less (S683). If it is determined that it is not less than the predetermined value (S683: No), it returns to before the duty down (S681), and if it is determined that it is less than the predetermined value (S683: Yes), the motor drive signal is turned off. Stop driving (S685) and return. Here, each numerical value is an example, and it is desirable to set the value so that the spindle 103 rotating in the winding direction can be stopped slowly so that it does not lock by WSI. The reason for stopping slowly is to prevent malfunction of WSI, which is part of the main lock. The WSI is known in the art, and locks the rotation of the spindle 103 so that the pulling of the rubbing 302 is prevented when the rubbing 302 is pulled out at a predetermined acceleration or more.
[0059] 図 3に戻り、バックル状態でバックル装着継続フラグセットされている事が判断され た場合 (Sl l)、当該フラグをクリア (S19)し、装着中制御 (S27)を行う。装着中制御 (S27)は図 19に示すように、まず、スルーアンカ移動有無検知(S651)を行う。スル 一アンカ移動有無検知は、スライド式のポテンショメータでショルダ部の車両上下方 向への移動を検知し、その出力を制御手段 200で読み取り検知する。この検知はタ イマ割り込みにより所定時間毎に行われる。次に、スルーアンカ移動フラグがセットさ れて 、るかどうか判断(S653)し、セットされて!/、る場合(S653: Yes)は既に図 17に おいて説明した装着初期制御(S25)を実行し、リターンする。一方、スルーアンカ移 動フラグがセットされて 、な 、場合 (S653: No)は、シート前後移動有無検知(S655 )が行われる。  Returning to FIG. 3, when it is determined that the buckle mounting continuation flag is set in the buckle state (Sl l), the flag is cleared (S19), and the mounting control (S27) is performed. In the mounting control (S27), first, through anchor movement presence / absence detection (S651) is performed as shown in FIG. In the detection of the presence or absence of a single anchor movement, a sliding potentiometer is used to detect the movement of the shoulder in the downward direction above the vehicle, and the control means 200 reads and detects the output. This detection is performed at predetermined intervals by a timer interrupt. Next, it is determined whether or not the through anchor movement flag is set (S653), and if it is set! /, (S653: Yes), the initial mounting control already explained in FIG. 17 (S25) Execute and return. On the other hand, if the through-anchor movement flag is set (S653: No), the seat back-and-forth movement presence / absence detection (S655) is performed.
[0060] シート前後移動有無検知(S655)は、図 20に示すように、シート前後位置検知が 行われて(S663)、シート移動中がどうかが判断され (S665)、移動中であると判断さ れると(S665: Yes)シート前後位置検知(S663)の前に戻る。シート移動中でな!、 ( 停止中)と判断されると(S665: No)、シート前後移動フラグをセット(S667)してリタ ーンする。図 19に戻り、その後、シート前後移動フラグがセットされているかどうかが 判断 (S657)され、セットされている場合 (S657 : Yes)は、図 17に示す前述の装着 初期制御(S25)を実行し、リターンする。 [0060] As shown in FIG. 20, the seat back-and-forth movement presence / absence detection (S655) is performed by detecting the seat back-and-forth position (S663) and determining whether the seat is moving (S665). If it is done (S665: Yes), the process returns to the position before the seat front / rear position detection (S663). If it is determined that the seat is not moving! Or (stopped) (S665: No), the seat back-and-forth movement flag is set (S667) and the process returns. Returning to Fig. 19, it is checked if the seat back-and-forth movement flag is set. If it is determined (S657) and set (S657: Yes), the above-described initial mounting control (S25) shown in FIG. 17 is executed, and the process returns.
[0061] 一方、シート前後移動フラグがセットされていない場合(S657 : No)は、シートバッ ク角度変化有無検知(S659)が行われる。シートバック角度変化有無検知(S659) は、図 21に示すように、角度検出用のポテンショメータによりシート座面とシートバック との角度を検出し、角度に応じた信号を制御手段 200に出力し (S671)、制御手段 2 00はその出力を所定のタイマ割り込み毎に読み取り、前回のタイマ割り込みによる角 度と今回のタイマ割り込みによる角度に違いがあるかどうかを判断し、角度は変化中 力どうか判断する(S673)。角度が変化中であると判断されると(S673 : Yes)、シート バック角度検知(S671)の前に戻り、角度の変化が止まったと判断されると(S673: No)、シートバック角度変化フラグをセット(S675)してリターンする。  On the other hand, if the seat back-and-forth movement flag is not set (S657: No), seat back angle change presence / absence detection (S659) is performed. As shown in FIG. 21, the seat back angle change presence / absence detection (S659) detects the angle between the seat seat surface and the seat back using an angle detection potentiometer, and outputs a signal corresponding to the angle to the control means 200 ( S671), the control means 200 reads the output at every predetermined timer interrupt, determines whether there is a difference between the angle of the previous timer interrupt and the angle of the current timer interrupt, and determines whether the angle is changing (S673). If it is determined that the angle is changing (S673: Yes), it returns to the position before the seat back angle detection (S671), and if it is determined that the angle change has stopped (S673: No), the seat back angle change flag. Set (S675) and return.
[0062] 再び図 19に戻り、シートバック角度変化フラグがセットされているかどうか判断 (S66 1)され、セットされている場合 (S661 : Yes)は、図 17に示す前述の装着初期制御(S 25)が行われてリターンし、セットされて!/ヽな 、場合(S661: No)はそのままリターン する。これら一連の動作は、ゥ工ビング 302に余分なたるみを与えないために行われ る。  Returning to FIG. 19 again, it is determined whether or not the seatback angle change flag is set (S66 1). If it is set (S661: Yes), the above-described initial mounting control (S66) shown in FIG. If 25) is done and return, if it is set to! / ヽ (S661: No), return as it is. These series of operations are performed so as not to give extra slack to the working 302.
[0063] 図 3に戻り、ノ ックル状態がノ ックル装着力ら非装着に移行、ドア信号が変化し且 つ全格納未達フラグセット、またはドア開且つ全格納未達フラグセット且つ巻き取り検 知のいずれかが該当するフラグ力も判断された場合 (S13)、当該フラグをクリア(S2 1)し、図 16に示す前述の格納制御(S29)を行う。  [0063] Returning to FIG. 3, the knocking state shifts from knocking force to non-mounting, the door signal changes and the all-stored unsatisfied flag set, or the door open and all-stored unsatisfied flag set and winding detection are performed. When the flag force corresponding to any of the knowledge is also determined (S13), the flag is cleared (S21), and the storage control (S29) shown in FIG. 16 is performed.
[0064] そして、図 3に示すように、各バックル状態における制御が行なわれた後、スリープ I N制御(S31)を行う。スリープ IN制御(S31)は、図 22に示すように、引き出し検知フ ラグがセットされているかどうかが判断され (S361)、セットされていると(S361 : Yes) スリープ INフラグをクリア(S363)してリターンする。セットされて!/ヽな 、と (S361: No) 、対象シートベルトのドアが閉まっているかどうかがドア閉フラグがセットされているか どうかにより判断され (S365)、ドア閉フラグがセットされていない (ドア開)と判断される と(S365 : No)、スリープ INフラグをクリア(S363)してリターンする。ドア閉フラグがセ ットされていると判断されると(S365 :Yes)、 IG OFF後、例えば 5分以上経過したか どうかが判断され(S367)、 5分経過していないと(S367 : No)、スリープ INフラグをク リア(S363)し [0064] Then, as shown in FIG. 3, after the control in each buckle state is performed, the sleep IN control (S31) is performed. As shown in Fig. 22, the sleep IN control (S31) determines whether the drawer detection flag is set (S361), and if it is set (S361: Yes), clears the sleep IN flag (S363) And return. If it is set! / ヽ (S361: No), it is judged whether the door of the target seatbelt is closed based on whether the door close flag is set (S365), and the door close flag is not set. If it is determined that the door is open (S365: No), the sleep IN flag is cleared (S363) and the process returns. If it is determined that the door close flag is set (S365: Yes), for example, 5 minutes or more have passed since the IG was turned off. If it is determined (S367) and 5 minutes have not passed (S367: No), the sleep IN flag is cleared (S363).
てリターンする。 5分以上経過していると(S367 : Yes)、スリープ INフラグをセット(S3 69)してリターンする。即ち、ゥェビング 302の引き出しがなぐかつ、対象ドアが閉ま つていて、かつ、 IG OFF後、例えば 5分以上経過した場合にはスリープ INフラグをセ ットする。そして、それ以外は、スリープ INフラグをクリアする。  And return. If more than 5 minutes have passed (S367: Yes), set the sleep IN flag (S369) and return. That is, if the webbing 302 is not pulled out, the target door is closed, and, for example, 5 minutes or more have passed after the IG is turned off, the sleep IN flag is set. Otherwise, the sleep IN flag is cleared.
[0065] 図 3に戻り、スリープ IN制御(S31)の後、スリープ INフラグがセットされているかどう かが判断 (S33)され、セットされていない場合(S33 : No)は、バックル状態判断 (S5 )に戻る。セットされている場合(S33 : Yes)はスリープモードへ移行(S35)する。これ は、スリープ力 復帰するための準備以外は行わないようにし、消費電流を減らすこと を目的に行われる。次に、スリープ OUT判断 (S37)が行われる。スリープ OUT制御( S37)は、図 23に示すように、引き出し検知フラグがセットされているかどうかが判断 され(S381)、セットされていると(S381 :Yes)スリープ OUTフラグをセット(S383)し てリターンする。セットされていないと(S381 : No)、ドア閉フラグがセットされているか どうかが判断され (S385)、ドア閉フラグがセットされていない (ドア開)と判断されると( S385 :No)、スリープ OUTフラグをセット(S383)してリターンする。ドア閉フラグがセ ットされていると判断されると(S385 :Yes)、 IG ONしたかどうかが判断され(S387) 、 ONして [0065] Returning to Fig. 3, after the sleep IN control (S31), it is determined whether the sleep IN flag is set (S33). If it is not set (S33: No), the buckle state determination ( Return to S5). If it is set (S33: Yes), it shifts to the sleep mode (S35). This is done for the purpose of reducing current consumption by making no preparations other than to prepare for returning to sleep mode. Next, a sleep OUT determination (S37) is performed. As shown in FIG. 23, the sleep OUT control (S37) determines whether the drawer detection flag is set (S381), and if it is set (S381: Yes), sets the sleep OUT flag (S383). And return. If it is not set (S381: No), it is determined whether the door close flag is set (S385), and if it is determined that the door close flag is not set (door open) (S385: No), Set the sleep OUT flag (S383) and return. If it is determined that the door close flag is set (S385: Yes), it is determined whether the IG has been turned on (S387).
V、ると(S387: Yes)、スリープ OUTフラグをセット(S383)してリターンする。 ONして Vヽな 、と (S387 : No)、スリープ OUTフラグをクリア(S389)してリターンする。即ち、 引き出し検知あるいはドア開あるいは IG ONのいずれかが検知されると、スリープ OU Tフラグをセットし、それ以外は、スリープ OUTフラグをクリアする。  If it is V (S387: Yes), the sleep OUT flag is set (S383) and the process returns. When it is ON and V ヽ is (S387: No), the sleep OUT flag is cleared (S389) and the process returns. That is, if any drawer detection, door open or IG ON is detected, the sleep output flag is set, otherwise the sleep output flag is cleared.
[0066] 図 3に戻り、スリープ OUTフラグがセットされているかどうかが判断(S39)され、セット されていない場合(S39 : No)は、スリープ OUT判断(S37)に戻り、セットされている 場合 (S39 :Yes)は、再びバックル状態判断 (S5)に戻り、以後同様の制御が行われ る。 [0066] Returning to FIG. 3, it is determined whether or not the sleep OUT flag is set (S39). If it is not set (S39: No), it returns to the sleep OUT determination (S37) and is set. (S39: Yes) returns to the buckle state determination (S5) again, and the same control is performed thereafter.
[0067] 従って、本実施形態のシートベルト用リトラクタ 100によれば、ゥェビング 302を卷回 するスピンドル 103と、スピンドル 103を所望の方向に回転させる動力を発生する電 動モータ 110と、電動モータ 110がスピンドル 103をゥェビング 302の卷取り方向に 回転させる動力を発生した時に、電動モータ 110の動力をスピンドル 103に伝達可 能にし、電動モータ 110がスピンドル 103を卷取り方向に回転させる動力と逆方向の 動力を発生した時に、電動モータ 110の動力をスピンドル 103に伝達不可能にする 動力伝達手段 104と、電動モータ 110を駆動制御する制御手段 200と、を備える。更 に、シートベルト用リトラクタ 100は、電動モータ 110の作動環境を検出する作動環境 検出手段として、電動モータ 110への供給電圧を検出する供給電圧検出手段 122、 電動モータ 110の近傍の温度を検出する温度検出手段 121、および電動モータ 11 0の累積使用時間を検出する累積使用時間検出手段 123の少なくとも 1つと、衝突 可能性を判断する衝突予測手段 120とを備える。 Therefore, according to the seatbelt retractor 100 of the present embodiment, the spindle 103 that rotates the webbing 302 and the electric power that generates the power for rotating the spindle 103 in a desired direction. When the motor 110 and the electric motor 110 generate power to rotate the spindle 103 in the webbing 302 take-off direction, the power of the electric motor 110 can be transmitted to the spindle 103, and the electric motor 110 takes up the spindle 103. A power transmission unit 104 that disables transmission of the power of the electric motor 110 to the spindle 103 when power in the direction opposite to the direction of rotation is generated, and a control unit 200 that drives and controls the electric motor 110. Further, the seat belt retractor 100 detects the operating environment of the electric motor 110 as the operating environment detecting means, the supply voltage detecting means 122 for detecting the supply voltage to the electric motor 110, and detects the temperature in the vicinity of the electric motor 110. At least one of temperature detection means 121 for detecting the accumulated use time of the electric motor 110, and a collision prediction means 120 for determining the possibility of collision.
[0068] そして、制御手段 200は、衝突予測手段 120からの衝突予知信号により、現在の状 態が衝突回避可能状態であるか、或いは、衝突回避不可能状態であるかを判断し、 その状況に応じて電動モータ 110を最適に駆動制御する。即ち、衝突回避可能状態 である場合、動力発生手段 110に供給する電力を、供給電圧検出手段 122により検 出された電圧変動、および Zまたは温度検出手段 121により検出された電動モータ 110の温度変化、および Zまたは累積使用時間検出手段 123により検出された電動 モータ 110の累積使用時間に基づいて、パルス幅変調制御値を変更し、電動モータ 110への電流供給量が所定の電流値となるように定電流制御する。これにより、電動 モータ 110は、各変動要因に伴う動力の変動を補正して常に状況に応じた所定の大 きさの動力を発生する。また、衝突回避不可能状態である場合には、パルス幅変調し た定電流制御を行わずに電動モータ 110への電流供給量が所定の電流値より大きく なるように制御することで、電動モータ 110は所定の大きさより大きな動力を発生する Then, based on the collision prediction signal from the collision prediction unit 120, the control unit 200 determines whether the current state is a collision avoidance state or a collision avoidance state, and the situation The electric motor 110 is optimally driven and controlled according to the conditions. That is, when the collision avoidance is possible, the electric power supplied to the power generation means 110 is detected by the voltage fluctuation detected by the supply voltage detection means 122 and the temperature change of the electric motor 110 detected by the Z or temperature detection means 121. , And Z or based on the accumulated usage time of the electric motor 110 detected by the accumulated usage time detecting means 123, the pulse width modulation control value is changed so that the current supply amount to the electric motor 110 becomes a predetermined current value. Constant current control. Thus, the electric motor 110 always generates a predetermined amount of power according to the situation by correcting the power fluctuation associated with each fluctuation factor. Further, when the collision avoidance is impossible, the electric motor 110 is controlled so that the current supply amount to the electric motor 110 becomes larger than a predetermined current value without performing the pulse width modulated constant current control. 110 generates more power than the predetermined size
[0069] 従って、通常時には、電圧変動、電動モータ 110の温度変化や累積使用時間に拘 わらず、電動モータ 110は常に所定の大きさの動力を発生し、所望の卷取り力でゥ ビング 302を巻き取る。また、衝突が予測される緊急時には、電動モータ 110は所定 の大きさより大きな動力を発生して高速でゥ ビング 302を巻き取る。 [0069] Therefore, at normal times, the electric motor 110 always generates a predetermined amount of power regardless of voltage fluctuation, temperature change of the electric motor 110, and accumulated usage time. Wind up. In an emergency where a collision is expected, the electric motor 110 generates power larger than a predetermined magnitude and winds the web 302 at a high speed.
[0070] また、上記のようなシートベルト用リトラクタ 100を用いたシートベルト装置 1によれば 、通常時には、常に所定の卷取り力でゥヱビング 302を巻き取り、快適なシートベルト 装着環境が得られる。また、衝突が予測される緊急時には、所定の大きさより大きな 動力、例えば最大動力でゥェビング 302を高速で巻き取り、乗員 2を保護する。 [0070] Further, according to the seat belt apparatus 1 using the seat belt retractor 100 as described above, In normal times, the webbing 302 is always wound with a predetermined take-up force, and a comfortable seat belt wearing environment can be obtained. In an emergency where a collision is predicted, the webbing 302 is wound at a high speed with a power larger than a predetermined magnitude, for example, the maximum power to protect the occupant 2.
[0071] 尚、本発明は、前述した実施形態に限定されるものではなぐ適宜、変形、改良、等 が可能である。 It should be noted that the present invention is not limited to the above-described embodiment, and can be appropriately modified, improved, and the like.
また、本発明のシートベルト用リトラクタおよびシートベルト装置は、あらゆる車両に 適用することができ、 V、ずれの場合にも前述したと同様の効果を奏する。  Further, the seatbelt retractor and seatbelt device of the present invention can be applied to any vehicle, and the same effects as described above can be obtained even in the case of V and deviation.
[0072] 本出願は、 2004年 11月 19日出願の日本特許出願 (特願 2004— 335544)に基づくも のであり、その内容はここに参照として取り込まれる。 [0072] This application is based on a Japanese patent application filed on November 19, 2004 (Japanese Patent Application No. 2004-335544), the contents of which are incorporated herein by reference.

Claims

請求の範囲 The scope of the claims
[1] ゥェビングを卷回するスピンドノレと、  [1] Spin Donore, who turns webbing,
該スピンドルを所望の方向に回転させる動力を発生する動力発生手段と、 該動力発生手段が前記スピンドルを前記ゥ ビングの卷取り方向に回転させる前 記動力を発生した時に、前記動力発生手段の動力を前記スピンドルに伝達可能にし 、前記動力発生手段が前記スピンドルを前記卷取り方向に回転させる前記動力と逆 方向の動力を発生した時に、前記動力発生手段の前記動力を前記スピンドルに伝 達不可能にする動力伝達手段と、  Power generating means for generating power for rotating the spindle in a desired direction, and power generated by the power generating means when the power generating means generates the power for rotating the spindle in the scraping direction of the rubbing. Can be transmitted to the spindle, and the power generating means cannot transmit the power of the power generating means to the spindle when the power generating means generates power in a direction opposite to the power for rotating the spindle in the scraping direction. Power transmission means to
前記動力発生手段を駆動制御する制御手段と、を備えたシートベルト用リトラクタで あって、  A seat belt retractor comprising: a control unit that drives and controls the power generation unit;
衝突可能性を判断する衝突予測手段と、  A collision prediction means for determining the possibility of collision;
前記動力発生手段の作動環境を検出する作動環境検出手段と、を更に備え、 前記制御手段は、前記衝突予測手段が衝突回避可能状態であると判断する場合 には、前記作動環境検出手段により検出された前記作動環境に基づいて、前記動 力発生手段への電流供給量を所定の電流値に制御し、  An operating environment detecting means for detecting an operating environment of the power generating means, and the control means detects the operating environment detecting means when determining that the collision predicting means is in a collision avoidable state. A current supply amount to the power generation means is controlled to a predetermined current value based on the generated operating environment;
前記衝突予測手段が衝突回避不可能状態であると判断する場合には、前記作動 環境検出手段により検出された前記作動環境に基づかずに、前記動力発生手段へ の電流供給量を前記所定の電流値より大きくなるように制御することを特徴とするシ ートベルト用リトラクタ。  When it is determined that the collision prediction unit is in a state where collision cannot be avoided, the current supply amount to the power generation unit is set to the predetermined current without being based on the operation environment detected by the operation environment detection unit. A retractor for a seat belt, which is controlled to be larger than the value.
[2] 前記動力発生手段は、パルス幅変調制御により駆動され、  [2] The power generation means is driven by pulse width modulation control,
前記制御手段は、前記衝突予測手段が衝突回避可能状態であると判断する場合 には、前記作動環境検出手段により検出された前記作動環境に基づいて、パルス幅 変調制御値を変更することで、前記動力発生手段への電流供給量を所定の電流値 に制御することを特徴とする請求項 1に記載のシートベルト用リトラクタ。  When the control means determines that the collision prediction means is in a collision avoidable state, the control means changes the pulse width modulation control value based on the operating environment detected by the operating environment detection means, 2. The seatbelt retractor according to claim 1, wherein a current supply amount to the power generation means is controlled to a predetermined current value.
[3] 前記作動環境検出手段は、前記動力発生手段への供給電圧を検出する供給電圧 検出手段、前記動力発生手段の近傍の温度を検出する温度検出手段、および前記 動力発生手段の累積使用時間を検出する累積使用時間検出手段の少なくとも 1つ であり、 前記制御手段は、前記衝突予測手段が衝突回避可能状態であると判断する場合 には、前記供給電圧検出手段により検出された電圧変動、前記温度検出手段により 検出された前記動力発生手段の温度変化、及び前記累積使用時間検出手段により 検出された前記動力発生手段の累積使用時間の少なくとも一つに基づいて、前記 動力発生手段への電流供給量を所定の電流値に制御することを特徴とする請求項 1 又は 2に記載のシートベルト用リトラクタ。 [3] The operating environment detecting means includes a supply voltage detecting means for detecting a supply voltage to the power generating means, a temperature detecting means for detecting a temperature in the vicinity of the power generating means, and an accumulated usage time of the power generating means. Is at least one of the accumulated usage time detection means for detecting When the control means determines that the collision prediction means is in a collision avoidable state, the voltage fluctuation detected by the supply voltage detection means, and the temperature change of the power generation means detected by the temperature detection means And a current supply amount to the power generation means is controlled to a predetermined current value based on at least one of the cumulative use times of the power generation means detected by the cumulative use time detection means. The retractor for seatbelts according to claim 1 or 2.
請求項 1〜3のいずれかに記載のシートベルト用リトラクタを備えたことを特徴とする シートベルト装置。  A seatbelt device comprising the seatbelt retractor according to any one of claims 1 to 3.
PCT/JP2006/302480 2006-02-13 2006-02-13 Seatbelt retractor and seatbelt device WO2007094040A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/302480 WO2007094040A1 (en) 2006-02-13 2006-02-13 Seatbelt retractor and seatbelt device
CN200680052792.0A CN101370692B (en) 2006-02-13 2006-02-13 Coiler used for safety belt and safety belt apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/302480 WO2007094040A1 (en) 2006-02-13 2006-02-13 Seatbelt retractor and seatbelt device

Publications (1)

Publication Number Publication Date
WO2007094040A1 true WO2007094040A1 (en) 2007-08-23

Family

ID=38371236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302480 WO2007094040A1 (en) 2006-02-13 2006-02-13 Seatbelt retractor and seatbelt device

Country Status (2)

Country Link
CN (1) CN101370692B (en)
WO (1) WO2007094040A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009156088A1 (en) * 2008-06-18 2009-12-30 Daimler Ag Motor vehicle and braking method
JP2010195290A (en) * 2009-02-26 2010-09-09 Honda Motor Co Ltd Vehicular seat belt device
WO2021136661A1 (en) * 2019-12-31 2021-07-08 Zf Automotive Germany Gmbh Method for a seatbelt system, seatbelt system for a vehicle, and vehicle comprising a seatbelt system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016010431B4 (en) * 2016-08-27 2020-02-20 Daimler Ag Belt tensioner, seat belt device and method for operating a seat belt device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11198760A (en) * 1998-01-08 1999-07-27 Nippon Seiko Kk Occupant restraint and crash protection device for vehicle
JP2000052925A (en) * 1998-08-07 2000-02-22 Nippon Seiko Kk Occupant constraint protector for vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004058546A1 (en) * 2002-12-26 2004-07-15 Denso Corporation Safety device for motor vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11198760A (en) * 1998-01-08 1999-07-27 Nippon Seiko Kk Occupant restraint and crash protection device for vehicle
JP2000052925A (en) * 1998-08-07 2000-02-22 Nippon Seiko Kk Occupant constraint protector for vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009156088A1 (en) * 2008-06-18 2009-12-30 Daimler Ag Motor vehicle and braking method
US8463502B2 (en) 2008-06-18 2013-06-11 Daimler Ag Motor vehicle and braking process
JP2010195290A (en) * 2009-02-26 2010-09-09 Honda Motor Co Ltd Vehicular seat belt device
WO2021136661A1 (en) * 2019-12-31 2021-07-08 Zf Automotive Germany Gmbh Method for a seatbelt system, seatbelt system for a vehicle, and vehicle comprising a seatbelt system

Also Published As

Publication number Publication date
CN101370692B (en) 2010-09-22
CN101370692A (en) 2009-02-18

Similar Documents

Publication Publication Date Title
JP4652022B2 (en) Seat belt retractor and seat belt device
JP4704354B2 (en) Seat belt retractor, control method therefor, and seat belt device
US6843339B2 (en) Automotive passenger restraint and protection apparatus
US7040444B2 (en) Automotive passenger restraint and protection apparatus
CN101269649B (en) Seat belt retractor, seat belt apparatus, and seat belt winding method
EP1777127B1 (en) Seat belt retractor, seat belt apparatus, and vehicle with seat belt apparatus
US7815006B2 (en) Seat belt winding method, seat belt retractor, and seat belt apparatus
JP2007084069A5 (en)
WO2007094040A1 (en) Seatbelt retractor and seatbelt device
CN102892643B (en) Occupant protection device
US8893998B2 (en) Belt retractor for a seat belt system
US7836995B2 (en) Failure diagnosis method of seat belt system and seat belt system having failure diagnosis function
EP1818225B1 (en) Motor retractor
JP3695622B2 (en) Vehicle occupant restraint protection device
JP2005280497A (en) Method for controlling seat belt winding device with motor, and seat belt device
JP2005028930A (en) Control device of motor retractor
JP2008100666A (en) Vehicular seat belt device
JP2004224182A (en) Occupant restraining and protecting device for vehicle
JP2011156921A (en) Webbing control device
JP5236510B2 (en) Vehicle seat belt device
CN115158216A (en) Safety belt winding device for vehicle and vehicle
JP5425845B2 (en) Seat belt device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680052792.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06713622

Country of ref document: EP

Kind code of ref document: A1