WO2007088797A1 - Film for surface light source reflection member - Google Patents

Film for surface light source reflection member Download PDF

Info

Publication number
WO2007088797A1
WO2007088797A1 PCT/JP2007/051343 JP2007051343W WO2007088797A1 WO 2007088797 A1 WO2007088797 A1 WO 2007088797A1 JP 2007051343 W JP2007051343 W JP 2007051343W WO 2007088797 A1 WO2007088797 A1 WO 2007088797A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
light source
reflecting member
surface light
Prior art date
Application number
PCT/JP2007/051343
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihiko Sakaguchi
Osamu Watanabe
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to CN2007800034434A priority Critical patent/CN101375185B/en
Priority to KR1020087016211A priority patent/KR101331888B1/en
Priority to JP2007509754A priority patent/JP5040647B2/en
Publication of WO2007088797A1 publication Critical patent/WO2007088797A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/406Bright, glossy, shiny surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays

Definitions

  • the present invention relates to a film for a light source reflecting member having a surface that is discriminated between one surface and the other surface. More preferably, the present invention relates to a film for a surface light source reflecting member that causes little decrease in luminance over time. Further, the present invention relates to a direct liquid crystal knock light for a liquid crystal display using the surface light source reflecting member film, a reverse prism liquid crystal backlight, and a lamp reflector for the backlight.
  • a backlight that illuminates a liquid crystal cell (hereinafter referred to as a liquid crystal backlight) is used.
  • the LCD monitor uses an edge-light type LCD backlight
  • the LCD TV uses a direct-type LCD backlight.
  • a film for a surface light source reflecting member (hereinafter referred to as a reflecting film) used for these liquid crystal backlights a porous white film formed by bubbles is generally used (Patent Document 1).
  • a white film having an ultraviolet absorbing layer laminated has been proposed in order to prevent yellow discoloration of the film due to ultraviolet rays emitted by cold cathode tube force (Patent Documents 2 and 3).
  • a white film is also proposed in which the glossiness on both sides of the film is controlled in order to provide adhesion (Patent Document 4).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-262208
  • Patent Document 2 JP 2001-166295 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-90515
  • Patent Document 4 JP 2005-125700 A
  • a reflective film is used by being attached to an aluminum plate or a stainless steel plate in a liquid crystal backlight manufacturing process.
  • the lamp reflector does not use a metal plate, but a reflective film alone.
  • functions are added to one side. Since the reflective film provided with such a layer is white on both sides, it is difficult to visually distinguish the surface provided with the function-imparting layer from the opposite surface. The difficulty of distinguishing these has caused problems such as extra time in the backlight manufacturing process and reduced productivity.
  • the resin containing a light stabilizer and Z or an ultraviolet absorber is mistakenly caused by these problems.
  • the surface with the layer may be stuck to an aluminum plate or a stainless steel plate. If it is applied by mistake, the surface without the light stabilizer and the resin layer containing Z or UV absorber will be exposed to the light of the cold cathode tube and deteriorate. As a result, the brightness of a product such as a liquid crystal television using the reflective film decreases with time during use, and a serious problem occurs.
  • the LCD backlight housing and the reflective film may come into contact with each other as shown in Fig. 2, and may be scratched.
  • the notebook PC to which the edge-light type backlight is applied is regarded as light weight, and the liquid crystal backlight housing is also provided with a hollow space for light weight.
  • edge light type backlights scratches on the reflective film can be seen through this cavity.
  • a liquid crystal backlight with visible scratches has a problem that the yield is lowered because the quality of the finished product is lowered.
  • the reverse prism type liquid crystal backlight uses a reflective film with high glossiness, and this problem is noticeable because it is easily noticeable if scratched.
  • the present invention employs the following means in order to solve the hard problem.
  • the film for a surface light source reflecting member of the present invention is composed of a white film, and the difference AG in gloss (60 °) between one surface and the other surface is AG> 80. It is.
  • the white film has a resin layer on one side and the light on the other side of the white film
  • the degree (60 °) is 90% or more.
  • the resin layer is a resin layer containing an ultraviolet absorber and Z or a light stabilizer.
  • the heat shrinkage rate in the film longitudinal direction and film width direction after heat treatment at 90 ° C for 30 minutes is 0.1% or more and 0.2% or less.
  • the white film is a three-layer structure consisting of A layer, ZB layer and ZA layer, B layer is a layer containing fine bubbles, and A layer contains polyester and inorganic particles and Z or organic particles.
  • the particle content of which is not more than 0.5% by weight with respect to the total weight of each A layer,
  • the white film has a three-layer composition of A layer, ZB layer, and ZC layer, B layer is a layer containing fine bubbles, and A layer and Z or C layer are polyester with inorganic particles and Z or organic particles.
  • a particle content of which is 0.5% by weight or less based on the total weight of each layer containing the particles,
  • the direct type liquid crystal knocklight, the liquid crystal knocklight lamp reflector, and the reverse prism type liquid crystal knocklight of the present invention use the surface light source reflecting member film of the present invention.
  • the film for a surface light source reflecting member of the present invention it is possible to easily distinguish between a surface provided with a function-imparting layer and a surface on the opposite side visually, and to improve productivity in a liquid crystal knocklight manufacturing process. Can do.
  • a resin layer containing an ultraviolet absorber and Z or a light stabilizer is provided as a function-imparting layer, a resin layer containing an ultraviolet absorber and Z or a light stabilizer is visually provided.
  • a resin layer containing an ultraviolet absorber and Z or a light stabilizer can be installed to face the cold cathode tube side. The decrease in luminance over time can be reduced.
  • the yield as an LCD backlight is less noticeable due to film scratches caused by contact between the backlight housing and the surface light source reflecting member film during assembly. Can be high.
  • FIG. 1 Direct type liquid crystal backlight using the film for surface light source reflecting member of the present invention.
  • FIG. 2 Reverse prism type liquid crystal knock light using the film for surface light source reflecting member of the present invention.
  • the present invention has the above-mentioned problem, that is, since a white film having a layer having a function provided on one side is white on both sides, the surface provided with the function-imparting layer is visually discriminated from the opposite side.
  • a white film having a layer having a function provided on one side is white on both sides, the surface provided with the function-imparting layer is visually discriminated from the opposite side.
  • the difference AG between the glossiness (60 °) of one side and the other side of the film for a surface light source reflecting member (hereinafter referred to as a reflective film) was set to AG> 80
  • AG> 80 As a result, it became easy to distinguish between the surface with the function-imparting layer and the surface on the opposite side, and it was clarified that the problems to be solved can be solved all at once.
  • a Suga Test Instruments digital variable gloss meter (UGV-4D) can be used for measurement.
  • the difference AG (60 °) in glossiness (60 °) between one surface and the other surface of the reflective film of the present invention is set to be greater than 80% in order to enable discrimination between the one surface and the other surface. There is a need. AG is preferably 85% or more, more preferably 90% or more. If AG is 80% or less, it will be difficult to identify the surface. There are the following methods to make AG larger than 80%. (1) Make a difference in glossiness between one side and the other side of the white film constituting the reflective film.
  • a resin layer is provided on one surface of the white film constituting the reflective film, and the luminous intensity of the surface is lowered.
  • the white film having a high molecular force used as the reflective film of the present invention preferably has a high visible light reflectance.
  • a white film containing bubbles inside is not particularly limited, but a porous unstretched film, a polypropylene film, or a polyester film is preferably exemplified.
  • a polyester film is particularly preferable as a white film according to the present invention because of its excellent heat resistance and rigidity.
  • the polyester constituting the white film according to the present invention is a polymer obtained by condensation polymerization of diol, dicarboxylic acid and force.
  • dicarboxylic acids include terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, adipic acid, and sebacic acid.
  • the diol is represented by ethylene glycol, trimethylene glycol, tetramethylene glycol, cyclohexane dimethanol and the like.
  • polymethylene terephthalate polytetramethylene terephthalate, polyethylene p-oxybenzoate, poly 1,4-cyclohexylene dimethylene terephthalate, and polyethylene 2,6 naphthalene dicarboxylate.
  • polyethylene terephthalate and polyethylene naphthalate are particularly preferable.
  • polyesters may be homopolyesters or copolyesters.
  • copolymer components include diol components such as diethylene glycol, neopentyl glycol, and polyalkylene glycol; Examples include acid components.
  • the polyester used in the white film according to the present invention is preferably polyethylene terephthalate.
  • Polyethylene terephthalate film has excellent water resistance, durability and chemical resistance.
  • the reflective film of the present invention preferably has an average reflectance in the wavelength range of 400 to 700 nm of 90% or more on at least one side of the reflective film.
  • the average reflectance refers to the reflectance when an integrating sphere is attached to a spectrophotometer (U-3310) manufactured by Hitachi High-Technologies and the standard white plate (acid aluminum) is 100%. Measured over ⁇ 700nm, read the reflectance at 5nm intervals from the obtained chart, and averaged values.
  • the average reflectance is 95% or more, more preferably 98% or more.
  • the average reflectance is not particularly limited but is preferably 108% or less. This is because in order to increase the average reflectance, it is necessary to increase the amount of nucleating agent, and in this case, the film forming property may become unstable.
  • the white film according to the present invention is preferably whitened by containing fine bubbles inside the film. Formation of fine bubbles is achieved by dispersing a polymer incompatible with a high melting point polyester in a film base material such as polyester and stretching it (for example, biaxial stretching). . During stretching, voids (bubbles) are formed around the incompatible polymer particles, which exhibit a scattering effect on light, and thus are whitened, and a high reflectance can be obtained.
  • Incompatible polymers include, for example, poly-3-methyl phthalene 1, poly-4-methyl pentene 1, polybutyl t-butane, 1,4 trans poly 2,3 dimethyl butadiene, polybutyl cyclohexane, polystyrene, polymethyl styrene, poly 200 ° C or higher melting point selected from dimethylstyrene, polyfluorostyrene, poly-2-methyl-4-fluorostyrene, polyvinyl-t-butyl ether, cellulose triacetate, cellulose tripropionate, polybulufluoride, polychlorofluoroethylene, etc.
  • polyolefin particularly polymethylpentene, is preferred for the polyester base material.
  • the addition amount of the incompatible polymer is preferably 5% by weight or more and 25% by weight or less when the entire layer containing the incompatible polymer is 100% by weight. If it is less than 5% by weight, the effect of whitening is diminished, and it becomes difficult to obtain a high reflectance. If it exceeds 25% by weight, mechanical properties such as strength of the film itself may be too low.
  • the incompatible polymer is preferably dispersed uniformly. Due to the uniform dispersion of the incompatible polymer, bubbles are uniformly formed inside the film, and the degree of whitening and thus the reflectance becomes uniform. In order to uniformly disperse the incompatible polymer, it is effective to add a low specific gravity agent as a dispersion aid.
  • a low specific gravity agent is a compound having the effect of reducing the specific gravity, and the effect is recognized for a specific compound.
  • polyalkylene glycols such as polyethylene glycol, methoxy polyethylene glycol, polytetramethylene glycol, polypropylene glycol, ethylenoxide Z propylenoxide copolymer, sodium dodecylbenzenesulfonate, sodium alkylsulfonate.
  • examples thereof include salts, glycerin monostearate, and tetrabutyl phospho-mparaaminobenzene sulfonate.
  • polyalkylene glycol particularly polyethylene glycol is particularly preferable.
  • a copolymer of polybutylene terephthalate and polytetramethylene glycol is also preferably used for improving the dispersibility of the incompatible polymer.
  • the addition amount of the low specific gravity agent is preferably 10% by weight or more and 25% by weight or less, with the total layer containing the incompatible polymer being 100% by weight. If the amount is less than 10% by weight, the effect of addition is reduced. If it exceeds 25% by weight, the original properties of the film base material may be impaired.
  • Such a low specific gravity agent can be added to the film base polymer in advance to prepare a master polymer (master chip).
  • the apparent specific gravity of the polyester film is lower than that of a normal polyester film. If a lower specific gravity agent is further added, the specific gravity is further lowered. In other words, a white and light film can be obtained.
  • the apparent specific gravity is preferably 0.5 or more and 1.2 or less. Furthermore, by making the apparent specific gravity 0.5 or more and 1.2 or less, it is possible to obtain higher reflectance, which is preferable. Good.
  • the apparent specific gravity is more preferably 0.5 or more and 1.0 or less, and particularly preferably 0.5 or more and 0.8 or less.
  • polymethylpentene having a specific gravity of 0.83 is used as the incompatible polymer as described above
  • polymethylpentene is used as a film. It should be contained in an amount of 5% to 25% by weight based on the polyester polymer of the base material.
  • an unstretched polyester film is prepared, and the unstretched polyester film can be achieved by stretching the stretch ratio in the machine direction and the transverse direction at 2.5 to 4.5 times.
  • the apparent specific gravity is in the range of 0.5 or more and 1.2 or less, when used as a reflective film, the brightness of the screen is remarkably excellent.
  • the glossiness of the white film according to the present invention is particularly limited if the difference ⁇ G in glossiness (60 °) between one surface and the other surface of the reflective film using the white film is greater than 80%.
  • the glossiness (60 °) of at least one side of the white film is preferably 90% or more. If the glossiness of one side of the white film is 90% or more, decrease the glossiness of the other side of the white film, or provide a resin layer on the other side of the white film to increase the glossiness of that side. By making it smaller, the AG of the reflective film can be easily made larger than 80%.
  • the glossiness of one side of the white film is more preferably 95% or more, then preferably 100% or more, then preferably 115% or more, and most preferably 120% or more.
  • the upper limit of the glossiness is not particularly limited, but is preferably less than 130%. If it exceeds 130%, the film surface friction coefficient becomes high, and it may be difficult to eliminate air at the time of scraping.
  • the white film according to the present invention can be formed in various layer configurations such as a single layer, two layers, and three layers. Above all, it consists of A layer, ZB layer, ZA layer, or A layer, ZB layer, and ZC layer, and the B layer is a layer containing the fine bubbles in order to achieve both high reflectivity and film formability. preferable.
  • additive agents can be added to each layer of the white film within the range without impairing the effects of the present invention.
  • additives include organic and Z or inorganic fine particles, fluorescent brighteners, heat stabilizers, ultraviolet absorbers, and acid-fastening agents. It has these functions due to the difference in glossiness with the surface of It is possible to distinguish which side of the white film is provided with the layer containing the additive.
  • Sarasako A layer ZB layer
  • the A layer equivalent to the film surface Inorganic polyester and Z or organic particles are added to the polyester, 0.5% by weight based on the total weight of each A layer It is preferable that it is the layer contained below.
  • the content is more preferably 0.1% by weight or less, particularly preferably 0.07% by weight or less.
  • inorganic particles and Z or organic particles are added to polyester, and each layer (inorganic fine particles and Z or organic particles is added to polyester).
  • the layer is preferably 0.5% by weight or less based on the total weight of the contained layer.
  • the content is more preferably 0.1% by weight or less, particularly preferably 0.07% by weight or less.
  • the white film according to the present invention preferably has a glossiness of at least 90% on at least one side, but the inorganic fine particles and Z contained in one outermost layer of the white film Alternatively, by setting the content of inorganic fine particles to 0.5% by weight, the glossiness of the surface can be made 90% or more. In addition, by increasing the content of inorganic fine particles and / or inorganic fine particles contained in the other outermost layer of the white film, the glossiness of the surface can be lowered, and one surface of the white film and the other surface can be reduced. It is possible to make a difference in glossiness with the surface. The content of inorganic fine particles and / or inorganic fine particles contained in each layer can be appropriately adjusted according to the desired difference in glossiness.
  • Polymethylpentene is added as an incompatible polymer, and polyethylene glycol, polybutylene terephthalate and a polytetramethylene glycol copolymer are added as a low specific gravity agent to polyethylene terephthalate. It is thoroughly mixed and dried and fed to Extruder B, which has been heated to a temperature of 270-300 ° C. If necessary, use a material containing inorganic additives such as SiO.
  • the polymer of Extruder B comes to the inner layer (B layer) and the polymer of Extruder A comes to both surface layers (A), so that A layer / B layer ZA layer 3
  • the layers may be laminated.
  • the molten sheet is closely cooled and solidified by electrostatic force on a drum cooled to a drum surface temperature of 10 to 60 ° C to obtain an unstretched film.
  • the unstretched film is led to a roll group heated to 80 to 120 ° C, stretched 2.0 to 5.0 times in the longitudinal direction, and cooled with a roll group of 20 to 50 ° C.
  • the film is stretched in the direction perpendicular to the longitudinal direction in an atmosphere heated to 90-140 ° C while being guided to a tenter while holding both ends of the longitudinally stretched film with clips.
  • the stretching ratio is 2.5 to 4.5 times in the longitudinal and lateral directions, respectively, and the area ratio (longitudinal stretching ratio X lateral stretching ratio) is preferably 9 to 16 times. If the area magnification is less than 9 times, the resulting white color of the film will be poor. If the area magnification exceeds 16 times, the film tends to be broken during stretching and the film forming property tends to be poor.
  • heat setting is performed at 150 to 230 ° C in a tenter, and after uniform cooling, the film is cooled to room temperature. And it winds up with a winder and obtains the white film which concerns on this invention.
  • a white resin film may be provided with a resin layer.
  • the glossiness of one side of the white film can be lowered, and ⁇ G of the reflective film can be easily increased to more than 80%.
  • the resin layer according to the present invention is not particularly limited, but a resin mainly composed of an organic component is preferable.
  • polyester resin, polyurethane resin, acrylic resin, methallyl resin, polyamide resin examples include polyethylene resin, polypropylene resin, polyvinyl chloride resin, polyvinyl chloride resin resin, polystyrene resin, polyacetate resin resin, and fluorine-based resin.
  • coffins may be used alone or in the form of two or more types of copolymers or mixtures.
  • polyester resin, acrylic resin or methacrylic resin is preferably used in terms of heat resistance, particle dispersibility, coatability, and glossiness.
  • the white film of the present invention may be deteriorated by light emitted from a lamp such as a cold cathode tube during use, particularly ultraviolet light (for example, optical deterioration such as yellowing or decomposition deterioration that lowers the molecular weight). It is also preferable to use a resin layer containing an ultraviolet absorber and Z or a light stabilizer as the resin layer.
  • the resin constituting the resin layer containing the ultraviolet absorber is not particularly limited, but may be an acid.
  • Copolymers containing resin containing inorganic UV absorbers such as titanium fluoride and zinc oxide, resin containing organic UV absorbers such as benzotriazole and benzophenone, or benzotriazole and benzophenone reactive monomers Polymerized rosin can be used.
  • the resin constituting the resin layer containing the light stabilizer it is preferable to use an organic ultraviolet absorbing resin containing a resin copolymerized with a hindered amine (HALS) reactive monomer.
  • HALS hindered amine
  • the inorganic ultraviolet absorber zinc oxide, titanium oxide, cerium oxide, zirconium oxide and the like are generally used. Among these, at least one selected from the group consisting of zinc oxide, titanium oxide, and cerium oxide is preferable because it does not bleed out and is excellent in light resistance. Several types of UV absorbers may be used in combination as needed. Of these, zinc oxide is most preferable from the viewpoints of economy, ultraviolet absorption, and photocatalytic activity. As zinc oxide, FINEX-25LP, FINEX-50LP (manufactured by Sakai Chemical Industry Co., Ltd.) or the like can be used.
  • Examples of the organic ultraviolet absorber include a resin containing an organic ultraviolet absorber such as benzotriazole or benzophenone, a resin obtained by copolymerizing a benzotriazole-based or benzophenone-based reactive monomer, and further to these.
  • a resin obtained by copolymerizing a light stabilizer such as a hindered amine (HALS) -based reactive monomer can be used.
  • a thin layer of organic UV-absorbing resin containing benzotriazole-based and benzophenone-based reactive monomers, as well as those containing hindered amine (HALS) -based reactive monomers It is more preferable because the ultraviolet absorption effect is high.
  • HALS HYBRID registered trademark
  • acrylic monomer and UV absorber copolymer as an active ingredient
  • additives can be added to the resin layer within a range that does not impair the effects of the present invention.
  • Additives include, for example, organic and Z or inorganic fine particles, fluorescent brighteners, cross-linking agents, heat stabilizers, antioxidation stabilizers, organic lubricants, nucleating agents, couplings An agent or the like can be used.
  • the resin layer according to the present invention can be provided by a coating method.
  • the coating liquid can be applied by any method.
  • gravure coating, roll nut, spin nut, reno kusu: pi ot, no: pi ot, screen: pi ot, blade, n te, air knife coat, datebing, etc. can be used.
  • the coating liquid for forming the resin layer may be applied at the time of manufacturing the white film of the substrate (in-line coating), or may be applied on the white film after completion of crystal orientation (off-line coating).
  • the reflective film of the present invention has a heat shrinkage rate of 0.1% or more and 0.2% or less in the film longitudinal direction and film width direction after heat treatment at 90 ° C for 30 minutes as a reflective film. Is preferred. Preferably it is 0.05-5.15% or less. If the thermal shrinkage in the film longitudinal direction or film width direction is out of the range of 0.1% or more and 0.2% or less, the film becomes squeezed when it reaches a high temperature, and the brightness of the liquid crystal knock light Unevenness is likely to occur. In particular, in the case of a reflective film for use in a reverse prism, when a prism-shaped light guide plate comes into contact with a mirror-like reflective surface, it tends to be noticeable as a screen unevenness on the liquid crystal panel.
  • the heat shrinkage rate in the longitudinal direction of the film after the heat treatment at 90 ° C for 30 minutes is a value measured by the following procedure. First, a film sample of a certain size is prepared, and a certain length (L) is measured in the longitudinal direction (extrusion direction during production) at room temperature. Sample 9
  • the obtained value is defined as the heat shrinkage rate in the longitudinal direction of the film.
  • a negative value indicates that the film is stretched.
  • the heat shrinkage in the width direction of the film after heat treatment at 90 ° C for 30 minutes is the same as the longitudinal direction of the film in the width direction of the film (perpendicular to the extrusion direction during production). This is the measured value.
  • the reflective film of the present invention preferably has an average reflectance of 85% or more at a wavelength of 400 to 700 nm measured from the surface provided with the resin layer. More preferably 87% or more, especially Preferably it is 90% or more. If the average reflectance is less than 85%, the brightness may be insufficient depending on the liquid crystal display used. In addition, when a resin layer containing an ultraviolet absorber and Z or a light stabilizer is provided on both sides of the white film, the average reflectivity measured for any resin layer force should be 85% or more. That's fine.
  • the reflective film of the present invention can be preferably used in a liquid crystal backlight of a direct type for use in liquid crystal TVs and large monitors.
  • a reflective film is installed near the cold cathode tube in the direct-type liquid crystal knock light.
  • the surface of the reflecting film provided with the resin layer preferably, the resin layer containing the ultraviolet absorber and Z or the light stabilizer
  • the white film of the base material may turn yellow due to ultraviolet rays. Therefore, when assembling the knocklight, it is necessary to distinguish between the surface of the reflective film provided with the resin layer and the opposite surface.
  • the reflective film of the present invention it is easy to distinguish between the surface on which the resin layer is provided and the surface on the opposite side, the work efficiency in the assembly process of the knock light is improved, and the productivity is also improved.
  • the reflective film of the present invention can be preferably used for a lamp reflector of a liquid crystal backlight.
  • the lamp refractor is formed by bonding a stainless steel plate and a reflective film, and press-molding them in a curved shape so that the reflective film is on the inside. Then, the lamp reflector is assembled into a knocklight so as to cover the cold cathode tube as shown in FIG. As with the direct backlight, the lamp reflector is also provided with a reflective film near the cold cathode tube.
  • the surface of the reflective film provided with the resin layer (preferably a resin layer containing an ultraviolet absorber and Z or a light stabilizer) is directed to the cold cathode tube side so that the stainless steel plate and the reflective film are provided. Otherwise, the white film of the base material may turn yellow due to the ultraviolet rays generated by the cold cathode tube. Therefore, when bonding, it is necessary to distinguish the surface on which the resin layer is provided and the surface on the opposite side. In the surface light source reflecting member film of the present invention, it is easy to distinguish between the surface provided with the resin layer and the surface on the opposite side, the work efficiency in the bonding process is improved, and the productivity is also improved. .
  • the reflective film of the present invention can be suitably used for a reverse prism type liquid crystal backlight.
  • the knocklight housing and the reflective film may come into contact with each other and be scratched.
  • edge-light type backlight for light weight
  • scratches on the reflective film can be seen through this cavity. Knocklights with visible scratches will degrade the quality of the finished product, resulting in a decrease in yield. If the glossiness of the reflective film is low, scratches on the surface will be inconspicuous.
  • a reflective film with a high glossiness is required to increase the brightness, especially in the reverse prism type liquid crystal knocklight.
  • the reverse prism type liquid crystal backlight using the reflective film of the present invention can improve the yield without impairing the quality of the finished knocklight product, and can also increase the brightness.
  • the average reflectance of the surface of the reflective film on which the resin layer is provided is measured by the following procedure. Attach an integrating sphere to a Hitachi High-Technologies spectrophotometer (U-3310), and measure the reflectivity from 400 to 700 nm when the standard white plate (acid aluminum) is 100%. Read the reflectance at 5nm intervals from the obtained chart, calculate the average value of them, and use it as the average reflectance. Three samples were measured for each reflective film, and the average value was taken as the average reflectance of the reflective film. If the reflective film is not provided with a resin layer, the average reflectivity of the surface regarded as the “surface provided with the resin layer” in the measurement of “(3) Glossiness (60 °;)”. Measure.
  • a negative value indicates that the film is stretched.
  • a 10 mm wide (film longitudinal direction) x 230 mm long (film width direction) sample was cut out from the reflective film and measured in the same manner as the method for measuring the thermal shrinkage in the longitudinal direction.
  • the glossiness (60 °) of both the surface of the reflective film provided with the resin layer and the opposite surface is measured by the following procedure. Using a digital variable angle gloss meter (UGV-4D) manufactured by Suga Test Instruments Co., Ltd., the glossiness was measured according to JIS K7105 (1981 version) with the incident angle and light receiving angle adjusted to 60 °. Three samples were measured for each reflection film, and the average value was defined as the glossiness (60 °) of the reflection film. In addition, the oil film layer is provided on the reflective film! In the case of /, NA V, the glossiness is small! /, And the side of the surface (if the glossiness is the same on both sides, one of the sides) is regarded as the “surface with the resin layer”.
  • UUV-4D digital variable angle gloss meter
  • the reflective film was placed in an ultraviolet degradation acceleration tester iSuper UV Tester SUV-W131 (manufactured by Iwasaki Electric Co., Ltd.), and a forced ultraviolet irradiation test was performed under the following conditions.
  • iSuper UV Tester SUV-W131 manufactured by Iwasaki Electric Co., Ltd.
  • the surface of the reflective film provided with a resin layer was rubbed 3 times at a stroke width of 10 cm and a speed of 30 mmZsec by applying a load of 100 g of # 0000 steel wool. Arbitrarily selected 10
  • the surface provided with the rosin layer was visually observed by a name judge. If all 10 people did not see any scratches, it was rated as ⁇ . If the reflective film is not provided with a resin layer, the surface considered as the “surface provided with the resin layer” was scratched in the measurement of “(3) Glossiness (60 °;)”. The surface was observed. Each reflective film was evaluated with one sample.
  • a polyethylene terephthalate chip (F20S manufactured by Toray Industries, Inc.) and a master chip containing a polyethylene glycol having a molecular weight of 4000, a copolymer of polybutylene terephthalate and polytetramethylene glycol, added during the polymerization of polyethylene terephthalate are 180 °. Vacuum dried at C for 3 hours.
  • this sheet was cooled and solidified with a cooling drum having a surface temperature of 25 ° C to obtain an unstretched film.
  • the unstretched film was guided to a roll group heated to 85 to 98 ° C, stretched 3.4 times in the longitudinal direction of the film, and cooled with a roll group at 25 ° C.
  • the film stretched in the longitudinal direction is guided to the tenter while holding both ends of the film with clips, and in the atmosphere heated to 130 ° C in the film width direction (direction perpendicular to the film longitudinal direction) 3.6 It was stretched by a factor of 2. After that, heat setting was performed at 230 ° C in a tenter, and after uniform cooling, it was cooled to room temperature.
  • a coating solution prepared by adding 8 g with stirring was prepared. This coating solution was applied to one side of a white film so that the thickness after drying was 3 m, a resin layer was provided, and the coating was dried. The coating solution was dried at a temperature of 130 ° C for 1 minute. Thus, a reflective film was obtained. The glossiness (60 °) of the surface of the reflective film provided with the resin layer was 25%.
  • a white film was obtained in the same manner as in Example 1 except that the amount of the master chip (silicon dioxide content 2% by weight) mixed in the A layer was 2 parts by weight.
  • the resulting film had a glossiness (60 °) of 107%.
  • a white film was obtained in the same manner as in Example 1 except that the amount of the master chip (silicon dioxide content 2% by weight) mixed in the A layer was 3.5 parts by weight. Glossiness of the obtained film
  • this sheet was stretched under the same conditions as in Example 1 to obtain a white film.
  • the glossiness (60 °) of the white paper film obtained was 121% on the A layer side and 95% on the C layer side.
  • a reflective film was obtained by providing a resin layer on the layer surface. The glossiness (60 °) of the surface of the reflective film provided with the resin layer was 14%.
  • a reflective film was obtained in the same manner as in Example 1 except that the resin layer was not provided.
  • Example 1 As described in Example 1 on one side of a white film made of 188 ⁇ m porous biaxially stretched polyethylene terephthalate (Lumirror (registered trademark) E60L, Toray Industries, Inc., glossiness (60 °): 30%)) A resin film was provided to obtain a reflective film. The luminous intensity (60 °) of the surface of the reflective film provided with the resin layer was 25%.
  • Examples 1 to 4 it was possible to easily distinguish the surface provided with the resin layer having a gloss difference of more than 80% and the surface on the opposite side. Furthermore, in Examples 1 to 4, the glossiness of the surface with a low glossiness (surface with the resin layer) was 25% or less, and the scratches on the surface were difficult to see.
  • Comparative Examples 1 to 4 the difference in glossiness was 80% or less, and it was difficult to distinguish the surface on which the resin layer was provided and the surface on the opposite side. In Comparative Examples 1 and 2, it was confirmed that the surface having a low glossiness (the surface provided with the resin layer) had a glossiness of more than 50%, and the surface was scratched.
  • the film for a surface light source reflecting member of the present invention can be suitably used for a liquid crystal knocklight.
  • it can be suitably used for a direct type liquid crystal backlight, a reverse prism type liquid crystal backlight, and a lamp reflector for a liquid crystal backlight.

Abstract

A film for surface light source reflection member, consisting of a white film and having a difference of glossiness (60°) between one surface and the opposite surface, Δ G, satisfying the relationship Δ G>80. Thus, there is provided a film for surface light source reflection member that facilitates visual discrimination between a surface provided with a functionalized layer and its opposite surface to thereby realize enhancing of the productivity in the process of production of liquid crystal backlight.

Description

明 細 書  Specification
面光源反射部材用フィルム  Surface light source reflective member film
技術分野  Technical field
[0001] 本発明は、一方の面と他方の面との識別がしゃすい面光源反射部材用フィルムに 関するものである。さらに好ましくは経時的な輝度低下が少ない面光源反射部材用 フィルムに関するものである。さらに、この面光源反射部材用フィルムを用いた液晶 ディスプレイ用の直下型方式の液晶ノ ックライト、逆プリズム方式の液晶バックライト、 およびバックライト用ランプリフレタターに関するものである。  [0001] The present invention relates to a film for a light source reflecting member having a surface that is discriminated between one surface and the other surface. More preferably, the present invention relates to a film for a surface light source reflecting member that causes little decrease in luminance over time. Further, the present invention relates to a direct liquid crystal knock light for a liquid crystal display using the surface light source reflecting member film, a reverse prism liquid crystal backlight, and a lamp reflector for the backlight.
背景技術  Background art
[0002] 液晶ディスプレイでは液晶セルを照らすバックライト(以下、液晶バックライトとする) が用いられている。液晶モニターではエッジライト方式の液晶バックライト、液晶テレ ビでは直下型方式の液晶バックライトが採用されている。これらの液晶バックライトに 用いられる面光源反射部材用フィルム(以下、反射フィルムとする)としては、気泡に より形成された多孔質の白色フィルムが一般的に用いられている(特許文献 1)。さら に、冷陰極管力 放射される紫外線によるフィルムの黄変色を防ぐために紫外線吸 収層を積層した白色フィルムも提案されている (特許文献 2, 3)。また、接着性を備え るために、フィルムの両面の光沢度を制御した白色フィルムも提案されている(特許 文献 4)。  In a liquid crystal display, a backlight that illuminates a liquid crystal cell (hereinafter referred to as a liquid crystal backlight) is used. The LCD monitor uses an edge-light type LCD backlight, and the LCD TV uses a direct-type LCD backlight. As a film for a surface light source reflecting member (hereinafter referred to as a reflecting film) used for these liquid crystal backlights, a porous white film formed by bubbles is generally used (Patent Document 1). Further, a white film having an ultraviolet absorbing layer laminated has been proposed in order to prevent yellow discoloration of the film due to ultraviolet rays emitted by cold cathode tube force (Patent Documents 2 and 3). In addition, a white film is also proposed in which the glossiness on both sides of the film is controlled in order to provide adhesion (Patent Document 4).
特許文献 1:特開平 8 - 262208号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 8-262208
特許文献 2:特開 2001— 166295号公報  Patent Document 2: JP 2001-166295 A
特許文献 3:特開 2002— 90515号公報  Patent Document 3: Japanese Patent Laid-Open No. 2002-90515
特許文献 4:特開 2005 - 125700号公報  Patent Document 4: JP 2005-125700 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 反射フィルムは液晶バックライト製造工程にて、アルミ板やステンレス板などと貼りあ わせて使用される場合が多い。またランプリフレタターでは金属板を使用せず、反射 フィルム単体で使用する場合もある。これらの製造工程において、片面に機能を付与 した層を設けた反射フィルムは両面が白色であるために、 目視で機能付与層を設け た面とその反対側の面とを識別することが難しい。これらの識別が難しいことで、バッ クライト製造工程での余分な時間がかかり、生産性が低下するという問題も生じてい る。 [0003] In many cases, a reflective film is used by being attached to an aluminum plate or a stainless steel plate in a liquid crystal backlight manufacturing process. In some cases, the lamp reflector does not use a metal plate, but a reflective film alone. In these manufacturing processes, functions are added to one side. Since the reflective film provided with such a layer is white on both sides, it is difficult to visually distinguish the surface provided with the function-imparting layer from the opposite surface. The difficulty of distinguishing these has caused problems such as extra time in the backlight manufacturing process and reduced productivity.
[0004] 特に、光安定剤および Zまたは紫外線吸収剤を含有した榭脂層を片面に有する反 射フィルムでは、これらの問題により、間違えて光安定剤および Zまたは紫外線吸収 剤を含有した榭脂層を設けた面をアルミ板やステンレス板に貼り合わせてしまうことが ある。間違えて貼ってしまうと、光安定剤および Zまたは紫外線吸収剤を含有した榭 脂層のない面が冷陰極管の光にさらされて劣化してしまう。その結果、その反射フィ ルムが使用された液晶テレビなどの製品の輝度が使用中に経時的に低下して 、く重 大な問題が発生する。  [0004] Particularly, in the case of a reflective film having a resin layer on one side containing a light stabilizer and Z or an ultraviolet absorber, the resin containing a light stabilizer and Z or an ultraviolet absorber is mistakenly caused by these problems. The surface with the layer may be stuck to an aluminum plate or a stainless steel plate. If it is applied by mistake, the surface without the light stabilizer and the resin layer containing Z or UV absorber will be exposed to the light of the cold cathode tube and deteriorate. As a result, the brightness of a product such as a liquid crystal television using the reflective film decreases with time during use, and a serious problem occurs.
[0005] また、エッジライト型バックライトの 1種である逆プリズム方式の液晶バックライトでは [0005] In addition, in an inverted prism type liquid crystal backlight, which is a kind of edge light type backlight,
、正反射成分の多い反射フィルムが輝度向上に好適であることから、光沢度の高い 反射フィルムが求められている。一方、液晶ノ ックライトを組み立てる際に、液晶バッ クライトの筐体と反射フィルムとが図 2のように接触してキズがっくことがある。エッジラ イト型バックライトが適用されるノートパソコンは軽量ィ匕が重要視されており、液晶バッ クライトの筐体にも空洞を設けて軽量ィ匕を図って 、る。エッジライト型バックライトでは 、この空洞を通して反射フィルムについたキズが見えてしまう。キズが見える液晶バッ クライトは完成品としての品位が下がるため、歩留まりが低下する問題がある。特に逆 プリズム方式の液晶バックライトでは光沢度の高 、反射フィルムを用いており、キズが つくと目立ちやすいため、この問題が顕著に現れる。 Since a reflective film with many regular reflection components is suitable for improving luminance, a reflective film having a high glossiness is required. On the other hand, when assembling the LCD knock light, the LCD backlight housing and the reflective film may come into contact with each other as shown in Fig. 2, and may be scratched. The notebook PC to which the edge-light type backlight is applied is regarded as light weight, and the liquid crystal backlight housing is also provided with a hollow space for light weight. In edge light type backlights, scratches on the reflective film can be seen through this cavity. A liquid crystal backlight with visible scratches has a problem that the yield is lowered because the quality of the finished product is lowered. In particular, the reverse prism type liquid crystal backlight uses a reflective film with high glossiness, and this problem is noticeable because it is easily noticeable if scratched.
課題を解決するための手段  Means for solving the problem
[0006] 本発明は、力かる課題を解決するために、次のような手段を採用するものである。 [0006] The present invention employs the following means in order to solve the hard problem.
すなわち、本発明の面光源反射部材用フィルムは、白色フィルムで構成され、一方 の面と他方の面との光沢度(60° )の差 A Gが、 A G>80であることを特徴とするも のである。  That is, the film for a surface light source reflecting member of the present invention is composed of a white film, and the difference AG in gloss (60 °) between one surface and the other surface is AG> 80. It is.
[0007] また、本発明の面光源反射部材用フィルムの好ましい様態は、  [0007] Further, a preferred aspect of the film for a surface light source reflecting member of the present invention,
(1)白色フィルムの一方の面に榭脂層を有し、かつ該白色フィルムの他方の面の光 沢度(60° )が 90%以上であること (1) The white film has a resin layer on one side and the light on the other side of the white film The degree (60 °) is 90% or more.
(2)前記榭脂層が紫外線吸収剤および Zまたは光安定化剤を含有する榭脂層であ ること。  (2) The resin layer is a resin layer containing an ultraviolet absorber and Z or a light stabilizer.
(3) 90°Cで 30分間加熱処理した後のフィルム長手方向、およびフィルム幅方向の 熱収縮率が 0. 1%以上 0. 2%以下であること  (3) The heat shrinkage rate in the film longitudinal direction and film width direction after heat treatment at 90 ° C for 30 minutes is 0.1% or more and 0.2% or less.
(4)前記白色フィルムが A層 ZB層 ZA層の 3層構成カゝらなり、 B層が微細気泡を含 有した層であり、 A層がポリエステルに無機粒子および Zまたは有機粒子を含有させ た層であり、その粒子含有量が各 A層の全重量に対して 0. 5重量%以下であること、 (4) The white film is a three-layer structure consisting of A layer, ZB layer and ZA layer, B layer is a layer containing fine bubbles, and A layer contains polyester and inorganic particles and Z or organic particles. The particle content of which is not more than 0.5% by weight with respect to the total weight of each A layer,
(5)前記白色フィルムが A層 ZB層 ZC層の 3層構成力 なり、 B層が微細気泡を含 有した層であり、 A層および Zまたは C層がポリエステルに無機粒子および Zまたは 有機粒子を含有させた層であり、その粒子含有量が粒子を含有した該各層の全重量 に対して 0. 5重量%以下であること、 (5) The white film has a three-layer composition of A layer, ZB layer, and ZC layer, B layer is a layer containing fine bubbles, and A layer and Z or C layer are polyester with inorganic particles and Z or organic particles. A particle content of which is 0.5% by weight or less based on the total weight of each layer containing the particles,
である。  It is.
[0008] また、本発明の直下型方式の液晶ノ ックライト、液晶ノ ックライト用ランプリフレクタ 一、逆プリズム方式の液晶ノ ックライトは、上記本発明の面光源反射部材用フィルム を用いたものである。  [0008] Further, the direct type liquid crystal knocklight, the liquid crystal knocklight lamp reflector, and the reverse prism type liquid crystal knocklight of the present invention use the surface light source reflecting member film of the present invention.
発明の効果  The invention's effect
[0009]  [0009]
本発明の面光源反射部材用フィルムによれば、目視で容易に機能付与層を設けた 面とその反対側の面との識別ができ、液晶ノ ックライト製造工程での生産性を向上す ることができる。また、機能付与層として紫外線吸収剤および Zまたは光安定化剤を 含有した榭脂層を設けた場合には、目視で紫外線吸収剤および Zまたは光安定ィ匕 剤を含有した榭脂層を設けた面とその反対側との識別がしゃすぐ液晶バックライト に組み込む際に、紫外線吸収剤および Zまたは光安定化剤を含有した榭脂層を確 実に冷陰極管側に向けて設置できるので、経時的な輝度低下を少なくすることがで きる。さらに、逆プリズム方式の液晶バックライトに用いた場合には、組み立て時にバ ックライト筐体と面光源反射部材用フィルムとが接触することにより生じるフィルムのキ ズが目立ちにくぐ液晶バックライトとしての歩留まりを高くすることができる。 図面の簡単な説明 According to the film for a surface light source reflecting member of the present invention, it is possible to easily distinguish between a surface provided with a function-imparting layer and a surface on the opposite side visually, and to improve productivity in a liquid crystal knocklight manufacturing process. Can do. When a resin layer containing an ultraviolet absorber and Z or a light stabilizer is provided as a function-imparting layer, a resin layer containing an ultraviolet absorber and Z or a light stabilizer is visually provided. When installing a liquid crystal backlight with a distinction between the opposite surface and the opposite side, a resin layer containing an ultraviolet absorber and Z or a light stabilizer can be installed to face the cold cathode tube side. The decrease in luminance over time can be reduced. In addition, when used in an inverted prism type LCD backlight, the yield as an LCD backlight is less noticeable due to film scratches caused by contact between the backlight housing and the surface light source reflecting member film during assembly. Can be high. Brief Description of Drawings
[0010] [図 1]本発明の面光源反射部材用フィルムを用いた直下型方式の液晶バックライト [図 2]本発明の面光源反射部材用フィルムを用いた逆プリズム方式の液晶ノ ックライ 卜  [0010] [Fig. 1] Direct type liquid crystal backlight using the film for surface light source reflecting member of the present invention. [Fig. 2] Reverse prism type liquid crystal knock light using the film for surface light source reflecting member of the present invention.
符号の説明  Explanation of symbols
[0011] 1 :拡散フィルム [0011] 1: Diffusion film
2 :プリズムフィルム  2: Prism film
3 :拡散板  3: Diffusion plate
4:面光源反射部材用フィルム  4: Film for surface light source reflecting member
5 :冷陰極管  5: Cold cathode tube
6 :筐体  6: Housing
7 :プリズム導光板  7: Prism light guide plate
8 :ランプリフレタター  8: Lamp reflector
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 本発明は、前記課題、つまり、片面に機能を付与した層を持つ白色フィルムは両面 が白色であるために、目視で機能付与層を設けた面とその反対側の面とを識別する ことが難しいという課題について鋭意検討し、面光源反射部材用フィルム (以下、反 射フィルムとする)の一方の面と他方の面との光沢度(60° )の差 A Gを、 A G>80と したところ、機能付与層を設けた面とその反対側の面とを識別することが容易となり、 力かる課題を一挙に解決することを究明したものである。  [0012] The present invention has the above-mentioned problem, that is, since a white film having a layer having a function provided on one side is white on both sides, the surface provided with the function-imparting layer is visually discriminated from the opposite side. We investigated the problem that it is difficult to do so, and the difference AG between the glossiness (60 °) of one side and the other side of the film for a surface light source reflecting member (hereinafter referred to as a reflective film) was set to AG> 80 As a result, it became easy to distinguish between the surface with the function-imparting layer and the surface on the opposite side, and it was clarified that the problems to be solved can be solved all at once.
[0013] 本発明において光沢度(60° )と【お IS K7105 (1981年版)に基づいて、入射角 および受光角を 60° として測定した値を言う。測定にはスガ試験機製デジタル変角 光沢計 (UGV— 4D)を用いることができる。  [0013] In the present invention, the value measured based on the glossiness (60 °) and the IS K7105 (1981 version) with the incident angle and the light receiving angle set to 60 °. A Suga Test Instruments digital variable gloss meter (UGV-4D) can be used for measurement.
[0014] 本発明の反射フィルムの一方の面と他方の面との光沢度(60° )の差 A Gは、一方 の面と他方の面との識別を可能とするために 80%より大きくする必要がある。 A Gは 好ましくは 85%以上であり、より好ましくは 90%以上である。 A Gが 80%以下である と、面の識別が困難になってしまう。 A Gを 80%より大きくする方法として以下の方法 がある。 ( 1)反射フィルムを構成する白色フィルムの一方の面と他方の面の光沢度に差をつ ける。 [0014] The difference AG (60 °) in glossiness (60 °) between one surface and the other surface of the reflective film of the present invention is set to be greater than 80% in order to enable discrimination between the one surface and the other surface. There is a need. AG is preferably 85% or more, more preferably 90% or more. If AG is 80% or less, it will be difficult to identify the surface. There are the following methods to make AG larger than 80%. (1) Make a difference in glossiness between one side and the other side of the white film constituting the reflective film.
(2)反射フィルムを構成する白色フィルムの一方の面に榭脂層を設け、その面の光 沢度を下げる。  (2) A resin layer is provided on one surface of the white film constituting the reflective film, and the luminous intensity of the surface is lowered.
これらの方法の具体的な内容については後で詳細に説明する。  Specific contents of these methods will be described later in detail.
[0015] 本発明の反射フィルムとして用いられる高分子力 なる白色フィルムは可視光線反 射率が高い方が良い。可視光線反射率を高くするためには、内部に気泡を含有する 白色フィルムを用いることが好ましい。内部に気泡を含有する白色フィルムとしては特 に限定されるものではないが、多孔質の未延伸、あるいはポリプロピレンフィルム、あ るいはポリエステルフィルムが例として好ましく挙げられる。これらの中でもポリエステ ルフィルムが耐熱性、剛性度が優れることから本発明に係る白色フィルムとして特に 好ましい。 [0015] The white film having a high molecular force used as the reflective film of the present invention preferably has a high visible light reflectance. In order to increase the visible light reflectance, it is preferable to use a white film containing bubbles inside. The white film containing bubbles inside is not particularly limited, but a porous unstretched film, a polypropylene film, or a polyester film is preferably exemplified. Among these, a polyester film is particularly preferable as a white film according to the present invention because of its excellent heat resistance and rigidity.
[0016] 本発明に係る白色フィルムを構成するポリエステルとは、ジオールとジカルボン酸と 力も縮重合によって得られるポリマーである。ジカルボン酸としては、テレフタル酸、ィ ソフタル酸、フタル酸、ナフタレンジカルボン酸、アジピン酸、セバチン酸、などで代 表されるものである。ジオールとは、エチレングリコール、トリメチレングリコール、テトラ メチレングリコール、シクロへキサンジメタノールなどで代表されるものである。具体的 には例えば、ポリメチレンテレフタレート、ポリテトラメチレンテレフタート、ポリエチレン p—ォキシベンゾエート、ポリ 1, 4ーシクロへキシレンジメチレンテレフタレート、 ポリエチレン 2, 6 ナフタレンジカルボキシレートなどがあげられる。本発明の場合 、特にポリエチレンテレフタレート、ポリエチレンナフタレートが好ましい。  [0016] The polyester constituting the white film according to the present invention is a polymer obtained by condensation polymerization of diol, dicarboxylic acid and force. Examples of dicarboxylic acids include terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, adipic acid, and sebacic acid. The diol is represented by ethylene glycol, trimethylene glycol, tetramethylene glycol, cyclohexane dimethanol and the like. Specific examples include polymethylene terephthalate, polytetramethylene terephthalate, polyethylene p-oxybenzoate, poly 1,4-cyclohexylene dimethylene terephthalate, and polyethylene 2,6 naphthalene dicarboxylate. In the present invention, polyethylene terephthalate and polyethylene naphthalate are particularly preferable.
[0017] もちろん、これらのポリエステルはホモポリエステルであっても、コポリエステルであ つても良い。共重合成分としてはたとえば、ジエチレングリコール、ネオペンチルグリ コール、ポリアルキレングリコールなどのジオール成分、アジピン酸、セバシン酸、フ タル酸、イソフタル酸、 2, 6 ナフタレンジカルボン酸、 5 ナトリウムスルホイソフタル 酸などのジカルボン酸成分があげられる。  [0017] Of course, these polyesters may be homopolyesters or copolyesters. Examples of copolymer components include diol components such as diethylene glycol, neopentyl glycol, and polyalkylene glycol; Examples include acid components.
[0018] また、このポリエステルの中には、公知の各種添加剤が添加されて!、てもよ!/、。添 加剤としては、例えば、酸化防止剤、帯電防止剤などが例示される。 [0019] 本発明に係る白色フィルムに用いられるポリエステルとしては、ポリエチレンテレフタ レートが好ましい。ポリエチレンテレフタレートフィルムは耐水性、耐久性、耐薬品性 などに優れて ヽるものである。 [0018] In addition, various known additives are added to this polyester! Examples of the additive include an antioxidant and an antistatic agent. [0019] The polyester used in the white film according to the present invention is preferably polyethylene terephthalate. Polyethylene terephthalate film has excellent water resistance, durability and chemical resistance.
[0020] 本発明の反射フィルムは、 400〜700nmの光の波長域における平均反射率が反 射フィルムの少なくとも片面で 90%以上であることが好まし 、。本発明にお 、て平均 反射率とは、日立ハイテクノロジーズ製分光光度計 (U— 3310)に積分球を取り付け 、標準白色板 (酸ィ匕アルミニウム)を 100%とした時の反射率を 400〜700nmにわた つて測定し、得られたチャートより波長を 5nm間隔で反射率を読み取り、平均した値 のことである。  [0020] The reflective film of the present invention preferably has an average reflectance in the wavelength range of 400 to 700 nm of 90% or more on at least one side of the reflective film. In the present invention, the average reflectance refers to the reflectance when an integrating sphere is attached to a spectrophotometer (U-3310) manufactured by Hitachi High-Technologies and the standard white plate (acid aluminum) is 100%. Measured over ~ 700nm, read the reflectance at 5nm intervals from the obtained chart, and averaged values.
[0021] 平均反射率を 90%以上とするためには、フィルム内部に微細な気泡を含有させ白 色化することが重要である。微細な気泡が光の散乱作用を発揮するため反射率を向 上させることができる。好ましくは、平均反射率は 95%以上であり、より好ましくは 98 %以上である。平均反射率については特に上限はないが、 108%以下であることが 好ましい。平均反射率を上げるためには、核剤添加量を上げる必要があり、その場合 製膜性が不安定になることがあるためである。  [0021] In order to obtain an average reflectance of 90% or more, it is important to make the film white by containing fine bubbles in the film. Since the fine bubbles exert light scattering action, the reflectance can be improved. Preferably, the average reflectance is 95% or more, more preferably 98% or more. The average reflectance is not particularly limited but is preferably 108% or less. This is because in order to increase the average reflectance, it is necessary to increase the amount of nucleating agent, and in this case, the film forming property may become unstable.
[0022] 本発明に係る白色フィルムはフィルム内部に微細な気泡を含有することによって白 色化されていることが好ましい。微細な気泡の形成は、フィルム母材、たとえばポリエ ステル中に、高融点のポリエステルと非相溶なポリマーを細力べ分散させ、それを延 伸(たとえば二軸延伸)することにより達成される。延伸に際して、この非相溶ポリマー 粒子周りにボイド (気泡)が形成され、これが光に散乱作用を発揮するため、白色化さ れ、高反射率を得ることが可能となる。非相溶ポリマーは、例えば、ポリ— 3—メチル フテン一 1、ポリー4ーメチルペンテン 1、ポリビュル t—ブタン、 1, 4 トランス ポリ 2, 3 ジメチルブタジエン、ポリビュルシクロへキサン、ポリスチレン、ポリメチル スチレン、ポリジメチルスチレン、ポリフルォロスチレン、ポリ 2—メチルー 4 フルォ ロスチレン、ポリビニルー t ブチルエーテル、セルロールトリアセテート、セルロール トリプロピオネート、ポリビュルフルオライド、ポリクロ口トリフルォロエチレンなどから選 ばれた融点 200°C以上のポリマーである。中でもポリエステル母材に対して、ポリオレ フィン、とくにポリメチルペンテンが好ましい。 [0023] 非相溶ポリマー(たとえばポリオレフイン)の添加量としては、非相溶ポリマーを含有 する層全体を 100重量%としたときに、 5重量%以上 25重量%以下であることが好ま しい。 5重量%未満であると白色化の効果が薄れ、高反射率が得にくくなる。 25重量 %を越えると、フィルム自体の強度等機械特性が低くなりすぎるおそれがある。 The white film according to the present invention is preferably whitened by containing fine bubbles inside the film. Formation of fine bubbles is achieved by dispersing a polymer incompatible with a high melting point polyester in a film base material such as polyester and stretching it (for example, biaxial stretching). . During stretching, voids (bubbles) are formed around the incompatible polymer particles, which exhibit a scattering effect on light, and thus are whitened, and a high reflectance can be obtained. Incompatible polymers include, for example, poly-3-methyl phthalene 1, poly-4-methyl pentene 1, polybutyl t-butane, 1,4 trans poly 2,3 dimethyl butadiene, polybutyl cyclohexane, polystyrene, polymethyl styrene, poly 200 ° C or higher melting point selected from dimethylstyrene, polyfluorostyrene, poly-2-methyl-4-fluorostyrene, polyvinyl-t-butyl ether, cellulose triacetate, cellulose tripropionate, polybulufluoride, polychlorofluoroethylene, etc. The polymer. Of these, polyolefin, particularly polymethylpentene, is preferred for the polyester base material. [0023] The addition amount of the incompatible polymer (for example, polyolefin) is preferably 5% by weight or more and 25% by weight or less when the entire layer containing the incompatible polymer is 100% by weight. If it is less than 5% by weight, the effect of whitening is diminished, and it becomes difficult to obtain a high reflectance. If it exceeds 25% by weight, mechanical properties such as strength of the film itself may be too low.
[0024] この非相溶ポリマーは均一に分散されている程好ましい。非相溶ポリマーが均一に 分散されていることにより、フィルム内部に均一に気泡が形成され、白色化の度合、 ひいては反射率が均一になる。非相溶ポリマーを均一に分散させるには、低比重化 剤を分散助剤として添加することが有効である。低比重化剤とは、比重を小さくする 効果を持つ化合物のことであり、特定の化合物にその効果が認められる。例えば、ポ リエステルに対しては、ポリエチレングリコール、メトキシポリエチレングリコール、ポリ テトラメチレングリコール、ポリプロピレングリコールなどのポリアルキレングリコール、 ェチレノキサイド Zプロピレノキサイド共重合体、さらにはドデシルベンゼンスルホン 酸ナトリウム、アルキルスルホネートナトリウム塩、グリセリンモノステアレート、テトラブ チルホスホ-ゥムパラアミノベンゼンスルホネートなどで代表されるものである。  [0024] The incompatible polymer is preferably dispersed uniformly. Due to the uniform dispersion of the incompatible polymer, bubbles are uniformly formed inside the film, and the degree of whitening and thus the reflectance becomes uniform. In order to uniformly disperse the incompatible polymer, it is effective to add a low specific gravity agent as a dispersion aid. A low specific gravity agent is a compound having the effect of reducing the specific gravity, and the effect is recognized for a specific compound. For example, for polyesters, polyalkylene glycols such as polyethylene glycol, methoxy polyethylene glycol, polytetramethylene glycol, polypropylene glycol, ethylenoxide Z propylenoxide copolymer, sodium dodecylbenzenesulfonate, sodium alkylsulfonate. Examples thereof include salts, glycerin monostearate, and tetrabutyl phospho-mparaaminobenzene sulfonate.
[0025] 本発明に係る白色フィルムの場合、低比重化剤としては特にポリアルキレングリコ ール、中でもポリエチレングリコールが好ましい。また、ポリブチレンテレフタレートとポ リテトラメチレングリコールの共重合体なども、非相溶ポリマーの分散性を向上させる ために好ましく用いられる。低比重化剤の添加量としては、非相溶ポリマーを含有す る層全体を 100重量%として、 10重量%以上 25重量%以下が好ましい。 10重量% 未満であると添加の効果が薄れる。 25重量%を越えるとフィルム母材本来の特性を 損うおそれがある。このような低比重化剤は、予めフィルム母材ポリマー中に添加して マスターポリマ(マスターチップ)として調整することが可能である。 [0025] In the case of the white film according to the present invention, as the specific gravity reducing agent, polyalkylene glycol, particularly polyethylene glycol is particularly preferable. A copolymer of polybutylene terephthalate and polytetramethylene glycol is also preferably used for improving the dispersibility of the incompatible polymer. The addition amount of the low specific gravity agent is preferably 10% by weight or more and 25% by weight or less, with the total layer containing the incompatible polymer being 100% by weight. If the amount is less than 10% by weight, the effect of addition is reduced. If it exceeds 25% by weight, the original properties of the film base material may be impaired. Such a low specific gravity agent can be added to the film base polymer in advance to prepare a master polymer (master chip).
[0026] 前述の如ぐ白色ポリエステルフィルムが微細な気泡を含有することにより、該ポリエ ステルフィルムの見かけ比重は通常のポリエステルフィルムよりも低くなる。さらに低比 重化剤を添加すれば、さらに比重は低くなる。つまり、白くて軽いフィルムが得られる 。この白色ポリエステルフィルムを、反射フィルムとしての機械的特性を保ちながら、 軽量にするには、見かけ比重が 0. 5以上 1. 2以下であることが好ましい。さらに、見 かけ比重を 0. 5以上 1. 2以下とすることで、より高い反射率を得ることもできるので好 ましい。見かけ比重はより好ましくは 0. 5以上 1. 0以下、特に好ましくは 0. 5以上 0. 8以下である。 [0026] When the white polyester film as described above contains fine bubbles, the apparent specific gravity of the polyester film is lower than that of a normal polyester film. If a lower specific gravity agent is further added, the specific gravity is further lowered. In other words, a white and light film can be obtained. In order to reduce the weight of the white polyester film while maintaining the mechanical properties as a reflective film, the apparent specific gravity is preferably 0.5 or more and 1.2 or less. Furthermore, by making the apparent specific gravity 0.5 or more and 1.2 or less, it is possible to obtain higher reflectance, which is preferable. Good. The apparent specific gravity is more preferably 0.5 or more and 1.0 or less, and particularly preferably 0.5 or more and 0.8 or less.
[0027] 見かけ比重を 0. 5以上 1. 2以下とするためには、上記のごとく非相溶ポリマーとし て例えば比重 0. 83のポリメチルペンテンを用いた場合、先ず、ポリメチルペンテンを フィルム母材のポリエステルポリマーに対して 5重量%以上 25重量%以下で含有さ せる。次いで、ポリエステル未延伸フィルムをつくり、そのポリエステル未延伸フィルム を縦方向、横方向ともに延伸倍率を 2. 5〜4. 5倍で延伸とすることにより達成するこ とができる。見かけ比重が 0. 5以上 1. 2以下の範囲にあると、反射フィルムとして使 用した場合、画面の明るさにおいて顕著に優れた輝度を発揮する。  [0027] In order to make the apparent specific gravity 0.5 or more and 1.2 or less, for example, when polymethylpentene having a specific gravity of 0.83 is used as the incompatible polymer as described above, first, polymethylpentene is used as a film. It should be contained in an amount of 5% to 25% by weight based on the polyester polymer of the base material. Next, an unstretched polyester film is prepared, and the unstretched polyester film can be achieved by stretching the stretch ratio in the machine direction and the transverse direction at 2.5 to 4.5 times. When the apparent specific gravity is in the range of 0.5 or more and 1.2 or less, when used as a reflective film, the brightness of the screen is remarkably excellent.
[0028] 本発明に係る白色フィルムの光沢度は、白色フィルムを用いた反射フィルムの一方 の面と他方の面との光沢度(60° )の差 Δ Gが 80%より大きくなれば特に限定されな いが、少なくとも白色フィルムの一方の面の光沢度(60° )が 90%以上であることが 好ましい。白色フィルムの一方の面の光沢度が 90%以上であれば、白色フィルムの 他方の面の光沢度を小さくする、あるいは白色フィルムの他方の面に榭脂層を設け てその面の光沢度を小さくすることで、容易に反射フィルムの A Gを 80%より大きくす ることができる。白色フィルムの一方の面の光沢度は、より好ましくは 95%以上であり 、次に好ましくは 100%以上であり、次に好ましくは 115%以上であり、最も好ましくは 120%以上である。光沢度の上限は特に制限はないが、 130%未満であることが好 ましい。 130%を越えた場合、フィルム表面摩擦係数が高くなるため、卷取の際の空 気排除が困難になることがある。  [0028] The glossiness of the white film according to the present invention is particularly limited if the difference ΔG in glossiness (60 °) between one surface and the other surface of the reflective film using the white film is greater than 80%. However, the glossiness (60 °) of at least one side of the white film is preferably 90% or more. If the glossiness of one side of the white film is 90% or more, decrease the glossiness of the other side of the white film, or provide a resin layer on the other side of the white film to increase the glossiness of that side. By making it smaller, the AG of the reflective film can be easily made larger than 80%. The glossiness of one side of the white film is more preferably 95% or more, then preferably 100% or more, then preferably 115% or more, and most preferably 120% or more. The upper limit of the glossiness is not particularly limited, but is preferably less than 130%. If it exceeds 130%, the film surface friction coefficient becomes high, and it may be difficult to eliminate air at the time of scraping.
[0029] 本発明に係る白色フィルムは、単層、 2層、 3層等のさまざまな層構成で形成するこ とができる。中でも A層 ZB層 ZA層、または A層 ZB層 ZC層の 3層構成からなり、 該 B層が前記微細気泡を含有した層となることが、高反射率と製膜性を両立させるの に好ましい。  [0029] The white film according to the present invention can be formed in various layer configurations such as a single layer, two layers, and three layers. Above all, it consists of A layer, ZB layer, ZA layer, or A layer, ZB layer, and ZC layer, and the B layer is a layer containing the fine bubbles in order to achieve both high reflectivity and film formability. preferable.
[0030] また、前記白色フィルムの各層に本発明の効果を阻害しな 、範囲内で各種の添カロ 剤を添加することができる。添加剤としては、例えば、有機および Zまたは無機の微 粒子、蛍光増白剤、耐熱安定剤、紫外線吸収剤、酸ィ匕防止剤などを用いることがで き、反射フィルムの一方の面と他方の面との光沢度差により、これらの機能性を有す る添加剤を含む層が白色フィルムのどちらの面に設けられているかを識別することが できる。 さら〖こ、 A層 ZB層 ZA層の 3層構成の場合、フィルム表面に相当する A層 力 ポリエステルに無機粒子および Zまたは有機粒子を、各 A層の全重量に対して 0 . 5重量%以下含有させた層であることが好ましい。含有量はより好ましくは 0. 1重量 %以下、特に好ましくは 0. 07重量%以下である。また、 A層 ZB層 ZC層の 3層構成 の場合、フィルム表面に相当する A層および Zまたは C層力 ポリエステルに無機粒 子および Zまたは有機粒子を、各層(無機微粒子および Zまたは有機粒子を含有し た層)の全重量に対して 0. 5重量%以下含有させた層であることが好ましい。含有量 はより好ましくは 0. 1重量%以下、特に好ましくは 0. 07重量%以下である。 A層(又 は C層)に含有する無機微粒子および Zまたは有機微粒子の含有量を少なくするこ とで、 A層(又は C層)の光沢度を増加させることができる。 [0030] In addition, various additive agents can be added to each layer of the white film within the range without impairing the effects of the present invention. Examples of additives that can be used include organic and Z or inorganic fine particles, fluorescent brighteners, heat stabilizers, ultraviolet absorbers, and acid-fastening agents. It has these functions due to the difference in glossiness with the surface of It is possible to distinguish which side of the white film is provided with the layer containing the additive. Sarasako, A layer ZB layer In the case of the three-layer structure of ZA layer, the A layer equivalent to the film surface Inorganic polyester and Z or organic particles are added to the polyester, 0.5% by weight based on the total weight of each A layer It is preferable that it is the layer contained below. The content is more preferably 0.1% by weight or less, particularly preferably 0.07% by weight or less. In addition, in the case of a three-layer structure consisting of A layer, ZB layer, and ZC layer, inorganic particles and Z or organic particles are added to polyester, and each layer (inorganic fine particles and Z or organic particles is added to polyester). The layer is preferably 0.5% by weight or less based on the total weight of the contained layer. The content is more preferably 0.1% by weight or less, particularly preferably 0.07% by weight or less. By reducing the content of inorganic fine particles and Z or organic fine particles contained in the A layer (or C layer), the glossiness of the A layer (or C layer) can be increased.
[0031] 前述した通り、本発明に係る白色フィルムは少なくとも一方の面の光沢度が 90%以 上であることが好ましいが、白色フィルムの一方の最表面の層に含有する無機微粒 子および Zまたは無機微粒子の含有量を 0. 5重量%とすることで、その面の光沢度 を 90%以上とすることができる。また、白色フィルムの他方の最表面の層に含有する 無機微粒子および/または無機微粒子の含有量を多くすることで、その面の光沢度 を下げることができ、白色フィルムの一方の面と他方の面とで光沢度に差をつけること ができる。各層に含有する無機微粒子および/または無機微粒子の含有量は、所望 の光沢度差に応じて適宜調整することができる。  [0031] As described above, the white film according to the present invention preferably has a glossiness of at least 90% on at least one side, but the inorganic fine particles and Z contained in one outermost layer of the white film Alternatively, by setting the content of inorganic fine particles to 0.5% by weight, the glossiness of the surface can be made 90% or more. In addition, by increasing the content of inorganic fine particles and / or inorganic fine particles contained in the other outermost layer of the white film, the glossiness of the surface can be lowered, and one surface of the white film and the other surface can be reduced. It is possible to make a difference in glossiness with the surface. The content of inorganic fine particles and / or inorganic fine particles contained in each layer can be appropriately adjusted according to the desired difference in glossiness.
[0032] 次に本発明に係る白色フィルムの製造方法について説明するが、この例に限定さ れるものではない。  Next, the method for producing a white film according to the present invention will be described, but the present invention is not limited to this example.
[0033] 非相溶ポリマーとしてポリメチルペンテンを、低比重化剤としてポリエチレングリコー ル、ポリブチレンテレフタレートとポリテトラメチレングリコール共重合物を、ポリエチレ ンテレフタレートに入れる。それを充分混合'乾燥させて 270〜300°Cの温度に加熱 された押出機 Bに供給する。必要な場合は、 SiO などの無機物添加剤を含んだポ  [0033] Polymethylpentene is added as an incompatible polymer, and polyethylene glycol, polybutylene terephthalate and a polytetramethylene glycol copolymer are added as a low specific gravity agent to polyethylene terephthalate. It is thoroughly mixed and dried and fed to Extruder B, which has been heated to a temperature of 270-300 ° C. If necessary, use a material containing inorganic additives such as SiO.
2  2
リエチレンテレフタレートを常法により押出機 Aに供給する。そして、 Tダイ 3層口金内 で押出機 Bのポリマーが内層(B層)に、押出機 Aのポリマーが両表層(A )にくるよ うして、 A層/ B層 ZA層なる構成の 3層に積層してもよい。 [0034] この溶融されたシートを、ドラム表面温度 10〜60°Cに冷却されたドラム上で静電気 力にて密着冷却固化し未延伸フィルムを得る。該未延伸フィルムを 80〜 120°Cにカロ 熱したロール群に導き、長手方向に 2. 0〜5. 0倍縦延伸し、 20〜50°Cのロール群 で冷却する。続いて、縦延伸したフィルムの両端をクリップで把持しながらテンターに 導き 90〜140°Cに加熱された雰囲気中で長手に垂直な方向に横延伸する。延伸倍 率は、縦、横それぞれ 2. 5〜4. 5倍に延伸するが、その面積倍率 (縦延伸倍率 X横 延伸倍率)は 9〜16倍であることが好ましい。面積倍率が 9倍未満であると得られるフ イルムの白さが不良となる。面積倍率が 16倍を越えると延伸時に破れを生じやすくな り製膜性が不良となる傾向がある。こうして二軸延伸されたフィルムに平面性、寸法 安定性を付与するために、テンター内で 150〜230°Cの熱固定を行い、均一に徐冷 後、室温まで冷却する。そして卷取機で巻き取り、本発明に係る白色フィルムを得る。 Supply ethylene terephthalate to Extruder A in the usual way. Then, in the T die 3 layer die, the polymer of Extruder B comes to the inner layer (B layer) and the polymer of Extruder A comes to both surface layers (A), so that A layer / B layer ZA layer 3 The layers may be laminated. [0034] The molten sheet is closely cooled and solidified by electrostatic force on a drum cooled to a drum surface temperature of 10 to 60 ° C to obtain an unstretched film. The unstretched film is led to a roll group heated to 80 to 120 ° C, stretched 2.0 to 5.0 times in the longitudinal direction, and cooled with a roll group of 20 to 50 ° C. Subsequently, the film is stretched in the direction perpendicular to the longitudinal direction in an atmosphere heated to 90-140 ° C while being guided to a tenter while holding both ends of the longitudinally stretched film with clips. The stretching ratio is 2.5 to 4.5 times in the longitudinal and lateral directions, respectively, and the area ratio (longitudinal stretching ratio X lateral stretching ratio) is preferably 9 to 16 times. If the area magnification is less than 9 times, the resulting white color of the film will be poor. If the area magnification exceeds 16 times, the film tends to be broken during stretching and the film forming property tends to be poor. In order to impart flatness and dimensional stability to the biaxially stretched film, heat setting is performed at 150 to 230 ° C in a tenter, and after uniform cooling, the film is cooled to room temperature. And it winds up with a winder and obtains the white film which concerns on this invention.
[0035] 本発明の反射フィルムの一方の面と他方の面との光沢度(60° )の差 A Gを 80% より大きくするために、白色フィルムの一方の面に榭脂層を設けることも好ましい。榭 脂層を設けることで、白色フィルムの一方の面の光沢度を下げることができ、反射フィ ルムの Δ Gを容易に 80%より大きくすることができる。 [0035] In order to make the difference AG in gloss (60 °) between one surface and the other surface of the reflective film of the present invention greater than 80%, a white resin film may be provided with a resin layer. preferable. By providing the resin layer, the glossiness of one side of the white film can be lowered, and ΔG of the reflective film can be easily increased to more than 80%.
[0036] 本発明に係る榭脂層としては、特に限定されないが、有機成分を主体とする樹脂が 好ましぐ例えばポリエステル榭脂、ポリウレタン榭脂、アクリル榭脂、メタタリル榭脂、 ポリアミド榭脂、ポリエチレン榭脂、ポリプロピレン榭脂、ポリ塩化ビニル榭脂、ポリ塩 化ビ-リデン榭脂、ポリスチレン榭脂、ポリ酢酸ビュル榭脂、フッ素系榭脂などが挙げ られる。これらの榭脂は単独で用いてもよぐあるいは 2種以上の共重合体もしくは混 合物としたものを用いてもよい。中でもポリエステル榭脂、アクリルもしくはメタクリル榭 脂が耐熱性、粒子分散性、塗布性、光沢度の点力 好ましく使用される。  [0036] The resin layer according to the present invention is not particularly limited, but a resin mainly composed of an organic component is preferable. For example, polyester resin, polyurethane resin, acrylic resin, methallyl resin, polyamide resin, Examples include polyethylene resin, polypropylene resin, polyvinyl chloride resin, polyvinyl chloride resin resin, polystyrene resin, polyacetate resin resin, and fluorine-based resin. These coffins may be used alone or in the form of two or more types of copolymers or mixtures. Among them, polyester resin, acrylic resin or methacrylic resin is preferably used in terms of heat resistance, particle dispersibility, coatability, and glossiness.
[0037] 本発明白色フィルムは使用中に冷陰極管などのランプ力 出る光、特に紫外線に よって劣化する場合があるので (例えば黄変などの光学的劣化、あるいは低分子化 する分解劣化など)、榭脂層として紫外線吸収剤および Zまたは光安定剤を含有し た榭脂層を用いることも好まし 、。  [0037] Since the white film of the present invention may be deteriorated by light emitted from a lamp such as a cold cathode tube during use, particularly ultraviolet light (for example, optical deterioration such as yellowing or decomposition deterioration that lowers the molecular weight). It is also preferable to use a resin layer containing an ultraviolet absorber and Z or a light stabilizer as the resin layer.
[0038] 紫外線吸収剤を含有する榭脂層を構成する榭脂としては特に限定されないが、酸 化チタン、酸ィ匕亜鉛などの無機紫外線吸収剤を含有する榭脂、ベンゾトリァゾール、 ベンゾフエノンなどの有機紫外線吸収剤を含有する榭脂、あるいはベンゾトリアゾー ル系、ベンゾフエノン系反応性モノマーを共重合した榭脂などを使用することができ る。 [0038] The resin constituting the resin layer containing the ultraviolet absorber is not particularly limited, but may be an acid. Copolymers containing resin containing inorganic UV absorbers such as titanium fluoride and zinc oxide, resin containing organic UV absorbers such as benzotriazole and benzophenone, or benzotriazole and benzophenone reactive monomers Polymerized rosin can be used.
[0039] 光安定剤を含有する榭脂層を構成する榭脂としては、ヒンダードァミン (HALS)系 反応性モノマーを共重合した榭脂などを含む有機紫外線吸収榭脂を使用するのが 好ましい。  [0039] As the resin constituting the resin layer containing the light stabilizer, it is preferable to use an organic ultraviolet absorbing resin containing a resin copolymerized with a hindered amine (HALS) reactive monomer.
[0040] 無機系紫外線吸収剤としては、酸化亜鉛、酸化チタン、酸化セリウム、酸化ジルコ -ゥムなどが一般的である。これらの中でも酸化亜鉛、酸ィ匕チタンおよび酸ィ匕セリウム 力 なる群より選ばれる少なくとも 1種類がブリードアウトせず、耐光性にも優れるなど の点カゝら好ましく用いられる。カゝかる紫外線吸収剤は、必要に応じて数種類併用する 場合もある。中でも酸ィ匕亜鉛が経済性、紫外線吸収性、光触媒活性という点で最も 好ましい。酸化亜鉛としては、 FINEX— 25LP、 FINEX— 50LP (堺化学工業 (株) 製)などを使用することができる。  [0040] As the inorganic ultraviolet absorber, zinc oxide, titanium oxide, cerium oxide, zirconium oxide and the like are generally used. Among these, at least one selected from the group consisting of zinc oxide, titanium oxide, and cerium oxide is preferable because it does not bleed out and is excellent in light resistance. Several types of UV absorbers may be used in combination as needed. Of these, zinc oxide is most preferable from the viewpoints of economy, ultraviolet absorption, and photocatalytic activity. As zinc oxide, FINEX-25LP, FINEX-50LP (manufactured by Sakai Chemical Industry Co., Ltd.) or the like can be used.
[0041] 有機系紫外線吸収剤としては、ベンゾトリァゾール、ベンゾフエノンなどの有機紫外 線吸収剤を含有する榭脂、あるいはベンゾトリアゾール系、ベンゾフエノン系反応性 モノマーを共重合した榭脂、さらにはこれらにヒンダードァミン (HALS)系反応性モノ マーなどの光安定剤を共重合した榭脂を使用することができる。特にべンゾトリァゾ ール系、ベンゾフヱノン系反応性モノマーを共重合した榭脂、さらにはこれらにヒンダ 一ドアミン (HALS)系反応性モノマーを共重合した榭脂などを含む有機紫外線吸収 榭脂が薄層で紫外線吸収効果が高ぐより好ましい。  [0041] Examples of the organic ultraviolet absorber include a resin containing an organic ultraviolet absorber such as benzotriazole or benzophenone, a resin obtained by copolymerizing a benzotriazole-based or benzophenone-based reactive monomer, and further to these. A resin obtained by copolymerizing a light stabilizer such as a hindered amine (HALS) -based reactive monomer can be used. In particular, a thin layer of organic UV-absorbing resin containing benzotriazole-based and benzophenone-based reactive monomers, as well as those containing hindered amine (HALS) -based reactive monomers. It is more preferable because the ultraviolet absorption effect is high.
[0042] これらの製造方法等については特開 2002— 90515の〔0019〕〜〔0039〕に詳細 に開示されて ヽる。中でもアクリルモノマーと紫外線吸収剤の共重合物を有効成分と して含むハルスハイブリッド (登録商標)((株)日本触媒製)などを使用することができ る。  [0042] These production methods and the like are disclosed in detail in JP-A-2002-90515, [0019] to [0039]. Among them, HALS HYBRID (registered trademark) (manufactured by Nippon Shokubai Co., Ltd.) containing an acrylic monomer and UV absorber copolymer as an active ingredient can be used.
[0043] 本発明では、榭脂層に、本発明の効果を阻害しない範囲内で各種の添加剤を添 カロすることができる。添加剤としては、例えば、有機および Zまたは無機の微粒子、 蛍光増白剤、架橋剤、耐熱安定剤、耐酸化安定剤、有機の滑剤、核剤、カップリング 剤などを用いることができる。 [0043] In the present invention, various additives can be added to the resin layer within a range that does not impair the effects of the present invention. Additives include, for example, organic and Z or inorganic fine particles, fluorescent brighteners, cross-linking agents, heat stabilizers, antioxidation stabilizers, organic lubricants, nucleating agents, couplings An agent or the like can be used.
[0044] 本発明に係る榭脂層は、塗布方法によって設けることができる。塗布方法によって 設ける際、塗液は任意の方法で塗布することができる。例えばグラビアコート、ロール nート、スピン nート、リノくース: πート、ノ一: πート、スクリーン: πート、ブレード、 nート、ェ ァーナイフコート、デイツビングなどの方法を用いることができる。また、榭脂層の形成 のための塗液は、基材の白色フィルム製造時に塗布 (インラインコーティング)しても よいし、結晶配向完了後の白色フィルム上に塗布 (オフラインコーティング)してもよい  [0044] The resin layer according to the present invention can be provided by a coating method. When it is provided by a coating method, the coating liquid can be applied by any method. For example, gravure coating, roll nut, spin nut, reno kusu: pi ot, no: pi ot, screen: pi ot, blade, n te, air knife coat, datebing, etc. Can be used. In addition, the coating liquid for forming the resin layer may be applied at the time of manufacturing the white film of the substrate (in-line coating), or may be applied on the white film after completion of crystal orientation (off-line coating).
[0045] 本発明の反射フィルムは、反射フィルムとしての 90°Cで 30分間加熱処理後のフィ ルム長手方向およびフィルム幅方向の熱収縮率が 0. 1%以上 0. 2%以下である のが好ましい。好ましくは 0. 05-0. 15%以下である。フィルム長手方向またはフ イルム幅方向の熱収縮率が 0. 1%以上 0. 2%以下の範囲を外れると、高温に達 した際に、フィルムが橈んだ状態となり、液晶ノ ックライトでの輝度ムラが発生しやす くなる。特に、逆プリズム用途の反射フィルムでは、鏡面状の反射面上にプリズム形 状の導光板が接触すると、液晶パネル上で画面ムラとなって顕著に現れやすい。 [0045] The reflective film of the present invention has a heat shrinkage rate of 0.1% or more and 0.2% or less in the film longitudinal direction and film width direction after heat treatment at 90 ° C for 30 minutes as a reflective film. Is preferred. Preferably it is 0.05-5.15% or less. If the thermal shrinkage in the film longitudinal direction or film width direction is out of the range of 0.1% or more and 0.2% or less, the film becomes squeezed when it reaches a high temperature, and the brightness of the liquid crystal knock light Unevenness is likely to occur. In particular, in the case of a reflective film for use in a reverse prism, when a prism-shaped light guide plate comes into contact with a mirror-like reflective surface, it tends to be noticeable as a screen unevenness on the liquid crystal panel.
[0046] ここで、 90°Cで 30分間加熱処理後のフィルム長手方向の熱収縮率とは以下の手 順により測定した値である。まず、一定の大きさのフィルムサンプルを準備し、室温で その長手方向(製造時の押出方向)に一定の長さ (L )を測定する。そのサンプルを 9  [0046] Here, the heat shrinkage rate in the longitudinal direction of the film after the heat treatment at 90 ° C for 30 minutes is a value measured by the following procedure. First, a film sample of a certain size is prepared, and a certain length (L) is measured in the longitudinal direction (extrusion direction during production) at room temperature. Sample 9
0  0
0°Cに保持した恒温槽中に 30分間放置後、同じ室温まで徐冷した後に、該 Lに相当  Corresponds to L after standing in a thermostat kept at 0 ° C for 30 minutes and then slowly cooling to the same room temperature.
0 する部分の長さ (L)を測定する。そして、長さ (L)と初期の長さ (L )力 次式にて算  Measure the length (L) of the part to be zeroed. The length (L) and initial length (L) force are
0  0
出した値をフィルム長手方向の熱収縮率とする。  The obtained value is defined as the heat shrinkage rate in the longitudinal direction of the film.
•熱収縮率 (%) = { (L -L) /L } X 100  • Heat shrinkage (%) = {(L -L) / L} X 100
o o  o o
なお、負の値はフィルムが伸びたことをあらわす。  A negative value indicates that the film is stretched.
[0047] また、 90°Cで 30分間加熱処理後のフィルムの幅方向熱収縮率とは、フィルムの幅 方向(製造時の押出方向に対して直角方向)にフィルムの長手方向と同様にして測 定した値をいう。 [0047] The heat shrinkage in the width direction of the film after heat treatment at 90 ° C for 30 minutes is the same as the longitudinal direction of the film in the width direction of the film (perpendicular to the extrusion direction during production). This is the measured value.
[0048] 本発明の反射フィルムは、榭脂層を設けた面から測定した 400〜700nmの波長に おける平均反射率が 85%以上であることが好ましい。より好ましくは 87%以上、特に 好ましくは 90%以上である。平均反射率が 85%未満の場合には、適用する液晶ディ スプレイによっては輝度が不足する場合がある。なお、白色フィルムの両面に紫外線 吸収剤および Zまたは光安定化剤を含有する榭脂層を設けている場合には、いず れかの樹脂層力も測定した平均反射率が 85%以上であればよい。 [0048] The reflective film of the present invention preferably has an average reflectance of 85% or more at a wavelength of 400 to 700 nm measured from the surface provided with the resin layer. More preferably 87% or more, especially Preferably it is 90% or more. If the average reflectance is less than 85%, the brightness may be insufficient depending on the liquid crystal display used. In addition, when a resin layer containing an ultraviolet absorber and Z or a light stabilizer is provided on both sides of the white film, the average reflectivity measured for any resin layer force should be 85% or more. That's fine.
[0049] 本発明の反射フィルムは液晶 TVおよび大型モニター用途の直下型方式の液晶バ ックライトに好ましく用いることができる。直下型方式の液晶ノ ックライトでは、図 1に示 すように冷陰極管の近くに反射フィルムが設置される。この際、反射フィルムの榭脂 層 (好ましくは、紫外線吸収材および Zまたは光安定剤を含有する榭脂層)を設けた 面を冷陰極管側に向けて設置しないと、冷陰極管から出る紫外線により基材の白色 フィルムが黄変してしまうことがある。そのため、ノ ックライトの組み立ての際に、反射 フィルムの榭脂層を設けた面とその反対側の面とを識別する必要がある。本発明の 反射フィルムは、榭脂層を設けた面とその反対側の面との識別が容易であり、ノ ック ライトの組み立て工程での作業効率が向上し、生産性も向上する。  [0049] The reflective film of the present invention can be preferably used in a liquid crystal backlight of a direct type for use in liquid crystal TVs and large monitors. As shown in Fig. 1, a reflective film is installed near the cold cathode tube in the direct-type liquid crystal knock light. At this time, if the surface of the reflecting film provided with the resin layer (preferably, the resin layer containing the ultraviolet absorber and Z or the light stabilizer) is not set facing the cold cathode tube side, it will come out of the cold cathode tube. The white film of the base material may turn yellow due to ultraviolet rays. Therefore, when assembling the knocklight, it is necessary to distinguish between the surface of the reflective film provided with the resin layer and the opposite surface. In the reflective film of the present invention, it is easy to distinguish between the surface on which the resin layer is provided and the surface on the opposite side, the work efficiency in the assembly process of the knock light is improved, and the productivity is also improved.
[0050] 本発明の反射フィルムは液晶バックライトのランプリフレタターに好ましく用いること ができる。ランプリフレタターは、ステンレス板等と反射フィルムとを貼り合わせ、反射 フィルムが内側となるように湾曲状にプレス成形されたものである。そして、ランプリフ レクタ一は、図 2に示すように冷陰極管を覆うようにしてノ ックライトに組み立てられる 。ランプリフレタターも直下型バックライト同様に、冷陰極管の近くに反射フィルムが配 置される。この際、反射フィルムの榭脂層(好ましくは、紫外線吸収材および Zまたは 光安定剤を含有する榭脂層)を設けた面が冷陰極管側に向くようにして、ステンレス 板等と反射フィルムとを貼り合わせないと、冷陰極管力 出る紫外線により基材の白 色フィルムが黄変してしまうことがある。そのため、貼り合わせをする際に、榭脂層を 設けた面とその反対側の面とを識別する必要がある。本発明の面光源反射部材用フ イルムは、榭脂層を設けた面とその反対側の面との識別が容易であり、貼り合わせェ 程での作業効率が向上し、生産性も向上する。  [0050] The reflective film of the present invention can be preferably used for a lamp reflector of a liquid crystal backlight. The lamp refractor is formed by bonding a stainless steel plate and a reflective film, and press-molding them in a curved shape so that the reflective film is on the inside. Then, the lamp reflector is assembled into a knocklight so as to cover the cold cathode tube as shown in FIG. As with the direct backlight, the lamp reflector is also provided with a reflective film near the cold cathode tube. At this time, the surface of the reflective film provided with the resin layer (preferably a resin layer containing an ultraviolet absorber and Z or a light stabilizer) is directed to the cold cathode tube side so that the stainless steel plate and the reflective film are provided. Otherwise, the white film of the base material may turn yellow due to the ultraviolet rays generated by the cold cathode tube. Therefore, when bonding, it is necessary to distinguish the surface on which the resin layer is provided and the surface on the opposite side. In the surface light source reflecting member film of the present invention, it is easy to distinguish between the surface provided with the resin layer and the surface on the opposite side, the work efficiency in the bonding process is improved, and the productivity is also improved. .
[0051] 本発明の反射フィルムは逆プリズム方式の液晶バックライトに好適に用いることがで きる。前述したように、ノ ックライトを組み立てる際に、ノ ックライトの筐体と反射フィル ムとが接触してキズがっくことがある。エッジライト型バックライトでは、軽量ィ匕のために ノ ックライトの筐体に空洞が設けられており、この空洞を通して反射フィルムについた キズが見えてしまう。キズが見えるノ ックライトは完成品としての品位が下がるため、歩 留まりが低下してしまう。反射フィルムの光沢度が低ければ表面についたキズも目立 たなくなるが、一方で特に逆プリズム方式の液晶ノ ックライトでは高輝度化のために 光沢度の高い反射フィルムが要求されている。そこで、本発明の反射フィルムを、光 沢度の低い面をバックライト筐体側に、光沢度の高い面を導光板側に向けて組み込 むことで、ノ ックライト筐体側に求められるキズがついた場合の目立ちにくさと、導光 板側に求められる正反射成分の多い反射を両立させることができる。つまり、本発明 の反射フィルムを用いた逆プリズム方式の液晶バックライトは、ノ ックライト完成品とし ての品位を損なうことなぐ歩留まりが向上し、併せて高輝度とすることができる。 実施例 [0051] The reflective film of the present invention can be suitably used for a reverse prism type liquid crystal backlight. As described above, when assembling the knocklight, the knocklight housing and the reflective film may come into contact with each other and be scratched. For edge-light type backlight, for light weight There is a cavity in the case of the knocklight, and scratches on the reflective film can be seen through this cavity. Knocklights with visible scratches will degrade the quality of the finished product, resulting in a decrease in yield. If the glossiness of the reflective film is low, scratches on the surface will be inconspicuous. On the other hand, a reflective film with a high glossiness is required to increase the brightness, especially in the reverse prism type liquid crystal knocklight. Therefore, by incorporating the reflective film of the present invention with the low brightness side facing the backlight housing and the high gloss surface facing the light guide plate, scratches required on the knock light housing are attached. This makes it possible to achieve both the inconspicuousness and the reflection with many specular reflection components required on the light guide plate side. That is, the reverse prism type liquid crystal backlight using the reflective film of the present invention can improve the yield without impairing the quality of the finished knocklight product, and can also increase the brightness. Example
[0052] 測定方法および評価方法を以下に示す。  [0052] Measurement methods and evaluation methods are shown below.
[0053] (1)平均反射率  [0053] (1) Average reflectance
反射フィルムの榭脂層を設けた面の平均反射率を以下の手順で測定する。 日立ハ ィテクノロジーズ製分光光度計 (U— 3310)に積分球を取り付け、標準白色板 (酸ィ匕 アルミニウム)を 100%とした時の反射率を 400〜700nmにわたつて測定する。得ら れたチャートより 5nm間隔で反射率を読み取り、それらの平均値を計算し平均反射 率とする。各反射フィルムについて 3枚のサンプルを測定し、その平均値を反射フィ ルムの平均反射率とした。なお、反射フィルムに榭脂層が設けられていない場合は、 「(3)光沢度(60° ;)」の測定において、「榭脂層を設けた面」とみなした面の平均反 射率を測定する。 The average reflectance of the surface of the reflective film on which the resin layer is provided is measured by the following procedure. Attach an integrating sphere to a Hitachi High-Technologies spectrophotometer (U-3310), and measure the reflectivity from 400 to 700 nm when the standard white plate (acid aluminum) is 100%. Read the reflectance at 5nm intervals from the obtained chart, calculate the average value of them, and use it as the average reflectance. Three samples were measured for each reflective film, and the average value was taken as the average reflectance of the reflective film. If the reflective film is not provided with a resin layer, the average reflectivity of the surface regarded as the “surface provided with the resin layer” in the measurement of “(3) Glossiness (60 °;)”. Measure.
[0054] (2)熱収縮率 [0054] (2) Thermal contraction rate
(長手方向の熱収縮率)  (Heat shrinkage in the longitudinal direction)
反射フィルムから 10mm幅(フィルム幅方向) X 230mm長(フィルム長手方向)のサ ンプルを切り出す。サンプルの長尺方向に 200mm間隔のマークを入れ、金尺で正 確にマーク間距離を読みとる(L mm)。サンプルを 90°Cの熱風オーブン中に 30分  Cut a sample 10mm wide (film width direction) x 230mm long (film longitudinal direction) from the reflective film. Place marks at intervals of 200 mm in the longitudinal direction of the sample, and accurately read the distance between the marks with a metal scale (L mm). Sample in a 90 ° C hot air oven for 30 minutes
0  0
間放置した後、室温まで除冷する。次いでサンプルのマーク間距離を上記の方法で 読みとる (Lmm)。上記のマーク間距離力も次式で熱収縮率を算出し%で表した。 1 枚の反射フィルムから 3枚のサンプルを切り出し、各サンプルの熱収縮率値の平均値 をその反射フィルムの熱収縮率とした。 Let stand for a while and then cool to room temperature. Next, read the distance between the marks of the sample by the above method (Lmm). The distance force between the marks was also expressed in% by calculating the heat shrinkage rate by the following formula. 1 Three samples were cut out of the reflective film, and the average value of the thermal shrinkage rate of each sample was defined as the thermal shrinkage rate of the reflective film.
•加熱収縮率(%) = (L -L) /L X 100  • Heat shrinkage (%) = (L -L) / L X 100
0 0  0 0
なお、負の値はフィルムが伸びたことをあらわす。  A negative value indicates that the film is stretched.
[0055] (幅方向の熱収縮率) [0055] (Heat shrinkage in the width direction)
反射フィルムから 10mm幅(フィルム長手方向) X 230mm長(フィルム幅方向)のサ ンプルを切り出し、長手方向の熱収縮率の測定方法と同様にして測定した。  A 10 mm wide (film longitudinal direction) x 230 mm long (film width direction) sample was cut out from the reflective film and measured in the same manner as the method for measuring the thermal shrinkage in the longitudinal direction.
[0056] (3)光沢度(60° ) [0056] (3) Glossiness (60 °)
反射フィルムの榭脂層を設けた面とその反対側の面の両方の面の光沢度(60° ) を以下の手順で測定する。スガ試験機製 デジタル変角光沢計 (UGV— 4D)を用い て、 JIS K7105 (1981年版)に基づいて、入射角および受光角を 60° にあわせて 光沢度を測定した。各反射フィルムについて 3枚のサンプルを測定し、その平均値を 反射フィルムの光沢度(60° )とした。なお、反射フィルムに榭脂層が設けられて!/、な V、場合は、光沢度が小さ!/、方の面 (光沢度が両面で同じ場合は 、ずれか一方の面) を「榭脂層を設けた面」とみなす。  The glossiness (60 °) of both the surface of the reflective film provided with the resin layer and the opposite surface is measured by the following procedure. Using a digital variable angle gloss meter (UGV-4D) manufactured by Suga Test Instruments Co., Ltd., the glossiness was measured according to JIS K7105 (1981 version) with the incident angle and light receiving angle adjusted to 60 °. Three samples were measured for each reflection film, and the average value was defined as the glossiness (60 °) of the reflection film. In addition, the oil film layer is provided on the reflective film! In the case of /, NA V, the glossiness is small! /, And the side of the surface (if the glossiness is the same on both sides, one of the sides) is regarded as the “surface with the resin layer”.
[0057] (4)耐光性試験後の平均反射率 [0057] (4) Average reflectance after light resistance test
反射フィルムを紫外線劣化促進試験機アイスーパー UVテスター SUV—W131 ( 岩崎電気 (株)製)に入れ、下記条件で強制紫外線照射試験を行った。  The reflective film was placed in an ultraviolet degradation acceleration tester iSuper UV Tester SUV-W131 (manufactured by Iwasaki Electric Co., Ltd.), and a forced ultraviolet irradiation test was performed under the following conditions.
「紫外線照射条件」  "UV irradiation conditions"
照度: lOOmWZcm2、温度: 60°C、相対湿度: 50%RH、照射時間: 48時間 照射後のサンプルにっき、 (1)の方法に準じて平均反射率を測定した。 Illuminance: lOOmWZcm 2 , Temperature: 60 ° C, Relative humidity: 50% RH, Irradiation time: 48 hours The average reflectance was measured according to the method of (1).
[0058] (5)反射フィルムの面の識別 [0058] (5) Identification of reflective film surface
任意に選定した 10名の判定者で反射フィルムの両面を目視により観察した。 10名 全員が、榭脂層を設けた面とその反対側の面との識別ができれば〇、 1名でも識別 ができなければ Xと判定した。各反射フィルムについて 1枚のサンプルで評価した。  Ten decision-makers selected arbitrarily observed both sides of the reflective film visually. All 10 people were judged as ◯ if the surface with the resin layer could be distinguished from the opposite surface, and X if even one could not. Each reflective film was evaluated with one sample.
[0059] (6)キズの見えにくさ [0059] (6) Hard to see scratches
反射フィルムの榭脂層を設けた面に # 0000のスチールウール〖こ 100gの荷重を力 けて、ストローク幅 10cm、速度 30mmZsecで 3往復摩擦した。任意に選択した 10 名の判定者で榭脂層を設けた面を目視で観察した。 10名全員がキズが見えなけれ ば〇、 1名でもキズが見えれば Xと判定した。なお、反射フィルムに榭脂層が設けら れていない場合は、「(3)光沢度(60° ;)」の測定において、「榭脂層を設けた面」と みなした面にキズをつけ、その面を観察した。各反射フィルムについて 1枚のサンプ ルで評価した。 The surface of the reflective film provided with a resin layer was rubbed 3 times at a stroke width of 10 cm and a speed of 30 mmZsec by applying a load of 100 g of # 0000 steel wool. Arbitrarily selected 10 The surface provided with the rosin layer was visually observed by a name judge. If all 10 people did not see any scratches, it was rated as 〇. If the reflective film is not provided with a resin layer, the surface considered as the “surface provided with the resin layer” was scratched in the measurement of “(3) Glossiness (60 °;)”. The surface was observed. Each reflective film was evaluated with one sample.
[0060] (実施例 1)  [Example 1]
まず、ポリエチレンテレフタレートのチップ(東レ(株)製 F20S)、及び、分子量 4000 のポリエチレングリコール、ポリブチレンテレフタレートとポリテトラメチレングリコールの 共重合物をポリエチレンテレフタレートの重合時に添カ卩したマスターチップを 180°C で 3時間真空乾燥した。  First, a polyethylene terephthalate chip (F20S manufactured by Toray Industries, Inc.) and a master chip containing a polyethylene glycol having a molecular weight of 4000, a copolymer of polybutylene terephthalate and polytetramethylene glycol, added during the polymerization of polyethylene terephthalate are 180 °. Vacuum dried at C for 3 hours.
[0061] 次いで、ポリエチレンテレフタレート 65重量部、ポリエチレンテレフタレートにイソフ タル酸を 10mol%とポリエチレングリコールを 5mol%共重合したものを 10重量部、 ポリブチレンテレフタレートとポリテトラメチレングリコールの共重合物を 5重量部、ポリ メチルペンテン 20重量部となるように混合した。混合物を 270〜300°Cに加熱された 押出機 Bに供給した (B層)。  [0061] Next, 65 parts by weight of polyethylene terephthalate, 10 parts by weight of polyethylene terephthalate copolymerized with 10 mol% of isophthalic acid and 5 mol% of polyethylene glycol, and 5 parts by weight of a copolymer of polybutylene terephthalate and polytetramethylene glycol To 20 parts by weight of polymethylpentene. The mixture was fed to Extruder B heated to 270-300 ° C (B layer).
[0062] 一方、ポリエチレンテレフタレートのチップ 97重量部、数平均粒径 1. 5 μ mの二酸 化珪素を 2重量%含有したマスターチップ 1重量部となるように混合した。混合物を 1 80°Cで 3時間真空乾燥した後、 280°Cに加熱された押出機 Aに供給した (A層)。  On the other hand, 97 parts by weight of a polyethylene terephthalate chip and 1 part by weight of a master chip containing 2% by weight of silicon dioxide having a number average particle size of 1.5 μm were mixed. The mixture was vacuum-dried at 1 80 ° C. for 3 hours and then fed to Extruder A heated to 280 ° C. (A layer).
[0063] これらポリマーを A層 ZB層 ZA層(厚み比率 A層: B層: A層 = 1 : 8 : 1)となるよう に積層装置を通して積層し、 Tダイよりシート状に成形した。  [0063] These polymers were laminated through a laminating apparatus so as to be an A layer, a ZB layer, and a ZA layer (thickness ratio A layer: B layer: A layer = 1: 8: 1), and formed into a sheet from a T die.
[0064] さらにこのシートを表面温度 25°Cの冷却ドラムで冷却固化して未延伸フィルムとし た。次いで未延伸フィルムを 85〜98°Cに加熱したロール群に導き、フィルム長手方 向に 3. 4倍に延伸し、 25°Cのロール群で冷却した。続いて、長手方向に縦延伸した フィルムの両端をクリップで把持しながらテンターに導き、 130°Cに加熱された雰囲 気中でフィルム幅方向(フィルム長手方向に垂直な方向)に 3. 6倍で延伸した。その 後テンター内で 230°Cの熱固定を行い、均一に徐冷後、室温まで冷やした。最後に 卷取機で巻き取り、厚み 188 μ mの白色フィルムを得た。得られた白色フィルムの光 沢度(60° )は 121%であった。 [0065] 榭脂層を形成する塗液として、ハルスハイブリッド (登録商標) UV— G13 (アクリル 系共重合体、濃度 40%の溶液、(株)日本触媒製):41. 4g、デスモジュール (登録 商標) N3200 (硬化剤、濃度 100%、住化バイエルウレタン (株)製): 2. lg、トルェ ン: 54. 5g、無機微粒子としてシリカ粉末 (富士シリシァ (株)製 サイホロ一ビック(登 録商標) 100) : 1. 8g を攪拌しながら添加して作った塗液を準備した。この塗液を白 色フィルムの片面に乾燥後の厚みが 3 mになるように塗布して榭脂層を設け、乾燥 させた。塗液の乾燥は 130°Cの温度で 1分間実施した。このようにして反射フィルムを 得た。反射フィルムの榭脂層を設けた面の光沢度(60° )は 25%であった。 [0064] Further, this sheet was cooled and solidified with a cooling drum having a surface temperature of 25 ° C to obtain an unstretched film. Next, the unstretched film was guided to a roll group heated to 85 to 98 ° C, stretched 3.4 times in the longitudinal direction of the film, and cooled with a roll group at 25 ° C. Next, the film stretched in the longitudinal direction is guided to the tenter while holding both ends of the film with clips, and in the atmosphere heated to 130 ° C in the film width direction (direction perpendicular to the film longitudinal direction) 3.6 It was stretched by a factor of 2. After that, heat setting was performed at 230 ° C in a tenter, and after uniform cooling, it was cooled to room temperature. Finally, it was wound up with a winder to obtain a white film having a thickness of 188 μm. The white film obtained had a luminous intensity (60 °) of 121%. [0065] As a coating liquid for forming a resin layer, Hals Hybrid (registered trademark) UV-G13 (acrylic copolymer, 40% concentration solution, manufactured by Nippon Shokubai Co., Ltd.): 41.4 g, desmodur ( (Registered trademark) N3200 (curing agent, concentration 100%, manufactured by Sumika Bayer Urethane Co., Ltd.): 2. lg, toluene: 54.5 g, silica powder as inorganic fine particles (Fuji Silysia Co., Ltd. (Trademark) 100): 1. A coating solution prepared by adding 8 g with stirring was prepared. This coating solution was applied to one side of a white film so that the thickness after drying was 3 m, a resin layer was provided, and the coating was dried. The coating solution was dried at a temperature of 130 ° C for 1 minute. Thus, a reflective film was obtained. The glossiness (60 °) of the surface of the reflective film provided with the resin layer was 25%.
[0066] (実施例 2)  [0066] (Example 2)
A層に混合するマスターチップ(二酸化珪素含有量 2重量%)の量を 2重量部とし た以外は、実施例 1と同様にして白色フィルムを得た。得られたフィルムの光沢度(6 0° )は 107%であった。  A white film was obtained in the same manner as in Example 1 except that the amount of the master chip (silicon dioxide content 2% by weight) mixed in the A layer was 2 parts by weight. The resulting film had a glossiness (60 °) of 107%.
[0067] 榭脂層を形成する塗液中のシリカ粉末 (富士シリシァ (株)製 サイホロ一ビック(登 録商標) 100)の量を 2. 3gとした以外は実施例 1と同様にして榭脂層を設けて、反射 フィルムを得た。反射フィルムの榭脂層を設けた面の光沢度(60° )は 13%であった  [0067] In the same manner as in Example 1 except that the amount of silica powder (Sciphor Ivic (registered trademark) 100, manufactured by Fuji Silysia Co., Ltd.) 100 in the coating liquid forming the resin layer was changed to 2.3 g. A fat layer was provided to obtain a reflective film. The glossiness (60 °) of the surface of the reflective film provided with the resin layer was 13%
[0068] (実施例 3) [Example 3]
A層に混合するマスターチップ(二酸化珪素含有量 2重量%)の量を 3. 5重量部 とした以外は、実施例 1と同様にして白色フィルムを得た。得られたフィルムの光沢度 A white film was obtained in the same manner as in Example 1 except that the amount of the master chip (silicon dioxide content 2% by weight) mixed in the A layer was 3.5 parts by weight. Glossiness of the obtained film
(60° )は 95%であった。 (60 °) was 95%.
[0069] 榭脂層を形成する塗液中のシリカ粉末 (富士シリシァ (株)製 サイホロ一ビック(登 録商標) 100)の量を 2. 3gとした以外は実施例 1と同様にして榭脂層を設けて、反射 フィルムを得た。反射フィルムの榭脂層を設けた面の光沢度(60° )は 12%であった [0069] In the same manner as in Example 1 except that the amount of silica powder in the coating liquid for forming the resin layer (Syhoro Bic (registered trademark) 100 manufactured by Fuji Silysia Co., Ltd. 100) was 2.3 g. A fat layer was provided to obtain a reflective film. The glossiness (60 °) of the surface of the reflective film provided with the resin layer was 12%
[0070] (実施例 4) [0070] (Example 4)
A層、 B層のポリマー組成、及び押出機 A,押出機 Bの温度は実施例 1と同様とした  The polymer composition of layer A and layer B, and the temperatures of extruder A and extruder B were the same as in Example 1.
[0071] ポリエチレンテレフタレートのチップ 97重量部、数平均粒径 1. 5 μ mの二酸化珪素 を 2重量%含有したマスターチップ 3. 5重量部となるように混合した。混合物を 180[0071] Polyethylene terephthalate chip 97 parts by weight, silicon dioxide having a number average particle size of 1.5 μm A master chip containing 2 wt% was mixed to 3.5 parts by weight. 180 mixture
°Cで 3時間真空乾燥した後、 280°Cに加熱された押出機 Cに供給した (C層)。 After vacuum drying at ° C for 3 hours, the mixture was supplied to Extruder C heated to 280 ° C (C layer).
[0072] これらポリマーを A層 ZB層 ZC層(厚み比 A層: B層: C層 = 1 : 8 : 1)となるように 積層装置を通して積層し、 Tダイよりシート状に成形した。 [0072] These polymers were laminated through a laminating apparatus so as to be an A layer, a ZB layer, and a ZC layer (thickness ratio A layer: B layer: C layer = 1: 8: 1), and formed into a sheet form from a T die.
[0073] さらにこのシートを実施例 1と同様の条件で延伸して白色フィルムを得た。得られた 白書フィルムの光沢度(60° )は A層側: 121%、 C層側: 95%であった。 [0073] Further, this sheet was stretched under the same conditions as in Example 1 to obtain a white film. The glossiness (60 °) of the white paper film obtained was 121% on the A layer side and 95% on the C layer side.
[0074] 榭脂層を形成する塗液中のシリカ粉末 (富士シリシァ (株)製 サイホロ一ビック(登 録商標) 100)の量を 2. 3gとした以外は実施例 1と同様にして A層面に榭脂層を設け て、反射フィルムを得た。反射フィルムの榭脂層を設けた面の光沢度(60° )は 14% であった。 [0074] A in the same manner as in Example 1 except that the amount of silica powder in the coating solution for forming the resin layer (Syhoro Bic (registered trademark) 100 manufactured by Fuji Silysia Co., Ltd. 100) was 2.3 g. A reflective film was obtained by providing a resin layer on the layer surface. The glossiness (60 °) of the surface of the reflective film provided with the resin layer was 14%.
(比較例 1)  (Comparative Example 1)
榭脂層を設けな 、以外は実施例 1と同様にして反射フィルムを得た。  A reflective film was obtained in the same manner as in Example 1 except that the resin layer was not provided.
(比較例 2)  (Comparative Example 2)
榭脂層を形成する塗液中のシリカ粉末 (富士シリシァ (株)製 サイホロ一ビック (登 録商標) 100)の量を 0. 3gとした以外は、実施例 1と同様にして榭脂層を設けて、反 射フィルムを得た。反射フィルムの榭脂層を設けた面の光沢度(60° )は 70%であつ た。  Resin layer in the same manner as in Example 1 except that the amount of silica powder in the coating liquid forming the resin layer (Sciphor Ibic (registered trademark) 100 manufactured by Fuji Silysia Co., Ltd. 100) was 0.3 g. A reflective film was obtained. The glossiness (60 °) of the surface of the reflective film provided with the resin layer was 70%.
(比較例 3)  (Comparative Example 3)
榭脂層を形成する塗液中のシリカ粉末 (富士シリシァ (株)製 サイホロ一ビック (登 録商標) 100)の量を 0. 9gとした以外は、実施例 1と同様にして榭脂層を設けて、反 射フィルムを得た。反射フィルムの榭脂層を設けた面の光沢度(60° )は 50%であつ た。  Resin layer as in Example 1 except that the amount of silica powder in the coating liquid for forming the resin layer (Sci-Holovik (registered trademark) 100 manufactured by Fuji Silysia Co., Ltd. 100) was 0.9 g. A reflective film was obtained. The glossiness (60 °) of the surface of the reflective film provided with the resin layer was 50%.
[0075] (比較例 4)  [0075] (Comparative Example 4)
188 μ mの多孔質の二軸延伸ポリエチレンテレフタレートからなる白色フィルム(東 レ (株)製 ルミラー(登録商標) E60L、光沢度(60° ) : 30%)の片面に、実施例 1に 記載の榭脂層を設けて反射フィルムを得た。反射フィルムの榭脂層を設けた面の光 沢度(60° )は 25%であった。  As described in Example 1 on one side of a white film made of 188 μm porous biaxially stretched polyethylene terephthalate (Lumirror (registered trademark) E60L, Toray Industries, Inc., glossiness (60 °): 30%)) A resin film was provided to obtain a reflective film. The luminous intensity (60 °) of the surface of the reflective film provided with the resin layer was 25%.
[0076] [表 1]
Figure imgf000020_0001
[0076] [Table 1]
Figure imgf000020_0001
[0077] 実施例 1〜4は光沢度差が 80%より大きぐ榭脂層を設けた面とその反対側の面と の識別が容易にできた。さらに、実施例 1〜4は光沢度が小さい面 (榭脂層を設けた 面)の光沢度が 25%以下であり、その面のキズの見えにくさも良好であった。 [0077] In Examples 1 to 4, it was possible to easily distinguish the surface provided with the resin layer having a gloss difference of more than 80% and the surface on the opposite side. Furthermore, in Examples 1 to 4, the glossiness of the surface with a low glossiness (surface with the resin layer) was 25% or less, and the scratches on the surface were difficult to see.
[0078] 一方、比較例 1〜4は光沢度差が 80%以下であり、榭脂層を設けた面とその反対 側の面との識別が困難であった。また、比較例 1, 2は光沢度が小さい面 (榭脂層を 設けた面)の光沢度が 50%より大きぐその面のキズも確認された。  On the other hand, in Comparative Examples 1 to 4, the difference in glossiness was 80% or less, and it was difficult to distinguish the surface on which the resin layer was provided and the surface on the opposite side. In Comparative Examples 1 and 2, it was confirmed that the surface having a low glossiness (the surface provided with the resin layer) had a glossiness of more than 50%, and the surface was scratched.
産業上の利用可能性  Industrial applicability
[0079] 本発明の面光源反射部材用フィルムは液晶ノ ックライトに好適の用いることができ る。特に、直下型方式の液晶バックライト、逆プリズム方式の液晶バックライト、液晶バ ックライト用ランプリフレタターに好適に用いることができる。 [0079] The film for a surface light source reflecting member of the present invention can be suitably used for a liquid crystal knocklight. In particular, it can be suitably used for a direct type liquid crystal backlight, a reverse prism type liquid crystal backlight, and a lamp reflector for a liquid crystal backlight.

Claims

請求の範囲 The scope of the claims
[1] 白色フィルムで構成され、一方の面と他方の面との光沢度(60° )の差 A Gが、 Δ [1] It is composed of a white film, and the difference in gloss (60 °) between one side and the other side is A
G > 80%である面光源反射部材用フィルム。 G> 80% surface light source reflecting member film.
[2] 前記白色フィルムの一方の面に榭脂層を有し、かつ白色フィルムの他方の面の光 沢度(60° )が 90%以上である請求項 1に記載の面光源反射部材用フィルム。 [2] The surface light source reflecting member according to [1], wherein the white film has a resin layer on one surface, and the light intensity (60 °) of the other surface of the white film is 90% or more. the film.
[3] 前記榭脂層が紫外線吸収剤および Zまたは光安定化剤を含有する榭脂層である 請求項 2に記載の面光源反射部材用フィルム。 3. The surface light source reflecting member film according to claim 2, wherein the resin layer is a resin layer containing an ultraviolet absorber and Z or a light stabilizer.
[4] 90°Cで 30分間加熱処理した後のフィルム長手方向およびフィルム幅方向の熱収 縮率が 0. 1%以上 0. 2%以下である請求項 1に記載の面光源反射部材用フィル ム。 [4] The surface light source reflecting member according to claim 1, wherein the heat contraction rate in the film longitudinal direction and the film width direction after heat treatment at 90 ° C. for 30 minutes is 0.1% or more and 0.2% or less. the film.
[5] 前記白色フィルムが A層 ZB層 ZA層の 3層構成力もなり、 B層が微細気泡を含有 した層であり、 A層がポリエステルに無機粒子および Zまたは有機粒子を含有させた 層であり、その粒子含有量が各 A層の全重量に対して 0. 5重量%以下である請求項 1に記載の面光源反射部材用フィルム。  [5] The white film also has a three-layer constitutional power of A layer, ZB layer, and ZA layer, B layer is a layer containing fine bubbles, and A layer is a layer containing inorganic particles and Z or organic particles in polyester. 2. The film for a surface light source reflecting member according to claim 1, wherein the particle content is 0.5% by weight or less based on the total weight of each A layer.
[6] 前記白色フィルムが A層 ZB層 ZC層の 3層構成力 なり、 B層が微細気泡を含有 した層であり、 A層および Zまたは C層がポリエステルに無機粒子および Zまたは有 機粒子を含有させた層であり、その粒子含有量が粒子を含有した該各層の全重量に 対して 0. 5重量%以下である請求項 1に記載の面光源反射部材用フィルム。  [6] The white film has a three-layer composition of A layer, ZB layer, and ZC layer, B layer is a layer containing fine bubbles, and A layer and Z or C layer are inorganic particles and Z or organic particles in polyester. 2. The film for a surface light source reflecting member according to claim 1, wherein the content of the particles is 0.5% by weight or less based on the total weight of each layer containing the particles.
[7] 請求項 1〜6のいずれかに記載の面光源反射部材用フィルムを用いた直下型方式 の液晶バックライト。  [7] A direct-type liquid crystal backlight using the surface light source reflecting member film according to any one of claims 1 to 6.
[8] 請求項 1〜6の 、ずれかに記載の面光源反射部材用フィルムを用いた液晶バックラ イト用ランプリフレタター。  [8] A lamp reflector for a liquid crystal backlight using the surface light source reflecting member film according to any one of claims 1 to 6.
[9] 請求項 1〜6の 、ずれかに記載の面光源反射部材用フィルムを用いた逆プリズム 方式の液晶バックライト。 [9] An inverted prism type liquid crystal backlight using the surface light source reflecting member film according to any one of claims 1 to 6.
PCT/JP2007/051343 2006-02-03 2007-01-29 Film for surface light source reflection member WO2007088797A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800034434A CN101375185B (en) 2006-02-03 2007-01-29 Film for surface light source reflection member
KR1020087016211A KR101331888B1 (en) 2006-02-03 2007-01-29 Film for surface light source reflection member
JP2007509754A JP5040647B2 (en) 2006-02-03 2007-01-29 Surface light source reflective member film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-026635 2006-02-03
JP2006026635 2006-02-03

Publications (1)

Publication Number Publication Date
WO2007088797A1 true WO2007088797A1 (en) 2007-08-09

Family

ID=38327373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051343 WO2007088797A1 (en) 2006-02-03 2007-01-29 Film for surface light source reflection member

Country Status (5)

Country Link
JP (1) JP5040647B2 (en)
KR (1) KR101331888B1 (en)
CN (1) CN101375185B (en)
TW (1) TWI425251B (en)
WO (1) WO2007088797A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132895A1 (en) * 2011-03-29 2012-10-04 東レ株式会社 White-colored reflection film for edge-light type backlight, and liquid crystal display backlight using same
JP2012200921A (en) * 2011-03-24 2012-10-22 Toray Ind Inc White laminated polyester film for reflection plate and back light device
JP2014510387A (en) * 2011-04-04 2014-04-24 エルジー イノテック カンパニー リミテッド Lighting device
JP2019128467A (en) * 2018-01-25 2019-08-01 コニカミノルタ株式会社 Optical film and method of manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075227A1 (en) * 2007-12-11 2009-06-18 Toray Industries, Inc. Layered film
WO2016111234A1 (en) * 2015-01-05 2016-07-14 帝人デュポンフィルム株式会社 White reflective film for direct surface light source and direct surface light source using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05330247A (en) * 1992-06-03 1993-12-14 New Oji Paper Co Ltd Dye thermal transfer receiving sheet
JP2004276577A (en) * 2003-03-12 2004-10-07 Toray Saehan Inc Polyester film containing fine pores
JP2005125700A (en) * 2003-10-27 2005-05-19 Teijin Dupont Films Japan Ltd White polyester film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111264A (en) * 1997-06-16 1999-01-06 Toray Monofilament Co Ltd Tying material
JP4345305B2 (en) 2003-01-09 2009-10-14 東レ株式会社 Light reflecting film and surface light source using the same
JP4525055B2 (en) * 2003-11-18 2010-08-18 東レ株式会社 Light reflecting film and surface light source using the same
WO2005123385A1 (en) * 2004-06-17 2005-12-29 Teijin Dupont Films Japan Limited Laminated film for reflection plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05330247A (en) * 1992-06-03 1993-12-14 New Oji Paper Co Ltd Dye thermal transfer receiving sheet
JP2004276577A (en) * 2003-03-12 2004-10-07 Toray Saehan Inc Polyester film containing fine pores
JP2005125700A (en) * 2003-10-27 2005-05-19 Teijin Dupont Films Japan Ltd White polyester film

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200921A (en) * 2011-03-24 2012-10-22 Toray Ind Inc White laminated polyester film for reflection plate and back light device
US9625120B2 (en) 2011-03-29 2017-04-18 Toray Industries, Inc. White reflective film for edge-light type backlight, and liquid crystal display backlight using same
JP5218931B2 (en) * 2011-03-29 2013-06-26 東レ株式会社 White reflective film for edge light type backlight and backlight for liquid crystal display using the same
KR101375917B1 (en) 2011-03-29 2014-03-18 도레이 카부시키가이샤 White-colored reflection film for edge-light type backlight, and liquid crystal display backlight using same
WO2012132895A1 (en) * 2011-03-29 2012-10-04 東レ株式会社 White-colored reflection film for edge-light type backlight, and liquid crystal display backlight using same
US9982849B2 (en) 2011-04-04 2018-05-29 Lg Innotek Co., Ltd. Lighting apparatus
JP2014510387A (en) * 2011-04-04 2014-04-24 エルジー イノテック カンパニー リミテッド Lighting device
US10139054B2 (en) 2011-04-04 2018-11-27 Lg Innotek Co., Ltd. Lighting apparatus
US10877313B2 (en) 2011-04-04 2020-12-29 Lg Innotek Co., Ltd. Lighting apparatus
US11243428B2 (en) 2011-04-04 2022-02-08 Lg Innotek Co., Ltd. Lighting apparatus
US11586069B2 (en) 2011-04-04 2023-02-21 Lg Innotek Co., Ltd. Lighting apparatus
US11754877B2 (en) 2011-04-04 2023-09-12 Lg Innotek Co., Ltd. Lighting apparatus
JP2019128467A (en) * 2018-01-25 2019-08-01 コニカミノルタ株式会社 Optical film and method of manufacturing the same
JP7308592B2 (en) 2018-01-25 2023-07-14 コニカミノルタ株式会社 Optical film and its manufacturing method

Also Published As

Publication number Publication date
JP5040647B2 (en) 2012-10-03
CN101375185A (en) 2009-02-25
JPWO2007088797A1 (en) 2009-06-25
TWI425251B (en) 2014-02-01
KR101331888B1 (en) 2013-11-22
KR20080091128A (en) 2008-10-09
CN101375185B (en) 2011-07-06
TW200741256A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
KR101398507B1 (en) White polyester film for light reflective plate
JP6624184B2 (en) White polyester film for liquid crystal display, method for producing the same, and backlight for liquid crystal display
WO2005124399A1 (en) Anisotropic diffusion film
TW200829963A (en) White polyester film for reflecting sheet use in liquid crystalline display
KR101816614B1 (en) Process for producing white layered film, and white layered polyester film
WO2007088797A1 (en) Film for surface light source reflection member
JP4927246B2 (en) Coextrusion laminated polyester film
JP5937847B2 (en) Laminated polyester film
JP2007072429A (en) White polyester film for liquid crystal display reflection plate
JP5353178B2 (en) Polyester film and liquid crystal display backlight and solar cell using the same
JP4357069B2 (en) Polyester film
KR20160137992A (en) Laminated film
KR101265105B1 (en) Biaxial stretched film by polyester for optical film
CN101107546A (en) Light-diffusion plate
JP2006187910A (en) Biaxially oriented laminated film
KR102488716B1 (en) White reflective film for direct surface light source and direct surface light source using same
JP2012053092A (en) Light-diffusion laminated polyester film for backlight
JP4370537B2 (en) Surface light diffusing polyester film
KR101058337B1 (en) Biaxially oriented polyester film for optics and preparation method thereof
JP2009139890A (en) Surface light-diffusing polyester film
JP5937846B2 (en) Laminated polyester film
WO2002000772A1 (en) Biaxially oriented polyester film, adhesive film, and laminated film
JP2014218039A (en) Laminated polyester film
JP5108438B2 (en) Polyester film for reflector
JP2014233860A (en) Polyester film for optical use

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007509754

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087016211

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780003443.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07707574

Country of ref document: EP

Kind code of ref document: A1