WO2007088920A1 - Exterior structure member for electronic device, and electronic device having the exterior structure member - Google Patents

Exterior structure member for electronic device, and electronic device having the exterior structure member Download PDF

Info

Publication number
WO2007088920A1
WO2007088920A1 PCT/JP2007/051672 JP2007051672W WO2007088920A1 WO 2007088920 A1 WO2007088920 A1 WO 2007088920A1 JP 2007051672 W JP2007051672 W JP 2007051672W WO 2007088920 A1 WO2007088920 A1 WO 2007088920A1
Authority
WO
WIPO (PCT)
Prior art keywords
biodegradable polyester
electronic device
exterior member
parts
mass
Prior art date
Application number
PCT/JP2007/051672
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Kanazawa
Yoshito Sakamoto
Shouhei Okabe
Kiyoshi Kawano
Satoshi Yamasaki
Shun Kayama
Yukiko Shimizu
Original Assignee
Sumitomo Electric Fine Polymer, Inc.
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Fine Polymer, Inc., Sony Corporation filed Critical Sumitomo Electric Fine Polymer, Inc.
Priority to JP2007556905A priority Critical patent/JPWO2007088920A1/en
Publication of WO2007088920A1 publication Critical patent/WO2007088920A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers

Definitions

  • Exterior member for electronic device and electronic device provided with the exterior member
  • the present invention relates to an exterior member for an electronic device, and is particularly preferably used as a cap or casing for an external connection terminal of a mobile phone or the like, and aims to reduce the amount of waste at the time of disposal after use. is there.
  • An opening for an external connection terminal is provided in a housing of a portable device such as a mobile phone, a portable CD player, a video camera, etc., and a cap (or a cover) integrally formed with rubber resin.
  • a portable device such as a mobile phone, a portable CD player, a video camera, etc.
  • a cap or a cover integrally formed with rubber resin.
  • the cap is made of a resin such as ABS (acrylonitrile butadiene styrene), PCZABS (polycarbonate Z acrylonitrile butadiene styrene), PA (polyamide), PC (polycarbonate). It is disclosed to form.
  • ABS acrylonitrile butadiene styrene
  • PCZABS polycarbonate Z acrylonitrile butadiene styrene
  • PA polyamide
  • Resins such as PC (polycarbonate)
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-111240
  • biodegradable polymers such as starch and polylactic acid have been attracting attention as materials for solving the problems of disposal of petroleum synthetic polymers.
  • Material. Biodegradable polymers do not have a negative impact on the global environment, including ecosystems, because they produce less heat than combustion and maintain the cycle of decomposition and resynthesis in the natural environment.
  • aliphatic polyester-based rosin which has properties comparable to petroleum synthetic polymers in terms of strength and processability, has recently attracted attention.
  • polylactic acid is made from starch supplied from plants, and is currently becoming cheaper than other biodegradable polymers due to cost reduction due to mass production in recent years. Many studies have been made on applications.
  • Polylactic acid is the closest biodegradable resin to its alternative material because it has processability and strength comparable to general-purpose petroleum synthetic polymers in terms of its characteristics. In addition, it is expected to be applied to various applications such as its transparency, which is comparable to acrylic resin, and its high Young's modulus and its shape retention.
  • polylactic acid has a glass transition point at a relatively low temperature of around 60 ° C, and the so-called glass plate suddenly becomes a Bühl tablecloth around that temperature. The rate is drastically reduced and it is difficult to maintain the shape.
  • a biodegradable resin molded product represented by polylactic acid is an effective material for disposal, but has a problem in terms of heat resistance.
  • portable devices are released into automobiles. If left unattended, the cabin temperature will rise to 60 ° C or higher at high temperatures in summer, and deformation may occur.
  • polylactic acid as described above, has a glass transition temperature of around 60 ° C and lower than the glass transition temperature at room temperature. There is a problem that the shaped product is easily damaged depending on the usage form.
  • the present invention has been made in view of the above problems, and can improve the heat resistance and strength of a molding material formed from a biodegradable material, maintain the shape even in a high temperature environment, and It has the flexibility to prevent damage at normal temperatures, and can be used as an external connection terminal cap for mobile phones made of biodegradable materials that are as strong as the currently used PCZABS, and for exterior components of electronic devices such as housings.
  • the challenge is to provide.
  • At least a polyfunctional monomer is mixed with the biodegradable polyester, and the gel fraction (gel content dry weight Z initial dry weight) of the biodegradable polyester is 50.
  • an exterior member for an electronic device characterized by having a cross-linked structure of at least 90% and at most 90%.
  • At least a polyfunctional monomer is mixed and kneaded with a biodegradable polyester, the kneaded product is molded into a required shape, and ionizing radiation is applied to the obtained molded product.
  • Caps and housings for external connection terminals of mobile phones characterized by being irradiated with an irradiation dose of OkGy or more and 200 kGy or less, and crosslinked so that the gel fraction of the biodegradable polyester is 50% or more and 90% or less.
  • the manufacturing method of exterior members, such as a body is provided.
  • the biodegradable polyester used in the present invention includes, for example, ⁇ poly force prolatatone or ⁇ polylatatanes represented by polypuchi-mouth ratataton, succinic acid, adipic acid, sebacic acid, dartaric acid, decanedicarboxylic acid, terephthalic acid Copolymers of dicarboxylic acids typified by acid or isophthalic acid and polyhydric alcohols typified by ethanediol, propanediol, butanediol, octanediol, dodecanediol, etc., that is, polyethylene succinate, polybutylene Succinate, polybutylene adipate, polybutylene adipate terephthalate, etc., and a copolymer with polylactic acid added thereto, that is, polybutylene succinate lactide, polybutylene succinate adipate acetate, or poly In addition to polyhydroxy
  • biodegradable polyesters such as polybutylene succinate excluding polylactic acid alone have a glass transition temperature of room temperature or lower, and the present invention aims to maintain flexibility at room temperature. Use it properly! be able to.
  • polymers with a glass transition temperature below room temperature can dominate the overall strength, so the preferred glass transition temperature is 50-60 ° C, which exceeds the normal temperature.
  • the main component here refers to the case where the biodegradable polyester contains the most natural or petroleum-derived biodegradable polymer having a glass transition temperature of room temperature or lower.
  • biodegradable polymers having a glass transition temperature of room temperature or lower are contained in 50 parts by weight or more in 100 parts by weight of biodegradable polyester, and biodegradable glass transition temperatures of polylactic acid and the like exceeding room temperature. It is preferable that the functional polymer is less than 50 parts by mass in 100 parts by mass of the biodegradable polyester.
  • normal temperature refers to a normal temperature at which heating / cooling is not performed
  • the biodegradable 3 ⁇ 4 polymer such as polybutylene succinate, polybutylene succinate lactide, or polybutylene succinate adipate lactide is As described above, it may be either petroleum-derived or partly or entirely naturally-derived polymer.
  • the polyfunctional monomer is not particularly limited as long as it is a monomer that can be cross-linked by irradiation with ionizing radiation, such as triallyl isocyanurate, but it has two or more double bonds in one molecule.
  • ionizing radiation such as triallyl isocyanurate
  • Acrylic and methacrylic polyfunctional monomers are preferably used.
  • Examples of this type of monomer include 1, 6 hexanediol di (meth) acrylate, 1, 4 butanediol di (meth) acrylate, trimethylol propane tri (meth) acrylate, ethylene oxide modified trimethylol propane Tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, ethylene oxide modified bisphenol A di (meth) acrylate, diethylene glycol di (meth) acrylate, dipentaerythritol hexa acrylate , Dipentaerythritol monohydroxypentaacrylate, force Prolataton-modified dipentaerythritol hexaatalylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, polyester Tylene glycol Di (meth) atalylate, Tris (Atari mouth kichet
  • the polyfunctional monomer used in the present invention is preferably blended in an amount of 2 to 15 parts by mass with respect to 100 parts by mass of the biodegradable polyester.
  • the cross-linking effect of the biodegradable polyester due to the polyfunctional monomer will not be sufficiently exerted, and the strength at high temperatures will decrease, and in the worst case, the shape will not be maintained. It depends. On the other hand, when the amount exceeds 15 parts by mass, it becomes difficult to uniformly mix the entire amount of the polyfunctional monomer with the biodegradable polyester, so that the bridge effect is not substantially different.
  • it is preferably 3 parts by mass or more. In order to increase the biodegradable polyester content and increase biodegradability, it is 10 parts by mass or less. Preferred.
  • biodegradable polyester and the polyfunctional monomer may be combined with the composition constituting the molded product of the biodegradable polyester unless the object of the present invention is contrary. May be.
  • blend biodegradable materials other than biodegradable polyester include synthetic biodegradable resin such as polyvinyl alcohol, or natural biodegradable resin such as natural linear polyester such as polyhydroxypropylate valerate. Can be mentioned.
  • a synthetic polymer having biodegradability and Z or a natural polymer may be mixed as long as the melting characteristics are not impaired.
  • biodegradable synthetic polymers include cellulose acetate, cellulose acetate butyrate, cellulose alcohol propionate, cellulose nitrate, cellulose cellulose sulfate, cellulose acetate such as cellulose acetate butyrate or cellulose nitrate acetate, Polypeptides such as glutamic acid, polyaspartic acid or polyleucine can be mentioned.
  • the natural polymer include starch, raw starch such as corn starch, wheat starch or rice starch, or processed starch such as acetate esterified starch, methyl ether starch or amylose.
  • an inorganic filler or Z and a dye are blended with 100 parts by mass of the biodegradable polyester.
  • an inorganic filler when used as a housing, it is preferable to add an inorganic filler as a reinforcing material.
  • a dye or a pigment In order to make the exterior member of the slave device, it is preferable to blend a dye or a pigment. Apply paint to the outer surface of the cross-linked molded product without blending dyes or pigments in the composition.
  • the blending amount of the inorganic filler or the Z and the dye is within the above range because if the amount is less than 1 mass with respect to 100 parts by mass of the biodegradable polyester, a reinforcing effect can be obtained by covering the inorganic filler. If it exceeds 150 parts by mass, it will lose flexibility and become brittle.
  • Examples of the inorganic filler include glass fiber, glass, beads, metal powder, talc, my strength, calcium carbonate, clay, wollastonite, silica, and the like. These may be used untreated or may be surface treated with silane or stearic acid.
  • inorganic fillers it is particularly preferable to use wollastonite.
  • the exterior member for an electronic device according to the present invention contains at least one of the following flame retardants (a) to (e).
  • Flame resistance is one of the important performance requirements for external connection terminal caps and exterior members for electronic devices such as housings.
  • one or more of the flame retardants (a) to () are blended to impart flame retardancy! / I like it! /
  • Examples of the phosphorus-based flame retardant (a) include condensed phosphate ester, phosphate ester, polyphosphate ammonium salt, intomescent, cyclic phosphate, and the like.
  • Examples of the melamine flame retardant (b) include melamine cyanurate,
  • metal hydrate (c) aluminum hydroxide and the like can be preferably used, and (d) nitrogen flame retardant, (e) silane flame retardant and the like can be suitably used.
  • flame retardants (a) to (e) can be used alone, but as shown in the examples, different types of flame retardants can be used. It is effective in achieving both flame retardancy.
  • the composition includes a resin component other than biodegradable resin, a curable oligomer, Various stabilizers, hydrolysis inhibitors, antistatic agents, antifungal agents, polylactic acid crystallization accelerating nucleating agents, additives such as viscosity imparting agents, organic fillers, coloring agents such as dyes or pigments, etc. I'll do it with you.
  • a composition containing the above-described biodegradable polyester, polyfunctional monomer and optionally other components is formed into a desired shape.
  • molding method is not specifically limited, You may use a well-known method.
  • known molding machines such as an extrusion molding machine, a compression molding machine, a vacuum molding machine, a blow molding machine, a T-die molding machine, an injection molding machine, and an inflation molding machine are used.
  • the biodegradable polyester composition is molded into a required shape
  • the biodegradable polyester molded product is cross-linked, and the cross-linking method is not particularly limited, and a known method can be used. It is most preferable to irradiate with actinic radiation to crosslink.
  • ⁇ -rays, X-rays, ⁇ -rays or a-rays can be used, but for industrial production, ⁇ -ray irradiation with cobalt 60 and electron beam irradiation with an electron beam accelerator are preferred.
  • Ionizing radiation exposure removes air! It is preferable to carry out in an inert atmosphere or under vacuum. This is because when the active species generated by the irradiation of ionizing radiation are combined with oxygen in the air and deactivated, the crosslinking efficiency is lowered.
  • the dose of ionizing radiation is preferably 50 kGy or more and 200 kGy or less U.
  • the ability of crosslinking of biodegradable polyester is recognized even when the dose of ionizing radiation is lkGy or more and lOkGy or less. Almost 100% of biodegradable polyester is ionized to crosslink polyester molecules. It is preferable that the irradiation amount of the actinic radiation is 50 kGy or more. Furthermore, in order to complete the cross-linking integration, it is more preferable that the ionizing radiation dose is 8 OkGy or more.
  • the irradiation dose of ionizing radiation is 200 kGy or less because the biodegradable polyester has the property of being disintegrated by radiation when it is used alone, so if the irradiation dose of ionizing radiation exceeds 20 OkGy, it is opposite to crosslinking. This is because the decomposition will proceed.
  • the upper limit of the dose of ionizing radiation is preferably 150 kGy, more preferably lOOkGy.
  • is 60kGy ⁇ 150kGy, especially 80kGy ⁇ 120kGy power ⁇ Preferred! / ⁇ .
  • a polyfunctional monomer and a chemical initiator are mixed in a biodegradable polyester and then molded into a desired shape, and the chemical initiator is thermally decomposed.
  • the biodegradable crosslinked body can also be produced by increasing the thickness.
  • Chemical initiators include dicumyl peroxide that generates peroxide radicals by thermal decomposition, propionitryl peroxide, benzoyl peroxide, tert-butyl peroxide, diacyl peroxide, pelargonyl peroxide, myristyl peroxide, Any catalyst that initiates the polymerization of monomers such as t-butyl perbenzoate or 2,2 'azobisisobutyoxy-tolyl peroxyacid catalyst can be used!
  • the temperature conditions for crosslinking can be appropriately selected depending on the type of chemical initiator. As in the case of irradiation, the crosslinking is preferably performed in an inert atmosphere or air except for air.
  • the gel fraction (gel content dry weight Z initial dry weight) is 50% or more and 90% or less by crosslinking.
  • the degree of crosslinking is defined by the gel fraction.
  • the gel fraction is obtained by wrapping a predetermined amount of irradiated or chemical crosslinked film in a 200 mesh wire net and boiling in N, N dimethylformamide (DMF) solution for 48 hours. Next, after removing the dissolved sol, the gel remaining in the gold-copper is dried at 50 ° C for 24 hours to determine its weight.
  • the gel fraction is calculated by the following formula.
  • the gel fraction is 50% or more in the cross-linked type, an infinite three-dimensional network structure is generated in the polymer, and heat resistance that does not deform even in a high temperature environment can be imparted.
  • the gel fraction exceeds 90%, it becomes too hard, lacks flexibility, and there is a problem that bending strength is lowered.
  • the gel fraction is preferably 60-75%.
  • the molded product of the biodegradable polyester composition having a gel fraction of 50% or more and 80% or less by the crosslinking has a melting point of 150 ° C to 200 ° C, a flexural modulus of 600 to 2400 MPa, Young's modulus Can be imparted with a physical property of 500 to 2000 MPa and a Young's modulus retention at high temperatures of 70% or more.
  • the invention's effect has a melting point of 150 ° C to 200 ° C, a flexural modulus of 600 to 2400 MPa, Young's modulus Can be imparted with a physical property of 500 to 2000 MPa and a Young's modulus retention at high temperatures of 70% or more.
  • the crosslinked body composed of the biodegradable polyester composition serving as the external member of the electronic device of the present invention can improve the heat distortion temperature of the biodegradable polyester by the effect of crosslinking.
  • the cross-linking network of biodegradable polyester formed by cross-linking can reliably maintain the shape even at high temperatures.
  • the present invention is molded with biodegradable resin, it can solve various problems associated with the disposal of conventional plastics that have very little impact on the ecosystem in nature.
  • the exterior member of the electronic device according to the present invention when used in a detachable cap, cover material, housing, and housing, for example, an external connection terminal cap or housing of a mobile phone, damage is unlikely to occur. Strength is required. In this case, if a polymer having a glass transition temperature of room temperature or lower is used as the biodegradable polyester, there is an advantage that damage is caused because the flexibility is maintained at room temperature.
  • FIG. 1 (A), (B), and (C) are drawings showing a mobile phone including a cap and a casing according to an embodiment of the present invention.
  • FIG. 2 is a drawing showing an electron beam irradiation process.
  • the exterior member of the electronic device of the present invention is used as a cap 3 that covers the opening 2 provided at the connection portion with the external terminal of the mobile phone 1 shown in FIG.
  • the cap 3 is molded from a heat-resistant biodegradable polyester composition and has the following properties. Manufactured according to the procedure.
  • polybutylene succinate (hereinafter referred to as PBS) having a glass transition temperature of 32 ° C or lower is used.
  • PBS polybutylene succinate
  • the biodegradable polyester is softened by heating, and a polyfunctional monomer is added.
  • Trimethylolpropane trimetatalylate (TMPT) is added as a multifunctional monomer.
  • the addition amount is 5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the biodegradable polyester. After the addition, the mixture is stirred and mixed so that the polyfunctional monomer is uniform.
  • the solvent may be further removed by drying.
  • composition is softened again by heating or the like and formed into the shape of the cap 3.
  • the molding may be carried out after the composition has been prepared, for example, in the state of being dissolved in a solvent, or after cooling or drying and removal.
  • the obtained biodegradable polyester molding is irradiated with ionizing radiation to crosslink the biodegradable polyester to obtain a heat-resistant biodegradable polyester.
  • the ionizing radiation is appropriately selected according to the blending amount of the polyfunctional monomer, etc., within the range of 80 kGy to 150 kGy.
  • the gel fraction of the heat-resistant biodegradable polyester obtained after irradiation with ionizing radiation is selected based on 50% or more.
  • the exterior member of the electronic device of the second embodiment is used as the casing 4 of the mobile phone 1 shown in FIG.
  • the casing 4 is molded from a heat-resistant biodegradable polyester composition as in the first embodiment, and is manufactured by the following procedure.
  • polybutylene succinate adipate lactide and polylactic acid (55 to 100 parts by mass: 0 to 45 parts by mass) as the biodegradable polyester
  • a flame retardant or Z use at least one of phosphoric acid ester which is a phosphorus flame retardant, melamine cyanurate which is a melamine flame retardant, and aluminum hydroxide which is a metal hydrate!
  • wollastonite is blended.
  • the wollastonite is blended in an amount of 45 parts by mass with respect to 100 parts by mass of the biodegradable polyester.
  • the flame retardant By blending the flame retardant in this way, it can be suitably used in the case of an exterior member of an electronic device that requires flame retardancy, and by blending an inorganic filler, the strength required particularly as a casing can be obtained. It is out.
  • TMP T a kind of polyfunctional monomer
  • PCM30 manufactured by Ikeji Iron Works Co., Ltd.
  • the melt index MI 190 ° C X 2.16 kg
  • the mixture was cooled and then pelletized with a pelletizer to obtain a pellet-like kneaded product of biodegradable polyester and polyfunctional monomer.
  • the kneaded product was hot-pressed into a sheet at 150 ° C and then rapidly cooled with water to produce a sheet.
  • the sheet was irradiated with an electron beam at 60 kGy by an electron accelerator (acceleration voltage 10 MeV, current amount 12 mA) in an inert atmosphere excluding air to obtain a heat-resistant biodegradable polyester.
  • an electron accelerator acceleration voltage 10 MeV, current amount 12 mA
  • the electron beam irradiation is carried out in a vacuum atmosphere by the high voltage in the high voltage accelerator 11 in which electrons emitted from the electron gun 10 are combined with a capacitor.
  • the molded product 20 is irradiated through the thin film 13 such as titanium.
  • Irradiation to the molded product 20 is performed stably with the same voltage and the same amount of current, and is therefore moved at a constant speed by the conveyor 15 or the like.
  • Example 2 The procedure was the same as Example 1 except that the electron beam irradiation dose was 120 kGy.
  • TMP T a kind of polyfunctional monomer
  • PCM30 manufactured by Ikeji Iron Works Co., Ltd.
  • the melt index MI 190 ° C X 2.16 kg
  • the mixture was cooled and then pelletized with a pelletizer to obtain a pellet-like kneaded product of biodegradable polyester and polyfunctional monomer.
  • the kneaded product was hot-pressed into a sheet at 150 ° C and then rapidly cooled with water to produce a sheet.
  • the sheet was irradiated with an electron beam at 60 kGy by an electron accelerator (acceleration voltage 10 MeV, current amount 12 mA) in an inert atmosphere excluding air to obtain a heat-resistant biodegradable polyester. (Example 4)
  • Example 3 was repeated except that the electron beam irradiation amount was 120 kGy.
  • Example 2 The procedure was the same as Example 1 except that the electron beam irradiation was not performed.
  • Example 3 was the same as in Example 3 except that the electron beam irradiation was not performed.
  • Each measurement method is melt index (Ml) ⁇ IS K7210, ISO 1130 and AS TM D1238, gel fraction ⁇ IS IS K7210 and ISO 527, flexural modulus, bending strength and bending fracture strength ⁇ IS
  • Ml melt index
  • Examples 1 to 4 have a flexural modulus of 600 to 2400 MPa, while Comparative Example 1 has a 431 MPa of less than 600 MPa and was crosslinked by electron beam irradiation. Was confirmed to be excellent.
  • Comparative Examples 1 and 2 which were not subjected to electron beam irradiation, had a large elongation ratio, V ⁇ , whereas the tensile strength was low.
  • the glass transition temperature (Tg) of the polybutylene succinate used was -32 ° C, and the normal temperature was higher than the glass transition temperature. Hold. Therefore, the sample of Example 2 was flexible and did not break. In addition, when crosslinked without electron beam irradiation, Comparative Examples 1 and 2 were flexible and did not break. Thus, it was confirmed that when polybutylene succinate is used even when crosslinked by electron beam irradiation, it has physical properties that are difficult to break in order to maintain flexibility.
  • polybutylene succinate adipate lactide “GsPLa AZ91NT (trade name)” manufactured by Mitsubishi Chemical Corporation and polylactic acid “LAC EA” H-280 (trade name) manufactured by Mitsui Chemicals Co., Ltd. )"It was used as biodegradable polyester.
  • Example 5 was carried out in the same manner as in Example 1 except that the electron beam irradiation amount was 120 kGy.
  • Example 6 was made in the same manner as Example 1 except that
  • Example 7 was carried out in the same manner as in Example 6 except that 120 parts by mass of hydroxyaluminum hydroxide was mixed with 100 parts by mass of the biodegradable polyester without blending wollastonite.
  • Example 8 was carried out in the same manner as Example 7 except that 120 parts by mass of aluminum hydroxide and 20 parts by mass of melamine cyanurate and 5 parts by mass of phosphate ester were kneaded.
  • Comparative Examples 3 and 4 were made in the same manner as Examples 7 and 8 except that they were not able to perform electron beam irradiation.
  • Table 11 shows the production conditions and gel fraction, bending strength test, heat resistance, hydrolyzability, and flame retardancy evaluation results of Examples 5 to 8 and Comparative Examples 3 and 4. Each evaluation was performed by the same measurement method as in the above example.
  • heat resistance and hydrolyzability the original sample before heating was subjected to 80 ° C hot water for 24 hours (1 day), 120 ° C in air for 7 days, and 140 ° C in air for 7 days. This was carried out by measuring the elongation (%) and tensile strength (MPa) after standing under conditions.
  • flame retardant evaluation was performed in accordance with UL94.
  • Examples 6-8 were able to maintain their shape and strength even at high temperatures of 120 ° C and 140 ° C for 7 days, but Comparative Examples 3 and 4 were able to maintain their shape at 140 ° C. However, the strength decreased significantly at high temperatures (Example 5 was evaluated at 140 ° C! /).
  • Examples 5, 7, and 8 using phosphoric acid ester, melamine cyanurate, and aluminum hydroxide as flame retardants were able to achieve flame retardancy of V-1 or higher.
  • Example 5 using a phosphate ester and melamine cyanurate in combination as a flame retardant and Example 8 using a phosphate ester, melamine cyanurate and hydroxyaluminum hydroxide achieved V-0 flame retardancy. did it.
  • Example 7 and Example 8 the total amount of the flame retardant is close, but the flame retardancy of Example 8 is superior to that of Example 7 because three types of flame retardant are mixed. The effect was considered.
  • Example 8 also has a high flexural modulus and is particularly useful as a housing material.
  • a molded product containing the biodegradable polyester of the present invention as a main component, cross-linked by irradiation with ionizing radiation, and having a gel fraction of 50% or more has heat resistance, bending strength, and tensile strength.
  • it since it is provided, it can be suitably used as a cap for an external connection terminal of an electronic device or a housing, and has the advantage of reducing the amount of waste during disposal because it is biodegradable.
  • the molded article made of the biodegradable resin of the present invention has heat resistance and strength, it is not limited to a cap or casing for an external connection terminal of a mobile phone, but a notebook computer, electronic notebook, electronic camera, It is suitably used as a cap case for external connection terminals of various portable electronic devices such as portable audio devices. Furthermore, from the viewpoint of reducing the amount of garbage at the time of disposal, it can be used not only for portable devices but also for cases and covers of electronic devices.

Abstract

Disclosed is an exterior structure member for an electronic device, which is produced by mixing a biodegradable polyester with at least a polyfunctional polymer, kneading the mixture, molding the kneaded product into a predetermined shape, and irradiating the molded product with an ionizing radiation at a radiation dose amount of 50 to 200 kGy (inclusive) to cause the crosslinking to such a degree that the gel fraction of the biodegradable polyester becomes 50 to 90% (inclusive).

Description

電子機器用の外装部材、該外装部材を備えた電子機器  Exterior member for electronic device, and electronic device provided with the exterior member
技術分野  Technical field
[0001] 本発明は、電子機器用の外装部材に関し、特に、携帯電話等の外部接続端子用 キャップや筐体として好適に用いられ、使用後の廃棄時における廃棄量の減量を図 るものである。  TECHNICAL FIELD [0001] The present invention relates to an exterior member for an electronic device, and is particularly preferably used as a cap or casing for an external connection terminal of a mobile phone or the like, and aims to reduce the amount of waste at the time of disposal after use. is there.
背景技術  Background art
[0002] 携帯電話、携帯式の CDプレーヤ、ビデオカメラ等の携帯機器のハウジングには外 部接続端子用の開口が設けられ、該開口にはゴムゃ榭脂で一体成形したキャップ( あるいはカバー)が取り付けられている。例えば、特開 2002— 111240号 (特許文献 1)では、前記キャップとして ABS (アクリロニトリルブタジエンスチレン)、 PCZABS ( ポリカーボネート Zアクリロニトリルブタジエンスチレン)、 PA (ポリアミド)、 PC (ポリ力 ーボネート)等の榭脂により形成することが開示されている。  [0002] An opening for an external connection terminal is provided in a housing of a portable device such as a mobile phone, a portable CD player, a video camera, etc., and a cap (or a cover) integrally formed with rubber resin. Is attached. For example, in Japanese Patent Laid-Open No. 2002-111240 (Patent Document 1), the cap is made of a resin such as ABS (acrylonitrile butadiene styrene), PCZABS (polycarbonate Z acrylonitrile butadiene styrene), PA (polyamide), PC (polycarbonate). It is disclosed to form.
また、携帯電話、携帯式の CDプレーヤ、ビデオカメラ等の携帯機器の筐体'ハウジ ングにも同様に、 ABS (アクリロニトリルブタジエンスチレン)、 PCZABS (ポリカーボ ネート Zアクリロニトリルブタジエンスチレン)、 PA (ポリアミド)、 PC (ポリカーボネート) 等の樹脂が広く利用されている。  Similarly, for housings of mobile devices such as mobile phones, portable CD players, and video cameras, ABS (acrylonitrile butadiene styrene), PCZABS (polycarbonate Z acrylonitrile butadiene styrene), PA (polyamide), Resins such as PC (polycarbonate) are widely used.
[0003] 特許文献 1:特開 2002— 111240号公報  [0003] Patent Document 1: Japanese Patent Laid-Open No. 2002-111240
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 前記のように外部接続端子用キャップや筐体を榭脂製とした場合、使用後に燃焼 廃棄処理する場合に問題が発生する。即ち、燃焼時に発生する熱及び排出ガスによ る地球温暖化、更に燃焼ガス及び燃焼後残留物中の毒性物質による食物や健康へ の影響等の問題、廃棄処理廃棄埋設処理地の確保など、社会的な問題となっている [0004] When the external connection terminal cap and the casing are made of resin as described above, a problem occurs when they are subjected to combustion disposal after use. In other words, global warming due to heat and exhaust gas generated during combustion, problems such as effects on food and health due to toxic substances in combustion gas and post-combustion residues, securing of disposal treatment disposal buried land, etc. Has become a social problem
[0005] これらの問題に対して、デンプンゃポリ乳酸を代表とするなどの生分解性高分子は 、石油合成高分子の廃棄処理の問題点を解決する材料として従来から注目されてき た材料である。生分解性高分子は、石油合成高分子に比べて、燃焼に伴う熱量が少 なく自然環境での分解再合成のサイクルが保たれる等、生態系を含む地球環境に悪 影響を与えない。中でも、強度や加工性の点で、石油合成高分子に匹敵する特性を もつ脂肪族ポリエステル系の榭脂は、近年注目を浴びてきた素材である。 [0005] In response to these problems, biodegradable polymers such as starch and polylactic acid have been attracting attention as materials for solving the problems of disposal of petroleum synthetic polymers. Material. Biodegradable polymers do not have a negative impact on the global environment, including ecosystems, because they produce less heat than combustion and maintain the cycle of decomposition and resynthesis in the natural environment. Among these, aliphatic polyester-based rosin, which has properties comparable to petroleum synthetic polymers in terms of strength and processability, has recently attracted attention.
[0006] 特に、ポリ乳酸は、植物から供給されるデンプンから作られ、近年の大量生産による コストダウンで他の生分解性高分子に比べて非常に安価になりつつある点から、現 在その応用につ 、て多くの検討がなされて 、る。  [0006] In particular, polylactic acid is made from starch supplied from plants, and is currently becoming cheaper than other biodegradable polymers due to cost reduction due to mass production in recent years. Many studies have been made on applications.
ポリ乳酸は、その特性の面力 見ても汎用の石油合成高分子に匹敵する加工性、 強度を持つことから、その代替材料に最も近い生分解性榭脂である。またアクリル榭 脂に匹敵する透明性力 その代替や、ヤング率が高く形状保持性がある点からは電 気機器の筐体等の ABS榭脂の代替等、様々な用途への応用が期待される。  Polylactic acid is the closest biodegradable resin to its alternative material because it has processability and strength comparable to general-purpose petroleum synthetic polymers in terms of its characteristics. In addition, it is expected to be applied to various applications such as its transparency, which is comparable to acrylic resin, and its high Young's modulus and its shape retention. The
[0007] し力しながら、ポリ乳酸は 60°C近辺と比較的低い温度にガラス転移点をもち、その 温度前後で所謂ガラス板が突然ビュル製のテーブルクロスになってしまうというほど に、ヤング率が激減し、形状を維持することが困難になるという欠点を持つ。  [0007] However, polylactic acid has a glass transition point at a relatively low temperature of around 60 ° C, and the so-called glass plate suddenly becomes a Bühl tablecloth around that temperature. The rate is drastically reduced and it is difficult to maintain the shape.
このように、ポリ乳酸を代表とする生分解性榭脂製の成形品は廃棄処理に関しては 有効な素材であるが、耐熱性の点で問題を有し、例えば、携帯機器を自動車内に放 置しておくと、夏場の高温時には車室内温度は 60°C以上に上昇し、変形が生じる恐 れがある。  Thus, a biodegradable resin molded product represented by polylactic acid is an effective material for disposal, but has a problem in terms of heat resistance. For example, portable devices are released into automobiles. If left unattended, the cabin temperature will rise to 60 ° C or higher at high temperatures in summer, and deformation may occur.
一方、柔軟性の観点からは、ポリ乳酸は、前記のように、ガラス転移温度が 60°C近 辺で、常温ではガラス転移温度より低くなるため、柔軟性を欠ぐ柔軟性が必要な成 形品では使用形態によっては破損が生じやすい問題点がある。  On the other hand, from the viewpoint of flexibility, polylactic acid, as described above, has a glass transition temperature of around 60 ° C and lower than the glass transition temperature at room temperature. There is a problem that the shaped product is easily damaged depending on the usage form.
[0008] 本発明は、前記問題に鑑みてなされたもので、生分解性材から形成される成形材 の耐熱性および強度を高めて、高温環境下でも形状を維持することができ、かつ、常 温時には破損が発生しにくい柔軟性も有し、現在利用されている PCZABS並みの 強度を有する生分解性材からなる携帯電話の外部接続端子用キャップ及び筐体等 の電子機器の外装部材を提供することを課題として 、る。  [0008] The present invention has been made in view of the above problems, and can improve the heat resistance and strength of a molding material formed from a biodegradable material, maintain the shape even in a high temperature environment, and It has the flexibility to prevent damage at normal temperatures, and can be used as an external connection terminal cap for mobile phones made of biodegradable materials that are as strong as the currently used PCZABS, and for exterior components of electronic devices such as housings. The challenge is to provide.
[0009] さらに、外部接続端子用キャップや筐体向け外装部材として必要な特性である難 燃性の高 、材料を提供することを従たる課題として!/、る。 課題を解決するための手段 [0009] Further, there is a problem associated with providing a highly flame-retardant material that is a characteristic necessary for an external connection terminal cap or an exterior member for a housing. Means for solving the problem
[0010] 本発明者は、この問題について鋭意研究を重ねた結果、生分解性ポリエステルに 多官能性モノマーを混合し、放射線照射等により一定条件以上の分子同士の架橋 を行うことでこの問題を解決できることを見出した。  [0010] As a result of intensive research on this problem, the present inventor has solved this problem by mixing polyfunctional monomers into biodegradable polyester and cross-linking molecules under a certain condition by irradiation or the like. I found that it can be solved.
[0011] 前記知見に基づいて、第 1の発明として、生分解性ポリエステルに少なくとも多官能 性モノマーが混合され、前記生分解性ポリエステルのゲル分率 (ゲル分乾燥重量 Z 初期乾燥重量)が 50%以上 90%以下となる架橋構造とされていることを特徴とする 電子機器用の外装部材を提供している。  [0011] Based on the above knowledge, as a first invention, at least a polyfunctional monomer is mixed with the biodegradable polyester, and the gel fraction (gel content dry weight Z initial dry weight) of the biodegradable polyester is 50. Provided is an exterior member for an electronic device, characterized by having a cross-linked structure of at least 90% and at most 90%.
[0012] また、第 2の発明として、生分解性ポリエステルに少なくとも多官能性モノマーを配 合して混練し、該混練物を所要形状に成形し、得られた成形品に電離性放射線を 5 OkGy以上 200kGy以下の照射量で照射し、前記生分解性ポリエステルのゲル分率 を 50%以上 90%以下となるように架橋させていることを特徴とする携帯電話の外部 接続端子用キャップ及び筐体等の外装部材の製造方法を提供している。  [0012] In addition, as a second invention, at least a polyfunctional monomer is mixed and kneaded with a biodegradable polyester, the kneaded product is molded into a required shape, and ionizing radiation is applied to the obtained molded product. Caps and housings for external connection terminals of mobile phones, characterized by being irradiated with an irradiation dose of OkGy or more and 200 kGy or less, and crosslinked so that the gel fraction of the biodegradable polyester is 50% or more and 90% or less The manufacturing method of exterior members, such as a body, is provided.
[0013] 本発明で用いる生分解性ポリエステルとしては、例えば ε ポリ力プロラタトンもしく は δ ポリプチ口ラタトンに代表されるポリラタトン類、コハク酸、アジピン酸、セバシン 酸、ダルタル酸、デカンジカルボン酸、テレフタル酸もしくはイソフタル酸などに代表 されるジカルボン酸と、エタンジオール、プロパンジオール、ブタンジオール、ォクタ ンジオール、ドデカンジオール、などに代表される多価アルコールとのコポリマー、す なわち、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンアジペート 、ポリブチレンアジペートテレフタレート等、さらにこれにポリ乳酸をカ卩えたコポリマー、 すなわち、ポリブチレンサクシネートラクチド、ポリブチレンサクシネートアジペートラタ チド、またはポリダリコール酸、ポリヒドロキシ酪酸、ポリヒドロキシ吉草酸もしくはポリヒ ドロキシカブロン酸などに代表されるポリヒドロキシカルボン酸等、それ以外にも、 L- 乳酸力 なるポリ乳酸、 D 乳酸力 ポリ乳酸、 L 乳酸と D 乳酸の混合物を重合 することにより得られるポリ乳酸等が挙げられ、以上に述べた 2種以上のホモポリマー 、コポリマーの混合物であってもよい。特にポリ乳酸単独を除ぐポリブチレンサクシネ ートなど前記した生分解性ポリエステルの多くはガラス転移温度が常温以下であり、 常温時にぉ ヽて柔軟性を保持することを目的とする本発明にお!/ヽては好適に用いる ことができる。特にこれらを主成分とすれば、これらガラス転移温度が常温以下のポリ マーが全体の強度を支配することが可能であるため、好ましぐガラス転移温度が常 温を超える 50〜60°Cであるポリ乳酸単独を成分とするポリマー等も一部添加して使 用することが可能である。ここでいう主成分とは、生分解性ポリエステル中に、ガラス 転移温度が常温以下である天然由来あるいは石油由来の生分解性ポリマーが最も 多く含有されている場合をいう。さらに、ガラス転移温度が常温以下である天然由来 あるいは石油由来の生分解性ポリマーは生分解性ポリエステル 100質量部中に 50 質量部以上含有され、ポリ乳酸等のガラス転移温度が常温を超える生分解性ポリマ 一は生分解性ポリエステル 100質量部中に 50質量部未満とされていることが好まし い。なお、本明細書中において、常温とは加熱 ·冷却などをしない平常の温度をいう なお、前記ポリブチレンサクシネートゃポリブチレンサクシネートラクチド、あるいは ポリブチレンサクシネートアジペートラクチドなどの生分解 ¾ポリマーは前記したよう に石油由来でも、一部あるいは全部が天然由来のポリマーであっても、いずれでもよ い。 [0013] The biodegradable polyester used in the present invention includes, for example, ε poly force prolatatone or δ polylatatanes represented by polypuchi-mouth ratataton, succinic acid, adipic acid, sebacic acid, dartaric acid, decanedicarboxylic acid, terephthalic acid Copolymers of dicarboxylic acids typified by acid or isophthalic acid and polyhydric alcohols typified by ethanediol, propanediol, butanediol, octanediol, dodecanediol, etc., that is, polyethylene succinate, polybutylene Succinate, polybutylene adipate, polybutylene adipate terephthalate, etc., and a copolymer with polylactic acid added thereto, that is, polybutylene succinate lactide, polybutylene succinate adipate acetate, or poly In addition to polyhydroxycarboxylic acids such as richolic acid, polyhydroxybutyric acid, polyhydroxyvaleric acid or polyhydroxycabronic acid, polylactic acid with L-lactic acid power, D-lactic acid power polylactic acid, L-lactic acid and D-lactic acid Examples thereof include polylactic acid obtained by polymerizing the above mixture, and may be a mixture of two or more homopolymers and copolymers described above. In particular, many of the above-described biodegradable polyesters such as polybutylene succinate excluding polylactic acid alone have a glass transition temperature of room temperature or lower, and the present invention aims to maintain flexibility at room temperature. Use it properly! be able to. In particular, if these are the main components, polymers with a glass transition temperature below room temperature can dominate the overall strength, so the preferred glass transition temperature is 50-60 ° C, which exceeds the normal temperature. It is possible to add a part of a polymer or the like containing a certain polylactic acid alone as a component. The main component here refers to the case where the biodegradable polyester contains the most natural or petroleum-derived biodegradable polymer having a glass transition temperature of room temperature or lower. Furthermore, natural or petroleum-derived biodegradable polymers having a glass transition temperature of room temperature or lower are contained in 50 parts by weight or more in 100 parts by weight of biodegradable polyester, and biodegradable glass transition temperatures of polylactic acid and the like exceeding room temperature. It is preferable that the functional polymer is less than 50 parts by mass in 100 parts by mass of the biodegradable polyester. In the present specification, normal temperature refers to a normal temperature at which heating / cooling is not performed, and the biodegradable ¾ polymer such as polybutylene succinate, polybutylene succinate lactide, or polybutylene succinate adipate lactide is As described above, it may be either petroleum-derived or partly or entirely naturally-derived polymer.
また、前記多官能性モノマーは、トリアリルイソシァヌレートなどのように電離性放射 線の照射により架橋できるモノマーであれば特に制約を受けないが、一分子内に二 つ以上の二重結合を持つアクリル系およびメタクリル系の多官能性モノマーが好適 に用いられる。  The polyfunctional monomer is not particularly limited as long as it is a monomer that can be cross-linked by irradiation with ionizing radiation, such as triallyl isocyanurate, but it has two or more double bonds in one molecule. Acrylic and methacrylic polyfunctional monomers are preferably used.
この種のモノマーとしては、例えば 1, 6 へキサンジオールジ (メタ)アタリレート、 1 , 4 ブタンジオールジ (メタ)アタリレート、トリメチロールプロパントリ(メタ)アタリレート 、エチレンォキシド変性トリメチロールプロパントリ(メタ)アタリレート、プロピレンォキシ ド変性トリメチロールプロパントリ(メタ)アタリレート、エチレンォキシド変性ビスフエノー ル Aジ (メタ)アタリレート、ジエチレングリコールジ (メタ)アタリレート、ジペンタエリスリ トールへキサアタリレート、ジペンタエリスリトールモノヒドロキシペンタアタリレート、力 プロラタトン変性ジペンタエリスリトールへキサアタリレート、ペンタエリスリトールトリ(メ タ)アタリレート、ペンタエリスリトールテトラ (メタ)アタリレート、ポリエチレングリコール ジ (メタ)アタリレート、トリス(アタリ口キシェチル)イソシァヌレート、トリス (メタクリロキシ ェチル)イソシァヌレート等が挙げられる。 Examples of this type of monomer include 1, 6 hexanediol di (meth) acrylate, 1, 4 butanediol di (meth) acrylate, trimethylol propane tri (meth) acrylate, ethylene oxide modified trimethylol propane Tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, ethylene oxide modified bisphenol A di (meth) acrylate, diethylene glycol di (meth) acrylate, dipentaerythritol hexa acrylate , Dipentaerythritol monohydroxypentaacrylate, force Prolataton-modified dipentaerythritol hexaatalylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, polyester Tylene glycol Di (meth) atalylate, Tris (Atari mouth kichetil) isocyanurate, Tris (methacryloxy) Ethyl) isocyanurate and the like.
[0015] 本発明で用いる多官能性モノマーは、生分解性ポリエステル 100質量部に対して、 2質量部以上 15質量部以下で配合することが好ましい。  [0015] The polyfunctional monomer used in the present invention is preferably blended in an amount of 2 to 15 parts by mass with respect to 100 parts by mass of the biodegradable polyester.
2質量部以上としているのは、 2質量部未満では多官能性モノマーによる生分解性 ポリエステルの架橋効果が十分に発揮されず、高温時における強度が低下し、最悪 の場合、形状が維持できなくなることによる。一方、 15質量部を越えると、生分解性ポ リエステルに多官能性モノマー全量を均一に混合するのが困難となり、実質的に架 橋効果に顕著な差が出なくなることによる。  If it is less than 2 parts by mass, the cross-linking effect of the biodegradable polyester due to the polyfunctional monomer will not be sufficiently exerted, and the strength at high temperatures will decrease, and in the worst case, the shape will not be maintained. It depends. On the other hand, when the amount exceeds 15 parts by mass, it becomes difficult to uniformly mix the entire amount of the polyfunctional monomer with the biodegradable polyester, so that the bridge effect is not substantially different.
高温時における形状維持効果を確実にするためには 3質量部以上であることが好 ましぐ生分解性ポリエステルの含有量を多くして生分解性を高めるためには 10質量 部以下であることが好ま 、。  In order to ensure the shape maintaining effect at high temperatures, it is preferably 3 parts by mass or more. In order to increase the biodegradable polyester content and increase biodegradability, it is 10 parts by mass or less. Preferred.
[0016] さらに、生分解性ポリエステルの成形物を構成する組成物には、前記生分解性ポリ エステル、多官能性モノマー以外に、本発明の目的に反しない限り、他の成分を配 合してもよい。例えば、生分解性ポリエステル以外の生分解性材を配合してもよい。 該生分解性ポリエステル以外の生分解性材としては、ポリビニルアルコール等の合 成生分解性榭脂、またはポリヒドロキシプチレート'バリレート等の天然直鎖状ポリエス テル等の天然生分解性榭脂を挙げることができる。 [0016] Further, in addition to the biodegradable polyester and the polyfunctional monomer, other components may be combined with the composition constituting the molded product of the biodegradable polyester unless the object of the present invention is contrary. May be. For example, you may mix | blend biodegradable materials other than biodegradable polyester. Examples of biodegradable materials other than the biodegradable polyester include synthetic biodegradable resin such as polyvinyl alcohol, or natural biodegradable resin such as natural linear polyester such as polyhydroxypropylate valerate. Can be mentioned.
また、生分解性を有する合成高分子および Zまたは天然高分子を、溶融特性を損 なわない範囲で混合してもよい。生分解性を有する合成高分子としては、酢酸セル口 ース、セノレロースブチレート、セノレロースプロピオネート、硝酸セノレロース、硫酸セノレ ロース、セルロースアセテートブチレートもしくは硝酸酢酸セルロース等のセルロース エステル、またはポリグルタミン酸、ポリアスパラギン酸もしくはポリロイシン等のポリべ プチドが挙げられる。天然高分子としては、例えば澱粉として、トウモロコシ澱粉、コム ギ澱粉もしくはコメ澱粉などの生澱粉、または酢酸エステル化澱粉、メチルエーテル ィ匕澱粉もしくはアミロース等の加工澱粉が挙げられる。  Further, a synthetic polymer having biodegradability and Z or a natural polymer may be mixed as long as the melting characteristics are not impaired. Examples of biodegradable synthetic polymers include cellulose acetate, cellulose acetate butyrate, cellulose alcohol propionate, cellulose nitrate, cellulose cellulose sulfate, cellulose acetate such as cellulose acetate butyrate or cellulose nitrate acetate, Polypeptides such as glutamic acid, polyaspartic acid or polyleucine can be mentioned. Examples of the natural polymer include starch, raw starch such as corn starch, wheat starch or rice starch, or processed starch such as acetate esterified starch, methyl ether starch or amylose.
[0017] さらに、生分解性ポリエステル 100質量部に対して無機フィラーあるいは Zおよび 染料が 1〜150質量部配合されていることが好ましい。なかでも、特に筐体として用い る場合に補強用として無機フィラーを配合することが好ましぐ所要の着色を施した電 子機器の外装部材とするため、染料または顔料を配合することが好ましい。なお、組 成物中に染料または顔料を配合せずに、架橋した成形品の外面に塗料を塗布して ちょい。 [0017] Furthermore, it is preferable that 1 to 150 parts by mass of an inorganic filler or Z and a dye are blended with 100 parts by mass of the biodegradable polyester. In particular, when used as a housing, it is preferable to add an inorganic filler as a reinforcing material. In order to make the exterior member of the slave device, it is preferable to blend a dye or a pigment. Apply paint to the outer surface of the cross-linked molded product without blending dyes or pigments in the composition.
前記無機フィラーあるいは Zおよび染料の配合量を前記範囲としているのは、生分 解性ポリエステル 100質量部に対して 1質量未満であると無機フィラーをカ卩えることに よる補強効果が得られにくぐ 150質量部を超えると柔軟性が失われ、脆くなるおそ れがある力 である。  The blending amount of the inorganic filler or the Z and the dye is within the above range because if the amount is less than 1 mass with respect to 100 parts by mass of the biodegradable polyester, a reinforcing effect can be obtained by covering the inorganic filler. If it exceeds 150 parts by mass, it will lose flexibility and become brittle.
[0018] 前記無機フィラーとしては、ガラス繊維、ガラス、ビーズ、金属粉末、タルク、マイ力、 炭酸カルシウム、クレー、ワラストナイト、シリカ等が挙げられる。これらは、未処理のま ま用いても、シランやステアリン酸などで表面処理されて 、てもよ 、。  [0018] Examples of the inorganic filler include glass fiber, glass, beads, metal powder, talc, my strength, calcium carbonate, clay, wollastonite, silica, and the like. These may be used untreated or may be surface treated with silane or stearic acid.
前記無機フィラーのなかでも、特に、ワラストナイトを用いていることが好ましい。  Among the inorganic fillers, it is particularly preferable to use wollastonite.
[0019] さらに、本発明の電子機器用の外装部材には、下記 (a)〜(e)の難燃剤のうち、 1 種類以上が配合されて ヽることが好ま ヽ。 [0019] Furthermore, it is preferable that the exterior member for an electronic device according to the present invention contains at least one of the following flame retardants (a) to (e).
(a)リン系難燃剤、(b)メラミン系難燃剤、(c)金属水和物、(d)窒素系難燃剤、 (e) シラン系難燃剤  (a) Phosphorus flame retardant, (b) Melamine flame retardant, (c) Metal hydrate, (d) Nitrogen flame retardant, (e) Silane flame retardant
[0020] 外部接続端子用キャップ及び筐体等の電子機器用の外装部材にとつて、難燃性は 重要な要求性能の一つである。本発明者らの検討では、一般的に用いられている難 燃剤のなかでも特に、前記 (a)〜( の難燃剤が 1種類以上配合され、難燃性が付 与されて!/、ることが好まし!/、。  [0020] Flame resistance is one of the important performance requirements for external connection terminal caps and exterior members for electronic devices such as housings. In the study by the present inventors, among the generally used flame retardants, in particular, one or more of the flame retardants (a) to () are blended to impart flame retardancy! / I like it! /
前記 (a)のリン系難燃剤としては、縮合リン酸エステル、リン酸エステル、ポリリン酸 アンモ-ゥム塩、イントメッセント、環状リン酸等、  Examples of the phosphorus-based flame retardant (a) include condensed phosphate ester, phosphate ester, polyphosphate ammonium salt, intomescent, cyclic phosphate, and the like.
前記 (b)のメラミン系難燃剤としては、メラミンシァヌレート等、  Examples of the melamine flame retardant (b) include melamine cyanurate,
前記 (c)の金属水和物としては、水酸ィ匕アルミニウム等を好適に用いることができ、 その他 (d)窒素系難燃剤、 (e)シラン系難燃剤などが好適に利用できる。  As the metal hydrate (c), aluminum hydroxide and the like can be preferably used, and (d) nitrogen flame retardant, (e) silane flame retardant and the like can be suitably used.
これら (a)〜(e)の難燃剤は単独でも使用できるが、実施例にも例示するように違う 系の難燃剤 2種類以上、さらには 3種類以上を混ぜて使うと、高い曲げ弾性と難燃性 を両立するのに効果的である。  These flame retardants (a) to (e) can be used alone, but as shown in the examples, different types of flame retardants can be used. It is effective in achieving both flame retardancy.
[0021] このほか、前記組成物には、生分解性榭脂以外の榭脂成分、硬化性オリゴマー、 各種安定剤、加水分解抑制剤、帯電防止剤、防カビ剤、ポリ乳酸結晶化促進用核剤 、もしくは粘性付与剤等の添加剤、有機充填剤、染料もしくは顔料などの着色剤等を カロ免ることちでさる。 [0021] In addition, the composition includes a resin component other than biodegradable resin, a curable oligomer, Various stabilizers, hydrolysis inhibitors, antistatic agents, antifungal agents, polylactic acid crystallization accelerating nucleating agents, additives such as viscosity imparting agents, organic fillers, coloring agents such as dyes or pigments, etc. I'll do it with you.
[0022] 上述した生分解性ポリエステル、多官能性モノマーおよび所望により他の成分を含 む組成物を所望の形状に成形して 、る。  [0022] A composition containing the above-described biodegradable polyester, polyfunctional monomer and optionally other components is formed into a desired shape.
成形方法は特に限定されず、公知の方法を用いて良い。例えば、押出成形機、圧 縮成形機、真空成形機、ブロー成形機、 Tダイ型成形機、射出成形機、インフレーシ ヨン成形機等の公知の成形機が用いられる。  A shaping | molding method is not specifically limited, You may use a well-known method. For example, known molding machines such as an extrusion molding machine, a compression molding machine, a vacuum molding machine, a blow molding machine, a T-die molding machine, an injection molding machine, and an inflation molding machine are used.
[0023] 前記生分解性ポリエステル組成物を所要形状に成形した後、該生分解性ポリエス テル成形物を架橋しており、該架橋方法は特に限定されず公知の方法が用いられる 力 特に、電離性放射線を照射し架橋することが最も好ましい。 [0023] After the biodegradable polyester composition is molded into a required shape, the biodegradable polyester molded product is cross-linked, and the cross-linking method is not particularly limited, and a known method can be used. It is most preferable to irradiate with actinic radiation to crosslink.
電離性放射線としては γ線、エックス線、 β線または a線などが使用できるが、ェ 業的生産にはコバルト 60による γ線照射や、電子線加速器による電子線照射が 好まし ヽ。電離性放射線の照射は空気を除!ヽた不活性雰囲気下や真空下で行うの が好ましい。電離性放射線の照射によって生成した活性種が空気中の酸素と結合し て失活すると架橋効率が低下するためである。  As ionizing radiation, γ-rays, X-rays, β-rays or a-rays can be used, but for industrial production, γ-ray irradiation with cobalt 60 and electron beam irradiation with an electron beam accelerator are preferred. Ionizing radiation exposure removes air! It is preferable to carry out in an inert atmosphere or under vacuum. This is because when the active species generated by the irradiation of ionizing radiation are combined with oxygen in the air and deactivated, the crosslinking efficiency is lowered.
[0024] 電離性放射線の照射量は 50kGy以上 200kGy以下であることが好ま U、。 [0024] The dose of ionizing radiation is preferably 50 kGy or more and 200 kGy or less U.
多官能性モノマーの量によっては電離性放射線の照射量が lkGy以上 lOkGy以 下であっても生分解性ポリエステルの架橋は認められる力 ほぼ 100%の生分解性 ポリエステルの分子を架橋するには電離性放射線の照射量が 50kGy以上であること が好ましい。さらに、架橋一体ィ匕を完全に行うためには、電離性放射線の照射量が 8 OkGy以上であることがより好まし 、。  Depending on the amount of polyfunctional monomer, the ability of crosslinking of biodegradable polyester is recognized even when the dose of ionizing radiation is lkGy or more and lOkGy or less. Almost 100% of biodegradable polyester is ionized to crosslink polyester molecules. It is preferable that the irradiation amount of the actinic radiation is 50 kGy or more. Furthermore, in order to complete the cross-linking integration, it is more preferable that the ionizing radiation dose is 8 OkGy or more.
一方、電離性放射線の照射量が 200kGy以下であるのは、生分解性ポリエステル が榭脂単独では放射線で崩壊する性質を有するため、電離性放射線の照射量が 20 OkGyを超えると架橋とは逆に分解を進行させることになるからである。電離性放射線 の照射量の上限値は 150kGyであることが好ましぐ lOOkGyであることがより好まし い。  On the other hand, the irradiation dose of ionizing radiation is 200 kGy or less because the biodegradable polyester has the property of being disintegrated by radiation when it is used alone, so if the irradiation dose of ionizing radiation exceeds 20 OkGy, it is opposite to crosslinking. This is because the decomposition will proceed. The upper limit of the dose of ionizing radiation is preferably 150 kGy, more preferably lOOkGy.
より好ましく ίま 60kGy〜150kGyであり、特に、 80kGy〜120kGy力 ^好まし!/ヽ。 [0025] なお、電離性放射線を照射して架橋する代わりに、生分解性ポリエステルに多官能 性モノマーと化学開始剤を混合したのち所望の形状に成形し、化学開始剤が熱分解 する温度まで上げることによつても、生分解性架橋体を作製することができる。 More preferably ί is 60kGy ~ 150kGy, especially 80kGy ~ 120kGy power ^ Preferred! / ヽ. [0025] Instead of crosslinking by irradiating with ionizing radiation, a polyfunctional monomer and a chemical initiator are mixed in a biodegradable polyester and then molded into a desired shape, and the chemical initiator is thermally decomposed. The biodegradable crosslinked body can also be produced by increasing the thickness.
多官能性モノマーとしては、前記態様と同じ物質を用いることができる。 化学開始剤としては、熱分解により過酸化ラジカルを生成する過酸化ジクミル、過 酸化プロピオ二トリル、過酸化べンゾィル、過酸化ジー tーブチル、過酸化ジァシル、 過酸化ペラルゴニル、過酸ィ匕ミリストイル、過安息香酸 t—ブチルもしくは 2, 2' ァゾビスイソブチ口-トリルなどの過酸ィ匕物触媒をはじめとするモノマーの重合を開始 する触媒であれば!/ヽずれでもよ ヽ。  As the polyfunctional monomer, the same substance as in the above embodiment can be used. Chemical initiators include dicumyl peroxide that generates peroxide radicals by thermal decomposition, propionitryl peroxide, benzoyl peroxide, tert-butyl peroxide, diacyl peroxide, pelargonyl peroxide, myristyl peroxide, Any catalyst that initiates the polymerization of monomers such as t-butyl perbenzoate or 2,2 'azobisisobutyoxy-tolyl peroxyacid catalyst can be used!
架橋させるための温度条件は化学開始剤の種類により適宜選択することができる。 架橋は、放射線照射の場合と同様、空気を除いた不活性雰囲気下や真空下で行う のが好ましい。  The temperature conditions for crosslinking can be appropriately selected depending on the type of chemical initiator. As in the case of irradiation, the crosslinking is preferably performed in an inert atmosphere or air except for air.
[0026] 前記した方法で製造される生分解性脂性ポリエステル成形材にお!/ヽては、架橋に よりゲル分率 (ゲル分乾燥重量 Z初期乾燥重量)は 50%以上 90%以下として 、る。 本発明では、架橋の程度をゲル分率により規定している。  [0026] In the biodegradable fatty polyester molding material produced by the above-mentioned method, the gel fraction (gel content dry weight Z initial dry weight) is 50% or more and 90% or less by crosslinking. The In the present invention, the degree of crosslinking is defined by the gel fraction.
ゲル分率は照射橋かけ又は化学橋かけを行ったフィルムの所定量を 200メッシュの 金網に包み、 N, N ジメチルホルムアミド(DMF)液の中で 48時間煮沸する。次い で、溶解したゾル分を除き金銅中に残ったゲル分を 50°Cで 24時間乾燥しその重量 を求める。ゲル分率は次式により算出している。  The gel fraction is obtained by wrapping a predetermined amount of irradiated or chemical crosslinked film in a 200 mesh wire net and boiling in N, N dimethylformamide (DMF) solution for 48 hours. Next, after removing the dissolved sol, the gel remaining in the gold-copper is dried at 50 ° C for 24 hours to determine its weight. The gel fraction is calculated by the following formula.
ゲル分率(%) = (ゲル分乾燥重量) Z (初期乾燥重量) X 100  Gel fraction (%) = (gel dry weight) Z (initial dry weight) X 100
[0027] 前記架橋型としてゲル分率を 50%以上とすると、ポリマー内に無数の三次元網目 構造が生成し、高温環境下においても変形しない耐熱性を付与することができる。 一方、ゲル分率が 90%を越えると硬くなり過ぎ、柔軟性を欠き、曲げ強度が低下す る問題がある。ゲル分率は好ましくは 60〜75%である。 [0027] When the gel fraction is 50% or more in the cross-linked type, an infinite three-dimensional network structure is generated in the polymer, and heat resistance that does not deform even in a high temperature environment can be imparted. On the other hand, when the gel fraction exceeds 90%, it becomes too hard, lacks flexibility, and there is a problem that bending strength is lowered. The gel fraction is preferably 60-75%.
[0028] 前記架橋によりゲル分率を 50%以上 80%以下とした生分解性ポリエステル組成物 の成形品は、その融点が 150°C〜200°C、曲げ弾性率が 600〜2400MPa、ヤング 率が 500〜2000MPa、さらに高温時におけるヤング率保持率も 70%以上である物 性を付与することができる。 発明の効果 [0028] The molded product of the biodegradable polyester composition having a gel fraction of 50% or more and 80% or less by the crosslinking has a melting point of 150 ° C to 200 ° C, a flexural modulus of 600 to 2400 MPa, Young's modulus Can be imparted with a physical property of 500 to 2000 MPa and a Young's modulus retention at high temperatures of 70% or more. The invention's effect
[0029] 本発明の電子機器の外部部材となる生分解性ポリエステル組成物からなる架橋体 は、架橋の効果によって生分解性ポリエステルの熱変形温度を向上させることができ る。即ち、架橋により形成される生分解性ポリエステルの架橋ネットワークにより高温 時でも確実に形状を維持させることができる。  [0029] The crosslinked body composed of the biodegradable polyester composition serving as the external member of the electronic device of the present invention can improve the heat distortion temperature of the biodegradable polyester by the effect of crosslinking. In other words, the cross-linking network of biodegradable polyester formed by cross-linking can reliably maintain the shape even at high temperatures.
また、本発明は生分解性榭脂で成形しているため、自然界において生態系に及ぼ す影響が極めて少なぐ従来のプラスチックが有していた廃棄処理に拘わる諸問題 を解決することができる。  In addition, since the present invention is molded with biodegradable resin, it can solve various problems associated with the disposal of conventional plastics that have very little impact on the ecosystem in nature.
特に、本発明からなる電子機器の外装部材が着脱自在なキャップ、カバー材、筐 体及びハウジング、例えば、携帯電話の外部接続端子用キャップや筐体等に用いら れる場合、破損が発生しにくい強度が要求される。この場合には、生分解性ポリエス テルとしてガラス転移温度が常温以下のポリマーを用いると、常温時に柔軟性を保持 するため、破損が生じに《することができる利点がある。  In particular, when the exterior member of the electronic device according to the present invention is used in a detachable cap, cover material, housing, and housing, for example, an external connection terminal cap or housing of a mobile phone, damage is unlikely to occur. Strength is required. In this case, if a polymer having a glass transition temperature of room temperature or lower is used as the biodegradable polyester, there is an advantage that damage is caused because the flexibility is maintained at room temperature.
図面の簡単な説明  Brief Description of Drawings
[0030] [図 1] (A) (B) (C)は本発明の実施形態のキャップ及び筐体を備えた携帯電話を示 す図面である。  [0030] FIG. 1 (A), (B), and (C) are drawings showing a mobile phone including a cap and a casing according to an embodiment of the present invention.
[図 2]電子線照射工程を示す図面である。  FIG. 2 is a drawing showing an electron beam irradiation process.
符号の説明  Explanation of symbols
[0031] 1 携帯電話 [0031] 1 Mobile phone
2 開口  2 opening
3 キャップ  3 cap
4 筐体  4 Enclosure
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0032] 以下に本発明の実施形態を説明する。 [0032] Embodiments of the present invention will be described below.
本発明の電子機器の外装部材は図 1に示す携帯電話 1の外部端子との接続部分 に設けられた開口 2をカバーするキャップ 3として用いるものである。  The exterior member of the electronic device of the present invention is used as a cap 3 that covers the opening 2 provided at the connection portion with the external terminal of the mobile phone 1 shown in FIG.
前記キャップ 3は耐熱性の生分解性ポリエステル組成物カゝら成形しており、下記の 手順で製造している。 The cap 3 is molded from a heat-resistant biodegradable polyester composition and has the following properties. Manufactured according to the procedure.
[0033] 生分解性ポリエステルとして、ガラス転移温度が 32°Cの常温以下であるポリブチ レンサクシネート(以下、 PBSと称す)を用い、まず、 PBSのペレットを加熱により軟化 させる力、あるいは PBSが溶解しうる溶媒中に PBSを分解させる。  [0033] As the biodegradable polyester, polybutylene succinate (hereinafter referred to as PBS) having a glass transition temperature of 32 ° C or lower is used. First, the force of softening PBS pellets by heating, or PBS Dissolve PBS in a soluble solvent.
[0034] ついで、前記生分解性ポリエステルを加熱により軟ィ匕させて、多官能性モノマーを 添加する。多官能性モノマーとしてトリメチロールプロパントリメタタリレート (TMPT) を添加している。添加量は、生分解性ポリエステル 100質量部に対して 5質量部以上 10質量部以下で添加している。添加後、多官能性モノマーが均一になるように撹拌 混合する。  Next, the biodegradable polyester is softened by heating, and a polyfunctional monomer is added. Trimethylolpropane trimetatalylate (TMPT) is added as a multifunctional monomer. The addition amount is 5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the biodegradable polyester. After the addition, the mixture is stirred and mixed so that the polyfunctional monomer is uniform.
ついで、さらに溶媒を乾燥除去しても良い。  Subsequently, the solvent may be further removed by drying.
[0035] 前記組成物を再び加熱などにより軟ィ匕させて、前記キャップ 3の形状に成形してい る。 [0035] The composition is softened again by heating or the like and formed into the shape of the cap 3.
該成形は組成物を調整したあと、例えば、溶媒に溶解した状態のまま続けて行って も良 、し、ー且冷却または乾燥除去した後に行っても良!、。  The molding may be carried out after the composition has been prepared, for example, in the state of being dissolved in a solvent, or after cooling or drying and removal.
[0036] つ 、で、得られた生分解性ポリエステル成形物に電離性放射線を照射し、生分解 性ポリエステルを架橋させ、耐熱性生分解性ポリエステルを得ている。電離性放射線 は、電子線加速器による電子線照射が好ましぐ放射線照射量は 80kGy以上 150k Gy以下の範囲から多官能性モノマーの配合量等に応じて適宜選択している。 [0036] Next, the obtained biodegradable polyester molding is irradiated with ionizing radiation to crosslink the biodegradable polyester to obtain a heat-resistant biodegradable polyester. The ionizing radiation is appropriately selected according to the blending amount of the polyfunctional monomer, etc., within the range of 80 kGy to 150 kGy.
特に、電離性放射線照射後に得られる耐熱性生分解性ポリエステルのゲル分率が 50%以上になることを目安に選択している。  In particular, the gel fraction of the heat-resistant biodegradable polyester obtained after irradiation with ionizing radiation is selected based on 50% or more.
[0037] 次に第 2実施形態について説明する。 Next, a second embodiment will be described.
第 2実施形態の電子機器の外装部材は図 1に示す携帯電話 1の筐体 4として用い るものである。前記筐体 4は第 1実施形態と同様に耐熱性の生分解性ポリエステル組 成物から成形しており、下記の手順で製造して 、る。  The exterior member of the electronic device of the second embodiment is used as the casing 4 of the mobile phone 1 shown in FIG. The casing 4 is molded from a heat-resistant biodegradable polyester composition as in the first embodiment, and is manufactured by the following procedure.
第 2実施形態は、生分解性ポリエステルとしてポリブチレンサクシネートアジペートラ クチドとポリ乳酸を (ポリブチレンサクシネートアジペートラクチド:ポリ乳酸) = (55〜1 00質量部: 0〜45質量部)の割合で用いている点、さらに、難燃剤あるいは Z及び 無機フィラーを配合して ヽる点で、第 1実施形態と相違する。 前記難燃剤としては、リン系難燃剤であるリン酸エステル、メラミン系難燃剤であるメ ラミンシァヌレート、金属水和物である水酸化アルミニウムのうち 1種以上を用いて!/、 る。これらは、前記生分解性ポリエステル 100質量部に対し、リン酸エステルは 5質量 部、メラミンシァヌレートは 20〜40質量部、前記水酸化アルミニウムは 100〜120質 量部の割合で 1種以上配合している。特に、 3種混合して用いることにより、高い難燃 性と曲げ弾性を両立することができる。 In the second embodiment, polybutylene succinate adipate lactide and polylactic acid (polybutylene succinate adipate lactide: polylactic acid) = (55 to 100 parts by mass: 0 to 45 parts by mass) as the biodegradable polyester In addition, it is different from the first embodiment in that it is mixed with a flame retardant or Z and an inorganic filler. As the flame retardant, use at least one of phosphoric acid ester which is a phosphorus flame retardant, melamine cyanurate which is a melamine flame retardant, and aluminum hydroxide which is a metal hydrate! / These are 100 parts by weight of the biodegradable polyester, 5 parts by weight of phosphate ester, 20 to 40 parts by weight of melamine cyanurate, and 100 to 120 parts by weight of aluminum hydroxide. is doing. In particular, by using a mixture of three types, both high flame retardancy and flexural elasticity can be achieved.
また、前記無機フイラ一としては、ワラストナイトを配合している。前記ワラストナイトは 、前記生分解性ポリエステル 100質量部に対し、 45質量部配合している。  Further, as the inorganic filler, wollastonite is blended. The wollastonite is blended in an amount of 45 parts by mass with respect to 100 parts by mass of the biodegradable polyester.
このように難燃剤を配合することにより、難燃性が要求される電子機器の外装部材 の場合は好適に利用でき、無機フィラーを配合することにより、特に筐体として要求さ れる強度を得ることがでさる。  By blending the flame retardant in this way, it can be suitably used in the case of an exterior member of an electronic device that requires flame retardancy, and by blending an inorganic filler, the strength required particularly as a casing can be obtained. It is out.
他の構成及び効果は第 1実施形態と同様のため、説明を省略する。  Other configurations and effects are the same as those of the first embodiment, and thus description thereof is omitted.
実施例  Example
[0038] 本発明の実施例および比較例を挙げて具体的に説明する力 本発明はこれらの実 施例のみに限定されるものではない。  [0038] The power of the present invention will be specifically described with reference to examples and comparative examples. The present invention is not limited to these examples.
[0039] (実施例 1) [0039] (Example 1)
生分解性ポリエステルとして、ペレット状の昭和高分子 (株)製ポリブチレンサクシネ ート「ピオノーレ # 1020」を使用した。  As the biodegradable polyester, polybutylene succinate “Pionore # 1020” manufactured by Showa Polymer Co., Ltd. was used.
押出機 (池具鉄工 (株)製 PCM30型)を用いてシリンダ温度 150°Cで予め溶融させ て練った状態の前記生分解性ポリエステルに、多官能性モノマーの 1種である TMP Tを最終的に生分解性ポリエステル 100質量部に対して 5重量部になるように少量ず つ添加して混合物を調整した。調整した混合物のメルトインデックス MI (190°C X 2. 16kg)は 30であった。  TMP T, a kind of polyfunctional monomer, is finally added to the biodegradable polyester that has been melted and kneaded in advance at a cylinder temperature of 150 ° C using an extruder (PCM30, manufactured by Ikeji Iron Works Co., Ltd.). In particular, the mixture was adjusted by adding a small amount so as to be 5 parts by weight with respect to 100 parts by weight of the biodegradable polyester. The melt index MI (190 ° C X 2.16 kg) of the prepared mixture was 30.
この混合物を冷やしたのちにペレタイザ一にてペレツトイ匕し、生分解性ポリエステル と多官能性モノマーのペレット状混練物を得た。この混練物を 150°Cでシート状に熱 プレスしたのち水冷で急冷し、シートを製作した。  The mixture was cooled and then pelletized with a pelletizer to obtain a pellet-like kneaded product of biodegradable polyester and polyfunctional monomer. The kneaded product was hot-pressed into a sheet at 150 ° C and then rapidly cooled with water to produce a sheet.
このシートに対し、空気を除 1ヽた不活性雰囲気で電子加速器 (加速電圧 10MeV、 電流量 12mA)により電子線を 60kGy照射し、耐熱性生分解性ポリエステルを得た。 [0040] 前記電子線照射は、具体的には、図 2に示すように、真空雰囲気中において、電子 銃 10から出た電子がコンデンサを組わせた高電圧加速器 11内の高電圧によってカロ 速され、偏光コイル 12によって方向制御された後、チタン等の薄膜 13をとつて成形 品 20に照射している。 The sheet was irradiated with an electron beam at 60 kGy by an electron accelerator (acceleration voltage 10 MeV, current amount 12 mA) in an inert atmosphere excluding air to obtain a heat-resistant biodegradable polyester. Specifically, as shown in FIG. 2, the electron beam irradiation is carried out in a vacuum atmosphere by the high voltage in the high voltage accelerator 11 in which electrons emitted from the electron gun 10 are combined with a capacitor. After the direction is controlled by the polarizing coil 12, the molded product 20 is irradiated through the thin film 13 such as titanium.
成形品 20への照射は、同じ電圧で同じ電流量で安定して行われるため、コンベア 15等で一定の速度で移動させて 、る。  Irradiation to the molded product 20 is performed stably with the same voltage and the same amount of current, and is therefore moved at a constant speed by the conveyor 15 or the like.
(実施例 2)  (Example 2)
電子線照射量を 120kGyとしたこと以外は実施例 1と同様とした。  The procedure was the same as Example 1 except that the electron beam irradiation dose was 120 kGy.
[0041] (実施例 3) [Example 3]
生分解性ポリエステルとして、 30%鉱物フイラ一入りポリブチレンサクシネートである 昭和高分子 (株)製「ピオノーレ # 1020X30」を使用した。  As a biodegradable polyester, “Pionole # 1020X30” manufactured by Showa Polymer Co., Ltd., which is a polybutylene succinate containing 30% mineral filler, was used.
押出機 (池具鉄工 (株)製 PCM30型)を用いてシリンダ温度 150°Cで予め溶融させ て練った状態の前記生分解性ポリエステルに、多官能性モノマーの 1種である TMP Tを最終的に生分解性ポリエステル 100質量部に対して 5重量部になるように少量ず つ添加して混合物を調整した。調整した混合物のメルトインデックス MI (190°C X 2. 16kg)は 38であった。  TMP T, a kind of polyfunctional monomer, is finally added to the biodegradable polyester that has been melted and kneaded in advance at a cylinder temperature of 150 ° C using an extruder (PCM30, manufactured by Ikeji Iron Works Co., Ltd.). In particular, the mixture was adjusted by adding a small amount so as to be 5 parts by weight with respect to 100 parts by weight of the biodegradable polyester. The melt index MI (190 ° C X 2.16 kg) of the prepared mixture was 38.
この混合物を冷やしたのちにペレタイザ一にてペレツトイ匕し、生分解性ポリエステル と多官能性モノマーのペレット状混練物を得た。この混練物を 150°Cでシート状に熱 プレスしたのち水冷で急冷し、シートを製作した。  The mixture was cooled and then pelletized with a pelletizer to obtain a pellet-like kneaded product of biodegradable polyester and polyfunctional monomer. The kneaded product was hot-pressed into a sheet at 150 ° C and then rapidly cooled with water to produce a sheet.
このシートに対し、空気を除 1ヽた不活性雰囲気で電子加速器 (加速電圧 10MeV、 電流量 12mA)により電子線を 60kGy照射し、耐熱性生分解性ポリエステルを得た。 (実施例 4)  The sheet was irradiated with an electron beam at 60 kGy by an electron accelerator (acceleration voltage 10 MeV, current amount 12 mA) in an inert atmosphere excluding air to obtain a heat-resistant biodegradable polyester. (Example 4)
電子線照射量を 120kGyとしたこと以外は、実施例 3と同様にした。  Example 3 was repeated except that the electron beam irradiation amount was 120 kGy.
[0042] (比較例 1) [0042] (Comparative Example 1)
電子線照射を行わな力 たこと以外は、実施例 1と同様とした。  The procedure was the same as Example 1 except that the electron beam irradiation was not performed.
(比較例 2)  (Comparative Example 2)
電子線照射を行わな力つたこと以外は、実施例 3と同様とした。  Example 3 was the same as in Example 3 except that the electron beam irradiation was not performed.
[0043] (実施例 1〜4および比較例 1, 2の評価) 実施例 1〜4および比較例 1, 2において、ゲル分率を下記方法で評価した。 [0043] (Evaluation of Examples 1 to 4 and Comparative Examples 1 and 2) In Examples 1 to 4 and Comparative Examples 1 and 2, the gel fraction was evaluated by the following method.
また、 ASTM D— 790にしたがって曲げ強度試験を行った。  Further, a bending strength test was conducted according to ASTM D-790.
また耐熱性'加水分解性の評価として、 60°Cまたは 80°C熱水に 4日間浸漬前後の 引張強度をヤング率で評価した。さらに、吸水率および燃焼試験の評価も行った。  In addition, as an evaluation of heat resistance and hydrolyzability, the tensile strength before and after immersion for 4 days in 60 ° C or 80 ° C hot water was evaluated by Young's modulus. Furthermore, the water absorption rate and the combustion test were also evaluated.
[0044] (ゲル分率の評価) [0044] (Evaluation of gel fraction)
各実施例および比較例サンプルの乾燥重量を正確に計ったのち、 200メッシュのス テンレス金網に包み、 N, N—ジメチルホルムアミド(DMF)液の中で 48時間煮沸し たのちに、 DMFに溶解したゾル分を除いて残ったゲル分を得た。 50°Cで 24時間乾 燥して、ゲル中の DMFを除去し、ゲル分の乾燥重量を測定した。得られた値をもと に下記式に基づきゲル分率を算出した。  After accurately measuring the dry weight of each Example and Comparative Example sample, wrap in a 200 mesh stainless steel wire, boil in N, N-dimethylformamide (DMF) solution for 48 hours, and then dissolve in DMF. The remaining sol was removed to obtain the remaining gel. After drying at 50 ° C. for 24 hours, DMF in the gel was removed, and the dry weight of the gel was measured. Based on the obtained value, the gel fraction was calculated based on the following formula.
ゲル分率(%) = (ゲル分乾燥重量 Zサンプルの乾燥重量) X 100  Gel fraction (%) = (Dry weight of gel fraction Z Dry weight of sample) X 100
[0045] 実施例、比較例のメルトインデックス (Ml)、曲げ弾性率 (MPa)、曲げ強さ(MPa)、 曲げ破壊強さ(MPa)、ヤング率 (MPa)、ヤング率保持率 (%)、伸び (%)Z抗張カ (MPa)、吸水率を下記の表 1〜表 10に示す。 [0045] Melt index (Ml), flexural modulus (MPa), flexural strength (MPa), flexural fracture strength (MPa), Young's modulus (MPa), Young's modulus retention rate (%) of Examples and Comparative Examples The elongation (%) Z tensile strength (MPa) and water absorption are shown in Table 1 to Table 10 below.
各々の測定方法は、メルトインデックス(Ml)〖お IS K7210, ISO 1130及び AS TM D1238、ゲル分率 ίお IS K7210及び ISO 527、曲げ弾性率、曲げ強さ及 び曲げ破壊強さ〖お IS K7171, ISO 178及び ASTM D790、ヤング率、伸び及 び抗張力 ίお IS K 7127、 ISO 527及び ASTM D882に各々準拠した方法で 行った。  Each measurement method is melt index (Ml) 〖IS K7210, ISO 1130 and AS TM D1238, gel fraction ί IS IS K7210 and ISO 527, flexural modulus, bending strength and bending fracture strength 〖IS The test was carried out in accordance with K7171, ISO 178 and ASTM D790, Young's modulus, elongation and tensile strength, IS K 7127, ISO 527 and ASTM D882, respectively.
なお、表 5〜表 9中のヤング率、ヤング率保持率、伸び Z抗張力において、オリジ ナルとは加熱前の状態を示す。  In Tables 5 to 9, in terms of Young's modulus, Young's modulus retention, and elongation Z tensile strength, the original indicates the state before heating.
[0046] [表 1] [0046] [Table 1]
Figure imgf000016_0001
Figure imgf000016_0001
曲げ弾性率 (MPa) Flexural modulus (MPa)
比較例 1 , 2 OkGy 431 1490 実施例 1, 3 60kGy 657 2391 実施例 2, 4 120kGy 657 2381 [0048] [表 3] Comparative Example 1, 2 OkGy 431 1490 Example 1, 3 60 kGy 657 2391 Example 2, 4 120 kGy 657 2381 [0048] [Table 3]
曲げ強さ (MPa)Flexural strength (MPa)
Figure imgf000017_0001
Figure imgf000017_0001
一: に ン ル 壊せず  One: Nylon does not break
[0049] [表 4] [0049] [Table 4]
曲げ破壊強さ (MPa)
Figure imgf000018_0001
Bending fracture strength (MPa)
Figure imgf000018_0001
一: にサン ル ί 壊せず  One: N
5] Five]
ヤング率 (MPa) Young's modulus (MPa)
OkGy (比較例 1 ,2) 451 1225 オリジナル 60kGy(実施例 1 , 3) 598 1509  OkGy (Comparative Examples 1 and 2) 451 1225 Original 60kGy (Examples 1 and 3) 598 1509
120^ソ(実施例2, 4) 598 1715 120 ^ So (Example 2, 4) 598 1715
OkGy (比較例 1 ,2) 402 941OkGy (Comparative Examples 1 and 2) 402 941
60°C熱水 4D 60kGy(実施例 1, 3) 549 1519 60 ° C hot water 4D 60kGy (Example 1, 3) 549 1519
120kGy(実施例 2, 4) 529 1597 120 kGy (Examples 2 and 4) 529 1597
OkGy (比較例 1 ,2) 421 872OkGy (Comparative Example 1 and 2) 421 872
80°C熱水 4D 60kGy(実施例 1 , 3) 529 1 176 80 ° C hot water 4D 60kGy (Example 1, 3) 529 1 176
120kGy(実施例 2, 4) 539 1245 [0051] [表 6] ヤング率保持率
Figure imgf000019_0001
120 kGy (Examples 2 and 4) 539 1245 [0051] [Table 6] Young's modulus retention
Figure imgf000019_0001
[0052] [表 7] 伸び (%レ抗張力 (MPa)
Figure imgf000019_0002
[0052] [Table 7] Elongation (% tensile strength (MPa)
Figure imgf000019_0002
[0053] [表 8] 伸び保持率 (%) 抗張力保持率 (%) [0053] [Table 8] Elongation retention (%) Tensile retention (%)
Figure imgf000020_0001
Figure imgf000020_0001
9] 9]
伸び (%)Z抗張力 (MPa) Elongation (%) Z Tensile Strength (MPa)
Figure imgf000021_0001
Figure imgf000021_0001
10] Ten]
吸水率(%)
Figure imgf000022_0001
Water absorption rate (%)
Figure imgf000022_0001
[0056] 表 1に示すように、実施例 1〜4のゲル分率は 61〜71%であるのに対して、電子線 照射を行わなカゝつた比較例 1、 2は架橋がなされて ヽな ヽためゲル分率は 0%であつ た。 [0056] As shown in Table 1, the gel fractions of Examples 1 to 4 are 61 to 71%, whereas Comparative Examples 1 and 2 that were not subjected to electron beam irradiation were crosslinked. The gel fraction was 0% due to its remarkable nature.
その結果、表 2に示すように実施例 1〜4は曲げ弾性率が 600〜2400MPaである のに対して、比較例 1は 600MPa未満の 431MPaであり、電子線照射により架橋を 行った実施例が優れていることが確認できた。  As a result, as shown in Table 2, Examples 1 to 4 have a flexural modulus of 600 to 2400 MPa, while Comparative Example 1 has a 431 MPa of less than 600 MPa and was crosslinked by electron beam irradiation. Was confirmed to be excellent.
表 5〜表 8に示すように、 60°Cまたは 80°C熱水に 4日間浸漬前後のヤング率、ヤン グ率保持率は、電子線照射を行わな力つた比較例 1、 2に対して、電子線照射を行つ た実施例 1〜4は 、ずれも優れた数値を示し、引張強度も優れて ヽることが確認でき た。  As shown in Table 5 to Table 8, the Young's modulus and the Yang's retention rate before and after immersion for 4 days in 60 ° C or 80 ° C hot water were compared to Comparative Examples 1 and 2 that did not perform electron beam irradiation. Thus, it was confirmed that Examples 1 to 4 irradiated with an electron beam showed excellent numerical values of deviation and excellent tensile strength.
伸び Z抗張力に関しては、電子線照射を行わな力つた比較例 1、 2は伸び率が大き Vヽのに対して抗張力は低力つた。  With regard to the elongation Z tensile strength, Comparative Examples 1 and 2, which were not subjected to electron beam irradiation, had a large elongation ratio, V 抗, whereas the tensile strength was low.
さらに、表 10に示すように、吸水率も比較例 1、 2より実施例 1〜4の方が少ないこと が確認できた。  Furthermore, as shown in Table 10, it was confirmed that the water absorption was less in Examples 1 to 4 than in Comparative Examples 1 and 2.
[0057] 曲げ強さ、曲げ破壊強さの測定では、使用したポリブチレンサクシネートのガラス転 移温度 (Tg)がー 32°C、常温はガラス転移温度以上であるため、常温では柔軟性を 保持する。よって、実施例 2のサンプルは柔軟であるため破壊しな力つた。また、 電子線照射をせずに架橋して 、な 、比較例 1、 2も柔軟であるため破壊しな力つた。 このように、電子線照射によって架橋してもポリブチレンサクシネートを用いた場合 には柔軟性を保持するため、破損しにくい物性を有することが確認できた。 [0057] In the measurement of bending strength and bending fracture strength, the glass transition temperature (Tg) of the polybutylene succinate used was -32 ° C, and the normal temperature was higher than the glass transition temperature. Hold. Therefore, the sample of Example 2 was flexible and did not break. In addition, when crosslinked without electron beam irradiation, Comparative Examples 1 and 2 were flexible and did not break. Thus, it was confirmed that when polybutylene succinate is used even when crosslinked by electron beam irradiation, it has physical properties that are difficult to break in order to maintain flexibility.
[0058] (実施例 5) [0058] (Example 5)
生分解性ポリエステルとして、三菱化学 (株)製ポリブチレンサクシネートアジペート ラクチド「GsPLa AZ91NT (商品名)」と、三井ィ匕学 (株)製ポリ乳酸「レイシァ (LAC EA) H - 280 (商品名 )」を使用した。 GsPLa 100質量部に対してレイシァ H— 280 を 10質量部、さらに多官能性モノマー TMPTを 5質量部、難燃剤としてリン酸エステ ルを 5質量部、メラミンシァヌレートを 40質量部混練したこと、電子線照射量を 120k Gyとしたこと以外は実施例 1と同様にして実施例 5とした。  As biodegradable polyester, polybutylene succinate adipate lactide “GsPLa AZ91NT (trade name)” manufactured by Mitsubishi Chemical Corporation and polylactic acid “LAC EA” H-280 (trade name) manufactured by Mitsui Chemicals Co., Ltd. )"It was used. 10 parts by mass of Glacea H-280 per 100 parts by mass of GsPLa, 5 parts by mass of polyfunctional monomer TMPT, 5 parts by mass of phosphate ester as a flame retardant, and 40 parts by mass of melamine cyanurate, Example 5 was carried out in the same manner as in Example 1 except that the electron beam irradiation amount was 120 kGy.
(実施例 6)  (Example 6)
生分解性ポリエステルとして、 GsPLaを 55質量部、レイシァ H— 280を 45質量部 の比率で配合し、前記生分解性ポリエステル 100質量部に対し、無機フイラ一として ワラストナイトを 45質量部を混練したこと以外は実施例 1と同様にして実施例 6とした  As a biodegradable polyester, 55 parts by mass of GsPLa and 45 parts by mass of Lacier H-280 are blended, and 100 parts by mass of the biodegradable polyester is kneaded with 45 parts by mass of wollastonite as an inorganic filler. Example 6 was made in the same manner as Example 1 except that
(実施例 7) (Example 7)
ワラストナイトを配合せず、生分解性ポリエステル 100質量部に対して水酸ィ匕アルミ -ゥム 120質量部を混練したこと以外は実施例 6と同様にして実施例 7とした。  Example 7 was carried out in the same manner as in Example 6 except that 120 parts by mass of hydroxyaluminum hydroxide was mixed with 100 parts by mass of the biodegradable polyester without blending wollastonite.
(実施例 8)  (Example 8)
水酸ィ匕アルミニウム 120質量部のうち 20質量部をメラミンシァヌレートとし、さらにリ ン酸エステルを 5質量部混練したこと以外は実施例 7と同様にして実施例 8とした。  Example 8 was carried out in the same manner as Example 7 except that 120 parts by mass of aluminum hydroxide and 20 parts by mass of melamine cyanurate and 5 parts by mass of phosphate ester were kneaded.
(比較例 3、 4)  (Comparative Examples 3 and 4)
電子線照射を行わな力つたこと以外は実施例 7、 8と同様にして各々比較例 3、 4と した。  Comparative Examples 3 and 4 were made in the same manner as Examples 7 and 8 except that they were not able to perform electron beam irradiation.
[0059] 実施例 5〜8および比較例 3、 4の製造条件およびゲル分率、曲げ強度試験、耐熱 性'加水分解性、難燃性の評価結果を下記の表 11に示す。各々の評価は、前記実 施例と同様の測定方法で行った。 なお、耐熱性'加水分解性の評価については、加熱前のオリジナルの試料を 80°C 熱水中 24時間(1日)、 120°C空気中 7日間、 140°C空気中 7日間の各条件で放置し た後に伸び (%)及び引張強さ (MPa)を測定することにより行った。また、難燃性評 価は UL94に準拠して行った。 [0059] Table 11 below shows the production conditions and gel fraction, bending strength test, heat resistance, hydrolyzability, and flame retardancy evaluation results of Examples 5 to 8 and Comparative Examples 3 and 4. Each evaluation was performed by the same measurement method as in the above example. For the evaluation of heat resistance and hydrolyzability, the original sample before heating was subjected to 80 ° C hot water for 24 hours (1 day), 120 ° C in air for 7 days, and 140 ° C in air for 7 days. This was carried out by measuring the elongation (%) and tensile strength (MPa) after standing under conditions. In addition, flame retardant evaluation was performed in accordance with UL94.
[表 11] [Table 11]
Figure imgf000025_0001
Figure imgf000025_0001
[0061] 表 11に示すように、実施例 5〜8のゲル分率は 77〜88%であり、架橋が確認でき た。これに対して、電子線照射しな力つた比較例 3、 4はゲル分率が 0%であり、架橋 がなされていなかった。 [0061] As shown in Table 11, the gel fractions of Examples 5 to 8 were 77 to 88%, and crosslinking was confirmed. On the other hand, Comparative Examples 3 and 4 which were not irradiated with an electron beam had a gel fraction of 0% and were not crosslinked.
その結果、実施例 6〜8は、 120°Cおよび 140°C7日間の高温でも形状及び強度を 維持することができたが、比較例 3、 4は、 140°Cで形状を維持することができず、高 温にぉ 、て大幅な強度低下が見られた (実施例 5は 140°Cでの評価を行なって!/、な い)。  As a result, Examples 6-8 were able to maintain their shape and strength even at high temperatures of 120 ° C and 140 ° C for 7 days, but Comparative Examples 3 and 4 were able to maintain their shape at 140 ° C. However, the strength decreased significantly at high temperatures (Example 5 was evaluated at 140 ° C! /).
また、難燃剤として、リン酸エステル、メラミンシァヌレート、水酸ィ匕アルミニウムを用 いた実施例 5、 7、 8は V— 1以上の難燃性を達成することができた。  Further, Examples 5, 7, and 8 using phosphoric acid ester, melamine cyanurate, and aluminum hydroxide as flame retardants were able to achieve flame retardancy of V-1 or higher.
特に、難燃剤としてリン酸エステルとメラミンシァヌレートを併用した実施例 5およびリ ン酸エステル、メラミンシァヌレート及び水酸ィ匕アルミニウムを併用した実施例 8は、 V —0の難燃性を達成できた。実施例 7と実施例 8は難燃剤の総配合量が近接してい るが、実施例 7よりも実施例 8の難燃性が優れているのは、 3種類の難燃剤を混合し て用いた効果と考えられた。実施例 8は高い曲げ弾性率も両立しており、筐体材料と しては特に有用であった。  In particular, Example 5 using a phosphate ester and melamine cyanurate in combination as a flame retardant and Example 8 using a phosphate ester, melamine cyanurate and hydroxyaluminum hydroxide achieved V-0 flame retardancy. did it. In Example 7 and Example 8, the total amount of the flame retardant is close, but the flame retardancy of Example 8 is superior to that of Example 7 because three types of flame retardant are mixed. The effect was considered. Example 8 also has a high flexural modulus and is particularly useful as a housing material.
[0062] このように、本発明の生分解性ポリエステルを主成分とし、電離性放射線を照射し て架橋し、ゲル分率を 50%以上とした成形品は、耐熱性および曲げ強度、引張強さ も備えているため、電子機器の外部接続端子用キャップや筐体として好適に用いるこ とができ、かつ、生分解性であるため廃棄処理のゴミ量を低減できる利点を有するも のである。 [0062] As described above, a molded product containing the biodegradable polyester of the present invention as a main component, cross-linked by irradiation with ionizing radiation, and having a gel fraction of 50% or more has heat resistance, bending strength, and tensile strength. In addition, since it is provided, it can be suitably used as a cap for an external connection terminal of an electronic device or a housing, and has the advantage of reducing the amount of waste during disposal because it is biodegradable.
産業上の利用可能性  Industrial applicability
[0063] 本発明の生分解性榭脂からなる成形品は、耐熱性および強度を有するため、携帯 電話の外部接続端子用キャップや筐体に限らず、ノート型パソコン、電子手帳、電子 カメラ、携帯型オーディオ機器等の各種の携帯型電子機器の外部接続端子用キヤッ プゃ筐体等として好適に用いられる。さらに、廃棄時のゴミ量の低減の観点からは、 携帯用に限らず、電子機器のケース、カバー等にも利用可能である。 [0063] Since the molded article made of the biodegradable resin of the present invention has heat resistance and strength, it is not limited to a cap or casing for an external connection terminal of a mobile phone, but a notebook computer, electronic notebook, electronic camera, It is suitably used as a cap case for external connection terminals of various portable electronic devices such as portable audio devices. Furthermore, from the viewpoint of reducing the amount of garbage at the time of disposal, it can be used not only for portable devices but also for cases and covers of electronic devices.

Claims

請求の範囲 The scope of the claims
[1] 生分解性ポリエステルに少なくとも多官能性モノマーが混合され、前記生分解性ポ リエステルのゲル分率 (ゲル分乾燥重量 Z初期乾燥重量)が 50%以上 90%以下と なる架橋構造とされていることを特徴とする電子機器用の外装部材。  [1] A cross-linked structure in which at least a polyfunctional monomer is mixed with the biodegradable polyester, and the gel fraction (gel content dry weight Z initial dry weight) of the biodegradable polyester is 50% or more and 90% or less. The exterior member for electronic devices characterized by the above-mentioned.
[2] 前記多官能性モノマーはアクリル系もしくはメタクリル系のモノマー力もなり、該多官 能性モノマーが生分解性ポリエステル 100質量部に対して 2質量部以上 15質量部 以下で配合されて!ヽる請求項 1に記載の電子機器用の外装部材。  [2] The polyfunctional monomer also has an acrylic or methacrylic monomer power, and the multifunctional monomer is blended in an amount of 2 to 15 parts by mass with respect to 100 parts by mass of the biodegradable polyester! The exterior member for an electronic device according to claim 1.
[3] さらに、生分解性ポリエステル 100質量部に対して無機フィラーあるいは Zおよび 染料が 1〜 150質量部配合されて 、る請求項 1または請求項 2に記載の電子機器用 の外装部材。  [3] The exterior member for an electronic device according to claim 1 or 2, further comprising 1 to 150 parts by mass of an inorganic filler or Z and a dye per 100 parts by mass of the biodegradable polyester.
[4] 前記無機フィラーがワラストナイトである請求項 3に記載の電子機器用の外装部材。  4. The exterior member for an electronic device according to claim 3, wherein the inorganic filler is wollastonite.
[5] さらに、下記 (a)〜(e)の難燃剤のうち、 1種類以上が配合されている請求項 1乃至 請求項 4のいずれか 1項に記載の電子機器用の外装部材。 [5] The exterior member for an electronic device according to any one of claims 1 to 4, further comprising one or more of the following flame retardants (a) to (e).
(a)リン系難燃剤、(b)メラミン系難燃剤、(c)金属水和物、(d)窒素系難燃剤、 (e) シラン系難燃剤  (a) Phosphorus flame retardant, (b) Melamine flame retardant, (c) Metal hydrate, (d) Nitrogen flame retardant, (e) Silane flame retardant
[6] 前記生分解性ポリエステルとして、ガラス転移温度が常温以下である天然由来ある いは石油由来のポリマーを用いて 、る請求項 1乃至請求項 5の 、ずれか 1項に記載 の電子機器用の外装部材。  [6] The electronic device according to any one of claims 1 to 5, wherein the biodegradable polyester is a natural or petroleum-derived polymer having a glass transition temperature of room temperature or lower. Exterior member.
[7] 前記生分解性ポリエステルとして、ガラス転移温度が常温以下である天然由来ある[7] The biodegradable polyester is naturally derived having a glass transition temperature of room temperature or lower.
Vヽは石油由来のポリマーを主成分として用 ヽて 、る請求項 6に記載の電子機器用の 外装部材。 The exterior member for an electronic device according to claim 6, wherein V ヽ is a petroleum-derived polymer as a main component.
[8] 曲げ弾性率力 00〜2400MPa、ヤング率が 500〜2000MPaである請求項 1乃 至請求項 7のいずれか 1項に記載の電子機器用の外装部材。  [8] The exterior member for an electronic device according to any one of claims 1 to 7, wherein the flexural modulus power is 00 to 2400 MPa, and the Young's modulus is 500 to 2000 MPa.
[9] 請求項 1乃至請求項 8の 、ずれか 1項に記載の外装部材からなる外部接続端子用 キャップあるいは Z及び筐体を備えたことを特徴とする電子機器。  [9] An electronic device comprising the external connection terminal cap or Z and the casing made of the exterior member according to any one of [1] to [8].
[10] 生分解性ポリエステルに少なくとも多官能性モノマーを配合して混練し、該混練物 を所要形状に成形し、得られた成形品に電離性放射線を 50kGy以上 200kGy以下 の照射量で照射し、前記生分解性ポリエステルのゲル分率を 50%以上 90%以下と なるように架橋させていることを特徴とする電子機器用の外装部材の製造方法。 [10] At least a polyfunctional monomer is blended in the biodegradable polyester and kneaded, the kneaded product is molded into a required shape, and the resulting molded product is irradiated with ionizing radiation at an irradiation dose of 50 kGy or more and 200 kGy or less. The gel fraction of the biodegradable polyester is 50% or more and 90% or less. The manufacturing method of the exterior member for electronic devices characterized by making it bridge | crosslink.
PCT/JP2007/051672 2006-02-02 2007-02-01 Exterior structure member for electronic device, and electronic device having the exterior structure member WO2007088920A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007556905A JPWO2007088920A1 (en) 2006-02-02 2007-02-01 Exterior member for electronic device, and electronic device provided with the exterior member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006026369 2006-02-02
JP2006-026369 2006-02-02

Publications (1)

Publication Number Publication Date
WO2007088920A1 true WO2007088920A1 (en) 2007-08-09

Family

ID=38327491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051672 WO2007088920A1 (en) 2006-02-02 2007-02-01 Exterior structure member for electronic device, and electronic device having the exterior structure member

Country Status (3)

Country Link
JP (1) JPWO2007088920A1 (en)
TW (1) TW200732403A (en)
WO (1) WO2007088920A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014868A (en) * 2011-07-06 2013-01-24 Nidek Co Ltd Method for dyeing silicone molded article or polyurethane molded article

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997003130A1 (en) * 1995-07-10 1997-01-30 Daicel Chemical Industries, Ltd. Cross-linkable or curable polylactone composition, cross-linked or cured molding made therefrom and process for the production thereof
JP2002069192A (en) * 2000-08-31 2002-03-08 Shimadzu Corp Method of producing cross-linked flexible lactic acid polymer and composition thereof
JP2005126605A (en) * 2003-10-24 2005-05-19 Japan Atom Energy Res Inst Heat resistant crosslinked product having biodegradability and method for producing the heat resistant crosslinked product
JP2005232225A (en) * 2004-02-17 2005-09-02 Unitika Ltd Thermoplastic resin composition and molded product obtained by molding the same
JP2006008743A (en) * 2004-06-22 2006-01-12 Asahi Kasei Chemicals Corp Molding of aliphatic polyester-based resin composition
JP2006008972A (en) * 2004-05-26 2006-01-12 Kri Inc Resin composition, resin molded article, and method for producing resin molded article
JP2006249384A (en) * 2005-03-14 2006-09-21 Sumitomo Electric Fine Polymer Inc Method for producing cross-linked material made of polylactic acid and the cross-linked material made of polylactic acid
JP2007063359A (en) * 2005-08-30 2007-03-15 Sumitomo Electric Fine Polymer Inc Heat-resistant polylactic acid and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997003130A1 (en) * 1995-07-10 1997-01-30 Daicel Chemical Industries, Ltd. Cross-linkable or curable polylactone composition, cross-linked or cured molding made therefrom and process for the production thereof
JP2002069192A (en) * 2000-08-31 2002-03-08 Shimadzu Corp Method of producing cross-linked flexible lactic acid polymer and composition thereof
JP2005126605A (en) * 2003-10-24 2005-05-19 Japan Atom Energy Res Inst Heat resistant crosslinked product having biodegradability and method for producing the heat resistant crosslinked product
JP2005232225A (en) * 2004-02-17 2005-09-02 Unitika Ltd Thermoplastic resin composition and molded product obtained by molding the same
JP2006008972A (en) * 2004-05-26 2006-01-12 Kri Inc Resin composition, resin molded article, and method for producing resin molded article
JP2006008743A (en) * 2004-06-22 2006-01-12 Asahi Kasei Chemicals Corp Molding of aliphatic polyester-based resin composition
JP2006249384A (en) * 2005-03-14 2006-09-21 Sumitomo Electric Fine Polymer Inc Method for producing cross-linked material made of polylactic acid and the cross-linked material made of polylactic acid
JP2007063359A (en) * 2005-08-30 2007-03-15 Sumitomo Electric Fine Polymer Inc Heat-resistant polylactic acid and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014868A (en) * 2011-07-06 2013-01-24 Nidek Co Ltd Method for dyeing silicone molded article or polyurethane molded article

Also Published As

Publication number Publication date
JPWO2007088920A1 (en) 2009-06-25
TW200732403A (en) 2007-09-01

Similar Documents

Publication Publication Date Title
JP5258296B2 (en) Polyester resin composition and molded body using the same
WO2006033229A1 (en) Resin composition and molding thereof
JP3716730B2 (en) Lactic acid resin composition
KR101156384B1 (en) Injection-molded object
WO2006098159A1 (en) Process for producing crosslinked material of polylactic acid and crosslinked material of polylactic acid
JPWO2009001625A1 (en) Resin composition and method for producing molded article comprising the resin composition
JP2005298797A (en) Aliphatic polyester resin composition-molded item
WO2005040255A1 (en) Biodegradable material and process for producing the same
KR20140058549A (en) Polylactic acid resin composition, process for producing the same, and molded product comprising the same
JP5339857B2 (en) Resin composition for foaming biodegradable flame retardant polyester, foam obtained therefrom, and molded product thereof
JP2010144084A (en) Flame-retardant resin composition, and molding molded from same
JP4643154B2 (en) A thermoplastic resin composition and a molded body formed by molding the same.
JP2008195788A (en) Exterior member for electronic equipment, and electronic equipment having cap for external connection terminal comprising the exterior member
JP4374256B2 (en) Injection molded body
JP2006249384A (en) Method for producing cross-linked material made of polylactic acid and the cross-linked material made of polylactic acid
JP2008291095A (en) Method for producing resin crosslinked product and resin crosslinked product produced by the production method
WO2007088920A1 (en) Exterior structure member for electronic device, and electronic device having the exterior structure member
JP2008163136A (en) Polylactic acid composite and manufacturing method of polylactic acid composite
JP2007063359A (en) Heat-resistant polylactic acid and method for producing the same
JP2003313214A (en) Process for manufacturing crosslinked biodegradable material
JP2007182484A (en) Method for producing crosslinked molded article of polylactic acid, and crosslinked molded article of polylactic acid
JP2009161689A (en) Enclosure member for electronic equipment and method for producing molding comprising the enclosure member
KR20130113406A (en) Polylactic acid-thermoplastic resin alloy composition having superior thermal resistance and moisture proof
JP2003253028A (en) Crosslinked polyester resin foam, laminated sheet therefrom and molded article using the sheet
JP5460261B2 (en) Polylactic acid resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007556905

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07707858

Country of ref document: EP

Kind code of ref document: A1